WorldWideScience

Sample records for dimensionality controls cytoskeleton

  1. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape.

    Directory of Open Access Journals (Sweden)

    Mirjam Ochsner

    2010-03-01

    Full Text Available Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D.Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell adhesions are confined to 2-D or occur in a 3-D space.

  2. The plant cytoskeleton controls regulatory volume increase.

    Science.gov (United States)

    Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter

    2013-09-01

    The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Dynamics of a bilayer membrane coupled to a two-dimensional cytoskeleton: Scale transfers of membrane deformations

    Science.gov (United States)

    Okamoto, Ryuichi; Komura, Shigeyuki; Fournier, Jean-Baptiste

    2017-07-01

    We theoretically investigate the dynamics of a floating lipid bilayer membrane coupled with a two-dimensional cytoskeleton network, taking into account explicitly the intermonolayer friction, the discrete lattice structure of the cytoskeleton, and its prestress. The lattice structure breaks lateral continuous translational symmetry and couples Fourier modes with different wave vectors. It is shown that within a short time interval a long-wavelength deformation excites a collection of modes with wavelengths shorter than the lattice spacing. These modes relax slowly with a common renormalized rate originating from the long-wavelength mode. As a result, and because of the prestress, the slowest relaxation is governed by the intermonolayer friction. Conversely, and most interestingly, forces applied at the scale of the cytoskeleton for a sufficiently long time can cooperatively excite large-scale modes.

  4. Physically-induced cytoskeleton remodeling of cells in three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Sheng-Lin Lee

    Full Text Available Characterizing how cells in three-dimensional (3D environments or natural tissues respond to biophysical stimuli is a longstanding challenge in biology and tissue engineering. We demonstrate a strategy to monitor morphological and mechanical responses of contractile fibroblasts in a 3D environment. Cells responded to stretch through specific, cell-wide mechanisms involving staged retraction and reinforcement. Retraction responses occurred for all orientations of stress fibers and cellular protrusions relative to the stretch direction, while reinforcement responses, including extension of cellular processes and stress fiber formation, occurred predominantly in the stretch direction. A previously unreported role of F-actin clumps was observed, with clumps possibly acting as F-actin reservoirs for retraction and reinforcement responses during stretch. Responses were consistent with a model of cellular sensitivity to local physical cues. These findings suggest mechanisms for global actin cytoskeleton remodeling in non-muscle cells and provide insight into cellular responses important in pathologies such as fibrosis and hypertension.

  5. Gfi1b controls integrin signaling-dependent cytoskeleton dynamics and organization in megakaryocytes.

    Science.gov (United States)

    Beauchemin, Hugues; Shooshtarizadeh, Peiman; Vadnais, Charles; Vassen, Lothar; Pastore, Yves D; Möröy, Tarik

    2017-03-01

    Mutations in GFI1B are associated with inherited bleeding disorders called GFI1B -related thrombocytopenias. We show here that mice with a megakaryocyte-specific Gfi1b deletion exhibit a macrothrombocytopenic phenotype along a megakaryocytic dysplasia reminiscent of GFI1B -related thrombocytopenia. GFI1B deficiency increases megakaryocyte proliferation and affects their ploidy, but also abrogates their responsiveness towards integrin signaling and their ability to spread and reorganize their cytoskeleton. Gfi1b -null megakaryocytes are also unable to form proplatelets, a process independent of integrin signaling. GFI1B-deficient megakaryocytes exhibit aberrant expression of several components of both the actin and microtubule cytoskeleton, with a dramatic reduction of α-tubulin. Inhibition of FAK or ROCK, both important for actin cytoskeleton organization and integrin signaling, only partially restored their response to integrin ligands, but the inhibition of PAK, a regulator of the actin cytoskeleton, completely rescued the responsiveness of Gfi1b -null megakaryocytes to ligands, but not their ability to form proplatelets. We conclude that Gfi1b controls major functions of megakaryocytes such as integrin-dependent cytoskeleton organization, spreading and migration through the regulation of PAK activity whereas the proplatelet formation defect in GFI1B-deficient megakaryocytes is due, at least partially, to an insufficient α-tubulin content. Copyright© Ferrata Storti Foundation.

  6. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  7. Distinct cytoskeleton populations and extensive crosstalk control Ciona notochord tubulogenesis.

    Science.gov (United States)

    Dong, Bo; Deng, Wei; Jiang, Di

    2011-04-01

    Cell elongation is a fundamental process that allows cells and tissues to adopt new shapes and functions. During notochord tubulogenesis in the ascidian Ciona intestinalis, a dramatic elongation of individual cells takes place that lengthens the notochord and, consequently, the entire embryo. We find a novel dynamic actin- and non-muscle myosin II-containing constriction midway along the anteroposterior aspect of each notochord cell during this process. Both actin polymerization and myosin II activity are required for the constriction and cell elongation. Discontinuous localization of myosin II in the constriction indicates that the actomyosin network produces local contractions along the circumference. This reveals basal constriction by the actomyosin network as a novel mechanism for cell elongation. Following elongation, the notochord cells undergo a mesenchymal-epithelial transition and form two apical domains at opposite ends. Extracellular lumens then form at the apical surfaces. We show that cortical actin and Ciona ezrin/radixin/moesin (ERM) are essential for lumen formation and that a polarized network of microtubules, which contributes to lumen development, forms in an actin-dependent manner at the apical cortex. Later in notochord tubulogenesis, when notochord cells initiate a bi-directional crawling movement on the notochordal sheath, the microtubule network rotates 90° and becomes organized as parallel bundles extending towards the leading edges of tractive lamellipodia. This process is required for the correct organization of actin-based protrusions and subsequent lumen coalescence. In summary, we establish the contribution of the actomyosin and microtubule networks to notochord tubulogenesis and reveal extensive crosstalk and regulation between these two cytoskeleton components.

  8. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  9. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  10. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    Science.gov (United States)

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization

    Science.gov (United States)

    Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco

    2017-04-01

    Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.

  12. Taking control: reorganization of the host cytoskeleton by Chlamydia [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Jordan Wesolowski

    2017-11-01

    Full Text Available Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.

  13. Dimensional control of die castings

    Science.gov (United States)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of

  14. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  15. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  16. Infinite Dimensional Differential Games with Hybrid Controls

    Indian Academy of Sciences (India)

    ... zero-sum infinite dimensional differential game of infinite duration with discounted payoff involving hybrid controls is studied. The minimizing player is allowed to take continuous, switching and impulse controls whereas the maximizing player is allowed to take continuous and switching controls. By taking strategies in the ...

  17. Spatial constraints and the organization of the cytoskeleton

    NARCIS (Netherlands)

    Ga^rlea, I.C.

    2015-01-01

    The shape of animal cells is in controlled by a network of filamentous polymers called the cytoskeleton. The two main components of the cytoskeleton are actin filaments and microtubules. These polymers continuously reorganize in order to performed their diverse cellular functions. For example, in

  18. Spatial organisation of cell expansion by the cytoskeleton

    NARCIS (Netherlands)

    Ketelaar, T.

    2002-01-01

    The shape of plants is determined by the sum of cell division and cell growth. The cytoskeleton plays an important role in both processes. This thesis presents research that pinpoints how the cytoskeleton controls plant cell growth. Root hairs of the model plant Arabidopsis have been used as a model

  19. Nuclear pore complex tethers to the cytoskeleton.

    Science.gov (United States)

    Goldberg, Martin W

    2017-08-01

    The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed. Copyright © 2017. Published by Elsevier Ltd.

  20. Controlled size and one-dimensional growth

    Indian Academy of Sciences (India)

    875–881. c Indian Academy of Sciences. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. JEYARAMAN ATHILAKSHMI and DILLIP KUMAR CHAND. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India e-mail: dillip@iitm.ac.

  1. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation

    DEFF Research Database (Denmark)

    Barres, Romain; Grémeaux, Thierry; Gual, Philippe

    2006-01-01

    a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma m...

  2. Palytoxins and cytoskeleton: An overview.

    Science.gov (United States)

    Louzao, M Carmen; Ares, Isabel R; Cagide, Eva; Espiña, Begoña; Vilariño, Natalia; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M

    2011-03-01

    Cytoskeleton is a dynamic structure essential for a wide variety of normal cellular processes, including the maintenance of cell shape and morphology, volume regulation, membrane dynamics and signal transduction. Cytoskeleton is organized into microtubules, actin meshwork and intermediate filaments. Actin has been identified as a major target for destruction during apoptosis and is also important under pathological conditions such as cancers. Several natural compounds actively modulate actin organization by specific signaling cascades being useful tools to study cytoskeleton dynamics. Palytoxin is a large bioactive compound, first isolated from zoanthids, with a complex structure and different analogs such as ostreocin-D or ovatoxin-a. This toxin has been identified as a potent tumor promoter and cytotoxic molecule, which leads to actin filament distortion and triggers cell death or apoptosis. In this review we report the findings on the involvement of palytoxin and analogues modulating the actin cytoskeleton within different cellular models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Mechanotransduction through Cytoskeleton

    Science.gov (United States)

    Ingber, Donald

    2002-01-01

    The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses, such as those due to gravity, through their cell surface adhesion receptors (e.g., integrins) and that they respond as a result of structural arrangements with their internal cytoskeleton (CSK) which are orchestrated through use of tensegrity architecture. In this project, we carried out studies to define the architectural and molecular basis of cellular mechanotransduction. Our major goal was to define the molecular pathway that mediates mechanical force transfer between integrins and the CSK and to determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation. The specific aims of this proposal were: 1. To define the molecular basis of mechanical coupling between integrins, vinculin, and the actin CSK; 2. To develop a computer simulation of how mechanical stresses alter CSK structure and test this model in living cells; 3. To determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response.

  4. Smooth controllability of infinite-dimensional quantum-mechanical systems

    International Nuclear Information System (INIS)

    Wu, Re-Bing; Tarn, Tzyh-Jong; Li, Chun-Wen

    2006-01-01

    Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynamics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic mathematical framework to describe quantum control systems possessing such controllability algebras. Then we present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It also opens up many interesting problems for future studies

  5. The cytoskeleton and gravitropism in higher plants

    Science.gov (United States)

    Blancaflor, Elison B.

    2002-01-01

    The cellular and molecular mechanisms underlying the gravitropic response of plants have continued to elude plant biologists despite more than a century of research. Lately there has been increased attention on the role of the cytoskeleton in plant gravitropism, but several controversies and major gaps in our understanding of cytoskeletal involvement in gravitropism remain. A major question in the study of plant gravitropism is how the cytoskeleton mediates early sensing and signal transduction events in plants. Much has been made of the actin cytoskeleton as the cellular structure that sedimenting amyloplasts impinge upon to trigger the downstream signaling events leading to the bending response. There is also strong molecular and biochemical evidence that the transport of auxin, an important player in gravitropism, is regulated by actin. Organizational changes in microtubules during the growth response phase of gravitropism have also been well documented, but the significance of such reorientations in controlling differential cellular growth is unclear. Studies employing pharmacological approaches to dissect cytoskeletal involvement in gravitropism have led to conflicting results and therefore need to be interpreted with caution. Despite the current controversies, the revolutionary advances in molecular, biochemical, and cell biological techniques have opened up several possibilities for further research into this difficult area. The myriad proteins associated with the plant cytoskeleton that are being rapidly characterized provide a rich assortment of candidate regulators that could be targets of the gravity signal transduction chain. Cytoskeletal and ion imaging in real time combined with mutant analysis promises to provide a fresh start into this controversial area of research.

  6. Turbine Energy Evaluation by internal dimensional control

    International Nuclear Information System (INIS)

    Mediavilla, F.

    2000-01-01

    To maintain the optimum thermal performance in a high level throughout the life of the turbines requires a good testing program, proper analysis of the test data, and a steam path audit during turbine overhauls. If from operating data analysis collected during the performance test before the outage shows that the efficiency of the turbine is coming down, the steam path audit, that is an internal inspection and a dimensional control of the internals, identity and quantity causes of performance degradation like, seal leakages, excessive clearances, solid particle erosion damages, blades deposits and other losses. The steam path audit assigns the heat rate penalties associated with each of these individual losses to the total degradation. This are used to make cost-effective maintenance decisions during the course of the overhaul. After repairs, a closing steam path audit is conducted during the re assembly of the turbine in order to predict return to service condition of the machine and to provide a quality control check on outage repairs. (Author)

  7. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: Three-dimensional and ultrastructural analysis

    International Nuclear Information System (INIS)

    Kloc, Malgorzata; Bilinski, Szczepan; Dougherty, Matthew T.

    2007-01-01

    Recent studies discovered a novel structural role of RNA in maintaining the integrity of the mitotic spindle and cellular cytoskeleton. In Xenopus laevis, non-coding Xlsirts and coding VegT RNAs play a structural role in anchoring localized RNAs, maintaining the organization of the cytokeratin cytoskeleton and germinal granules in the oocyte vegetal cortex and in subsequent development of the germline in the embryo. We studied the ultrastructural effects of antisense oligonucleotide driven ablation of Xlsirts and VegT RNAs on the organization of the cytokeratin, germ plasm and other components of the vegetal cortex. We developed a novel method to immunolabel and visualize cytokeratin at the electron microscopy level, which allowed us to reconstruct the ultrastructural organization of the cytokeratin network relative to the components of the vegetal cortex in Xenopus oocytes. The removal of Xlsirts and VegT RNAs not only disrupts the cytokeratin cytoskeleton but also has a profound transcript-specific effect on the anchoring and distribution of germ plasm islands and their germinal granules and the arrangement of yolk platelets within the vegetal cortex. We suggest that the cytokeratin cytoskeleton plays a role in anchoring of germ plasm islands within the vegetal cortex and germinal granules within the germ plasm islands

  8. The Cytoskeleton-Autophagy Connection.

    Science.gov (United States)

    Kast, David J; Dominguez, Roberto

    2017-04-24

    Actin cytoskeleton dynamics play vital roles in most forms of intracellular trafficking by promoting the biogenesis and transport of vesicular cargoes. Mounting evidence indicates that actin dynamics and membrane-cytoskeleton scaffolds also have essential roles in macroautophagy, the process by which cellular waste is isolated inside specialized vesicles called autophagosomes for recycling and degradation. Branched actin polymerization is necessary for the biogenesis of autophagosomes from the endoplasmic reticulum (ER) membrane. Actomyosin-based transport is then used to feed the growing phagophore with pre-selected cargoes and debris derived from different membranous organelles inside the cell. Finally, mature autophagosomes detach from the ER membrane by an as yet unknown mechanism, undergo intracellular transport and then fuse with lysosomes, endosomes and multivesicular bodies through mechanisms that involve actin- and microtubule-mediated motility, cytoskeleton-membrane scaffolds and signaling proteins. In this review, we highlight the considerable progress made recently towards understanding the diverse roles of the cytoskeleton in autophagy. Published by Elsevier Ltd.

  9. Effects of X irradiation on the cytoskeleton of rat alveolar macrophages in vitro

    International Nuclear Information System (INIS)

    Ladyman, S.J.; Townsend, K.M.S.; Edwards, C.

    1984-01-01

    The three-dimensional visualization of Triton X-100 resistant cytoskeletons has been used to demonstrate that an absorbed dose of 120 Gy from X rays causes a distinctive and reproducible alteration of the cytoskeleton of intact rat alveolar macrophages in vitro. The alteration has also been shown to be rapidly and completely ''repaired'' and to be apparently similar to alterations caused by colchicine but dissimilar to those caused by cytochalasin B. From these observations and those of other workers who have studied the irradiation of extracted microtubular proteins in vitro, the authors think it likely that microtubules rather than microfilaments are the radiosensitive component of the macrophage cytoskeleton

  10. Identification of dynamic changes in proteins associated with the cellular cytoskeleton after exposure to okadaic acid

    DEFF Research Database (Denmark)

    Opsahl, Jill A; Ljostveit, Sonja; Solstad, Therese

    2013-01-01

    be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton...... of the cortical actin cytoskeleton and cell detachment....

  11. Cytoskeleton in mast cell signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Roč. 3, May (2012), s. 130 ISSN 1664-3224 R&D Projects: GA ČR GAP302/10/1701; GA ČR GPP302/11/P709; GA ČR GAP302/12/1673 Grant - others:ECST(XE) Action BM1007 Institutional research plan: CEZ:AV0Z50520514 Keywords : cytoskeleton * mast cell activation * signal transduction Subject RIV: EB - Genetics ; Molecular Biology

  12. Controlled teleportation of a 3-dimensional bipartite quantum state

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state

  13. The Use of Statistical Methods in Dimensional Process Control

    National Research Council Canada - National Science Library

    Krajcsik, Stephen

    1985-01-01

    ... erection. To achieve this high degree of unit accuracy, we have begun a pilot dimensional control program that has set the guidelines for systematically monitoring each stage of the production process prior to erection...

  14. Turbine Energy Evaluation by internal dimensional control; Evaluacion energetica de turbinas por control dimensional de internos

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, F. [Tecnatom. Madrid (Spain)

    2000-07-01

    To maintain the optimum thermal performance in a high level throughout the life of the turbines requires a good testing program, proper analysis of the test data, and a steam path audit during turbine overhauls. If from operating data analysis collected during the performance test before the outage shows that the efficiency of the turbine is coming down, the steam path audit, that is an internal inspection and a dimensional control of the internals, identity and quantity causes of performance degradation like, seal leakages, excessive clearances, solid particle erosion damages, blades deposits and other losses. The steam path audit assigns the heat rate penalties associated with each of these individual losses to the total degradation. This are used to make cost-effective maintenance decisions during the course of the overhaul. After repairs, a closing steam path audit is conducted during the re assembly of the turbine in order to predict return to service condition of the machine and to provide a quality control check on outage repairs. (Author)

  15. Membrane tension and cytoskeleton organization in cell motility

    International Nuclear Information System (INIS)

    Sens, Pierre; Plastino, Julie

    2015-01-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity. (topical review)

  16. Membrane tension and cytoskeleton organization in cell motility.

    Science.gov (United States)

    Sens, Pierre; Plastino, Julie

    2015-07-15

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  17. Cytoskeleton in Mast Cell Signaling

    Science.gov (United States)

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  18. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    Science.gov (United States)

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  19. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  20. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer

  1. The prehistory of the cytoskeleton concept.

    Science.gov (United States)

    Zampieri, Fabio; Coen, Matteo; Gabbiani, Giulio

    2014-08-01

    Here we discuss how the concept and the name of cytoskeleton were generated and started to evolve over the last two centuries into what is presently a basic topic of modern biology. We also attempt to describe some facets of the emergence of cytoskeleton component characterization in which our laboratory was in part involved. © 2014 Wiley Periodicals, Inc.

  2. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  3. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  4. Three-dimensional harmonic control of a nuclear reactor

    International Nuclear Information System (INIS)

    Potapenko, P.T.

    1989-01-01

    Algorithms for neutron flux control based on harmonic three-dimensional core are considered. The essence of the considered approach includes determination of harmonics amplitudes by signals self-powered detectors placed in reactor channels and reconstruction of neutron field distribution over the reactor core volume using the data obtained. Neutron field harmonic control is shown to be reduced to independent measurement and calculation of height harmonics in channels using techniques developed for channel power control

  5. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  6. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  7. Image-based model of the spectrin cytoskeleton for red blood cell simulation.

    Science.gov (United States)

    Fai, Thomas G; Leo-Macias, Alejandra; Stokes, David L; Peskin, Charles S

    2017-10-01

    We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.

  8. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  9. Drying and control of moisture content and dimensional changes

    Science.gov (United States)

    Richard Bergman

    2010-01-01

    The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...

  10. Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control

    Science.gov (United States)

    Varan, Metin; Akgul, Akif

    2018-04-01

    In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.

  11. The Evolving Complexity of the Podocyte Cytoskeleton.

    Science.gov (United States)

    Schell, Christoph; Huber, Tobias B

    2017-11-01

    Podocytes exhibit a unique cytoskeletal architecture that is fundamentally linked to their function in maintaining the kidney filtration barrier. The cytoskeleton regulates podocyte shape, structure, stability, slit diaphragm insertion, adhesion, plasticity, and dynamic response to environmental stimuli. Genetic mutations demonstrate that even slight impairment of the podocyte cytoskeletal apparatus results in proteinuria and glomerular disease. Moreover, mechanisms underpinning all acquired glomerular pathologies converge on disruption of the cytoskeleton, suggesting that this subcellular structure could be targeted for therapeutic purposes. This review summarizes our current understanding of the function of the cytoskeleton in podocytes and the associated implications for pathophysiology. Copyright © 2017 by the American Society of Nephrology.

  12. Finite-Dimensional Representations for Controlled Diffusions with Delay

    Energy Technology Data Exchange (ETDEWEB)

    Federico, Salvatore, E-mail: salvatore.federico@unimi.it [Università di Milano, Dipartimento di Economia, Management e Metodi Quantitativi (Italy); Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr [Université Paris Diderot, Laboratoire de Probabilités et Modèles Aléatoires (France)

    2015-02-15

    We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.

  13. Characterization of an Actively Controlled Three-Dimensional Turret Wake

    Science.gov (United States)

    Shea, Patrick; Glauser, Mark

    2012-11-01

    Three-dimensional turrets are commonly used for housing optical systems on airborne platforms. As bluff bodies, these geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study looked to use dynamic suction in both open and closed-loop control configurations to actively control the turret wake. The flow field was characterized using dynamic pressure and stereoscopic PIV measurements in the wake of the turret. Results showed that the suction system was able to manipulate the wake region of the turret and could alter not only the spatial structure of the wake, but also the temporal behavior of the wake flow field. Closed-loop, feedback control techniques were used to determine a more optimal control input for the flow control. Similar control effects were seen for both the steady open-loop control case and the closed-loop feedback control configuration with a 45% reduction in the suction levels when comparing the closed-loop to the open-loop case. These results provide unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations.

  14. Morphodynamics of the Actin-Rich Cytoskeleton in Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Maria Manich

    2018-05-01

    Full Text Available Entamoeba histolytica is the anaerobic protozoan parasite responsible for human amoebiasis, the third most deadly parasitic disease worldwide. This highly motile eukaryotic cell invades human tissues and constitutes an excellent experimental model of cell motility and cell shape deformation. The absence of extranuclear microtubules in Entamoeba histolytica means that the actin-rich cytoskeleton takes on a crucial role in not only amoebic motility but also other processes sustaining pathogenesis, such as the phagocytosis of human cells and the parasite's resistance of host immune responses. Actin is highly conserved among eukaryotes, although diverse isoforms exist in almost all organisms studied to date. However, E. histolytica has a single actin protein, the structure of which differs significantly from those of its human homologs. Here, we studied the expression, structure and dynamics of actin in E. histolytica. We used molecular and cellular approaches to evaluate actin gene expression during intestinal invasion by E. histolytica trophozoites. Based on a three-dimensional structural bioinformatics analysis, we characterized protein domains differences between amoebic actin and human actin. Fine-tuned molecular dynamics simulations enabled us to examine protein motion and refine the three-dimensional structures of both actins, including elements potentially accounting for differences changes in the affinity properties of amoebic actin and deoxyribonuclease I. The dynamic, multifunctional nature of the amoebic cytoskeleton prompted us to examine the pleiotropic forms of actin structures within live E. histolytica cells; we observed the cortical cytoskeleton, stress fibers, “dot-like” structures, adhesion plates, and macropinosomes. In line with these data, a proteomics study of actin-binding proteins highlighted the Arp2/3 protein complex as a crucial element for the development of macropinosomes and adhesion plaques.

  15. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  16. ANS main control complex three-dimensional computer model development

    International Nuclear Information System (INIS)

    Cleaves, J.E.; Fletcher, W.M.

    1993-01-01

    A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use

  17. Shape synchronization control for three-dimensional chaotic systems

    International Nuclear Information System (INIS)

    Huang, Yuanyuan; Wang, Yinhe; Chen, Haoguang; Zhang, Siying

    2016-01-01

    This paper aims to the three-dimensional continuous chaotic system and shape of the chaotic attractor by utilizing the basic theory of plane curves in classical differential geometry, the continuous controller is synthesized for the master–slave synchronization in shape. This means that the slave system can possess the same shape of state trajectory with the master system via the continuous controller. The continuous controller is composed of three sub-controllers, which respectively correspond to the master–slave synchronization in shape for the three projective curves of the chaotic attractor onto the three coordinate planes. Moreover, the proposed shape synchronization technique as well as application of control scheme to secure communication is also demonstrated in this paper, where numerical simulation results show the proposed control method works well.

  18. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    Science.gov (United States)

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  19. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    Science.gov (United States)

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Control of Higher–Dimensional PDEs Flatness and Backstepping Designs

    CERN Document Server

    Meurer, Thomas

    2013-01-01

    This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smar...

  1. Incoherent control and entanglement for two-dimensional coupled systems

    International Nuclear Information System (INIS)

    Romano, Raffaele; D'Alessandro, Domenico

    2006-01-01

    We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP and √(SWAP) operators acting on the composite system

  2. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability.

    Science.gov (United States)

    Sun, Licui; Zheng, Junfang; Wang, Qiqi; Song, Ran; Liu, Hua; Meng, Ran; Tao, Tao; Si, Yang; Jiang, Wenguo; He, Junqi

    2016-02-01

    The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1. © FASEB.

  3. Importancia del control de las dimensiones de la madera aserrada

    Directory of Open Access Journals (Sweden)

    D. Álvarez-Lazo

    2004-01-01

    Full Text Available El presente trabajo tiene como objetivo brindar algunas consideraciones para elevar los niveles de rendimiento de madera de Pinus caribaea var. caribaea mediante el uso de una estrategia para incrementar la calidad dimensional de la madera aserrada a partir del análisis de las dimensiones promedio obtenidas y la variación de corte en el aserrío. Para lo cual se construye un programa denominado “Control” que permite determinar las dimensiones óptimas de aserrío así como la determinación de la variación en grosor. Se observa que en los aserraderos existe un subdimensionamiento generalizado fundamentalmente en los surtidos 50, 75, 100 mm; así como una excesiva variación de aserrío. Para eliminar estas deficiencias es necesario que las acciones correctivas estén dirigidas fundamentalmente a aquellas partes de máquinas responsables de la variación de aserrado controlando los esquemas de corte seleccionados por el aserrador.

  4. Coupling of cytoskeleton functions for fibroblast locomotion

    DEFF Research Database (Denmark)

    Couchman, J R; Lenn, M; Rees, D A

    1985-01-01

    caused visible protrusions in projected positions at the leading edge. We conclude that fibroblast locomotion may be driven coordinately by a common set of motility mechanisms and that this coordination may be lost as a result of physical or pharmacological disturbance. Taking our evidence with results...... from other Laboratories, we propose the following cytoskeleton functions. (i) Protrusive activity, probably based on solation--gelation cycles of the actin based cytoskeleton and membrane recycling which provides cellular and membrane components for streaming through the cell body to the leading edge...

  5. Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes.

    Science.gov (United States)

    Kloc, Malgorzata; Bilinski, Szczepan; Kubiak, Jacek Z

    2016-01-01

    The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.

  6. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    Science.gov (United States)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  7. Optically controlled three-dimensional assembly of microfabricated building blocks

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Kelemen, Lorand; Palima, Darwin

    2009-01-01

    We demonstrate a system for constructing reconfigurable microstructures using multiple, real-time configurable counterpropagating-beam traps. We optically assemble geometrically complementary microstructures with complex three-dimensional (3D) topologies produced by two-photon polymerization....... This demonstrates utilization of controllable 3D optical traps for building hierarchical structures from microfabricated building blocks. Optical microassembly with translational and tip-tilt control in 3D achieved by dynamic multiple CB traps can potentially facilitate the construction of functional microdevices...... and may also lead to the future realization of optically actuated micromachines. Fabricating morphologically complex microstructures and then optically manipulating these archetypal building blocks can also be used to construct reconfigurable microenvironments that can aid in understanding cellular...

  8. SnapShot: The Bacterial Cytoskeleton.

    Science.gov (United States)

    Fink, Gero; Szewczak-Harris, Andrzej; Löwe, Jan

    2016-07-14

    Most bacteria and archaea contain filamentous proteins and filament systems that are collectively known as the bacterial cytoskeleton, though not all of them are cytoskeletal, affect cell shape, or maintain intracellular organization. To view this SnapShot, open or download the PDF. Copyright © 2016. Published by Elsevier Inc.

  9. The axonal cytoskeleton : from organization to function

    NARCIS (Netherlands)

    Kevenaar, Josta T; Hoogenraad, Casper C

    The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the

  10. The Cytoskeleton: Mechanical, Physical, and Biological Interactions

    Science.gov (United States)

    1996-01-01

    This workshop, entitled "The Cytoskeleton: Mechanical, Physical, and Biological Interactions," was sponsored by the Center for Advanced Studies in the Space Life Sciences at the Marine Biological Laboratory. This Center was established through a cooperative agreement between the MBL and the Life Sciences Division of the National Aeronautics and Space Administration. To achieve these goals, the Center sponsors a series of workshops on various topics in the life sciences. Elements of the cytoskeleton have been implicated in the effects of gravity on the growth of plants fungi. An intriguing finding in this regard is the report indicating that an integrin-like protein may be the gravireceptor in the internodal cells of Chara. Involvement of the cytoskeleton in cellular graviperception of the basidiomycete Flammulina velutipes has also been reported. Although the responses of mammalian cells to gravity are not well documented, it has been proposed that integrins can act as mechanochemical transducers in mammalian cells. Little is known about the integrated mechanical and physical properties of cytoplasm, this workshop would be the best place to begin developing interdisciplinary approaches to the effects of mechanical stresses on cells and their most likely responsive cytoplasmic elements- the fibrous proteins comprising the cytoskeleton.

  11. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  12. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  13. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor

    Science.gov (United States)

    2013-01-01

    Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined. PMID:23398642

  14. The sarcomeric cytoskeleton: from molecules to motion.

    Science.gov (United States)

    Gautel, Mathias; Djinović-Carugo, Kristina

    2016-01-01

    Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise. © 2016. Published by The Company of Biologists Ltd.

  15. New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography

    International Nuclear Information System (INIS)

    Kuerner, Julia; Medalia, Ohad; Linaroudis, Alexandros A.; Baumeister, Wolfgang

    2004-01-01

    Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3-D) imaging at molecular resolution (<5 nm) with a close-to-life preservation of the specimen. In conjunction with pattern recognition techniques, it enables us to map the molecular landscape inside cells. The application of cryo-ET to intact cells provides novel insights into the structure and the spatial organization of the cytoskeleton in prokaryotic and eukaryotic cells

  16. Three-dimensional cinematography with control object of unknown shape.

    Science.gov (United States)

    Dapena, J; Harman, E A; Miller, J A

    1982-01-01

    A technique for reconstruction of three-dimensional (3D) motion which involves a simple filming procedure but allows the deduction of coordinates in large object volumes was developed. Internal camera parameters are calculated from measurements of the film images of two calibrated crosses while external camera parameters are calculated from the film images of points in a control object of unknown shape but at least one known length. The control object, which includes the volume in which the activity is to take place, is formed by a series of poles placed at unknown locations, each carrying two targets. From the internal and external camera parameters, and from locations of the images of point in the films of the two cameras, 3D coordinates of the point can be calculated. Root mean square errors of the three coordinates of points in a large object volume (5m x 5m x 1.5m) were 15 mm, 13 mm, 13 mm and 6 mm, and relative errors in lengths averaged 0.5%, 0.7% and 0.5%, respectively.

  17. CLASP2 Links Reelin to the Cytoskeleton during Neocortical Development.

    Science.gov (United States)

    Dillon, Gregory M; Tyler, William A; Omuro, Kerilyn C; Kambouris, John; Tyminski, Camila; Henry, Shawna; Haydar, Tarik F; Beffert, Uwe; Ho, Angela

    2017-03-22

    The Reelin signaling pathway plays a crucial role in regulating neocortical development. However, little is known about how Reelin controls the cytoskeleton during neuronal migration. Here, we identify CLASP2 as a key cytoskeletal effector in the Reelin signaling pathway. We demonstrate that CLASP2 has distinct roles during neocortical development regulating neuron production and controlling neuron migration, polarity, and morphogenesis. We found downregulation of CLASP2 in migrating neurons leads to mislocalized cells in deeper cortical layers, abnormal positioning of the centrosome-Golgi complex, and aberrant length/orientation of the leading process. We discovered that Reelin regulates several phosphorylation sites within the positively charged serine/arginine-rich region that constitute consensus GSK3β phosphorylation motifs of CLASP2. Furthermore, phosphorylation of CLASP2 regulates its interaction with the Reelin adaptor Dab1 and this association is required for CLASP2 effects on neurite extension and motility. Together, our data reveal that CLASP2 is an essential Reelin effector orchestrating cytoskeleton dynamics during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Spatial Cytoskeleton Organization Supports Targeted Intracellular Transport

    Science.gov (United States)

    Hafner, Anne E.; Rieger, Heiko

    2018-03-01

    The efficiency of intracellular cargo transport from specific source to target locations is strongly dependent upon molecular motor-assisted motion along the cytoskeleton. Radial transport along microtubules and lateral transport along the filaments of the actin cortex underneath the cell membrane are characteristic for cells with a centrosome. The interplay between the specific cytoskeleton organization and the motor performance realizes a spatially inhomogeneous intermittent search strategy. In order to analyze the efficiency of such intracellular search strategies we formulate a random velocity model with intermittent arrest states. We evaluate efficiency in terms of mean first passage times for three different, frequently encountered intracellular transport tasks: i) the narrow escape problem, which emerges during cargo transport to a synapse or other specific region of the cell membrane, ii) the reaction problem, which considers the binding time of two particles within the cell, and iii) the reaction-escape problem, which arises when cargo must be released at a synapse only after pairing with another particle. Our results indicate that cells are able to realize efficient search strategies for various intracellular transport tasks economically through a spatial cytoskeleton organization that involves only a narrow actin cortex rather than a cell body filled with randomly oriented actin filaments.

  19. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  20. DNA cytoskeleton for stabilizing artificial cells.

    Science.gov (United States)

    Kurokawa, Chikako; Fujiwara, Kei; Morita, Masamune; Kawamata, Ibuki; Kawagishi, Yui; Sakai, Atsushi; Murayama, Yoshihiro; Nomura, Shin-Ichiro M; Murata, Satoshi; Takinoue, Masahiro; Yanagisawa, Miho

    2017-07-11

    Cell-sized liposomes and droplets coated with lipid layers have been used as platforms for understanding live cells, constructing artificial cells, and implementing functional biomedical tools such as biosensing platforms and drug delivery systems. However, these systems are very fragile, which results from the absence of cytoskeletons in these systems. Here, we construct an artificial cytoskeleton using DNA nanostructures. The designed DNA oligomers form a Y-shaped nanostructure and connect to each other with their complementary sticky ends to form networks. To undercoat lipid membranes with this DNA network, we used cationic lipids that attract negatively charged DNA. By encapsulating the DNA into the droplets, we successfully created a DNA shell underneath the membrane. The DNA shells increased interfacial tension, elastic modulus, and shear modulus of the droplet surface, consequently stabilizing the lipid droplets. Such drastic changes in stability were detected only when the DNA shell was in the gel phase. Furthermore, we demonstrate that liposomes with the DNA gel shell are substantially tolerant against outer osmotic shock. These results clearly show the DNA gel shell is a stabilizer of the lipid membrane akin to the cytoskeleton in live cells.

  1. The effect of 60Co-irradiation on platelet cytoskeleton and function

    International Nuclear Information System (INIS)

    Zhuang Qingqi; Li Chengzhu

    1987-01-01

    Changes in rat platelet cytoskeleton and platelet function by 60 Co-irradiation were investigated. When platelet-rich plasma (PRP) was stimulated with ADP, PRP aggregation rates on the 3rd, 6th and 9th day after irradiation were 135%, 96% and 0% of the controls respectively. Although control rat PRP responded to collagen stimulation well, PRP from treated rats had lost the aggregation ability induced by collagen. When same amounts of platelets from the control and the treated rats were extracted with 1% triton X-100-EGTA buffer and the cytoskeleton pellet analysed by SDS-PAGE, it was found that the amount and components of the rat platelet cytoskeleton especially actin and myosin on the 3rd day after irradiation were greatly increased. Those from rat platelets on the 6th day after irradiation showed no difference from the controls, but was significantly decreased on the 9th day after irradiation. Based on these results, the authors concluded that the platelets from rats on the 3rd day after irradiation were in an active state. Exhaustion of granule contents or impairment of collagen receptors might render platelets unable to respond to collagen. Decreased platelet function on the 9th day after irradiation was due to a failure of assembly of its cytoskeleton

  2. Two-dimensional servo control of surface motor; Surface motor no nijigen servo control

    Energy Technology Data Exchange (ETDEWEB)

    Ebihara, D; Takahashi, T; Watada, M [Musashi Institute of Technology, Tokyo (Japan)

    1995-08-20

    Two dimensional (2D) drive system is needed in many aspects of factory automation (FA) and office automation (OA) machines, such as pen drivers in X-Y plotters, X-Y stage for machining, 2D moving robots, etc. Conventional 2D drive systems are consisted from two sets of rotational motor drive and several types of rotary-to-linear transform mechanisms. Linear motors, in these days, have become to be effective as the requirement for high speed increases. We have been studying about Surface Motor which enables 2D drive on a surface by single mover, and the characteristics are measured. Main difficulty of the actuator is that it is short of thrust forces. Also the feasibility is limited because of its vocational uncertainty caused by the open loop control. Our interest is to introduce the closed loop digital control, to obtain required thrust force at any point on the stator. Since open loop control is used, that is, stability point where the thrust force is zero is moved one after another, generated thrust force within the range of synchronization is small. We have been studying about the peculiar expression of exciting currents to generate required direction at all the stator. On the basis of results, two dimensional position feedback system is assembled, which detect the two dimensional location of the mover by optical sensors and direct current instructions are generated for all the four phases of the mover. 14 refs., 11 figs., 1 tab.

  3. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

    Science.gov (United States)

    Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

    2017-11-01

    Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

  4. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    Science.gov (United States)

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  5. Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites.

    Science.gov (United States)

    Gómez de León, Carmen T; Díaz Martín, Rubén Darío; Mendoza Hernández, Guillermo; González Pozos, Sirenia; Ambrosio, Javier R; Mondragón Flores, Ricardo

    2014-12-05

    Toxoplasma, the causative agent of toxoplasmosis in animals and humans, has a subpellicular cytoskeleton that is involved in motility, cell shape and invasion. Knowledge of components of the cytoskeleton is necessary to understand the invasion mechanisms as well as for the identification of possible therapeutic targets. To date, most cytoskeletal components of Toxoplasma remain unidentified due mainly to the lack of reproducible methods for their isolation. Based on the successful isolation of the cytoskeleton, it was possible to report for the first time, the proteomic characterization of the subpellicular cytoskeleton of Toxoplasma formed by 95 cytoskeletal proteins through proteomic analysis by tandem mass spectrometry of one dimension SDS PAGE. By bioinformatic analysis of the data, proteins were classified as: 18 conventional cytoskeletal proteins; 10 inner membrane complex proteins, including 7 with alveolin repeats; 5 new proteins with alveolin like repeats; 37 proteins associated with other organelles and 25 novel proteins of unknown function. One of the alveolin like proteins not previously described in Toxoplasma named TgArticulin was partially characterized with a specific monoclonal antibody. Presence of TgArticulin was exclusively associated with the cytoskeleton fraction with a cortical distribution. Functions for the several molecules identified are proposed. This manuscript describes, for the first time, the proteome of the subpellicular cytoskeleton of Toxoplasma gondii. The importance of this study is related to the role of the cytoskeleton in the highly invasive capability of a parasite that causes abortion, blindness, and death by encephalitis in immunocompromised patients. Proteomic characterization of the cytoskeleton of T. gondii tachyzoites was possible by the development of a successful procedure for the isolation of the subpellicular cytoskeleton. Knowledge of the composition of the cytoskeleton of Toxoplasma is fundamental for the

  6. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    Science.gov (United States)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  7. Computer simulation of cytoskeleton-induced blebbing in lipid membranes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Harvey, C. W.; Revalee, J. D.

    2011-01-01

    for large values of the ratio between the areas of the bilayer and the cytoskeleton. We also found that blebbing can be induced when the cytoskeleton is subject to a localized ablation or a uniform compression. The results obtained are qualitatively in agreement with the experimental evidence and the model...

  8. A spatiotemporal characterization method for the dynamic cytoskeleton.

    Science.gov (United States)

    Alhussein, Ghada; Shanti, Aya; Farhat, Ilyas A H; Timraz, Sara B H; Alwahab, Noaf S A; Pearson, Yanthe E; Martin, Matthew N; Christoforou, Nicolas; Teo, Jeremy C M

    2016-05-01

    The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Mechanism of aftered cytoskeleton organization in influenza virus infection

    International Nuclear Information System (INIS)

    Krizanova, O.; Ciampor, F.; Zavodska, E.; Matis, J.; Stancek, D.; Krivjanska, M.

    1989-01-01

    The autophosphorylation was followed of cytoskeleton (CS) isolated from control chick embryo cell membranes (CS-C) and from these membranes after influenza virus adsorption (CS-V) under conditions allowing to determine the activity of a single type proteinkinase. The Ca 2+ dependent calmodulin (CaM) kinase used different substrates from CS-V than did the c'AMP dependent proteinkinase. The catalytic subunit (c-subunit) of the c'AMP dependent proteinkinase added from outside phosphorylated the same polypeptides than the endogeneous c'AMP dependent proteinkinase, the further being more active than the latter. The purified influenza virus incorporated 32 P in the presence of the c-subunit only. Incubation of influenza virus with the c-subunit caused morphological changes visible by electron microscopy. The pleomorphy of the particles as well as their electron transmissibility were enhanced in the result of structural alterations and rarefaction of surface spikes of the haemagglutinin and neuraminidase. The contractibility of CS isolated from normal CEC and of the CS from CEC by 15 min postinfection (p.i.) was determined according to the actomyosin ATPase activity. The ATPase activity of the cytoskeleton in the presence of the Ca 2+ /CaM and that in the presence of c'AMP were used as controls. The virus as well as the Ca 2+ /CaM increased the ATPase activity. EGTA had no effect but did not interfere with virus stimulation, while c'AMP blocked the virus-induced enhancement of the ATPase activity. (author). 3 figs., 1 tab., 36 refs

  10. Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy

    International Nuclear Information System (INIS)

    Spedden, Elise; Staii, Cristian; Kaplan, David L

    2013-01-01

    Neuronal cells change their growth properties in response to external physical stimuli such as variations in external temperature, stiffness of the growth substrate, or topographical guidance cues. Detailed knowledge of the mechanisms that control these biomechanical responses is necessary for understanding the basic principles that underlie neuronal growth and regeneration. Here, we present elasticity maps of living cortical neurons (embryonic rat) as a function of temperature, and correlate these maps to the locations of internal structural components of the cytoskeleton. Neurons display a significant increase in the average elastic modulus upon a decrease in ambient temperature from 37 to 25 °C. We demonstrate that the dominant mechanism by which the elasticity of the neurons changes in response to temperature is the stiffening of the actin components of the cytoskeleton induced by myosin II. We also report a reversible shift in the location and composition of the high-stiffness areas of the neuron cytoskeleton with temperature. At 37 °C the areas of the cell displaying high elastic modulus overlap with the tubulin-dense regions, while at 25 °C these high-stiffness areas correspond to the actin-dense regions of the cytoskeleton. These results demonstrate the importance of considering temperature effects when investigating cytoskeletal dynamics in cells. (paper)

  11. Cytoskeleton dynamics: Fluctuations within the network

    International Nuclear Information System (INIS)

    Bursac, Predrag; Fabry, Ben; Trepat, Xavier; Lenormand, Guillaume; Butler, James P.; Wang, Ning; Fredberg, Jeffrey J.; An, Steven S.

    2007-01-01

    Out-of-equilibrium systems, such as the dynamics of a living cytoskeleton (CSK), are inherently noisy with fluctuations arising from the stochastic nature of the underlying biochemical and molecular events. Recently, such fluctuations within the cell were characterized by observing spontaneous nano-scale motions of an RGD-coated microbead bound to the cell surface [Bursac et al., Nat. Mater. 4 (2005) 557-561]. While these reported anomalous bead motions represent a molecular level reorganization (remodeling) of microstructures in contact with the bead, a precise nature of these cytoskeletal constituents and forces that drive their remodeling dynamics are largely unclear. Here, we focused upon spontaneous motions of an RGD-coated bead and, in particular, assessed to what extent these motions are attributable to (i) bulk cell movement (cell crawling), (ii) dynamics of focal adhesions, (iii) dynamics of lipid membrane, and/or (iv) dynamics of the underlying actin CSK driven by myosin motors

  12. Cytoskeleton-amyloplast interactions in sweet clover

    Science.gov (United States)

    Guikema, J. A.; Hilaire, E.; Odom, W. R.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The distribution of organelles within columella cells of sweet clover was examined by transmission electron microscopy following growth under static or clinorotating conditions. A developmentally conditioned polarity was observed, with a proximal location of the nucleus and a distal accumulation of the endoplasmic reticulum. This polarity was insensitive to clinorotation. In contrast, clinorotation altered the location of amyloplasts. Application of cytoskeletal poisons (colchicine, cytochalasin D, taxol, and phalloidin), especially during clinorotation, had interesting effects on the maintenance of columella cell polarity, with a profound effect on the extent, location, and structure of the endoplasmic reticulum. The site of cytoskeletal interactions with sedimenting amyloplasts is thought to be the amyloplast envelope. An envelope fraction, having over 17 polypeptides, was isolated using immobilized antibody technology, and will provide a means of assessing the role of specific peptides in cytoskeleton/amyloplast interactions.

  13. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    Science.gov (United States)

    Muller, Jean; Mehlen, André; Vetter, Guillaume; Yatskou, Mikalai; Muller, Arnaud; Chalmel, Frédéric; Poch, Olivier; Friederich, Evelyne; Vallar, Laurent

    2007-01-01

    Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI) allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our data demonstrate that

  14. Two-dimensional effects in the problem of tearing modes control by electron cyclotron current drive

    International Nuclear Information System (INIS)

    Comisso, L.; Lazzaro, E.

    2010-01-01

    The design of means to counteract robustly the classical and neoclassical tearing modes in a tokamak by localized injection of an external control current requires an ever growing understanding of the physical process, beyond the Rutherford-type zero-dimensional models. Here a set of extended magnetohydrodynamic nonlinear equations for four continuum fields is used to investigate the two-dimensional effects in the response of the reconnecting modes to specific inputs of the localized external current. New information is gained on the space- and time-dependent effects of the external action on the two-dimensional structure of magnetic islands, which is very important to formulate applicable control strategies.

  15. A fuzzy-logic antiswing controller for three-dimensional overhead cranes.

    Science.gov (United States)

    Cho, Sung-Kun; Lee, Ho-Hoon

    2002-04-01

    In this paper, a new fuzzy antiswing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control crane position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of crane position and rope length for simultaneous travel, traverse, and hoisting motions of the crane. Furthermore, the proposed control provides practical gain tuning criteria for easy application. The effectiveness of the proposed control is shown by experiments with a three-dimensional prototype overhead crane.

  16. Effect of 60Co γ-ray irradiation on cytoskeleton of human peripheral blood monocytes with whole mount cell electron microscopy in vitro

    International Nuclear Information System (INIS)

    Chen Xiaomei; Guo Yuhua; Yin Zhiwei

    1992-01-01

    Whole mount cell electron microscopy was used in combination with selective extraction to prepare cytoskeletal framework. Cytoskeleton prepared by Triton X-100 treatment of human peripheral blood monocytes appeared on electron microscopy as a highly organized and interconnected three-dimensional matrix of different fibrous elements. By three-dimensional visualization of Triton X-100 resistant cytoskeletons it was demonstrated that different doses of 60 Co γ-rays caused distinctive and reproducible alterations of the cytoskeleton of intact human peripheral blood monocytes in vitro. The alterations were similar to those caused by cytochalasin B and by colchicine. From these observations and other workers'studies, it is presumed that 60 Co γ-ray irradiation may inhibit cytoplasmic microtubule and microfilament assembling

  17. A Simple Proof of the Theorem Concerning Optimality in a One-Dimensional Ergodic Control Problem

    International Nuclear Information System (INIS)

    Fujita, Y.

    2000-01-01

    We give a simple proof of the theorem concerning optimality in a one-dimensional ergodic control problem. We characterize the optimal control in the class of all Markov controls. Our proof is probabilistic and does not need to solve the corresponding Bellman equation. This simplifies the proof

  18. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  19. Three-dimensional closed-loop control of self-propelled microjets

    NARCIS (Netherlands)

    Khalil, I.S.M.; Magdanz, Veronika; Schmidt, Oliver S.; Sanchez, Samuel; Misra, Sarthak

    2013-01-01

    We demonstrate precise closed-loop control of microjets under the influence of the magnetic fields in three-dimensional (3D) space. For this purpose, we design a magnetic-based control system that directs the field lines towards reference positions. Microjets align along the controlled field lines

  20. Velocity and Dispersion for a Two-Dimensional Random Walk

    International Nuclear Information System (INIS)

    Li Jinghui

    2009-01-01

    In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)

  1. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  2. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    Science.gov (United States)

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  3. The nano-architecture of the axonal cytoskeleton.

    Science.gov (United States)

    Leterrier, Christophe; Dubey, Pankaj; Roy, Subhojit

    2017-12-01

    The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.

  4. Control and synchronisation of a novel seven-dimensional ...

    Indian Academy of Sciences (India)

    METIN VARAN

    2018-03-16

    Mar 16, 2018 ... This paper is organised as follows: In §2, seven- ..... Intelligent Control and Automation (Hangzhou, 2004). Vol. ... [42] M A Franchek, M W Ryan and R J Bernhard, J. Sound ... Chaotic systems, artificial neural networks, random.

  5. MICAL, the Flavoenzyme Participating in Cytoskeleton Dynamics

    Directory of Open Access Journals (Sweden)

    Daniela Zucchini

    2013-03-01

    Full Text Available MICAL (from the Molecule Interacting with CasL indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential role of the catalytic activity of the monooxygenase-like domain in transducing the signal initiated by semaphorins interaction with their plexin receptors, which results in local actin cytoskeleton disassembly as part of fundamental processes that include differentiation, migration and cell-cell contacts in neuronal and non-neuronal cell types. This review focuses on the structure-function relations of the MICAL monooxygenase-like domain as they are emerging from the available in vitro studies on mouse, human and Drosophila MICAL forms that demonstrated a NADPH-dependent actin depolymerizing activity of MICAL. With Drosophila MICAL forms, actin depolymerization was demonstrated to be associated to conversion of Met44 to methionine sulfone through a postulated hydroxylating reaction. Arguments supporting the concept that MICAL effect on F-actin may be reversible will be discussed.

  6. Tensegrity and mechanoregulation: from skeleton to cytoskeleton

    Science.gov (United States)

    Chen, C. S.; Ingber, D. E.

    1999-01-01

    OBJECTIVE: To elucidate how mechanical stresses that are applied to the whole organism are transmitted to individual cells and transduced into a biochemical response. DESIGN: In this article, we describe fundamental design principles that are used to stabilize the musculoskeletal system at many different size scales and show that these design features are embodied in one particular form of architecture that is known as tensegrity. RESULTS: Tensegrity structures are characterized by use of continuous tension and local compression; architecture, prestress (internal stress prior to application of external force), and triangulation play the most critical roles in terms of determining their mechanical stability. In living organisms, use of a hierarchy of tensegrity networks both optimizes structural efficiency and provides a mechanism to mechanically couple the parts with the whole: mechanical stresses applied at the macroscale result in structural rearrangements at the cell and molecular level. CONCLUSION: Due to use of tensegrity architecture, mechanical stress is concentrated and focused on signal transducing molecules that physically associate with cell surface molecules that anchor cells to extracellular matrix, such as integrins, and with load-bearing elements within the internal cytoskeleton and nucleus. Mechanochemical transduction may then proceed through local stress-dependent changes in molecular mechanics, thermodynamics, and kinetics within the cell. In this manner, the entire cellular response to stress may be orchestrated and tuned by altering the prestress in the cell, just as changing muscular tone can alter mechanical stability and structural coordination throughout the whole musculoskeletal system.

  7. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations

    Directory of Open Access Journals (Sweden)

    Anja Konietzny

    2017-05-01

    Full Text Available Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

  8. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

  9. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

    International Nuclear Information System (INIS)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

    2006-01-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

  10. Movers and shakers: cell cytoskeleton in cancer metastasis.

    Science.gov (United States)

    Fife, C M; McCarroll, J A; Kavallaris, M

    2014-12-01

    Metastasis is responsible for the greatest number of cancer deaths. Metastatic disease, or the movement of cancer cells from one site to another, is a complex process requiring dramatic remodelling of the cell cytoskeleton. The various components of the cytoskeleton, actin (microfilaments), microtubules (MTs) and intermediate filaments, are highly integrated and their functions are well orchestrated in normal cells. In contrast, mutations and abnormal expression of cytoskeletal and cytoskeletal-associated proteins play an important role in the ability of cancer cells to resist chemotherapy and metastasize. Studies on the role of actin and its interacting partners have highlighted key signalling pathways, such as the Rho GTPases, and downstream effector proteins that, through the cytoskeleton, mediate tumour cell migration, invasion and metastasis. An emerging role for MTs in tumour cell metastasis is being unravelled and there is increasing interest in the crosstalk between key MT interacting proteins and the actin cytoskeleton, which may provide novel treatment avenues for metastatic disease. Improved understanding of how the cytoskeleton and its interacting partners influence tumour cell migration and metastasis has led to the development of novel therapeutics against aggressive and metastatic disease. This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24. © 2014 The British Pharmacological Society.

  11. Cell Pleomorphism and Cytoskeleton Disorganization in Human Liver Cancer.

    Science.gov (United States)

    Cheng, Chiung-Chi; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Chao, Wei-Ting; Tseng, Yu-Hui; Hsu, Yung-Hsiang; Chen, You-Yin; Liu, Yi-Hsiang

    Nucleoskeleton maintains the framework of a cell nucleus that is required for a variety of nuclear functions. However, the nature of nucleoskeleton structure has not been yet clearly elucidated due to microscopy visualization limitations. Plectin, a nuclear pore-permeable component of cytoskeleton, exhibits a role of cross-linking between cytoplasmic intermediate filaments and nuclear lamins. Presumably, plectin is also a part of nucleoskeleton. Previously, we demonstrated that pleomorphism of hepatoma cells is the consequence of cytoskeletal changes mediated by plectin deficiency. In this study, we applied a variety of technologies to detect the cytoskeletons in liver cells. The images of confocal microscopy did not show the existence of plectin, intermediate filaments, microfilaments and microtubules in hepatic nuclei. However, in the isolated nuclear preparation, immunohistochemical staining revealed positive results for plectin and cytoskeletal proteins that may contribute to the contamination derived from cytoplasmic residues. Therefore, confocal microscopy provides a simple and effective technology to observe the framework of nucleoskeleton. Accordingly, we verified that cytoskeletons are not found in hepatic cell nuclei. Furthermore, the siRNA-mediated knockdown of plectin in liver cells leads to collapsed cytoskeleton, cell transformation and pleomorphic nuclei. Plectin and cytoskeletons were not detected in the nuclei of liver cells compared to the results of confocal microscopy. Despite the absence of nuclear plectin and cytoskeletal filaments, the evidence provided support that nuclear pleomorphism of cancer cells is correlated with the cytoplasmic disorganization of cytoskeleton. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  13. Three dimensional visualization to support command and control

    International Nuclear Information System (INIS)

    Van Slambrook, G.A.

    1997-04-01

    Virtual reality concepts are changing the way one thinks about and with computers. The concepts have already proven their potential usefulness in a broad range of applications. This research was concerned with exploring and demonstrating the utility of virtual reality in robotics and satellite command and control applications. The robotics work addressed the need to quickly build accurate graphical models of physical environments by allowing a user to interactively build a model of a remote environment by superimposing stereo graphics onto live stereo video. The satellite work addressed the fusion of multiple data sets or models into one synergistic display for more effective training, design, and command and control of satellite systems

  14. An Auxiliary Equation for the Bellman Equation in a One-Dimensional Ergodic Control

    International Nuclear Information System (INIS)

    Fujita, Y.

    2001-01-01

    In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples

  15. Invasive species control in a one-dimensional metapopulation network

    NARCIS (Netherlands)

    Walker, A.N.; Poos, J.J.; Groeneveld, R.A.

    2015-01-01

    The growth and spread of established Invasive Alien Species (IAS) cause significant ecological and economic damages. Minimising the costs of controlling, and the damages from, IAS depends on the spatial dynamics and uncertainty regarding IAS spread. This study expands on existing modelling

  16. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM

  17. Transient expression of green fluorescent protein in parasitic dodder as a tool for studying of cytoskeleton

    Directory of Open Access Journals (Sweden)

    Kaštier Peter

    2017-06-01

    Full Text Available Dodder (Cuscuta species cause severe agricultural damage in many countries throughout the world. To establish strategies for control of its growth and spreading it is important to study its life cycle and survival strategies. For these efforts genetic modification would represent a powerful tool. Here we report on Agrobacteriummediated transformation of dodder using green fluorescent protein (GFP fused to actin-binding protein as a vital marker. Since the shoot of germinating C. europaea contains a functional apical meristem and grows quickly comparing to the root-like structure, the shoot apex was used here as explant. The transgene expression was only transient, nevertheless it enabled to detect allocation of actin filaments and studying the cytoskeleton organization in dodder shoot apex. Transient expression of GFP appears to be a suitable method for studying Cuscuta development through cytoskeleton organisation that is presently largely unexplored.

  18. Rho proteins − the key regulators of cytoskeleton in the progression of mitosis and cytokinesis

    Directory of Open Access Journals (Sweden)

    Anna Klimaszewska

    2011-11-01

    Full Text Available The Rho proteins are members of the Ras superfamily of small GTPases. They are thought to be crucial regulators of multiple signal transduction pathways that influence a wide range of cellular functions, including migration, membrane trafficking, adhesion, polarity and cell shape changes. Thanks to their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho GTPases are known to regulate mitosis and cytokinesis progression. These proteins are required for formation and rigidity of the cortex during mitotic cell rounding, mitotic spindle formation and attachment of the spindle microtubules to the kinetochore. In addition, during cytokinesis, they are involved in promoting division plane determination, contractile ring and cleavage furrow formation and abscission. They are also known as regulators of cell cycle progression at the G1/S and G2/M transition. Thus, the signal transduction pathways in which Rho proteins participate, appear to connect dynamics of actin and microtubule cytoskeletons to cell cycle progression. We review the current state of knowledge concerning the molecular mechanisms by which Rho GTPase signaling regulates remodeling of actin and microtubule cytoskeletons in order to control cell division progression.

  19. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study.

    Science.gov (United States)

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua

    2016-01-01

    Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. The Cytoskeleton and Force Response Mechanisms

    Science.gov (United States)

    Allen, Philip Goodwin

    2003-01-01

    The long term aim of this project was to define the mechanisms by which cells sense and respond to the physical forces experienced at 1g and missing in microgravity. Identification and characterization of the elements of the cells force response mechanism could provide pathways and molecules to serve as targets for pharmacological intervention to mitigate the pathologic effects of microgravity. Mechanical forces experienced by the organism can be transmitted to cells through molecules that allow cells to bind to the extracellular matrix and through other types of molecules which bind cells to each other. These molecules are coupled in large complexes of proteins to structural elements such as the actin cytoskeleton that give the cell the ability to sense, resist and respond to force. Application of small forces to tissue culture cells causes local elevation of intracellular calcium through stretch activated ion channels, increased tyrosine phosphorylation and a restructuring of the actin cytoskeleton. Using collagen coated iron oxide beads and strong magnets, we can apply different levels of force to cells in culture. We have found that force application causes the cells to polymerize actin at the site of mechanical deformation and unexpectedly, to depolymerize actin across the rest of the cell. Observations of GFP- actin expressing cells demonstrate that actin accumulates at the site of deformation within the first five minutes of force application and is maintained for many tens of minutes after force is removed. Consistent with the reinforcement of the cytoskeletal structures underlying the integrin-bead interaction, force also alters the motion of bound magnetic beads. This effect is seen following the removal of the magnetic field, and is only partially ablated by actin disruption with cytochalsin B. While actin is polymerizing locally at the site of force application, force also stimulates a global reduction in actin filament content within the cells. We have

  1. ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function

    DEFF Research Database (Denmark)

    Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie

    2003-01-01

    -100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of beta1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary...

  2. Design of virtual three-dimensional instruments for sound control

    Science.gov (United States)

    Mulder, Axel Gezienus Elith

    An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object

  3. Dimensional control of buttwelding pipe fitting for nuclear power plant Class 1 piping systems

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.; Robinson, J.N.

    1976-11-01

    Dimensional controls of wrought steel buttwelding fittings are examined from the standpoint of design adequacy. A fairly large number of fittings were purchased from different manufacturers. The dimensions of each fitting were measured and correlated along with additional information obtained from the manufacturers in an effort to establish ''standard'' shapes. This information and a critical examination of the present ANSI standards is used to develop a ''Supplementary Standard.'' The Supplementary Standard is intended to provide improved dimensional control and more complete design information for fittings used in Class 1 nuclear power plant piping systems

  4. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Directory of Open Access Journals (Sweden)

    José B Gama

    2014-08-01

    Full Text Available Buruli ulcer (BU is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1 and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1. In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  5. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Science.gov (United States)

    Gama, José B; Ohlmeier, Steffen; Martins, Teresa G; Fraga, Alexandra G; Sampaio-Marques, Belém; Carvalho, Maria A; Proença, Fernanda; Silva, Manuel T; Pedrosa, Jorge; Ludovico, Paula

    2014-08-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  6. LAMI: A gesturally controlled three-dimensional stage Leap (Motion-based) Audio Mixing Interface

    OpenAIRE

    Wakefield, Jonathan P.; Dewey, Christopher; Gale, William

    2017-01-01

    Interface designers are increasingly exploring alternative approaches to user input/control. LAMI is a Leap (Motion-based) AMI which takes user’s hand gestures and maps these to a three-dimensional stage displayed on a computer monitor. Audio channels are visualised as spheres whose Y coordinate is spectral centroid and X and Z coordinates are controlled by hand position and represent pan and level respectively. Auxiliary send levels are controlled via wrist rotation and vertical hand positio...

  7. Prokaryotic cells: structural organisation of the cytoskeleton and organelles

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2012-05-01

    Full Text Available For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  8. Prolactin promotes breast cancer cell migration through actin cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Priscilla Ludovico da Silva

    2015-12-01

    Full Text Available The role of prolactin on breast cancer development and progression is debated. Breast cancer progression largely depends on cell movement and on the ability to remodel the actin cytoskeleton. In this process, actin-binding proteins are requested to achieve fibrillar actin de-polymerization and relocation at the cell membrane. Kinases such as focal adhesion kinase (FAK are later required to form actin/vinculin-enriched structures called focal adhesion complexes, which mediate firm adhesion to the extracellular matrix. These controllers are regulated by c-Src, which forms multiprotein signaling complexes with membrane receptors and is regulated by a number of hormones, including prolactin. We here show that breast cancer cells exposed to prolactin display an elevated c-Src expression and phosphorylation. In parallel, increased moesin and FAK expression and phosphorylation are found. These molecular changes are associated to relocation to the plasma membrane of cytoskeletal actin fibers and to increased horizontal cell movement. In conclusion, prolactin regulates actin remodeling and enhances breast cancer cell movement. This finding broadens the understanding of prolactin actions on breast cancer cells, highlighting new pathways that may be relevant to on breast cancer progression.

  9. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  10. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons

    International Nuclear Information System (INIS)

    Allani, Pramod K.; Sum, Tak; Bhansali, Suraj G.; Mukherjee, Suman K.; Sonee, Manisha

    2004-01-01

    Cytoskeleton disruption is a process by which oxidative stress disrupts cellular function. This study compares and contrasts the effect of oxidative stress on the three major cytoskeleton filaments, microfilaments (MFs), microtubule (MT), and vimentin in human cortical neuronal cell line (HCN2). HCN2 cells were treated with 100 μM tertiary butylhydroperoxide (t-BuOOH), a free radical generating neurotoxin for 1, 3, or 6 h. Cell viability studies demonstrated significant cell death although the morphology studies showed that there was a substantial loss in neurites of neurons treated with t-BuOOH for 6 h. Because the cytoskeleton plays a role in neurite outgrowth, the effect of oxidative stress on the cytoskeletal was studied. In neurons subjected to oxidative stress for 30 min or 1 h, there were no major changes in microfilament distribution though there was altered distribution of microtubule and vimentin filaments as compared to controls. However, loss and disruption of all the three cytoskeletal filaments was observed at later times (3 and 6 h), which was confirmed by Western Blot analysis. Further studies were done to measure the gene expression levels of actin, tubulin, and vimentin. Results indicated that the overall loss of the cytoskeletal proteins in neurons treated with free radical generating toxin might not be a direct result of the downregulation of the cytoskeletal genes. This study shows that free radical generation in human neurons leads to the disruption of the cytoskeleton, though there may be a difference in the susceptibility to oxidative stress among the individual components of the cytoskeletal filaments

  11. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies.

    Science.gov (United States)

    Méplan, Catherine; Johnson, Ian T; Polley, Abigael C J; Cockell, Simon; Bradburn, David M; Commane, Daniel M; Arasaradnam, Ramesh P; Mulholland, Francis; Zupanic, Anze; Mathers, John C; Hesketh, John

    2016-08-01

    Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.-Méplan, C., Johnson, I. T., Polley, A. C. J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers, J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. © The Author(s).

  12. Cell shape can mediate the spatial organization of the bacterial cytoskeleton

    Science.gov (United States)

    Wang, Siyuan; Wingreen, Ned

    2013-03-01

    The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

  13. Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin B prior to vitrification.

    Science.gov (United States)

    Wang, C L; Xu, H Y; Xie, L; Lu, Y Q; Yang, X G; Lu, S S; Lu, K H

    2016-06-01

    Stabilizing the cytoskeleton system during vitrification can improve the post-thaw survival and development of vitrified oocytes. The cytoskeleton stabilizer cytochalasin B (CB) has been used in cryopreservation to improve the developmental competence of vitrified oocytes. To assess the effect of pretreating matured buffalo oocytes with CB before vitrification, we applied 0, 4, 8, or 12 μg/mL CB for 30 min. The optimum concentration of CB treatment (8 μg/mL for 30 min) was then used to evaluate the distribution of microtubules and microfilaments, the expression of the cytoskeleton proteins actin and tubulin, and the developmental potential of matured oocytes that were vitrified-warmed by the Cryotop method. Western blotting demonstrated that vitrification significantly decreased tubulin expression, but that the decrease was attenuated for oocytes pretreated with 8 μg/mL CB before vitrification. After warming and intracytoplasmic sperm injection, oocytes that were pretreated with 8 μg/mL CB before vitrification yielded significantly higher 8-cell and blastocyst rates than those that were vitrified without CB pretreatment. The values for the vitrified groups in all experiments were significantly lower (P < 0.01) than those of the control groups. In conclusion, pretreatment with 8 μg/mL CB for 30 min significantly improves the cytoskeletal structure, expression of tubulin, and development capacity of vitrified matured buffalo oocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots

    Science.gov (United States)

    Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.

    1999-01-01

    The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.

  15. Understanding cytoskeleton regulators in glioblastoma multiforme for therapy design

    Directory of Open Access Journals (Sweden)

    Masoumi S

    2016-09-01

    Full Text Available Samaneh Masoumi,1,*, Aditya Harisankar,2,* Aileen Gracias,3 Fabian Bachinger,1 Temesgen Fufa,1,4 Gayathri Chandrasekar,5 Frank Gaunitz,4 Julian Walfridsson,2 Satish S Kitambi1 1Department of Microbiology Tumor and Cell Biology, 2Center for Hematology and Regenerative Medicine, Department of Medicine, 3Department of Neuroscience, Karolinska Institutet, Solna, Sweden; 4Department of Neurosurgery, University Hospital, Leipzig, Germany; 5Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden *These authors contributed equally to this work Abstract: The cellular cytoskeleton forms the primary basis through which a cell governs the changes in size, shape, migration, proliferation, and forms the primary means through which the cells respond to their environment. Indeed, cell and tissue morphologies are used routinely not only to grade tumors but also in various high-content screening methods with an aim to identify new small molecules with therapeutic potential. This study examines the expression of various cytoskeleton regulators in glioblastoma multiforme (GBM. GBM is a very aggressive disease with a low life expectancy even after chemo- and radiotherapy. Cancer cells of GBM are notorious for their invasiveness, ability to develop resistance to chemo- and radiotherapy, and to form secondary site tumors. This study aims to gain insight into cytoskeleton regulators in GBM cells and to understand the effect of various oncology drugs, including temozolomide, on cytoskeleton regulators. We compare the expression of various cytoskeleton regulators in GBM-derived tumor and normal tissue, CD133-postive and -negative cells from GBM and neural cells, and GBM stem-like and differentiated cells. In addition, the correlation between the expression of cytoskeleton regulators with the clinical outcome was examined to identify genes associated with longer patient survival. This was followed by a small molecule screening with US Food and Drug

  16. Mechanics of membrane-cytoskeleton attachment in Paramecium

    Science.gov (United States)

    Campillo, C.; Jerber, J.; Fisch, C.; Simoes-Betbeder, M.; Dupuis-Williams, P.; Nassoy, P.; Sykes, C.

    2012-12-01

    In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane-cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a cup-like structure in wild-type cells that is lost in silenced cells. Since this structure is based on the underlying cytoskeleton, one hypothesis to explain this observation is a disruption of membrane attachment to the cytoskeleton in the absence of MKS1 that should affect plasma membrane mechanics. We test this by probing the mechanics of wild-type and silenced cells by micropipette aspiration. Strikingly, we observe that, at the same aspiration pressure, the membrane of silenced cells is easily aspirated by the micropipette whereas that of wild-type cells enters only at a moderate velocity, an effect that suggests a detachment of the membrane from the underlying cytoskeleton in silenced cells. We quantify this detachment by measuring the deformation of the cell cortex and the rate of cell membrane entry in the micropipette. This study offers a new perspective for the characterization of membrane-cytoskeleton attachment in protists and paves the way for a better understanding of the role of membrane-cortex attachment in cilium formation.

  17. Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes.

    Science.gov (United States)

    Kyozuka, Keiichiro; Chun, Jong T; Puppo, Agostina; Gragnaniello, Gianni; Garante, Ezio; Santella, Luigia

    2008-08-15

    Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP(3)-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP(3), despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.

  18. Mechanics of membrane–cytoskeleton attachment in Paramecium

    International Nuclear Information System (INIS)

    Campillo, C; Nassoy, P; Sykes, C; Jerber, J; Fisch, C; Dupuis-Williams, P; Simoes-Betbeder, M

    2012-01-01

    In this paper we assess the role of the protein MKS1 (Meckel syndrome type 1) in the cortical membrane mechanics of the ciliated protist Paramecium. This protein is known to be crucial in the process of cilium formation, and we investigate its putative role in membrane–cytoskeleton attachment. Therefore, we compare cells where the gene coding for MKS1 is silenced to wild-type cells. We found that scanning electron microscopy observation of the cell surface reveals a cup-like structure in wild-type cells that is lost in silenced cells. Since this structure is based on the underlying cytoskeleton, one hypothesis to explain this observation is a disruption of membrane attachment to the cytoskeleton in the absence of MKS1 that should affect plasma membrane mechanics. We test this by probing the mechanics of wild-type and silenced cells by micropipette aspiration. Strikingly, we observe that, at the same aspiration pressure, the membrane of silenced cells is easily aspirated by the micropipette whereas that of wild-type cells enters only at a moderate velocity, an effect that suggests a detachment of the membrane from the underlying cytoskeleton in silenced cells. We quantify this detachment by measuring the deformation of the cell cortex and the rate of cell membrane entry in the micropipette. This study offers a new perspective for the characterization of membrane–cytoskeleton attachment in protists and paves the way for a better understanding of the role of membrane–cortex attachment in cilium formation. (paper)

  19. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    Science.gov (United States)

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  20. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Science.gov (United States)

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bacterial cytoskeleton and implications for new antibiotic targets.

    Science.gov (United States)

    Wang, Huan; Xie, Longxiang; Luo, Hongping; Xie, Jianping

    2016-01-01

    Traditionally eukaryotes exclusive cytoskeleton has been found in bacteria and other prokaryotes. FtsZ, MreB and CreS are bacterial counterpart of eukaryotic tubulin, actin filaments and intermediate filaments, respectively. FtsZ can assemble to a Z-ring at the cell division site, regulate bacterial cell division; MreB can form helical structure, and involve in maintaining cell shape, regulating chromosome segregation; CreS, found in Caulobacter crescentus (C. crescentus), can form curve or helical filaments in intracellular membrane. CreS is crucial for cell morphology maintenance. There are also some prokaryotic unique cytoskeleton components playing crucial roles in cell division, chromosome segregation and cell morphology. The cytoskeleton components of Mycobacterium tuberculosis (M. tuberculosis), together with their dynamics during exposure to antibiotics are summarized in this article to provide insights into the unique organization of this formidable pathogen and druggable targets for new antibiotics.

  2. Controlling chaos in low and high dimensional systems with periodic parametric perturbations

    International Nuclear Information System (INIS)

    Mirus, K.A.; Sprott, J.C.

    1998-06-01

    The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit cycles for relatively small perturbations. Such perturbations can also control or significantly reduce the dimension of high-dimensional systems. Initial application to the control of fluctuations in a prototypical magnetic fusion plasma device will be reviewed

  3. Controlling spatiotemporal chaos in one- and two-dimensional coupled logistic map lattices

    International Nuclear Information System (INIS)

    Astakhov, V.V.; Anishchenko, V.S.; Strelkova, G.I.; Shabunin, A.V.

    1996-01-01

    A method of control of spatiotemporal chaos in lattices of coupled maps is proposed in this work. Forms of spatiotemporal perturbations of a system parameter are analytically determined for one- and two-dimensional logistic map lattices with different kinds of coupling to stabilize chosen spatiotemporal states previously unstable. The results are illustrated by numerical simulation. Controlled transition from the regime of spatiotemporal chaos to the previously chosen regular spatiotemporal patterns is demonstrated. copyright 1996 American Institute of Physics

  4. Locus of Control revisited: development of a new bi-dimensional measure

    OpenAIRE

    Suárez-Álvarez, Javier; Pedrosa, Ignacio; García-Cueto, Eduardo; Muñiz, José

    2016-01-01

    Locus of control (LOC) has a long tradition in Psychology, and various instruments have been designed for its measurement. However, the dimensionality of the construct is unclear, and still gives rise to considerable controversy. The aim of the present work is to present new evidence of validity in relation to the dimensionality of LOC. To this end, we developed a new measurement instrument with 23 items. The sample was made up of 697 Spanish participants, of whom 57.5% were women (M=22.43; S...

  5. The mechanosensor of mesenchymal stem cells: mechanosensitive channel or cytoskeleton?

    Science.gov (United States)

    Xiao, E; Chen, Chider; Zhang, Yi

    2016-09-20

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells. MSCs and their potential for use in regenerative medicine have been investigated extensively. Recently, the mechanisms by which MSCs detect mechanical stimuli have been described in detail. As in other cell types, both mechanosensitive channels, such as transient receptor potential melastatin 7 (TRPM7), and the cytoskeleton, including actin and actomyosin, have been implicated in mechanosensation in MSCs. This review will focus on discussing the precise role of TRPM7 and the cytoskeleton in mechanosensation in MSCs.

  6. Regulation from within: the cytoskeleton in transmembrane signaling

    Science.gov (United States)

    Jaqaman, Khuloud; Grinstein, Sergio

    2013-01-01

    There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the non-uniform distribution of immunoreceptors and their self-association may affect activation and signaling. PMID:22917551

  7. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    Science.gov (United States)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  8. Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton

    DEFF Research Database (Denmark)

    Ly, Donald L.; Waheed, Faiza; Lodyga, Monika

    2013-01-01

    Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin-regulated coactiv......Hyperosmotic stress initiates several adaptive responses, including the remodeling of the cytoskeleton. Besides maintaining structural integrity, the cytoskeleton has emerged as an important regulator of gene transcription. Myocardin-related transcription factor (MRTF), an actin......-regulated coactivator of serum response factor, is a major link between the actin skeleton and transcriptional control. We therefore investigated whether MRTF is regulated by hyperosmotic stress. Here we show that hypertonicity induces robust, rapid, and transient translocation of MRTF from the cytosol to the nucleus...... in kidney tubular cells. We found that the hyperosmolarity-triggered MRTF translocation is mediated by the RhoA/Rho kinase (ROK) pathway. Moreover, the Rho guanine nucleotide exchange factor GEF-H1 is activated by hyperosmotic stress, and it is a key contributor to the ensuing RhoA activation and MRTF...

  9. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study.

    Science.gov (United States)

    Lai, Lipeng; Xu, Xiaofeng; Lim, Chwee Teck; Cao, Jianshu

    2015-12-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bilayer. Among various cell types, the red blood cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two-dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria-infected RBCs (iRBCs) show that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the wormlike chain model for single spectrins and the effective medium theory for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with increasing end-to-end distances of spectrins, but has a nonmonotonic dependence on the variance of the end-to-end distance distributions. These predictions are verified quantitatively by our atomic force microscopy and micropipette aspiration measurements of iRBCs. The model may, from a molecular level, provide guidelines for future identification of new treatment methods for RBC-related diseases, such as malaria infection. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis

    Science.gov (United States)

    Khuc Trong, Philipp; Doerflinger, Hélène; Dunkel, Jörn; St Johnston, Daniel; Goldstein, Raymond E

    2015-01-01

    Many cells contain non-centrosomal arrays of microtubules (MTs), but the assembly, organisation and function of these arrays are poorly understood. We present the first theoretical model for the non-centrosomal MT cytoskeleton in Drosophila oocytes, in which bicoid and oskar mRNAs become localised to establish the anterior-posterior body axis. Constrained by experimental measurements, the model shows that a simple gradient of cortical MT nucleation is sufficient to reproduce the observed MT distribution, cytoplasmic flow patterns and localisation of oskar and naive bicoid mRNAs. Our simulations exclude a major role for cytoplasmic flows in localisation and reveal an organisation of the MT cytoskeleton that is more ordered than previously thought. Furthermore, modulating cortical MT nucleation induces a bifurcation in cytoskeletal organisation that accounts for the phenotypes of polarity mutants. Thus, our three-dimensional model explains many features of the MT network and highlights the importance of differential cortical MT nucleation for axis formation. DOI: http://dx.doi.org/10.7554/eLife.06088.001 PMID:26406117

  11. The roles of the actin cytoskeleton in fear memory formation

    Directory of Open Access Journals (Sweden)

    Raphael eLamprecht

    2011-07-01

    Full Text Available The formation and storage of fear memory is needed to adapt behavior and avoid danger during subsequent fearful events. However, fear memory may also play a significant role in stress and anxiety disorders. When fear becomes disproportionate to that necessary to cope with a given stimulus, or begins to occur in inappropriate situations, a fear or anxiety disorder exists. Thus, the study of cellular and molecular mechanisms underpinning fear memory may shed light on the formation of memory and on anxiety and stress related disorders. Evidence indicates that fear learning leads to changes in neuronal synaptic transmission and morphology in brain areas underlying fear memory formation including the amygdala and hippocampus. The actin cytoskeleton has been shown to participate in these key neuronal processes. Recent findings show that the actin cytoskeleton is needed for fear memory formation and extinction. Moreover, the actin cytoskeleton is involved in synaptic plasticity and in neuronal morphogenesis in brain areas that mediate fear memory. The actin cytoskeleton may therefore mediate between synaptic transmission during fear learning and long-term cellular alterations mandatory for fear memory formation.

  12. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    Science.gov (United States)

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.

  13. Multiple roles for the actin cytoskeleton during regulated exocytosis

    Science.gov (United States)

    Porat-Shliom, Natalie; Milberg, Oleg; Masedunskas, Andrius; Weigert, Roberto

    2014-01-01

    Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e. secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules. PMID:22986507

  14. Interconnection between actin cytoskeleton and plant defense signaling

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Matoušková, J.; Burketová, Lenka; Valentová, O.

    2014-01-01

    Roč. 9, č. 11 (2014) ISSN 1559-2316 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin * Cytoskeleton * Pathogen Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482795

  15. Experimental investigation of an actively controlled three-dimensional turret wake

    Science.gov (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  16. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  17. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    Science.gov (United States)

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  18. Dimensional metrology for process and part quality control in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gasparin, Stefania

    2011-01-01

    dimensions are scaled down and geometrical complexity of objects is increased, the available measurement technologies appear not sufficient. New solutions for measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration are necessary if micro......Micro manufacturing has gained interest over the last decade as the demand for micro mechanical components has increased. The need for dimensional metrology at micro scale is evident both in terms of quality assurance of components and products and in terms of process control. As critical...... manufacturing is to develop into industrial manufacturing solutions. In this paper the application of dimensional precision metrology to both component and process quality control will be demonstrated. The parts investigated are micro injection moulded polymer parts, typical for the field of micro manufacturing....

  19. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zhaosheng, Luan; Pengyong,; Xiqin, Sun; Wei, Wang; Huisheng, Liu; Wen, Zhou [88 Hospital PLA, Taian, SD (China). Dept. of Nuclear Medicine

    1992-11-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed.

  20. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Pengyong; Sun Xiqin; Wang Wei; Liu Huisheng; Zhou Wen

    1992-01-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed

  1. Potential-based methodology for active sound control in three dimensional settings

    OpenAIRE

    Lim, H.; Utyuzhnikov, S V; Lam, Y.W.; Kelly, L.

    2014-01-01

    This paper extends a potential-based approach to active noise shielding with preservation of wanted sound in three-dimensional settings. The approach, which was described in a previous publication [Lim et al., J. Acoust. Soc. Am. 129(2), 717–725 (2011)], provides several significant advantages over conventional noise control methods. Most significantly, the methodology does not require any information including the characterization of sources, impedance boundary conditions and surrounding med...

  2. Locus of Control revisited: development of a new bi-dimensional measure

    Directory of Open Access Journals (Sweden)

    Javier Suárez-Álvarez

    Full Text Available Locus of control (LOC has a long tradition in Psychology, and various instruments have been designed for its measurement. However, the dimensionality of the construct is unclear, and still gives rise to considerable controversy. The aim of the present work is to present new evidence of validity in relation to the dimensionality of LOC. To this end, we developed a new measurement instrument with 23 items. The sample was made up of 697 Spanish participants, of whom 57.5% were women (M=22.43; SD= 9.19. The results support the bi-dimensionality of LOC: internal (α=.87 and external (α=.85. Furthermore, both subscales have shown adequate validity evidence in relation to self-efficacy, achievement motivation and optimism (r xy> .21. Statistically significant differences were found by sex (p < .05: men scored higher in external LOC and women in internal LOC. The validity evidence supports a two-dimensional structure for the LOC, and the measurement instrument developed showed adequate psychometric properties.

  3. Global Tracking Control of Quadrotor VTOL Aircraft in Three-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Duc Khac Do

    2014-07-01

    Full Text Available This paper presents a method to design controllers that force a quadrotor vertical take-off and landing (VTOL aircraft to globally asymptotically track a reference trajectory in three-dimensional space. Motivated by the vehicle's steering practice, the roll and pitch angles are considered as immediate controls plus the total thrust force  provided by the aircraft's four rotors to control the position and yaw angle of the aircraft. The control design is based on the newly introduced one-step ahead backstepping, the standard backstepping and Lyapunov's direct methods. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to obtain global tracking control results. The paper also includes a design of observers that exponentially estimate the aircraft's linear velocity vector and disturbances. Simulations illustrate the results.

  4. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    Science.gov (United States)

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  5. One-dimensional flame instability and control of burning in fire-chamber

    Directory of Open Access Journals (Sweden)

    Victor E. Volkov

    2015-03-01

    Full Text Available The flame stability with regard to one-dimensional exponential perturbations both for the combustion in the fire-chamber and the flame propagating in closed tubes or chambers is investigated. It is proved that both stability and instability are possible for the combustion process. At the same time the one-dimensional flame instability is guaranteed near the front wall of the fire-chamber where the fuel supply is realized. Therefore the control of combustion in the fire-chamber leads to support of the flame at the maximum possible distance from the front wall of the fire-chamber to prevent the vibratory combustion or to diminish intensity of pulsations if these pulsations are inevitable.

  6. Two-dimensional patterning of thin coatings for the control of tissue outgrowth

    DEFF Research Database (Denmark)

    Thissen, H.; Johnson, G.; Hartley, P.G.

    2006-01-01

    were used to provide evidence of successful surface modifications. Adsorption of the extracellular matrix protein collagen I followed by tissue outgrowth experiments with bovine corneal epithelial tissue for up to 21 days showed that two-dimensional control over tissue outgrowth is achievable with our......Control of the precise location and extent of cellular attachment and proliferation, and of tissue outgrowth is important in a number of biomedical applications, including biomaterials and tissue engineered medical devices. Here we describe a method to control and direct the location and define...... boundaries of tissue growth on surfaces in two dimensions. The method relies on the generation of a spatially defined surface chemistry comprising protein adsorbing and non-adsorbing areas that allow control over the adsorption of cell-adhesive glycoproteins. Surface modification was carried out...

  7. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    International Nuclear Information System (INIS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-01-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z_2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  8. Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms

    International Nuclear Information System (INIS)

    Probst, Roland; Shapiro, Benjamin

    2011-01-01

    We show how to extend electrokinetic tweezing (which can manipulate any visible particles and has more favorable force scaling than optical actuation enabling manipulation of nanoscale objects to nanoscopic precision) from two-dimensional control to the third dimension (3D). A novel and practical multi-layer device is presented that can create both planar and vertical flow and electric field modes. Feedback control algorithms are developed and demonstrated in realistic simulations to show 3D manipulation of one and two particles independently. The design and control results presented here are the essential next step to go from current 2D manipulation capabilities to an experimental demonstration of nano-precise 3D electrokinetic tweezing in a microfluidic system. Doing so requires integration with vision-based nano-precise 3D particle imaging, a capability that has been shown in the literature and which we are now combining with the 3D actuation and control methods demonstrated here. (technical note)

  9. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    Science.gov (United States)

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  10. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  11. Mechanotransduction across the cell surface and through the cytoskeleton

    Science.gov (United States)

    Wang, N.; Butler, J. P.; Ingber, D. E.

    1993-01-01

    Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

  12. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  13. Edge state preparation in a one-dimensional lattice by quantum Lyapunov control

    International Nuclear Information System (INIS)

    Zhao, X L; Shi, Z C; Qin, M; Yi, X X

    2017-01-01

    Quantum Lyapunov control uses a feedback control methodology to determine control fields applied to control quantum systems in an open-loop way. In this work, we employ two Lyapunov control schemes to prepare an edge state for a fermionic chain consisting of cold atoms loaded in an optical lattice. Such a chain can be described by the Harper model. Corresponding to the two schemes, two types of quantum Lyapunov functions are considered. The results show that both the schemes are effective at preparing the edge state within a wide range of parameters. We found that the edge state can be prepared with high fidelity even if there are moderate fluctuations of on-site or hopping potentials. Both control schemes can be extended to similar chains (3 m + d , d = 2) of different lengths. Since a regular amplitude control field is easier to apply in practice, an amplitude-modulated control field is used to replace the unmodulated one. Such control approaches provide tools to explore the edge states of one-dimensional topological materials. (paper)

  14. A Role for the Cytoskeleton in Heart Looping

    Directory of Open Access Journals (Sweden)

    Kersti K. Linask

    2007-01-01

    Full Text Available Over the past 10 years, key genes involved in specification of left-right laterality pathways in the embryo have been defined. The read-out for misexpression of laterality genes is usually the direction of heart looping. The question of how dextral looping direction occurred mechanistically and how the heart tube bends remains unknown. It is becoming clear from our experiments and those of others that left-right differences in cell proliferation in the second heart field (anterior heart field drives the dextral direction. Evidence is accumulating that the cytoskeleton is at the center of laterality, and the bending and rotational forces associated with heart looping. If laterality pathways are modulated upstream, the cytoskeleton, including nonmuscle myosin II (NMHC-II, is altered downstream within the cardiomyocytes, leading to looping abnormalities. The cytoskeleton is associated with important mechanosensing and signaling pathways in cell biology and development. The initiation of blood flow during the looping period and the inherent stresses associated with increasing volumes of blood flowing into the heart may help to potentiate the process. In recent years, the steps involved in this central and complex process of heart development that is the basis of numerous congenital heart defects are being unraveled.

  15. All-Round Manipulation of the Actin Cytoskeleton by HIV.

    Science.gov (United States)

    Ospina Stella, Alberto; Turville, Stuart

    2018-02-05

    While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.

  16. Divergent regulation of the sarcomere and the cytoskeleton.

    Science.gov (United States)

    Schevzov, Galina; Fath, Thomas; Vrhovski, Bernadette; Vlahovich, Nicole; Rajan, Sudarsan; Hook, Jeff; Joya, Josephine E; Lemckert, Frances; Puttur, Franz; Lin, Jim J-C; Hardeman, Edna C; Wieczorek, David F; O'Neill, Geraldine M; Gunning, Peter W

    2008-01-04

    The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.

  17. Thematic Minireview Series: The State of the Cytoskeleton in 2015.

    Science.gov (United States)

    Fischer, Robert S; Fowler, Velia M

    2015-07-10

    The study of cytoskeletal polymers has been an active area of research for more than 70 years. However, despite decades of pioneering work by some of the brightest scientists in biochemistry, cell biology, and physiology, many central questions regarding the polymers themselves are only now starting to be answered. For example, although it has long been appreciated that the actin cytoskeleton provides contractility and couples biochemical responses with mechanical stresses in cells, only recently have we begun to understand how the actin polymer itself responds to mechanical loads. Likewise, although it has long been appreciated that the microtubule cytoskeleton can be post-translationally modified, only recently have the enzymes responsible for these modifications been characterized, so that we can now begin to understand how these modifications alter the polymerization and regulation of microtubule structures. Even the septins in eukaryotes and the cytoskeletal polymers of prokaryotes have yielded new insights due to recent advances in microscopy techniques. In this thematic series of minireviews, these topics are covered by some of the very same scientists who generated these recent insights, thereby providing us with an overview of the State of the Cytoskeleton in 2015. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. CRMPs colocalize and interact with cytoskeleton in hippocampal neurons

    Science.gov (United States)

    Yang, Yuhao; Zhao, Bo; Ji, Zhisheng; Zhang, Guowei; Zhang, Jifeng; Li, Sumei; Guo, Guoqing; Lin, Hongsheng

    2015-01-01

    CRMP family proteins (CRMPs) are widely expressed in the developing neurons, mediating a variety of fundamental functions such as growth cone guidance, neuronal polarity and axon elongation. However, whether all the CRMP proteins interact with cytoskeleton remains unknown. In this study, we found that in cultured hippocampal neurons, CRMPs mainly colocalized with tubulin and actin network in neurites. In growth cones, CRMPs colocalized with tubulinmainly in the central (C-) domain and transition zone (T-zone), less in the peripheral (P-) domain and colocalized with actin in all the C-domain, T-zone and P-domain. The correlation efficiency of CRMPs between actin was significantly higher than that between tubulin, especially in growth cones. We successfully constructed GST-CRMPs plasmids, expressed and purified the GST-CRMP proteins. By GST-pulldown assay, all the CRMP family proteins were found to beinteracted with cytoskeleton proteins. Taken together, we revealed that CRMPs were colocalized with cytoskeleton in hippocampal neurons, especially in growth cones. CRMPs can interact with both tubulin and actin, thus mediating neuronal development. PMID:26885211

  19. Cytoskeleton and nuclear lamina affection in recessive osteogenesis imperfecta: A functional proteomics perspective.

    Science.gov (United States)

    Gagliardi, Assunta; Besio, Roberta; Carnemolla, Chiara; Landi, Claudia; Armini, Alessandro; Aglan, Mona; Otaify, Ghada; Temtamy, Samia A; Forlino, Antonella; Bini, Luca; Bianchi, Laura

    2017-09-07

    Osteogenesis imperfecta (OI) is a collagen-related disorder associated to dominant, recessive or X-linked transmission, mainly caused by mutations in type I collagen genes or in genes involved in type I collagen metabolism. Among the recessive forms, OI types VII, VIII, and IX are due to mutations in CRTAP, P3H1, and PPIB genes, respectively. They code for the three components of the endoplasmic reticulum complex that catalyzes 3-hydroxylation of type I collagen α1Pro986. Under-hydroxylation of this residue leads to collagen structural abnormalities and results in moderate to lethal OI phenotype, despite the exact molecular mechanisms are still not completely clear. To shed light on these recessive forms, primary fibroblasts from OI patients with mutations in CRTAP (n=3), P3H1 (n=3), PPIB (n=1) genes and from controls (n=4) were investigated by a functional proteomic approach. Cytoskeleton and nucleoskeleton asset, protein fate, and metabolism were delineated as mainly affected. While western blot experiments confirmed altered expression of lamin A/C and cofilin-1, immunofluorescence analysis using antibody against lamin A/C and phalloidin showed an aberrant organization of nucleus and cytoskeleton. This is the first report describing an altered organization of intracellular structural proteins in recessive OI and pointing them as possible novel target for OI treatment. OI is a prototype for skeletal dysplasias. It is a highly heterogeneous collagen-related disorder with dominant, recessive and X-linked transmission. There is no definitive cure for this disease, thus a better understanding of the molecular basis of its pathophysiology is expected to contribute in identifying potential targets to develop new treatments. Based on this concept, we performed a functional proteomic study to delineate affected molecular pathways in primary fibroblasts from recessive OI patients, carrying mutations in CRTAP (OI type VII), P3H1 (OI type VIII), and PPIB (OI type IX) genes

  20. Cytoskeleton in gravisensing and signal transductionof lower plants

    Science.gov (United States)

    Braun, M.

    Characean rhizoids and protonemata are favourable cell types for studying tip growth and gravisensing. Both processes are highly dependent on the actin cytoskeleton. The multiple functions and different arrangements of actin in both cell types are regulated by the concerted action of actin-binding proteins. Monomer- binding profilin is distributed evenly throughout the cytoplasm and is likely to be involved in the regulation of the polymerization state of actin. Actin-severing ADF, spectrin- and actinin-like epitopes concentrate in a central prominent spot in the apex of both cell types, where they colocalize with a dense, spherical actin array and a unique aggregation of endoplasmic reticulum (ER), the structural center of the tip - growth organizing Spitzenkörper. The ER aggregate disintegrates and immuno- localization of the actin-binding proteins fails when tip growth is arrested; the epitopes reappear when tip growth resumes. Actin filaments form a meshwork of axially oriented filaments in the subapical zone and focus in this central apical area which seems to represent their apical polymerization site. The rapid turn-over and rearrangement of actin might be under control of ADF and profilin. Spectrin- and actinin-like proteins are candidates for establishing the actin-mediated anchoring and maintaining of the ER aggregate. They could also provide a mechanism for recruiting specific membrane proteins that create the particular physiological environment for gravity-oriented tip growth. The positioning and sedimentation of statoliths in the subapical region (crucial for gravisensing) is highly coordinated by actomyosin. Non-invasive infrared laser micromanipulation techniques, centri- fugation and experiments in microgravity revealed that reorientation of the growth direction was initiated when at least 2-3 statoliths were directed to specific areas of the plasma membrane by actomyosin and gravitational forces. The statolith-sensitive area is confined to the

  1. Controllable scattering of photons in a one-dimensional resonator waveguide

    Science.gov (United States)

    Sun, C. P.; Zhou, L.; Gong, Z. R.; Liu, Y. X.; Nori, F.

    2009-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. [4pt] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons in a 1D resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). URL: http://link.aps.org/abstract/PRL/v101/e100501

  2. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    Science.gov (United States)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  3. Enhancing Three-dimensional Movement Control System for Assemblies of Machine-Building Facilities

    Science.gov (United States)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-01-01

    Aspects of enhancing three-dimensional movement control system are given in the paper. Such system is to be used while controlling assemblies of machine-building facilities, which is a relevant issue. The base of the system known is three-dimensional movement control device with optical principle of action. The device consists of multi point light emitter and light receiver matrix. The processing of signals is enhanced to increase accuracy of measurements by switching from discrete to analog signals. Light receiver matrix is divided into four areas, and the output value of each light emitter in each matrix area is proportional to its luminance level. Thus, determing output electric signal value of each light emitter in corresponding area leads to determing position of multipoint light emitter and position of object tracked. This is done by using Case-based reasoning method, the precedent in which is described as integral signal value of each matrix area, coordinates of light receivers, which luminance level is high, and decision to be made in this situation.

  4. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  5. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography

    Science.gov (United States)

    Boudria, Yacine; Feltane, Amal; Besio, Walter

    2014-06-01

    Objective. Brain-computer interfaces (BCIs) based on electroencephalography (EEG) have been shown to accurately detect mental activities, but the acquisition of high levels of control require extensive user training. Furthermore, EEG has low signal-to-noise ratio and low spatial resolution. The objective of the present study was to compare the accuracy between two types of BCIs during the first recording session. EEG and tripolar concentric ring electrode (TCRE) EEG (tEEG) brain signals were recorded and used to control one-dimensional cursor movements. Approach. Eight human subjects were asked to imagine either ‘left’ or ‘right’ hand movement during one recording session to control the computer cursor using TCRE and disc electrodes. Main results. The obtained results show a significant improvement in accuracies using TCREs (44%-100%) compared to disc electrodes (30%-86%). Significance. This study developed the first tEEG-based BCI system for real-time one-dimensional cursor movements and showed high accuracies with little training.

  6. Parameters Controlling Dimensional Accuracy of Aluminum Extrusions Formed in Stretch Bending

    International Nuclear Information System (INIS)

    Baringbing, Henry Ako; Welo, Torgeir

    2007-01-01

    For stretch formed components used in the automotive industry, such as bumper beams, it is of primary importance to control parameters affecting dimensional accuracy. The variations in geometry and mechanical properties induced in extrusion and stretch forming lead to subsequent dimensional inaccuracy of the final product. In this work, tensile and compression samples were taken at three different positions along AA7108W extruded profiles in order to determine material parameters for a constitutive model particularly suited for strong texture materials. In addition, geometry were measured and analyzed statistically in order to study its impact on local cross sectional distortions (sagging) and springback in stretch bending of a bumper beam. These full scale experiments were combined with analytical and numerical simulations to quantify the impact of each basic parameter on product quality. It is concluded that this methodology provides a means to systematically control the product quality by focusing on reducing the acceptance limits of the main parameters controlling basic mechanisms in stretch forming. Despite the assumptions and simplifications made in order to make the analytical expressions solvable, the approach has proven its capability in establishing accurate closed-form expressions including the main influential parameters

  7. Control of morphology, cytoskeleton and migration by syndecan-4

    DEFF Research Database (Denmark)

    Longley, R L; Woods, A; Fleetwood, A

    1999-01-01

    Syndecan-4 is a widely expressed transmembrane heparan sulfate proteoglycan which localizes to focal adhesions. Previous studies showed that the syndecan-4 cytoplasmic domain can associate with and potentiate the activity of protein kinase C, which is required for focal adhesion formation. To exa...

  8. [The effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell in vitro].

    Science.gov (United States)

    Pan, Zhiguo; Shao, Yu; Geng, Yan; Chen, Jinghe; Su, Lei

    2015-08-01

    To study the effect of heat stress on the cytoskeleton and cell cycle of human umbilical vein endothelial cell ( HUVEC ) in vitro. HUVEC was cultured in vitro in 5%CO(2) medium at 37 centigrade ( control group ) or 43 centigrade ( heat stress group ) for 1 hour. Coomassie brilliant blue R-250 staining was used to determine the effect of heat stress on the cytoskeleton. The cells in heat stress group were subsequently cultured at 37 centigradein 5%CO(2) medium after heat stress for 1 hour, and cell cycle of HUVEC was determined at 0, 6, 12, 18 and 24 hours with flow cytometry. Under light microscopy normal cytoskeleton was observed in control group, but thicker and shorter cytoskeleton was found after a rise of temperature, and stress fibers were found in heat stress group. The DNA content of HUVEC at all time points in G0/G1 stage was 38.07%-55.19% after heat stress. The DNA content in control group was 48.57%, and it was 54.06%, 55.19%, 48.23%, 38.07%, and 41.03% at 0, 6, 12, 18, 24 hours in G0/G1 stage in heat stress group. DNA content in S phase was 35.33%-48.18%. The DNA content in control group was 44.62%, and it was 35.33%, 39.50%, 42.50%, 48.18%, and 47.99% at 0, 6, 12, 18, 24 hours in S stage in heat stress group. DNA content in G2/M phase was 5.31%-13.75%. The DNA content in control group was 6.81, and it was 10.61%, 5.31%, 9.27%,13.75%, and 10.98% at 0, 6, 12, 18, 24 hours in G2/M stage in heat stress group. It was demonstrated that compared with control group, the DNA content in G0/G1 stage was significantly increased when the HUVEC were separated from heat stress within 6 hours, and it recovered at a similar level as control group at 12 hours. Heat stress can change the cytoskeleton of HUVEC, and cause stagnation at G0/G1 stage in cell cycle.

  9. Theoretical investigation of the neutron noise diagnostics of two-dimensional control rod vibrations in a PWR

    International Nuclear Information System (INIS)

    Pazsit, I.; Analytis, G.T.

    1980-01-01

    In order to develop a method for monitoring control rod vibrations by neutron noise measurements, the noise induced by two-dimensional vibrations of control elements is investigated. The two-dimensional Green's function relating the small stochastic cross-section fluctuations to the neutron noise is determined for a rectangular slab reactor in the modified one-group theory, and subsequently, the neutron response to two-dimensional vibrating noise sources is investigated. Two possible diagnostical applications are considered: (a) the reconstruction of the mechanical trajectory of the vibrating element by neutron noise measurements, and (b) the possibility of locating the vibrating element in the core. (author)

  10. Dinitroaniline herbicide resistance and the microtubule cytoskeleton.

    Science.gov (United States)

    Anthony; Hussey

    1999-03-01

    Dinitroaniline herbicides have been used for pre-emergence weed control for the past 25 years in cotton, soybean, wheat and oilseed crops. Considering their long persistence and extensive use, resistance to dinitroanilines is fairly rare. However, the most widespread dinitroaniline-resistant weeds, the highly resistant (R) and the intermediate (I) biotypes of the invasive goosegrass Eleusine indica, are now infesting more than 1000 cotton fields in the southern states of the USA. The molecular basis of this resistance has been identified, and found to be a point mutation in a major microtubule cytoskeletal protein, alpha-tubulin. These studies have served both to explain the establishment of resistance and to reveal fundamental properties of tubulin gene expression and microtubule structure.

  11. Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease

    Directory of Open Access Journals (Sweden)

    Holly Stefen

    2016-01-01

    Full Text Available Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer’s disease pathology.

  12. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  13. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  14. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  15. Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Streptococcus pneumoniae Infection

    Directory of Open Access Journals (Sweden)

    Mario Ferrer-Navarro

    2018-05-01

    Full Text Available Infections by Streptococcus pneumoniae are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on S. pneumoniae are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from S. pneumoniae-infected mice with control mice by means of difference gel electrophoresis (DIGE technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in S. pneumoniae infection.

  16. Multiscale evaluation of cellular adhesion alteration and cytoskeleton remodeling by magnetic bead twisting.

    Science.gov (United States)

    Isabey, Daniel; Pelle, Gabriel; André Dias, Sofia; Bottier, Mathieu; Nguyen, Ngoc-Minh; Filoche, Marcel; Louis, Bruno

    2016-08-01

    Cellular adhesion forces depend on local biological conditions meaning that adhesion characterization must be performed while preserving cellular integrity. We presently postulate that magnetic bead twisting provides an appropriate stress, i.e., basically a clamp, for assessment in living cells of both cellular adhesion and mechanical properties of the cytoskeleton. A global dissociation rate obeying a Bell-type model was used to determine the natural dissociation rate ([Formula: see text]) and a reference stress ([Formula: see text]). These adhesion parameters were determined in parallel to the mechanical properties for a variety of biological conditions in which either adhesion or cytoskeleton was selectively weakened or strengthened by changing successively ligand concentration, actin polymerization level (by treating with cytochalasin D), level of exerted stress (by increasing magnetic torque), and cell environment (by using rigid and soft 3D matrices). On the whole, this multiscale evaluation of the cellular and molecular responses to a controlled stress reveals an evolution which is consistent with stochastic multiple bond theories and with literature results obtained with other molecular techniques. Present results confirm the validity of the proposed bead-twisting approach for its capability to probe cellular and molecular responses in a variety of biological conditions.

  17. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    International Nuclear Information System (INIS)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-01-01

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca 2+ -dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  18. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access.

    Science.gov (United States)

    Uzer, Gunes; Bas, Guniz; Sen, Buer; Xie, Zhihui; Birks, Scott; Olcum, Melis; McGrath, Cody; Styner, Maya; Rubin, Janet

    2018-06-06

    βcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of βcatenin in the cytoplasm has been well studied but βcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of βcatenin destruction complex element GSK3β (glycogen synthase kinase 3β) to increase nuclear βcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3β due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, βcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of βcatenin, resulting in decreased nuclear βcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in βcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of βcatenin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of local automatic control rods on three-dimensional calculations of the power distribution in an RBMK

    International Nuclear Information System (INIS)

    Pogosbekyan, L.R.; Lysov, D.A.; Bronitskii, L.L.

    1993-01-01

    Numerical simulators and information systems that support nuclear reactor operators must have fast models to estimate how fuel reloads and control rod displacement affect neutron and power distributions in the core. The consequences of reloads and control rod displacement cannot be evaluated correctly without considering local automatic control-rod operations in maintaining the radial power distribution. Fast three-dimensional models to estimate the effects of reloads and displacement of the control and safety rods have already been examined. I.V. Zonov et al. used the following assumptions in their calculational model: (1) the full-scale problem could be reduced a three-dimensional fragment of a locally perturbed core, and (2) the boundary conditions of the fragment and its total power were constant. The last assumption considers approximately how local automatic control rods stabilize the radial power distribution, but three dimensional calculations with these rods are not considered. These assumptions were introduced to obtain high computational speed. I.L. Bronitskii et al. considered in more detail how moving the local automatic control rods affect the power dimensional in the three-dimensional fragment, because, with on-line monitoring of the reload process, information on control rod positions is periodically renewed, and the calculations are done in real time. This model to predict the three-dimensional power distribution to (1) do a preliminary reload analysis, and (2) prepare the core for reloading did not consider the effect of perturbations from the local automatic control rods. Here we examine a model of a stationary neutron distribution. On one hand it gives results in an acceptable computation time; on the other it is a full-scale three-dimensional model and considers how local automatic control rods affect both the radial and axial power distribution

  20. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    Science.gov (United States)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  1. Generation and control of electronic hybrid entanglement via a two-dimensional Rashba anisotropic nanodot

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, F.; Rastgoo, S.; Golshan, M.M., E-mail: golshan@susc.ac.ir

    2014-06-13

    In the present article we report the dynamics of electronic spin–subbands, as well as subband–subband, hybrid entanglements in a two-dimensional anisotropic quantum dot. The dot is under the influence of Rashba effect and an external magnetic field. To study the hybrid entanglements, we partition the system into two categories in which either spatial degrees of freedom, subbands, entangle with the spin or the subbands become entangled amongst themselves. For the first case we calculate the von Neumann entropy, while for the latter the negativity is calculated. Our calculations show that for both cases information is periodically distributed between the corresponding subspaces. Effects of Rashba parameter and magnetic field on the characteristics of such oscillatory behavior are also discussed. For spin–subband entanglement the oscillations include dips, surrounded by plateaus of maximal entanglement. The subband–subband entanglement shows vanishingly small plateaus. The duration of plateaus is controlled by Rashba coupling and the external field. - Highlights: • Dynamics of hybrid entanglements in a parabolic 2-dimensional electron gas is reported. • The electron gas is influenced by the Rashba spin–orbit coupling and a magnetic field. • Spin–subband entanglement exhibits oscillations with dips and maximal plateaus. • Subband–subband entanglement also oscillates, but with vanishingly small plateaus. • The vigilance of plateaus is controllable by the Rashba effect and/or the field.

  2. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan

    2017-07-06

    Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

  3. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    Science.gov (United States)

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.

  4. High-resolution liquid patterns via three-dimensional droplet shape control.

    Science.gov (United States)

    Raj, Rishi; Adera, Solomon; Enright, Ryan; Wang, Evelyn N

    2014-09-25

    Understanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface. We simultaneously obtain the necessary physical insights to develop a universal model for the three-dimensional droplet shape by characterizing the droplet side and top profiles. Furthermore, arrays of droplets with controlled shapes and high spatial resolution can be achieved using this approach. This liquid-based patterning strategy promises low-cost fabrication of integrated circuits, conductive patterns and bio-microarrays for high-density information storage and miniaturized biochips and biosensors, among others.

  5. Controlling chaos (OGY) implemented on a reconstructed ecological two-dimensional map

    International Nuclear Information System (INIS)

    Sakai, Kenshi; Noguchi, Yuko

    2009-01-01

    We numerically demonstrate a way to stabilize an unstable equilibrium in the ecological dynamics reconstructed from real-world time series data, namely, alternate bearing of citrus trees. The reconstruction of deterministic dynamics from short and noisy ecological time series has been a crucial issue since May's historical work [May RM. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 1974;186:645-7; Hassell MP, Lawton JH, May RM. Patterns of dynamical behavior in single species populations. J Anim Ecol 1976;45:471-86]. Response surface methodology, followed by the differential equation approach is recognized as a promising method of reconstruction [Turchin P. Rarity of density dependence or population with lags? Nature 1990;344:660-3; Turchin P, Taylor AD. Complex dynamics in ecological time series. Ecology 1992;73:289-305; Ellner S, Turchin P. Chaos in a noisy world: new method and evidence from time series analysis. Am Nat 1995;145(3):343-75; Turchin P, Ellner S. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 2000;8(11):3116]. Here, the reconstructed ecological dynamics was described by a two-dimensional map derived from the response surface created by the data. The response surface created was experimentally validated in four one-year forward predictions in 2001, 2002, 2003 and 2004. Controlling chaos is very important when applying chaos theory to solving real-world problems. The OGY method is the first and most popular methodology for controlling chaos and can be used as an algorithm to stabilize an unstable fixed point by putting the state on a stable manifold [Ott E, Grebogi C, York JA. Controlling chaos. Phys Rev Lett 1990;64:1996-9]. We applied the OGY method to our reconstructed two-dimensional map and as a result were able to control alternate bearing in numerical simulations.

  6. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  7. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    Science.gov (United States)

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  8. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    Science.gov (United States)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  9. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment.

    Science.gov (United States)

    Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling

    2013-07-01

    Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.

  10. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng; Li, Henan; Li, Lain-Jong

    2014-01-01

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  11. Traceability and Quality Control in Traditional Chinese Medicine: From Chemical Fingerprint to Two-Dimensional Barcode

    Directory of Open Access Journals (Sweden)

    Yong Cai

    2015-01-01

    Full Text Available Chemical fingerprinting is currently a widely used tool that enables rapid and accurate quality evaluation of Traditional Chinese Medicine (TCM. However, chemical fingerprints are not amenable to information storage, recognition, and retrieval, which limit their use in Chinese medicine traceability. In this study, samples of three kinds of Chinese medicines were randomly selected and chemical fingerprints were then constructed by using high performance liquid chromatography. Based on chemical data, the process of converting the TCM chemical fingerprint into two-dimensional code is presented; preprocess and filtering algorithm are also proposed aiming at standardizing the large amount of original raw data. In order to know which type of two-dimensional code (2D is suitable for storing data of chemical fingerprints, current popular types of 2D codes are analyzed and compared. Results show that QR Code is suitable for recording the TCM chemical fingerprint. The fingerprint information of TCM can be converted into data format that can be stored as 2D code for traceability and quality control.

  12. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  13. Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators

    International Nuclear Information System (INIS)

    Shaik Dawood, M S I; Iannucci, L; Greenhalgh, E S

    2008-01-01

    In this work, based on a linear piezoelectric constitutive model, a three-dimensional finite element code using an eight-node brick element that includes the anisotropic and coupled field effects of piezoelectric actuators has been developed for the static shape control analysis of fibre reinforced composite laminates. The code was used to study voltage sensing and actuation capabilities of piezoelectric actuators on composite laminates. The required input voltages to the actuators in order to achieve a specified structural shape were determined using a weighted shape control method. The code was validated using two test cases obtained from the literature. The results were found to show good correlation for voltage actuation. However, since determining input voltages to achieve the desired structural shape is a type of inverse problem, there are no explicit solutions and hence the results obtained from the present model were not similar to those reported in the literature. The second validation also suggests that the anisotropic and coupled field effects of the piezoelectric actuators cannot be neglected as this has been shown to underestimate the required control voltages. The effects of different lamination angles, boundary conditions, plate length-to-thickness ratios and actuator dimensions on the control voltages have also been reported

  14. The effects of 60Co γ-ray irradiation on the cytoskeleton of mouse peritoneal macrophages and human peripheral blood monocytes in vitro

    International Nuclear Information System (INIS)

    Chen Xiaomei; Guo Yuhua; Yin Zhiwei; Mao Zijun

    1990-03-01

    The whole mount cell electron microscopy in combination with selective extraction method for preparing cytoskeletal framework was applied. Cy toskeleton prepared by Triton X-100 treatment of mouse peritoneal macrophages and human peripheral blood monocytes appeared in electron microscopy as a highly organized and interconnected three-dimensional matrix of different fibrous elements. Since such cytoskeletons are open membrane-free system, individual fibrous organizations can be identified by specific antibodies. An indirect immunogold procedure using monoclonal anti-tubulin or anti-actin antibodies was applied to visualize tubulin-or actin-containing structures. The three-dimensional visualization of Triton X-100 resistant cytoskeletons had been used to demonstrate that different doses of 60 Co γ-ray caused a distinctive and reproducible alterations of the cytoskeletons of intact mouse peritoneal macrophages and human peripheral blood monocytes in vitro. The results showed that there were some similar alterations with those caused by cytochalasin B and by colchicine. From these observations and other workers' studies, it's likely that 60 Co γ-ray irradiation may inhibit cytoplasmic microtubule and microfilament assembling

  15. Root cytoskeleton: its role in perception of and response to gravity

    Science.gov (United States)

    Baluska, F.; Hasenstein, K. H.

    1997-01-01

    We have critically evaluated the possible functions of the plant cytoskeleton in root gravisensing and graviresponse and discussed the evidence that microtubules (MTs) and actin microfilaments (MFs) do not control differential cell growth during bending of roots. On the other hand, MF and MT networks are envisaged to participate in gravisensing because of the mechanical properties of the cytoskeletal structures that interconnect plant cell organelles with the plasma membrane. In restrained gravisensing, forces are suggested to be transmitted to membranes because large-scale gravity-dependent repositioning of organelles is effectively prevented due to the cytoskeleton-mediated anchorage of their envelopes at the plasma membrane. From the cytoskeletal point of view, we can also envisage an unrestrained gravity sensing when cytoskeletal tethers are not strong enough to preserve the tight control over distribution of organelles and the latter, if heavy enough, are allowed to sediment towards the physical bottom of cells. This situation obviously occurs in root cap statocytes because these uniquely organized cells are depleted of prominent actin MF bundles, endoplasmic MT arrays, and ER elements in their internal cytoplasm. Nevertheless, indirect evidence clearly indicates that sedimented root cap statoliths are enmeshed within fine but dynamic MF networks and that their behaviour is obviously under, at least partial, cytoskeletal control. The actomyosin-enriched domain among and around amyloplasts is proposed to increase the perception of gravity due to the grouping effect of sedimenting statoliths. Cytoskeletal links between myosin-rich statoliths, and cell peripheries well equipped with dense cortical MTs, membrane-associated cytoskeleton, as well as with ER elements, would allow efficient restrained gravisensing only at the statocyte cell cortex. As a consequence of cytoskeletal depletion in the internal statocyte cytoplasm and bulk sedimentation of large

  16. Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission.

    Science.gov (United States)

    Wan, Ren-Gang; Zhang, Tong-Yi

    2011-12-05

    We propose a scheme for two-dimensional (2D) atom localization based on the controlled spontaneous emission, in which the atom interacts with two orthogonal standing-wave fields. Due to the spatially dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the resulting spontaneously emission spectrum. The phase sensitive property of the atomic system leads to quenching of the spontaneous emission in some regions of the standing-waves, which significantly reduces the uncertainty in the position measurement of the atom. We find that the frequency measurement of the emitted light localizes the atom in half-wavelength domain. Especially the probability of finding the atom at a particular position can reach 100% when a photon with certain frequency is detected. By increasing the Rabi frequencies of the driving fields, such 2D sub-half-wavelength atom localization can acquire high spatial resolution.

  17. Modeling, Control and Simulation of Three-Dimensional Robotic Systems with Applications to Biped Locomotion.

    Science.gov (United States)

    Zheng, Yuan-Fang

    A three-dimensional, five link biped system is established. Newton-Euler state space formulation is employed to derive the equations of the system. The constraint forces involved in the equations can be eliminated by projection onto a smaller state space system for deriving advanced control laws. A model-referenced adaptive control scheme is developed to control the system. Digital computer simulations of point to point movement are carried out to show that the model-referenced adaptive control increases the dynamic range and speeds up the response of the system in comparison with linear and nonlinear feedback control. Further, the implementation of the controller is simpler. Impact effects of biped contact with the environment are modeled and studied. The instant velocity change at the moment of impact is derived as a function of the biped state and contact speed. The effects of impact on the state, as well as constraints are studied in biped landing on heels and toes simultaneously or on toes first. Rate and nonlinear position feedback are employed for stability of the biped after the impact. The complex structure of the foot is properly modeled. A spring and dashpot pair is suggested to represent the action of plantar fascia during the impact. This action prevents the arch of the foot from collapsing. A mathematical model of the skeletal muscle is discussed. A direct relationship between the stimulus rate and the active state is established. A piecewise linear relation between the length of the contractile element and the isometric force is considered. Hill's characteristic equation is maintained for determining the actual output force during different shortening velocities. A physical threshold model is proposed for recruitment which encompasses the size principle, its manifestations and exceptions to the size principle. Finally the role of spindle feedback in stability of the model is demonstrated by study of a pair of muscles.

  18. An Improved Backstepping-Based Controller for Three-Dimensional Trajectory Tracking of a Midwater Trawl System

    Directory of Open Access Journals (Sweden)

    Zhao Yan

    2016-01-01

    Full Text Available An improved backstepping control method for three-dimensional trajectory tracking of a midwater trawl system is investigated. A new mathematical model of the trawl system while considering the horizontal expansion effect of two otter boards is presented based on the Newton Euler method. Subsequently, an active path tracking strategy of the trawl system based on the backstepping method is proposed. The nonstrict feedback characteristic of the proposed model employs a control allocation method and several parallel nonlinear PID (Proportion Integration Differentiation controllers to eliminate the high-order state variables. Then, the stability analysis by the Lyapunov Stability Theory shows that the proposed controller can maintain the stability of the trawl system even with the presence of external disturbances. To validate the proposed controller, a simulation comparison with a linear PID controller was conducted. The simulation results illustrate that the improved backstepping controller is effective for three-dimensional trajectory tracking of the midwater trawl system.

  19. Chirality of the cytoskeleton in the origins of cellular asymmetry

    Science.gov (United States)

    2016-01-01

    Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior–posterior cell and tissue axis. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821520

  20. A growing family: the expanding universe of the bacterial cytoskeleton.

    Science.gov (United States)

    Ingerson-Mahar, Michael; Gitai, Zemer

    2012-01-01

    Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial.

    Science.gov (United States)

    Braekken, Ingeborg Hoff; Hoff Braekken, Ingeborg; Majida, Memona; Engh, Marie Ellström; Bø, Kari

    2010-02-01

    To investigate morphological and functional changes after pelvic floor muscle training in women with pelvic organ prolapse. This randomized controlled trial was conducted at a university hospital and a physical therapy clinic. One hundred nine women with pelvic organ prolapse stages I, II, and III were randomly allocated by a computer-generated random number system to pelvic floor muscle training (n=59) or control (n=50). Both groups received lifestyle advice and learned to contract the pelvic floor muscles before and during increases in intraabdominal pressure. In addition the pelvic floor muscle training group did individual strength training with a physical therapist and daily home exercise for 6 months. Primary outcome measures were pelvic floor muscle (pubovisceral muscle) thickness, levator hiatus area, pubovisceral muscle length at rest and Valsalva, and resting position of bladder and rectum, measured by three-dimensional ultrasonography. Seventy-nine percent of women in the pelvic floor muscle training group adhered to at least 80% of the training protocol. Compared with women in the control group, women in the pelvic floor muscle training group increased muscle thickness (difference between groups: 1.9 mm, 95% confidence interval [CI] 1.1-2.7, Ppelvic floor muscle stiffness. Supervised pelvic floor muscle training can increase muscle volume, close the levator hiatus, shorten muscle length, and elevate the resting position of the bladder and rectum. www.clinicaltrials.gov, NCT00271297. I.

  2. Probabilistic numerical methods for high-dimensional stochastic control and valuation problems on electricity markets

    International Nuclear Information System (INIS)

    Langrene, Nicolas

    2014-01-01

    This thesis deals with the numerical solution of general stochastic control problems, with notable applications for electricity markets. We first propose a structural model for the price of electricity, allowing for price spikes well above the marginal fuel price under strained market conditions. This model allows to price and partially hedge electricity derivatives, using fuel forwards as hedging instruments. Then, we propose an algorithm, which combines Monte-Carlo simulations with local basis regressions, to solve general optimal switching problems. A comprehensive rate of convergence of the method is provided. Moreover, we manage to make the algorithm parsimonious in memory (and hence suitable for high dimensional problems) by generalizing to this framework a memory reduction method that avoids the storage of the sample paths. We illustrate this on the problem of investments in new power plants (our structural power price model allowing the new plants to impact the price of electricity). Finally, we study more general stochastic control problems (the control can be continuous and impact the drift and volatility of the state process), the solutions of which belong to the class of fully nonlinear Hamilton-Jacobi-Bellman equations, and can be handled via constrained Backward Stochastic Differential Equations, for which we develop a backward algorithm based on control randomization and parametric optimizations. A rate of convergence between the constraPned BSDE and its discrete version is provided, as well as an estimate of the optimal control. This algorithm is then applied to the problem of super replication of options under uncertain volatilities (and correlations). (author)

  3. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

    NARCIS (Netherlands)

    Ketelaar, T.; Honing, van der H.S.; Emons, A.M.C.

    2010-01-01

    In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be

  4. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    Science.gov (United States)

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  5. Dimensional structure of the demand control support questionnaire: a Brazilian context.

    Science.gov (United States)

    Hökerberg, Yara Hahr Marques; Aguiar, Odaleia Barbosa; Reichenheim, Michael; Faerstein, Eduardo; Valente, Joaquim Gonçalves; Fonseca, Maria de Jesus; Passos, Sonia Regina Lambert

    2010-04-01

    According to Karasek, job strain results from an interaction between high demands and low decision latitude. To reassess the dimensional structure and evaluate the internal consistency of demand control support questionnaire (DCSQ), a shortened version of job content questionnaire that was not sufficiently evaluated in validation studies. The study investigated 825 workers who completed the DCSQ in Rio de Janeiro, Brazil; to 399 workers, the questionnaire was self-administered at a hospital (2004-2005), and 426 workers were interviewed at nine restaurants (2006-2007). Confirmatory factor analysis using structural equation models was used to test theoretical structure of dimensionality. Internal consistency was evaluated by composite reliability and convergent validity by average variance extracted. Confirmatory factor analysis supported the instrument in three dimensions: demands, skill discretion and decision authority. The best fit model was achieved by removing social support at work and the item repetitive work (skill discretion). A cross-loading from learning new things on demands and an error measurement correlation between work fast and work intense were confirmed. Composite reliability was acceptable for all dimensions, except for demands (0.58), which also showed inadequate average variance extracted (0.32). This final model was confirmed in separate analyses according to work setting, but the loadings of demands were lower for restaurant workers. Our results indicated that skill discretion and decision authority formed two distinct dimensions. Additionally, the item repetitive work should be removed, as well as one of the items work fast or work intense (demands). Future research is still required to confirm these findings.

  6. Exhaust gas recirculation – Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Asad, Usman; Tjong, Jimi; Zheng, Ming

    2014-01-01

    Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  7. A Three-Dimensional Object Orientation Detector Assisting People with Developmental Disabilities to Control Their Environmental Stimulation through Simple Occupational Activities with a Nintendo Wii Remote Controller

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang

    2012-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program,…

  8. Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2013-08-01

    Fetal alcohol spectrum disorder (FASD occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell, prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a, which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

  9. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    Science.gov (United States)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  10. CONTROL DE GESTIÓN: DIMENSIONES Y DIAGNÓSTICO PERMANENTE

    Directory of Open Access Journals (Sweden)

    Maritza Hernández Torres

    2003-04-01

    Full Text Available

    Los actuales entornos competitivos en los que se desarrolla la actividad empresarial, junto a la necesidad de responder de forma adecuada a los continuos cambios y constante incertidumbre a los que las organizaciones han de enfrentarse, conllevan una significativa modificación en lo que a la gestión empresarial se refiere, resultando esencial en este sentido, el papel del control de gestión, que como elemento del proceso de dirección, es el que más contribuye a mejorar las actuaciones de cualquier sistema. Las empresas deben tomar decisiones estratégicas adecuadas que permitan alcanzar alguna ventaja competitiva en la búsqueda de la excelencia empresarial a través de un proceso flexible de mejora continua. Para contribuir a tal propósito, en el presente trabajo se realizan algunas reflexiones acerca del control de gestión, abarcando desde el enfoque clásico hasta el moderno, su evolución y situación en las organizaciones cubanas; así como, el análisis de sus dimensiones soportado en un procedimiento para su permanente diagnóstico en correspondencia con las particularidades en que las diferentes empresas desarrollan su actividad.

  11. Coordinated Control of Three-Dimensional Components of Smooth Pursuit to Rotating and Translating Textures.

    Science.gov (United States)

    Edinger, Janick; Pai, Dinesh K; Spering, Miriam

    2017-01-01

    The neural control of pursuit eye movements to visual textures that simultaneously translate and rotate has largely been neglected. Here we propose that pursuit of such targets-texture pursuit-is a fully three-dimensional task that utilizes all three degrees of freedom of the eye, including torsion. Head-fixed healthy human adults (n = 8) tracked a translating and rotating random dot pattern, shown on a computer monitor, with their eyes. Horizontal, vertical, and torsional eye positions were recorded with a head-mounted eye tracker. The torsional component of pursuit is a function of the rotation of the texture, aligned with its visual properties. We observed distinct behaviors between those trials in which stimulus rotation was in the same direction as that of a rolling ball ("natural") in comparison to those with the opposite rotation ("unnatural"): Natural rotation enhanced and unnatural rotation reversed torsional velocity during pursuit, as compared to torsion triggered by a nonrotating random dot pattern. Natural rotation also triggered pursuit with a higher horizontal velocity gain and fewer and smaller corrective saccades. Furthermore, we show that horizontal corrective saccades are synchronized with torsional corrective saccades, indicating temporal coupling of horizontal and torsional saccade control. Pursuit eye movements have a torsional component that depends on the visual stimulus. Horizontal and torsional eye movements are separated in the motor periphery. Our findings suggest that translational and rotational motion signals might be coordinated in descending pursuit pathways.

  12. A new theoretical approach to analyze complex processes in cytoskeleton proteins.

    Science.gov (United States)

    Li, Xin; Kolomeisky, Anatoly B

    2014-03-20

    Cytoskeleton proteins are filament structures that support a large number of important biological processes. These dynamic biopolymers exist in nonequilibrium conditions stimulated by hydrolysis chemical reactions in their monomers. Current theoretical methods provide a comprehensive picture of biochemical and biophysical processes in cytoskeleton proteins. However, the description is only qualitative under biologically relevant conditions because utilized theoretical mean-field models neglect correlations. We develop a new theoretical method to describe dynamic processes in cytoskeleton proteins that takes into account spatial correlations in the chemical composition of these biopolymers. Our approach is based on analysis of probabilities of different clusters of subunits. It allows us to obtain exact analytical expressions for a variety of dynamic properties of cytoskeleton filaments. By comparing theoretical predictions with Monte Carlo computer simulations, it is shown that our method provides a fully quantitative description of complex dynamic phenomena in cytoskeleton proteins under all conditions.

  13. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Evidence of a non-dimensional parameter controlling the flooding of PEMFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Buaud, Fabrice; Lelandais, Damien [Heat and Energy Department, Polytech' Nantes, Nantes University, Rue Christian Pauc, BP50609, 44 306 Nantes Cedex 3 (France); Auvity, Bruno [Heat and Energy Department, Polytech' Nantes, Nantes University, Rue Christian Pauc, BP50609, 44 306 Nantes Cedex 3 (France); Laboratoire de Thermocinetique de Nantes (CNRS-UMR 6607) (France)

    2008-06-15

    Water management is a key issue to get satisfactory and stable Polymer exchange membrane fuel cell (PEMFC) performances. The work reported in the present paper focuses on the determination of the operational conditions when using PEMFC stack working with ambient air without extra humidification. The objectives are to reduce as much as possible the auxiliaries consumptions. As far as the reaction air blower is concerned, the specific goal of the present tests is to find the minimum air flow rate to feed the PEMFC stack in order to prevent flooding. Our particular interest concerns the control of a PEMFC stack to power a prototype vehicle for the Shell Eco Marathon race. Tests are then conducted on a wide range of stoichiometry, for different values of current and stack temperature using ambient air. Flooding is shown to depend on all these parameters. A water balance calculation is developed comparing the amount of water produced by the electrochemical reaction to the amount of water transported as vapour in the exit air flow minus the amount of water incoming the stack in the ambient air. A non-dimensional number called the Flooding Number is constructed. This balance is first considered in the ideal case with the theoretical flow rate of reactants and products. It is shown that the stack temperature and the stoichiometry are the main order parameters and that conditions of ambient air have only secondary effects on the water balance. In a second step, the Flooding Number is evaluated for all the experimental tests. A critical Flooding Number appears clearly delimiting the range of operational conditions for which stack flooding appears. This result allows us to control the air blower and the cooling fan during the runs at the Shell Eco Marathon 2007 race in order to reduce hydrogen consumption due to auxiliaries. The non-dimensional number exhibited in the present paper is believed to be relevant to stack flooding. It can be used for any PEMFC stack to make clear

  15. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations

    Science.gov (United States)

    Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L.

    2015-02-01

    Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain-machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.

  16. The cytoskeleton of digitonin-treated rat hepatocytes.

    Science.gov (United States)

    Fiskum, G; Craig, S W; Decker, G L; Lehninger, A L

    1980-06-01

    Treatment of isolated rat hepatocptes with low concentrations of digitonin increases the permeability of the plsma membrane to cytosolic proteins without causing release of organelles such as mitochondria into the surrounding medium. Electron microscopy showed that treatment of the cells with increasing concentations of digitonin results in a progressive loss in the continuity of the plasma membrane, while most other aspects of cellular morphology remain normal. Depletion of background staining material from the cytosol by digitonin treatment of the cells greatly enhances the visualization of the cytoskeleton. The use of this technique, together with immunofluorescent light microscopy, has verified the presence of an actin-containing filamentous network at the hepatocyte cortex as well as intermediate filaments distributed throughout the cell. Digitonin is thus useful both for selectively permeabilizing the plasma membrane and for intensifying the appearance of intracellular structures such as microfilaments that are normally difficult to observe in cells such as hepatocytes.

  17. Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion.

    Directory of Open Access Journals (Sweden)

    Changsong Yang

    2009-05-01

    Full Text Available Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion.

  18. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    Science.gov (United States)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  19. Correlation between two-dimensional video analysis and subjective assessment in evaluating knee control among elite female team handball players

    DEFF Research Database (Denmark)

    Stensrud, Silje; Myklebust, Grethe; Kristianslund, Eirik

    2011-01-01

    . The present study investigated the correlation between a two-dimensional (2D) video analysis and subjective assessment performed by one physiotherapist in evaluating knee control. We also tested the correlation between three simple clinical tests using both methods. A cohort of 186 female elite team handball...

  20. Semi-Active Control of Three-Dimensional Vibrations of an Inclined Sag Cable with Magnetorheological Dampers

    DEFF Research Database (Denmark)

    Zhou, Q.; Nielsen, Søren R.K.; Qu, W. L.

    2006-01-01

    Three-dimensional semi-active vibration control of an inclined sag cable with discrete magnetorheological (MR) dampers is investigated in this paper using the finite difference method (FDM). A modified Dahl model is used to describe the dynamic property of MR damper. The nonlinear equations...

  1. Evidence of low dimensional chaos in renal blood flow control in genetic and experimental hypertension

    Science.gov (United States)

    Yip, K.-P.; Marsh, D. J.; Holstein-Rathlou, N.-H.

    1995-01-01

    We applied a surrogate data technique to test for nonlinear structure in spontaneous fluctuations of hydrostatic pressure in renal tubules of hypertensive rats. Tubular pressure oscillates at 0.03-0.05 Hz in animals with normal blood pressure, but the fluctuations become irregular with chronic hypertension. Using time series from rats with hypertension we produced surrogate data sets to test whether they represent linearly correlated noise or ‘static’ nonlinear transforms of a linear stochastic process. The correlation dimension and the forecasting error were used as discriminating statistics to compare surrogate with experimental data. The results show that the original experimental time series can be distinguished from both linearly and static nonlinearly correlated noise, indicating that the nonlinear behavior is due to the intrinsic dynamics of the system. Together with other evidence this strongly suggests that a low dimensional chaotic attractor governs renal hemodynamics in hypertension. This appears to be the first demonstration of a transition to chaotic dynamics in an integrated physiological control system occurring in association with a pathological condition.

  2. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

    International Nuclear Information System (INIS)

    Minato, Akihiko; Naitoh, Masanori

    1987-01-01

    A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

  3. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    Science.gov (United States)

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  4. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    Science.gov (United States)

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively

  5. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  7. The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders.

    Science.gov (United States)

    Eira, Jessica; Silva, Catarina Santos; Sousa, Mónica Mendes; Liz, Márcia Almeida

    2016-06-01

    Cytoskeleton defects, including alterations in microtubule stability, in axonal transport as well as in actin dynamics, have been characterized in several unrelated neurodegenerative conditions. These observations suggest that defects of cytoskeleton organization may be a common feature contributing to neurodegeneration. In line with this hypothesis, drugs targeting the cytoskeleton are currently being tested in animal models and in human clinical trials, showing promising effects. Drugs that modulate microtubule stability, inhibitors of posttranslational modifications of cytoskeletal components, specifically compounds affecting the levels of tubulin acetylation, and compounds targeting signaling molecules which regulate cytoskeleton dynamics, constitute the mostly addressed therapeutic interventions aiming at preventing cytoskeleton damage in neurodegenerative disorders. In this review, we will discuss in a critical perspective the current knowledge on cytoskeleton damage pathways as well as therapeutic strategies designed to revert cytoskeleton-related defects mainly focusing on the following neurodegenerative disorders: Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Charcot-Marie-Tooth Disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The costa of trichomonads: A complex macromolecular cytoskeleton structure made of uncommon proteins.

    Science.gov (United States)

    de Andrade Rosa, Ivone; Caruso, Marjolly Brigido; de Oliveira Santos, Eidy; Gonzaga, Luiz; Zingali, Russolina Benedeta; de Vasconcelos, Ana Tereza R; de Souza, Wanderley; Benchimol, Marlene

    2017-06-01

    The costa is a prominent striated fibre that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analysed by electron microscopy and mass spectrometry. Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. The costa of T. foetus is a complex and organised cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterised domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibres of other protozoan as well as in intermediate filaments. Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determining the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the

  9. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio

    2011-01-01

    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  10. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    Energy Technology Data Exchange (ETDEWEB)

    Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-09-15

    Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent

  11. X-rays effects on cytoskeleton mechanics of healthy and tumor cells.

    Science.gov (United States)

    Panzetta, Valeria; De Menna, Marta; Musella, Ida; Pugliese, Mariagabriella; Quarto, Maria; Netti, Paolo A; Fusco, Sabato

    2017-01-01

    Alterations in the cytoskeleton structure are frequently found in several diseases and particularly in cancer cells. It is also through the alterations of the cytoskeleton structure that cancer cells acquire most of their common features such as uncontrolled cell proliferation, cell death evasion, and the gaining of migratory and invasive characteristics. Although radiation therapies currently represent one of the most effective treatments for patients, the effects of X-irradiation on the cytoskeleton architecture are still poorly understood. In this case we investigated the effects, over time of two different doses of X-ray irradiation, on cell cytoskeletons of BALB/c3T3 and Sv40-transformed BALB/c 3T3 cells (SVT2). Biophysical parameters - focal adhesion size, actin bundles organization, and cell mechanical properties - were measured before and after irradiations (1 and 2 Gy) at 24 and 72 h, comparing the cytoskeleton properties of normal and transformed cells. The differences, before and after X-irradiation, were revealed in terms of cell morphology and deformability. Finally, such parameters were correlated to the alterations of cytoskeleton dynamics by evaluating cell adhesion at the level of focal adhesion and cytoskeleton mechanics. X-irradiation modifies the structure and the activity of cell cytoskeleton in a dose-dependent manner. For transformed cells, radiation sensitively increased cell adhesion, as indicated by paxillin-rich focal adhesion, flat morphology, a well-organized actin cytoskeleton, and intracellular mechanics. On the other hand, for normal fibroblasts IR had negligible effects on cytoskeletal and adhesive protein organization. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. General Strategy for Rapid Production of Low-Dimensional All-Inorganic CsPbBr3 Perovskite Nanocrystals with Controlled Dimensionalities and Sizes.

    Science.gov (United States)

    Liu, Wenna; Zheng, Jinju; Cao, Sheng; Wang, Lin; Gao, Fengmei; Chou, Kuo-Chih; Hou, Xinmei; Yang, Weiyou

    2018-02-05

    Currently, all-inorganic CsPbX 3 (X = Br, I, Cl) perovskite nanocrystals (NCs) are shining stars with exciting potential applications in optoelectronic devices such as solar cells, light-emitting diodes, lasers, and photodetectors, due to their superior performance in comparison to their organic-inorganic hybrid counterparts. In the present work, we report a general strategy based on a microwave technique for the rapid production of low-dimensional all-inorganic CsPbBr 3 perovskite NCs with tunable morphologies within minutes. The effect of the key parameters such as the introduced ligands, solvents, and PbBr 2 precursors and microwave powers as well as the irradiation times on the production of perovskite NCs was systematically investigated, which allowed their growth with tunable dimensionalities and sizes. As a proof of concept, the ratio of OA to OAm as well as the concentration of PbBr 2 precursor played important roles in triggering the anisotropic growth of the perovskite NCs, favoring their growth into 1D/2D single-crystalline nanostructures. Meanwhile, their sizes could be tailored by controlling the microwave powers and irradiation times. The mechanism for the tunable growth of perovskite NCs is discussed.

  13. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella, and Vibrio

    Science.gov (United States)

    de Souza Santos, Marcela; Orth, Kim

    2018-01-01

    Summary Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles, and therefore, provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton. PMID:25440316

  14. Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons.

    Science.gov (United States)

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.

  15. Dimensional and Structural Control of Silica Aerogel Membranes for Miniaturized Motionless Gas Pumps.

    Science.gov (United States)

    Zhao, Shanyu; Jiang, Bo; Maeder, Thomas; Muralt, Paul; Kim, Nayoung; Matam, Santhosh Kumar; Jeong, Eunho; Han, Yen-Lin; Koebel, Matthias M

    2015-08-26

    With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol-gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm(-3) and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm(-2) at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in

  16. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells

    Science.gov (United States)

    Baluska, F.; Barlow, P. W.; Volkmann, D.

    1996-01-01

    The inhibitory action of 0.1 microM auxin (IAA) on maize root growth was closely associated with a rapid and complete disintegration of the microtubular (MT) cytoskeleton, as visualized by indirect immunofluorescence of tubulin, throughout the growth region. After 30 min of this treatment, only fluorescent spots were present in root cells, accumulating either around nuclei or along cell walls. Six h later, in addition to some background fluorescence, dense but partially oriented oblique or longitudinal arrays of cortical MTs (CMTs) were found in most growing cells of the root apex. After 24 h of treatment, maize roots had adapted to the auxin, as inferred from the slowly recovering elongation rate and from the reassembly of a dense and well-ordered MT cytoskeleton which showed only slight deviations from that of the control root cells. Taxol pretreatment (100 microM, 24 h) prevented not only the rapid auxin-mediated disintegration of the MT cytoskeleton but also a reorientation of the CMT arrays, from transversal to longitudinal. The only tissue to show MTs in their cells throughout the auxin treatment was the epidermis. Significant resistance of transverse CMT arrays in these cells towards auxin was confirmed using a higher auxin concentration (100 microM, 24 h). The latter auxin dose also revealed inter-tissue-specific responses to auxin: outer cortical cell files reoriented their CMTs from the transversal to longitudinal orientation, whereas inner cortical cell files lost their MTs. This high auxin-mediated response, associated with the swelling of root apices, was abolished with the pretreatment of maize root with taxol.

  17. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria.

    Science.gov (United States)

    Muñoz-Espín, Daniel; Daniel, Richard; Kawai, Yoshikazu; Carballido-López, Rut; Castilla-Llorente, Virginia; Errington, Jeff; Meijer, Wilfried J J; Salas, Margarita

    2009-08-11

    Little is known about the organization or proteins involved in membrane-associated replication of prokaryotic genomes. Here we show that the actin-like MreB cytoskeleton of the distantly related bacteria Escherichia coli and Bacillus subtilis is required for efficient viral DNA replication. Detailed analyses of B. subtilis phage ϕ29 showed that the MreB cytoskeleton plays a crucial role in organizing phage DNA replication at the membrane. Thus, phage double-stranded DNA and components of the ϕ29 replication machinery localize in peripheral helix-like structures in a cytoskeleton-dependent way. Importantly, we show that MreB interacts directly with the ϕ29 membrane-protein p16.7, responsible for attaching viral DNA at the cell membrane. Altogether, the results reveal another function for the MreB cytoskeleton and describe a mechanism by which viral DNA replication is organized at the bacterial membrane.

  18. The Emerging Role of the Cytoskeleton in Chromosome Dynamics

    Directory of Open Access Journals (Sweden)

    Maya Spichal

    2017-05-01

    Full Text Available Chromosomes underlie a dynamic organization that fulfills functional roles in processes like transcription, DNA repair, nuclear envelope stability, and cell division. Chromosome dynamics depend on chromosome structure and cannot freely diffuse. Furthermore, chromosomes interact closely with their surrounding nuclear environment, which further constrains chromosome dynamics. Recently, several studies enlighten that cytoskeletal proteins regulate dynamic chromosome organization. Cytoskeletal polymers that include actin filaments, microtubules and intermediate filaments can connect to the nuclear envelope via Linker of the Nucleoskeleton and Cytoskeleton (LINC complexes and transfer forces onto chromosomes inside the nucleus. Monomers of these cytoplasmic polymers and related proteins can also enter the nucleus and play different roles in the interior of the nucleus than they do in the cytoplasm. Nuclear cytoskeletal proteins can act as chromatin remodelers alone or in complexes with other nuclear proteins. They can also act as transcription factors. Many of these mechanisms have been conserved during evolution, indicating that the cytoskeletal regulation of chromosome dynamics is an essential process. In this review, we discuss the different influences of cytoskeletal proteins on chromosome dynamics by focusing on the well-studied model organism budding yeast.

  19. Effects of Silver and Other Metals on the Cytoskeleton

    Science.gov (United States)

    Conrad, Gary W.

    1997-01-01

    Directly or indirectly, trace concentrations of silver ion (Ag(+)) stabilize microtubules (Conrad, A.H., et al. Cell Motil. & Cytoskel. 27:117-132), as does taxol (Conrad, A.H., et al. J. Exp. Zool. 262:154-165), an effect with major consequences for cellular shape changes and development. Polymerization of microtubules is gravity-sensitive (Tabony and Job, Proc. Natl. Acad. Sci. USA 89:6948-6952), so trace amounts of Ag(+) may alter cellular ability to respond to gravity. If Ag electrolysis is used to purify water on NASA space vehicles, plants and animals/astronauts will be exposed continuously to Ag(+), a regimen with unknown cellular and developmental consequences. Fertilized eggs of the marine mudsnail, Ilyanassa obsoleta, are the cells in which the effects of A(+) on microtubules were discovered. They distribute visible cytoplasmic contents according to gravity and contain cytoplasmic morphogenetic determinants for heart development. The objectives are to determine if the effects of Ag(+), AU(3+), (of biosensor relevance), or Gd(3+) (inhibitor of some stretch-activated ion channels) on the cytoskeleton (in the presence and absence of mechanical loading) will affect cellular responses to gravity.

  20. Fluorescence Imaging of the Cytoskeleton in Plant Roots.

    Science.gov (United States)

    Dyachok, Julia; Paez-Garcia, Ana; Yoo, Cheol-Min; Palanichelvam, Karuppaiah; Blancaflor, Elison B

    2016-01-01

    During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

  1. Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality

    NARCIS (Netherlands)

    Starke, J.; Wehrle-Haller, B.; Friedl, P.

    2014-01-01

    Mobile cells discriminate and adapt to mechanosensory input from extracellular matrix (ECM) topographies to undergo actin-based polarization, shape change and migration. We tested 'cell-intrinsic' and adaptive components of actin-based cell migration in response to widely used in vitro

  2. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    Science.gov (United States)

    Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed

    2014-01-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. PMID:25106608

  3. Antiepileptic teratogen valproic acid (VPA) modulates organisation and dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Walmod, P S; Skladchikova, G; Kawa, A

    1999-01-01

    for the VPA mediated inhibition of motility. In addition it is shown that the actomyosin cytoskeleton of VPA-treated cells was capable of contraction upon exposure to ATP, indicating that the reduced motility of VPA-treated cells was not caused by an inhibition of actomyosin contraction. On the other hand...... state. These findings indicate that VPA affects cell morphology and motility through interference with the dynamics of the actin cytoskeleton....

  4. Time-dependent association between platelet-bound fibrinogen and the Triton X-100 insoluble cytoskeleton

    International Nuclear Information System (INIS)

    Peerschke, E.I.

    1991-01-01

    Previous studies indicated a correlation between the formation of EDTA-resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA-resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA-resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding

  5. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    International Nuclear Information System (INIS)

    Packham, M.A.; Guccione, M.A.; Bryant, N.L.; Livne, A.

    1990-01-01

    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with [3H]palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA [ethylene glycol-bis-(beta-aminoethyl ether)]-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton

  6. A Novel Four-Dimensional Energy-Saving and Emission-Reduction System and Its Linear Feedback Control

    Directory of Open Access Journals (Sweden)

    Minggang Wang

    2012-01-01

    Full Text Available This paper reports a new four-dimensional energy-saving and emission-reduction chaotic system. The system is obtained in accordance with the complicated relationship between energy saving and emission reduction, carbon emission, economic growth, and new energy development. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and equilibrium points. Linear feedback control methods are used to suppress chaos to unstable equilibrium. Numerical simulations are presented to show these results.

  7. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  8. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    Science.gov (United States)

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  9. The nesprin-cytoskeleton interface probed directly on single nuclei is a mechanically rich system.

    Science.gov (United States)

    Balikov, Daniel A; Brady, Sonia K; Ko, Ung Hyun; Shin, Jennifer H; de Pereda, Jose M; Sonnenberg, Arnoud; Sung, Hak-Joon; Lang, Matthew J

    2017-09-03

    The cytoskeleton provides structure and plays an important role in cellular function such as migration, resisting compression forces, and transport. The cytoskeleton also reacts to physical cues such as fluid shear stress or extracellular matrix remodeling by reorganizing filament associations, most commonly focal adhesions and cell-cell cadherin junctions. These mechanical stimuli can result in genome-level changes, and the physical connection of the cytoskeleton to the nucleus provides an optimal conduit for signal transduction by interfacing with nuclear envelope proteins, called nesprins, within the LINC (linker of the nucleus to the cytoskeleton) complex. Using single-molecule on single nuclei assays, we report that the interactions between the nucleus and the cytoskeleton, thought to be nesprin-cytoskeleton interactions, are highly sensitive to force magnitude and direction depending on whether cells are historically interfaced with the matrix or with cell aggregates. Application of ∼10-30 pN forces to these nesprin linkages yielded structural transitions, with a base transition size of 5-6 nm, which are speculated to be associated with partial unfoldings of the spectrin domains of the nesprins and/or structural changes of histones within the nucleus.

  10. Accuracy of Cup Positioning With the Computed Tomography-Based Two-dimensional to Three-Dimensional Matched Navigation System: A Prospective, Randomized Controlled Study.

    Science.gov (United States)

    Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi

    2018-01-01

    The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Projective Synchronization of N-Dimensional Chaotic Fractional-Order Systems via Linear State Error Feedback Control

    Directory of Open Access Journals (Sweden)

    Baogui Xin

    2012-01-01

    Full Text Available Based on linear feedback control technique, a projective synchronization scheme of N-dimensional chaotic fractional-order systems is proposed, which consists of master and slave fractional-order financial systems coupled by linear state error variables. It is shown that the slave system can be projectively synchronized with the master system constructed by state transformation. Based on the stability theory of linear fractional order systems, a suitable controller for achieving synchronization is designed. The given scheme is applied to achieve projective synchronization of chaotic fractional-order financial systems. Numerical simulations are given to verify the effectiveness of the proposed projective synchronization scheme.

  12. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    Science.gov (United States)

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  13. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    Science.gov (United States)

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  14. Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells.

    Science.gov (United States)

    Kiroshka, Victoria V; Petrova, Valentina A; Chernyakov, Daniil D; Bozhkova, Yulia O; Kiroshka, Katerina V; Baklagina, Yulia G; Romanov, Dmitry P; Kremnev, Roman V; Skorik, Yury A

    2017-01-01

    Chitosan scaffolds have gained much attention in various tissue engineering applications, but the effect of their microstructure on cell-material spatial interactions remains unclear. Our objective was to evaluate the effect of chitosan-based matrices doping with chitin nano-whiskers (CNW) on adhesion, spreading, cytoskeleton structure, and proliferation of rat bone marrow stromal cells (BMSCs). The behavior of BMSCs during culture on chitosan-CNW films was determined by the molecular mass, hydrophobicity, porosity, crosslinking degree, protonation degree and molecular structure of the composite chitosan-CNW films. The shape, spreading area, cytoskeleton structure, and proliferation of BMSCs on chitosan matrices with a crystalline structure and high porosity were similar to that observed for BMSCs cultured on polystyrene tissue culture plates. The amorphous polymer structure and high swelling led to a decrease in the spreading area and cell proliferation. Thus, we can control the behavior of cells in culture (adhesion, spreading, and proliferation) by changing the physico-chemical properties of the chitosan-CNW films.

  15. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Magdalena; Reis, Katarina [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Heldin, Johan [Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala SE-751 22 Uppsala (Sweden); Kreuger, Johan [Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala (Sweden); Aspenström, Pontus, E-mail: pontus.aspenstrom@ki.se [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2017-03-15

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  16. TrkB-T1 regulates the RhoA signaling and actin cytoskeleton in glioma cells

    International Nuclear Information System (INIS)

    Ohira, Koji; Homma, Koichi J.; Hirai, Hirohisa; Nakamura, Shun; Hayashi, Motoharu

    2006-01-01

    Recently, the truncated TrkB receptor, T1, has been reported to be involved in the control of cell morphology via the regulation of Rho proteins, through which T1 binds Rho guanine nucleotide dissociation inhibitor (Rho GDI) 1 and dissociates it in a brain-derived neurotrophic factor (BDNF)-dependent manner. However, it is unclear whether T1 signaling regulates the downstream of Rho signaling and the actin cytoskeleton. In this study, we investigated this question using C6 rat glioma cells, which express T1 endogenously. Rho GDI1 was dissociated from T1 in a BDNF-dependent manner, which also causes decreases in the activities of Rho-signaling molecules such as RhoA, Rho-associated kinase, p21-activated kinase, and extracellular-signal regulated kinase1/2. Moreover, BDNF treatment resulted in the disappearance of stress fibers in the cells treated with lysophosphatidic acid, an activator of RhoA, and in morphological changes in cells. Furthermore, a competitive assay with cyan fluorescent protein fusion proteins of T1-specific sequences reduced the effects of BDNF. These results suggest that T1 regulates the Rho-signaling pathways and the actin cytoskeleton

  17. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    International Nuclear Information System (INIS)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan; Kreuger, Johan; Aspenström, Pontus

    2017-01-01

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  18. Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii.

    Science.gov (United States)

    Gibeaux, Romain; Lang, Claudia; Politi, Antonio Z; Jaspersen, Sue L; Philippsen, Peter; Antony, Claude

    2012-12-01

    We report the mechanistic basis guiding the migration pattern of multiple nuclei in hyphae of Ashbya gossypii. Using electron tomography, we reconstructed the cytoplasmic microtubule (cMT) cytoskeleton in three tip regions with a total of 13 nuclei and also the spindle microtubules of four mitotic nuclei. Each spindle pole body (SPB) nucleates three cMTs and most cMTs above a certain length grow according to their plus-end structure. Long cMTs closely align for several microns along the cortex, presumably marking regions where dynein generates pulling forces on nuclei. Close proximity between cMTs emanating from adjacent nuclei was not observed. The majority of nuclei carry duplicated side-by-side SPBs, which together emanate an average of six cMTs, in most cases in opposite orientation with respect to the hyphal growth axis. Such cMT arrays explain why many nuclei undergo short-range back and forth movements. Only occasionally do all six cMTs orient in one direction, a precondition for long-range nuclear bypassing. Following mitosis, daughter nuclei carry a single SPB with three cMTs. The increased probability that all three cMTs orient in one direction explains the high rate of nuclear bypassing observed in these nuclei. The A. gossypii mitotic spindle was found to be structurally similar to that of Saccharomyces cerevisiae in terms of nuclear microtubule (nMT) number, length distribution and three-dimensional organization even though the two organisms differ significantly in chromosome number. Our results suggest that two nMTs attach to each kinetochore in A. gossypii and not only one nMT like in S. cerevisiae.

  19. Flow Interactions of Two- and Three-Dimensional Networked Bio-Inspired Control Elements in an In-Line Arrangement.

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2018-04-19

    -dimensions. These results can aid in the design of networked bio-inspired control elements that through integrated sensing can synchronize to three-dimensional flow interactions. © 2018 IOP Publishing Ltd.

  20. Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system.

    Science.gov (United States)

    Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong

    2017-12-11

    We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.

  1. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-01-01

    . Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective

  2. A general one-dimensional model for conduction-controlled rewetting of a surface

    International Nuclear Information System (INIS)

    Elias, E.; Yadigaroglu, G.

    1977-01-01

    A computer-oriented analytical method for predicting the rewetting rate of a hot dry wall is proposed. The wall, which is modeled as a thin flat plate with internal heat generation, receives a variable heat flux from one side while it is cooled from the other side. The model accounts for the large variations of the heat transfer coefficient near the wet front and for the temperature dependence of the thermal and physical properties of the wall. The one-dimensional heat-conduction equation is solved by dividing the quenching zone into small segments of arbitrary temperature increment and constant properties and heat transfer coefficient. A trial-and-error method is developed to predict the velocity of the wet front, the length of the quenching zone and the temperature profile. The one-dimensional models of other authors can be obtained as particular cases of the present model. (Auth.)

  3. Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton Interactions on Cell Respiration.

    Science.gov (United States)

    Goswami, Ishan; Perry, Justin B; Allen, Mitchell E; Brown, David A; von Spakovsky, Michael R; Verbridge, Scott S

    2018-06-19

    Pulsed electric fields with microsecond pulse width (μsPEFs) are used clinically; namely, irreversible electroporation/Nanoknife is used for soft tissue tumor ablation. The μsPEF pulse parameters used in irreversible electroporation (0.5-1 kV/cm, 80-100 pulses, ∼100 μs each, 1 Hz frequency) may cause an internal field to develop within the cell because of the disruption of the outer cell membrane and subsequent penetration of the electric field. An internal field may disrupt voltage-sensitive mitochondria, although the research literature has been relatively unclear regarding whether such disruptions occur with μsPEFs. This investigation reports the influence of clinically used μsPEF parameters on mitochondrial respiration in live cells. Using a high-throughput Agilent Seahorse machine, it was observed that μsPEF exposure comprising 80 pulses with amplitudes of 600 or 700 V/cm did not alter mitochondrial respiration in 4T1 cells measured after overnight postexposure recovery. To record alterations in mitochondrial function immediately after μsPEF exposure, high-resolution respirometry was used to measure the electron transport chain state via responses to glutamate-malate and ADP and mitochondrial membrane potential via response to carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In addition to measuring immediate mitochondrial responses to μsPEF exposure, measurements were also made on cells permeabilized using digitonin and those with compromised cytoskeleton due to actin depolymerization via treatment with the drug latrunculin B. The former treatment was used as a control to tease out the effects of plasma membrane permeabilization, whereas the latter was used to investigate indirect effects on the mitochondria that may occur if μsPEFs impact the cytoskeleton on which the mitochondria are anchored. Based on the results, it was concluded that within the pulse parameters tested, μsPEFs alone do not hinder mitochondrial physiology but can be used

  4. Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Groeger, Adriane; Godau, Jana; Berg, Daniela; Chadzynski, Grzegorz; Klose, Uwe

    2011-01-01

    To investigate the substantia nigra in patients with Parkinson's disease three-dimensional magnetic resonance spectroscopic imaging with high spatial resolution at 3 Tesla was performed. Regional variations of spectroscopic data between the rostral and caudal regions of the substantia nigra as well as the midbrain tegmentum areas were evaluated in healthy controls and patients with Parkinson's disease. Nine patients with Parkinson's disease and eight age- and gender-matched healthy controls were included in this study. Data were acquired by using three-dimensional magnetic resonance spectroscopic imaging measurements. The ratios between rostral and caudal voxels of the substantia nigra as well as the midbrain tegmentum areas were calculated for the main-metabolites N-acetyl aspartate, creatine, choline, and myo-inositol. Additionally, the metabolite/creatine ratios were calculated. In all subjects spectra of acceptable quality could be obtained with a nominal voxel size of 0.252 ml. The calculated rostral-to-caudal ratios of the metabolites as well as of the metabolite/creatine ratios showed with exception of choline/creatine ratio significant differences between healthy controls and patients with Parkinson's disease. The findings from this study indicate that regional variations in N-acetyl aspartate/creatine ratios in the regions of the substantia nigra may differentiate patients with Parkinson's disease and healthy controls. (orig.)

  5. ANDROGENS REGULATE T47D CELLS MOTILITY AND INVASION THROUGH ACTIN CYTOSKELETON REMODELLING

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Montt-Guevara

    2016-09-01

    Full Text Available The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgens receptor (AR is expressed in approximately 70% to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple negative breast cancers. Recent studies have associated the actin-binding proteins of the Ezrin-Radixin-Moesin (ERM family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T, dihydrotestosterone (DHT and dehydroepiandrosterone (DHEA may regulate breast cancer cell motility and invasion through the control of actin remodelling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER, while the non aromatizable androgen – DHT only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer, and eventually to develop new strategies for treatment of breast cancer.

  6. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  7. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    Science.gov (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Chaos Control in a New Three-Dimensional Chaotic T System

    International Nuclear Information System (INIS)

    Chen Yong; Yan Zhenya

    2008-01-01

    In this paper, we study chaos control of the new 3D chaotic system. We use three feedback methods (the linear, speed, doubly-periodic function controller) to suppress the chaos to unstable equilibrium. As a result, some controllers are obtained. Moreover, numerical simulations are used to verify the effectiveness of the obtained controllers

  9. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  10. Control of a three-dimensional turbulent shear layer by means of oblique vortices

    Science.gov (United States)

    Jürgens, Werner; Kaltenbach, Hans-Jakob

    2018-04-01

    The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.

  11. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery

    DEFF Research Database (Denmark)

    Hollander, Jenny; Genina, Natalja; Jukarainen, Harri

    2016-01-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used...... prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between...

  12. Dimensional quality control of Ti-Ni dental file by optical coordinate metrology and computed tomography

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Tosello, Guido; Ontiveros, S.

    2014-01-01

    Endodontic dental files usually present complex 3D geometries, which make the complete measurement of the component very challenging with conventional micro metrology tools. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactile...... techniques. However, the establishment of CT systems traceability when measuring 3D complex geometries is still an open issue. In this work, to verify the quality of the CT dimensional measurements, the dental file has been measured both with a μCT system and an optical CMM (OCMM). The uncertainty...

  13. Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

    Science.gov (United States)

    Abbasabadi, Majid; Sahrai, Mostafa

    2018-01-01

    We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

  14. Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems

    Science.gov (United States)

    Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2007-04-01

    One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.

  15. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.

    Science.gov (United States)

    Akisaka, Toshitaka; Yoshida, Hisaho; Suzuki, Reiko; Takama, Keiko

    2008-03-01

    The organization of the cytoskeleton in the podosomes of osteoclasts was studied by use of cell shearing, rotary replication, and fluorescence cytochemical techniques. After shearing, clathrin plaques and particles associated with the cytoskeleton were left behind on the exposed cytoplasmic side of the membrane. The cytoskeleton of the podosomes was characterized by two types of actin filaments: relatively long filaments in the portion surrounding the podosome core, and highly branched short filaments in the core. Individual actin filaments radiating from the podosomes interacted with several membrane particles along the length of the filaments. Many lateral contacts with the membrane surface by the particles were made along the length of individual actin filaments. The polarity of actin filaments in podosomes became oriented such that their barbed ends were directed toward the core of podosomes. The actin cytoskeletons terminated or branched at the podosomes, where the membrane tightly adhered to the substratum. Microtubules were not usually present in the podosome structures; however, certain microtubules appeared to be morphologically in direct contact with the podosome core. Most of the larger clathrin plaques consisted of flat sheets of clathrin lattices that interconnected neighboring clathrin lattices to form an extensive clathrin area. However, the small deeply invaginated clathrin plaques and the podosomal cytoskeleton were located close together. Thus, the clathrin plaques on the ventral membrane of osteoclasts might be involved in both cell adhesion and the formation of receptor-ligand complexes, i.e., endocytosis.

  16. Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Leiting Pan

    2018-01-01

    Full Text Available The erythrocyte cytoskeleton is a textbook prototype for the submembrane cytoskeleton of metazoan cells. While early experiments suggest a triangular network of actin-based junctional complexes connected by ∼200-nm-long spectrin tetramers, later studies indicate much smaller junction-to-junction distances in the range of 25-60 nm. Through super-resolution microscopy, we resolve the native ultrastructure of the cytoskeleton of membrane-preserved erythrocytes for the N and C termini of β-spectrin, F-actin, protein 4.1, tropomodulin, and adducin. This allows us to determine an ∼80-nm junction-to-junction distance, a length consistent with relaxed spectrin tetramers and theories based on spectrin abundance. Through two-color data, we further show that the cytoskeleton meshwork often contains nanoscale voids where the cell membrane remains intact and that actin filaments and capping proteins localize to a subset of, but not all, junctional complexes. Together, our results call for a reassessment of the structure and function of the submembrane cytoskeleton.

  17. Effect of omega-3 polyunsaturated fatty acids on the cytoskeleton: an open-label intervention study.

    Science.gov (United States)

    Schmidt, Simone; Willers, Janina; Riecker, Sabine; Möller, Katharina; Schuchardt, Jan Philipp; Hahn, Andreas

    2015-02-14

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) show beneficial effects on cardiovascular health and cognitive functions, but the underlying molecular mechanisms are not completely understood. Because of the fact that cytoskeleton dynamics affect almost every cellular process, the regulation of cytoskeletal dynamics could be a new pathway by which n-3 PUFAs exert their effects on cellular level. A 12-week open-label intervention study with 12 healthy men was conducted to determine the effects of 2.7 g/d n-3 PUFA on changes in mRNA expression of cytoskeleton-associated genes by quantitative real-time PCR in whole blood. Furthermore, the actin content in red blood cells was analyzed by immunofluorescence imaging. N-3 PUFA supplementation resulted in a significant down-regulation of cytoskeleton-associated genes, in particular three GTPases (RAC1, RHOA, CDC42), three kinases (ROCK1, PAK2, LIMK), two Wiskott-Aldrich syndrome proteins (WASL, WASF2) as well as actin related protein 2/3 complex (ARPC2, ARPC3) and cofilin (CFL1). Variability in F-actin content between subjects was high; reduced actin content was only reduced within group evaluation. Reduced cytoskeleton-associated gene expression after n-3 PUFA supplementation suggests that regulation of cytoskeleton dynamics might be an additional way by which n-3 PUFAs exert their cellular effects. Concerning F-actin, this analysis did not reveal unmistakable results impeding a generalized conclusion.

  18. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity

    Science.gov (United States)

    Svitkina, Tatyana M.

    2016-01-01

    The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability. PMID:27493806

  19. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction.

    Science.gov (United States)

    Sluysmans, Sophie; Vasileva, Ekaterina; Spadaro, Domenica; Shah, Jimit; Rouaud, Florian; Citi, Sandra

    2017-04-01

    Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  20. Backward Stochastic Riccati Equations and Infinite Horizon L-Q Optimal Control with Infinite Dimensional State Space and Random Coefficients

    International Nuclear Information System (INIS)

    Guatteri, Giuseppina; Tessitore, Gianmario

    2008-01-01

    We study the Riccati equation arising in a class of quadratic optimal control problems with infinite dimensional stochastic differential state equation and infinite horizon cost functional. We allow the coefficients, both in the state equation and in the cost, to be random.In such a context backward stochastic Riccati equations are backward stochastic differential equations in the whole positive real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove existence of a minimal non-negative solution and, under additional assumptions, its uniqueness. We show that such a solution allows to perform the synthesis of the optimal control and investigate its attractivity properties. Finally the case where the coefficients are stationary is addressed and an example concerning a controlled wave equation in random media is proposed

  1. Network-based regularization for high dimensional SNP data in the case-control study of Type 2 diabetes.

    Science.gov (United States)

    Ren, Jie; He, Tao; Li, Ye; Liu, Sai; Du, Yinhao; Jiang, Yu; Wu, Cen

    2017-05-16

    Over the past decades, the prevalence of type 2 diabetes mellitus (T2D) has been steadily increasing around the world. Despite large efforts devoted to better understand the genetic basis of the disease, the identified susceptibility loci can only account for a small portion of the T2D heritability. Some of the existing approaches proposed for the high dimensional genetic data from the T2D case-control study are limited by analyzing a few number of SNPs at a time from a large pool of SNPs, by ignoring the correlations among SNPs and by adopting inefficient selection techniques. We propose a network constrained regularization method to select important SNPs by taking the linkage disequilibrium into account. To accomodate the case control study, an iteratively reweighted least square algorithm has been developed within the coordinate descent framework where optimization of the regularized logistic loss function is performed with respect to one parameter at a time and iteratively cycle through all the parameters until convergence. In this article, a novel approach is developed to identify important SNPs more effectively through incorporating the interconnections among them in the regularized selection. A coordinate descent based iteratively reweighed least squares (IRLS) algorithm has been proposed. Both the simulation study and the analysis of the Nurses's Health Study, a case-control study of type 2 diabetes data with high dimensional SNP measurements, demonstrate the advantage of the network based approach over the competing alternatives.

  2. Multiple surface plasmon polaritons modes on thin silver film controlled by a two-dimensional lattice of silver nanodimers

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying; Jiang, Yongyuan, E-mail: jiangyy@hit.edu.cn [Harbin Institute of Technology, Department of Physics (China)

    2015-01-15

    We study the optical resonant spectrum of a two-dimensional periodic array of silver nanodimers on a thin silver film using multiple scattering formalism. The excited multiple plasmonic modes on two interfaces of the silver film reveal that the dispersion relationships of surface plasmon polaritons on metallic film are modified by doubly periodic lattice due to the fact that wave vectors matching conditions are satisfied. Moreover, we demonstrate that the plasmonic modes are directly controlled by the thickness of silver film, as well as the gap between nanodimer array and silver film. These effects provide novel high-efficient and steady way for excitation in future plasmonic nanodevices.

  3. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    Science.gov (United States)

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  4. Statistical Mechanics of the Geometric Control of Flow Topology in Two-Dimensional Turbulence

    Science.gov (United States)

    Nadiga, Balasubramanya; Loxley, Peter

    2013-04-01

    We apply the principle of maximum entropy to two dimensional turbulence in a new fashion to predict the effect of geometry on flow topology. We consider two prototypical regimes of turbulence that lead to frequently observed self-organized coherent structures. Our theory predicts bistable behavior that exhibits hysteresis and large abrupt changes in flow topology in one regime; the other regime is predicted to exhibit monstable behavior with a continuous change of flow topology. The predictions are confirmed in fully nonlinear numerical simulations of the two-dimensional Navier-Stokes equation. These results suggest an explanation of the low frequency regime transitions that have been observed in the non-equilibrium setting of this problem. Following further development in the non-equilibrium context, we expect that insights developed in this problem should be useful in developing a better understanding of the phenomenon of low frequency regime transitions that is a pervasive feature of the weather and climate systems. Familiar occurrences of this phenomenon---wherein extreme and abrupt qualitative changes occur, seemingly randomly, after very long periods of apparent stability---include blocking in the extra-tropical winter atmosphere, the bimodality of the Kuroshio extension system, the Dansgaard-Oeschger events, and the glacial-interglacial transitions.

  5. IMPROVING KNITTED FABRICS BY A STATISTICAL CONTROL OF DIMENSIONAL CHANGES AFTER THE DYEING PROCESS

    Directory of Open Access Journals (Sweden)

    LLINARES-BERENGUER Jorge

    2017-05-01

    Full Text Available One of the most important problems that cotton knitted fabrics present during the manufacturing process is their dimensional instability, which needs to be minimised. Some of the variables that intervene in fabric shrinkage are related with its structural characteristics, use of fiber when producing yarn, the yarn count used or the dyeing process employed. Conducted under real factory conditions, the present study attempted to model the behaviour of a fabric structure after a dyeing process by contributing several algorithms that calculate dyed fabric stability after the first wash cycle. Small-diameter circular machines are used to produce garments with no side seams. This is the reason why a list of machines that produce the same fabrics for different widths needs to be made available to produce all the sizes of a given garment. Two relaxation states were distingued for interlock fabric: dyed and dry relaxation, and dyed and wash relaxation. The linear density of the yarn employed to produce sample fabric was combed cotton Ne 30. The machines used for optic bleaching were Overflow. To obtain knitting structures with optimum dimensional stability, different statistical tools were used to help us to evaluate all the production process variables (raw material, machines and process responsible for this variation. This allowed to guarantee product quality without creating costs and losses.

  6. Quality Control of Laser-Beam-Melted Parts by a Correlation Between Their Mechanical Properties and a Three-Dimensional Surface Analysis

    Science.gov (United States)

    Grimm, T.; Wiora, G.; Witt, G.

    2017-03-01

    Good correlations between three-dimensional surface analyses of laser-beam-melted parts of nickel alloy HX and their mechanical properties were found. The surface analyses were performed with a confocal microscope, which offers a more profound surface data basis than a conventional, two-dimensional tactile profilometry. This new approach results in a wide range of three-dimensional surface parameters, which were each evaluated with respect to their feasibility for quality control in additive manufacturing. As a result of an automated surface analysis process by the confocal microscope and an industrial six-axis robot, the results are an innovative approach for quality control in additive manufacturing.

  7. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    Science.gov (United States)

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  8. Automatic micropart assembly of 3-Dimensional structure by vision based control

    International Nuclear Information System (INIS)

    Wang, Lidai; Kim, Seung Min

    2008-01-01

    We propose a vision control strategy to perform automatic microassembly tasks in three-dimension (3-D) and develop relevant control software: specifically, using a 6 degree-of-freedom (DOF) robotic workstation to control a passive microgripper to automatically grasp a designated micropart from the chip, pivot the micropart, and then move the micropart to be vertically inserted into a designated slot on the chip. In the proposed control strategy, the whole microassembly task is divided into two subtasks, micro-grasping and micro-joining, in sequence. To guarantee the success of microassembly and manipulation accuracy, two different two-stage feedback motion strategies, the pattern matching and auto-focus method are employed, with the use of vision-based control system and the vision control software developed. Experiments conducted demonstrate the efficiency and validity of the proposed control strategy

  9. Automatic micropart assembly of 3-Dimensional structure by vision based control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lidai [University of Toronto, Toronto (Canada); Kim, Seung Min [Korean Intellectual Property Office, Daejeon (Korea, Republic of)

    2008-12-15

    We propose a vision control strategy to perform automatic microassembly tasks in three-dimension (3-D) and develop relevant control software: specifically, using a 6 degree-of-freedom (DOF) robotic workstation to control a passive microgripper to automatically grasp a designated micropart from the chip, pivot the micropart, and then move the micropart to be vertically inserted into a designated slot on the chip. In the proposed control strategy, the whole microassembly task is divided into two subtasks, micro-grasping and micro-joining, in sequence. To guarantee the success of microassembly and manipulation accuracy, two different two-stage feedback motion strategies, the pattern matching and auto-focus method are employed, with the use of vision-based control system and the vision control software developed. Experiments conducted demonstrate the efficiency and validity of the proposed control strategy

  10. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation.

    Science.gov (United States)

    Sasaki, Nobunari; Kurisu, Junko; Kengaku, Mineko

    2010-12-01

    The sonic hedgehog (Shh) pathway has essential roles in several processes during development of the vertebrate central nervous system (CNS). Here, we report that Shh regulates dendritic spine formation in hippocampal pyramidal neurons via a novel pathway that directly regulates the actin cytoskeleton. Shh signaling molecules Patched (Ptc) and Smoothened (Smo) are expressed in several types of postmitotic neurons, including cerebellar Purkinje cells and hippocampal pyramidal neurons. Knockdown of Smo induces dendritic spine formation in cultured hippocampal neurons independently of Gli-mediated transcriptional activity. Smo interacts with Tiam1, a guanine nucleotide exchange factor for Rac1, via its cytoplasmic C-terminal region. Inhibition of Tiam1 or Rac1 activity suppresses spine induction by Smo knockdown. Shh induces remodeling of the actin cytoskeleton independently of transcriptional activation in mouse embryonic fibroblasts. These findings demonstrate a novel Shh pathway that regulates the actin cytoskeleton via Tiam1-Rac1 activation. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells

    Science.gov (United States)

    Nowak, Jacqueline; Ivakov, Alexander; Somssich, Marc; Persson, Staffan; Nikoloski, Zoran

    2017-01-01

    The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms. PMID:28655850

  12. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    DEFF Research Database (Denmark)

    Sikder, K. U.; Stone, K. A.; Kumar, P. B. S.

    2014-01-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that mic......We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find...... that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. (C) 2014 AIP Publishing LLC....

  13. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

    Science.gov (United States)

    2018-01-01

    Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. PMID:29473915

  14. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells

    Directory of Open Access Journals (Sweden)

    Tiantian eSun

    2013-12-01

    Full Text Available Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships.

  15. Morphed and moving: TNFα-driven motility promotes cell dissemination through MAP4K4-induced cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Min Ma

    2014-04-01

    Full Text Available Cell dissemination from an initial site of growth is a highly coordinated and controlled process that depends on cell motility. The mechanistic principles that orchestrate cell motility, namely cell shape control, traction and force generation, are highly conserved between cells of different origins. Correspondingly, the molecular mechanisms that regulate these critical aspects of migrating cells are likely functionally conserved too. Thus, cell motility deregulation of unrelated pathogenesis could be caused and maintained by similar mechanistic principles. One such motility deregulation disorder is the leukoproliferative cattle disease Tropical Theileriosis, which is caused by the intracellular, protozoan parasite Theileria annulata. T. annulata transforms its host cell and promotes the dissemination of parasite-infected cells throughout the body of the host. An analogous condition with a fundamentally different pathogenesis is metastatic cancer, where oncogenically transformed cells disseminate from the primary tumor to form distant metastases. Common to both diseases is the dissemination of motile cells from the original site. However, unlike metastatic cancer, host cell transformation by Theileria parasites can be reverted by drug treatment and cell signaling be analyzed under transformed and non-transformed conditions. We have used this reversible transformation model and investigated parasite control of host cell motile properties in the context of inflammatory signaling in Ma M. et al. [PLoS Pathog (2014 10: e1004003]. We found that parasite infection promotes the production of the inflammatory cytokine TNFα in the host macrophage. We demonstrated that increased TNFα triggers motile and invasive properties by enhancing actin cytoskeleton remodeling and cell motility through the ser/thr kinase MAP4K4. We concluded that inflammatory conditions resulting in increased TNFα could facilitate cell dissemination by activating the actin

  16. Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms

    Science.gov (United States)

    Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid

    2018-06-01

    We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.

  17. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Aleksei A.

    2017-05-15

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  18. Electrically controlled crossing of energy levels in quantum dots in two-dimensional topological insulators

    Science.gov (United States)

    Sukhanov, Aleksei A.

    2017-05-01

    We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insulator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical condition. The crossing of the levels results in unusual features of optical properties caused by intraceneter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.

  19. Cytoskeleton, L-type Ca2+ and stretch activated channels in injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2013-07-01

    Full Text Available The extra-sarcomeric cytoskeleton (actin microfilaments and anchoring proteins is involved in maintaining the sarco-membrane stiffness and integrity and in turn the mechanical stability and function of the intra- and sub-sarcoplasmic proteins. Accordingly, it regulates Ca2+ entry through the L-type Ca2+ channels and the mechano-sensitivity of the stretch activated channels (SACs. Moreover, being intra-sarcomeric cytoskeleton bound to costameric proteins and other proteins of the sarcoplasma by intermediate filaments, as desmin, it integrates the properties of the sarcolemma with the skeletal muscle fibres contraction. The aim of this research was to compare the cytoskeleton, SACs and the ECC alterations in two different types of injured skeletal muscle fibres: by muscle denervation and mechanical overload (eccentric contraction. Experiments on denervation were made in isolated Soleus muscle of male Wistar rats; forced eccentric-contraction (EC injury was achieved in Extensor Digitorum Longus muscles of Swiss mice. The method employed conventional intracellular recording with microelectrodes inserted in a single fibre of an isolated skeletal muscle bundle. The state of cytoskeleton was evaluated by recording SAC currents and by evaluating the resting membrane potential (RMP value determined in current-clamp mode. The results demonstrated that in both injured skeletal muscle conditions the functionality of L-type Ca2+ current, ICa, was affected. In parallel, muscle fibres showed an increase of the resting membrane permeability and of the SAC current. These issues, together with a more depolarized RMP are an index of altered cytoskeleton. In conclusion, we found a symilar alteration of ICa, SAC and cytoskeleton in both injured skeletal muscle conditions.

  20. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  1. Astrocyte-neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton

    International Nuclear Information System (INIS)

    Heimfarth, Luana; Silva Ferreira, Fernanda da; Pierozan, Paula; Mingori, Moara Rodrigues; Moreira, José Cláudio Fonseca; Batista Teixeira da Rocha, João; Pessoa-Pureur, Regina

    2017-01-01

    Highlights: • Diphenyl ditelluride is toxic to the cytoskeleton of neural cells in vitro. • Hypophosphorylation disrupts cytoskeletal homeostasis and causes cell dysfunction. • Calcium signaling underlies hypophosphorylation of intermediate filaments. • Actin disorganization causes altered astrocyte morphology. • Astrocyte cytoskeleton is more susceptible than neuronal cytoskeleton. - Abstract: Diphenylditelluride (PhTe) 2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe) 2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-D-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca 2+ influx downstream of NMDA receptors activated Ca 2+ -dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. βIII tubulin staining showed that neurite meshworks are not altered by (PhTe) 2 , suggesting greater susceptibility of astrocytes than neurons to (PheTe) 2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca 2+ is one of the crucial signals that modulate the action of (PhTe) 2 in co-cultured astrocytes and neurons and highlights the cytoskeleton

  2. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  3. Photothermal Microneedle Etching: Improved Three-Dimensional Microfabrication Method for Agarose Gel for Topographical Control of Cultured Cell Communities

    Science.gov (United States)

    Moriguchi, Hiroyuki; Yasuda, Kenji

    2006-08-01

    We have developed a new three-dimensional (3D) microfabrication method for agarose gel, photothermal microneedle etching (PTMNE), by means of an improved photothermal spot heating using a focused 1064 nm laser beam for melting a portion of the agarose layer at the tip of the microneedle, where a photoabsorbent chromium layer is coated to be heated. The advantage of this method is that it allows the 3D control of the melting topography within the thick agarose layer with a 2 μm resolution, whereas conventional photothermal etching can enable only two-dimensional (2D) control on the surface of the chip. By this method, we can form the spheroid clusters of particular cells from isolated single cells without any physical contact with other cells in other chambers, which is important for measuring the community effect of the cell group from isolated single cells. When we set single cancer cells in microchambers of 100 μm in diameter, formed in a 50-μm-thick agarose layer, we observed that they grew, divided, and formed spheroid clusters of cells in each microchamber. The result indicates the potential of this method to be a fundamental technique in the research of multicellular spherical clusters of cells for checking the community effect of cells in 3D structures, such as the permeabilities of chemicals and substrates into the cluster, which is complementary to conventional 2D dish cultivation and can contribute to the cell-based screening of drugs.

  4. Optimal control of coupled parabolic-hyperbolic non-autonomous PDEs: infinite-dimensional state-space approach

    Science.gov (United States)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2018-04-01

    This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.

  5. On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Qi-Wei Chen; Kai Wu

    2017-01-01

    Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials.The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures.This review summarizes various on-surface linking strategies for terminal alkynes,including non-bonding interactions as well as organometallic and covalent bonds,and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures,substrates and activation modes.Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.

  6. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  7. Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal

    Science.gov (United States)

    Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk

    2018-04-01

    Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.

  8. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    Science.gov (United States)

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

  9. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  10. Progress of research on cytoskeleton and neural cell migration obstacle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Qiu Jun; Wu Cuiping; Wang Mingming

    2012-01-01

    The dynamic changes of the microtubules and microfilaments provide the main force that drives the normal migration. Biological effects in tissues and cells induced by ionizing radiation are closely correlated with the changes happening to the cytoskeleton. It is that the ionizing radiation can induce the depolymeration of microfilaments and the assembly obstacles of microtubules, and make neural cell incapable of entering the model of migration or abnormally migrate. The effects of relevant changes of the cytoskeleton induced by irradiation on neural cell migration were discussed in this paper. (authors)

  11. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with βIV and βII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1 f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K + channels. We show that the density of nodal βIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1 f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier. SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in

  12. Reorganization of the subplasmalemmal cytoskeleton in association with exocytosis in rat mast cells

    DEFF Research Database (Denmark)

    Nielsen, E H; Braun, K; Johansen, Torben

    1989-01-01

    The subplasmalemmal cytoskeleton in mast cells has been studied by scanning electron microscopy of the internal side of the plasma membrane. Rearrangement of the dense subplasmalemmal network of actin filaments took place following cell activation by compound 48/80 and secretion of histamine....... The rearrangement was a withdrawal of the subplasmalemmal cytoskeleton from the exocytotic sites and the development of bare, filament-free areas around the sites. In calcium-depleted mast cells we demonstrated a dense network that was difficult to break. Activation of the calcium-depleted cells by compound 48...

  13. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Sander, Uwe

    2010-01-01

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  14. Numerical and algebraic studies for the control of finite-dimensional quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Uwe

    2010-11-18

    In this thesis, two aspects of control theory, namely controllability and optimal control, are applied to quantum systems. The presented results are based on group theoretical techniques and numerical studies. By Lie-algebraic analysis, the controllability properties of systems with an arbitrary topology are described and related to the symmetries existing in these systems. We find that symmetry precludes full controllability. Our work investigates well-known control systems and gives rules for the design of new systems. Furthermore, theoretical and numerical concepts are instrumental to studying quantum channels: Their capacities are optimised using gradient flows on the unitary group in order to find counterexamples to a long-established additivity conjecture. The last part of this thesis presents and benchmarks a modular optimal control algorithm known as GRAPE. Numerical tests show how the interplay of its modules can be optimised for higher performance, and how the algorithm performs in comparison to a Krotov-type optimal control algorithm. It is found that GRAPE performs particularly well when aiming for high qualities. (orig.)

  15. The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement.

    Science.gov (United States)

    Pitzalis, Nicolas; Heinlein, Manfred

    2017-12-18

    The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Interactions with the actin cytoskeleton are required for cell wall localization of barley stripe mosaic virus TGB proteins

    Science.gov (United States)

    The host cytoskeleton and membrane system are the main routes by which plant viruses move within or between cells. Barley stripe mosaic virus (BSMV) -induced actin filament thickening was visualized in the cytoskeleton of agroinfiltrated Nicotiana benthamiana epidermal cells expressing DsRed:Talin. ...

  17. DIMENSIONAL VERIFICATION AND QUALITY CONTROL OF IMPLANTS PRODUCED BY ADDITIVE MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Teodor Toth

    2015-07-01

    Full Text Available Purpose: Development of computer technology and alternative manufacturing methods in form of additive manufacturing leads to the manufacture of products with complex shapes. In the field of medicine they include, inter alia, custom-made implants manufactured for a particular patient, such as cranial implants, maxillofacial implants, etc. With regard to the fact that such implants are inserted into a patient’s body, it is necessary to perform the verification, including the shape and dimensional verification. The article deals with the application of the industrial computer tomography within the process of inspection and verification of selected custom-made implant types.Methodology/Approach: The Department of Biomedical Engineering and Measurement performs the verification of medicinal products manufactured by the additive manufacturing technologies from the Ti-6Al-4V (Grade 5 titanium alloy, using the coordinate measuring machine Carl Zeiss Contura G2 and the industrial computed tomography machine Carl Zeiss Metrotom 1500. These equipment fulfil the requirements for the identification and evaluation of dimensions of both, the external and the internal structures. Findings: The article presents the possibilities of the computed tomography utilisation in the inspection of individual implant manufacture using the additive manufacturing technologies. The results indicate that with the adjustment of appropriate input parameters (alignment, this technology is appropriate for the analysis of shape deviations, when compared with the CAD model.Research Limitation/implication: With the increasing distance of measured object from X-ray source, the machine’s resolution function decreases. Decreasing of resolution has a minor impact on the measured dimensions (relatively high tolerances, but has a significant impact on the evaluation of porosity and inclusions. Originality/Value of paper: Currently, the verification of a manufactured implant  can be

  18. Experimental characterization of a bi-dimensional array of negative capacitance piezo-patches for vibroacoustic control

    Science.gov (United States)

    Tateo, F.; Collet, M.; Ouisse, M.; Ichchou, M. N.; Cunefare, K. A.

    2013-04-01

    A recent technological revolution in the fields of integrated MEMS has finally rendered possible the mechanical integration of active smart materials, electronics and power supply systems for the next generation of smart composite structures. Using a bi-dimensional array of electromechanical transducers, composed by piezo-patches connected to a synthetic negative capacitance, it is possible to modify the dynamics of the underlying structure. In this study, we present an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization, by means of distributed shunted piezoelectric material. In the context of periodically distributed damped 2D mechanical systems, this numerical approach allows one to compute the multi-modal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semi-active distributed set of cells. Furthermore, we present experimental evidence that proves the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventy-five piezo-patches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (open-circuit and controlled circuit). The resulting data clearly show how this proposed technique is able to damp and selectively reflect the incident waves.

  19. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.

    Science.gov (United States)

    Tartibi, M; Liu, Y X; Liu, G-Y; Komvopoulos, K

    2015-11-01

    The membrane-cytoskeleton system plays a major role in cell adhesion, growth, migration, and differentiation. F-actin filaments, cross-linkers, binding proteins that bundle F-actin filaments to form the actin cytoskeleton, and integrins that connect the actin cytoskeleton network to the cell plasma membrane and extracellular matrix are major cytoskeleton constituents. Thus, the cell cytoskeleton is a complex composite that can assume different shapes. Atomic force microscopy (AFM)-based techniques have been used to measure cytoskeleton material properties without much attention to cell shape. A recently developed surface chemical patterning method for long-term single-cell culture was used to seed individual cells on circular patterns. A continuum-based cell model, which uses as input the force-displacement response obtained with a modified AFM setup and relates the membrane-cytoskeleton elastic behavior to the cell geometry, while treating all other subcellular components suspended in the cytoplasmic liquid (gel) as an incompressible fluid, is presented and validated by experimental results. The developed analytical-experimental methodology establishes a framework for quantifying the membrane-cytoskeleton elasticity of live cells. This capability may have immense implications in cell biology, particularly in studies seeking to establish correlations between membrane-cytoskeleton elasticity and cell disease, mortality, differentiation, and migration, and provide insight into cell infiltration through nonwoven fibrous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscoelasticity, examine the role of other subcellular components (e.g., nucleus envelope) in cell elasticity, and elucidate the effects of mechanical stimuli on cell differentiation and motility. This is the first study to decouple the membrane-cytoskeleton elasticity from cell stiffness and introduce an effective approach for measuring the elastic modulus. The

  20. Controlled synthesis of three-dimensional hierarchical Bi2WO6 microspheres with optimum photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Hong; Song, Jimei; Zhang, Hui; Gao, Fei; Zhao, Shaojuan; Hu, Haiqin

    2012-01-01

    Highlights: ► The synthesized method is very simple. It can be widely used in the production. ► The morphology is novel and the property is fine. ► The formation of 3D hierarchical microsphere can be induced by changing the concentration of KNO 3 . -- Abstract: Three-dimensional (3D) hierarchical Bi 2 WO 6 microsphere and octahedral Bi 2 WO 6 have been synthesized by a facile hydrothermal method using KNO 3 solution and distilled water as solvent, respectively. The obtained products were characterized by X-ray diffraction, scanning electron microscopy, N 2 adsorption/desorption, and UV–vis diffuse reflectance spectroscopy in detail. The concentration of KNO 3 played a key role in the formation of 3D hierarchical Bi 2 WO 6 microspheres. A possible formation mechanism of Bi 2 WO 6 microsphere was proposed. The photocatalytic activity of the as-synthesized products was evaluated by monitoring the degradation of MB solution under sunlight irradiation. It was found that the photocatalytic activity of the 3D hierarchical Bi 2 WO 6 microsphere was superior to the octahedral Bi 2 WO 6 , which was attributed to the larger surface area and special hierarchical structure of Bi 2 WO 6 microsphere.

  1. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan; Li, Ying; Aljarb, Areej; Shi, Yumeng; Li, Lain-Jong

    2017-01-01

    to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches

  2. Surface topography analysis for dimensional quality control of replication at the micrometre scale

    DEFF Research Database (Denmark)

    Balcon, M.; Marinello, F.; Tosello, Guido

    2011-01-01

    Replication of geometrical features and surfaces are present at different production levels, from realization of moulds to final product. Geometrical features must be reproduced within specification limits, to ensure product functionality . In order to control the replication quality, mould...... and replica surfaces must be quantitatively analysed and compared. In the present work, reference simulated surfaces were considered and studied in order to evaluate the effectiveness and traceability of different analysis tools for replication quality control. Topographies were analysed simulating different...

  3. Zero-dimensional analysis of burn control with compression-decompression

    International Nuclear Information System (INIS)

    Okamoto, Masao; Ohnishi, Masami

    1983-01-01

    A simple but realistic method of active feedback control of a self-ignited tokamak reactor by major radius compression-decompression is presented, in which the thermal fusion output power and the ion temperature are envisaged as the variables that could be adopted as object of control. Error inherent in the measuring system for the controlled variable is taken into account in the analysis. Numerical calculations based on a point reactor model are performed, which indicate that the proposed method of control is capable of completely suppressing thermal runaway without involving any significant change in the major radius or in the fusion output power. Matching the reactor output to changes in load is shown also to be possible from a numerical example. The thermal stability of an igniting plasma governed by this feedback control is analyzed without prescribing any particular transport scaling. It is revealed that the control is achievable for a suitably chosen gain even with a response time lag longer than the thermal runaway time. Strong dependence of the stability on the scaling law is indicated. (author)

  4. Quantum optimal control pathways of ozone isomerization dynamics subject to competing dissociation: A two-state one-dimensional model

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru; Ho, Tak-San; Rabitz, Herschel

    2014-01-01

    We construct a two-state one-dimensional reaction-path model for ozone open → cyclic isomerization dynamics. The model is based on the intrinsic reaction coordinate connecting the cyclic and open isomers with the O 2 + O asymptote on the ground-state 1 A ′ potential energy surface obtained with the high-level ab initio method. Using this two-state model time-dependent wave packet optimal control simulations are carried out. Two possible pathways are identified along with their respective band-limited optimal control fields; for pathway 1 the wave packet initially associated with the open isomer is first pumped into a shallow well on the excited electronic state potential curve and then driven back to the ground electronic state to form the cyclic isomer, whereas for pathway 2 the corresponding wave packet is excited directly to the primary well of the excited state potential curve. The simulations reveal that the optimal field for pathway 1 produces a final yield of nearly 100% with substantially smaller intensity than that obtained in a previous study [Y. Kurosaki, M. Artamonov, T.-S. Ho, and H. Rabitz, J. Chem. Phys. 131, 044306 (2009)] using a single-state one-dimensional model. Pathway 2, due to its strong coupling to the dissociation channel, is less effective than pathway 1. The simulations also show that nonlinear field effects due to molecular polarizability and hyperpolarizability are small for pathway 1 but could become significant for pathway 2 because much higher field intensity is involved in the latter. The results suggest that a practical control may be feasible with the aid of a few lowly excited electronic states for ozone isomerization

  5. Dimensional Control and Morphological Transformations of Supramolecular Polymeric Nanofibers Based on Cofacially-Stacked Planar Amphiphilic Platinum(II) Complexes.

    Science.gov (United States)

    Robinson, Matthew E; Nazemi, Ali; Lunn, David J; Hayward, Dominic W; Boott, Charlotte E; Hsiao, Ming-Siao; Harniman, Robert L; Davis, Sean A; Whittell, George R; Richardson, Robert M; De Cola, Luisa; Manners, Ian

    2017-09-26

    Square-planar platinum(II) complexes often stack cofacially to yield supramolecular fiber-like structures with interesting photophysical properties. However, control over fiber dimensions and the resulting colloidal stability is limited. We report the self-assembly of amphiphilic Pt(II) complexes with solubilizing ancillary ligands based on polyethylene glycol [PEG n , where n = 16, 12, 7]. The complex with the longest solubilizing PEG ligand, Pt-PEG 16 , self-assembled to form polydisperse one-dimensional (1D) nanofibers (diameters fibers of length up to ca. 400 nm. The fiber lengths were dependent on the Pt-PEG 16 complex to seed mass ratio in a manner analogous to a living covalent polymerization of molecular monomers. Moreover, the fiber lengths were unchanged in solution after 1 week and were therefore "static" with respect to interfiber exchange processes on this time scale. In contrast, similarly formed near-uniform fibers of Pt-PEG 12 exhibited dynamic behavior that led to broadening of the length distribution within 48 h. After aging for 4 weeks in solution, Pt-PEG 12 fibers partially evolved into 2D platelets. Furthermore, self-assembly of Pt-PEG 7 yielded only transient fibers which rapidly evolved into 2D platelets. On addition of further fiber-forming Pt complex (Pt-PEG 16 ), the platelets formed assemblies via the growth of fibers selectively from their short edges. Our studies demonstrate that when interfiber dynamic exchange is suppressed, dimensional control and hierarchical structure formation are possible for supramolecular polymers through the use of kinetically controlled seeded growth methods.

  6. Control of two-dimensional electronic states at anatase Ti O2(001 ) surface by K adsorption

    Science.gov (United States)

    Yukawa, R.; Minohara, M.; Shiga, D.; Kitamura, M.; Mitsuhashi, T.; Kobayashi, M.; Horiba, K.; Kumigashira, H.

    2018-04-01

    The nature of the intriguing metallic electronic structures appearing at the surface of anatase titanium dioxide (a-Ti O2 ) remains to be elucidated, mainly owing to the difficulty of controlling the depth distribution of the oxygen vacancies generated by photoirradiation. In this study, K atoms were adsorbed onto the (001) surface of a-Ti O2 to dope electrons into the a-Ti O2 and to confine the electrons in the surface region. The success of the electron doping and its controllability were confirmed by performing in situ angle-resolved photoemission spectroscopy as well as core-level measurements. Clear subband structures were observed in the surface metallic states, indicating the creation of quasi-two-dimensional electron liquid (q2DEL) states in a controllable fashion. With increasing electron doping (K adsorption), the q2DEL states exhibited crossover from polaronic liquid states with multiple phonon-loss structures originating from the long-range Fröhlich interaction to "weakly correlated metallic" states. In the q2DEL states in the weakly correlated metallic region, a kink due to short-range electron-phonon coupling was clearly observed at about 80 ±10 meV . The characteristic energy is smaller than that previously observed for the metallic states of a-Ti O2 with three-dimensional nature (˜110 meV ) . These results suggest that the dominant electron-phonon coupling is modulated by anisotropic carrier screening in the q2DEL states.

  7. Three-dimensional cut wire pair behavior and controllable bianisotropic response in vertically oriented meta-atoms.

    Science.gov (United States)

    Burckel, D Bruce; Adomanis, Bryan M; Sinclair, Michael B; Campione, Salvatore

    2017-12-11

    This paper investigates three-dimensional cut wire pair (CWP) behavior in vertically oriented meta-atoms. We first analyze CWP metamaterial inclusions using full-wave electromagnetic simulations. The scattering behavior of the vertical CWP differs substantially from that of the planar version of the same structure. In particular, we show that the vertical CWP supports a magnetic resonance that is solely excited by the incident magnetic field. This is in stark contrast to the bianisotropic resonant excitation of in-plane CWPs. We further show that this CWP behavior can occur in other vertical metamaterial resonators, such as back-to-back linear dipoles and back-to-back split ring resonators (SRRs), due to the strong coupling between the closely spaced metallic elements in the back-to-back configuration. In the case of SRRs, the vertical CWP mode (unexplored in previous literature) can be excited with a magnetic field that is parallel to both SRR loops, and exists in addition to the familiar fundamental resonances of the individual SRRs. In order to fully describe the scattering behavior from such dense arrays of three-dimensional structures, coupling effects between the close-packed inclusions must be included. The new flexibility afforded by using vertical resonators allows us to controllably create purely electric inclusions, purely magnetic inclusions, as well as bianisotropic inclusions, and vastly increases the degrees of freedom for the design of metafilms.

  8. Randomized controlled clinical trial on the three-dimensional accuracy of fast-set impression materials.

    Science.gov (United States)

    Rudolph, Heike; Quaas, Sebastian; Haim, Manuela; Preißler, Jörg; Walter, Michael H; Koch, Rainer; Luthardt, Ralph G

    2013-06-01

    The use of fast-setting impression materials with different viscosities for the one-stage impression technique demands precise working times when mixing. We examined the effect of varying working time on impression precision in a randomized clinical trial. Focusing on tooth 46, three impressions were made from each of 96 volunteers, using either a polyether (PE: Impregum Penta H/L DuoSoft Quick, 3 M ESPE) or an addition-curing silicone (AS: Aquasil Ultra LV, Dentsply/DeTrey), one with the manufacturer's recommended working time (used as a reference) and two with altered working times. All stages of the impression-taking were subject to randomization. The three-dimensional precision of the non-standard working time impressions was digitally analyzed compared to the reference impression. Statistical analysis was performed using multivariate models. The mean difference in the position of the lower right first molar (vs. the reference impression) ranged from ±12 μm for PE to +19 and -14 μm for AS. Significantly higher mean values (+62 to -40 μm) were found for AS compared to PE (+21 to -26 μm) in the area of the distal adjacent tooth. Fast-set impression materials offer high precision when used for single tooth restorations as part of a one-stage impression technique, even when the working time (mixing plus application of the light- and heavy-body components) diverges significantly from the manufacturer's recommended protocol. Best accuracy was achieved with machine-mixed heavy-body/light-body polyether. Both materials examined met the clinical requirements regarding precision when the teeth were completely syringed with light material.

  9. Validation of dynamic MLC-controller log files using a two-dimensional diode array

    International Nuclear Information System (INIS)

    Li, Jonathan G.; Dempsey, James F.; Ding Li; Liu, Chihray; Palta, Jatinder R.

    2003-01-01

    Intensity-modulated radiation therapy (IMRT) delivered with multi-leaf collimator (MLC) in the step-and-shoot mode uses multiple static MLC segments to achieve intensity modulation. For typical IMRT treatment plans, significant numbers of segments are delivered with monitor units (MUs) of much less than 10. Verification of the ability of the linear accelerator (linac) to deliver small MU segments accurately is an important step in the IMRT commissioning and quality assurance (QA) process. Recent studies have reported large discrepancies between the intended and delivered segment MUs. These discrepancies could potentially cause large errors in the delivered patient dose. We have undertaken a systematic study to evaluate the accuracy of the dynamic MLC log files, which are created automatically by our commercial MLC workstation after each delivery, in recording the fractional MU delivered in the step-and-shoot mode. Two linac models were evaluated with simple-geometry leaf sequences and delivered with different total MUs and different nominal dose rates. A commercial two-dimensional diode array was used for the measurement. Large discrepancies between the intended and delivered segment MUs were found. The discrepancies were larger for small MU segments at higher dose rate, with some small MU segments completely undelivered. The recorded fractional MUs in the log files were found to agree with what was delivered within the limits of our experimental uncertainty. Our results indicate that it is important to verify the delivery accuracy of small MU segments that could potentially occur in a patient treatment and that the log files are useful in checking the integrity of the linac delivery once validated. Thus validated log files can be used as a QA tool for general IMRT delivery and patient-specific plan verification

  10. Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiuye [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 10080 (China); Key Laboratory of Special Functional Materials, Henan University, KaiFeng 475001 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-10-15

    Different-shaped one-dimensional (1D) titanic acid nanomaterials (TANs) were prepared by hydrothermal synthesis. By changing the reaction temperature (120, 170 and 200 C), three kinds of 1D TAN, short-nanotubes (SNT), long-nanotubes (LNT), and nanorods (NR), were obtained. The obtained TANs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and solid-stated diffuse reflectance UV-vis spectra (UV-vis DRS) techniques. Based on these 1D TAN, Eosin Y-sensitized Pt-loaded TAN were prepared by the in situ impregnation and photo-reduction method. Their photocatalytic activity for hydrogen generation was evaluated in triethanolamine (TEOA) aqueous solution under visible light irradiation ({lambda} {>=} 420 nm). The results indicated that the morphology difference led to a significant variation of photocatalytic performance for hydrogen generation, with the activity order as follows: Eosin Y-sensitized Pt-loaded LNT > Eosin Y-sensitized Pt-loaded NR > Eosin Y-sensitized Pt-loaded SNT. The experimental conditions for photocatalytic hydrogen generation such as Pt loading content, the mass ratio of Eosin Y to TAN, and so on, were optimized. As a result, the highest apparent quantum yields of hydrogen generation for Eosin Y-sensitized Pt-loaded SNT, LNT, and NR were 6.65, 17.36, and 15.04%, respectively. The stability of these photocatalysts and the reaction mechanism of the photocatalytic hydrogen generation are also discussed in detail. (author)

  11. Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials

    Science.gov (United States)

    Li, Qiuye; Lu, Gongxuan

    Different-shaped one-dimensional (1D) titanic acid nanomaterials (TANs) were prepared by hydrothermal synthesis. By changing the reaction temperature (120, 170 and 200 °C), three kinds of 1D TAN, short-nanotubes (SNT), long-nanotubes (LNT), and nanorods (NR), were obtained. The obtained TANs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), and solid-stated diffuse reflectance UV-vis spectra (UV-vis DRS) techniques. Based on these 1D TAN, Eosin Y-sensitized Pt-loaded TAN were prepared by the in situ impregnation and photo-reduction method. Their photocatalytic activity for hydrogen generation was evaluated in triethanolamine (TEOA) aqueous solution under visible light irradiation (λ ≥ 420 nm). The results indicated that the morphology difference led to a significant variation of photocatalytic performance for hydrogen generation, with the activity order as follows: Eosin Y-sensitized Pt-loaded LNT > Eosin Y-sensitized Pt-loaded NR > Eosin Y-sensitized Pt-loaded SNT. The experimental conditions for photocatalytic hydrogen generation such as Pt loading content, the mass ratio of Eosin Y to TAN, and so on, were optimized. As a result, the highest apparent quantum yields of hydrogen generation for Eosin Y-sensitized Pt-loaded SNT, LNT, and NR were 6.65, 17.36, and 15.04%, respectively. The stability of these photocatalysts and the reaction mechanism of the photocatalytic hydrogen generation are also discussed in detail.

  12. Spiraling Out of Control: Three-dimensional Hydrodynamical Modeling of the Colliding Winds in η Carinae

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  13. SPIRALING OUT OF CONTROL: THREE-DIMENSIONAL HYDRODYNAMICAL MODELING OF THE COLLIDING WINDS IN η CARINAE

    International Nuclear Information System (INIS)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  14. The Fundamental Solution and Its Role in the Optimal Control of Infinite Dimensional Neutral Systems

    International Nuclear Information System (INIS)

    Liu Kai

    2009-01-01

    In this work, we shall consider standard optimal control problems for a class of neutral functional differential equations in Banach spaces. As the basis of a systematic theory of neutral models, the fundamental solution is constructed and a variation of constants formula of mild solutions is established. We introduce a class of neutral resolvents and show that the Laplace transform of the fundamental solution is its neutral resolvent operator. Necessary conditions in terms of the solutions of neutral adjoint systems are established to deal with the fixed time integral convex cost problem of optimality. Based on optimality conditions, the maximum principle for time varying control domain is presented. Finally, the time optimal control problem to a target set is investigated

  15. Control of Limit Cycle Oscillations of a Two-Dimensional Aeroelastic System

    Directory of Open Access Journals (Sweden)

    M. Ghommem

    2010-01-01

    Full Text Available Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf bifurcation that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing limit cycle oscillations (LCO. It is shown that linear control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains remain a function of the speed. On the other hand, nonlinear control can be effciently implemented to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the LCO amplitude.

  16. Bidirectional control of a one-dimensional robotic actuator by operant conditioning of a single unit in rat motor cortex

    Directory of Open Access Journals (Sweden)

    Pierre-Jean eArduin

    2014-07-01

    Full Text Available The design of efficient neuroprosthetic devices has become a major challenge for the long-term goal of restoring autonomy to motor-impaired patients. One approach for brain control of actuators consists in decoding the activity pattern obtained by simultaneously recording large neuronal ensembles in order to predict in real-time the subject’s intention, and move the prosthesis accordingly. An alternative way is to assign the output of one or a few neurons by operant conditioning to control the prosthesis with rules defined by the experimenter, and rely on the functional adaptation of these neurons during learning to reach the desired behavioral outcome. Here, several motor cortex neurons were recorded simultaneously in head-fixed awake rats and were conditioned, one at a time, to modulate their firing rate up and down in order to control the speed and direction of a one-dimensional actuator carrying a water bottle. The goal was to maintain the bottle in front of the rat’s mouth, allowing it to drink. After learning, all conditioned neurons modulated their firing rate, effectively controlling the bottle position so that the drinking time was increased relative to chance. The mean firing rate averaged over all bottle trajectories depended non-linearly on position, so that the mouth position operated as an attractor. Some modifications of mean firing rate were observed in the surrounding neurons, but to a lesser extent. Notably, the conditioned neuron reacted faster and led to a better control than surrounding neurons, as calculated by using the activity of those neurons to generate simulated bottle trajectories. Our study demonstrates the feasibility, even in the rodent, of using a motor cortex neuron to control a prosthesis in real-time bidirectionally. The learning process includes modifications of the activity of neighboring cortical neurons, while the conditioned neuron selectively leads the activity patterns associated with the prosthesis

  17. Controlling three-dimensional vortices using multiple and moving external fields

    Science.gov (United States)

    Das, Nirmali Prabha; Dutta, Sumana

    2017-08-01

    Spirals or scroll wave activities in cardiac tissues are the cause of lethal arrhythmias. The external control of these waves is thus of prime interest to scientists and physicians. In this article, we demonstrate the spatial control of scroll waves by using external electric fields and thermal gradients in experiments with the Belousov-Zhabotinsky reaction. We show that a scroll ring can be made to trace cyclic trajectories under a rotating electric field. Application of a thermal gradient in addition to the electric field deflects the motion and changes the nature of the trajectory. Our experimental results are analyzed and corroborated by numerical simulations based on an excitable reaction diffusion model.

  18. Role of actin cytoskeleton at multiple levels of T cell activation

    Czech Academy of Sciences Publication Activity Database

    Huranová, Martina; Štěpánek, Ondřej

    2016-01-01

    Roč. 3, č. 4 (2016), s. 585-596 ISSN 2372-0301 R&D Projects: GA ČR GJ16-09208Y Institutional support: RVO:68378050 Keywords : T cell * actin * cytoskeleton * TCR * signal transduction * antigen recognition * antigen affinity threshold * immunological synapse Subject RIV: EB - Genetics ; Molecular Biology

  19. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum

    Czech Academy of Sciences Publication Activity Database

    Cabezas Cruz, Alejandro; Alberdi, P.; Valdés, James J.; Villar, M.; de la Fuente, J.

    2017-01-01

    Roč. 22, Jun 1 (2017), s. 1830-1844 ISSN 1093-4715 EU Projects: European Commission(XE) 278976 - ANTIGONE Institutional support: RVO:60077344 Keywords : cytoskeleton * proteomics * transcriptomics * Ixodes scapularis * Anaplasma phagocytophilum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology

  20. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.

    Science.gov (United States)

    Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka

    2010-01-01

    The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.

  1. Remodeling of tick cytoskeleton in response to infection with Anaplasma phagocytophilum.

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Alberdi, Pilar; Valdes, James J; Villar, Margarita; de la Fuente, Jose

    2017-06-01

    The obligate intracellular pathogen Anaplasma phagocytophilum infects vertebrate and tick hosts. In this study, a genome-wide search for cytoskeleton components was performed in the tick vector, Ixodes scapularis . The available transcriptomics and proteomics data was then used to characterize the mRNA and protein levels of I. scapularis cytoskeleton components in response to A. phagocytophilum infection. The results showed that cytoskeleton components described in other model organisms were present in the I. scapularis genome. One type of intermediate filaments (lamin), a family of septins that was recently implicated in the cellular response to intracellular pathogens, and several members of motor proteins (kinesins and dyneins) that could be implicated in the cytoplasmic movements of A. phagocytophilum were found. The results showed that levels of tubulin, actin, septin, actin-related proteins and motor proteins were affected by A. phagocytophilum , probably to facilitate infection in I. scapularis . Functional studies demonstrated a role for selected cytoskeleton components in pathogen infection. These results provided a more comprehensive view of the cytoskeletal components involved in the response to A. phagocytophilum infection in ticks.

  2. Association of vinculin to the platelet cytoskeleton during thrombin-induced aggregation

    NARCIS (Netherlands)

    Asyee, G. M.; Sturk, A.; Muszbek, L.

    1987-01-01

    Vinculin is a protein generally believed to be involved in membrane-cytoskeleton interaction, and its presence in platelets has been verified earlier. Here we show that in resting bovine platelets, vinculin is not associated with the Triton-insoluble cytoskeletal fraction but becomes incorporated

  3. Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration.

    Science.gov (United States)

    Lee, Su Jin; Park, Jeen Woo; Kang, Beom Sik; Lee, Dong-Seok; Lee, Hyun-Shik; Choi, Sooyoung; Kwon, Oh-Shin

    2017-06-01

    Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and 14-3-3ζ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to 14-3-3ζ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling. [BMB Reports 2017; 50(6): 335-340].

  4. Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas

    DEFF Research Database (Denmark)

    Wu, Kui; Zhang, Xin; Li, Fuqiang

    2015-01-01

    significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also...

  5. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  6. Characterization of the Endothelial Cell Cytoskeleton following HLA Class I Ligation

    Science.gov (United States)

    Ziegler, Mary E.; Souda, Puneet; Jin, Yi-Ping; Whitelegge, Julian P.; Reed, Elaine F.

    2012-01-01

    Background Vascular endothelial cells (ECs) are a target of antibody-mediated allograft rejection. In vitro, when the HLA class I molecules on the surface of ECs are ligated by anti-HLA class I antibodies, cell proliferation and survival pathways are activated and this is thought to contribute to the development of antibody-mediated rejection. Crosslinking of HLA class I molecules by anti-HLA antibodies also triggers reorganization of the cytoskeleton, which induces the formation of F-actin stress fibers. HLA class I induced stress fiber formation is not well understood. Methodology and Principal Findings The present study examines the protein composition of the cytoskeleton fraction of ECs treated with HLA class I antibodies and compares it to other agonists known to induce alterations of the cytoskeleton in endothelial cells. Analysis by tandem mass spectrometry revealed unique cytoskeleton proteomes for each treatment group. Using annotation tools a candidate list was created that revealed 12 proteins, which were unique to the HLA class I stimulated group. Eleven of the candidate proteins were phosphoproteins and exploration of their predicted kinases provided clues as to how these proteins may contribute to the understanding of HLA class I induced antibody-mediated rejection. Three of the candidates, eukaryotic initiation factor 4A1 (eIF4A1), Tropomyosin alpha 4-chain (TPM4) and DDX3X, were further characterized by Western blot and found to be associated with the cytoskeleton. Confocal microscopy analysis showed that class I ligation stimulated increased eIF4A1 co-localization with F-actin and paxillin. Conclusions/Significance Colocalization of eIF4A1 with F-actin and paxillin following HLA class I ligation suggests that this candidate protein could be a target for understanding the mechanism(s) of class I mediated antibody-mediated rejection. This proteomic approach for analyzing the cytoskeleton of ECs can be applied to other agonists and various cells types

  7. Gate control of the spin mobility through the modification of the spin-orbit interaction in two-dimensional systems

    Science.gov (United States)

    Luengo-Kovac, M.; Moraes, F. C. D.; Ferreira, G. J.; Ribeiro, A. S. L.; Gusev, G. M.; Bakarov, A. K.; Sih, V.; Hernandez, F. G. G.

    2017-06-01

    Spin drag measurements were performed in a two-dimensional electron system set close to the crossed spin helix regime and coupled by strong intersubband scattering. In a sample with an uncommon combination of long spin lifetime and high charge mobility, the drift transport allows us to determine the spin-orbit field and the spin mobility anisotropies. We used a random walk model to describe the system dynamics and found excellent agreement for the Rashba and Dresselhaus couplings. The proposed two-subband system displays a large tuning lever arm for the Rashba constant with gate voltage, which provides a new path towards a spin transistor. Furthermore, the data show large spin mobility controlled by the spin-orbit constants setting the field along the direction perpendicular to the drift velocity. This work directly reveals the resistance experienced in the transport of a spin-polarized packet as a function of the strength of anisotropic spin-orbit fields.

  8. Controlled chaos: three-dimensional kinematics, fiber histochemistry, and muscle contractile dynamics of autotomized lizard tails.

    Science.gov (United States)

    Higham, Timothy E; Lipsett, Kathryn R; Syme, Douglas A; Russell, Anthony P

    2013-01-01

    The ability to shed an appendage occurs in both vertebrates and invertebrates, often as a tactic to avoid predation. The tails of lizards, unlike most autotomized body parts of animals, exhibit complex and vigorous movements once disconnected from the body. Despite the near ubiquity of autotomy across groups of lizards and the fact that this is an extraordinary event involving the self-severing of the spinal cord, our understanding of why and how tails move as they do following autotomy is sparse. We herein explore the histochemistry and physiology of the tail muscles of the leopard gecko (Eublepharis macularius), a species that exhibits vigorous and variable tail movements following autotomy. To confirm that the previously studied tail movements of this species are generally representative of geckos and therefore suitable for in-depth muscle studies, we quantified the three-dimensional kinematics of autotomized tails in three additional species. The movements of the tails of all species were generally similar and included jumps, flips, and swings. Our preliminary analyses suggest that some species of gecko exhibit short but high-frequency movements, whereas others exhibit larger-amplitude but lower-frequency movements. We then compared the ATPase and oxidative capacity of muscle fibers and contractile dynamics of isolated muscle bundles from original tails, muscle from regenerate tails, and fast fibers from an upper limb muscle (iliofibularis) of the leopard gecko. Histochemical analysis revealed that more than 90% of the fibers in original and regenerate caudal muscles had high ATPase but possessed a superficial layer of fibers with low ATPase and high oxidative capacity. We found that contraction kinetics, isometric force, work, power output, and the oscillation frequency at which maximum power was generated were lowest in the original tail, followed by the regenerate tail and then the fast fibers of the iliofibularis. Muscle from the original tail exhibited

  9. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    Science.gov (United States)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  10. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  11. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-01-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes. (paper)

  12. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    Science.gov (United States)

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  13. Control of the formation of projective synchronisation in lower-dimensional discrete-time systems

    International Nuclear Information System (INIS)

    Chee, C.Y.; Xu Daolin

    2003-01-01

    Projective synchronisation was recently observed in partially linear discrete-time systems. The scaling factor that characterises the behaviour of projective synchronisation is however unpredictable. In order to manipulate the ultimate state of the synchronisation, a control algorithm based on Schur-Chon stability criteria is proposed to direct the scaling factor onto any predestined value. In the numerical experiment, we illustrate the application on two chaotic discrete-time systems

  14. Sirtuin1 Maintains Actin Cytoskeleton by Deacetylation of Cortactin in Injured Podocytes

    Science.gov (United States)

    Motonishi, Shuta; Wada, Takehiko; Ishimoto, Yu; Ohse, Takamoto; Matsusaka, Taiji; Kubota, Naoto; Shimizu, Akira; Kadowaki, Takashi; Tobe, Kazuyuki

    2015-01-01

    Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1pod−/−) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1pod−/− mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1pod−/− mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1pod−/− mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity. PMID:25424328

  15. Two-dimensional tantalum disulfide: controlling structure and properties via synthesis

    Science.gov (United States)

    Zhao, Rui; Grisafe, Benjamin; Krishna Ghosh, Ram; Holoviak, Stephen; Wang, Baoming; Wang, Ke; Briggs, Natalie; Haque, Aman; Datta, Suman; Robinson, Joshua

    2018-04-01

    Tantalum disulfide (TaS2) is a transition metal dichalcogenide (TMD) that exhibits phase transition induced electronic property modulation at low temperature. However, the appropriate phase must be grown to enable the semiconductor/metal transition that is of interest for next generation electronic applications. In this work, we demonstrate direct and controllable synthesis of ultra-thin 1T-TaS2 and 2H-TaS2 on a variety of substrates (sapphire, SiO2/Si, and graphene) via powder vapor deposition. The synthesis process leads to single crystal domains ranging from 20 to 200 nm thick and 1-10 µm on a side. The TaS2 phase (1T or 2H) is controlled by synthesis temperature, which subsequently is shown to control the electronic properties. Furthermore, this work constitutes the first demonstration of a metal-insulator phase transition in directly synthesized 1T-TaS2 films and domains by electronic means.

  16. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Directory of Open Access Journals (Sweden)

    Irina V Ogneva

    Full Text Available The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05 compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7. In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively

  17. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    Science.gov (United States)

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha

  18. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    Science.gov (United States)

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and

  19. A three-dimensional soft tissue analysis of Class III malocclusion: a case-controlled cross-sectional study.

    Science.gov (United States)

    Johal, Ama; Chaggar, Amrit; Zou, Li Fong

    2018-03-01

    The present study used the optical surface laser scanning technique to compare the facial features of patients aged 8-18 years presenting with Class I and Class III incisor relationship in a case-control design. Subjects with a Class III incisor relationship, aged 8-18 years, were age and gender matched with Class I control and underwent a 3-dimensional (3-D) optical surface scan of the facial soft tissues. Landmark analysis revealed Class III subjects displayed greater mean dimensions compared to the control group most notably between the ages of 8-10 and 17-18 years in both males and females, in respect of antero-posterior (P = 0.01) and vertical (P = 0.006) facial dimensions. Surface-based analysis, revealed the greatest difference in the lower facial region, followed by the mid-face, whilst the upper face remained fairly consistent. Significant detectable differences were found in the surface facial features of developing Class III subjects.

  20. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.

    Science.gov (United States)

    Yoon, Jinsu; Han, Jungmin; Choi, Bongsik; Lee, Yongwoo; Kim, Yeamin; Park, Jinhee; Lim, Meehyun; Kang, Min-Ho; Kim, Dae Hwan; Kim, Dong Myong; Kim, Sungho; Choi, Sung-Jin

    2018-05-25

    Electronics that degrade after stable operation for a desired operating time, called transient electronics, are of great interest in many fields, including biomedical implants, secure memory devices, and environmental sensors. Thus, the development of transient materials is critical for the advancement of transient electronics and their applications. However, previous reports have mostly relied on achieving transience in aqueous solutions, where the transience time is largely predetermined based on the materials initially selected at the beginning of the fabrication. Therefore, accurate control of the transience time is difficult, thereby limiting their application. In this work, we demonstrate transient electronics based on a water-soluble poly(vinyl alcohol) (PVA) substrate on which carbon nanotube (CNT)-based field-effect transistors were fabricated. We regulated the structural parameters of the PVA substrate using a three-dimensional (3D) printer to accurately control and program the transience time of the PVA substrate in water. The 3D printing technology can produce complex objects directly, thus enabling the efficient fabrication of a transient substrate with a prescribed and controlled transience time. In addition, the 3D printer was used to develop a facile method for the selective and partial destruction of electronics.

  1. Assessment of Motor Control during Three-Dimensional Movements Tracking with Position-Varying Gravity Compensation

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2017-05-01

    Full Text Available Active movements are important in the rehabilitation training for patients with neurological motor disorders, while weight of upper limb impedes movements due to muscles weakness. The objective of this study is to develop a position-varying gravity compensation strategy for a cable-based rehabilitation robot. The control strategy can estimate real-time gravity torque according to position feedback. Then, the performance of this control strategy was compared with the other two kinds of gravity compensation strategies (i.e., without compensation and with fixed compensation during movements tracking. Seven healthy subjects were invited to conduct tracking tasks along four different directions (i.e., upward, forward, leftward, and rightward. The performance of movements with different compensation strategies was compared in terms of root mean square error (RMSE between target and actual moving trajectories, normalized jerk score (NJS, mean velocity ratio (MVR of main motion direction, and the activation of six muscles. The results showed that there were significant effects in control strategies in all four directions with the RMSE and NJS values in the following order: without compensation > fixed compensation > position-varying compensation and MVR values in the following order: without compensation < fixed compensation < position-varying compensation (p < 0.05. Comparing with movements without compensation in all four directions, the activation of muscles during movements with position-varying compensation showed significant reductions, except the activations of triceps and in forward and leftward movements, the activations of upper trapezius and middle parts of deltoid in upward movements and the activations of posterior parts of deltoid in all four directions (p < 0.05. Therefore, with position-varying gravity compensation, the upper limb cable-based rehabilitation robotic system might assist subjects to perform movements with higher quality and

  2. Control of polarization and dipole moment in low-dimensional semiconductor nanostructures

    International Nuclear Information System (INIS)

    Li, L. H.; Ridha, P.; Mexis, M.; Smowton, P. M.; Blood, P.; Bozkurt, M.; Koenraad, P. M.; Patriarche, G.; Fiore, A.

    2009-01-01

    We demonstrate the control of polarization and dipole moment in semiconductor nanostructures, through nanoscale engineering of shape and composition. Rodlike nanostructures, elongated along the growth direction, are obtained by molecular beam epitaxial growth. By varying the aspect ratio and compositional contrast between the rod and the surrounding matrix, we rotate the polarization of the dominant interband transition from transverse-electric to transverse-magnetic, and modify the dipole moment producing a radical change in the voltage dependence of absorption spectra. This opens the way to the optimization of quantum dot amplifiers and electro-optical modulators.

  3. Two-dimensional analytical model for dual-material control-gate tunnel FETs

    Science.gov (United States)

    Xu, Hui Fang; Dai, Yue Hua; Gui Guan, Bang; Zhang, Yong Feng

    2016-09-01

    An analytical model for a dual-material control-gate (DMCG) tunnel field effect transistor (TFET) is presented for the first time in this paper, and the influence of the mobile charges on the potential profile is taken into account. On the basis of the potential profile, the lateral electric field is derived and the expression for the drain current is obtained by integrating the band-to-band tunneling (BTBT) generation rate applicable to low-bandgap and high-bandgap materials over the tunneling region. The model also predicts the impacts of the control-gate work function on the potential and drain current. The advantage of this work is that it not only offers physical insight into device physics but also provides the basic designing guideline for DMCG TFETs, enabling the designer to optimize the device in terms of the on-state current, the on-off current ratio, and suppressed ambipolar behavior. Very good agreements for both the potential and drain current are observed between the model calculations and the simulated results.

  4. Two-dimensional myoelectric control of a robotic arm for upper limb amputees

    International Nuclear Information System (INIS)

    Lopez Celani, Natalia M; Soria, Carlos M; Orosco, Eugenio C; Di Sciascio, Fernando A; Valentinuzzi, Max E

    2007-01-01

    Rehabilitation engineering and medicine have become integral and significant parts of health care services, particularly and unfortunately in the last three or four decades, because of wars, terrorism and large number of car accidents. Amputees show a high rate of rejection to wear prosthetic devices, often because of lack of an adequate period of adaptation. A robotic arm may appear as a good preliminary stage. To test the hypothesis, myoelectric signals from two upper limb amputees and from four normal volunteers were fed, via adequate electronic conditioning and using MATLAB, to an industrial robotic arm. Proportional strength control was used for two degrees of freedom (x-y plane) by means of eight signal features of control (four traditional statistics plus energy, integral of the absolute value, Willison's amplitude, waveform length and envelope) for comparison purposes, and selecting the best of them as final reference. Patients easily accepted the system and learned in short time how to operate it. Results were encouraging so that valuable training, before prosthesis is implanted, appears as good feedback; besides, these patients can be hired as specialized operators in semi-automatized industry

  5. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

    Science.gov (United States)

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-04-19

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.

  6. Two-dimensional myoelectric control of a robotic arm for upper limb amputees

    Science.gov (United States)

    López Celani, Natalia M.; Soria, Carlos M.; Orosco, Eugenio C.; di Sciascio, Fernando A.; Valentinuzzi, Max E.

    2007-11-01

    Rehabilitation engineering and medicine have become integral and significant parts of health care services, particularly and unfortunately in the last three or four decades, because of wars, terrorism and large number of car accidents. Amputees show a high rate of rejection to wear prosthetic devices, often because of lack of an adequate period of adaptation. A robotic arm may appear as a good preliminary stage. To test the hypothesis, myoelectric signals from two upper limb amputees and from four normal volunteers were fed, via adequate electronic conditioning and using MATLAB, to an industrial robotic arm. Proportional strength control was used for two degrees of freedom (x-y plane) by means of eight signal features of control (four traditional statistics plus energy, integral of the absolute value, Willison's amplitude, waveform length and envelope) for comparison purposes, and selecting the best of them as final reference. Patients easily accepted the system and learned in short time how to operate it. Results were encouraging so that valuable training, before prosthesis is implanted, appears as good feedback; besides, these patients can be hired as specialized operators in semi-automatized industry.

  7. Disruption of Spectrin-Like Cytoskeleton in Differentiating Keratinocytes by PKCδ Activation Is Associated with Phosphorylated Adducin

    Science.gov (United States)

    Zhao, Kong-Nan; Masci, Paul P.; Lavin, Martin F.

    2011-01-01

    Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex. PMID:22163289

  8. Electric control of magnetism in low-dimensional magnets on ferroelectric surfaces

    Directory of Open Access Journals (Sweden)

    Dorj Odkhuu

    2017-05-01

    Full Text Available Employing first-principles electronic structure calculations, we have studied the electric field controls of magnetism and magnetic anisotropy energy (MAE of the Fe adatoms on ferroelectric BaTiO3 and PbTiO3 surfaces. Remarkably, those effects exhibit dependence of the level of coverage as well as adsorption site of Fe atoms. While the magnitude of MAE is shown tunable by ferroelectric polarization in the full coverage of Fe monolayer, the direction of magnetization undergoes a transition from perpendicular to in-plane for the half or lower coverages. This magnetization reorientation is mainly ascribed to the site-dependent Fe d–O p hybridization, as a consequence of the formation of FeTiO2 layer at the surface.

  9. αII Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Ho, Tammy Szu-Yu; Oses-Prieto, Juan; Burlingame, Alma L; Lalonde, Joshua; Noebels, Jeffrey L; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse β subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and βIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1 f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all β spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system. SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with βIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology. Copyright © 2017 the authors 0270-6474/17/3711311-12$15.00/0.

  10. Control of three dimensional particle flux to divertor using rotating RMP in the EAST tokamak

    Science.gov (United States)

    Jia, M.; Sun, Y.; Liang, Y.; Wang, L.; Xu, J.; Gu, S.; Lyu, B.; Wang, H. H.; Yang, X.; Zhong, F.; Chu, N.; Feng, W.; He, K.; Liu, Y. Q.; Qian, J.; Shi, T.; Shen, B.

    2018-04-01

    Controlling the steady state particle and heat flux impinging on the plasma facing components, as one of the main concerns of future fusion reactors, is still necessary when the transient power loads induced by edge localized modes (ELMs) have been eliminated by resonant magnetic perturbations (RMPs) in high confinement tokamak experiments. This is especially true for long pulse operation. One promising solution is to use the rotating perturbed field. Recently rotating and differential phase scans of n  =  1 and 2 RMP fields have been operated for the first time in EAST discharges. The particle flux patterns on the divertor targets change synchronously with both rotating and phasing RMP fields as predicted by the modeled magnetic footprint patterns. The modeling with plasma response, which is calculated by MARS-F, is also carried out. The plasma response shows amplifying or screening effect to n  =  2 perturbations with different spectra. This changes the field line penetration depth rather than the general footprint shape. This has been verified by experimental observations on EAST. These experiments motivate further study of reducing both transient and steady state local power load and particle flux with the help of rotating RMPs in long pulse operation.

  11. Controlled molecular self-assembly of complex three-dimensional structures in soft materials.

    Science.gov (United States)

    Huang, Changjin; Quinn, David; Suresh, Subra; Hsia, K Jimmy

    2018-01-02

    Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. Copyright © 2017 the Author(s). Published by PNAS.

  12. Controlling the dimensionality of charge transport in organic thin-film transistors

    Science.gov (United States)

    Laiho, Ari; Herlogsson, Lars; Forchheimer, Robert; Crispin, Xavier; Berggren, Magnus

    2011-01-01

    Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch slowly. An attractive approach would be to combine the benefits of the field-effect and the electrochemical transistors into one transistor that would both switch fast and carry high current densities. Here we report the development of a polyelectrolyte-gated OTFT based on conjugated polyelectrolytes, and we demonstrate that the OTFTs can be controllably operated either in the field-effect or the electrochemical regime. Moreover, we show that the extent of electrochemical doping can be restricted to a few monolayers of the conjugated polyelectrolyte film, which allows both high current densities and fast switching speeds at the same time. We propose an operation mechanism based on self-doping of the conjugated polyelectrolyte backbone by its ionic side groups. PMID:21876143

  13. A novel approach to fabrication of three-dimensional porous titanium with controllable structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Li, Qiuyan; Xu, Mingqin; Jiang, Guofeng; Zhang, Yunxia [Shanghai Key Laboratory of Materials Laser Processing and Modification, and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); He, Guo, E-mail: ghe@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2017-02-01

    A new approach to fabrication of porous titanium by using the molybdenum wire as space holder was developed, in which titanium liquid was cast into the entangled molybdenum wires in a vacuum environment, and followed by etching off the space holder material in an aqua regia solution. This infiltration casting and acid corrosion method fabricated the porous titanium with different porosities with a pore diameter of 0.4 mm. The porous titanium with the porosity of 32–47% exhibited the Young's modulus in the range of 23–62 GPa and the yielding strength in the range of 76–192 MPa. The adhesion and spreadability of the bovine osteoblast cells on the porous titanium were also evaluated in vitro. The porous titanium with 47% porosity has great potential for implant applications. - Highlights: • A new approach to fabrication of porous titanium was developed. • The 3D morphology of the interconnected porous structure can be exactly controlled. • The as-prepared porous titanium exhibits adequate yielding strength. • The elastic modulus of the porous titanium matches well with that of cortical bone. • The as-prepared porous titanium has great potential for implant applications.

  14. Cognitive functions and stereopsis in patients with Parkinson's disease and Alzheimer's disease using 3-dimensional television: a case controlled trial.

    Directory of Open Access Journals (Sweden)

    Chan-Nyoung Lee

    Full Text Available Stereopsis or depth perception is an awareness of the distances of objects from the observer, and binocular disparity is a necessary component of recognizing objects through stereopsis. In the past studies, patients with neurodegenerative disease (Alzheimer dementia, AD; Parkinson's disease IPD have problems of stereopsis but they did not have actual stimulation of stereopsis. Therefore in this study, we used a 3-dimensional (3D movie on 3D television (TV for actual stereopsis stimulation. We propose research through analyzing differences between the three groups (AD, IPD, and Controls, and identified relations between the results from the Titmus Stereo Fly Test, and the 3D TV test. The study also looked into factors that affect the 3D TV test. Before allowing the patients to watch TV, we examined Titmus stereo Fly Test and cognitive test. We used the 3D version of a movie, of 17 minutes 1 second duration, and carried out a questionnaire about stereopsis. The scores of the stereopsis questionnaire were decreased in AD patients, compared with in IPD and controls, although they did not have any difference of Titmus Stereo Fly Test scores. In IPD patients, cognitive function (Montreal cognitive assessment, MoCA scores were correlated with the scores of the stereopsis questionnaire. We could conclude that Titmus fly test could not distinguish between the three groups and cognitive dysfunction contributes to actual stereopsis perception in IPD patients. Therefore the 3D TV test of AD and IPD patients was more effective than Titmus fly test.

  15. Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Liang; Wang, Meijing; Jia, Xiangmeng; Chen, Wei; Qian, Hujun; He, Feng

    2018-02-28

    Two-dimensional (2-D) micro- and nano- architectures are attractive because of their unique properties caused by their ultrathin and flat morphologies. However, the formation of 2-D supramolecular highly symmetrical structures with considerable control is still a major challenge. Here, we presented a simple approach for the preparation of regular and homogeneous 2-D fluorescent square noncrystallization micelles with conjugated diblock copolymers PPV12-b-P2VPn through a process of dissolving-cooling-aging. The scale of the formed micelles could be controlled by the ratio of PPV/P2VP blocks and the concentration of the solution. The forming process of the platelet square micelles was analyzed by UV-Vis, DLS and SLS, while the molecular arrangement was characterized by GIXD. The results revealed that the micelles of PPV12-b-P2VPn initially form 1-D structures and then grow into 2-D structures in solution, and the growth is driven by intermolecular π-π interactions with the PPV12 blocks. The formation of 2-D square micelles is induced by herringbone arrangement of the molecules, which is closely related to the presence of the branched alkyl chains attached to conjugated PPV12 cores.

  16. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    Science.gov (United States)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  17. Optogenetic control of organelle transport and positioning

    NARCIS (Netherlands)

    van Bergeijk, Petra; Adrian, Max; Hoogenraad, Casper C; Kapitein, Lukas C

    2015-01-01

    Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle

  18. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages

    Science.gov (United States)

    Cui, Yizhi; Zhou, Yanlong; Yin, Xingfeng; Guo, Jiahui; Zhang, Gong; Wang, Tong; He, Qing-Yu

    2016-01-01

    The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit. PMID:27602764

  19. Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle.

    Science.gov (United States)

    Vats, Purva; Rothfield, Lawrence

    2007-11-06

    The bacterial actin homolog MreB exists as a single-copy helical cytoskeletal structure that extends between the two poles of rod-shaped bacteria. In this study, we show that equipartition of the MreB cytoskeleton into daughter cells is accomplished by division and segregation of the helical MreB array into two equivalent structures located in opposite halves of the predivisional cell. This process ensures that each daughter cell inherits one copy of the MreB cytoskeleton. The process is triggered by the membrane association of the FtsZ cell division protein. The cytoskeletal division and segregation events occur before and independently of cytokinesis and involve specialized MreB structures that appear to be intermediates in this process.

  20. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.

    Science.gov (United States)

    Lenne, Pierre-François; Wawrezinieck, Laure; Conchonaud, Fabien; Wurtz, Olivier; Boned, Annie; Guo, Xiao-Jun; Rigneault, Hervé; He, Hai-Tao; Marguet, Didier

    2006-07-26

    It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.

  1. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  2. Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages.

    Science.gov (United States)

    Chen, Zhipeng; Yang, Lijuan; Cui, Yizhi; Zhou, Yanlong; Yin, Xingfeng; Guo, Jiahui; Zhang, Gong; Wang, Tong; He, Qing-Yu

    2016-10-11

    The exosome is a key initiator of pre-metastatic niche in numerous cancers, where macrophages serve as primary inducers of tumor microenvironment. However, the proteome that can be exosomally transported from cancer cells to macrophages has not been sufficiently characterized so far. Here, we used colorectal cancer (CRC) exosomes to educate tumor-favorable macrophages. With a SILAC-based mass spectrometry strategy, we successfully traced the proteome transported from CRC exosomes to macrophages. Such a proteome primarily focused on promoting cytoskeleton rearrangement, which was biologically validated with multiple cell lines. We reproduced the exosomal transportation of functional vimentin as a proof-of-concept example. In addition, we found that some CRC exosomes could be recognized by macrophages via Fc receptors. Therefore, we revealed the active and necessary role of exosomes secreted from CRC cells to transform cancer-favorable macrophages, with the cytoskeleton-centric proteins serving as the top functional unit.

  3. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    Science.gov (United States)

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  4. Exploring the Possible Role of Lysine Acetylation on Entamoeba histolytica Virulence: A Focus on the Dynamics of the Actin Cytoskeleton

    Directory of Open Access Journals (Sweden)

    L. López-Contreras

    2013-01-01

    Full Text Available Cytoskeleton remodeling can be regulated, among other mechanisms, by lysine acetylation. The role of acetylation on cytoskeletal and other proteins of Entamoeba histolytica has been poorly studied. Dynamic rearrangements of the actin cytoskeleton are crucial for amebic motility and capping formation, processes that may be effective means of evading the host immune response. Here we report the possible effect of acetylation on the actin cytoskeleton dynamics and in vivo virulence of E. histolytica. Using western blot, immunoprecipitation, microscopy assays, and in silico analysis, we show results that strongly suggest that the increase in Aspirin-induced cytoplasm proteins acetylation reduced cell movement and capping formation, likely as a consequence of alterations in the structuration of the actin cytoskeleton. Additionally, intrahepatic inoculation of Aspirin-treated trophozoites in hamsters resulted in severe impairment of the amebic virulence. Taken together, these results suggest an important role for lysine acetylation in amebic invasiveness and virulence.

  5. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation.

    Science.gov (United States)

    Reis, Karina Pires; Heimfarth, Luana; Pierozan, Paula; Ferreira, Fernanda; Loureiro, Samanta Oliveira; Fernandes, Carolina Gonçalves; Carvalho, Rônan Vivian; Pessoa-Pureur, Regina

    2015-11-01

    Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Characterization of mRNA-cytoskeleton interactions in situ using FMTRIP and proximity ligation.

    Directory of Open Access Journals (Sweden)

    Jeenah Jung

    Full Text Available Many studies have demonstrated an association between the cytoskeleton and mRNA, as well as the asymmetric distribution of mRNA granules within the cell in response to various signaling events. It is likely that the extensive cytoskeletal network directs mRNA transport and localization, with different cytoskeletal elements having their own specific roles. In order to understand the spatiotemporal changes in the interactions between the mRNA and the cytoskeleton as a response to a stimulus, a technique that can visualize and quantify these changes across a population of cells while capturing cell-to-cell variations is required. Here, we demonstrate a method for imaging and quantifying mRNA-cytoskeleton interactions on a per cell basis with single-interaction sensitivity. Using a proximity ligation assay with flag-tagged multiply-labeled tetravalent RNA imaging probes (FMTRIP, we quantified interactions between mRNAs and β-tubulin, vimentin, or filamentous actin (F-actin for two different mRNAs, poly(A + and β-actin mRNA, in two different cell types, A549 cells and human dermal fibroblasts (HDF. We found that the mRNAs interacted predominantly with F-actin (>50% in HDF, >20% in A549 cells, compared to β-tubulin (<5% and vimentin (11-13%. This likely reflects differences in mRNA management by the two cell types. We then quantified changes in these interactions in response to two perturbations, F-actin depolymerization and arsenite-induced oxidative stress, both of which alter either the cytoskeleton itself and mRNA localization. Both perturbations led to a decrease in poly(A + mRNA interactions with F-actin and an increase in the interactions with microtubules, in a time dependent manner.

  7. Hepatocyte cytoskeleton during ischemia and reperfusion influence of ANP-mediated p38 MAPK activation

    Institute of Scientific and Technical Information of China (English)

    Melanie Keller; Alexander L Gerbes; Stefanie Kulhanek-Heinze; Tobias Gerwig; Uwe Grützner; Nico van Rooijen; Angelika M Vollmar; Alexandra K Kiemer

    2005-01-01

    AIM: To determine functional consequences of this activation, whereby we focused on a potential regulation of the hepatocyte cytoskeleton during ischemia and reperfusion.METHODS: For in vivo experiments, animals received ANP (5 μg/kg) intravenously. In a different experimental setting, isolated rat livers were perfused with KH-buffer ±ANP (200 nmol/L)±SB203580 (2 μmol/L). Liverswere then kept under ischemic conditions for 24 h, and either transplanted or reperfused. Actin, Hsp27, and phosphorylated Hsp27 were determined by Western blotting, p38 MAPK activity by in vitro phosphorylation assay. F-actin distribution was determined by confocal microscopy.RESULTS: We first confirmed that ANP preconditioning leads to an activation of p38 MAPK and observedalterations of the cytoskeleton in hepatocytes of ANPpreconditioned organs. ANP induced an increase of hepatic F-actin after ischemia, which could be prevented by the p38 MAPK inhibitor SB203580 but had no effect on bile flow. After ischemia untreated livers showed a translocation of Hsp27 towards the cytoskeleton and an increase in total Hsp27, whereas ANP preconditioning prohibited translocation but caused an augmentation of Hsp27 phosphorylation. This effect is also mediated via p38 MAPK, since it was abrogated by the p38 MAPK inhibitor SB203580.CONCLUSION: This study reveals that ANP-mediated p38 MAPK activation leads to changes in hepatocyte cytoskeleton involving an elevation of phosphorylated Hsp27 and thereby for the first time shows functional consequences of ANP-induced hepatic p38 MAPK activation.

  8.  Oxidative stress modulates the organization of erythrocyte membrane cytoskeleton

    Directory of Open Access Journals (Sweden)

    Maria Olszewska

    2012-07-01

    Full Text Available  Background:Apart from their main role in transporting oxygen and carbon dioxide, erythrocytes play also an important role in organism antioxidative defence. Direct exposure to reactive oxygen species (ROS results in shortening of their half-life, even by 50�20The presence of glucose, being the substrate in pentose phosphate pathway (PPP cycle, is one of the factors that can have influence on the level of oxidative stress. The activity of PPP increases during oxidative stress. Glucose guarantees normal PPP functioning with the production of reductive equivalents in the amounts necessary to reproduction of glutathione – nonenzymatic free radical scavenger. In available literature there are no reports regarding the changes in protein contents of erythrocyte cytoskeleton exposed to t-butyl hydroperoxide in relation to glucose presence in incubation medium.Material/methods:Erythrocytes taken from 10 healthy subjects were used to assess the influence of generated free radicals on erythrocyte proteins and chosen parameters of oxidative stress. Erythrocytes were incubated in the solutions containing deferent concentrations of t-butyl hydroperoxide and glucose. Electrophoresis was performed on polyacrylamide gel in denaturating conditions. The contents of tryptophan in membranes was evaluated spectrofluorometrically.Results/conclusions:In vitro conditions oxidative stress leads to protein damage in erythrocyte cytoskeleton, both in proteins inside the cell as well as having contact with extracellular environment. In consequence, the amount of low-molecular proteins – mainly globin, which bind to cytoskeleton, increases. This process takes place independently of glucose presence in incubation medium. One of the element of protein cytoskeleton, tryptophan, also undergoes degradation. The decrease of its contents is higher during erythrocyte exposure to t-BOOH in environment containing glucose, what can suggest prooxidative influence of glucose in

  9. Characterization of mRNA-Cytoskeleton Interactions In Situ Using FMTRIP and Proximity Ligation

    Science.gov (United States)

    Jung, Jeenah; Lifland, Aaron W.; Alonas, Eric J.; Zurla, Chiara; Santangelo, Philip J.

    2013-01-01

    Many studies have demonstrated an association between the cytoskeleton and mRNA, as well as the asymmetric distribution of mRNA granules within the cell in response to various signaling events. It is likely that the extensive cytoskeletal network directs mRNA transport and localization, with different cytoskeletal elements having their own specific roles. In order to understand the spatiotemporal changes in the interactions between the mRNA and the cytoskeleton as a response to a stimulus, a technique that can visualize and quantify these changes across a population of cells while capturing cell-to-cell variations is required. Here, we demonstrate a method for imaging and quantifying mRNA-cytoskeleton interactions on a per cell basis with single-interaction sensitivity. Using a proximity ligation assay with flag-tagged multiply-labeled tetravalent RNA imaging probes (FMTRIP), we quantified interactions between mRNAs and β-tubulin, vimentin, or filamentous actin (F-actin) for two different mRNAs, poly(A) + and β-actin mRNA, in two different cell types, A549 cells and human dermal fibroblasts (HDF). We found that the mRNAs interacted predominantly with F-actin (>50% in HDF, >20% in A549 cells), compared to β-tubulin (cytoskeleton itself and mRNA localization. Both perturbations led to a decrease in poly(A) + mRNA interactions with F-actin and an increase in the interactions with microtubules, in a time dependent manner. PMID:24040294

  10. CecropinXJ, a silkworm antimicrobial peptide, induces cytoskeleton disruption in esophageal carcinoma cells.

    Science.gov (United States)

    Xia, Lijie; Wu, Yanling; Kang, Su; Ma, Ji; Yang, Jianhua; Zhang, Fuchun

    2014-10-01

    Antimicrobial peptides exist in the non-specific immune system of organism and participate in the innate host defense of each species. CecropinXJ, a cationic antimicrobial peptide, possesses potent anticancer activity and acts preferentially on cancer cells instead of normal cells, but the mechanism of cancer cell death induced by cecropinXJ remains largely unknown. This study was performed to investigate the cytoskeleton-disrupting effects of cecropinXJ on human esophageal carcinoma cell line Eca109 using scanning electron microscopy observation, fluorescence imaging, cell migration and invasion assays, western blotting, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. The electronic microscope and fluorescence imaging observation suggested that cecropinXJ could result in morphological changes and induce damage to microtubules and actin of Eca109 cells in a dose-dependent manner. The cell migration and invasion assays demonstrated that cecropinXJ could inhibit migration and invasion of tumor cells. Western blot and qRT-PCR analysis showed that there was obvious correlation between microtubule depolymerization and actin polymerization induced by cecropinXJ. Moreover, cecropinXJ might also cause decreased expression of α-actin, β-actin, γ-actin, α-tubulin, and β-tubulin genes in concentration- and time-dependent manners. In summary, this study indicates that cecropinXJ triggers cytotoxicity in Eca109 cells through inducing the cytoskeleton destruction and regulating the expression of cytoskeleton proteins. This cecropinXJ-mediated cytoskeleton-destruction effect is instrumental in our understanding of the detailed action of antimicrobial peptides in human cancer cells and cecropinXJ might be a potential therapeutic agent for the treatment of cancer in the future. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology

  11. Comparison of the cell cytoskeleton in migratory and stationary chick fibroblasts

    DEFF Research Database (Denmark)

    Badley, R A; Couchman, J R; Rees, D A

    1980-01-01

    The organization of the principal cytoskeletal components (actin, tubulin and 10 nm filament protein) have been compared by immunofluorescence microscopy in two populations of chick heart fibroblasts, previously shown to be adapted respectively for rapid, directed migration or adhesion and growth...... bundles. The variety of patients observed in the migratory cells are documented and the possible roles of the different components of the cytoskeleton in cell locomotion are discussed....

  12. Absolute stability results for well-posed infinite-dimensional systems with applications to low-gain integral control

    NARCIS (Netherlands)

    Logemann, H; Curtain, RF

    2000-01-01

    We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator

  13. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  14. Morphological control of three-dimensional carbon nanotube anode for high-capacity lithium-ion battery

    Science.gov (United States)

    Kang, Chiwon; Lee, Hoo-Jeong

    2018-05-01

    In this paper, we report the results of modulating the processing conditions (mainly, temperature) of a two-step method consisting of sputtering deposition of a Ni catalytic layer and chemical vapor deposition (CVD) of carbon nanotubes (CNTs) on a three-dimensional (3D)-structured Cu mesh to control the morphology of CNTs for advanced Li-ion battery (LIB) applications. We disclosed that CNT growth at a low temperature (700 °C) produced small-diameter CNTs (CNT_S) with an average diameter of ∼20 nm, while that at a high temperature (750 °C) produced large-diameter CNTs (CNT_L) with an average diameter of 200–300 nm. The high-resolution transmission electron microscopy (HR-TEM) and Raman analyses manifested poorly crystalline CNTs for both samples. CNTS showed a specific capacity of 476 mAh g‑1, which is ∼176% superior to that of CNTL (271 mAh g‑1) and ∼128% higher than the theoretical capacity of the state-of-the-art graphites and recently reported nanostructured carbon-based anode materials.

  15. Dual effect of pseudorabies virus growth factor (PRGF) displayed on actin cytoskeleton.

    Science.gov (United States)

    Urbancíková, M; Vozárová, G; Lesko, J; Golais, F

    1999-10-01

    Pseudorabies virus growth factor (PRGF) was shown to possess transforming activity as well as transformation repressing activity in in vitro systems. In order to better understand these phenomena we studied actin cytoskeleton and its alterations induced by PRGF using normal human fibroblasts VH-10 and transformed cell line HeLa. For specific detection of filamentous actin cells were stained with phalloidin conjugated with fluorescein isothiocyanate (FITC)-phalloidin. PRGF was applied to VH-10 cells for various length of time from 10 min up to 48 h. The effect was very fast and changes in actin filament composition could be detected already after 10 min. In comparison to untreated cells the staining of treated cells was more diffuse and a number of actin microfilaments in individual stress fibers became reduced. After 30 min thick short actin bundles appeared in the perinuclear region. A 24-h exposure resulted in a large reduction of actin bundles. After additional 24 h a partial restoration of actin cytoskeleton in cells was observed. In transformed HeLa cells PRGF induced opposite process than in normal cells: the number of filamentous actin structures increased. We hypothesise that PRGF may act as a transcription-like factor and may initiate changes in gene expression which consequently result in actin cytoskeleton alterations.

  16. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    Science.gov (United States)

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.

  17. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue

    International Nuclear Information System (INIS)

    Pradhan, D.; Schlegel, R.A.; Williamson, P.

    1991-01-01

    Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[ 14 C] ethanolamine ([ 14 C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [ 14 C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes

  18. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    International Nuclear Information System (INIS)

    Kraning-Rush, Casey M; Carey, Shawn P; Califano, Joseph P; Smith, Brooke N; Reinhart-King, Cynthia A

    2011-01-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments

  19. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging

    Science.gov (United States)

    Corydon, Thomas J.; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela

    2016-01-01

    Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization. PMID:26818711

  20. Association of nerve growth factor receptors with the triton X-100 cytoskeleton of PC12 cells

    International Nuclear Information System (INIS)

    Vale, R.D.; Ignatius, M.J.; Shooter, E.M.

    1985-01-01

    Triton X-100 solubilizes membranes of PC12 cells and leaves behind a nucleus and an array of cytoskeletal filaments. Nerve growth factor (NGF) receptors are associated with this Triton X-100-insoluble residue. Two classes of NGF receptors are found on PC12 cells which display rapid and slow dissociating kinetics. Although rapidly dissociating binding is predominant (greater than 75%) in intact cells, the majority of binding to the Triton X-100 cytoskeleton is slowly dissociating (greater than 75%). Rapidly dissociating NGF binding on intact cells can be converted to a slowly dissociating form by the plant lectin wheat germ agglutinin (WGA). This lectin also increases the number of receptors which associate with the Triton X-100 cytoskeleton by more than 10-fold. 125 I-NGF bound to receptors can be visualized by light microscopy autoradiography in Triton X-100-insoluble residues of cell bodies, as well as growth cones and neurites. The WGA-induced association with the cytoskeleton, however, is not specific for the NGF receptor. Concentrations of WGA which change the Triton X-100 solubility of membrane glycoproteins are similar to those required to alter the kinetic state of the NGF receptor. Both events may be related to the crossbridging of cell surface proteins induced by this multivalent lectin

  1. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Johnson-Lyles, Denise N.; Peifley, Kimberly; Lockett, Stephen; Neun, Barry W.; Hansen, Matthew; Clogston, Jeffrey; Stern, Stephan T.; McNeil, Scott E.

    2010-01-01

    Water soluble fullerenes, such as the hydroxylated fullerene, fullerenol (C 60 OH x ), are currently under development for diagnostic and therapeutic biomedical applications in the field of nanotechnology. These molecules have been shown to undergo urinary clearance, yet there is limited data available on their renal biocompatibility. Here we examine the biological responses of renal proximal tubule cells (LLC-PK1) exposed to fullerenol. Fullerenol was found to be cytotoxic in the millimolar range, with viability assessed by the sulforhodamine B and trypan blue assays. Fullerenol-induced cell death was associated with cytoskeleton disruption and autophagic vacuole accumulation. Interaction with the autophagy pathway was evaluated in vitro by Lysotracker Red dye uptake, LC3-II marker expression and TEM. Fullerenol treatment also resulted in coincident loss of cellular mitochondrial membrane potential and ATP depletion, as measured by the Mitotracker Red dye and the luciferin-luciferase assays, respectively. Fullerenol-induced ATP depletion and loss of mitochondrial potential were partially ameliorated by co-treatment with the autophagy inhibitor, 3-methyladenine. In vitro fullerenol treatment did not result in appreciable oxidative stress, as measured by lipid peroxide and glutathione content. Based on these data, it is hypothesized that cytoskeleton disruption may be an initiating event in fullerenol cytotoxicity, leading to subsequent autophagy dysfunction and loss of mitochondrial capacity. As nanoparticle-induced cytoskeleton disruption, autophagic vacuole accumulation and mitochondrial dysfunction are commonly reported in the literature, the proposed mechanism may be relevant for a variety of nanomaterials.

  2. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  3. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    Science.gov (United States)

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  4. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.

    Science.gov (United States)

    Di Venosa, Gabriela; Perotti, Christian; Batlle, Alcira; Casas, Adriana

    2015-08-01

    It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.

  5. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    Science.gov (United States)

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  6. Marine toxins and the cytoskeleton: a new view of palytoxin toxicity.

    Science.gov (United States)

    Louzao, M Carmen; Ares, Isabel R; Cagide, Eva

    2008-12-01

    Palytoxin is a marine toxin first isolated from zoanthids (genus Palythoa), even though dinoflagellates of the genus Ostreopsis are the most probable origin of the toxin. Ostreopsis has a wide distribution in tropical and subtropical areas, but recently these dinoflagellates have also started to appear in the Mediterranean Sea. Two of the most remarkable properties of palytoxin are the large and complex structure (with different analogs, such as ostreocin-D or ovatoxin-a) and the extreme acute animal toxicity. The Na(+)/K(+)-ATPase has been proposed as receptor for palytoxin. The marine toxin is known to act on the Na(+) pump and elicit an increase in Na(+) permeability, which leads to depolarization and a secondary Ca(2+) influx, interfering with some functions of cells. Studies on the cellular cytoskeleton have revealed that the signaling cascade triggered by palytoxin leads to actin filament system distortion. The activity of palytoxin on the actin cytoskeleton is only partially associated with the cytosolic Ca(2+) changes; therefore, this ion represents an important factor in altering this structure, but it is not the only cause. The goal of the present minireview is to compile the findings reported to date about: (a) how palytoxin and analogs are able to modify the actin cytoskeleton within different cellular models; and (b) what signaling mechanisms could be involved in the modulation of cytoskeletal dynamics by palytoxin.

  7. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics. © 2015 Wiley Periodicals, Inc.

  8. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles.

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-06

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity-diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand-receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand-receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Coupled elasticity–diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles

    Science.gov (United States)

    Wang, Jizeng; Li, Long

    2015-01-01

    Molecular dynamic simulations and experiments have recently demonstrated how cylindrical nanoparticles (CNPs) with large aspect ratios penetrate animal cells and inevitably deform cytoskeletons. Thus, a coupled elasticity–diffusion model was adopted to elucidate this interesting biological phenomenon by considering the effects of elastic deformations of cytoskeleton and membrane, ligand–receptor binding and receptor diffusion. The mechanism by which the binding energy drives the CNPs with different orientations to enter host cells was explored. This mechanism involved overcoming the resistance caused by cytoskeleton and membrane deformations and the change in configurational entropy of the ligand–receptor bonds and free receptors. Results showed that deformation of the cytoskeleton significantly influenced the engulfing process by effectively slowing down and even hindering the entry of the CNPs. Additionally, the engulfing depth was determined quantitatively. CNPs preferred or tended to vertically attack target cells until they were stuck in the cytoskeleton as implied by the speed of vertically oriented CNPs that showed much faster initial engulfing speeds than horizontally oriented CNPs. These results elucidated the most recent molecular dynamics simulations and experimental observations on the cellular uptake of carbon nanotubes and phagocytosis of filamentous Escherichia coli bacteria. The most efficient engulfment showed the stiffness-dependent optimal radius of the CNPs. Cytoskeleton stiffness exhibited more significant influence on the optimal sizes of the vertical uptake than the horizontal uptake. PMID:25411410

  10. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  11. The expression of cytoskeleton regulatory protein Mena in colorectal lesions.

    Science.gov (United States)

    Gurzu, Simona; Jung, I; Prantner, I; Ember, I; Pávai, Z; Mezei, T

    2008-01-01

    The actin regulatory proteins Ena/VASP (Enabled/Vasodilator stimulated phosphoprotein) family is involved in the control of cell motility and adhesion. They are important in the actin-dependent processes where dynamic actin reorganization it is necessary. The deregulation of actin cycle could have an important role in the cells' malignant transformation, tumor invasion or metastasis. Recently studies revealed that the human orthologue of murine Mena is modulated during the breast carcinogenesis. In our study, we tried to observe the immunohistochemical expression of mammalian Ena (Mena) in the colorectal polyps and carcinomas. We analyzed 10 adenomatous polyps (five with dysplasia) and 36 adenocarcinomas. We used the indirect immunoperoxidase staining. BD Biosciences have provided the Mena antibody. We observed that Mena was not expressed in the normal colorectal mucosa neither in polyps without dysplasia, but its expression was very high in polyps with high dysplasia. In colorectal carcinomas, Mena marked the tumoral cells in 80% of cases. In 25% of positive cases, the intensity was 3+, in 60% 2+ and in the other 15% 1+. The Mena intensity was higher in the microsatellite stable tumors (MSS) and was correlated with vascular invasion, with intensity of angiogenesis marked with CD31 and CD105 and with c-erbB-2 and p53 expression. This is the first study in the literature about Mena expression in colorectal lesions.

  12. Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula x P. tremuloides) as a model species

    Energy Technology Data Exchange (ETDEWEB)

    Chaffey, N.; Barlow, P. [Bristol Univ., Dept. of Agricultural Sciences, Long Ashton, (United Kingdom); Sundberg, B. [Swedish Univ. of Agricultural Sciences, Dept. of Forest Genetics and Plant Physiology, Umea (Sweden)

    2002-03-01

    The involvement of microfilaments (MFs) and microtubules (MTs) in the development of the radial and axial components of secondary wood in hybrid aspen (Populus tremula X P. tremuloides) was studied by indirect immunofluorescent localization techniques in order to elucidate a consensus view of the roles of the cytoskeleton during wood formation in angiosperm trees. Early and late vessel elements, axial parenchyma, normal-wood fibres and contact and isolation cells were included in addition to cambial cells. Microfilaments were found to be rare in cambial cells, but were abundant and axially arranged in their derivatives once cell elongation begun. Microtubules were randomly oriented in ray and fusiform cells of the cambial zone. Ellipses of microfilaments were associated with pit development in fiber cells and isolation ray cells. Rings of localized microtubules and microfilaments were associated with developing inter-vessel bordered pits and vessel-contact ray cell contact pits. Although only microtubules were seen in the periphery of the perforation plate of vessel elements, a prominent meshwork of microfilaments overlaid the perforation plate itself. These observations indicate that there are corresponding subcellular control points whose manipulation could lead to the development of 'designer wood'. However, such development would require a better understanding of the physiological basis for the behaviour of microtubule and microfibre cytoskeletons during wood formation. 44 refs., 6 figs.

  13. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  14. Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms.

    Science.gov (United States)

    Taranejoo, Shahrouz; Janmaleki, Mohsen; Pachenari, Mohammad; Seyedpour, Seyed Morteza; Chandrasekaran, Ramya; Cheng, Wenlong; Hourigan, Kerry

    2016-11-20

    A recent approach to colon cancer therapy is to employ selective drugs with specific extra/intracellular sites of action. Alteration of cytoskeletal protein reorganization and, subsequently, to cellular biomechanical behaviour during cancer progression highly affects the cancer cell progress. Hence, cytoskeleton targeted drugs are an important class of cancer therapy agents. We have studied viscoelastic alteration of the human colon adenocarcinoma cell line, SW48, after treatment with a drug delivery system comprising chitosan as the carrier and albendazole as the microtubule-targeting agent (MTA). For the first time, we have evaluated the biomechanical characteristics of the cell line, using the micropipette aspiration (MA) method after treatment with drug delivery systems. Surprisingly, employing a chitosan-albendazole pair, in comparison with both neat materials, resulted in more significant change in the viscoelastic parameters of cells, including the elastic constants (K 1 and K 2 ) and the coefficient of viscosity (μ). This difference was more pronounced for cancer cells after 48h of the treatment. Microtubule and actin microfilament (F-actin) contents in the cell line were studied by immunofluorescent staining. Good agreement was observed between the mechanical characteristics results and microtubule/F-actin contents of the treated SW48 cell line, which declined after treatment. The results showed that chitosan affected F-actin more, while MTA was more effective for microtubules. Toxicity studies were performed against two cancer cell lines (SW48 and MCF10CA1h) and compared to normal cells, MCF10A. The results showed cancer selectiveness, safety of formulation, and enhanced anticancer efficacy of the CS/ABZ conjugate. This study suggests that employing such a suitable pair of drug-carriers with dissimilar sites of action, thus allying the different cell cytoskeleton disrupting mechanisms, may provide a more efficient cancer therapy approach. Copyright

  15. Multiparty-controlled Joint Remote Preparation of an Arbitrary m-qudit State with d-dimensional Greenberger-Horne-Zeilinger States

    Science.gov (United States)

    Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping

    2018-01-01

    We present a scheme for multiparty-controlled joint remote preparation of an arbitrary m-qudit state by using d-dimensional Greenberger-Horne-Zeilinger (GHZ) states as the quantum channel. An arbitrary m-qudit state can be transmitted from two senders to a remote receiver in a quantum communication network under the controller's control. The senders perform m-qudit measurements according to their information of prepared state, the controllers only need perform single-particle projective measurements. The receiver can prepare the original state on his quantum system by performing corresponding unitary operation according the measurement results of the senders and controllers. It is shown that an arbitrary m-qudit state in general form can be controlled joint remote prepared if and only if the receiver cooperates with all the senders and controllers.

  16. Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum and fertile Allium ampeloprasum L.

    Science.gov (United States)

    Tchórzewska, Dorota; Deryło, Kamil; Błaszczyk, Lidia; Winiarczyk, Krystyna

    2015-12-01

    Microsporogenesis in garlic. The male-sterile Allium sativum (garlic) reproduces exclusively in the vegetative mode, and anthropogenic factors seem to be the cause of the loss of sexual reproduction capability. There are many different hypotheses concerning the causes of male sterility in A.sativum; however, the mechanisms underlying this phenomenon have not been comprehensively elucidated.Numerous attempts have been undertaken to understand the causes of male sterility, but the tubulin cytoskeleton in meiotically dividing cells during microsporogenesis has never been investigated in this species. Using sterile A.sativum genotype L13 and its fertile close relative A. ampeloprasum (leek), we have analysed the distribution of the tubulin cytoskeleton during microsporogenesis. We observed that during karyokinesis and cytokinesis, in both meiotic divisions I and II, the microtubular cytoskeleton in garlic L13 formed configurations that resembled tubulin arrangement typical of monocots. However, the tubulin cytoskeleton in garlic was distinctly poorer (composed of a few MT filaments) compared with that found in meiotically dividing cells in A. ampeloprasum. These differences did not affect the course of karyogenesis, chondriokinesis, and cytokinesis, which contributed to completion of microsporogenesis, but there was no further development of the male gametophyte. At the very beginning of the successive stage of development of fertile pollen grains, i.e. gametogenesis, there were disorders involving the absence of a normal cortical cytoskeleton and dramatically progressive degeneration of the cytoplasm in garlic. Therefore,we suggest that, due to disturbances in cortical cytoskeleton formation at the very beginning of gametogenesis, the intracellular transport governed by the cytoskeleton might be perturbed, leading to microspore decay in the male-sterile garlic genotype.

  17. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.

    Science.gov (United States)

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A

    2014-07-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  18. Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-beta4.

    Science.gov (United States)

    Golla, R; Philp, N; Safer, D; Chintapalli, J; Hoffman, R; Collins, L; Nachmias, V T

    1997-01-01

    In several cell types, short-term increases in the concentration of the G-actin-sequestering peptide thymosin-beta4 (Tbeta4) cause the disassembly of F-actin bundles. To determine the extent of cell adaptability to these reductions in F-actin, we overexpressed Tbeta4 in NIH 3T3 cells. In cell lines with Tbeta4 levels twice those of vector controls, G-actin increased approximately twofold as expected. However, F-actin did not decrease as in short-term experiments but rather also increased approximately twofold so that the G-F ratio remained constant. Surprisingly, the cytoskeletal proteins myosin IIA, alpha-actinin, and tropomyosin also increased nearly twofold. These increases were specific; DNA, total protein, lactic dehydrogenase, profilin, and actin depolymerizing factor levels were unchanged in the overexpressing cells. The Tbeta4 lines spread more fully and adhered to the dish more strongly than vector controls; this altered phenotype correlated with a twofold increase in talin and alpha5-integrin and a nearly threefold increase in vinculin. Focal adhesions, detected by indirect immunofluorescence with antivinculin, were increased in size over the controls. Northern blotting showed that mRNAs for both beta-actin and vinculin were increased twofold in the overexpressing lines. We conclude that 1) NIH 3T3 cells adapt to increased levels of G-actin sequestered by increased Tbeta4 by increasing their total actin so that the F-actin/G-actin ratio remains constant; 2) these cells coordinately increase several cytoskeletal and adhesion plaque proteins; and 3) at least for actin and vinculin, this regulation is at the transcriptional level. We therefore propose that the proteins of this multimember interacting complex making up the actin-based cytoskeleton, are coordinately regulated by factors that control the expression of several proteins. The mechanism may bear similarities to the control of synthesis of another multimember interacting complex, the myofibril of

  19. Cyclooxygenase and cAMP-dependent protein kinase reorganize the actin cytoskeleton for motility in HeLa cells.

    Science.gov (United States)

    Glenn, Honor L; Jacobson, Bruce S

    2003-08-01

    The adhesion of a cell to its surrounding matrix is a key determinant in many aspects of cell behavior. Adhesion consists of distinct stages : attachment, cell spreading, motility, and/or immobilization. Interrelated signaling pathways regulate these stages, and many adhesion-related signals control the architecture of the cytoskeleton. The various cytoskeletal organizations then give rise to the specific stages of adhesion. It has been shown that arachidonic acid acts at a signaling branch point during cell attachment. Arachidonic acid is metabolized via lipoxygenase to activate actin polymerization and cell spreading. It is also metabolized by cyclooxygenase to generate small actin bundles. We have used confocal microscopy and indirect immunofluorescence to investigate the structure of these cyclooxygenase dependent actin bundles in HeLa cells. We have also employed cell migration assays and pharmacological modulation of cyclooxygenase and downstream signals. The results indicate that cyclooxygenase and PKA stimulate the formation of actin bundles that contain myosin II and associate with small focal adhesions. In addition, we demonstrate that this cytoskeletal organization correlates with increased cell motility. Copyright 2003 Wiley-Liss, Inc.

  20. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    International Nuclear Information System (INIS)

    Cambier, Linda; Pomies, Pascal

    2011-01-01

    Highlights: → The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. → smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. → The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. → The LIM domain of smALP is essential for the nuclear accumulation of the protein. → smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  1. Controlled Self-Assembly of Low-Dimensional Alq3 Nanostructures from 1D Nanowires to 2D Plates via Intermolecular Interactions

    Science.gov (United States)

    Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Jin, Cuihong; Liu, Xin; Bian, Zhenpan; Li, Jianjun; Wang, Lu; Li, Xiaoyu

    2018-03-01

    Due to the intense influence of the shape and size of the photon building blocks on the limitation and guidance of optical waves, an important strategy is the fabrication of different structures. Herein, organic semiconductor tris-(8-hydroxyquinoline)aluminium (Alq3) nanostructures with controllable morphology, ranging from one-dimensional nanowires to two-dimensional plates, have been prepared through altering intermolecular interactions with employing the anti-solvent diffusion cooperate with solvent-volatilization induced self-assembly method. The morphologies of the formed nanostructures, which are closely related to the stacking modes of the molecules, can be exactly controlled by altering the polarity of anti-solvents that can influence various intermolecular interactions. The synthesis strategy reported here can potentially be extended to other functional organic nanomaterials.

  2. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model.

    Science.gov (United States)

    Lian, Hua-Yu; Jiao, Guang-Zhong; Wang, Hui-Li; Tan, Xiu-Wen; Wang, Tian-Yang; Zheng, Liang-Liang; Kong, Qiao-Qiao; Tan, Jing-He

    2014-09-01

    Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF. © 2014 by the Society for the Study of Reproduction, Inc.

  3. Astrocyte-neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton.

    Science.gov (United States)

    Heimfarth, Luana; da Silva Ferreira, Fernanda; Pierozan, Paula; Mingori, Moara Rodrigues; Moreira, José Cláudio Fonseca; da Rocha, João Batista Teixeira; Pessoa-Pureur, Regina

    2017-03-15

    Diphenylditelluride (PhTe) 2 is a neurotoxin that disrupts cytoskeletal homeostasis. We are showing that different concentrations of (PhTe) 2 caused hypophosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) and altered actin organization in co-cultured astrocytes and neurons from cerebral cortex of rats. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors without participation of either L-type voltage-dependent calcium channels (L-VDCC) or metabotropic glutamate receptors. Upregulated Ca 2+ influx downstream of NMDA receptors activated Ca 2+ -dependent protein phosphatase 2B (PP2B) causing hypophosphorylation of astrocyte and neuron IFs. Immunocytochemistry showed that hypophosphorylated intermediate filaments (IF) failed to disrupt their organization into the cytoskeleton. However, phalloidin-actin-FITC stained cytoskeleton evidenced misregulation of actin distribution, cell spreading and increased stress fibers in astrocytes. βIII tubulin staining showed that neurite meshworks are not altered by (PhTe) 2 , suggesting greater susceptibility of astrocytes than neurons to (PheTe) 2 toxicity. These findings indicate that signals leading to IF hypophosphorylation fail to disrupt the cytoskeletal IF meshwork of interacting astrocytes and neurons in vitro however astrocyte actin network seems more susceptible. Our findings support that intracellular Ca 2+ is one of the crucial signals that modulate the action of (PhTe) 2 in co-cultured astrocytes and neurons and highlights the cytoskeleton as an end-point of the neurotoxicity of this compound. Cytoskeletal misregulation is associated with cell dysfunction, therefore, the understanding of the molecular mechanisms mediating the neurotoxicity of this compound is a matter of increasing interest since tellurium compounds are increasingly released in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response

    Science.gov (United States)

    Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim

    Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root

  5. Nuclear Import of β-Dystroglycan Is Facilitated by Ezrin-Mediated Cytoskeleton Reorganization

    Science.gov (United States)

    Vásquez-Limeta, Alejandra; Wagstaff, Kylie M.; Ortega, Arturo; Crouch, Dorothy H.; Jans, David A.; Cisneros, Bulmaro

    2014-01-01

    The β-dystroglycan (β-DG) protein has the ability to target to multiple sites in eukaryotic cells, being a member of diverse protein assemblies including the transmembranal dystrophin-associated complex, and a nuclear envelope-localised complex that contains emerin and lamins A/C and B1. We noted that the importin α2/β1-recognised nuclear localization signal (NLS) of β-DG is also a binding site for the cytoskeletal-interacting protein ezrin, and set out to determine whether ezrin binding might modulate β-DG nuclear translocation for the first time. Unexpectedly, we found that ezrin enhances rather than inhibits β-DG nuclear translocation in C2C12 myoblasts. Both overexpression of a phosphomimetic activated ezrin variant (Ez-T567D) and activation of endogenous ezrin through stimulation of the Rho pathway resulted in both formation of actin-rich surface protrusions and significantly increased nuclear translocation of β-DG as shown by quantitative microscopy and subcellular fractionation/Western analysis. In contrast, overexpression of a nonphosphorylatable inactive ezrin variant (Ez-T567A) or inhibition of Rho signaling, decreased nuclear translocation of β-DG concomitant with a lack of cell surface protrusions. Further, a role for the actin cytoskeleton in ezrin enhancement of β-DG nuclear translocation was implicated by the observation that an ezrin variant lacking its actin-binding domain failed to enhance nuclear translocation of β-DG, while disruption of the actin cytoskeleton led to a reduction in β-DG nuclear localization. Finally, we show that ezrin-mediated cytoskeletal reorganization enhances nuclear translocation of the cytoplasmic but not the transmembranal fraction of β-DG. This is the first study showing that cytoskeleton reorganization can modulate nuclear translocation of β-DG, with the implication that β-DG can respond to cytoskeleton-driven changes in cell morphology by translocating from the cytoplasm to the nucleus to orchestrate

  6. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery.

    Directory of Open Access Journals (Sweden)

    Hyoung Kyu Kim

    Full Text Available BACKGROUND AND PURPOSE: Beta adrenergic overstimulation may increase the vascular damage and stroke. However, the underlying mechanisms of beta adrenergic overstimulation in cerebrovascular dysfunctions are not well known. We investigated the possible cerebrovascular dysfunction response to isoproterenol induced beta-adrenergic overstimulation (ISO in rabbit cerebral arteries (CAs. METHODS: ISO was induced in six weeks aged male New Zealand white rabbit (0.8-1.0 kg by 7-days isoproterenol injection (300 μg/kg/day. We investigated the alteration of protein expression in ISO treated CAs using 2DE proteomics and western blot analysis. Systemic properties of 2DE proteomics result were analyzed using bioinformatics software. ROS generation and following DNA damage were assessed to evaluate deteriorative effect of ISO on CAs. Intracellular Ca(2+ level change and vascular contractile response to vasoactive drug, angiotensin II (Ang II, were assessed to evaluate functional alteration of ISO treated CAs. Ang II-induced ROS generation was assessed to evaluated involvement of ROS generation in CA contractility. RESULTS: Proteomic analysis revealed remarkably decreased expression of cytoskeleton organizing proteins (e.g. actin related protein 1A and 2, α-actin, capping protein Z beta, and vimentin and anti-oxidative stress proteins (e.g. heat shock protein 9A and stress-induced-phosphoprotein 1 in ISO-CAs. As a cause of dysregulation of actin-cytoskeleton organization, we found decreased level of RhoA and ROCK1, which are major regulators of actin-cytoskeleton organization. As functional consequences of proteomic alteration, we found the decreased transient Ca(2+ efflux and constriction response to angiotensin II and high K(+ in ISO-CAs. ISO also increased basal ROS generation and induced oxidative damage in CA; however, it decreased the Ang II-induced ROS generation rate. These results indicate that ISO disrupted actin cytoskeleton proteome network

  7. The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho

    Czech Academy of Sciences Publication Activity Database

    Tůmová, Magda; Koffer, Anna; Šimíček, Michal; Dráberová, Lubica; Dráber, Petr

    2010-01-01

    Roč. 40, č. 11 (2010), s. 3235-3245 ISSN 0014-2980 R&D Projects: GA MŠk 1M0506; GA MŠk LC545; GA ČR(CZ) GD204/05/H023; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA AV ČR KAN200520701 Institutional research plan: CEZ:AV0Z50520514 Keywords : cell activation * cytoskeleton * mast cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.942, year: 2010

  8. Dimensional measurements and eddy currents control of the sheath integrity for a set of irradiated candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2015-01-01

    During irradiation in the nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of sheath surface condition as well, which can lead to damages and even loss of integrity. This paper presents the results of dimensional measurements and of examination technique with eddy currents for three fuel elements of an irradiated CANDU fuel bundle. One of the fuel elements (FE), which is studied in detail, presented a crack about 40 mm long. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. This paper contains images of defects and interpretations of the causes of their occurrence. (authors)

  9. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton

    Science.gov (United States)

    Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.

    2001-01-01

    Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.

  10. FAM83H and casein kinase I regulate the organization of the keratin cytoskeleton and formation of desmosomes.

    Science.gov (United States)

    Kuga, Takahisa; Sasaki, Mitsuho; Mikami, Toshinari; Miake, Yasuo; Adachi, Jun; Shimizu, Maiko; Saito, Youhei; Koura, Minako; Takeda, Yasunori; Matsuda, Junichiro; Tomonaga, Takeshi; Nakayama, Yuji

    2016-05-25

    FAM83H is essential for the formation of dental enamel because a mutation in the FAM83H gene causes amelogenesis imperfecta (AI). We previously reported that the overexpression of FAM83H often occurs and disorganizes the keratin cytoskeleton in colorectal cancer cells. We herein show that FAM83H regulates the organization of the keratin cytoskeleton and maintains the formation of desmosomes in ameloblastoma cells. FAM83H is expressed and localized on keratin filaments in human ameloblastoma cell lines and in mouse ameloblasts and epidermal germinative cells in vivo. FAM83H shows preferential localization to keratin filaments around the nucleus that often extend to cell-cell junctions. Alterations in the function of FAM83H by its overexpression, knockdown, or an AI-causing truncated mutant prevent the proper organization of the keratin cytoskeleton in ameloblastoma cells. Furthermore, the AI-causing mutant prevents desmosomal proteins from being localized to cell-cell junctions. The effects of the AI-causing mutant depend on its binding to and possible inhibition of casein kinase I (CK-1). The suppression of CK-1 by its inhibitor, D4476, disorganizes the keratin cytoskeleton. Our results suggest that AI caused by the FAM83H mutation is mediated by the disorganization of the keratin cytoskeleton and subsequent disruption of desmosomes in ameloblasts.

  11. Ion Implantation Hampers Pollen Tube Growth and Disrupts Actin Cytoskeleton Organization in Pollen Tubes of Pinus thunbergii

    International Nuclear Information System (INIS)

    Li Guoping; Yang Lusheng; Huang Qunce; Qin Guangyong

    2008-01-01

    Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implantation significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for continuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam implantation and is involved in mediating certain subsequent cytological changes.

  12. Expression of Eag1 K+ channel and ErbBs in human pituitary adenomas: cytoskeleton arrangement patterns in cultured cells.

    Science.gov (United States)

    del Pliego, Margarita González; Aguirre-Benítez, Elsa; Paisano-Cerón, Karina; Valdovinos-Ramírez, Irene; Rangel-Morales, Carlos; Rodríguez-Mata, Verónica; Solano-Agama, Carmen; Martín-Tapia, Dolores; de la Vega, María Teresa; Saldoval-Balanzario, Miguel; Camacho, Javier; Mendoza-Garrido, María Eugenia

    2013-01-01

    Pituitary adenomas can invade surrounded tissue, but the mechanism remains elusive. Ether à go-go-1 (Eag1) potassium channel and epidermal growth factor receptors (ErbB1 and ErbB2) have been associated to invasive phenotypes or poor prognosis in cancer patients. However, cells arrange their cytoskeleton in order to acquire a successful migration pattern. We have studied ErbBs and Eag1 expression, and cytoskeleton arrangements in 11 human pituitary adenomas. Eag1, ErbB1 and ErbB2 expression were studied by immunochemistry in tissue and cultured cells. The cytoskeleton arrangement was analyzed in cultured cells by immunofluorescence. Normal pituitary tissue showed ErbB2 expression and Eag1 only in few cells. However, Eag1 and ErbB2 were expressed in all the tumors analyzed. ErbB1 expression was observed variable and did not show specificity for a tumor characteristic. Cultured cells from micro- and macro-adenomas clinically functional organize their cytoskeleton suggesting a mesenchymal pattern, and a round leucocyte/amoeboid pattern from invasive clinically silent adenoma. Pituitary tumors over-express EGF receptors and the ErbB2 repeated expression suggests is a characteristic of adenomas. Eag 1 was express, in different extent, and could be a therapeutic target. The cytoskeleton arrangements observed suggest that pituitary tumor cells acquire different patterns: mesenchymal, and leucocyte/amoeboid, the last observed in the invasive adenomas. Amoeboid migration pattern has been associated with high invasion capacity.

  13. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    Science.gov (United States)

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    Science.gov (United States)

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  15. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    Science.gov (United States)

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only

  16. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  17. Three-Dimensional Crane Modelling and Control Using Euler-Lagrange State-Space Approach and Anti-Swing Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Aksjonov Andrei

    2015-12-01

    Full Text Available The mathematical model of the three-dimensional crane using the Euler-Lagrange approach is derived. A state-space representation of the derived model is proposed and explored in the Simulink® environment and on the laboratory stand. The obtained control design was simulated, analyzed and compared with existing encoder-based system provided by the three-dimensional (3D Crane manufacturer Inteco®. As well, an anti-swing fuzzy logic control has been developed, simulated, and analyzed. Obtained control algorithm is compared with the existing anti-swing proportional-integral controller designed by the 3D crane manufacturer Inteco®. 5-degree of freedom (5DOF control schemes are designed, examined and compared with the various load masses. The topicality of the problem is due to the wide usage of gantry cranes in industry. The solution is proposed for the future research in sensorless and intelligent control of complex motor driven application.

  18. Two-dimensional metal oxide and metal hydroxide nanosheets: synthesis, controlled assembly and applications in energy conversion and storage

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Yuan, H.; Gonzalez Rodriguez, P.

    2016-01-01

    The developments and state of the art in the research on two-dimensional nanosheets derived from layered metal oxides and layered metal hydroxides are reviewed in this paper, with emphasis on their promising applications in various new energy technologies, i.e., as supercapacitor electrodes, lithium

  19. Intraoperative three-dimensional fluoroscopy after transpedicular positioning of Kirschner-wire versus conventional intraoperative biplanar fluoroscopic control: A retrospective study of 345 patients and 1880 pedicle screws

    Directory of Open Access Journals (Sweden)

    Ghassan Kerry

    2014-01-01

    Full Text Available Study Design: Retrospective study. Objective: The aim was to find out whether intraoperative three-dimensional imaging after transpedicular positioning of Kirschner wire (K-wire in lumbar and thoracic posterior instrumentation procedures is of benefit to the patients and if this technique is accurately enough to make a postoperative screw position control through computer tomography (CT dispensable. Patients and Methods: Lumbar and thoracic posterior instrumentation procedures conducted at our department between 2002 and 2012 were retrospectively reviewed. The patients were divided into two groups: group A, including patients who underwent intraoperative three-dimensional scan after transpedicular positioning of the K-wire and group B, including patients who underwent only intraoperative biplanar fluoroscopy. An early postoperative CT of the instrumented section was done in all cases to assess the screw position. The rate of immediate intraoperative correction of the K-wires in cases of mal-positioning, as well as the rate of postoperative screw revisions, was measured. Results: In general, 345 patients (1880 screws were reviewed and divided into two groups; group A with 225 patients (1218 screws and group B with 120 patients (662 screws. One patient (0.44% (one screw [0.082%] of group A underwent postoperative screw correction while screw revisions were necessary in 14 patients (11.7% (28 screws [4.2%] of group B. Twenty-three patients (10.2% (28 K-wires [2.3%] of group A underwent intraoperative correction due to primary intraoperative detected K-wire mal-position. None of the corrected K-wires resulted in a corresponding neurological deficit. Conclusion: Three-dimensional imaging after transpedicular K-wire positioning leads to solid intraoperative identification of misplaced K-wires prior to screw placement and reduces screw revision rates compared with conventional fluoroscopic control. When no clinical deterioration emerges, a

  20. TGF1-Induced Differentiation of Human Bone Marrow-Derived MSCs Is Mediated by Changes to the Actin Cytoskeleton

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Almalki, Sami

    2018-01-01

    MSC cultures using DNA microarrays. In total, 1932 genes were upregulated, and 1298 genes were downregulated. Bioinformatics analysis revealed that TGFβl treatment was associated with an enrichment of genes in the skeletal and extracellular matrix categories and the regulation of the actin cytoskeleton....... To investigate further, we examined the actin cytoskeleton following treatment with TGFβ1 and/or cytochalasin D. Interestingly, cytochalasin D treatment of hMSCs enhanced adipogenic differentiation but inhibited osteogenic differentiation. Global gene expression profiling revealed a significant enrichment...... of pathways related to osteogenesis and adipogenesis and of genes regulated by both TGFβ1 and cytochalasin D. Our study demonstrates that TGFβ1 enhances hMSC commitment to either the osteogenic or adipogenic lineages by reorganizing the actin cytoskeleton....

  1. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and rho GTPases in cell migration

    DEFF Research Database (Denmark)

    Stanley, Alanna; Thompson, Kerry; Hynes, Ailish

    2014-01-01

    Abstract Significance: Rho GTPases are historically known to be central regulators of actin cytoskeleton reorganization. This affects many processes including cell migration. In addition, members of the Rac subfamily are known to be involved in reactive oxygen species (ROS) production through...... mediating cytoskeletal reorganization. Critical Issues: The role of the actin cytoskeleton in providing a scaffold for components of the Nox complex needs to be examined in the light of these new advances. During cell migration, Rho GTPases, ROS, and cytoskeletal organization appear to function as a complex...... compartments. This in conjunction with the analysis of tissues lacking specific Rho GTPases, and Nox components will facilitate a detailed examination of the interactions of these structures with the actin cytoskeleton. In combination with the analysis of ROS production, including its subcellular location...

  2. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments

    Science.gov (United States)

    Jones, Steven L.; Korobova, Farida

    2014-01-01

    The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling. PMID:24711503

  3. [At the plant side of formins--organizers of the actin cytoskeleton].

    Science.gov (United States)

    Maruniewicz, Michalina; Kasprowicz, Anna; Wojtaszek, Przemysław

    2009-01-01

    Rearrangements of actin cytoskeleton enable proper functioning of the cells under normal conditions, and also cellular adaptations to changes in the direct surroundings. Formins are actin binding proteins, responsible for actin nucleation and further elongation of microfilaments. The distinguishing feature of formins is the presence of conserved FH2 (formin homology domain 2) domain, as well as other domains typical for distinct formin classes. In animal cells formins are involved in cytokinesis and determination and maintenance of the cell shape and polarity, but also in the formation of filopodia, endocytosis and many other processes. The presence of proteins from the formin family in plant cells, and their involvement in the tip growth and cytokinesis, has been determined only recently. As the functional organization of plant and animal cells is different, one can assume that the range of putative functions of plant formins might also be diverse. One of such proposed functions for formins in plants is the role of linker protein within WMC continuum (cell wall-plasma membrane-cytoskeleton). Unfortunately, for that moment the state of knowledge about plant formins in comparison with animal or fungal ones is much poorer.

  4. Epiplasmins and epiplasm in paramecium: the building of a submembraneous cytoskeleton.

    Science.gov (United States)

    Aubusson-Fleury, Anne; Bricheux, Geneviève; Damaj, Raghida; Lemullois, Michel; Coffe, Gérard; Donnadieu, Florence; Koll, France; Viguès, Bernard; Bouchard, Philippe

    2013-07-01

    In ciliates, basal bodies and associated appendages are bound to a submembrane cytoskeleton. In Paramecium, this cytoskeleton takes the form of a thin dense layer, the epiplasm, segmented into regular territories, the units where basal bodies are inserted. Epiplasmins, the main component of the epiplasm, constitute a large family of 51 proteins distributed in 5 phylogenetic groups, each characterized by a specific molecular design. By GFP-tagging, we analyzed their differential localisation and role in epiplasm building and demonstrated that: 1) The epiplasmins display a low turnover, in agreement with the maintenance of an epiplasm layer throughout the cell cycle; 2) Regionalisation of proteins from different groups allows us to define rim, core, ring and basal body epiplasmins in the interphase cell; 3) Their dynamics allows definition of early and late epiplasmins, detected early versus late in the duplication process of the units. Epiplasmins from each group exhibit a specific combination of properties. Core and rim epiplasmins are required to build a unit; ring and basal body epiplasmins seem more dispensable, suggesting that they are not required for basal body docking. We propose a model of epiplasm unit assembly highlighting its implication in structural heredity in agreement with the evolutionary history of epiplasmins. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. [Effect of different oxygen tension on the cytoskeleton remodeling of goat temporomandibular joint disc cells].

    Science.gov (United States)

    Xiaolan, He; Guangjie, Bao; Linglu, Sun; Xue, Zhang; Shanying, Bao; Hong, Kang

    2017-08-01

    Objective The effect of different oxygen tensions on the cytoskeleton remodeling of goat temporomandibular joint (TMJ) disc cells were investigated. Methods Goat TMJ disc cells were cultured under normoxia (21% O₂) and hypoxia (2%, 4%, and 8% O₂). Toluidine blue, picrosirius red, and type Ⅰ collagen immunocytochemical staining were performed to observe the changes in cell phenotype under different oxygen levels. Immunofluorescent staining and real-time reverse transcription-polymerase chain reaction analysis were then performed to identify actin, tubulin, and vimentin in the cultured disc cells. Results TMJ disc cells still displayed fibroblast characteristics under different oxygen levels and their cytoskeletons had regular arrangement. The fluorescence intensities of actin and vimentin were lowest at 4% O₂(P0.05). Actin mRNA levels were considerably decreased at 2% O₂ and 4% O₂ in hypoxic conditions, while actin mRNA expression was highest in 21% O₂. Tubulin mRNA levels considerably increased at 2% O₂, while tubulin mRNA expression was lowest in 8% O₂ (Plevels among these oxygen levels (Poxygen tensions, and 2% O₂ may be the optimal oxygen level required to proliferate TMJ disc cells.

  6. Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry

    Directory of Open Access Journals (Sweden)

    Irina V. Gorudko

    2013-07-01

    Myeloperoxidase (MPO is a heme-containing enzyme released from activated leukocytes into the extracellular space during inflammation. Its main function is the production of hypohalous acids that are potent oxidants. MPO can also modulate cell signaling and inflammatory responses independently of its enzymatic activity. Because MPO is regarded as an important risk factor for cardiovascular diseases associated with increased platelet activity, we studied the effects of MPO on human platelet functional properties. Laser scanning confocal microscopy was used to reveal carbohydrate-independent MPO binding to human platelet membrane. Adding MPO to platelets did not activate their aggregation under basal conditions (without agonist. In contrast, MPO augmented agonist-induced platelet aggregation, which was not prevented by MPO enzymatic activity inhibitors. It was found that exposure of platelets to MPO leads to actin cytoskeleton reorganization and an increase in their elasticity. Furthermore, MPO evoked a rise in cytosolic Ca2+ through enhancement of store-operated Ca2+ entry (SOCE. Together, these findings indicate that MPO is not a direct agonist but rather a mediator that binds to human platelets, induces actin cytoskeleton reorganization and affects the mechanical stiffness of human platelets, resulting in potentiating SOCE and agonist-induced human platelet aggregation. Therefore, an increased activity of platelets in vascular disease can, at least partly, be provided by MPO elevated concentrations.

  7. Microscale force response and morphology of tunable co-polymerized cytoskeleton networks

    Science.gov (United States)

    Ricketts, Shea; Yadav, Vikrant; Ross, Jennifer L.; Robertson-Anderson, Rae M.

    The cytoskeleton is largely comprised of actin and microtubules that entangle and crosslink to form complex networks and structures, giving rise to nonlinear multifunctional mechanics in cells. The relative concentrations of semiflexible actin filaments and rigid microtubules tune cytoskeleton function, allowing cells to move and divide while maintaining rigidity and resilience. To elucidate this complex tunability, we create in vitro composites of co-polymerized actin and microtubules with actin:microtubule molar ratios of 0:1-1:0. We use optical tweezers and confocal microscopy to characterize the nonlinear microscale force response and morphology of the composites. We optically drag a microsphere 30 μm through varying actin-microtubule networks at 10 μm/s and 20 μm/s, and measure the force the networks exerts to resist the strain and the force relaxation following strain. We use dual-color confocal microscopy to image distinctly-labeled filaments in the networks, and characterize the integration of actin and microtubules, network connectivity, and filament rigidity. We find that increasing the fraction of microtubules in networks non-monotonically increases elasticity and stiffness, and hinders force relaxation by suppressing network mobility and fluctuations. NSF CAREER Award (DMR-1255446), Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).

  8. Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement.

    Science.gov (United States)

    Dinicola, Simona; Fabrizi, Gianmarco; Masiello, Maria Grazia; Proietti, Sara; Palombo, Alessandro; Minini, Mirko; Harrath, Abdel Halim; Alwasel, Saleh H; Ricci, Giulia; Catizone, Angela; Cucina, Alessandra; Bizzarri, Mariano

    2016-07-01

    Inositol displays multi-targeted effects on many biochemical pathways involved in epithelial-mesenchymal transition (EMT). As Akt activation is inhibited by inositol, we investigated if such effect could hamper EMT in MDA-MB-231 breast cancer cells. In cancer cells treated with pharmacological doses of inositol E-cadherin was increased, β-catenin was redistributed behind cell membrane, and metalloproteinase-9 was significantly reduced, while motility and invading capacity were severely inhibited. Those changes were associated with a significant down-regulation of PI3K/Akt activity, leading to a decrease in downstream signaling effectors: NF-kB, COX-2, and SNAI1. Inositol-mediated inhibition of PS1 leads to lowered Notch 1 release, thus contributing in decreasing SNAI1 levels. Overall, these data indicated that inositol inhibits the principal molecular pathway supporting EMT. Similar results were obtained in ZR-75, a highly metastatic breast cancer line. These findings are coupled with significant changes on cytoskeleton. Inositol slowed-down vimentin expression in cells placed behind the wound-healing edge and stabilized cortical F-actin. Moreover, lamellipodia and filopodia, two specific membrane extensions enabling cell migration and invasiveness, were no longer detectable after inositol addiction. Additionally, fascin and cofilin, two mandatory required components for F-actin assembling within cell protrusions, were highly reduced. These data suggest that inositol may induce an EMT reversion in breast cancer cells, suppressing motility and invasiveness through cytoskeleton modifications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response.

    Science.gov (United States)

    Ezelle, Heather J; Malathi, Krishnamurthy; Hassel, Bret A

    2016-01-08

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2'-5'-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.

  10. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells

    International Nuclear Information System (INIS)

    Meller, Karl; Theiss, Carsten

    2006-01-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 o C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton

  11. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction.

    Science.gov (United States)

    Ohashi, Kazumasa; Fujiwara, Sachiko; Mizuno, Kensaku

    2017-03-01

    All cells sense and respond to various mechanical forces in and mechanical properties of their environment. To respond appropriately, cells must be able to sense the location, direction, strength and duration of these forces. Recent progress in mechanobiology has provided a better understanding of the mechanisms of mechanoresponses underlying many cellular and developmental processes. Various roles of mechanoresponses in development and tissue homeostasis have been elucidated, and many molecules involved in mechanotransduction have been identified. However, the whole picture of the functions and molecular mechanisms of mechanotransduction remains to be understood. Recently, novel mechanisms for sensing and transducing mechanical stresses via the cytoskeleton, cell-substrate and cell-cell adhesions and related proteins have been identified. In this review, we outline the roles of the cytoskeleton, cell-substrate and cell-cell adhesions, and related proteins in mechanosensing and mechanotransduction. We also describe the roles and regulation of Rho-family GTPases in mechanoresponses. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  12. The cytoskeleton as a novel target for treatment of renal fibrosis.

    Science.gov (United States)

    Parrish, Alan R

    2016-10-01

    The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD. Copyright © 2016. Published by Elsevier Inc.

  13. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    Science.gov (United States)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  14. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    Science.gov (United States)

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  15. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton

    DEFF Research Database (Denmark)

    Evans, Evan; Heinrich, Volkmar; Leung, Andrew

    2005-01-01

    to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether......, and iii), the final detachment from the probe tip by usually one precipitous step of P-selectin:PSGL-1 dissociation. In this first article I, we focus on the initial elastic response and its termination by membrane separation from the cytoskeleton, initiating tether formation. Quantifying membrane...

  16. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L; Fairhall, Adrienne L

    2015-04-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  17. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.

    Directory of Open Access Journals (Sweden)

    Simon Sponberg

    2015-04-01

    Full Text Available What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in

  18. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    Science.gov (United States)

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  19. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  20. Three-dimensional magnetic resonance spectroscopic imaging in the substantia nigra of healthy controls and patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Groeger, Adriane; Godau, Jana; Berg, Daniela [University of Tuebingen, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Disease (DZNE), Tuebingen (Germany); Chadzynski, Grzegorz; Klose, Uwe [University Hospital Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany)

    2011-09-15

    To investigate the substantia nigra in patients with Parkinson's disease three-dimensional magnetic resonance spectroscopic imaging with high spatial resolution at 3 Tesla was performed. Regional variations of spectroscopic data between the rostral and caudal regions of the substantia nigra as well as the midbrain tegmentum areas were evaluated in healthy controls and patients with Parkinson's disease. Nine patients with Parkinson's disease and eight age- and gender-matched healthy controls were included in this study. Data were acquired by using three-dimensional magnetic resonance spectroscopic imaging measurements. The ratios between rostral and caudal voxels of the substantia nigra as well as the midbrain tegmentum areas were calculated for the main-metabolites N-acetyl aspartate, creatine, choline, and myo-inositol. Additionally, the metabolite/creatine ratios were calculated. In all subjects spectra of acceptable quality could be obtained with a nominal voxel size of 0.252 ml. The calculated rostral-to-caudal ratios of the metabolites as well as of the metabolite/creatine ratios showed with exception of choline/creatine ratio significant differences between healthy controls and patients with Parkinson's disease. The findings from this study indicate that regional variations in N-acetyl aspartate/creatine ratios in the regions of the substantia nigra may differentiate patients with Parkinson's disease and healthy controls. (orig.)

  1. Osmoconditioning prevents the onset of microtubular cytoskeleton and activation of cell cycle and is detrimental for germination of Jatropha curcas L. seeds.

    Science.gov (United States)

    de Brito, C D; Loureiro, M B; Ribeiro, P R; Vasconcelos, P C T; Fernandez, L G; de Castro, R D

    2016-11-01

    Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum). Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum. Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed. Osmoconditioned seeds were able to survive re-drying and could resume germination after re-imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation.

    Science.gov (United States)

    Li, Yuk Yin; Choy, Tze Hang; Ho, Fu Chak; Chan, Pui Barbara

    2015-06-01

    binding between αv and fibronectin. In addition, vimentin was the dominant cytoskeletal protein in these cells, and the chondrogenic marker genes were expressed but at a much lower level than in the MSCs encapsulated in C alone. This work suggests the importance of controlling the matrix composition as a strategy to manipulate cell-matrix interactions (through changes in the integrin expression profile and cytoskeleton organization), and hence stem cell fates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. S-Nitrosylation of Cofilin-1 Mediates Estradiol-17β-Stimulated Endothelial Cytoskeleton Remodeling

    Science.gov (United States)

    Zhang, Hong-hai; Lechuga, Thomas J.; Tith, Tevy; Wang, Wen; Wing, Deborah A.

    2015-01-01

    Rapid nitric oxide (NO) production via endothelial NO synthase (eNOS) activation represents a major signaling pathway for the cardiovascular protective effects of estrogens; however, the pathways after NO biosynthesis that estrogens use to function remain largely unknown. Covalent adduction of a NO moiety to cysteines, termed S-nitrosylation (SNO), has emerged as a key route for NO to directly regulate protein function. Cofilin-1 (CFL1) is a small actin-binding protein essential for actin dynamics and cytoskeleton remodeling. Despite being identified as a major SNO protein in endothelial cells, whether SNO regulates CFL-1 function is unknown. We hypothesized that estradiol-17β (E2β) stimulates SNO of CFL1 via eNOS-derived NO and that E2β-induced SNO-CFL1 mediates cytoskeleton remodeling in endothelial cells. Point mutation studies determined Cys80 as the primary SNO site among the 4 cysteines (Cys39/80/139/147) in CFL1. Substitutions of Cys80 with Ala or Ser were used to prepare the SNO-mimetic/deficient (C80A/S) CFL1 mutants. Recombinant wild-type (wt) and mutant CFL1 proteins were prepared; their actin-severing activity was determined by real-time fluorescence imaging analysis. The activity of C80A CFL1 was enhanced to that of the constitutively active S3/A CFL1, whereas the other mutants had no effects. C80A/S mutations lowered Ser3 phosphorylation. Treatment with E2β increased filamentous (F)-actin and filopodium formation in endothelial cells, which were significantly reduced in cells overexpressing wt-CFL. Overexpression of C80A, but not C80S, CFL1 decreased basal F-actin and further suppressed E2β-induced F-actin and filopodium formation compared with wt-CFL1 overexpression. Thus, SNOCys80 of cofilin-1 via eNOS-derived NO provides a novel pathway for mediating estrogen-induced endothelial cell cytoskeleton remodeling. PMID:25635941

  4. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  5. Kinetically Controlled Synthesis of Pt-Based One-Dimensional Hierarchically Porous Nanostructures with Large Mesopores as Highly Efficient ORR Catalysts.

    Science.gov (United States)

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-12-28

    Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetically controlled reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the PtCu hierarchically porous nanostructures synthesized under optimized conditions exhibit enhanced electrocatalytic performance for oxygen reduction reaction in acid media.

  6. Proteomic profiling of fibroblasts reveals a modulating effect of extracellular calumenin on the organization of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Hansen, Gry Aune; Vorum, Henrik

    2006-01-01

    cytoskeleton and is involved in cytokinesis. Labeling of S phase fibroblasts with bromo-2'deoxy-uridine indicates that calumenin added to the medium also modulates the cell cycle. Our study thus indicates that calumenin possesses a paracrine role on the cells in its vicinity and therefore may be involved...

  7. FORMALIN IS DELETERIOUS TO CYTOSKELETON PROTEINS - DO WE NEED TO REPLACE IT BY FORMALIN-FREE KRYOFIX

    NARCIS (Netherlands)

    BOON, ME; KOK, LP

    1991-01-01

    Formalin is hazardous for the environment and for the laboratory personnel and deleterious to cytoskeleton proteins. The pathology and anatomy laboratory can be formalin-free when Kryofix is used as a substitute fixative. In four years experience with Kryofix, we learned that immunostaining on

  8. Three-Dimensional Calcium Alginate Hydrogel Assembly via TiOPc-Based Light-Induced Controllable Electrodeposition

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-06-01

    Full Text Available Artificial reconstruction of three-dimensional (3D hydrogel microstructures would greatly contribute to tissue assembly in vitro, and has been widely applied in tissue engineering and drug screening. Recent technological advances in the assembly of functional hydrogel microstructures such as microfluidic, 3D bioprinting, and micromold-based 3D hydrogel fabrication methods have enabled the formation of 3D tissue constructs. However, they still lack flexibility and high efficiency, which restrict their application in 3D tissue constructs. Alternatively, we report a feasible method for the fabrication and reconstruction of customized 3D hydrogel blocks. Arbitrary hydrogel microstructures were fabricated in situ via flexible and rapid light-addressable electrodeposition. To demonstrate the versatility of this method, the higher-order assembly of 3D hydrogel blocks was investigated using a constant direct current (DC voltage (6 V applied between two electrodes for 20–120 s. In addition to the plane-based two-dimensional (2D assembly, hierarchical structures—including multi-layer 3D hydrogel structures and vessel-shaped structures—could be assembled using the proposed method. Overall, we developed a platform that enables researchers to construct complex 3D hydrogel microstructures efficiently and simply, which has the potential to facilitate research on drug screening and 3D tissue constructs.

  9. Prosthetic avian vocal organ controlled by a freely behaving bird based on a low dimensional model of the biomechanical periphery.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Arneodo

    Full Text Available Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.

  10. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L.

    Science.gov (United States)

    Liu, Min; Hasenstein, Karl H

    2005-03-01

    La(3+) ions are known to antagonize Ca(2+) and are used as a Ca(2+) channel blocker but little is known on the direct effects of La(3+). Micromolar La(3+) concentrations promoted root growth while higher concentrations were inhibitory. The uptake of La(3+) in maize root protoplasts revealed a membrane binding component (0.14 and 0.44 pmol min(-1) protoplast(-1) for 100 and 1,000 microM La(3+)) followed by a slower concentration and time-dependent uptake. Uptake was reduced by Ca(2+), but had no substantial effect on other ions. La(3+) shifted microtubule organization from random to parallel but caused aggregation of microfilaments. Our data suggest that La(3+) is taken up into plant cells and affects growth via stabilization of the cytoskeleton.

  11. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    Directory of Open Access Journals (Sweden)

    Kristen M. Bartoli

    2011-01-01

    Full Text Available Stress granules (SGs are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

  12. Role of ANC-1 in tethering nuclei to the actin cytoskeleton.

    Science.gov (United States)

    Starr, Daniel A; Han, Min

    2002-10-11

    Mutations in anc-1 (nuclear anchorage defective) disrupt the positioning of nuclei and mitochondria in Caenorhabditis elegans. ANC-1 is shown to consist of mostly coiled regions with a nuclear envelope localization domain (called the KASH domain) and an actin-binding domain; this structure was conserved with the Drosophila protein Msp-300 and the mammalian Syne proteins. Antibodies against ANC-1 localized cytoplasmically and were enriched at the nuclear periphery in an UNC-84-dependent manner. Overexpression of the KASH domain or the actin-binding domain caused a dominant negative anchorage defect. Thus, ANC-1 may connect nuclei to the cytoskeleton by interacting with UNC-84 at the nuclear envelope and with actin in the cytoplasm.

  13. Focusing super resolution on the cytoskeleton [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Eric A. Shelden

    2016-05-01

    Full Text Available Super resolution imaging is becoming an increasingly important tool in the arsenal of methods available to cell biologists. In recognition of its potential, the Nobel Prize for chemistry was awarded to three investigators involved in the development of super resolution imaging methods in 2014. The availability of commercial instruments for super resolution imaging has further spurred the development of new methods and reagents designed to take advantage of super resolution techniques. Super resolution offers the advantages traditionally associated with light microscopy, including the use of gentle fixation and specimen preparation methods, the ability to visualize multiple elements within a single specimen, and the potential to visualize dynamic changes in living specimens over time. However, imaging of living cells over time is difficult and super resolution imaging is computationally demanding. In this review, we discuss the advantages/disadvantages of different super resolution systems for imaging fixed live specimens, with particular regard to cytoskeleton structures.

  14. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity.

    Science.gov (United States)

    Méndez-Olvera, Estela T; Bustos-Martínez, Jaime A; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-10-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). The results obtained showed that the eight strains of C. jejuni , including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA , cdtB and cdtC genes.

  15. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity

    Science.gov (United States)

    Méndez-Olvera, Estela T.; Bustos-Martínez, Jaime A.; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-01-01

    Background Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. Objectives The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Methods Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). Results The results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. Conclusions This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes. PMID:27942359

  16. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    International Nuclear Information System (INIS)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar; Illenberger, Susanne; Preuss, Ute

    2005-01-01

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis

  17. Microfilamin - a new protein of the cytoskeleton with molecular weight 53,000

    International Nuclear Information System (INIS)

    Fridlyanskaya, I.I.; Galaktionov, K.I.; D'yakonova, M.Yu.; Pinaev, G.P.

    1987-01-01

    The microfilaments in cultured cells participate in many vitally important processes: endocytosis, movement of cells, division, etc. One of the approaches to the study of the proteins of the microfilaments is the use of the hybridoma technique. This method permits the use of cell structures as an immunogen and the investigation of their protein assortment by means of monoclonal antibodies. Using such an approach, the authors were able to identify a protein with molecular weight 53 kilodaltons, not previously described in the microfilaments. BABL/c mice were immunized with an extract of the cytoskeleton of murine cells 3T3. It was produced by treating the cells with 0.5% Triton in a buffer stabilizing the cytoskeleton (10 mM sodium phosphate buffer, pH 6.8, 0.1 M KCl, 1 mMEGTA, 0.1 mM EDTA, 5 mM MgCl 2 , and 2 M sucrose), and then with the same buffer, containing 1 micrograms/ml DNase I, 1mM PMSF, and 20 units/ml trasylol. The extract was clarified by successive centrifugation at 1000, 1200, and 10,000 g. Splenocytes of immune animals were hybridized with murine myeloma SP 2/0-Ag 14 cells and screening of the hybridomas was performed by the method of indirect immunofluorescence on murine cells of the 3T3 line stained with Coomassie blue. Data from autograph after incubation with E9-48 antibodies and 125 I-labeled rabbit anti-mouse immunoglobulins are presented as well. The authors named this new technique microfilamin since it is detected in structures containing microfilaments: stress fibrils, the active edge, surface villi, and others

  18. [Effect of benazepril on atrial cytoskeleton remodeling in the canine atrial fibrillation models].

    Science.gov (United States)

    Liu, Li; Qu, Xiu-Fen; Yu, Yang; Bai, Bing; Huang, Yong-Lin

    2009-10-20

    To investigate the effect of benazepril on atrial cytoskeleton remodeling in atrial fibrillation (AF) canines induced by chronic rapid atrial pacing (RAP). Twenty canines were randomly divided into 3 groups: (1) Sham-operated group without RAP; (2) AF group: AF established by RAP at 600 beats per minute for 6 weeks; (3) Benazepril group: benazepril was dosed from 1 week pre-pacing to 6 weeks post-pacing. The diameter of atrial cardiomyocyte was measured, collagen volume fraction (CVF) analyzed by Masson staining and the expression and distribution of desmin were assayed by immunohistochemistry. RT-PCR method was used to semi-quantify the mRNA expression of beta-tubulin and desmin. The diameter of atrial cardiomyocyte increased in AF group [LA:(27.9 +/- 3.8) microm; RA: (26.8 +/- 3.2) microm] and benazepril group[LA: (25.1 +/- 3.4) microm; RA: (25.2 +/- 3.5) microm] than sham-operated group [LA: (19.6 +/- 2.9) micr