WorldWideScience

Sample records for dimensional position sensitive

  1. Large area two dimensional position sensitive detectors

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Lynen, U.; Stelzer, H.; Gobbi, A.; Bock, R.

    1979-02-01

    After an introduction, a position-sensitive ionization chamber, a parallel-plate detector, and a multiwire position-sensitive chamber are described. Then the data acquisition and analysis methods are considered. Furthermore, the experimental methods for a multi-parameter experiment are described. Finally, the measurement of gamma-ray and neutron multiplicities and sequential fission is considered, and the results are presented. (HSI) [de

  2. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active ...

  3. Two-dimensional position sensitive Si(Li) detector

    International Nuclear Information System (INIS)

    Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated

  4. A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.

    1978-11-01

    Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.

  5. Digital position sensitive discrimination for 2-dimensional scintillation detectors

    International Nuclear Information System (INIS)

    Engels, R.; Reinartz, R.; Reinhart, P.

    1996-01-01

    The energy sensitivity of a two-dimensional scintillation gamma detector based on position sensitive photomultipliers has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by 50%, a discrimination unit has been developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. Depending on the spatial resolution there can be up to 65.536 position-sensitive discriminator levels defining energy windows. By this method, narrow discriminator windows can be used for reducing the low and high energy quanta without effecting the sensitivity of the detector. The new discrimination method, its performance and test measurements with gamma rays will be described. Furthermore experimental results are presented

  6. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  7. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  8. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    Science.gov (United States)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  9. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  10. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  11. A large area two-dimensional position sensitive multiwire proportional detector

    CERN Document Server

    Moura, M M D; Souza, F A; Alonso, E E; Fujii, R J; Meyknecht, A B; Added, N; Aissaoui, N; Cardenas, W H Z; Ferraretto, M D; Schnitter, U; Szanto, E M; Szanto de Toledo, A; Yamamura, M S; Carlin, N

    1999-01-01

    Large area two-dimensional position sensitive multiwire proportional detectors were developed to be used in the study of light heavy-ion nuclear reactions at the University of Sao Paulo Pelletron Laboratory. Each detector has a 20x20 cm sup 2 active area and consists of three grids (X-position, anode and Y-position) made of 25 mu m diameter gold plated tungsten wires. The position is determined through resistive divider chains. Results for position resolution, linearity and efficiency as a function of energy and position for different elements are reported.

  12. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity

    International Nuclear Information System (INIS)

    Luke, P.N.; Amman, M.; Lee, J.S.; Yaver, H.

    1998-06-01

    A 3-dimensional position-sensitive coplanar-grid detector design for use with compound semiconductors is described. This detector design maintains the advantage of a coplanar-grid detector in which good energy resolution can be obtained from materials with poor charge transport. Position readout in two dimensions is accomplished using proximity-sensing electrodes adjacent to the electron-collecting grid electrode of the detector. Additionally, depth information is obtained by taking the ratio of the amplitudes of the collecting grid signal and the cathode signal. Experimental results from a prototype CdZnTe detector are presented

  13. A position-sensitive scintillation detector for two-dimensional angular correlation of annihilation radiation using metal-package position-sensitive photomultiplier tubes

    International Nuclear Information System (INIS)

    Inoue, Koji; Nagai, Yasuyoshi; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Muramatsu, Shinichi; Nagai, Shota

    1999-01-01

    We have constructed and tested a prototype of a new position sensitive γ-ray detector which consists of an array of 2.6x2.6x18 mm 3 BGO scintillator blocks, a light guide, and four metal-package position-sensitive photomultiplier tubes (R5900-00-C8) recently developed by Hamamatsu Photonics Co. Ltd. Scalability of the detector of this type makes it possible to construct a larger detector using many PS-PMTs, which will be useful for the two-dimensional angular correlation of annihilation radiation apparatus

  14. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  15. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  16. Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.

    Science.gov (United States)

    Ota, Ryosuke; Yamada, Ryoko; Moriya, Takahiro; Hasegawa, Tomoyuki

    2018-05-01

    Cherenkov radiation has recently received attention due to its prompt emission phenomenon, which has the potential to improve the timing performance of radiation detectors dedicated to positron emission tomography (PET). In this study, a Cherenkov-based three-dimensional (3D) position-sensitive radiation detector was proposed, which is composed of a monolithic lead fluoride (PbF 2 ) crystal and a photodetector array of which the signals can be readout independently. Monte Carlo simulations were performed to estimate the performance of the proposed detector. The position- and time resolution were evaluated under various practical conditions. The radiator size and various properties of the photodetector, e.g., readout pitch and single photon timing resolution (SPTR), were parameterized. The single photon time response of the photodetector was assumed to be a single Gaussian for the simplification. The photo detection efficiency of the photodetector was ideally 100% for all wavelengths. Compton scattering was included in simulations, but partly analyzed. To estimate the position at which a γ-ray interacted in the Cherenkov radiator, the center-of-gravity (COG) method was employed. In addition, to estimate the depth-of-interaction (DOI) principal component analysis (PCA), which is a multivariate analysis method and has been used to identify the patterns in data, was employed. The time-space distribution of Cherenkov photons was quantified to perform PCA. To evaluate coincidence time resolution (CTR), the time difference of two independent γ-ray events was calculated. The detection time was defined as the first photon time after the SPTR of the photodetector was taken into account. The position resolution on the photodetector plane could be estimated with high accuracy, by using a small number of Cherenkov photons. Moreover, PCA showed an ability to estimate the DOI. The position resolution heavily depends on the pitch of the photodetector array and the radiator

  17. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    International Nuclear Information System (INIS)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system

  18. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system.

  19. A detector system for two-dimensional, position-sensitive detection of neutrons and gamma quanta

    International Nuclear Information System (INIS)

    Scholz, A.

    1988-08-01

    While the well-known Anger Camera utilizes a large number of photomultiplier tubes, which are arranged in a regular array behind a scintillation crystal, the new detector system makes use of electron optics to transfer the scintillation image of a large scintillation crystal (Li-6-glass) onto a small position detector. Because of this, only few photodetectors are required for position readout, associated with only a small number of amplifier chains and a very simple position reconstruction algorithm. The reduced complexity of the readout electronics ultimately leads to an improved maintainability and reliability of the detector system. A prototype of the new detector system was built and tested. After giving an overview on already known and realized detector configurations, the basic considerations, which led to the final detector design, will be explained. Different methods of detector readout and position determination are discussed. Measurement results which were obtained with the prototype detector system are presented and explained by means of simulation calculations. (orig./HP) [de

  20. Two-dimensional position-sensitive detectors for small-angle neutron scattering

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Vandermolen, R.I.

    1990-05-01

    In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs

  1. A high count rate one-dimensional position sensitive detector and a data acquisition system for time resolved X-ray scattering studies

    International Nuclear Information System (INIS)

    Pernot, P.

    1982-01-01

    A curved multiwire proportional drift chamber has been built as a general purpose instrument for X-ray scattering and X-ray diffraction experiments with synchrotron radiation. This parallaxe-free one-dimensional linear position sensitive detector has a parallel readout with a double hit logic. The data acquisition system, installed as a part of the D11 camera at LURE-DCI, is designed to perform time slicing and cyclic experiments; it has been used with either the fast multiwire chamber or a standard position sensitive detector with delay line readout [fr

  2. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  3. Submicron position-sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Pugatch, V M; Rosenfeld, A B; Litovchenko, P G; Barabash, L I; Nemets, O F; Pavlenko, Yu N; Vasiliev, Yu O [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Nuclear Research

    1992-08-01

    A method has been developed to measure precisely the coordinates of charged particles incident between adjacent strips of a strip detector. The position sensitivity of an inter-strip gap has been studied by means of a pulsed laser beam and irradiation by [alpha]-particles of a [sup 226]Ra-source. The capacitive division of charge generated by the incident particle depends on the position of its track. Its coordinates were determined by two-dimensional amplitude analysis of the charges collected by neighbouring strips. This method of coordinate determination applied to studies of spatial and energy distributions of electromagnetic as well as charged particle beams (including radioactive ion beams) of low intensity could provide the highest level of the precision limited by the track dimensions of charged particles, i.e. percents of a micrometer. (orig.).

  4. On the use of one-dimensional position sensitive detector for x-ray diffraction reciprocal space mapping: Data quality and limitations

    International Nuclear Information System (INIS)

    Masson, Olivier; Boulle, Alexandre; Guinebretiere, Rene; Lecomte, Andre; Dauger, Alain

    2005-01-01

    A homemade x-ray diffractometer using one-dimensional position sensitive detector (PSD) and well suited to the study of thin epitaxial layer systems is presented. It is shown how PSDs can be advantageously used to allow fast reciprocal space mapping, which is especially interesting when analyzing poor crystalline and defective layers as usually observed with oxides and ceramics films. The quality of the data collected with such a setup and the limitations of PSDs in comparison with the use of analyzer crystals are discussed. In particular, the effects of PSD on angular precision, instrument resolution and corrections that must be applied to raw data are presented

  5. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  6. Position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit uses a conventional (low-resistance, metal-wire anode) counter for spatial resolution of an ionizing event along the anode, which functions as an RC line. A pair of preamplifiers at the anode ends act as stabilized active-capacitance loads, each comprising a series-feedback, low-noise amplifier and a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction of handling of the anodes, and stabilizes the anode resistivity at high count rates (>10 6 counts/sec). (author)

  7. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  8. Position-sensitive radiation detector

    International Nuclear Information System (INIS)

    Mathieson, E.; Smith, G.C.; Gilvin, P.J.

    1981-01-01

    Apparatus for sensing the position of radiation received has a plurality of receptors spaced in at least one line on which the position is to be determined, their outputs being associated to form at least two groups, the density of the receptors in each group varying along the line. The receptors may comprise cathode arrays of a multiwire proportional counter, with an anode array between, measuring along lines in directions x and y respectively. The density of the wires in the two groups, decreases in opposite directions. A circuit determines the ratio of the output of one group to the sum of the group outputs. In another embodiment a scintillator is viewed by a plurality of light guides, the ends of which adjacent to the scintillator form the receptors, the four groups of which each terminate on a photomultiplier. (author)

  9. Position-sensitive transition-edge sensors

    International Nuclear Information System (INIS)

    Iyomoto, N.; Bandler, S.R.; Brekosky, R.P.; Chervenak, J.A.; Figueroa-Feliciano, E.; Finkbeiner, F.M.; Kelley, R.L.; Kilbourne, C.A.; Lindeman, M.A.; Murphy, K.; Porter, F.S.; Saab, T.; Sadleir, J.E.; Talley, D.J.

    2006-01-01

    We report the latest results from our development of Position-Sensitive Transition-edge sensors (PoSTs), which are one-dimensional imaging spectrometers. In PoSTs with segmented Au absorbers, we obtained 8eV energy resolution on K Kα lines, which is consistent to the baseline energy resolution and the design values, on all of the nine pixels, by choosing the best combination of the thermal conductance in absorbers and in links that connects the absorbers. The pulse decay time of 193μs is fast enough for our purpose. In a PoST with a continuous Bi/Cu absorber, by dividing the events into 63 effective pixels, we obtained energy resolutions of 16eV at the center 'pixel', which is comparable to the baseline energy resolution, and 33eV at the outer 'pixel'. The degradation of the energy resolution in the outer 'pixel' is due to position dependence, which we can cancel out by dividing the events into smaller 'pixels' when we have sufficient X-ray events

  10. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  11. Global sensitivity analysis by polynomial dimensional decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2011-07-15

    This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

  12. A position sensitive parallel plate avalanche counter

    International Nuclear Information System (INIS)

    Lombardi, M.; Tan Jilian; Potenza, R.; D'amico, V.

    1986-01-01

    A position sensitive parallel plate avalanche counter with a distributed constant delay-line-cathode (PSAC) is described. The strips formed on the printed board were served as the cathode and the delay line for readout of signals. The detector (PSAC) was operated in isobutane gas at the pressure range from 10 to 20 torr. The position resolution is better than 1 mm and the time resolution is about 350 ps, for 252 Cf fission-spectrum source

  13. Position sensitive x-ray detector

    International Nuclear Information System (INIS)

    Macchione, E.L.A.

    1990-01-01

    A multi ware position sensitive gas counter for X-ray detection was developed in our laboratory, making use of commercial delay-lines for position sensing. Six delay-line chips (50 ns delay each, 40 Mhz cut-off frequency) cover a total sensitive length of 150 mm leading to a delay-risetime ratio that allows for a high-resolution position detection. Tests using the 5,9 keV X-ray line from a 55 Fe source and integral linearity better than 0,1% and a maximal differential linearity of ±4,0% were obtained operating the detector with an Ar-C H 4 (90%-10%) gas mixture at 700 torr. Similar tests were performed, using the 8,04 keV line from a Cu x-ray tube. A total resolution of 330 μm, and the same integral and differential linearities were obtained. (author)

  14. Position sensitivity of the first SmartPET HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom)]. E-mail: rjc@ns.ph.liv.ac.uk; Turk, G. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Boston, A.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Boston, H.C. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cresswell, J.R. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Mather, A.R. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Nolan, P.J. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Hall, C.J. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Lazarus, I. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Simpson, J. [CCLRC Daresbury, Warrington, Cheshire (United Kingdom); Berry, A. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Beveridge, T. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Gillam, J. [School of Physics and materials Engineering, Monash University, Melbourne (Australia); Lewis, R.A. [School of Physics and materials Engineering, Monash University, Melbourne (Australia)

    2007-04-01

    In this paper we discuss the Smart Positron Emission Tomography (PET) imaging system being developed by University of Liverpool in conjunction with CCLRC Daresbury Laboratory. We describe the motivation for the development of a semiconductor-based PET system and the advantages it will offer over current tomographs. Details of the detectors and associated electronics are discussed and results of high precision scans are presented. Analysis of this scan data has facilitated full characterization of the detector response function and calibration of the three-dimensional position sensitivity. This work presents the analysis of the depth sensitivity of the detector.

  15. Signal processors for position-sensitive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Ken-ichi [Hosei Univ., Koganei, Tokyo (Japan). Coll. of Engineering

    1996-07-01

    Position-sensitive detectors (PSD) are widely used in following various fields: condensed matter studies, material engineering, medical radiology particle physics, astrophysics and industrial applications. X-ray diffraction analysis is one of the field where PSDs are the most important instruments. In this field, many types of PSAs are employed: position-sensitive proportional counters (PSPC), multi-wire proportional chambers (MWPC), imaging plates, image intensifiers combined CCD cameras and semiconductor array devices. Two readout systems used for PSDs, where one is a charge-division type with high stability and the other is an encoder with multiple delay, line readout circuits useful for fast counting, were reported in this paper. The multiple delay line encoding system can be applicable to high counting rate 1D and 2D gas proportional detectors. (G.K.)

  16. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    In this review of the application of different types of position sensitive detectors to synchrotron radiation, discussion of the proportional counters based on the gas amplification principle forms a major part. Other topics reviewed are detector requirements, multiwire proportional chamber system, drift chamber type detectors, TV detectors, and recent developments, such as that based on a micro-channel plate as the amplifying element, and charge-coupled devices. (U.K.)

  17. Gas position sensitive x-ray detectors

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1994-12-01

    The construction of gas x-ray detectors used to count and localize x-ray photons in one and two dimensions is reported. The principles of operation of the detectors are described, as well as the electronic modules comprised in the data acquisition system. Results obtained with detectors built at CBPF are shown, illustrating the performance of the Linear Position Sensitive Detectors. (author). 6 refs, 14 figs

  18. POWRS: position-sensitive motif discovery.

    Directory of Open Access Journals (Sweden)

    Ian W Davis

    Full Text Available Transcription factors and the short, often degenerate DNA sequences they recognize are central regulators of gene expression, but their regulatory code is challenging to dissect experimentally. Thus, computational approaches have long been used to identify putative regulatory elements from the patterns in promoter sequences. Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms. First, POWRS uses the position-specific enrichment of regulatory elements near transcription start sites to significantly increase sensitivity, while providing new information about the preferred localization of those elements. Second, POWRS forgoes position weight matrices for a discrete motif representation that appears more resistant to over-generalization. We apply this algorithm to discover sequences related to constitutive, high-level gene expression in the model plant Arabidopsis thaliana, and then experimentally validate the importance of those elements by systematically mutating two endogenous promoters and measuring the effect on gene expression levels. This provides a foundation for future efforts to rationally engineer gene expression in plants, a problem of great importance in developing biotech crop varieties.BSD-licensed Python code at http://grassrootsbio.com/papers/powrs/.

  19. Position-sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hendrix, J.

    1982-01-01

    An overview is given of the different types of position-sensitive X-ray detectors used in kinetic studies of biological molecule state changes using X-ray diffraction with synchrotron radiation as a probe. The detector requirements and principles of operation of proportional counters are outlined. Multiwire proportional chamber systems and their readout techniques are described. Other detectors discussed include a drift chamber type detector, microchannel plates, charge-couple devices and, for high count rates, an integrating TV-detector. (U.K.)

  20. Two dimension position sensitive multi-plate PPAC

    International Nuclear Information System (INIS)

    Mao Ruishi; Guo Zhongyan; Xiao Guoqing; Zhan Wenlong; Xu Hushan; Hu Zhengguo; Wang Meng; Sun Zhiyu; Chen Zhiqiang; Chen Lixin; Li Chen; Bai Jie; Zhang Jinxia; Li Cunfan

    2003-01-01

    A two-dimensional positional sensitive multi-plate PPAC with resistance chain readout has been developed for Radioactive Ion Beam Line in Lanzhou (RIBLL). The PPAC has an active area of 100 mm x 100 mm. It consists of an anode plane, a x wire plane, a y wire plane and two cathode planes. The gaps between anode and wire planes are 3 mm. And the gaps between cathodes and wire planes also are 3 mm. When filled with iso-butane at a pressure of 6.5 mb, the 0.58 mm (FWHM) position resolution and >99.2% detection efficiencies and <±50 μm linearity of the PPAC was estimated for 3 components α source

  1. 3-Dimensional Reproducibility of Natural Head Position

    Science.gov (United States)

    2012-04-12

    the “Six Elements to Orofacial Harmony”. He advocated using his Element II Analysis with natural head orientation for treatment planning, since “it...temporomandibular disorders, neck pain , headache, dentofacial structures, mandibular length, mandibular position, mandibular divergency and overjet (Cuccia, 2009

  2. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  3. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  4. 32 CFR 154.13 - Sensitive positions.

    Science.gov (United States)

    2010-07-01

    ...) Critical-sensitive. (A) Access to Top Secret information. (B) Development or approval of plans, policies... report required in subpart K. (e) Billet control system for Top Secret. (1) To standardize and control the issuance of Top Secret clearances within the Department of Defense, a specific designated billet...

  5. Development of 2D-ACAR apparatus using position-sensitive photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Yasuyoshi; Saito, Haruo; Iwata, Tetsuya; Nagashima, Yasuyuki; Hyodo, Toshio [Tokyo Univ. (Japan). Coll. of Arts and Sciences; Uchida, Hiroshi; Omura, Tomohide

    1997-03-01

    A new two-dimensional angular correlation of annihilation radiation apparatus is described. Position-sensitive photomultiplier tubes coupled with two-dimensional arrays of small BGO scintillator blocks make simple and compact position-sensitive {gamma}-ray detectors. With a sample-detector distance of 5m, an angular resolution of 1.1 mrad FWHM and a coincidence count rate of {approx}2.4 c.p.s. per mCi are obtained. Its performance is demonstrated by the result of a test measurement for KI crystal in which non-localized positronium exists at low temperatures. (author)

  6. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  7. Use of position sensitive detectors in medicine

    International Nuclear Information System (INIS)

    Soussaline, F.

    1982-10-01

    Medical imagery is a field where developments in physics, engineering and instrumentation can be applied directly to human diagnosis and treatment. The need to detect ever-smaller anomalies and to measure increasingly slight variations in metabolic parameters has led to a high degree of complexity in radiographic, echographic and nuclear medicine instrumentation. The wide-spread use of digital circuits and more generally the development of data processing systems and mathematical algorithms has allowed the introduction of new techniques such as emission and transmission tomography, digitalised radiography, synchronised gamma cardiology and nuclear magnetic resonance. For reasons of brevity this article is confined to the presentation of some concepts and results in the field of computer-assisted tomography and a discussion on the main parameters of imagery systems using position detectors

  8. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  9. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  10. POSSuMUS: a position sensitive scintillating muon SiPM detector

    CERN Document Server

    Ruschke, Alexander

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle’s position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm2 to few m2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module ...

  11. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

    2014-01-01

    We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

  12. Position sensitive detector used to detect beam profile

    International Nuclear Information System (INIS)

    Zhao Xiaoyan; Zhao Zhizheng; Zu Kailing; Zheng Jianhua; Wang Yifang

    2003-01-01

    In order to study the detecting system of the residual-gas beam profile, we introduce the principle and construction of the Position Sensitive Detector (PSD). The performance of PSD is tested. Position resolution, position linearity, detection efficiency and background are obtained

  13. Vantage sensitivity: individual differences in response to positive experiences.

    Science.gov (United States)

    Pluess, Michael; Belsky, Jay

    2013-07-01

    The notion that some people are more vulnerable to adversity as a function of inherent risk characteristics is widely embraced in most fields of psychology. This is reflected in the popularity of the diathesis-stress framework, which has received a vast amount of empirical support over the years. Much less effort has been directed toward the investigation of endogenous factors associated with variability in response to positive influences. One reason for the failure to investigate individual differences in response to positive experiences as a function of endogenous factors may be the absence of adequate theoretical frameworks. According to the differential-susceptibility hypothesis, individuals generally vary in their developmental plasticity regardless of whether they are exposed to negative or positive influences--a notion derived from evolutionary reasoning. On the basis of this now well-supported proposition, we advance herein the new concept of vantage sensitivity, reflecting variation in response to exclusively positive experiences as a function of individual endogenous characteristics. After distinguishing vantage sensitivity from theoretically related concepts of differential-susceptibility and resilience, we review some recent empirical evidence for vantage sensitivity featuring behavioral, physiological, and genetic factors as moderators of a wide range of positive experiences ranging from family environment and psychotherapy to educational intervention. Thereafter, we discuss genetic and environmental factors contributing to individual differences in vantage sensitivity, potential mechanisms underlying vantage sensitivity, and practical implications. 2013 APA, all rights reserved

  14. Three-dimensional conformal breast irradiation in the prone position

    Directory of Open Access Journals (Sweden)

    C. Kurtman

    2003-10-01

    Full Text Available The prone position can be used for the planning of adjuvant radiotherapy after conservative breast surgery in order to deliver less irradiation to lung and cardiac tissue. In the present study, we compared the results of three-dimensional conformal radiotherapy planning for five patients irradiated in the supine and prone position. Tumor stage was T1N0M0 in four patients and T1N1M0 in one. All patients had been previously submitted to conservative breast surgery. Breast size was large in three patients and moderate in the other two. Irradiation in the prone position was performed using an immobilization foam pad with a hole cut into it to accommodate the breast so that it would hang down away from the chest wall. Dose-volume histograms showed that mean irradiation doses reaching the ipsilateral lung were 8.3 ± 3.6 Gy with the patient in the supine position and 1.4 ± 1.0 Gy with the patient in the prone position (P = 0.043. The values for the contralateral lung were 1.3 ± 0.7 and 0.3 ± 0.1 Gy (P = 0.043 and the values for cardiac tissue were 4.6 ± 1.6 and 3.0 ± 1.7 Gy (P = 0.079, respectively. Thus, the dose-volume histograms demonstrated that lung tissue irradiation was significantly lower with the patient in the prone position than in the supine position. Large-breasted women appeared to benefit most from irradiation in the prone position. Prone position breast irradiation appears to be a simple and effective alternative to the conventional supine position for patients with large breasts, since they are subjected to lower pulmonary doses which may cause less pulmonary side effects in the future.

  15. Scintillating fibre detectors using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Drevenak, R.

    1995-01-01

    Scintillating fibre technology has made substantial progress, and has demonstrated great potential for fast tracking and triggering in high luminosity experiments in Particle Physics. Some recent issues of the RD-17 project at CERN are presented for fast and precise readout of scintillating fibre arrays, as well as for upgrade of position-sensitive photomultipliers. Excellent matching of the scintillating fibre and the position-sensitive photomultiplier, in particular in time characteristics, allowed to achieve excellent detector performances, typically a spatial resolution of ∼ 125 μm with time resolution better than 1 ns and detection efficiency greater than 95%. (author)10 refs.; 25 figs.; 1 tab

  16. A setup for measurement of beam stability and position using position sensitive detector for Indus-1

    International Nuclear Information System (INIS)

    Nathwani, R.K.; Joshi, D.K.; Tyagi, Y.; Soni, R.S.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    The 450 MeV electron synchrotron radiation source Indus-1 is operational at RRCAT. A set-up has been developed to measure the relative transverse positional stability of the electron beam and its position with microns resolution using position sensitive photodiodes. The set-up has been installed at the diagnostics beam line of Indus-1. Synchrotron light from photo physics beamline was reflected out by inserting a Ni coated mirror and was focused onto a duo-lateral position sensitive photodiode by using two mirrors of 1.25 meter focal length to obtain unity magnification. The set-up consists of a duo-lateral position sensitive detector (PSD), precision processing electronics and a PC based data acquisition system. A computer program captures the processed signals on to a PC using GPIB interface and displays vertical position of the beam in real time. The paper describes the salient features of the setup developed for measurement of beam stability. (author)

  17. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  18. Sensitivity of GRETINA position resolution to hole mobility

    Energy Technology Data Exchange (ETDEWEB)

    Prasher, V.S. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Cromaz, M. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Merchan, E.; Chowdhury, P. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Crawford, H.L. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lister, C.J. [Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Campbell, C.M.; Lee, I.Y.; Macchiavelli, A.O. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Radford, D.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wiens, A. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-02-21

    The sensitivity of the position resolution of the gamma-ray tracking array GRETINA to the hole charge-carrier mobility parameter is investigated. The χ{sup 2} results from a fit of averaged signal (“superpulse”) data exhibit a shallow minimum for hole mobilities 15% lower than the currently adopted values. Calibration data on position resolution is analyzed, together with simulations that isolate the hole mobility dependence of signal decomposition from other effects such as electronics cross-talk. The results effectively exclude hole mobility as a dominant parameter for improving the position resolution for reconstruction of gamma-ray interaction points in GRETINA.

  19. High counting rate, two-dimensional position sensitive timing RPC

    CERN Document Server

    Petrovici, M.; Simion, V; Bartos, D; Caragheorgheopol, G; Deppner, I; Adamczewski-Musch, J; Linev, S; Williams, MCS; Loizeau, P; Herrmann, N; Doroud, K; Radulescu, L; Constantin, F

    2012-01-01

    Resistive Plate Chambers (RPCs) are widely employed as muon trigger systems at the Large Hadron Collider (LHC) experiments. Their large detector volume and the use of a relatively expensive gas mixture make a closed-loop gas circulation unavoidable. The return gas of RPCs operated in conditions similar to the experimental background foreseen at LHC contains large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents, characterized during the past years, are currently in use. New test allowed understanding of the properties and performance of a large number of purifiers. On that basis, an optimal combination of different filters consisting of Molecular Sieve (MS) 5Å and 4Å, and a Cu catalyst R11 has been chosen and validated irradiating a set of RPCs at the CERN Gamma Irradiation Facility (GIF) for several years. A very important feature of this new configuration is the increase of the cycle duration for each purifier, which results in better system stabilit...

  20. Addressing Curse of Dimensionality in Sensitivity Analysis: How Can We Handle High-Dimensional Problems?

    Science.gov (United States)

    Safaei, S.; Haghnegahdar, A.; Razavi, S.

    2016-12-01

    Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.

  1. Depression reduces perceptual sensitivity for positive words and pictures.

    Science.gov (United States)

    Atchley, Ruth Ann; Ilardi, Stephen S; Young, Keith M; Stroupe, Natalie N; O'Hare, Aminda J; Bistricky, Steven L; Collison, Elizabeth; Gibson, Linzi; Schuster, Jonathan; Lepping, Rebecca J

    2012-01-01

    There is evidence of maladaptive attentional biases for lexical information (e.g., Atchley, Ilardi, & Enloe, 2003; Atchley, Stringer, Mathias, Ilardi, & Minatrea, 2007) and for pictographic stimuli (e.g., Gotlib, Krasnoperova, Yue, & Joormann, 2004) among patients with depression. The current research looks for depressotypic processing biases among depressed out-patients and non-clinical controls, using both verbal and pictorial stimuli. A d' measure (sensitivity index) was used to examine each participant's perceptual sensitivity threshold. Never-depressed controls evidenced a detection bias for positive picture stimuli, while depressed participants had no such bias. With verbal stimuli, depressed individuals showed specific decrements in the detection of positive person-referent words (WINNER), but not with positive non-person-referent words (SUNSHINE) or with negative words. Never-depressed participants showed no such differences across word types. In the current study, depression is characterised both by an absence of the normal positivistic biases seen in individuals without mood disorders (consistent with McCabe & Gotlib, 1995), and by a specific reduction in sensitivity for person-referent positive information that might be inconsistent with depressotypic self-schemas.

  2. POSSuMUS. A position sensitive scintillating muon SiPM detector

    International Nuclear Information System (INIS)

    Ruschke, Alexander

    2014-01-01

    The development of a modular designed large scale scintillation detector with a two-dimensional position sensitivity is presented in this thesis. This novel POsition Sensitive Scintillating MUon SiPM Detector is named POSSuMUS. The POSSuMUS detector is capable to determine the particle's position in two space dimensions with a fast trigger capability. Each module is constructed from two trapezoidal shaped plastic scintillators to form one rectangular shaped detector module. Both trapezoids are optically insulated against each other. In both trapezoids the scintillation light is collected by plastic fibers and guided towards silicon photomultipliers (SiPMs). SiPMs are light sensors which are capable to detect even smallest amounts of light. By combining several detector modules, position sensitive areas from 100 cm 2 to few m 2 are achievable with few readout channels. Therefore, POSSuMUS provides a cost effective detector concept. The position sensitivity along the trapezoidal geometry of one detector module is achieved by the path length dependent amount of detected light for crossing particles. The ratio of the light yields in both trapezoids is calculated. This value corresponds to the position of the particle traversing the detector. A spatial resolution in the order of several mm is foreseen. The position sensitivity along the scintillator module is determined by the propagation time of light to the SiPMs located on opposite sides of the detector. A spatial resolution of few cm is expected for this direction. The POSSuMUS detector is applicable as large area trigger detector with a two dimensional position information of crossing particles. This is suitable in detector tests of large area precesion detectors or for measuring the small angle scattering of cosmic muons. At the beginning of this thesis, the determination of important SiPM characteristics like the breakdown voltage is presented. In the course of this work the detector principle is proven by

  3. Position-sensitive gaseous photomultipliers research and applications

    CERN Document Server

    Francke, Tom; Peskov, Vladimir

    2016-01-01

    Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.

  4. Cylinder gauge measurement using a position sensitive detector

    International Nuclear Information System (INIS)

    St John, W. Doyle

    2007-01-01

    A position sensitive detector (PSD) has been used to determine the diameter of cylindrical pins based on the shift in a laser beam's centroid. The centroid of the light beam is defined here as the weighted average of position by the local intensity. A shift can be observed in the centroid of an otherwise axially symmetric light beam, which is partially obstructed. Additionally, the maximum shift in the centroid is a unique function of the obstructing cylinder diameter. Thus to determine the cylinder diameter, one only needs to detect this maximum shift as the cylinder is swept across the beam

  5. 2 + 1-dimensional traversable wormholes supported by positive energy

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2015-02-01

    We revisit the shapes of the throats of wormholes, including thin-shell wormholes (TSWs) in 2 + 1 dimensions. In particular, in the case of TSWs this is done in a flat 2 + 1-dimensional bulk spacetime by using the standard method of cut-and-paste. Upon departing from a pure time-dependent circular shape i.e., r = a(t) for the throat, we employ a θ-dependent closed loop of the form r = R(t, θ), and in terms of R(t, θ) we find the surface energy density σ on the throat. For the specific convex shapes we find that the total energy which supports the wormhole is positive and finite. In addition, we analyze the general wormhole's throat. By considering the specific equation of r = R(θ) instead of r = r{sub 0} = const., and upon certain choices of functions for R(θ), we find the total energy of the wormhole to be positive. (orig.)

  6. Structural Investigations using a position sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Fruchart, D.; Anne, M.; Wolfers, P.; Lartigue, C.; Roudaut, E.

    1986-01-01

    In the accurate determination of the location of lights atoms such as hydrogen in a metal matrix, several types of difficulty may be encountered. Experimentally, neutron diffraction is the most convenient method for such a structure determination. The use of Position Sensitive Detectors is discussed, and selected examples illustrate the advantages and drawbacks of this type of instrument. Judging from present results, significant improvements in recording technique, data collection and reduction, and structure refinement may be obtained in the near future

  7. A novel method for assessing position-sensitive detector performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Shao, L.; Hero, A.O. III; Koral, K.F.

    1989-01-01

    A marked point process model of a position-sensitive detector is developed which includes the effects of detector efficiency, spatial response, energy response, and source statistics. The average mutual information between the incident distribution of γ rays and the detector response is derived and used as a performance index for detector optimization. A brief example is presented which uses this figure-of-merit for optimization of light guide dimensions for a modular scintillation camera

  8. Position-Sensitive Organic Scintillation Detectors for Nuclear Material Accountancy

    International Nuclear Information System (INIS)

    Hausladen, P.; Newby, J.; Blackston, M.

    2015-01-01

    Recent years have seen renewed interest in fast organic scintillators with pulse shape properties that enable neutron-gamma discrimination, in part because of the present shortage of He3, but primarily because of the diagnostic value of timing and pulse height information available from such scintillators. Effort at Oak Ridge National Laboratory (ORNL) associated with fast organic scintillators has concentrated on development of position-sensitive fast-neutron detectors for imaging applications. Two aspects of this effort are of interest. First, the development has revisited the fundamental limitations on pulseshape measurement imposed by photon counting statistics, properties of the scintillator, and properties of photomultiplier amplification. This idealized limit can then be used to evaluate the performance of the detector combined with data acquisition and analysis such as free-running digitizers with embedded algorithms. Second, the development of position sensitive detectors has enabled a new generation of fast-neutron imaging instruments and techniques with sufficient resolution to give new capabilities relevant to safeguards. Toward this end, ORNL has built and demonstrated a number of passive and active fast-neutron imagers, including a proof-of-concept passive imager capable of resolving individual fuel pins in an assembly via their neutron emanations. This presentation will describe the performance and construction of position-sensing fast-neutron detectors and present results of imaging measurements. (author)

  9. Computed tomography with thermal neutrons and gaseous position sensitive detector

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched 3 He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched 3 He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF 3 detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  10. Application of position-sensitive detectors to positron imaging

    International Nuclear Information System (INIS)

    Yamashita, Takaji; Uchida, Hiroshi; Watanabe, Mitsuo; Omura, Tomohide

    1994-01-01

    Positron imaging including positron emission tomography (PET) is expected to be a promising tool for basic and clinical research, because it makes possible the study of regional chemistry within multiple organs of the body in living human beings and experimental animals. New schemes of high resolution block detectors have been developed to improve the performance of positron imaging systems, which employ small segments of bismuth germanate (BGO) arrays and position-sensitive photomultiplier tubes (PS-PMT). The coincidence detector resolution of less than 2.0 mm in full width at half maximum was achieved with the detectors, which is very close to the theoretical resolution limit in positron imaging. (author)

  11. Fast readout of scintillating fibres using position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Agoritsas, V.; Akchurin, N.; Bergdolt, A.M.; Bing, O.; Bravar, A.; Ditta, J.; Dufournaud, J.; Dyachenko, V.A.; Giacomich, R.; Gorin, A.M.; Kuroda, K.; Magaudda, D.; Newsom, C.; Okada, K.; Onel, Y.; Penzo, A.; Rakhmatov, V.Ye.; Rykalin, V.I.; Salvato, G.; Savin, A.A.; Schiavon, P.; Sillou, D.; Solovyov, Yu.A.; Takeutchi, F.; Tareb-Reyes, M.; Vasilchenko, V.G.; Yoshida, T.; Zaychenko, A.A.

    1994-01-01

    Major progress has recently been achieved in the fast readout of scintillating fibres using position-sensitive photomultipliers (PSPMs). Experimental results obtained with commercially available PSPMs already show a space resolution better than 200 μm, a time resolution of about 1.5 ns with a detection efficiency higher than 90%, and the possibility of separating double hits with a minimum distance of ∼3 mm. An upgrade of PSPMs based on new dynode structures is also in progress. Results obtained with one new PSPM prototype in a magnetic field are also presented. (orig.)

  12. Emulation workbench for position sensitive gaseous scintillation detectors

    International Nuclear Information System (INIS)

    Pereira, L.; Margato, L.M.S.; Morozov, A.; Solovov, V.; Fraga, F. A. F.

    2015-01-01

    Position sensitive detectors based on gaseous scintillation proportional counters with Anger-type readout are being used in several research areas such as neutron detection, search for dark matter and neutrinoless double beta decay. Design and optimization of such detectors are complex and time consuming tasks. Simulations, while being a powerful tool, strongly depend on the light transfer models and demand accurate knowledge of many parameters, which are often not available. Here we describe an alternative approach based on the experimental evaluation of a detector using an isotropic point-like light source with precisely controllable light emission properties, installed on a 3D positioning system. The results obtained with the developed setup at validation conditions, when the scattered light is strongly suppressed show good agreement with simulations

  13. First investigation of a novel 2D position-sensitive

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  14. Beam test of the 2D position sensitive neutron detector

    International Nuclear Information System (INIS)

    Tian Lichao; Chen Yuanbo; Sun Zhijia; Tang Bin; Zhou Jianrong; Qi Huirong; Liu Rongguang; Zhang Jian; Yang Guian; Xu Hong

    2014-01-01

    China Spallation Neutron Source (CSNS), one of the Major scientific apparatuses of the national Eleventh Five-Year Plane, is under construction and three spectrumeters will be constructed in the first phase of the project. A 2D position sensitive neutron detector has been constructed for the Multifunctional Reflect spectrumeter (MR) in Institute of High Energy Physics (IHEP). The basic operation principle of the detector and the test on the residual stress diffractometer of Chinese Advanced Research Reactor (CARR) in China Institute of Atomic Energy (CIAE) is introduced in this paper. The results show that it has a good position resolution of l.18 mm (FWHM) for the neutrons of l.37 A and 2D imaging ability, which is consistent with the theory. It can satisfy the requirements of MR and lays the foundation for the construction of larger neutron detectors. (authors)

  15. Position sensitive detector for X-ray photons

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1988-01-01

    This work reports the theoretical basis and the details of the construction process, characterization and application of gas X-ray position sensitive detectors. The unidimensional detector consists of a gas camera (argon and CH 4 ), a metallic anode, a cathode and a delay line. Details of the construction process are given in order to allow the reproduction of the detector. It has been characterized by measuring its spatial resolution, homogeneity and linerity. The built linear detector has been used to obtain diffraction diagrams from polycrystalline silicon, C 23 H 48 paraffin and glassy carbon. These diagrams have been compared with those obtained under equivalent conditions with a conventional proportional detector by the step scanning method. It has been shown that the detector provides diffraction diagrams of equivalent quality to those obtained by the step scanning method, in appreciably lower time intervals. (author) [pt

  16. Position sensitive silicon detectors inside the Tevatron collider

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Bellettini, G.; Bosi, F.; Bosisio, L.; Cervelli, F.; Del Fabbro, R.; Dell'Orso, M.; Di Virgilio, A.; Focardi, E.; Giannetti, P.; Giorgi, M.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Tonelli, G.; Zetti, F.; Bertolucci, S.; Cordelli, M.; Curatolo, M.; Dulach, B.; Esposito, B.; Giromini, P.; Miscetti, S.; Sansoni, A.

    1986-01-01

    Four position sensitive silicon detectors have been tested inside the Tevatron beam pipe at Fermilab. The system is the prototype of the small angle silicon spectrometer designed to study primarily p-anti p elastic and diffractive cross-sections at the Collider of Fermilab (CDF). Particles in the beam halo during p-anti p storage tests were used to study the performance of the detectors. Efficiency, linearity of response and spatial resolution are shown. Measurements performed at different distances from the beam axis have shown that the detectors could be operated at 8.5 mm from the beam with low rates and no disturbance to the circulating beams. This distance corresponds to about 11 times the standard half-width of the local beam envelope. The behaviour of the detectors with the radiation dose has also been investigated. (orig.)

  17. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  18. Position-sensitive proportional counters using resistance-capacitance position encoding

    International Nuclear Information System (INIS)

    Kopp, M.K.; Borkowski, C.J.

    1975-12-01

    A new method was developed for encoding the position of individual photons, neutrons, or charged particles in proportional counters by using the distributed RC line characteristics of these counters. The signal processing is described and guidelines for the design and operation of these position sensitive proportional counters (PSPCs) are given. Using these guidelines, several prototypic PSPCs were constructed to improve the spatial resolution and shorten the signal processing time; for example, the intrinsic spatial uncertainty was reduced to 28 μ fwhm for alpha particles and 100 μ fwhm for low-energy x rays (2 to 6 keV). Also, the signal processing time was reduced to 0.6 μsec without seriously degrading the spatial resolution. These results have opened new fields of application of the RC position encoding method in imaging distributions of photons, charged particles, or neutrons in nuclear medicine, physics, and radiography

  19. On-line evaluation of position-sensitive detector (PSD) diffraction data

    International Nuclear Information System (INIS)

    Stansfield, R.F.D.; McIntyre, G.J.

    1985-01-01

    The amount of raw data accumulated in a single-crystal diffraction experiment using a two-dimensional Position Sensitive Detector is usually so large that it is impracticable to store it. It is therefore necessary to reduce each local three-dimensional array of counts to a Bragg intensity, in a time not longer than the average time that one reflection is active. The statistically optimum procedure comprises an estimation of the background from a large number of counts, and an integration of peak intensity within a suitable three-dimensional envelope. A typical on-line method is described, using as an example the D19 diffractometer at the Institut Max von Laue - Paul Langevin (ILL) high-flux reactor. Current methods of PSD data reduction are reviewed. These fall into three groups according to the basis of the method used to find the integration envelope: (a) statistical criteria, (b) three-dimensional sigma(I)/I analysis, and (c) pre-calculation of the resolution function. On-line data reduction imposes special requirements on diagnostics to check the precision of the reduced data, especially at the start of an experiment, when any peculiarities must be identified and allowed for in the data-reduction procedure. The diagnostic possibilities resulting from the comparison of local with global characteristics of the background and the integration envelope are discussed. (author)

  20. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  1. Sensitivity and offset calibration for the beam position monitors at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chung, Y.; Barr, D.; Decker, G.; Evans, K. Jr.; Kahana, E.

    1995-01-01

    The beam position monitors (BPMs) play a critically important role in commissioning and operation of accelerators. Accurate determination of the offsets relative to the magnetic axis and sensitivities of individual BPMs is thus needed. We will describe in this paper the schemes for calibrating all of the 360 BPMs for sensitivity and offset in the 7-GeV Advanced Photon Source (APS) storage ring and the results. For the sensitivity calibration, a 2-dimensional map of the BPM response in the aluminum vacuum chamber is obtained theoretically, which is combined with the measured nonlinear response of the BPM electronics. A set of 2-dimensional polynomial coefficients is then obtained to approximate the result analytically. The offset calibration of the BPMs is done relative to the magnetic axis of the quadrupoles using the beam. This avoids the problem arising from various mechanical sources as well as the offset in the processing electronics. The measurement results for the resolution and long-term drift of the BPM electronics shows 0.06-μm/√Hz resolution and 2-μm/hr drift over a period of 1.5 hrs

  2. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

  3. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

    Directory of Open Access Journals (Sweden)

    Georgios Arampatzis

    Full Text Available Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of

  4. Vantage Sensitivity: Environmental Sensitivity to Positive Experiences as a Function of Genetic Differences.

    Science.gov (United States)

    Pluess, Michael

    2017-02-01

    A large number of gene-environment interaction studies provide evidence that some people are more likely to be negatively affected by adverse experiences as a function of specific genetic variants. However, such "risk" variants are surprisingly frequent in the population. Evolutionary analysis suggests that genetic variants associated with increased risk for maladaptive development under adverse environmental conditions are maintained in the population because they are also associated with advantages in response to different contextual conditions. These advantages may include (a) coexisting genetic resilience pertaining to other adverse influences, (b) a general genetic susceptibility to both low and high environmental quality, and (c) a coexisting propensity to benefit disproportionately from positive and supportive exposures, as reflected in the recent framework of vantage sensitivity. After introducing the basic properties of vantage sensitivity and highlighting conceptual similarities and differences with diathesis-stress and differential susceptibility patterns of gene-environment interaction, selected and recent empirical evidence for the notion of vantage sensitivity as a function of genetic differences is reviewed. The unique contribution that the new perspective of vantage sensitivity may make to our understanding of social inequality will be discussed after suggesting neurocognitive and molecular mechanisms hypothesized to underlie the propensity to benefit disproportionately from benevolent experiences. © 2015 Wiley Periodicals, Inc.

  5. Extended forward sensitivity analysis of one-dimensional isothermal flow

    International Nuclear Information System (INIS)

    Johnson, M.; Zhao, H.

    2013-01-01

    Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)

  6. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  7. First results from Position-Sensitive quantum calorimeters using Mo/Au Transition-Edge Sensors

    International Nuclear Information System (INIS)

    Figueroa-Feliciano, Enectali; Chervenak, Jay; Finkbeiner, Fred M.; Li, Mary; Lindeman, Mark A.; Stahle, Caroline K.; Stahle, Carl M.

    2002-01-01

    We report the first results from a high-energy-resolution imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (PoST). A PoST is a quantum calorimeter consisting of two Transition Edge Sensors (TESs) on the ends of a long absorber to do one dimensional imaging spectroscopy. Comparing rise time and energy information, the position of the event in the PoST is determined. Energy is inferred from the sum of the two pulses. We have fabricated 7- and 15-pixel PoSTs using Mo-Au TESs and Au absorbers. We have achieved 32 eV FWHM energy resolution at 1.5 keV with a 7-pixel PoST calorimeter

  8. Antimicrobial sensitivity pattern of gram positive CSF isolates in ...

    African Journals Online (AJOL)

    100%) to Linezolid, Vancomycin and Piperacillin-Tazobactam. However, Staphylococcus aureus were 100% sensitive to Linezolid and Vancomycin but were only 87.5% sensitive to Piperacillin-Tazobactam combination. The Streptococcus ...

  9. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  10. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  11. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  12. Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets

    International Nuclear Information System (INIS)

    Embrechts, M.J.

    1982-02-01

    A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium

  13. A rotation-symmetric, position-sensitive annular detector for maximum counting rates

    International Nuclear Information System (INIS)

    Igel, S.

    1993-12-01

    The Germanium Wall is a semiconductor detector system containing up to four annular position sensitive ΔE-detectors from high purity germanium (HPGe) planned to complement the BIG KARL spectrometer in COSY experiments. The first diode of the system, the Quirl-detector, has a two dimensional position sensitive structure defined by 200 Archimedes' spirals on each side with opposite orientation. In this way about 40000 pixels are defined. Since each spiral element detects almost the same number of events in an experiment the whole system can be optimized for maximal counting rates. This paper describes a test setup for a first prototype of the Quirl-detector and the results of test measurements with an α-source. The detector current and the electrical separation of the spiral elements were measured. The splitting of signals due to the spread of charge carriers produced by an incident ionizing particle on several adjacent elements was investigated in detail and found to be twice as high as expected from calculations. Its influence on energy and position resolution is discussed. Electronic crosstalk via signal wires and the influence of noise from the magnetic spectrometer has been tested under experimental conditions. Additionally, vacuum feedthroughs based on printed Kapton foils pressed between Viton seals were fabricated and tested successfully concerning their vacuum and thermal properties. (orig.)

  14. Highly sensitive three-dimensional interdigitated microelectrode for microparticle detection using electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Chang, Fu-Yu; Chen, Ming-Kun; Jang, Ling-Sheng; Wang, Min-Haw

    2016-01-01

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticle detection (e.g. cell quantity detection) using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for particles in the sensing area. Various quantities of particles were captured in Dulbecco’s modified Eagle medium and their impedances were measured. With the 3D IME, the particles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model. The impedance (1269 Ω) of 69 particles was used to estimate the particle quantity (68 particles) with 98.6% accuracy using a parabolic regression curve at 500 kHz. (paper)

  15. Assessing the efficiency position sensitive gaseous X-rays detectors

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Souza, Maria Ines Silvani; Lopes, Ricardo T.

    2009-01-01

    Full text: The efficiency of gaseous X-ray detectors can be evaluated from tabulated data, but this approach assumes that the whole detector volume is permeated by the electrostatic field produced by the anode-cathode. Indeed, the usual detectors are comprised by a cylindrical hull acting as cathode containing a wire at its axis as anode, a configuration which foods the space between them with the electrostatic field. Some specially designed detectors, however, as Position Sensitive Detectors, contain regions which are not submitted to the electrostatic field, and hence, their efficiency could not be assessed from the tabulated data. Direct measurements of this efficiency would require a mono-chromator or set of pure mono-energetic X-rays sources. As only very few of them are really mono-energetic, the detector response to a given energy would be spoiled by to the concomitant contribution of other energies. Yet, the information would not be completely lost, but only concealed due to the convolution carried out by the detector. Therefore, a proper unfolding would be capable to recover the information, yielding the individual detector efficiency for each of the contributing energies. The degraded information is retrieved in this work through a proper mathematical unfolding of the detector response, when exposed to Bremsstrahlung spectra from an X-ray tube submitted to different voltages. For this purpose, Lorentzian functions have been fitted to these spectra - obtained with a NaI(Tl) spectrometer - in order to characterize them with proper parameters. The mathematical convolution of these functions with a theoretical detector efficiency curve yields, after integration, values which, confronted with those experimentally measured, allow the determination of the parameters of the efficiency curve. As some parameters of this curve are well known, it is possible to represent it by proper functions. For argon-filled detectors, for instance, this efficiency has a

  16. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  17. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hust, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gresshoff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  18. A microprogrammable high-speed data collection system for position sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hashizume, H.

    1984-01-01

    A high-speed data acquisition system has been designed which collects digital data from one- and two-dimensional position sensitive X-ray detectors at a maximum average data rate of 1 MHz. The system consists of two separate fast buffer memories, a 64 K word by 20-bit main storage, two timers, a display controller, a computer interface and a keyboard, controlled by a specially designed microprogrammable microprocessor. Data collection is performed by executing a microprogram stored in the control storage; data coming from a detector are first accumulated in a small but fast buffer memory by hardware and transferred to the main storage under control of the microprogram. This design not only permits time-resolved data collections but also provides maximum speed, flexibility and cost-effectiveness simultaneously. The system also accepts data from integrated detectors such as TV cameras. The system has been designed for use in experiments at conventional and synchrotron X-ray sources. (orig.)

  19. Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector

    Directory of Open Access Journals (Sweden)

    Omer Sise

    2015-01-01

    Full Text Available Practical analytic equations, for the ideal field, and numerical results from SIMION simulations, for the fringing field, are presented for the exit radius rπ and transit time tπ of electrons in a hemispherical deflector analyzer (HDA over a wide range of analyzer parameters. Results are presented for a typically dimensioned HDA with mean radius R-=101.6 mm and interradial separation ΔR=R2-R1=58.4 mm able to accommodate a 40 mm diameter position sensitive detector (PSD. Results for three different entry positions R0 are compared: R0=R- (the conventional central entry and two displaced (paracentric entries: R0=82.55 mm and R0=116 mm. Exit spreads Δrπ, Δtπ and base energy resolution ΔEB are computed for HDA pass energies E0=10, 100, 500, and 1000 eV, entry aperture sizes Δr0≤1.5 mm, entry angular spreads |αmax|≤5°, and an electron beam with relative energy spread δE/E0≤0.4%. Overall, under realistic conditions, both paracentric entries demonstrate near ideal field behavior and clear superiority over the conventional entry at R0=R-. The R0=82.55 mm entry has better absolute energy and time spread resolutions, while the R0=116 mm has better relative energy resolutions, both offering attractive alternatives for time-of-flight and coincidence applications where both energy and timing resolutions are important.

  20. Computer modelling of position-sensitive scintillator detectors

    International Nuclear Information System (INIS)

    Schelten, J.; Kurz, R.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    The essential properties of a two-dimensional PSD consisting of 7 x 7 circular PMs of diameter D = 68 mm, optically coupled to a glass block disperser of thickness H, and of a thin glass scintillator which is optically decoupled from the disperser are analyzed by computer-simulation of the detector geometry which determines the light distribution on rows and columns of PMs for a neutron capture event and the electronic signal handling which leads to the response function Q(x,y). The computer simulations were performed in order to investigate geometrical variations, such as PMs with a square photo-cathode, a hexagonal arrangement, the effect of the disperser thickness and of conical condensers in front of the PMs and edge-effects due to the finite size of the disperser. The linearity of the detector can be optimised by adjusting three smoothing parameters S, S' and S''. These parameters can be introduced if the signal processing, which determines a neutron event, is based on a course selection of three PM columns and three rows followed by a weighted pulse height division for a final determination of the x and y coordinates. This paper briefly describes the simulations and presents the calculated results which refer closely to the two-dimensional PSD which is being built in the Laboratory. (author)

  1. Ventilatory sensitivity to mild asphyxia: prone versus supine sleep position

    OpenAIRE

    Galland, B; Bolton, D; Taylor, B; Sayers, R; Williams, S

    2000-01-01

    AIMS—To compare the effects of prone and supine sleep position on the main physiological responses to mild asphyxia: increase in ventilation and arousal.
METHODS—Ventilatory and arousal responses to mild asphyxia (hypercapnia/hypoxia) were measured in 53 healthy infants at newborn and 3 months of age, during quiet sleep (QS) and active sleep (AS), and in supine and prone sleep positions. The asphyxial test mimicked face down rebreathing by slowly altering the inspired air: C...

  2. Peak-shape analysis for protein neutron crystallography with position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1983-01-01

    In neutron protein crystallography, the use of position-sensitive detectors controlled by a modern data-acquisition system permits new approaches to data-collection strategies. Instead of dealing with conventional scans, like the theta-2theta scan, that provide an integrated intensity as a function of a rotational parameter, the computer-linked counter can be used to produce a three-dimensional reflection profile. As the crystal steps (δ#betta#) through a reflection, the observed data for each step are stored in an external memory as a function of extent in 2theta and height (y) of a reflection. In this space, the reflection will be a three-dimensional distribution with dimensions determined by such basic geometrical conditions as δlambda, crystal size, mosaic spread, counter-resolution, and beam-collimation parameters. Knowledge of the interaction of these basic parameters will allow the design of optimal beam optics and will permit the delineation of the reflection from the background and permit, therefore, an accurate intensity determination. (Auth.)

  3. Analytical expression for position sensitivity of linear response beam position monitor having inter-electrode cross talk

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh, E-mail: mukeshk@rrcat.gov.in [Beam Diagnostics Section, Indus Operations, Beam Dynamics & Diagnostics Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094 (India); Ojha, A.; Garg, A.D.; Puntambekar, T.A. [Beam Diagnostics Section, Indus Operations, Beam Dynamics & Diagnostics Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India); Senecha, V.K. [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094 (India); Ion Source Lab., Proton Linac & Superconducting Cavities Division, Raja Ramanna Centre for Advanced Technology, Indore, 452013 MP (India)

    2017-02-01

    According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.

  4. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  5. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  6. Centroid finding method for position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Boie, R.A.

    1979-10-01

    A new centroid finding method for all detectors where the signal charge is collected or induced on strips of wires, or on subdivided resistive electrodes, is presented. The centroid of charge is determined by convolution of the sequentially switched outputs from these subdivisions or from the strips with a linear centroid finding filter. The position line width is inversely proportional to N/sup 3/2/, where N is the number of subdivisions

  7. Centroid finding method for position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Boie, R.A.

    1980-01-01

    A new centroid finding method for all detectors where the signal charge is collected or induced on strips or wires, or on subdivided resistive electrodes, is presented. The centroid of charge is determined by convolution of the sequentially switched outputs from these subdivisions or from the strips with a linear centroid finding filter. The position line width is inversely proportional to N 3 sup(/) 2 , where N is the number of subdivisions. (orig.)

  8. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  9. Plastic scintillators utilization in position sensitive detection systems

    International Nuclear Information System (INIS)

    Garcia, Marcelo Bernardes; Soares, Adalberto Jose; Baptista Filho, Benedito Dias

    2002-01-01

    This paper shows the viability of using a plastic scintillator detector to determine the one dimension position of a radioactive source. The experiments were performed using collimated 99m Tc sources of several activities supplied by the Centro de Radiofarmacia (from IPEN), and a 15 cm long plastic scintillator with diameter 5,08 cm, produced by the Centro de Tecnologia das Radiacoes (also from IPEN). The spectrum was obtained using the Genie 2000 software, and the results processed using a neural network specially developed for the proposed application. The final results demonstrate the viability of the proposed application. (author)

  10. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  11. Simulation and measurement of short infrared pulses on silicon position sensitive device

    International Nuclear Information System (INIS)

    Krapohl, D; Esebamen, O X; Nilsson, H E; Thungstroem, G

    2011-01-01

    Lateral position sensitive devices (PSD) are important for triangulation, alignment and surface measurements as well as for angle measurements. Large PSDs show a delay on rising and falling edges when irradiated with near infra-red light. This delay is also dependent on the spot position relative to the electrodes. It is however desirable in most applications to have a fast response. We investigated the responsiveness of a Sitek PSD in a mixed mode simulation of a two dimensional full sized detector. For simulation and measurement purposes focused light pulses with a wavelength of 850 nm, duration of 1μs and spot size of 280μm were used. The cause for the slopes of rise and fall time is due to time constants of the device capacitance as well as the photo-generation mechanism itself. To support the simulated results, we conducted measurements of rise and fall times on a physical device. Additionally, we quantified the homogeneity of the device by repositioning a spot of light from a pulsed ir-laser diode on the surface area.

  12. Cellular automaton-based position sensitive detector equalization

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  13. 1-D position sensitive single carrier semiconductor detectors

    International Nuclear Information System (INIS)

    Zhong He; Knoll, G.F.; Wehe, D.K.; Rojeski, R.; Mastrangelo, C.H.; Hammig, M.; Barrett, C.; Uritani, A.

    1996-01-01

    A single polarity charge sensing method has been studied using coplanar electrodes on 5 mm cubes of CdZnTe γ-ray detectors. This method can ameliorate the hole trapping problem of room-temperature semiconductor detectors. Our experimental results confirm that the energy resolution is dramatically improved compared with that obtained using the conventional readout method, but is still about an order of magnitude worse than the theoretical limit. A method to obtain the γ-ray interaction depth between the cathode and the anode is presented here. This technique could be used to correct for the electron trapping as a function of distance from the coplanar electrodes. Experimental results showed that a position resolution of about 0.9 mm FWHM at 122 keV can be obtained. These results will be of interest in the design of higher performance room-temperature semiconductor γ-ray detectors. (orig.)

  14. Cellular automaton-based position sensitive detector equalization

    International Nuclear Information System (INIS)

    Ferrando, Nestor; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M.

    2009-01-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  15. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  16. Positional and Dimensional Accuracy Assessment of Drone Images Geo-referenced with Three Different GPSs

    Science.gov (United States)

    Cao, C.; Lee, X.; Xu, J.

    2017-12-01

    Unmanned Aerial Vehicles (UAVs) or drones have been widely used in environmental, ecological and engineering applications in recent years. These applications require assessment of positional and dimensional accuracy. In this study, positional accuracy refers to the accuracy of the latitudinal and longitudinal coordinates of locations on the mosaicked image in reference to the coordinates of the same locations measured by a Global Positioning System (GPS) in a ground survey, and dimensional accuracy refers to length and height of a ground target. Here, we investigate the effects of the number of Ground Control Points (GCPs) and the accuracy of the GPS used to measure the GCPs on positional and dimensional accuracy of a drone 3D model. Results show that using on-board GPS and a hand-held GPS produce a positional accuracy on the order of 2-9 meters. In comparison, using a differential GPS with high accuracy (30 cm) improves the positional accuracy of the drone model by about 40 %. Increasing the number of GCPs can compensate for the uncertainty brought by the GPS equipment with low accuracy. In terms of the dimensional accuracy of the drone model, even with the use of a low resolution GPS onboard the vehicle, the mean absolute errors are only 0.04 m for height and 0.10 m for length, which are well suited for some applications in precision agriculture and in land survey studies.

  17. Flat Panel PMT: advances in position sensitive photodetection

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Trotta, C.; Cinti, M.N.; Bennati, P.; Trotta, G.; Iurlaro, G.; Montani, L.; Ridolfi, S.; Cusanno, F.; Garibaldi, F.

    2003-01-01

    Over the last ten years there was being a strong advancement in photodetection. Different application fields are involved in their use in particular high energy physics, astrophysics and nuclear medicine. They usually work by coupling a scintillation crystal and more recent scintillation arrays with pixel size as small as 0.5 mm. PSPMT represents today the most ready technology for photodetection with large detection areas and very high spatial resolution. Flat panel PMT represents the last technological advancement. Its dimension is 50x50 mm 2 with a narrow peripheral dead zone (0.5 mm final goal). Its compactness allow to assemble different modules closely packed, achieving large detection areas with an effective active area of 97%. In this paper we analyze the imaging performances of PSPMT by coupling two scintillation arrays and by light spot scanning of photocathode to evaluate the linearity position response, spatial resolution and uniformity gain response as a function of light distribution spread and the number of photoelectrons generated on photocathode. The results point out a very narrow PMT intrinsic charge spread and low cross-talk between anodes. Energy resolution and spatial resolution show a good linearity with DRF variation. An unexpected intra-anode gain variation is carried out. In this paper we present the results obtained with this PSPMT regarding imaging performances principally addressed to nuclear medicine application

  18. Determination of aerodynamic sensitivity coefficients based on the three-dimensional full potential equation

    Science.gov (United States)

    Elbanna, Hesham M.; Carlson, Leland A.

    1992-01-01

    The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.

  19. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories.

    Science.gov (United States)

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2016-06-14

    A false positive is the mistake of inferring an effect when none exists, and although α controls the false positive (Type I error) rate in classical hypothesis testing, a given α value is accurate only if the underlying model of randomness appropriately reflects experimentally observed variance. Hypotheses pertaining to one-dimensional (1D) (e.g. time-varying) biomechanical trajectories are most often tested using a traditional zero-dimensional (0D) Gaussian model of randomness, but variance in these datasets is clearly 1D. The purpose of this study was to determine the likelihood that analyzing smooth 1D data with a 0D model of variance will produce false positives. We first used random field theory (RFT) to predict the probability of false positives in 0D analyses. We then validated RFT predictions via numerical simulations of smooth Gaussian 1D trajectories. Results showed that, across a range of public kinematic, force/moment and EMG datasets, the median false positive rate was 0.382 and not the assumed α=0.05, even for a simple two-sample t test involving N=10 trajectories per group. The median false positive rate for experiments involving three-component vector trajectories was p=0.764. This rate increased to p=0.945 for two three-component vector trajectories, and to p=0.999 for six three-component vectors. This implies that experiments involving vector trajectories have a high probability of yielding 0D statistical significance when there is, in fact, no 1D effect. Either (a) explicit a priori identification of 0D variables or (b) adoption of 1D methods can more tightly control α. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Position sensitive photon detectors using epitaxial InGaAs/InAlAs quantum wells

    International Nuclear Information System (INIS)

    Ganbold, T.; Antonelli, M.; Cautero, G.; Jark, H.; Eichert, D.M.; Cucini, R.; Menk, R.H.; Biasiol, G.

    2014-01-01

    This work deals with the investigation of novel position-sensitive devices based on InGaAs/InAlAs quantum wells, which could be applied to several applications of either synchrotron or conventional light sources. Such devices may be used as fast and efficient detectors due to the direct, low-energy band gap and high electron mobility at room temperature. Metamorphic In 0.75 Ga 0.25 As/In 0.75 Al 0.25 As quantum wells containing a two-dimensional electron gas were grown by molecular beam epitaxy. Two devices with size of 5 × 5 mm 2 were prepared by using optical lithography. In the first, the active layers were segmented into four electrically insulated quadrants. Indium ohmic contacts were realized on the corner of each quadrant (for readout) and on the back surface (for bias). In the second, the quantum well was left unsegmented and covered by 400 nm of Al providing a single bias electrode, while four readout electrodes were fabricated on the back side by depositing and segmenting a Ni/Ge/Au layer. Photo-generated carriers can be collected at the readout electrodes by biasing from either the QW side or the back side of the devices during beam exposure. Individual currents obtained from each electrode allow monitoring of both the position and the intensity of the impinging beam for photon energies ranging from visible to hard X-ray. Such detector prototypes were tested with synchrotron radiation. Moreover, the position of the beam can be estimated with a precision of 800 nm in the segmented QW. A lower precision of 10 μm was recorded in the unsegmented QW due to the charge diffusion through the 500-μm-thick wafer, with however a lower electronic noise due to the better uniformity of the contacts

  1. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  2. Use of Opioid Medications for Employees in Critical Safety or Security Positions and Positions with Safety Sensitive Duties

    Science.gov (United States)

    2017-01-30

    can cause harm) to the physical well-being of or jeopardize the security of the employee , co-workers, customers or the general public through a lapse...DEPARTMENT OF THE ARMY US ARMY PUBLIC HEALTH CENTER 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MARYLAND 21010-5403 Directorate of Clinical... Employees in Critical Safety or Security Positions and Positions with Safety Sensitive Duties. 1. REFERENCES. A. Army Regulation 40-5, Preventive

  3. A position-sensitive start detector for time-of-flight measurement

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Shikazono, Naomoto; Isoyama, Goro.

    1978-08-01

    A position-sensitive start detector for a time-of-flight measurement is described. In this detector microchannel plates were used to obtain time and position signals simultaneously. A time resolution of 121 psec FWHM and a position resolution of 0.28 mm FWHM were obtained for α-particles from an 241 Am source. (auth.)

  4. The measurement of the radioactive aerosol diameter by position sensitive detectors, 3

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Nakamoto, Atsushi; Kanamori, Masashi; Seki, Akio.

    1981-10-01

    The measurement of the diameter of radioactive aerosol, in particular plutonium aerosol, is very important for the internal dose estimation. Determination of the diameter of radioactive aerosol is performed by using the position sensitive detectors. Position sensitive semiconductor detectors and Scintillation detectors with IIT tube are used as the position sensitive detector. The filter paper with the radioactive aerosols is contacted to the PSD which is connected to the data processor so that the diameter of the aerosol is calculated from the measured radioactivity. (author)

  5. Analysis of interfractional variations in pancreatic position based on four-dimensional computed tomography

    International Nuclear Information System (INIS)

    Shiinoki, Takehiro; Itoh, Akio; Shibuya, Keiko; Nakamura, Mitsuhiro; Nakamura, Akira; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2010-01-01

    The purpose of this study was to assess inter-fractional variations in pancreatic position using four-dimensional computed tomography (4D-CT) and to find the suitable phase of respiration for breath-holding. The variations in respiratory motion range during treatment course and inter-fractional variations in pancreatic positions were not negligible; however, our study suggested that breath-holding at end-exhalation with some coaching techniques might be considerable one of the non-invasive approaches to get higher positional reproducibility of pancreatic tumors. (author)

  6. Two-dimensional cross-section sensitivity and uncertainty analysis of the LBM experience at LOTUS

    International Nuclear Information System (INIS)

    Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.

    1989-01-01

    In recent years, the LOTUS fusion blanket facility at IGA-EPF in Lausanne provided a series of irradiation experiments with the Lithium Blanket Module (LBM). The LBM has both realistic fusion blanket and materials and configuration. It is approximately an 80-cm cube, and the breeding material is Li 2 . Using as the D-T neutron source the Haefely Neutron Generator (HNG) with an intensity of about 5·10 12 n/s, a series of experiments with the bare LBM as well as with the LBM preceded by Pb, Be and ThO 2 multipliers were carried out. In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S n -transport code ONEDANT, the two-dimensional finite element S n -transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. For the nucleonic transport calculations, three 187-neutron-group libraries are presently available: MATXS8A and MATXS8F based on ENDF/B-V evaluations and MAT187 based on JEF/EFF evaluations. COVFILS-2, a 74-group library of neutron cross-sections, scattering matrices and covariances, is the data source for SENSIBL; the 74-group structure of COVFILS-2 is a subset of the Los Alamos 187-group structure. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed

  7. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    Science.gov (United States)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  8. A New Three-Dimensional Indoor Positioning Mechanism Based on Wireless LAN

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2014-01-01

    Full Text Available The researches on two-dimensional indoor positioning based on wireless LAN and the location fingerprint methods have become mature, but in the actual indoor positioning situation, users are also concerned about the height where they stand. Due to the expansion of the range of three-dimensional indoor positioning, more features must be needed to describe the location fingerprint. Directly using a machine learning algorithm will result in the reduced ability of classification. To solve this problem, in this paper, a “divide and conquer” strategy is adopted; that is, first through k-medoids algorithm the three-dimensional location space is clustered into a number of service areas, and then a multicategory SVM with less features is created for each service area for further positioning. Our experiment shows that the error distance resolution of the approach with k-medoids algorithm and multicategory SVM is higher than that of the approach only with SVM, and the former can effectively decrease the “crazy prediction.”

  9. An X-ray gas position sensitive detector: construction and characterization

    International Nuclear Information System (INIS)

    Barbosa, A.F.; Gabriel, A.; Gabriel, A.; Craievich, A.

    1988-01-01

    A linear x-ray gas position sensitive detector with delay line readout has been constructed. The detector is described, characterized and used for detecting x-ray diffraction patterns from polycrystals. (author) [pt

  10. A Synthesizable VHDL Model of the Exact Solution for Three-dimensional Hyperbolic Positioning System

    Directory of Open Access Journals (Sweden)

    Ralph Bucher

    2002-01-01

    Full Text Available This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a cell and the signal time of arrival (TOA from the mobile to each station. The detailed derivation of the steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C + + program using real numbers was used as a benchmark for the accuracy and precision of the VHDL model. The model can be easily synthesized for low power hardware implementation.

  11. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    Science.gov (United States)

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  12. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.

    Science.gov (United States)

    Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.

    Science.gov (United States)

    Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo

    2017-06-01

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  14. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br

    2008-04-14

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.

  15. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.

    2008-01-01

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them

  16. Asymptotic iteration method solutions to the d-dimensional Schroedinger equation with position-dependent mass

    International Nuclear Information System (INIS)

    Yasuk, F.; Tekin, S.; Boztosun, I.

    2010-01-01

    In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.

  17. A highly-sensitive label-free biosensor based on two dimensional photonic crystals with negative refraction

    Science.gov (United States)

    Malmir, Narges; Fasihi, Kiazand

    2017-11-01

    In this work, we present a novel high-sensitive optical label-free biosensor based on a two-dimensional photonic crystal (2D PC). The suggested structure is composed of a negative refraction structure in a hexagonal lattice PC, along with a positive refraction structure which is arranged in a square lattice PC. The frequency shift of the transmission peak is measured respect to the changes of refractive indices of the studied materials (the blood plasma, water, dry air and normal air). The studied materials are filled into a W1 line-defect waveguide which is located in the PC structure with positive refraction (the microfluidic nanochannel). Our numerical simulations, which are based on finite-difference time-domain (FDTD) method, show that in the proposed structure, a sensitivity about 1100 nm/RIU and a transmission efficiency more than 75% can be achieved. With this design, to the best of our knowledge, the obtained sensitivity and the transmission efficiency are one of the highest values in the reported PC label-free biosensors.

  18. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  19. Properties of the center of gravity as an algorithm for position measurements: Two-dimensional geometry

    CERN Document Server

    Landi, Gregorio

    2003-01-01

    The center of gravity as an algorithm for position measurements is analyzed for a two-dimensional geometry. Several mathematical consequences of discretization for various types of detector arrays are extracted. Arrays with rectangular, hexagonal, and triangular detectors are analytically studied, and tools are given to simulate their discretization properties. Special signal distributions free of discretized error are isolated. It is proved that some crosstalk spreads are able to eliminate the center of gravity discretization error for any signal distribution. Simulations, adapted to the CMS em-calorimeter and to a triangular detector array, are provided for energy and position reconstruction algorithms with a finite number of detectors.

  20. Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si

    Science.gov (United States)

    Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser

    2018-03-01

    Various configurations like p-n junctions, metal-semiconductor Schottky barriers, and metal-oxide-semiconductor structures have been widely used in position-sensitive detectors. In this report, we propose a PEDOT:PSS/n-Si heterojunction as a hybrid organic/inorganic configuration for position-sensitive detectors. The influence of the thickness of the PEDOT:PSS layer, the wavelength of incident light, and the intensity of illumination on the device performance are investigated. The hybrid PSD exhibits very high sensitivity (>100 mV/mm), excellent nonlinearity (0.995) with a response time of heterojunction are very promising for developing a new class of position-sensitive detectors based on the hybrid organic/inorganic junctions.

  1. A digital divider with extension bits for position-sensitive detectors

    International Nuclear Information System (INIS)

    Koike, Masaki; Hasegawa, Ken-ichi

    1988-01-01

    Digitizing errors produced in a digital divider for position-sensitive detectors have been reduced by adding extension bits to data bits. A relation between the extension bits and the data bits to obtain perfect position uniformity is also given. A digital divider employing 10 bit ADCs and 6 bit extension circuits has been constructed. (orig.)

  2. An Evaluation of Two Internal Surrogates for Determining the Three-Dimensional Position of Peripheral Lung Tumors

    NARCIS (Netherlands)

    Spoelstra, F.O.B.; Sornsen de Koste, van J.R.; Vincent, A.D.; Cuijpers, J.P.; Slotman, B.J.; Senan, S.

    2009-01-01

    Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed

  3. Maternal sensitivity and latency to positive emotion following challenge: pathways through effortful control.

    Science.gov (United States)

    Conway, Anne; McDonough, Susan C; Mackenzie, Michael; Miller, Alison; Dayton, Carolyn; Rosenblum, Katherine; Muzik, Maria; Sameroff, Arnold

    2014-01-01

    The ability to self-generate positive emotions is an important component of emotion regulation. In this study, we focus on children's latency to express positive emotions following challenging situations and assess whether this ability operates through early maternal sensitivity and children's effortful control. Longitudinal relations between maternal sensitivity, infant negative affect, effortful control, and latency to positive emotion following challenge were examined in 156 children who were 33 months of age. Structural equation models supported the hypothesis that maternal sensitivity during infancy predicted better effortful control and, in turn, shorter latencies to positive emotions following challenge at 33 months. Directions for future research are discussed. © 2014 Michigan Association for Infant Mental Health.

  4. Energy Efficient Position-Based Three Dimensional Routing for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jeongdae Kim

    2008-04-01

    Full Text Available In this paper, we focus on an energy efficient position-based three dimensional (3D routing algorithm using distance information, which affects transmission power consumption between nodes as a metric. In wireless sensor networks, energy efficiency is one of the primary objectives of research. In addition, recent interest in sensor networks is extended to the need to understand how to design networks in a 3D space. Generally, most wireless sensor networks are based on two dimensional (2D designs. However, in reality, such networks operate in a 3D space. Since 2D designs are simpler and easier to implement than 3D designs for routing algorithms in wireless sensor networks, the 2D assumption is somewhat justified and usually does not lead to major inaccuracies. However, in some applications such as an airborne to terrestrial sensor networks or sensor networks, which are deployed in mountains, taking 3D designs into consideration is reasonable. In this paper, we propose the Minimum Sum of Square distance (MSoS algorithm as an energy efficient position-based three dimensional routing algorithm. In addition, we evaluate and compare the performance of the proposed routing algorithm with other algorithms through simulation. Finally, the results of the simulation show that the proposed routing algorithm is more energy efficient than other algorithms in a 3D space.

  5. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    International Nuclear Information System (INIS)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R.

    2016-01-01

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO_2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO_2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  6. Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media

    Energy Technology Data Exchange (ETDEWEB)

    Ameri, Shideh Kabiri; Singh, Pramod K.; Sonkusale, Sameer R., E-mail: sameer@ece.tufts.edu

    2016-08-31

    In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO{sub 2}), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO{sub 2}) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. - Graphical abstract: (a) Test setup – Direct rat blood serum pH measurements (b) Measured transfer characteristics of the transistor for blood serum at different pH values, and (c) Zoomed in version around direct point. - Highlights: • A three-dimensional graphene transistor for pH sensing is presented. • It shows sensitivity of 71 ± 7 mV/pH even in high ionic strength media. • High sensitivity attributed to 3D foam structure and all-around liquid gating. • Enables real-time pH sensing in biological media without need of desaltation.

  7. Automatic detection of patient identification and positioning errors in radiation therapy treatment using 3-dimensional setup images.

    Science.gov (United States)

    Jani, Shyam S; Low, Daniel A; Lamb, James M

    2015-01-01

    To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by

  8. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode

    KAUST Repository

    Tétreault, Nicolas

    2011-11-09

    Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO2, or TiO 2 host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated. © 2011 American Chemical Society.

  9. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode

    KAUST Repository

    Té treault, Nicolas; Arsenault, É ric; Heiniger, Leo-Philipp; Soheilnia, Navid; Brillet, Jé ré mie; Moehl, Thomas; Zakeeruddin, Shaik; Ozin, Geoffrey A.; Grä tzel, Michael

    2011-01-01

    Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO2, or TiO 2 host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated. © 2011 American Chemical Society.

  10. An educationally inspired illustration of two-dimensional Quantitative Microbiological Risk Assessment (QMRA) and sensitivity analysis.

    Science.gov (United States)

    Vásquez, G A; Busschaert, P; Haberbeck, L U; Uyttendaele, M; Geeraerd, A H

    2014-11-03

    Quantitative Microbiological Risk Assessment (QMRA) is a structured methodology used to assess the risk involved by ingestion of a pathogen. It applies mathematical models combined with an accurate exploitation of data sets, represented by distributions and - in the case of two-dimensional Monte Carlo simulations - their hyperparameters. This research aims to highlight background information, assumptions and truncations of a two-dimensional QMRA and advanced sensitivity analysis. We believe that such a detailed listing is not always clearly presented in actual risk assessment studies, while it is essential to ensure reliable and realistic simulations and interpretations. As a case-study, we are considering the occurrence of listeriosis in smoked fish products in Belgium during the period 2008-2009, using two-dimensional Monte Carlo and two sensitivity analysis methods (Spearman correlation and Sobol sensitivity indices) to estimate the most relevant factors of the final risk estimate. A risk estimate of 0.018% per consumption of contaminated smoked fish by an immunocompromised person was obtained. The final estimate of listeriosis cases (23) is within the actual reported result obtained for the same period and for the same population. Variability on the final risk estimate is determined by the variability regarding (i) consumer refrigerator temperatures, (ii) the reference growth rate of L. monocytogenes, (iii) the minimum growth temperature of L. monocytogenes and (iv) consumer portion size. Variability regarding the initial contamination level of L. monocytogenes tends to appear as a determinant of risk variability only when the minimum growth temperature is not included in the sensitivity analysis; when it is included the impact regarding the variability on the initial contamination level of L. monocytogenes is disappearing. Uncertainty determinants of the final risk indicated the need of gathering more information on the reference growth rate and the minimum

  11. ANALISIS POSITIONING KERIPIK KENTANG DENGAN PENDEKATAN METODE MULTI DIMENSIONAL SCALLING DI KOTA BATU

    Directory of Open Access Journals (Sweden)

    Siti Asmaul Mustaniroh

    2016-11-01

    Full Text Available Potato chips are one of the main products of Batu city. Based on data from Batu government’s  in 2002, there are only 2 selling units. In 2008, amount of potato chips   and another selling unit, so the research on positioning of potato chips in Batu city is important to do. The purpose of this research are to understand which attributes which influence custumer consideration to buy and to consume potato chips, and to analyze positioning which is formed between four potato chips brand (Cita Mandiri, Gizi Food, Leo, Rimbaku based on costumer perception in Batu city by using Multi Dimensional Scaling method. Attributes that influence costumer to buy and to consume potato chips are product (taste and crunchy level, price (product price compare with quality, and considerable price products, distribution (the local stock of the products or how strategic is the selling location, promotion (the using of advertising or promotion media (such as internet, radio, or brochure. Based on the Multi Dimensional Scaling Method, positioning follow this structure are Gizi Food as market leader, Leo as market challenger, and Rimbaku and Cita Mandiri as market follower.

  12. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  13. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  14. Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization

    International Nuclear Information System (INIS)

    Keller, Kai Johannes

    2010-04-01

    The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)

  15. Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kai Johannes

    2010-04-15

    The present work contains a consistent formulation of the methods of dimensional regularization (DimReg) and minimal subtraction (MS) in Minkowski position space. The methods are implemented into the framework of perturbative Algebraic Quantum Field Theory (pAQFT). The developed methods are used to solve the Epstein-Glaser recursion for the construction of time-ordered products in all orders of causal perturbation theory. A solution is given in terms of a forest formula in the sense of Zimmermann. A relation to the alternative approach to renormalization theory using Hopf algebras is established. (orig.)

  16. Sensitivity analysis using two-dimensional models of the Whiteshell geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Scheier, N. W.; Chan, T.; Stanchell, F. W.

    1992-12-01

    As part of the assessment of the environmental impact of disposing of immobilized nuclear fuel waste in a vault deep within plutonic rock, detailed modelling of groundwater flow, heat transport and containment transport through the geosphere is being performed using the MOTIF finite-element computer code. The first geosphere model is being developed using data from the Whiteshell Research Area, with a hypothetical disposal vault at a depth of 500 m. This report briefly describes the conceptual model and then describes in detail the two-dimensional simulations used to help initially define an adequate three-dimensional representation, select a suitable form for the simplified model to be used in the overall systems assessment with the SYVAC computer code, and perform some sensitivity analysis. The sensitivity analysis considers variations in the rock layer properties, variations in fracture zone configurations, the impact of grouting a vault/fracture zone intersection, and variations in boundary conditions. This study shows that the configuration of major fracture zones can have a major influence on groundwater flow patterns. The flows in the major fracture zones can have high velocities and large volumes. The proximity of the radionuclide source to a major fracture zone may strongly influence the time it takes for a radionuclide to be transported to the surface. (auth)

  17. Three-dimensional evaluation of changes in lip position from before to after orthodontic appliance removal.

    Science.gov (United States)

    Eidson, Lindsey; Cevidanes, Lucia H S; de Paula, Leonardo Koerich; Hershey, H Garland; Welch, Gregory; Rossouw, P Emile

    2012-09-01

    Our objectives were to develop a reproducible method of superimposing 3-dimensional images for measuring soft-tissue changes over time and to use this method to document changes in lip position after the removal of orthodontic appliances. Three-dimensional photographs of 50 subjects were made in repose and maximum intercuspation before and after orthodontic appliance removal with a stereo camera. For reliability assessment, 2 photographs were repeated for 15 patients. The images were registered on stable areas, and surface-to-surface measurements were made for defined landmarks. Mean changes were below the level of clinical significance (set at 1.5 mm). However, 51% and 18% of the subjects experienced changes greater than 1.5 mm at the commissures and lower lips, respectively. The use of serial 3-dimensional photographs is a reliable method of documenting soft-tissue changes. Soft-tissue changes after appliance removal are not clinically significant; however, there is great individual variability. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode

    Directory of Open Access Journals (Sweden)

    Zhong G

    2015-03-01

    Full Text Available Guangxian Zhong,1,2,* Ruilong Lan,3,* Wenxin Zhang,1,4 Feihuan Fu,5 Yiming Sun,1,4 Huaping Peng,1,4 Tianbin Chen,3 Yishan Cai,6 Ailin Liu,1,4 Jianhua Lin,2 Xinhua Lin1,4 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, 2Department of Orthopaedics, 3The Centralab, First Affiliated Hospital of Fujian Medical University, 4Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, 5Department of Endocrinology, The County Hospital of Anxi, Anxi, 6Fujian International Travel Healthcare Center, Fujian Entry-Exit Inspection and Quarantine Bureau, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A sensitive electrochemical immunosensor was developed for detection of alpha-fetoprotein (AFP based on a three-dimensional nanostructure gold electrode using a facile, rapid, “green” square-wave oxidation-reduction cycle technique. The resulting three-dimensional gold nanocomposites were characterized by scanning electron microscopy and cyclic voltammetry. A “sandwich-type” detection strategy using an electrochemical immunosensor was employed. Under optimal conditions, a good linear relationship between the current response signal and the AFP concentrations was observed in the range of 10–50 ng/mL with a detection limit of 3 pg/mL. This new immunosensor showed a fast amperometric response and high sensitivity and selectivity. It was successfully used to determine AFP in a human serum sample with a relative standard deviation of <5% (n=5. The proposed immunosensor represents a significant step toward practical application in clinical diagnosis and monitoring of prognosis. Keywords: electrochemical immunosensors, three-dimensional nanostructure gold electrode, square-wave oxidation-reduction cycle, alpha-fetoprotein 

  19. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  20. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    Science.gov (United States)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  1. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    International Nuclear Information System (INIS)

    Bo, Z; Chen, J H

    2010-01-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  2. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  3. Face Inversion Disproportionately Disrupts Sensitivity to Vertical over Horizontal Changes in Eye Position

    Science.gov (United States)

    Crookes, Kate; Hayward, William G.

    2012-01-01

    Presenting a face inverted (upside down) disrupts perceptual sensitivity to the spacing between the features. Recently, it has been shown that this disruption is greater for vertical than horizontal changes in eye position. One explanation for this effect proposed that inversion disrupts the processing of long-range (e.g., eye-to-mouth distance)…

  4. Sensitivity Analyses of Alternative Methods for Disposition of High-Level Salt Waste: A Position Statement

    International Nuclear Information System (INIS)

    Harris, S.P.; Tuckfield, R.C.

    1998-01-01

    This position paper provides the approach and detail pertaining to a sensitivity analysis for the Phase II definition of weighted evaluation criteria weights and utility function values on the total utility scores for each Initial List alternative due to uncertainty and bias in engineering judgment

  5. Method and apparatus for formation logging using position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Gadken, L.L.

    1986-01-01

    This patent describes a method for logging earth formations using position sensitive neutron detectors. The method consists of: 1) Irradiation of earth formations in the vicinity of a well borehole with a source of fast neutrons. 2) At four longitudinally spaced distances from the neutron source in the borehole, the epithermal neutron population is detected. Each of the four separate populations is detected in an epithermally sensitive and substantially thermally insensitive portion of the same position sensitive neutron detector. A representative signal from each is then individually generated. 3) First, second, third, and fourth neutron population representative signals are combined. They derive a simultaneous measurement signal. This signal is functionally related to the porosity and also a signal functionally related to a neutron characteristic length of the earth formations in the vicinity of the borehole

  6. The design of a position-sensitive thermal-neutron detector

    International Nuclear Information System (INIS)

    Zhang Yi; Chen Ziyu; Shen Ji

    2007-01-01

    We design a type of position-sensitive thermal-neutron detector. The design is based on the nuclear reaction 10 B(n, α) 7 Li, and solid boron-10 is used as the target material while the alpha and lithium-7 particles from the reaction are caught as the source of position information of the original neutrons. With the help of MCNP software, we simulate the distribution of alpha particles in the boron target, which leads to the optimal thickness of target, physical efficiency and position resolution. (authors)

  7. Experimental dead time corrections for a linear position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Yelon, W.B.; Tompson, C.W.; Mildner, D.F.R.; Berliner, R.; Missouri Univ., Columbia

    1984-01-01

    Two simple counters included in the charge-digitization circuitry of a position-sensitive proportional counter using the charge division method for position encoding have enabled us to determine the dead time losses for the system. An interesting positional dependence of the dead time tau is observed, which agrees with a simple model. The system enables us to correct the experimental data for dead time and to be indifferent to the relatively slow analog-to-digital converters used in the system. (orig.)

  8. Tests of crossed-wire position sensitive photomultipliers for scintillating fiber particle tracking

    International Nuclear Information System (INIS)

    Perdrisat, C.F.; Koechner, D.; Majewski, S.; Pourang, R.; Wilson, C.D.; Zorn, C.

    1995-01-01

    Several applications of two Hamamatsu position sensitive photomultiplier tubes to the detection of high energy particles with scintillating fibers are discussed. The PMTs are of the multiwire anode grid design, type R2486 and R4135. These tubes were tested with both single samples and arrays of 2 and 3 mm diameter scintillating fibers. Measurements of position resolution of the PMTs using either the charge digitization or the delay line readout techniques were made. The results indicate an intrinsic inability of the technique to reconstruct the actual position of a fiber on the photocathode when its location falls halfway between two grid wires. A way to overcome this limit is suggested. (orig.)

  9. Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO2.

    Science.gov (United States)

    Khan, Hareem; Zavabeti, Ali; Wang, Yichao; Harrison, Christopher J; Carey, Benjamin J; Mohiuddin, Md; Chrimes, Adam F; De Castro, Isabela Alves; Zhang, Bao Yue; Sabri, Ylias M; Bhargava, Suresh K; Ou, Jian Zhen; Daeneke, Torben; Russo, Salvy P; Li, Yongxiang; Kalantar-Zadeh, Kourosh

    2017-12-14

    Attributing to their distinct thickness and surface dependent physicochemical properties, two dimensional (2D) nanostructures have become an area of increasing interest for interfacial interactions. Effectively, properties such as high surface-to-volume ratio, modulated surface activities and increased control of oxygen vacancies make these types of materials particularly suitable for gas-sensing applications. This work reports a facile wet-chemical synthesis of 2D tungsten oxide nanosheets by sonication of tungsten particles in an acidic environment and thermal annealing thereafter. The resultant product of large nanosheets with intrinsic substoichiometric properties is shown to be highly sensitive and selective to nitrogen dioxide (NO 2 ) gas, which is a major pollutant. The strong synergy between polar NO 2 molecules and tungsten oxide surface and also abundance of active surface sites on the nanosheets for molecule interactions contribute to the exceptionally sensitive and selective response. An extraordinary response factor of ∼30 is demonstrated to ultralow 40 parts per billion (ppb) NO 2 at a relatively low operating temperature of 150 °C, within the physisorption temperature band for tungsten oxide. Selectivity to NO 2 is demonstrated and the theory behind it is discussed. The structural, morphological and compositional characteristics of the synthesised and annealed materials are extensively characterised and electronic band structures are proposed. The demonstrated 2D tungsten oxide based sensing device holds the greatest promise for producing future commercial low-cost, sensitive and selective NO 2 gas sensors.

  10. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

    International Nuclear Information System (INIS)

    Motoyama, Yasunori; Tanaka, Nobuatsu

    2005-01-01

    Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

  11. Positioning in a flat two-dimensional space-time: The delay master equation

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio

    2010-01-01

    The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.

  12. Relationship of maxillary 3-dimensional posterior occlusal plane to mandibular spatial position and morphology.

    Science.gov (United States)

    Coro, Jorge C; Velasquez, Roberto L; Coro, Ivette M; Wheeler, Timothy T; McGorray, Susan P; Sato, Sadao

    2016-07-01

    The purpose of this study was to examine the relationship of the 3-dimensional (3D) posterior occlusal plane (POP) and the mandibular 3D spatial position. The relationship of the POP to mandibular morphology was also investigated. Retrospective data from a convenience sample of pretreatment diagnostic cone-beam computed tomography scans were rendered using InVivo software (Anatomage, San Jose, Calif). The sample consisted of 111 subjects (51 male, 60 female) and included growing and nongrowing subjects of different races and ethnicities. The 3D maxillary POP was defined by selecting the cusp tips of the second premolars and the second molars on the rendered images of the subjects. The angles made by this plane, in reference to the Frankfort horizontal plane, were measured against variables that described the mandibular position in the coronal, sagittal, and axial views. The POP was also compared with bilateral variables that described mandibular morphology. There were significant differences of the POP among the different skeletal malocclusions (P <0.0001). The POP showed significant correlations with mandibular position in the sagittal (P <0.0001), coronal (P <0.05), and axial (P <0.05) planes. The POP also showed a significant correlation with mandibular morphology (P <0.0001). These findings suggest that there is a distinct and significant relationship between the 3D POP and the mandibular spatial position and its morphology. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  13. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  14. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  15. A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Cheng-Yao Lo

    2012-03-01

    Full Text Available A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 ´ 10−2 mm−1 and the sensing patch has a thickness of less than 130 μm and 20 ´ 20 mm2 dimensions. A complete finite element method (FEM model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors.

  16. Two-dimensional magnetic sensitivity to asymmetric and symmetric deviations for SSC quadrupole magnets

    International Nuclear Information System (INIS)

    Xu, M.; Waynert, J.A.

    1994-01-01

    The magnetic multipole sensitivity to asymmetric and symmetric deviations is analyzed in the two-dimensional cross-section of SSC quadrupole magnets. Deviations in the 2D cross-section caused by variations in the superconducting cable locations due to changes in the thickness of the pole sheet, mid plane insulation, inter-layer spacer, backing sheet, and copper wedges have direct impact on the magnetic field gradient and multipoles in the straight section of the magnets. Asymmetric deviations due to different coil sizes in a cross-section are also analyzed. The analyses are performed mainly with the software package AHARM. SSCMAG and finite element software PE2D were also used to obtain baselines and to verify the results. The results provide information essential to an understanding of the deviations of the multipoles resulting from manufacturing processes, and suggest possibilities for tuning the multipoles to meet the magnetic requirements

  17. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  18. One-Dimensional TiO2 Nanostructures as Photoanodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jie Qu

    2013-01-01

    Full Text Available Titanium dioxide (TiO2 is star materials due to its remarkable optical and electronic properties, resulting in various applications, especially in the fields of dye-sensitized solar cells (DSSCs. Photoanode is the most important part of the DSSCs, which help to adsorb dye molecules and transport the injected electrons. The size, structure, and morphology of TiO2 photoanode have been found to show significant influence on the photovoltaic performance of DSSCs. In this paper, we briefly summarize the synthesis and properties of one-dimensional (1D TiO2 nanomaterials (bare 1D TiO2 nanomaterial and 1D hierarchical TiO2 and their photovoltaic performance in DSSCs.

  19. Sensitivity experiments with a one-dimensional coupled plume - iceflow model

    Science.gov (United States)

    Beckmann, Johanna; Perette, Mahé; Alexander, David; Calov, Reinhard; Ganopolski, Andrey

    2016-04-01

    Over the last few decades Greenland Ice sheet mass balance has become increasingly negative, caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers at the ice sheet margins. Glaciers speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and less obviously, by increased subglacial discharge. While ice-ocean processes potentially play an important role in recent and future mass balance changes of the Greenland Ice Sheet, their physical understanding remains poorly understood. In this work we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional iceflow model. First we investigated the sensitivity of submarine melt rate to changes in ocean properties (ocean temperature and salinity), to the amount of subglacial discharge and to the glacier's tongue geometry itself. A second set of experiments investigates the response of the coupled model, i.e. the dynamical response of the outlet glacier to altered submarine melt, which results in new glacier geometry and updated melt rates.

  20. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    Science.gov (United States)

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with

  1. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  2. Ultrafast Readout of Scintillating Fibres Using Upgraded Position-Sensitive Photomultipliers

    CERN Multimedia

    2002-01-01

    % RD-17 \\\\ \\\\To design a high rate topological trigger device for the future DIRAC Experiment at CERN an extensive work is in progress on a scintillating-fibre detector using a position-sensitive photomultiplier. Several detector prototypes with different lengths ($<$~50~cm) of sensitive area have been tested at T7S~PS beam. \\\\ \\\\With 0.5~mm diameter fibres a spatial resolution of $\\sim$125~$\\mu$m was obtained with a detection efficiency higher than 95\\%. The time resolution is $\\sim$600~ps, and the track position is properly digitized in real time (about 10~ns) by multi-channel peak sensing circuit. Based on experimental data simulations were also performed a comparison of different types of front-end electronics for multi-channel readout.

  3. Cerium doped GSO scintillators and its application to position sensitive detectors

    International Nuclear Information System (INIS)

    Ishibashi, H.; Shimizu, K.; Susa, K.; Kubota, S.

    1989-01-01

    The dependence of the light output and the decay times of Ce doped Gd/sub 2/SiO/sub 5/ on Ce concentration is measured. By using the difference in decay times on Ce concentration for GSO(Ce), the combination of different concentration of GSO(Ce) scintillators is shown to be useful as position sensitive detectors. A Ce doped Gd/sub 2/SiO/sub 5/ (GSO(Ce)) single crystal is an excellent scintillator featuring, a large light output, a short decay time and a high absorption coefficient. Further investigation aimed at its implementation to scintillators has been carried out previously. An application of the GSO(Ce) scintillators to the gamma-ray detectors of positron emission computed tomography has also been shown. The authors have investigated the dependence of its scintillation properties on the Ce concentration and its application to position sensitive detectors

  4. Position sensitive proportional counter for measurement of tritium labelled gas movement

    International Nuclear Information System (INIS)

    Mori, Chizuo; Nakamoto, Makihiko; Uritani, Akira; Watanabe, Tamaki

    1984-01-01

    A position sensitive proportional counter of a charge division type with a single resistive anode wire was constructed for the measurement of the movement of 3 H labelled gas which is flowing or diffusing in a pipe. The introduction of resistors between the anode wire and pre-amplifiers brought a uniform detection efficiency for 3 H β-rays throughout the counter. The position resolution was 3.1 mm FWHM. Detection efficiency was almost 100% uniformly over about 700 mm in the total anode length of 740 mm. The movement of 3 H labelled gas could be measured effectively. (author)

  5. Reduction of digital errors of digital charge division type position-sensitive detectors

    International Nuclear Information System (INIS)

    Uritani, A.; Yoshimura, K.; Takenaka, Y.; Mori, C.

    1994-01-01

    It is well known that ''digital errors'', i.e. differential non-linearity, appear in a position profile of radiation interactions when the profile is obtained with a digital charge-division-type position-sensitive detector. Two methods are presented to reduce the digital errors. They are the methods using logarithmic amplifiers and a weighting function. The validities of these two methods have been evaluated mainly by computer simulation. These methods can considerably reduce the digital errors. The best results are obtained when both methods are applied. ((orig.))

  6. High speed USB data logger for position sensitive detector data acquisition

    International Nuclear Information System (INIS)

    Poudel, S.K.; Kulkarni, V.B.; Kumar, Santosh; Chandak, R.M.; Krishna, P.S.R.; Mukhopadhyay, R.

    2010-01-01

    Ratio ADC (RDC) module used in neutron Position Sensitive Detector (PSD) data acquisition, gives digital code signifying the position of neutron event. A High Speed USB based RDC Data Logger card has been made for logging data from multiple RDCs to PC. A CPLD on the card continuously polls the RDCs for data, and fills it in the FIFO memory of a high speed USB microcontroller. A VC++ program for neutron scattering experiments reads event codes from FIFO of microcontroller and builds spectrum on PC. This program sweeps physical parameters of sample and collects PSD data for pre-determined monitor counts. (author)

  7. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F; Wieliczec, K; Becker, U

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  8. The local lymph node assay: current position in the regulatory classification of skin sensitizing chemicals.

    Science.gov (United States)

    Basketter, David A; Gerberick, G Frank; Kimber, Ian

    2007-01-01

    The local lymph node assay (LLNA) is being used increasingly in the identification of skin sensitizing chemicals for regulatory purposes. In the context of new chemicals legislation (REACH) in Europe, it is the preferred assay. The rationale for this is that the LLNA quantitative and objective approach to skin sensitization testing allied with the important animal welfare benefits that the method offers. However, as with certain guinea pig sensitization tests before it, this increasing use also brings experience with an increasingly wide range of industrial and other chemicals where the outcome of the assay does not always necessarily meet with the expectations of those conducting it. Sometimes, the result appears to be a false negative, but rather more commonly, the complaint is that the chemical represents a false positive. Against this background we have here reviewed a number of instances where false positive and false negative results have been described and have sought to reconcile science with expectation. Based on these analyses, it is our conclusion that false positives and false negatives do occur in the LLNA, as they do with any other skin sensitization assay (and indeed with all tests used for hazard identification), and that this occurs for a number of reasons. We further conclude, however, that false positive results in the LLNA, as with the guinea pig maximization test, arise most commonly via failure to distinguish what is scientifically correct from that which is unpalatable. The consequences of this confusion are discussed in the article, particularly in relation to the need to integrate both potency measurement and risk assessments into classification and labelling schemes that aim to manage potential risks to human health.

  9. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    International Nuclear Information System (INIS)

    Riedel, R.A.; Cooper, R.G.; Funk, L.L.; Clonts, L.G.

    2012-01-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  10. Design and performance of vacuum capable detector electronics for linear position sensitive neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, R.A., E-mail: riedelra@ornl.gov [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States); Cooper, R.G.; Funk, L.L.; Clonts, L.G. [Oak Ridge National Laboratories, Oak Ridge, TN 37830 (United States)

    2012-02-01

    We describe the design and performance of electronics for linear position sensitive neutron detectors. The eight tube assembly requires 10 W of power and can be controlled via digital communication links. The electronics can be used without modification in vacuum. Using a transimpedance amplifier and gated integration, we achieve a highly linear system with coefficient of determinations of 0.9999 or better. Typical resolution is one percent of tube length.

  11. Test of a position-sensitive photomultiplier for fast scintillating fiber detector read-out

    International Nuclear Information System (INIS)

    Baehr, J.; Hoffmann, B.; Luedecke, H.; Nahnhauer, R.; Pohl, M.; Roloff, H.E.

    1993-01-01

    A position-sensitive photomultiplier with 256 anode pixels has been used to read out scintillating fibers excited by light emitting diodes, electrons from a β-source and a 5 GeV electron beam. Measurements have been done within a magnetic field up to 0.6 T. Tracking and electromagnetic shower detection capabilities of a simple fiber detector have been studied. (orig.)

  12. DIAGNOSIS OF CULTURE POSITIVE URINARY TRACT INFECTIONS AND THEIR ANTIMICROBIAL SENSITIVITY PROFILE IN TERTIARY CARE CENTRE

    Directory of Open Access Journals (Sweden)

    Prince Sreekumar Pius

    2016-12-01

    Full Text Available BACKGROUND Urinary tract infection is very common all over the world and in India more than 10 million cases are reported per year. It is one of the common infections diagnosed in the outpatients as well as the hospitalised patients. Empirical treatment of community acquired urinary tract infections are determined by the antibiotic sensitivity in a population. This study was conducted to determine the antimicrobial sensitivity amongst the uropathogens to help establish local guidelines on treatment of urinary tract infection. MATERIALS AND METHODS In this study, we collected 1306 samples from patients in whom we suspected to have urinary tract infection based on clinical signs and symptoms (e.g. with fever (greater than 38°C without another explanation or from a patient who had at least one urinary symptom (dysuria, urgency, frequency, or suprapubic pain or tenderness in our hospital during January 2016-June 2016. RESULTS Urine cultures were positive for 18% of the patients. Among these cultures, Klebsiella pneumonia (41%, Escherichia coli (35% and Pseudomonas aeruginosa (7% were the common organisms found. Highest antimicrobial sensitivity amongst these pathogens was found with cefoperazone/sulbactam and amikacin. CONCLUSION Cefoperazone/sulbactam and amikacin were the highly sensitive systemic antibiotics while ciprofloxacin and norfloxacin were the sensitive oral antibiotics in our locality.

  13. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation

    Science.gov (United States)

    Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.

    2018-01-01

    Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the

  14. Positive words or negative words: whose valence strength are we more sensitive to?

    Science.gov (United States)

    Yang, Jiemin; Zeng, Jing; Meng, Xianxin; Zhu, Liping; Yuan, Jiajin; Li, Hong; Yusoff, Nasir

    2013-10-02

    The present study investigates the human brains' sensitivity to the valence strength of emotionally positive and negative chinese words. Event-Related Potentials were recorded, in two different experimental sessions, for Highly Positive (HP), Mildly Positive (MP) and neutral (NP) words and for Highly Negative (HN), Mildly Negative (MN) and neutral (NN) words, while subjects were required to count the number of words, irrespective of word meanings. The results showed a significant emotion effect in brain potentials for both HP and MP words, and the emotion effect occurred faster for HP words than MP words: HP words elicited more negative deflections than NP words in N2 (250-350 ms) and P3 (350-500 ms) amplitudes, while MP words elicited a significant emotion effect in P3, but not in N2, amplitudes. By contrast, HN words elicited larger amplitudes than NN words in N2 but not in P3 amplitudes, whereas MN words produced no significant emotion effect across N2 and P3 components. Moreover, the size of emotion-neutral differences in P3 amplitudes was significantly larger for MP compared to MN words. Thus, the human brain is reactive to both highly and mildly positive words, and this reactivity increased with the positive valence strength of the words. Conversely, the brain is less reactive to the valence of negative relative to positive words. These results suggest that human brains are equipped with increased sensitivity to the valence strength of positive compared to negative words, a type of emotional stimuli that are well known for reduced arousal. © 2013 Elsevier B.V. All rights reserved.

  15. Recent developments and applications of fast position-sensitive gas detectors

    International Nuclear Information System (INIS)

    Sauli, Fabio

    1999-01-01

    The introduction, 30 years ago, of the multiwire proportional chamber initiated a very active and fruitful period of development of fast gas detectors. Performing position-sensitive devices have been perfected, for the needs of elementary particle physics and for applications in medical diagnostics, biology, material analysis. The high rate performance of wire counters, limited by positive ions accumulation, was largely improved with the introduction of the micro-strip gas chamber, capable of achieving position accuracies of few tens of microns at radiation fluxes exceeding 1 MHz/mm 2 . The micro-strip chamber properties have been extensively studied in view of large scale use in high luminosity experiments; some interesting applications in other fields will be described here. Originally conceived as a gain booster to solve reliability problems met with micro-strips, the gas electron multiplier was invented about a year and a half ago. Progress made with high gain models is leading to a new concept in gas detectors, powerful yet cheap and reliable. Possible developments and applications will be discussed: large area position-sensitive photo detectors and X-ray imagers, including devices with non-planar geometry suited to spectrometers and crystal diffraction studies

  16. Head position in the MEG helmet affects the sensitivity to anterior sources.

    Science.gov (United States)

    Marinkovic, K; Cox, B; Reid, K; Halgren, E

    2004-11-30

    Current MEG instruments derive the whole-head coverage by utilizing a helmet-shaped opening at the bottom of the dewar. These helmets, however, are quite a bit larger than most people's heads so subjects commonly lean against the back wall of the helmet in order to maintain a steady position. In such cases the anterior brain sources may be too distant to be picked up by the sensors reliably. Potential "invisibility" of the frontal and anterior temporal sources may be particularly troublesome for the studies of cognition and language, as they are subserved significantly by these areas. We examined the sensitivity of the distributed anatomically-constrained MEG (aMEG) approach to the head position ("front" vs. "back") secured within a helmet with custom-tailored bite-bars during a lexical decision task. The anterior head position indeed resulted in much greater sensitivity to language-related activity in frontal and anterior temporal locations. These results emphasize the need to adjust the head position in the helmet in order to maximize the "visibility" of the sources in the anterior brain regions in cognitive and language tasks.

  17. The position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging

    International Nuclear Information System (INIS)

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision. (author)

  18. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  19. Sensitivity, Specificity, and Positivity Predictors of the Pneumococcal Urinary Antigen Test in Community-Acquired Pneumonia.

    Science.gov (United States)

    Molinos, Luis; Zalacain, Rafael; Menéndez, Rosario; Reyes, Soledad; Capelastegui, Alberto; Cillóniz, Catia; Rajas, Olga; Borderías, Luis; Martín-Villasclaras, Juan J; Bello, Salvador; Alfageme, Inmaculada; Rodríguez de Castro, Felipe; Rello, Jordi; Ruiz-Manzano, Juan; Gabarrús, Albert; Musher, Daniel M; Torres, Antoni

    2015-10-01

    Detection of the C-polysaccharide of Streptococcus pneumoniae in urine by an immune-chromatographic test is increasingly used to evaluate patients with community-acquired pneumonia. We assessed the sensitivity and specificity of this test in the largest series of cases to date and used logistic regression models to determine predictors of positivity in patients hospitalized with community-acquired pneumonia. We performed a multicenter, prospective, observational study of 4,374 patients hospitalized with community-acquired pneumonia. The urinary antigen test was done in 3,874 cases. Pneumococcal infection was diagnosed in 916 cases (21%); 653 (71%) of these cases were diagnosed exclusively by the urinary antigen test. Sensitivity and specificity were 60 and 99.7%, respectively. Predictors of urinary antigen positivity were female sex; heart rate≥125 bpm, systolic blood pressureantibiotic treatment; pleuritic chest pain; chills; pleural effusion; and blood urea nitrogen≥30 mg/dl. With at least six of all these predictors present, the probability of positivity was 52%. With only one factor present, the probability was only 12%. The urinary antigen test is a method with good sensitivity and excellent specificity in diagnosing pneumococcal pneumonia, and its use greatly increased the recognition of community-acquired pneumonia due to S. pneumoniae. With a specificity of 99.7%, this test could be used to direct simplified antibiotic therapy, thereby avoiding excess costs and risk for bacterial resistance that result from broad-spectrum antibiotics. We also identified predictors of positivity that could increase suspicion for pneumococcal infection or avoid the unnecessary use of this test.

  20. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  1. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    Science.gov (United States)

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  2. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Shimin [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials and Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liu, Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-05-02

    One-dimensional (1D) titania (TiO{sub 2}) in the form of nanorods, nanowires, nanobelts and nanotubes have attracted much attention due to their unique physical, chemical and optical properties enabling extraordinary performance in biomedicine, sensors, energy storage, solar cells and photocatalysis. In this review, we mainly focus on synthetic methods for 1D TiO{sub 2} nanostructures and the applications of 1D TiO{sub 2} nanostructures in dye-sensitized solar cells (DSCs). Traditional nanoparticle-based DSCs have numerous grain boundaries and surface defects, which increase the charge recombination from photoanode to electrolyte. 1D TiO{sub 2} nanostructures can provide direct and rapid electron transport to the electron collecting electrode, indicating a promising choice for DSCs. We divide the applications of 1D TiO{sub 2} nanostructures in DSCs into four parts, that is, 1D TiO{sub 2} nanostructures only, 1D TiO{sub 2} nanostructure/nanoparticle composites, branched 1D TiO{sub 2} nanostructures, and 1D TiO{sub 2} nanostructures combined with other materials. This work will provide guidance for preparing 1D TiO{sub 2} nanostructures, and using them as photoanodes in efficient DSCs. - Graphical abstract: 1D TiO{sub 2} nanostructures which can provide direct and rapid pathways for electron transport have promising applications in dye-sensitized solar cells (DSCs). The synthetic methods and applications of 1D TiO{sub 2} nanostructures in DSCs are summarized in this review article.

  3. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

    Science.gov (United States)

    Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi

    2018-04-01

    This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

  4. Two-dimensional cross-section sensitivity and uncertainty analysis of the LBM [Lithium Blanket Module] experiments at LOTUS

    International Nuclear Information System (INIS)

    Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.

    1988-01-01

    In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S/sub N/-transport code ONEDANT, the two-dimensional finite element S/sub N/-transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceeded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed. The goal of this analysis was the determination of the uncertainties of a calculated tritium production per source neutron from lithium along the central Li 2 O rod in the LBM. Considered were the contributions from 1 H, 6 Li, 7 Li, 9 Be, /sup nat/C, 14 N, 16 O, 23 Na, 27 Al, /sup nat/Si, /sup nat/Cr, /sup nat/Fe, /sup nat/Ni, and /sup nat/Pb. 22 refs., 1 fig., 3 tabs

  5. Balanced sensitivity functions for tuning multi-dimensional Bayesian network classifiers

    NARCIS (Netherlands)

    Bolt, J.H.; van der Gaag, L.C.

    Multi-dimensional Bayesian network classifiers are Bayesian networks of restricted topological structure, which are tailored to classifying data instances into multiple dimensions. Like more traditional classifiers, multi-dimensional classifiers are typically learned from data and may include

  6. A large, high performance, curved 2D position-sensitive neutron detector

    CERN Document Server

    Fried, J W; Mahler, G J; Makowiecki, D S; Mead, J A; Radeka, V; Schaknowski, N A; Smith, G C; Yu, B

    2002-01-01

    A new position-sensitive neutron detector has been designed and constructed for a protein crystallography station at LANL's pulsed neutron source. This station will be one of the most advanced instruments at a major neutron user facility for protein crystallography, fiber and membrane diffraction. The detector, based on neutron absorption in sup 3 He, has a large sensitive area of 3000 cm sup 2 , angular coverage of 120 deg. , timing resolution of 1 mu s, rate capability in excess of 10 sup 6 s sup - sup 1 , position resolution of about 1.5 mm FWHM, and efficiency >50% for neutrons of interest in the range 1-10 A. Features that are key to these remarkable specifications are the utilization of eight independently operating segments within a single gas volume, fabrication of the detector vessel and internal segments with a radius of curvature of about 70 cm, optimized position readout based on charge division and signal shaping with gated baseline restoration, and engineering design with high-strength aluminum ...

  7. Estimate of the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model: a sensitivity analysis

    International Nuclear Information System (INIS)

    Guerrieri, A.

    2009-01-01

    In this report the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model of intermediate complexity has been estimated numerically. A sensitivity analysis has been carried out by varying the equator-to-pole temperature difference, the space resolution and the value of some parameters employed by the model. Chaotic and non-chaotic regimes of circulation have been found. [it

  8. Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures

    International Nuclear Information System (INIS)

    Li, Jianfeng; Xu, Bingang

    2015-01-01

    Pressure sensors based on three-dimensional fabrics have all the excellent properties of the textile substrate: excellent compressibility, good air permeability and moisture transmission ability, which will find applications ranging from the healthcare industry to daily usage. In this paper, novel pressure sensors based on 3D spacer fabrics have been developed by a proposed multi-coating method. By this coating method, carbon black can be coated uniformly on the silicon elastomer which is attached and slightly cured on the 3D fabric surface beforehand. The as-made pressure sensors have good conductivity and can measure external pressure up to 283 kPa with an electrical conductivity range of 9.8 kΩ. The sensitivity of 3D fabric pressure sensors can be as high as 50.31×10 −3 kPa −1 , which is better than other textile based pressure sensors. When the as-made sensors are pressed, their electrical resistance will decrease because of more conductive connections and bending of fibers in the spacer layer. The sensing mechanism related to fiber bending has been explored by using an equivalent resistance model. The newly developed 3D sensor devices can be designed to exhibit different sensing performances by simply changing the structures of fabric substrate, which endows this kind of device more flexibility in related applications. (paper)

  9. Sensitivity of Multicarrier Two-Dimensional Spreading Schemes to Synchronization Errors

    Directory of Open Access Journals (Sweden)

    Geneviève Jourdain

    2008-06-01

    Full Text Available This paper presents the impact of synchronization errors on the performance of a downlink multicarrier two-dimensional spreading OFDM-CDMA system. This impact is measured by the degradation of the signal to interference and noise ratio (SINR obtained after despreading and equalization. The contribution of this paper is twofold. First, we use some properties of random matrix and free probability theories to derive a new expression of the SINR. This expression is then independent of the actual value of the spreading codes while still accounting for the orthogonality between codes. This model is validated by means of Monte Carlo simulations. Secondly, the model is exploited to derive the SINR degradation of OFDM-CDMA systems due to synchronization errors which include a timing error, a carrier frequency offset, and a sampling frequency offset. It is also exploited to compare the sensitivities of MC-CDMA and MC-DS-CDMA systems to these errors in a frequency selective channel. This work is carried out for zero-forcing and minimum mean square error equalizers.

  10. Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation

    Science.gov (United States)

    Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao

    2017-09-01

    Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.

  11. Application of digital waveform processing to position-sensitive proportional counter

    International Nuclear Information System (INIS)

    Takenaka, Yasuto; Uritani, Akira; Mori, Chizuo

    1995-01-01

    In a charge-division type position-sensitive proportional counter (PSPC) with an anode wire of small resistance, a reflected component from an opposite end and thermal noise involved in signals deteriorate the position resolution of the PSPC. A digital waveform processing method was applied to the reduction of these undesirable effects by skillfully utilizing their signal characteristics that can be observed as inversely correlative signals between two-output signals from both sides of the PSPC. The digital waveform processing could improve the position resolution compared to a conventional pulse height processing method with analog filters. When the digital waveform processing was applied to signals of an equivalent circuit simulating the PSPC, the position resolutions defined by the full width at half maximum were improved to about 30% of those of conventional analog pulse processing. In the case of an actual PSPC, the position resolutions by the digital waveform processing were improved by 4-10% as compared with those of conventional pulse height processing. (author)

  12. EMSP Project Number 65015 Final Report: Three-dimensional position-sensitive germanium detectors

    International Nuclear Information System (INIS)

    Amman, Mark; Luke, Paul N.

    2001-01-01

    Critical to the DOE effort to deactivate and decommission the weapons complex facilities is the characterization of contaminated equipment and building structures. This characterization includes the isotopic identification of radioactive contaminants and the spatial mapping of these deposits. The penetrating nature of the gamma rays emitted by the radioactive contaminants provides a means to accomplish this task in a passive, non-destructive and non-intrusive manner. Through conventional gamma-ray spectroscopy, the radioactive isotopes in the contaminants can be identified by their characteristic gamma-ray signatures and the amount of each isotope by the intensity of the signature emission. With the addition of gamma-ray imaging, the spatial distributions of the isotopes can simultaneously be obtained. The ability to image radioactive contaminants can reduce waste as well as help ensure the adequate protection of workers and the environment. For example, if equipment and building materials have been subjected to radionuclide contamination, the entire structure must be treated as radioactive waste during demolition. However, only partial removal may be necessary if the contamination can be accurately located and identified. Hand-held survey instrumentation operated in the near vicinity of the contaminated objects is a common method to accomplish this task. This method necessitates long data acquisition times, direct close access, and considerable worker exposure, as well as leads to imprecise information. In contrast, imaging devices operated at a distance from the contaminated objects can accurately acquire the spatially dependent gamma-ray emission information in a single measurement. Consequently, the devices can more efficiently discriminate between contaminated and non-contaminated areas of heterogeneous objects while at the same time reducing worker exposure

  13. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    Science.gov (United States)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  14. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  15. Vacuum energy is non-positive for (2 + 1)-dimensional holographic CFTs

    International Nuclear Information System (INIS)

    Hickling, Andrew; Wiseman, Toby

    2016-01-01

    We consider a (2 + 1)-dimensional holographic CFT on a static spacetime with globally timelike Killing vector. Taking the spatial geometry to be closed but otherwise general we expect a non-trivial vacuum energy at zero temperature due to the Casimir effect. We assume a thermal state has an AdS/CFT dual description as a static smooth solution to gravity with a negative cosmological constant, which ends only on the conformal boundary or horizons. A bulk geometric argument then provides an upper bound on the ratio of CFT free energy to temperature. Considering the zero temperature limit of this bound implies the vacuum energy of the CFT is non-positive. Furthermore the vacuum energy must be negative unless the boundary metric is locally conformal to a product of time with a constant curvature space. We emphasise the argument does not require the zero temperature bulk geometry to be smooth, but only that singularities are ‘good’ so are hidden by horizons at finite temperature. (paper)

  16. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  17. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  18. The performance of prototype position-sensitive neutron detectors on SXD at ISIS

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1989-02-01

    The performance of two position-sensitive neutron detector designed for use on the single crystal diffractometer (SXD) at ISIS is assessed. The two detectors examined were the Anger camera 6 Li-glass scintillator PSD and a prototype fibre-optic encoded PSD based on 6 Li-doped ZnS plastic scintillator. The latter detector is found to be both simpler to fabricate and to produce better results on the evidence to date. A summary of some of the expected science from SXD and the performance of the detectors with respect to this is also given. (author)

  19. Ultrafast readout of scintillating fibers using upgraded position-sensitive photomultipliers

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-01-01

    Experimental results obtained with commercially available position-sensitive photomultipliers (PSPM) coupled with 0.5 mm diameter scintillating fiber arrays show some promising performances such as space resolution better than 200 μm and time resolution ∼ 1.5 ns with a detection efficiency higher than 90%. Major progress has also been recently achieved with an upgrade of a PSPM based on new grid dynode structures. Two-track spatial resolution has been studied using the upgraded PSPM. Initial studies demonstrate that two tracks separated by a minimum distance of 3 mm are resolved

  20. Measurement and analysis of field-induced crystallographic texture using curved position-sensitive diffraction detectors

    DEFF Research Database (Denmark)

    Simons, Hugh; Daniels, John E.; Studer, Andrew J.

    2014-01-01

    This paper outlines measurement and analysis methodologies created for determining the structural responses of electroceramics to an electric field. A sample stage is developed to apply electric fields to ceramic materials at elevated temperatures during neutron diffraction experiments. The tested...... employing a curved positive sensitive detector. Methodologies are proposed to account for the geometrical effects when vector fields are applied to textured materials with angularly dispersive detector geometries. Representative results are presented for the ferroelectric (Bi1/2Na1/2)TiO3-6%BaTiO3 (BNT-6BT...

  1. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  2. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    International Nuclear Information System (INIS)

    Sanjari, M S; Chen, X; Hülsmann, P; Litvinov, Yu A; Nolden, F; Piotrowski, J; Steck, M; Stöhlker, Th

    2015-01-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results. (paper)

  3. Identifying Moderators of the Link Between Parent and Child Anxiety Sensitivity: The Roles of Gender, Positive Parenting, and Corporal Punishment.

    Science.gov (United States)

    Graham, Rebecca A; Weems, Carl F

    2015-07-01

    A substantial body of literature suggests that anxiety sensitivity is a risk factor for the development of anxiety problems and research has now begun to examine the links between parenting, parent anxiety sensitivity and their child's anxiety sensitivity. However, the extant literature has provided mixed findings as to whether parent anxiety sensitivity is associated with child anxiety sensitivity, with some evidence suggesting that other factors may influence the association. Theoretically, specific parenting behaviors may be important to the development of child anxiety sensitivity and also in understanding the association between parent and child anxiety sensitivity. In this study, 191 families (n = 255 children and adolescents aged 6-17 and their parents) completed measures of child anxiety sensitivity (CASI) and parenting (APQ-C), and parents completed measures of their own anxiety sensitivity (ASI) and their parenting (APQ-P). Corporal punishment was associated with child anxiety sensitivity and the child's report of their parent's positive parenting behaviors moderated the association between parent and child anxiety sensitivity. The child's gender was also found to moderate the association between parent and child anxiety sensitivity, such that there was a positive association between girls' and their parents anxiety sensitivity and a negative association in boys. The findings advance the understanding of child anxiety sensitivity by establishing a link with corporal punishment and by showing that the association between parent and child anxiety sensitivity may depend upon the parenting context and child's gender.

  4. Investigation of the pulse shape analysis for the position sensitive γ-ray spectrometer AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institut fuer Kernphysik Koeln (Germany); Collaboration: AGATA-Collaboration

    2015-07-01

    The next generation of γ-ray spectrometers like AGATA will provide high quality γ-ray spectra by the new Gamma-Ray Tracking technique (GRT). Position sensitive HPGe detectors will allow for precise Doppler correction and small broadening of lines for spectroscopy at relativistic energies. GRT is based on the interaction position of the γ-rays within the volume of the highly segmented germanium detectors provided by Pulse Shape Analysis (PSA) methods. The proof of principle of GRT was already demonstrated with great success however systematic deviations from expected results occur. The parameterization of the following detector properties and their impact on PSA were thoroughly investigated and optimized: electron and hole mobility, crystal axis orientation, space charge distributions, crystal impurities, response functions of preamplifiers and digitizers, linear and differential crosstalk, time alignment of pulses and the distance metric. Results of an improved PSA performance are presented.

  5. Penicillin sensitivity among children without a positive history for penicillin allergy.

    Science.gov (United States)

    Cetinkaya, Feyzullah; Cag, Yakup

    2004-06-01

    To establish the prevalence of positive penicillin skin tests among outpatients without any drug reaction history. Skin testing was performed in 147 children (aged 6-13 years) who had had received a penicillin preparation at least three times in the last 12 months without any allergic reaction. Before testing, detailed pediatric and allergy history were learned and then all children were tested with benzyl penicilloyl polylysin (PPL) and mixture of minor antigenic determinants. The test procedures were made epidermally and intradermally subsequently in every subject. The overall frequency of positive skin reactions to penicillin antigens was 10.2%. A mild systemic reaction was observed in one of the children during testing with PPL. We concluded that frequent use of penicillin and other beta-lactam antibiotics leads to sensitization of children in our study population despite these children seem to be asymptomatic during testing time. Copyright 2004 Blackwell Munksgaard

  6. Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors

    International Nuclear Information System (INIS)

    Nowlin, C.H.

    1976-07-01

    This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions

  7. First Investigation on a novel 2D position sensitive semiconductor detector concept

    CERN Document Server

    Bassignana, D; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I

    2012-01-01

    This paper presents a first study of the performance of a novel 2D position-sensitive microstrip detector, where the resistive charge division method was implemented by replacing the metallic electrodes with resistive electrodes made of polycrystalline silicon. A characterization of two proof-of-concept prototypes with different values of the electrode resistivity was carried out using a pulsed Near Infra-Red laser. The experimental data were compared with the electrical simulation of the sensor equivalent circuit coupled to simple electronics readout circuits. The good agreement between experimental and simulation results establishes the soundness of resistive charge division method in silicon microstrip sensors and validates the developed simulation as a tool for the optimization of future sensor prototypes. Spatial resolution in the strip length direction depends on the ionizing event position. The average value obtained from the protype analysis is close to 1.2% of the strip length for a 6 MIP signal.

  8. Instrumentation for Position Sensitive Detector-Powder diffractometer at CENM-Maamora

    International Nuclear Information System (INIS)

    Messous, M.-Y.; Belhorma, B.; Labrim, H.; El-Bakkari, B.; Jabri, H.

    2013-06-01

    Linear position sensitive detectors are widely used to configure neutron diffractometer and other instruments. Necessary front-end electronics and data acquisition system was developed to fulfil such instruments built around the research reactor. In this paper, the front-end electronics dedicated to the neutron powder diffractometer which will be installed in the axial beam port of the Triga Mark II research reactor (Center of Nuclear Studies of Maamora) is described. It consists of High voltage power supply, a Position-decoder and a Multichannel analyzer and data acquisition software. The 3 He-PSD detector response exposed to the neutron flow emitted by 252 Cf source held in paraffin spheres with distinct thicknesses for moderation effect, is shown. Monte-Carlo N Particles code (MCNP) simulations were also performed to study both the detector performance and the paraffin efficiency. (authors)

  9. Positive alcohol use expectancies moderate the association between anxiety sensitivity and alcohol use across adolescence.

    Science.gov (United States)

    Borges, Allison M; Lejuez, Carl W; Felton, Julia W

    2018-06-01

    Anxiety sensitivity (AS), or the fear of anxious symptoms and the belief that these symptoms may have negative physical, social, and cognitive consequences, is one personality trait that emerges in early adolescence and may be linked to alcohol use. However, findings are equivocal as to whether elevated AS during adolescence directly predicts alcohol use. Adolescents do report increases in positive alcohol use expectancies during this developmental period, and these expectancies have been found to be significantly associated with alcohol use. The current study examined whether positive alcohol use expectancies and AS in early adolescence predicted changes in alcohol use throughout adolescence. This aim was examined via secondary data analyses from a longitudinal study examining the development of risk behaviors in adolescents. Results of univariate latent growth curve modeling suggest that AS alone was not a significant predictor of baseline alcohol use or change in use over time after controlling for gender, age, and self-reported anxiety. However, AS in early adolescence was found to be a significant predictor of increases in alcohol use across adolescence for youth who reported greater positive alcohol use expectancies. These results indicate that beliefs regarding the positive effects of alcohol use are an important moderator in the relation between AS and change in alcohol use during adolescence. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Serial position effects are sensitive predictors of conversion from MCI to Alzheimer's disease dementia.

    Science.gov (United States)

    Egli, Simone C; Beck, Irene R; Berres, Manfred; Foldi, Nancy S; Monsch, Andreas U; Sollberger, Marc

    2014-10-01

    It is unclear whether the predictive strength of established cognitive variables for progression to Alzheimer's disease (AD) dementia from mild cognitive impairment (MCI) varies depending on time to conversion. We investigated which cognitive variables were best predictors, and which of these variables remained predictive for patients with longer times to conversion. Seventy-five participants with MCI were assessed on measures of learning, memory, language, and executive function. Relative predictive strengths of these measures were analyzed using Cox regression models. Measures of word-list position-namely, serial position scores-together with Short Delay Free Recall of word-list learning best predicted conversion to AD dementia. However, only serial position scores predicted those participants with longer time to conversion. Results emphasize that the predictive strength of cognitive variables varies depending on time to conversion to dementia. Moreover, finer measures of learning captured by serial position scores were the most sensitive predictors of AD dementia. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  11. Development of a position-sensitive fission counter and measurement of neutron flux distributions

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Soyama, Kazuhiko; Kakuta, Tsunemi

    2001-08-01

    A position-sensitive fission counter (PSFC) that operates in high neutron flux and high gamma-ray background such as at the side of a power reactor vessel has been developed. Neutron detection using the PSFC with a solenoid electrode is based on a delay-line method. The PSFC that has the outer diameter of 25 mm and the sensitive length of 1000 mm was manufactured for investigation of the performances. The PSFC provided output current pulses that were sufficiently higher than the alpha noise, though the PSFC has a solenoid electrode and large electrode-capacitance. The S/N ratio of PSFC outputs proved to be higher than that of ordinary fission counters with 200 mm sensitive length. A performance test to measure neutron flux distributions by a neutron measuring system with the PSFC was carried out by the side of a graphite pile, W2.4 x H1.4 x L1.2 m, with neutron sources, Am-Be 370 GBq x 2. It was confirmed that the neutron flux distribution was well measured with the system. (author)

  12. Development of a geometric uncertainty model describing the accuracy of position-sensitive, coincidence neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L., E-mail: cory@psu.ed [Department of Mechanical and Nuclear Engineering, The Pennsylvania, State University, University Park, PA 16802 (United States); Brenizer, J.S. [Department of Mechanical and Nuclear Engineering, The Pennsylvania, State University, University Park, PA 16802 (United States)

    2011-01-01

    A diameter of uncertainty (D{sub u}) was derived from a geometric uncertainty model describing the error that would be introduced into position-sensitive, coincidence neutron detection measurements by charged-particle transport phenomena and experimental setup. The transport of {alpha} and Li ions, produced by the {sup 10}B(n,{alpha}) {sup 7}Li reaction, through free-standing boro-phosphosilicate glass (BPSG) films was modeled using the Monte Carlo code SRIM, and the results of these simulations were used as input to determine D{sub u} for position-sensitive, coincidence techniques. The results of these calculations showed that D{sub u} is dependent on encoder separation, the angle of charged particle emission, and film thickness. For certain emission scenarios, the magnitude of D{sub u} is larger than the physical size of the neutron converting media that were being modeled. Spheres of uncertainty were developed that describe the difference in flight path times among the bounding-case emission scenarios that were considered in this work. It was shown the overlapping spheres represent emission angles and particle flight path lengths that would be difficult to resolve in terms of particle time-of-flight measurements. However, based on the timing resolution of current nuclear instrumentation, emission events that yield large D{sub u} can be discriminated by logical arguments during spectral deconvolution.

  13. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  14. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  15. Ultrafast readout of scintillating fibres using upgraded position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Ditta, J; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Okada, K; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Yoshida, T; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    In view of the new possibilities for event detection and tracking in future multi-TeV collider experiments, we propose to improve the performance of position-sensitive photomultipliers and, with it, to realize an ultrafast readout device of scintillating fibres; this should play a unique role in the complex of a future vertex detector, owing to its inherent subnanosecond resolving time as well as its capability of an extremely high counting rate. Our proposal is first aimed at upgrading the position-sensitive PM, in particular its space and time resolutions. Full advantage of the new phototube will be demonstrated in its immediate application to a generic prototype of a scintillating-fibre detector. Our programme also includes intensive R&D on a real-time digitization of the multihit topology, which should provide an essential back-up to the vertex tracking at extremely high rates, one of the most difficult problems relevant to the expected high performance of the LHC.

  16. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer.

    Science.gov (United States)

    Gipson, Brooke J; Robbins, Hilary A; Fakhry, Carole; D'Souza, Gypsyamber

    2018-02-01

    The incidence of HPV-related head and neck squamous cell carcinoma (HPV-HNSCC) is increasing. Oral samples are easy and non-invasive to collect, but the diagnostic accuracy of oral HPV detection methods for classifying HPV-positive HNSCC tumors has not been well explored. In a systematic review, we identified eight studies of HNSCC patients meeting our eligibility criteria of having: (1) HPV detection in oral rinse or oral swab samples, (2) tumor HPV or p16 testing, (3) a publication date within the last 10 years (January 2007-May 2017, as laboratory methods change), and (4) at least 15 HNSCC cases. Data were abstracted from each study and a meta-analysis performed to calculate sensitivity and specificity. Eight articles meeting inclusion criteria were identified. Among people diagnosed with HNSCC, oral HPV detection has good specificity (92%, 95% CI = 82-97%) and moderate sensitivity (72%, 95% CI = 45-89%) for HPV-positive HNSCC tumor. Results were similar when restricted to studies with only oropharyngeal cancer cases, with oral rinse samples, or testing for HPV16 DNA (instead of any oncogenic HPV) in the oral samples. Among those who already have HNSCC, oral HPV detection has few false-positives but may miss one-half to one-quarter of HPV-related cases (false-negatives). Given these findings in cancer patients, the utility of oral rinses and swabs as screening tests for HPV-HNSCC among healthy populations is probably limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Three-Dimensional Implant Positioning with a Piezosurgery Implant Site Preparation Technique and an Intraoral Surgical Navigation System: Case Report.

    Science.gov (United States)

    Pellegrino, Gerardo; Taraschi, Valerio; Vercellotti, Tomaso; Ben-Nissan, Besim; Marchetti, Claudio

    This case report describes new implant site preparation techniques joining the benefits of using an intraoral navigation system to optimize three-dimensional implant site positioning in combination with an ultrasonic osteotomy. A report of five patients is presented, and the implant positions as planned in the navigation software with the postoperative scan image were compared. The preliminary results are useful, although further clinical studies with larger populations are needed to confirm these findings.

  18. Testing of a novel pin array guide for accurate three-dimensional glenoid component positioning.

    Science.gov (United States)

    Lewis, Gregory S; Stevens, Nicole M; Armstrong, April D

    2015-12-01

    A substantial challenge in total shoulder replacement is accurate positioning and alignment of the glenoid component. This challenge arises from limited intraoperative exposure and complex arthritic-driven deformity. We describe a novel pin array guide and method for patient-specific guiding of the glenoid central drill hole. We also experimentally tested the hypothesis that this method would reduce errors in version and inclination compared with 2 traditional methods. Polymer models of glenoids were created from computed tomography scans from 9 arthritic patients. Each 3-dimensional (3D) printed scapula was shrouded to simulate the operative situation. Three different methods for central drill alignment were tested, all with the target orientation of 5° retroversion and 0° inclination: no assistance, assistance by preoperative 3D imaging, and assistance by the pin array guide. Version and inclination errors of the drill line were compared. Version errors using the pin array guide (3° ± 2°) were significantly lower than version errors associated with no assistance (9° ± 7°) and preoperative 3D imaging (8° ± 6°). Inclination errors were also significantly lower using the pin array guide compared with no assistance. The new pin array guide substantially reduced errors in orientation of the central drill line. The guide method is patient specific but does not require rapid prototyping and instead uses adjustments to an array of pins based on automated software calculations. This method may ultimately provide a cost-effective solution enabling surgeons to obtain accurate orientation of the glenoid. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Automated analysis of two-dimensional positions and body lengths of earthworms (Oligochaeta); MimizuTrack.

    Science.gov (United States)

    Kodama, Naomi; Kimura, Toshifumi; Yonemura, Seiichiro; Kaneda, Satoshi; Ohashi, Mizue; Ikeno, Hidetoshi

    2014-01-01

    Earthworms are important soil macrofauna inhabiting almost all ecosystems. Their biomass is large and their burrowing and ingestion of soils alters soil physicochemical properties. Because of their large biomass, earthworms are regarded as an indicator of "soil heath". However, primarily because the difficulties in quantifying their behavior, the extent of their impact on soil material flow dynamics and soil health is poorly understood. Image data, with the aid of image processing tools, are a powerful tool in quantifying the movements of objects. Image data sets are often very large and time-consuming to analyze, especially when continuously recorded and manually processed. We aimed to develop a system to quantify earthworm movement from video recordings. Our newly developed program successfully tracked the two-dimensional positions of three separate parts of the earthworm and simultaneously output the change in its body length. From the output data, we calculated the velocity of the earthworm's movement. Our program processed the image data three times faster than the manual tracking system. To date, there are no existing systems to quantify earthworm activity from continuously recorded image data. The system developed in this study will reduce input time by a factor of three compared with manual data entry and will reduce errors involved in quantifying large data sets. Furthermore, it will provide more reliable measured values, although the program is still a prototype that needs further testing and improvement. Combined with other techniques, such as measuring metabolic gas emissions from earthworm bodies, this program could provide continuous observations of earthworm behavior in response to environmental variables under laboratory conditions. In the future, this standardized method will be applied to other animals, and the quantified earthworm movement will be incorporated into models of soil material flow dynamics or behavior in response to chemical

  20. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    Science.gov (United States)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  1. Recent improvements to RC-line encoded position-sensitive proportional counters

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Kopp, M.K.

    1977-01-01

    Continuing research on the principles of position encoding with RC lines has advanced the design of position-sensitive proportional counters (PSPCs) to meet the requirements for high count rates (>10 5 counts/sec) and good spatial resolution (>10 4 spatial elements) in small-angle scattering experiments with x rays and neutrons. Low-noise preamplifiers were developed with pole-zero cancellation in the feedback circuit and modular linear amplifiers with passive RCL shaping which, compared to previous designs, reduce output saturation at high count rates approx.20 times and shorten the position signal processing time to 2 ) for low-energy ( 800 x 800 mm 2 ) for the measurement of small-angle scattering with neutrons. The method of electronic thickness discrimination was applied to change the effective thickness of an area PSPC from 12 to 2 cm whenever the molybdenum target of an x-ray generator was changed to a copper target. This thickness adjustment increased the signal-to-background ratio by a factor of approx.6 for the 8-keV photons from the copper target, while maintaining a >90% detection efficiency

  2. Preliminary Study of Position-Sensitive Large-Area Radiation Portal Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Kim, Hyunok; Moon, Myung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jong Won; Lim, Yong Kon [Korea Institute of Ocean Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    An RPM, which is a passive inspection method, is a system for monitoring the movement of radioactive materials at an airport, seaport, border, etc. To detect a γ-ray, an RPM using the plastic scintillator is generally used. The method of γ-ray detection using an RPM with a plastic scintillator is to measure lights generated by an incident γ-ray in the scintillator. Generally, a large-area RPM uses one or two photomultiplier tubes (PMT) for light collection. However, in this study, we developed a 4-ch RPM that can measure the radiation signal using 4 PMTs. The reason for using 4 PMTs is to calculate the position of the radiation source. In addition, we developed an electric device for acquisition of a 4-ch output signal at the same time. To estimate the performance of the developed RPM, we performed an RPM test using a {sup 60}Co γ-ray check source. In this study, we performed the development of a 4-ch RPM. The major function of the typical RPM is to measure the radiation. However, we developed a position-sensitive 4-ch RPM, which can be used to measure the location of the radiation source, as well as the radiation measurement, at the same time. In the future, we plan to develop an algorithm for a position detection of the radiation. In addition, an algorithm will be applied to an RPM.

  3. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  4. Environmental gram-positive mastitis treatment: in vitro sensitivity and bacteriologic cure.

    Science.gov (United States)

    Cattell, M B; Dinsmore, R P; Belschner, A P; Carmen, J; Goodell, G

    2001-09-01

    A clinical trial was conducted in a large dairy herd to determine the efficacy of intramammary pirlimycin hydrochloride administration during lactation for bacteriologic clearance of gram-positive environmental clinical and subclinical mastitis infections. Quarters infected with environmental streptococci that received pirlimycin therapy (13/28) were 1.8 times more likely to resolve infection than untreated quarters (5/14). The small numbers of quarters infected with coagulase-negative staphylococci resulted in inadequate power to assess treatment differences in cure rate. Although the association was not statistically significant, quarters from cows with sensitive environmental streptococci isolates from composite samples (8/13) resolved infection with treatment at approximately twice the rate of treated quarters with resistant isolates (3/10).

  5. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  6. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs

    CERN Document Server

    Shao, Y; Chatziioannou, A F

    2002-01-01

    We report our investigation of a positron emission tomography (PET) detector with 1 m spatial resolution. The prototype detector consists of a 9x9 array of 1x1x10 mm sup 3 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to Hamamatsu R5900-M64 or R5900-C12 position sensitive PMT by either optical fibers or an optical fiber bundle. With a 511 eV gamma source, the intrinsic spatial resolution of this detector was measured to be 0.92 mm. All crystals were well resolved in the flood source histogram. The measured energy and coincidence timing resolutions were around 26% and 4 ns, respectively, demonstrating that sufficient light can be extracted from these small crystals for PET applications.

  7. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  8. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  9. Depth of interaction detection with enhanced position-sensitive proportional resistor network

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Benlloch, J.M.; Sanchez, F.; Pavon, N.; Gimenez, N.; Fernandez, M.; Gimenez, M.; Sebastia, A.; Martinez, J.; Mora, F.J.

    2005-01-01

    A new method of determining the depth of interaction of γ-rays in thick inorganic scintillation crystals was tested experimentally. The method uses the strong correlation between the width of the scintillation light distribution within large continuous crystals and the γ-ray's interaction depth. This behavior was successfully reproduced by a theoretical model distribution based on the inverse square law. For the determination of the distribution's width, its standard deviation σ is computed using an enhanced position-sensitive proportional resistor network which is often used in γ-ray-imaging devices. Minor changes of this known resistor network allow the analog and real-time determination of the light distribution's 2nd moment without impairing the measurement of the energy and centroid. First experimental results are presented that confirm that the described method works correctly. Since only some cheap electronic components, but no additional detectors or crystals are required, the main advantage of this method is its low cost

  10. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  11. Position sensitive detector with semiconductor and image electron tube comprising such a detector

    International Nuclear Information System (INIS)

    Roziere, Guy.

    1977-01-01

    This invention concerns a position sensitive detector comprising a semiconducting substrate. It also concerns the electron tubes in which the detector may be incorporated in order to obtain an image formed at the tube input by an incident flux of particles or radiation. When a charged particle or group of such particles, electrons in particular, enter the space charge region of an inversely biased semiconductor diode, the energy supplied by these particles releases in the diode a certain number of electron-hole pairs which move in the field existing in the area towards the diode contacts. A corresponding current arises in the connections of this diode which constitutes the signal corresponding to the incident energy. Such a tube or chain of tubes is employed in nuclear medicine for observing parts of the human body, particularly by gamma radiation [fr

  12. A position sensitive silicon detector for AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy)

    CERN Multimedia

    Gligorova, A

    2014-01-01

    The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is located at the Antiproton Decelerator (AD) at CERN and studies antimatter. The main goal of the AEḡIS experiment is to carry out the first measurement of the gravitational acceleration for antimatter in Earth’s gravitational field to a 1% relative precision. Such a measurement would test the Weak Equivalence Principle (WEP) of Einstein’s General Relativity. The gravitational acceleration for antihydrogen will be determined using a set of gravity measurement gratings (Moiré deflectometer) and a position sensitive detector. The vertical shift due to gravity of the falling antihydrogen atoms will be detected with a silicon strip detector, where the annihilation of antihydrogen will take place. This poster presents part of the development process of this detector.

  13. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  14. An Evaluation of Two Internal Surrogates for Determining the Three-Dimensional Position of Peripheral Lung Tumors

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Soernsen de Koste, John R. van; Vincent, Andrew; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2009-01-01

    Purpose: Both carina and diaphragm positions have been used as surrogates during respiratory-gated radiotherapy. We studied the correlation of both surrogates with three-dimensional (3D) tumor position. Methods and Materials: A total of 59 repeat artifact-free four-dimensional (4D) computed tomography (CT) scans, acquired during uncoached breathing, were identified in 23 patients with Stage I lung cancer. Repeat scans were co-registered to the initial 4D CT scan, and tumor, carina, and ipsilateral diaphragm were manually contoured in all phases of each 4D CT data set. Correlation between positions of carina and diaphragm with 3D tumor position was studied by use of log-likelihood ratio statistics. Models to predict 3D tumor position from internal surrogates at end inspiration (EI) and end expiration (EE) were developed, and model accuracy was tested by calculating SDs of differences between predicted and actual tumor positions. Results: Motion of both the carina and diaphragm significantly correlated with tumor motion, but log-likelihood ratios indicated that the carina was more predictive for tumor position. When craniocaudal tumor position was predicted by use of craniocaudal carina positions, the SDs of the differences between the predicted and observed positions were 2.2 mm and 2.4 mm at EI and EE, respectively. The corresponding SDs derived with the diaphragm positions were 3.7 mm and 3.9 mm at EI and EE, respectively. Prediction errors in the other directions were comparable. Prediction accuracy was similar at EI and EE. Conclusions: The carina is a better surrogate of 3D tumor position than diaphragm position. Because residual prediction errors were observed in this analysis, additional studies will be performed using audio-coached scans.

  15. Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles

    Directory of Open Access Journals (Sweden)

    Olson Daniel G

    2012-05-01

    Full Text Available Abstract Background Temperature-sensitive (Ts plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein using an algorithm designed by Varadarajan et al. (1996 for predicting Ts mutants based on the amino-acid sequence of the protein. Results A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A was compared with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C. Conclusions The plasmid described in this work could be useful in future efforts to genetically engineer C. thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

  16. Position sensitive regions in a generic radiation sensor based on single event upsets in dynamic RAMs

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1997-01-01

    Modern integrated circuits are highly complex systems and, as such, are susceptible to occasional failures. Semiconductor memory devices, particularly dynamic random access memories (dRAMs), are subject to random, transient single event upsets (SEUs) created by energetic ionizing radiation. These radiation-induced soft failures in the stored data of silicon based memory chips provide the foundation for a new, highly efficient, low cost generic radiation sensor. The susceptibility and the detection efficiency of a given dRAM device to SEUs is a complicated function of the circuit design and geometry, the operating conditions and the physics of the charge collection mechanisms involved. Typically, soft error rates measure the cumulative response of all sensitive regions of the memory by broad area chip exposure in ionizing radiation environments. However, this study shows that many regions of a dynamic memory are competing charge collection centres having different upset thresholds. The contribution to soft fails from discrete regions or individual circuit elements of the memory device is unambiguously separated. Hence the use of the dRAM as a position sensitive radiation detector, with high spatial resolution, is assessed and demonstrated. (orig.)

  17. Three-Dimensional Porous Nitrogen-Doped NiO Nanostructures as Highly Sensitive NO2 Sensors

    Directory of Open Access Journals (Sweden)

    Van Hoang Luan

    2017-10-01

    Full Text Available Nickel oxide has been widely used in chemical sensing applications, because it has an excellent p-type semiconducting property with high chemical stability. Here, we present a novel technique of fabricating three-dimensional porous nitrogen-doped nickel oxide nanosheets as a highly sensitive NO2 sensor. The elaborate nanostructure was prepared by a simple and effective hydrothermal synthesis method. Subsequently, nitrogen doping was achieved by thermal treatment with ammonia gas. When the p-type dopant, i.e., nitrogen atoms, was introduced in the three-dimensional nanostructures, the nickel-oxide-nanosheet-based sensor showed considerable NO2 sensing ability with two-fold higher responsivity and sensitivity compared to non-doped nickel-oxide-based sensors.

  18. The effect of mechanical stress on lateral-effect position-sensitive detector characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.A. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)]. E-mail: Henrik.Andersson@miun.se; Mattsson, C.G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Thungstroem, G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Lundgren, A. [SiTek Electro Optics, Ogaerdesvaegen 13A 433 30 Partille (Sweden); Nilsson, H.-E. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2006-07-01

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60x3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  19. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  20. Measurement of spatial dose-rate distribution using a position sensitive detector

    International Nuclear Information System (INIS)

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  1. Semiautomatic imputation of activity travel diaries : use of global positioning system traces, prompted recall, and context-sensitive learning algorithms

    NARCIS (Netherlands)

    Moiseeva, A.; Jessurun, A.J.; Timmermans, H.J.P.; Stopher, P.

    2016-01-01

    Anastasia Moiseeva, Joran Jessurun and Harry Timmermans (2010), ‘Semiautomatic Imputation of Activity Travel Diaries: Use of Global Positioning System Traces, Prompted Recall, and Context-Sensitive Learning Algorithms’, Transportation Research Record: Journal of the Transportation Research Board,

  2. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm

    Science.gov (United States)

    Chen, Hao; Guan, Weipeng; Li, Simin; Wu, Yuxiang

    2018-04-01

    To improve the precision of indoor positioning and actualize three-dimensional positioning, a reversed indoor positioning system based on visible light communication (VLC) using genetic algorithm (GA) is proposed. In order to solve the problem of interference between signal sources, CDMA modulation is used. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) code using CDMA modulation. Receiver receives mixed signal from every LED reference point, by the orthogonality of spreading code in CDMA modulation, ID information and intensity attenuation information from every LED can be obtained. According to positioning principle of received signal strength (RSS), the coordinate of the receiver can be determined. Due to system noise and imperfection of device utilized in the system, distance between receiver and transmitters will deviate from the real value resulting in positioning error. By introducing error correction factors to global parallel search of genetic algorithm, coordinates of the receiver in three-dimensional space can be determined precisely. Both simulation results and experimental results show that in practical application scenarios, the proposed positioning system can realize high precision positioning service.

  3. Increased sensitivity to positive social stimuli in monozygotic twins at risk of bipolar vs. unipolar disorder.

    Science.gov (United States)

    Kærsgaard, S; Meluken, I; Kessing, L V; Vinberg, M; Miskowiak, K W

    2018-05-01

    Abnormalities in affective cognition are putative endophenotypes for bipolar and unipolar disorders but it is unclear whether some abnormalities are disorder-specific. We therefore investigated affective cognition in monozygotic twins at familial risk of bipolar disorder relative to those at risk of unipolar disorder and to low-risk twins. Seventy monozygotic twins with a co-twin history of bipolar disorder (n = 11), of unipolar disorder (n = 38) or without co-twin history of affective disorder (n = 21) were included. Variables of interest were recognition of and vigilance to emotional faces, emotional reactivity and -regulation in social scenarios and non-affective cognition. Twins at familial risk of bipolar disorder showed increased recognition of low to moderate intensity of happy facial expressions relative to both unipolar disorder high-risk twins and low-risk twins. Bipolar disorder high-risk twins also displayed supraliminal attentional avoidance of happy faces compared with unipolar disorder high-risk twins and greater emotional reactivity in positive and neutral social scenarios and less reactivity in negative social scenarios than low-risk twins. In contrast with our hypothesis, there was no negative bias in unipolar disorder high-risk twins. There were no differences between the groups in demographic characteristics or non-affective cognition. The modest sample size limited the statistical power of the study. Increased sensitivity and reactivity to positive social stimuli may be a neurocognitive endophenotype that is specific for bipolar disorder. If replicated in larger samples, this 'positive endophenotype' could potentially aid future diagnostic differentiation between unipolar and bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication

    Science.gov (United States)

    Peng, Qi; Guan, Weipeng; Wu, Yuxiang; Cai, Ye; Xie, Canyu; Wang, Pengfei

    2018-01-01

    This paper proposes a three-dimensional (3-D) high-precision indoor positioning strategy using Tabu search based on visible light communication. Tabu search is a powerful global optimization algorithm, and the 3-D indoor positioning can be transformed into an optimal solution problem. Therefore, in the 3-D indoor positioning, the optimal receiver coordinate can be obtained by the Tabu search algorithm. For all we know, this is the first time the Tabu search algorithm is applied to visible light positioning. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) and transmits the ID information. When the receiver detects optical signals with ID information from different LEDs, using the global optimization of the Tabu search algorithm, the 3-D high-precision indoor positioning can be realized when the fitness value meets certain conditions. Simulation results show that the average positioning error is 0.79 cm, and the maximum error is 5.88 cm. The extended experiment of trajectory tracking also shows that 95.05% positioning errors are below 1.428 cm. It can be concluded from the data that the 3-D indoor positioning based on the Tabu search algorithm achieves the requirements of centimeter level indoor positioning. The algorithm used in indoor positioning is very effective and practical and is superior to other existing methods for visible light indoor positioning.

  5. Deranged Dimensionality of Vestibular Re-Weighting in Multiple Chemical Sensitivity

    Directory of Open Access Journals (Sweden)

    Alessandro Micarelli

    2016-11-01

    Full Text Available Background: Multiple chemical sensitivity (MCS is a chronic multisystem condition characterized by low levels of multiple chemical susceptibility inducing a spectrum of central nervous system symptoms, including dizziness. Thus, considering (i the overlapping psychogenic and organic burdens shared in MCS development and in vestibular disorders; (ii the number of previous studies describing central processing impairment related to inner ear inflow in this syndrome; and (iii the lack of literature with respect to clinical evidence of the presentation of MCS dizziness, the purpose of the present study was to highlight the possible hidden aspects of vestibular impairment by applying the recent contribution of implemented otoneurological testing, inferential statistic and principal component (PC analysis in 18 MCS and 20 healthy subjects (HC; Methods: Both groups filled in a dizziness and environment exposure inventory and underwent the Rod and Disc and Rod and Frame Test, video Head Impulse Test (vHIT and Static Posturography Test (SPT with fast Fourier Transform (FFT. Between-group analysis of variance and PC analysis implemented on otoneurological variables were performed; Results: Defective vestibular processing was identified in 18 MCS patients (11 female and 7 male; mean age 49.5 ± 9.3 years by finding a significant increase in SPT and FFT parameters and in Visual Dependency (VD behaviour and a decrease in vHIT scores. Component correlation analysis in MCS showed a positive correlation of FFT parameters in PC1 and SPT parameters in PC2 with a negative correlation of vHIT and VD values in PC2. HC subjects demonstrated a positive correlation of VD and SPT parameters in PC1 and FFT parameters in PC2. Conclusion: Inferential and PC analysis provided the opportunity to disclose such possible hidden phenomena to (i support that MCS physiopathological cascades could lead to a vestibular decay; and (ii suggest rearrangement of the dimension of the

  6. Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minglun; Ballhausen, Hendrik; Hegemann, Nina-Sophie; Reiner, Michael; Manapov, Farkhad; Corradini, Stefanie; Ganswindt, Ute; Belka, Claus [University Hospital Munich, LMU Munich, Department of Radiation Oncology, Munich (Germany); Tritschler, Stefan; Gratzke, Christian [University Hospital Munich, LMU Munich, Department of Urology, Munich (Germany)

    2017-03-15

    The accuracy of a transperineal three-dimensional ultrasound system (3DUS) was assessed for prostate positioning and compared to fiducial- and bone-based positioning in kV cone beam computed tomography (CBCT) during definitive radiotherapy of prostate cancer. Each of the 7 patients had three fiducial markers implanted into the prostate before treatment. Prostate positioning was simultaneously measured by 3DUS and CBCT before each fraction. In total, 177 pairs of 3DUS and CBCT scans were collected. Bone-match and seed-match were performed for each CBCT. Using seed-match as a reference, the accuracy of 3DUS and bone-match was evaluated. Systematic and random errors as well as optimal setup margins were calculated for 3DUS and bone-match. The discrepancy between 3DUS and seed-match in CBCT (average ± standard deviation) was 0.0 ± 1.7 mm laterally, 0.2 ± 2.0 mm longitudinally, and 0.3 ± 1.7 mm vertically. Using seed-match as a reference, systematic errors for 3DUS were 1.2 mm, 1.1 mm, and 0.9 mm; and random errors were 1.4 mm, 1.8 mm, and 1.6 mm, on lateral, longitudinal, and vertical axes, respectively. By analogy, the difference of bone-match to seed-match was 0.1 ± 1.1 mm laterally, 1.3 ± 3.8 mm longitudinally, and 1.3 ± 4.5 mm vertically. Systematic errors were 0.5 mm, 2.2 mm, and 2.6 mm; and random errors were 1.0 mm, 3.1 mm, and 3.9 mm on lateral, longitudinal, and vertical axes, respectively. The accuracy of 3DUS was significantly higher than that of bone-match on longitudinal and vertical axes, but not on the lateral axis. Image-guided radiotherapy of prostate cancer based on transperineal 3DUS was feasible, with overall small discrepancy to seed-match in CBCT in this retrospective study. Compared to bone-match, transperineal 3DUS achieved higher accuracy on longitudinal and vertical axes. (orig.) [German] Bewertung der Genauigkeit eines transperinealen dreidimensionalen Ultraschallsystems (3DUS) fuer die Prostatapositionierung und Vergleich mit

  7. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    Science.gov (United States)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  8. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    Science.gov (United States)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  9. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    Science.gov (United States)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  10. The Research of Screw Thread Parameter Measurement Based on Position Sensitive Detector and Laser

    International Nuclear Information System (INIS)

    Tong, Q B; Ding, Z L; Chen, J C; Ai, L L; Yuan, F

    2006-01-01

    A technique and system of measuring screw thread parameter based on the theory of laser measurement is presented in this paper, which can be carried out the automated measurement of screw thread parameter. An inspection instrument was designed and produced, which included exterior imaging system of optical path, transverse displacement measurement system, axial displacement measurement system, and a module to deal with, control and assess the data in the upper system. The inspection and estimate of the screw thread contour curve were completed by using position sensitive device (PSD) as photoelectric detector to measure the coordinate data of the screw thread contour curve in the transverse section, and using precise raster to measure the axial displacement of the precision worktable under the screw thread test criterion., computer can gives a measured result according to coordinate data of the screw thread obtained by PSD. The relation between measured spot and image is established, and optimum design of the system organization are introduced, including the image length of receiving lens focal length optical system and the choice of PSD , and some main factor affected measuring precision are analyzed. The experimental results show that the measurement uncertainty of screw thread minor diameter can reach 0. 5μm, which can meet most requests for the measurement of screw thread parameter

  11. Single-Photon Computed Tomography With Large Position-Sensitive Phototubes*

    Science.gov (United States)

    Feldmann, John; Ranck, Amoreena; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph

    2000-10-01

    Position-sensitive photomultiplier tubes (PSPMTs) coupled to pixelated CsI(Tl) scintillators have been used with parallel-hole collimators to view the metabolism in small animals of radiopharmaceuticals tagged with ^125I. We report here our preliminary results analyzed using a tomography program^1 written in IDL programming language. The PSPMTs are mounted on a rotating gantry so as to view the subject animal from any azimuth. Preliminary results to test the tomography algorithm have been obtained by placing a variety of plastic mouse-brain phantoms (loaded with Na^125I) in front of one of the detectors and rotating the phantom in steps through 360 degrees. Results of this simulation taken with a variety of collimator hole sizes will be compared and discussed. Extentions of this technique to the use of very small PSPMTs (Hamamatsu M-64) which are capable of a very close approach to those parts of the animal of greatest interest will be described. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation and The Jeffress Trust. 1. Tomography algorithm kindly provided by Dr. S. Meikle of The Royal Prince Albert Hospital, Sydney, Australia

  12. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    Science.gov (United States)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  13. Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy

    International Nuclear Information System (INIS)

    Harper, Sarah M; Hu Wanping; Price, Stephen D

    2002-01-01

    A new experiment, employing position-sensitive detection coupled with time-of-flight mass spectrometry, has been used to investigate the single-electron transfer reaction between Ne 2+ and Ar by detecting the resulting pairs of singly charged ions in coincidence. The experimental technique allows the determination of the individual velocity vectors of the ionic products, in the centre-of-mass frame, for each reactive event detected. The experiments show that forward scattering dominates the reactivity, although a bimodal angular distribution is apparent. In addition, the spectra show that at laboratory frame collision energies from 4-14 eV the reactivity is dominated by Ne 2+ (2p 4 , 3 P) accepting an electron from an argon atom to form the ground state of Ne + together with an Ar + ion in an excited electronic level, predominantly arising from the Ar + (3s 2 3p 4 3d) configuration. The form of this reactivity, and the differences between the reactivity observed in these experiments and those performed at higher collision energies, are well reproduced by Landau-Zener theory

  14. An ancient form of position-sensitive detector - the individual counter array

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1983-01-01

    Large position sensitive detectors (PSDs) have been very successful as high efficiency neutron powder diffractometers. Complete powder patterns can be obtained within minutes, making possible real-time measurements of structural changes accompanying chemical and electrochemical reactions. The angular resolution of such machines is determined by the diameter of the sample, and not simply by the resolution of the detector itself. It is argued that since sample diameters are usually 5mm to 10mm, it is possible to use an array of individual counters of similar diameter rather than a true PSD. Such a low to medium resolution individual counter array (ICA) can be made more efficient than the true PSD, produces an identical diffraction pattern, and has several practical advantages, including covering a greater solid angle. For high resolution powder diffraction, it has already been demonstrated that an ICA, in this case associated with Soller collimators, is again the most efficient solution. This is because the sample volume (and intensity) of a high resolution PSD decreases quadratically with the diameter of the sample. The only alternative to very small samples would be a large sample-detector distance, and then large vertical divergences cannot be achieved because of mechanical limitations on gas-filled PSD apertures; again intensity is lost. The resolution and efficiency of the ICA are discussed. (author)

  15. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    International Nuclear Information System (INIS)

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures

  16. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-07-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.

  17. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    Science.gov (United States)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Petrascu, M.

    1999-01-01

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm 2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  19. Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Huang Meizhen; Shi Longzhao; Wang Yuxing; Ni Yi; Li Zhenqing; Ding Haifeng

    2006-01-01

    An inherently nonlinear relation between the output current of the tetralateral position sensitive detector (PSD) and the position of the incident light spot has been found theoretically. Based on single-chip microcomputer and the theoretical relation between output current and position, a new signal processor capable of correcting nonlinearity and reducing position measurement deviation of tetralateral PSD was developed. A tetralateral PSD (S1200, 13x13 mm 2 , Hamamatsu Photonics K.K.) was measured with the new signal processor, a linear relation between the output position of the PSD, and the incident position of the light spot was obtained. In the 60% range of a 13x13 mm 2 active area, the position nonlinearity (rms) was 0.15% and the position measurement deviation (rms) was ±20 μm. Compared with traditional analog signal processor, the new signal processor is of better compatibility, lower cost, higher precision, and easier to be interfaced

  20. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    Science.gov (United States)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  1. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram, E-mail: bkilic@yalova.edu.tr [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Günes, Taylan; Besirli, Ilknur; Sezginer, Merve [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Tuzemen, Sebahattin [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2014-11-01

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO{sub 2}) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I{sup −}/I{sup −}{sub 3} electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm{sup 2}. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells.

  2. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  3. Study of capillary tracking detectors with position-sensitive photomultiplier readout

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Di Girolamo, B.; Dolinsky, S.I.; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Medvedkov, A.M.; Pyshev, A.I.; Tyukov, V.E.; Vasilchenko, V.G.; Zymin, K.V.

    1995-01-01

    Measurements have been carried out on light yield and attenuation length in glass capillaries filled with new liquid scintillators (LS) and compared with analogous measurements made on 0.5 mm diameter plastic fibres Kuraray SCSF-38 and 3HF. It is found that, at a distance of 1 m, the light output in the capillary filled with green LS based on 1-methylnaphthalene doped with a new dye 3M15 is greater by a factor of 2 to 3 than for plastic fibres. A tracking detector consisting of a capillary bundle read out by a 100 channel position-sensitive microchannel plate photomultiplier (2MCP-100) has been built and tested in the laboratory using a cosmic ray trigger. A comparison has been made between the performance of such a detector and that of a similar one, read out by a 96 channel Philips XP1724/A photomultiplier. It was found that a bundle made of 20μm diameter capillaries with a tapered end giving a magnification of 2.56, filled with the new IPN+3M15 liquid scintillator, read out by the 2MCP-100, provides a space resolution of σ=170μm, a two-track resolution of the same value and a hit density of n=1.9/mm for tracks crossing the detector at a distance of 20 cm from the photocathode. If the same detector is read out by the Philips XP1724/A, the space resolution becomes 200μm, the two-track resolution 600μm and the hit density n=1.7/mm. The worse performance in the latter case is caused by the larger crosstalk compared with that of the 2MCP-100 PSPM. The results indicate that a LS-filled capillary detector is a very promising device for fast fibre tracking. (orig.)

  4. A three-dimensional microstructuring technique exploiting the positive photoresist property

    International Nuclear Information System (INIS)

    Hirai, Yoshikazu; Sugano, Koji; Tsuchiya, Toshiyuki; Tabata, Osamu

    2010-01-01

    The present paper describes a three-dimensional (3D) thick-photoresist microstructuring technique that exploits the effect of exposure wavelength on dissolution rate distributions in a thick-film diazonaphthoquinone (DNQ) photoresist. In fabricating 3D microstructure with specific applications, it is important to control the spatial dissolution rate distribution in the photoresist layer, since the lithographic performance for 3D microstructuring is largely determined by the details of the dissolution property. To achieve this goal, the effect of exposure wavelength on dissolution rate distributions was applied for 3D microstructuring. The parametric experimental results demonstrated (1) the advantages of the fabrication technique for 3D microstructuring and (2) the necessity of a dedicated simulation approach based on the measured thick-photoresist property for further verification. Thus, a simple and practical photolithography simulation model that makes use of the Fresnel diffraction theory and an empirically characterized DNQ photoresist property was adopted. Simulations revealed good quantitative agreement between the photoresist development profiles of the standard photolithography and the moving-mask UV lithography process. The simulation and experimental results conclude that the g-line (λ = 436 nm) process can reduce the dimensional limitation or complexity of the photolithography process for the 3D microstructuring which leads to nanoscale microstructuring.

  5. Positioning accuracy analysis of adjusting target mechanism of three-dimensional attitude

    International Nuclear Information System (INIS)

    Ma Li; Wang Kun; Sun Linzhi; Zhou Shasha

    2012-01-01

    A novel adjusting target mechanism of three-dimensional attitude is presented according to the characteristics of the target transport subsystem in inertial confinement fusion (ICF). The mechanism consists of a tangent mechanism adjusting rotation angle and a set of orthogonal tangent mechanism adjusting two-dimensional deflection angles. The structural parameters of the adjusting target mechanism are analyzed according to principle errors, structure errors and motion errors of following. The analysis results indicate that the system error of the adjusting target mechanism is influenced by the displacement of the linear actuators, the actuator ball radius, the working radius of the tangent mechanism, the angle error of the inclined installation hole, the centralization error of the actuators, the orthogonal error of the two tangent mechanism, and the angle errors of the inclined target rod inclined rotation shaft. The errors of the inclined target rod and inclined rotation shaft are the two greatest impact factors, the spherical contact error is the next. By means of precise assembly and control system compensation, the accuracy of the adjusting target mechanism can be less than 0.1 mrad. (authors)

  6. Differences in abdominal organ movement between supine and prone positions measured using four-dimensional computed tomography

    International Nuclear Information System (INIS)

    Kim, Young Seok; Park, Sung Ho; Ahn, Seung Do; Lee, Jeong Eun; Choi, Eun Kyung; Lee, Sang-wook; Shin, Seong Soo; Yoon, Sang Min; Kim, Jong Hoon

    2007-01-01

    Background and purpose: To analyze the differences in intrafractional organ movement throughout the breathing cycles between the supine and prone positions using four-dimensional computed tomography (4D CT). Materials and methods: We performed 4D CT on nine volunteers in the supine and prone positions, with each examinee asked to breathe normally during scanning. The movement of abdominal organs in the cranio-caudal (CC), anterior-posterior (AP) and right-left (RL) directions was quantified by contouring on each phase between inspiration and expiration. Results: The mean intrafractional motions of the hepatic dome, lower tip, pancreatic head and tail, both kidneys, spleen, and celiac axis in the supine/prone position were 17.3/13.0, 14.4/11.0, 12.8/8.9, 13.0/10.0, 14.3/12.1, 12.3/12.6, 11.7/12.6 and 2.2/1.8 mm, respectively. Intrafractional movements of the liver dome and pancreatic head were reduced significantly in the prone position. The CC directional excursions were major determinants of the 3D displacements of the abdominal organs. Alteration from the supine to the prone position did not change the amount of intrafractional movements of kidneys, spleen, and celiac axis. Conclusion: There was a significant reduction in the movements of the liver and pancreas during the prone position, especially in the CC direction, suggesting possible advantage of radiotherapy to these organs in this position

  7. Sensitivity Range Analysis of Infrared (IR) Transmitter and Receiver Sensor to Detect Sample Position in Automatic Sample Changer

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Nolida Yussup; Nur Aira Abdul Rahman; Maslina Ibrahim

    2016-01-01

    Sensitivity range of IR Transmitter and Receiver Sensor influences the effectiveness of the sensor to detect position of a sample. Then the purpose of this analysis is to determine the suitable design and specification the electronic driver of the sensor to gain appropriate sensitivity range for required operation. The related activities to this analysis cover electronic design concept and specification, calibration of design specification and evaluation on design specification for required application. (author)

  8. Inter-operator Variability in Defining Uterine Position Using Three-dimensional Ultrasound Imaging

    DEFF Research Database (Denmark)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2013-01-01

    significantly larger inter-fractional uterine positional displacement, in some cases up to 20 mm, which outweighs the magnitude of current inter-operator variations. Thus, the current US-phantom-study suggests that the inter-operator variability in addressing uterine position is clinically irrelevant.......In radiotherapy the treatment outcome of gynecological (GYN) cancer patients is crucially related to reproducibility of the actual uterine position. The purpose of this study is to evaluate the inter-operator variability in addressing uterine position using a novel 3-D ultrasound (US) system....... The study is initiated by US-scanning of a uterine phantom (CIRS 404, Universal Medical, Norwood, USA) by seven experienced US operators. The phantom represents a female pelvic region, containing a uterus, bladder and rectal landmarks readily definable in the acquired US-scans. The organs are subjected...

  9. Dimensional changes in plaster cast models due to the position of the impression tray during setting

    Directory of Open Access Journals (Sweden)

    Betina Grehs Porto

    2014-01-01

    Full Text Available Introduction: The objective of this study was to assess whether the positioning of the impression tray could cause distortion to plaster casts during gypsum setting time.Materials and Methods: Fifteen pairs of master models were cast with alginate impression material and immediately filled with gypsum. Impressions were allowed to set with the tray in the noninverted position (Group A or in the inverted position (Group B. The plaster models were digitized using a laser scanner (3Shape R-700, 3Shape A/S, Copenhagen, Denmark. Measurements of tooth size and distance were obtained using O3d software (Widialabs, Brazil measurement tools. Data were analyzed by paired t-test and linear regression with 5% significance.Results and Conclusion: Most of the measurements from both groups were similar, except forthe lower intermolar distance. It was not possible to corroborate the presence of distortions due to the position of the impression tray during gypsum setting time.

  10. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT

    International Nuclear Information System (INIS)

    Zhang Yingjie; Li Jianbin; Tian Shiyu; Li Fengxiang; Fan Tingyong; Shao Qian; Xu Min; Lu Jie

    2011-01-01

    Objective: To investigate the correlation of position movement of primary tumor with interested organs and skin markers, and to investigate the correlation of volume variation of primary tumors and lungs during different respiration phases for patients with lung cancer at free breath condition scanned by four-dimensional CT (4DCT) simulation. Methods: 16 patients with lung cancer were scanned at free breath condition by simulation 4DCT which connected to a respiration-monitoring system. A coordinate system was created based on image of T 5 phase,gross tumor volume (GTV) and normal tissue structures of 10 phases were contoured. The three dimensional position variation of them were measured and their correlation were analyzed, and the same for the volume variation of GTV and lungs of 10 respiratory phases. Results: Movement range of lung cancer in different lobe differed extinct: 0.8 - 5.0 mm in upper lobe, 5.7 -5.9 mm in middle lobe and 10.2 - 13.7 mm in lower lobe, respectively. Movement range of lung cancer in three dimensional direction was different: z-axis 4.3 mm ± 4.3 mm > y-axis 2.2 mm ± 1.0 mm > x-axis 1.7 mm ± 1.5 mm (χ 2 =16.22, P =0.000), respectively. There was no statistical significant correlation for movement vector of GTV and interested structures (r =-0.50 - -0.01, P =0.058 - -0.961), nor for volume variation of tumor and lung (r =0.23, P =0.520). Conclusions: Based on 4DCT, statistically significant differences of GTV centroid movement are observed at different pulmonary lobes and in three dimensional directions. So individual 4DCT measurement is necessary for definition of internal target volume margin for lung cancer. (authors)

  11. Evaluation of human skin tests for potential dermal irritant and contact sensitizing products: a position paper

    NARCIS (Netherlands)

    Loveren H van; Jong WH de; Garssen J; LPI

    1998-01-01

    Prediction of human cutaneous irritation and sensitization in view of hazard identification has primarily relied on the use of laboratory animals. Such studies in laboratory animals have been very instrumental in the detection of potential contact sensitizing agents. There are however many

  12. Calibration of the OPAL jet chamber with UV laser beams. Measurement of the beam position with position-sensitive silicon diodes (PSD)

    International Nuclear Information System (INIS)

    Koch, J.

    1990-03-01

    The OPAL jet chamber is calibrated with tracks produced by UV laser beams. Lateral effect diodes are used for monitoring the laser beam location in the detector. These position sensitive detectors locate the point of impact in two dimensions by the charge division method. Measurements on several diodes were carried out in order to calibrate these devices and to investigate to observed pin-cushion distortion. Using the telegraphers equation suitable expressions were obtained for describing the observed behaviour. It was shown that the magnetic field of OPAL as well as the UV laser wavelength and puls duration had no influence on the position information. (orig.)

  13. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox

    NARCIS (Netherlands)

    Marquering, H.; Dahlen, F. A.; Nolet, G.

    1999-01-01

    We use a coupled surface wave version of the Born approximation to compute the 3-D sensitivity kernel K-T(r) of a seismic body wave traveltime T measured by crosscorrelation of a broad-band waveform with a spherical earth synthetic seismogram. The geometry of a teleseismic S wave kernel is, at first

  14. Assessment of Motor Control during Three-Dimensional Movements Tracking with Position-Varying Gravity Compensation

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2017-05-01

    Full Text Available Active movements are important in the rehabilitation training for patients with neurological motor disorders, while weight of upper limb impedes movements due to muscles weakness. The objective of this study is to develop a position-varying gravity compensation strategy for a cable-based rehabilitation robot. The control strategy can estimate real-time gravity torque according to position feedback. Then, the performance of this control strategy was compared with the other two kinds of gravity compensation strategies (i.e., without compensation and with fixed compensation during movements tracking. Seven healthy subjects were invited to conduct tracking tasks along four different directions (i.e., upward, forward, leftward, and rightward. The performance of movements with different compensation strategies was compared in terms of root mean square error (RMSE between target and actual moving trajectories, normalized jerk score (NJS, mean velocity ratio (MVR of main motion direction, and the activation of six muscles. The results showed that there were significant effects in control strategies in all four directions with the RMSE and NJS values in the following order: without compensation > fixed compensation > position-varying compensation and MVR values in the following order: without compensation < fixed compensation < position-varying compensation (p < 0.05. Comparing with movements without compensation in all four directions, the activation of muscles during movements with position-varying compensation showed significant reductions, except the activations of triceps and in forward and leftward movements, the activations of upper trapezius and middle parts of deltoid in upward movements and the activations of posterior parts of deltoid in all four directions (p < 0.05. Therefore, with position-varying gravity compensation, the upper limb cable-based rehabilitation robotic system might assist subjects to perform movements with higher quality and

  15. Positive Solutions of the One-Dimensional p-Laplacian with Nonlinearity Defined on a Finite Interval

    OpenAIRE

    Ruyun Ma; Chunjie Xie; Abubaker Ahmed

    2013-01-01

    We use the quadrature method to show the existence and multiplicity of positive solutions of the boundary value problems involving one-dimensional $p$ -Laplacian ${\\left({u}^{\\prime }\\left(t\\right){|}^{p-2}{u}^{\\prime }\\left(t\\right)\\right)}^{\\prime }+\\lambda f\\left(u\\left(t\\right)\\right)=0$ , $t\\in \\left(0,1\\right)$ , $u\\left(0\\right)=u\\left(1\\right)=0$ , where $p\\in \\left(1,2\\right]$ , $\\lambda \\in \\left(0,\\mathrm{\\infty }\\right)$ is a parameter, $f\\in {C}^{1}\\left(\\left[0,r\\right),\\l...

  16. On the sensitivity of dimensional stability of high density polyethylene on heating rate

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Although high density polyethylene (HDPE is one of the most widely used industrial polymers, its application compared to its potential has been limited because of its low dimensional stability particularly at high temperature. Dilatometry test is considered as a method for examining thermal dimensional stability (TDS of the material. In spite of the importance of simulation of TDS of HDPE during dilatometry test it has not been paid attention by other investigators. Thus the main goal of this research is concentrated on simulation of TDS of HDPE. Also it has been tried to validate the simulation results and practical experiments. For this purpose the standard dilatometry test was done on the HDPE speci­mens. Secant coefficient of linear thermal expansion was computed from the test. Then by considering boundary conditions and material properties, dilatometry test has been simulated at different heating rates and the thermal strain versus temper­ature was calculated. The results showed that the simulation results and practical experiments were very close together.

  17. The Dynamics of Finite-Dimensional Systems Under Nonconservative Position Forces

    Science.gov (United States)

    Lobas, L. G.

    2001-01-01

    General theorems on the stability of stationary states of mechanical systems subjected to nonconservative position forces are presented. Specific mechanical problems on gyroscopic systems, a double-link pendulum with a follower force and elastically fixed upper tip, multilink pneumowheel vehicles, a monorail car, and rail-guided vehicles are analyzed. Methods for investigation of divergent bifurcations and catastrophes of stationary states are described

  18. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    International Nuclear Information System (INIS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-01-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  19. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kunkun, E-mail: ktg@illinois.edu [The Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC), University of Illinois at Urbana–Champaign, 1308 W Main St, Urbana, IL 61801 (United States); Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Congedo, Pietro M. [Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Abgrall, Rémi [Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  20. [Dimensional approach of emotion in psychiatry: validation of the Positive and Negative Emotionality scale (EPN-31)].

    Science.gov (United States)

    Pélissolo, A; Rolland, J-P; Perez-Diaz, F; Jouvent, R; Allilaire, J-F

    2007-01-01

    This paper reports the first validation study of the EPN-31 scale (Positive and Negative Emotionality scale, 31 items) in a French psychiatric sample. This questionnaire has been adapted by Rolland from an emotion inventory developed by Diener, and is also in accordance with Watson and Clark's tripartite model of affects. Respondents were asked to rate the frequency with which they had experienced each affect (31 basic emotional states) during the last month. The answer format was a 7-point scale, ranging from 1 "Not experienced at all" to 7 "Experienced this affect several times each day". Three main scores were calculated (positive affects, negative affects, and surprise affects), as well as six sub-scores (joy, tenderness, anger, fear, sadness, shame). Four hundred psychiatric patients were included in this study, and completed the EPN-31 scale and the Hospital Anxiety and Depression (HAD) scale. The Global Assessment of Functioning (GAF) scale was rated, as well as DSM IV diagnostic criteria. We performed a principal component analysis, with Varimax orthogonal transformation, and explored the factorial structure of the questionnaire, the internal consistency of each dimension, and the correlations between EPN-31 scores and HAD scores. The factorial structure of the EPN-31 was well-defined as expected, with a three-factor (positive, negative and surprise affects) solution accounting for 58.2% of the variance of the questionnaire. No correlation was obtained between positive and negative affects EPN-31 scores (r=0.006). All alpha Cronbach coefficients were between 0.80 and 0.95 for main scores, and between 0.72 and 0.90 for sub-scores. GAF scores were significantly correlated with EPN-31 positive affects scores (r=0.21; p=0.001) and with EPN-31 negative affects scores (r=- 0.45; p=0.001). We obtained significant correlations between positive affects score and HAD depression score (r=- 0.45; pemotionality. Significantly higher EPN-31 positive affect mean scores

  1. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel [V.G. Khlopin Radium Institute, 194021, 28, 2nd Murinsky pr., Saint-Petersburg (Russian Federation)

    2011-12-13

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  2. Modeling of a Low-Background Spectroscopic Position-Sensitive Neutron Detector

    International Nuclear Information System (INIS)

    Postovarova, Daria; Evsenin, Alexey; Gorshkov, Igor; Kuznetsov, Andrey; Osetrov, Oleg; Vakhtin, Dmitry; Yurmanov, Pavel

    2011-01-01

    A new low-background spectroscopic direction-sensitive neutron detector that would allow one to reduce the neutron background component in passive and active neutron detection techniques is proposed. The detector is based on thermal neutron detectors surrounded by a fast neutron scintillation detector, which serves at the same time as a neutron moderator. Direction sensitivity is achieved by coincidence/anticoincidence analysis between different parts of the scintillator. Results of mathematical modeling of several detector configurations are presented.

  3. Sobol method application in dimensional sensitivity analyses of different AFM cantilevers for biological particles

    Science.gov (United States)

    Korayem, M. H.; Taheri, M.; Ghahnaviyeh, S. D.

    2015-08-01

    Due to the more delicate nature of biological micro/nanoparticles, it is necessary to compute the critical force of manipulation. The modeling and simulation of reactions and nanomanipulator dynamics in a precise manipulation process require an exact modeling of cantilevers stiffness, especially the stiffness of dagger cantilevers because the previous model is not useful for this investigation. The stiffness values for V-shaped cantilevers can be obtained through several methods. One of them is the PBA method. In another approach, the cantilever is divided into two sections: a triangular head section and two slanted rectangular beams. Then, deformations along different directions are computed and used to obtain the stiffness values in different directions. The stiffness formulations of dagger cantilever are needed for this sensitivity analyses so the formulations have been driven first and then sensitivity analyses has been started. In examining the stiffness of the dagger-shaped cantilever, the micro-beam has been divided into two triangular and rectangular sections and by computing the displacements along different directions and using the existing relations, the stiffness values for dagger cantilever have been obtained. In this paper, after investigating the stiffness of common types of cantilevers, Sobol sensitivity analyses of the effects of various geometric parameters on the stiffness of these types of cantilevers have been carried out. Also, the effects of different cantilevers on the dynamic behavior of nanoparticles have been studied and the dagger-shaped cantilever has been deemed more suitable for the manipulation of biological particles.

  4. Partially slotted crystals for a high-resolution γ-camera based on a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Giokaris, N.; Loudos, G.; Maintas, D.; Karabarbounis, A.; Lembesi, M.; Spanoudaki, V.; Stiliaris, E.; Boukis, S.; Gektin, A.; Pedash, V.; Gayshan, V.

    2005-01-01

    Partially slotted crystals have been designed and constructed and have been used to evaluate the performance with respect to the spatial resolution of a γ-camera based on a position-sensitive photomultiplier. It is shown that the resolution obtained with such a crystal is only slightly worse than the one obtained with a fully pixelized one whose cost, however, is much higher

  5. Two-dimensional simulation of positive and negative streamers in air

    International Nuclear Information System (INIS)

    Babaeva, N.Yu.; Naidis, G.V.

    1998-01-01

    The paper deals with 2D numerical simulation of positive and negative streamers in air at atmospheric pressure. The dynamics of an axially symmetric streamer based on a charged sphere is described by a coupled system of equations for the electric field and the density of charged particles. The results of simulation show that the production rate of radicals in short sphere-plane gaps depends only weakly on the discharge conditions, that the streamer velocity in uniform field depends linearly on the streamer length, and the field corresponding to the negative streamer propagation with a constant velocity is 2-3 times greater than that obtained with a positive streamer. (J.U.)

  6. Position readout by charge division in large two-dimensional detectors

    International Nuclear Information System (INIS)

    Alberi, J.L.

    1976-10-01

    The improvement in readout spatial resolution for charge division systems with subdivided readout electrodes has been analyzed. This readout forms the position and sum signals by a linear, unambiguous analogue summation technique. It is shown that the readout resolution is a function of only electrode capacitance and shaping parameters. The line width improves as 1/N/sup 1 / 2 /, where N is the number of electrode subdivisions

  7. Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector

    International Nuclear Information System (INIS)

    Kelly, L.A.; Trunk, J.G.; Polewski, K.; Sutherland, J.C.

    1995-01-01

    A new fluorescence spectrometer has been assembled at the U9B beamline of the National Synchrotron Light Source to allow simultaneous multiwavelength and time-resolved fluorescence detection, as well as spatial imaging of the sample fluorescence. The spectrometer employs monochromatized, tunable UV and visible excitation light from a synchrotron bending magnet and an imaging spectrograph equipped with a single-photon sensitive emission detector. The detector is comprised of microchannel plates in series, with a resistive anode for encoding the position of the photon-derived current. The centroid position of the photon-induced electron cascade is derived in a position analyzer from the four signals measured at the corners of the resistive anode. Spectral information is obtained by dispersing the fluorescence spectrum across one dimension of the detector photocathode. Timing information is obtained by monitoring the voltage divider circuit at the last MCP detector. The signal from the MCP is used as a ''start'' signal to perform a time-correlated single photon counting experiment. The analog signal representing the position, and hence wavelength, is digitized concomitantly with the start/stop time difference and stored in the two-dimensional histogramming memory of a multiparameter analyzer

  8. Accuracy of Cup Positioning With the Computed Tomography-Based Two-dimensional to Three-Dimensional Matched Navigation System: A Prospective, Randomized Controlled Study.

    Science.gov (United States)

    Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi

    2018-01-01

    The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Musical training and empathy positively impact adults’ sensitivity to infant distress

    Directory of Open Access Journals (Sweden)

    Christine E Parsons

    2014-12-01

    Full Text Available Crying is the most powerful auditory signal of infant need. Adults’ ability to perceive and respond to crying is important for infant survival and in the provision of care. This study investigated a number of listener variables that might impact on adults’ perception of infant cry distress, namely parental status, musical training and empathy. Sensitivity to infant distress was tested using a previously validated task, which experimentally manipulated distress by varying the pitch of infant cries. Parents with musical training showed a significant advantage on this task when compared with parents without. The extent of the advantage was correlated with the amount of self-reported musical training. For non-parents, individual differences in empathy were associated with task performance, with higher empathy scores corresponding to greater sensitivity to infant distress. We suggest that sensitivity to infant distress can be impacted by a number of listener variables, and may be amenable to training.

  10. Two-dimensional positive column structure with dust cloud: Experiment and nonlocal kinetic simulation

    Science.gov (United States)

    Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.

    2018-03-01

    The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.

  11. Strictly positive solutions for one-dimensional nonlinear problems involving the p-Laplacian

    OpenAIRE

    Kaufmann, Uriel; Medri, Ivan

    2013-01-01

    Let $\\Omega$ be a bounded open interval, and let $p>1$ and $q\\in\\left(0,p-1\\right) $. Let $m\\in L^{p^{\\prime}}\\left(\\Omega\\right) $ and $0\\leq c\\in L^{\\infty}\\left(\\Omega\\right) $. We study existence of strictly positive solutions for elliptic problems of the form $-\\left(\\left\\| u^{\\prime}\\right\\|^{p-2}u^{\\prime}\\right) ^{\\prime}+c\\left(x\\right) u^{p-1}=m\\left(x\\right) u^{q}$ in $\\Omega$, $u=0$ on $\\partial\\Omega$. We mention that our results are new even in the case $c\\equiv0$.

  12. 78 FR 42982 - Submission for Review: Information Collection; Questionnaire for Non-Sensitive Positions (SF 85)

    Science.gov (United States)

    2013-07-18

    ... Government civilian or military positions, or positions in private entities performing work for the Federal... adjudication. The SF 85 is completed by civilian employees of the Federal Government, military personnel, and... Security Number and provide the results to OPM. Clarifying language was added to the Authorization for...

  13. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  14. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    Science.gov (United States)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  15. IR sensitive photorefractive polymers, the first updateable holographic three-dimensional display

    Science.gov (United States)

    Tay, Savas

    This work presents recent advances in the development of infra-red sensitive photorefractive polymers, and updateable near real-time holographic 3D displays based on photorefractive polymers. Theoretical and experimental techniques used for design, fabrication and characterization of photorefractive polymers are outlined. Materials development and technical advances that made possible the use of photorefractive polymers for infra-red free-space optical communications, and 3D holographic displays are presented. Photorefractive polymers are dynamic holographic materials that allow recording of highly efficient reversible holograms. The longest operation wavelength for a photorefractive polymer before this study has been 950nm, far shorter than 1550nm, the wavelength of choice for optical communications and medical imaging. The polymers shown here were sensitized using two-photon absorption, a third order nonlinear effect, beyond the linear absorption spectrum of organic dyes, and reach 40% diffraction efficiency with a 35ms response time at this wavelength. As a consequence of two-photon absorption sensitization they exhibit non-destructive readout, which is an important advantage for applications that require high signal-to-noise ratios. Holographic 3D displays provide highly realistic images without the need for special eyewear, making them valuable tools for applications that require "situational awareness" such as medical, industrial and military imaging. Current commercially available holographic 3D displays employ photopolymers that lack image updating capability, resulting in their restricted use and high cost per 3D image. The holographic 3D display shown here employs photorefractive polymers with nearly 100% diffraction efficiency and fast writing time, hours of image persistence, rapid erasure and large area, a combination of properties that has not been shown before. The 3D display is based on stereography and utilizes world's largest photorefractive

  16. Arthroscopic Latarjet Techniques: Graft and Fixation Positioning Assessed With 2-Dimensional Computed Tomography Is Not Equivalent With Standard Open Technique.

    Science.gov (United States)

    Neyton, Lionel; Barth, Johannes; Nourissat, Geoffroy; Métais, Pierre; Boileau, Pascal; Walch, Gilles; Lafosse, Laurent

    2018-05-19

    To analyze graft and fixation (screw and EndoButton) positioning after the arthroscopic Latarjet technique with 2-dimensional computed tomography (CT) and to compare it with the open technique. We performed a retrospective multicenter study (March 2013 to June 2014). The inclusion criteria included patients with recurrent anterior instability treated with the Latarjet procedure. The exclusion criterion was the absence of a postoperative CT scan. The positions of the hardware, the positions of the grafts in the axial and sagittal planes, and the dispersion of values (variability) were compared. The study included 208 patients (79 treated with open technique, 87 treated with arthroscopic Latarjet technique with screw fixation [arthro-screw], and 42 treated with arthroscopic Latarjet technique with EndoButton fixation [arthro-EndoButton]). The angulation of the screws was different in the open group versus the arthro-screw group (superior, 10.3° ± 0.7° vs 16.9° ± 1.0° [P open inferior screws (P = .003). In the axial plane (level of equator), the arthroscopic techniques resulted in lateral positions (arthro-screw, 1.5 ± 0.3 mm lateral [P open technique (0.9 ± 0.2 mm medial). At the level of 25% of the glenoid height, the arthroscopic techniques resulted in lateral positions (arthro-screw, 0.3 ± 0.3 mm lateral [P open technique (1.0 ± 0.2 mm medial). Higher variability was observed in the arthro-screw group. In the sagittal plane, the arthro-screw technique resulted in higher positions (55% ± 3% of graft below equator) and the arthro-EndoButton technique resulted in lower positions (82% ± 3%, P open technique (71% ± 2%). Variability was not different. This study shows that the position of the fixation devices and position of the bone graft with the arthroscopic techniques are statistically significantly different from those with the open technique with 2-dimensional CT assessment. In the sagittal plane, the arthro-screw technique provides the highest

  17. Three-dimensional stability, receptivity and sensitivity of non-Newtonian flows inside open cavities

    International Nuclear Information System (INIS)

    Citro, Vincenzo; Giannetti, Flavio; Pralits, Jan O

    2015-01-01

    We investigate the stability properties of flows over an open square cavity for fluids with shear-dependent viscosity. Analysis is carried out in context of the linear theory using a normal-mode decomposition. The incompressible Cauchy equations, with a Carreau viscosity model, are discretized with a finite-element method. The characteristics of direct and adjoint eigenmodes are analyzed and discussed in order to understand the receptivity features of the flow. Furthermore, we identify the regions of the flow that are more sensitive to spatially localized feedback by building a spatial map obtained from the product between the direct and adjoint eigenfunctions. Analysis shows that the first global linear instability of the steady flow is a steady or unsteady three-dimensionl bifurcation depending on the value of the power-law index n. The instability mechanism is always located inside the cavity and the linear stability results suggest a strong connection with the classical lid-driven cavity problem. (paper)

  18. Measurement of three-dimensional deformations using digital holography with radial sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian; Viotti, Matias R.; Albertazzi, Jr.; G. Armando

    2010-07-10

    A measurement system based on digital holography for the simultaneous measurement of out-of-plane and radial in-plane displacement fields for the assessment of residual stress is presented. Two holograms are recorded at the same time with a single image taken by a digital camera, allowing the separate evaluation of in-plane and out-of-plane movement. An axis-symmetrical diffractive optical element is used for the illumination of the object, which causes radial sensitivity vectors. By the addition and, respectively, the subtraction, of the four phase maps calculated from two camera frames, the in-plane and out-of-plane deformation of an object can be calculated separately. The device presented is suitable for high-speed, high-resolution measurement of residual stress. In addition to the setup, first measurement results and a short comparison to a mature digital speckle pattern interferometry setup are shown.

  19. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study.

    Science.gov (United States)

    Walch, Gilles; Vezeridis, Peter S; Boileau, Pascal; Deransart, Pierric; Chaoui, Jean

    2015-02-01

    Glenoid component positioning is a key factor for success in total shoulder arthroplasty. Three-dimensional (3D) measurements of glenoid retroversion, inclination, and humeral head subluxation are helpful tools for preoperative planning. The purpose of this study was to assess the reliability and precision of a novel surgical method for placing the glenoid component with use of patient-specific templates created by preoperative surgical planning and 3D modeling. A preoperative computed tomography examination of cadaveric scapulae (N = 18) was performed. The glenoid implants were virtually placed, and patient-specific guides were created to direct the guide pin into the desired orientation and position in the glenoid. The 3D orientation and position of the guide pin were evaluated by performing a postoperative computed tomography scan for each scapula. The differences between the preoperative planning and the achieved result were analyzed. The mean error in 3D orientation of the guide pin was 2.39°, the mean entry point position error was 1.05 mm, and the mean inclination angle error was 1.42°. The average error in the version angle was 1.64°. There were no technical difficulties or complications related to use of patient-specific guides for guide pin placement. Quantitative analysis of guide pin positioning demonstrated a good correlation between preoperative planning and the achieved position of the guide pin. This study demonstrates the reliability and precision of preoperative planning software and patient-specific guides for glenoid component placement in total shoulder arthroplasty. Copyright © 2015. Published by Elsevier Inc.

  20. An overview of current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes

    CERN Document Server

    Gys, Thierry

    1999-01-01

    Current developments in position-sensitive hybrid photon detectors and photo-multiplier tubes have stimulated increased interest from a variety of fields such as astronomy, biomedical imaging and high- energy physics. These devices are sensitive to single photons over a photon energy spectrum defined by the transmission of the optical entrance window and the photo-cathode type. Their spatial resolution ranges from a few millimeters for pad hybrid photon detectors and multi-anode photo-multiplier tubes down to a few tens of microns for pixel hybrid photon detectors and electron-bombarded charge-coupled devices. Basic technological and design aspects are assessed in this paper. (21 refs).

  1. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  2. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  3. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.

    Science.gov (United States)

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2015-02-18

    A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.

  4. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  5. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    Science.gov (United States)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  6. Sensitivity studies and a simple ozone perturbation experiment with a truncated two-dimensional model of the stratosphere

    Science.gov (United States)

    Stordal, Frode; Garcia, Rolando R.

    1987-01-01

    The 1-1/2-D model of Holton (1986), which is actually a highly truncated two-dimensional model, describes latitudinal variations of tracer mixing ratios in terms of their projections onto second-order Legendre polynomials. The present study extends the work of Holton by including tracers with photochemical production in the stratosphere (O3 and NOy). It also includes latitudinal variations in the photochemical sources and sinks, improving slightly the calculated global mean profiles for the long-lived tracers studied by Holton and improving substantially the latitudinal behavior of ozone. Sensitivity tests of the dynamical parameters in the model are performed, showing that the response of the model to changes in vertical residual meridional winds and horizontal diffusion coefficients is similar to that of a full two-dimensional model. A simple ozone perturbation experiment shows the model's ability to reproduce large-scale latitudinal variations in total ozone column depletions as well as ozone changes in the chemically controlled upper stratosphere.

  7. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    Directory of Open Access Journals (Sweden)

    Flor-Henry Michel

    2004-11-01

    Full Text Available Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.

  8. A fast position sensitive photodetector based on a CsI reflective photocathode

    International Nuclear Information System (INIS)

    Arnold, R.; Christophel, E.; Guyonnet, J.L.

    1991-01-01

    A fast detector was built for UV photon detection that depends on a CsI sensitized pad cathode. The rapidity of the detector is compared with that of a more classical chamber filled with photosensitive gases such as TEA or TMAE. Estimates of the quantum yield of the photocathode at 160 and 200 nm are given. The performances obtained make it a good photodetector candidate to be operated at high luminosity accelerators. (author) 7 refs., 19 figs

  9. Data processing in neutron protein crystallography using position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1982-01-01

    Neutrons provide a unique probe for localizing hydrogen atoms and for distinguishing hydrogen from deuterons. Hydrogen atoms largely determine the three-dimensional structure of proteins and are responsible for many catalytic reactions. The study of hydrogen bonding and hydrogen exchange will therefore give insight into reaction mechanisms and conformational fluctuations. In addition, neutrons provide the ability to distinguish N from C and O and to allow correct orientation of groups such as histidine and glutamine. To take advantage of these unique features of neutron crystallography, one needs accurate Fourier maps depicting atomic structure to a high precision. In this paper, techniques are described for minimizing error in the observed structure factors by optimizing data collection and analysis procedures. Special attention is given to subtraction of the high background associated with hydrogen-containing molecules, which produces a disproportionately large statistical error

  10. A two dimensional modeling study of the sensitivity of ozone to radiative flux uncertainties

    International Nuclear Information System (INIS)

    Grant, K.E.; Wuebbles, D.J.

    1988-08-01

    Radiative processes strongly effect equilibrium trace gas concentrations both directly, through photolysis reactions, and indirectly through temperature and transport processes. We have used the LLNL 2-D chemical-radiative-transport model to investigate the net sensitivity of equilibrium ozone concentrations to several changes in radiative forcing. Doubling CO 2 from 300 ppmv to 600 ppmv resulted in a temperature decrease of 5 K to 8 K in the middle stratosphere along with an 8% to 16% increase in ozone in the same region. Replacing our usual shortwave scattering algorithms with a simplified Rayleigh algorithm led to a 1% to 2% increase in ozone in the lower stratosphere. Finally, modifying our normal CO 2 cooling rates by corrections derived from line-by-line calculations resulted in several regions of heating and cooling. We observed temperature changes on the order of 1 K to 1.5 K with corresponding changes of 0.5% to 1.5% in O 3 . Our results for doubled CO 2 compare favorably with those by other authors. Results for our two perturbation scenarios stress the need for accurately modeling radiative processes while confirming the general validity of current models. 15 refs., 5 figs

  11. Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Wu, Y.T.; Sagar, B.

    1992-12-01

    Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported

  12. Oscillations of the positive column plasma due to ionization wave propagation and two-dimensional structure of striations

    International Nuclear Information System (INIS)

    Golubovskii, Yu B; Kozakov, R V; Wilke, C; Behnke, J; Nekutchaev, V O

    2004-01-01

    Time and space resolved measurements of the plasma potential in axial and radial directions in S- and P-striations in neon are performed. The measurements in different radial positions were carried out with high spatial resolution by means of simultaneous displacement of electrodes relative to the stationary probe. The plasma potential was found to be a superposition of the potentials of ionization wave and plasma oscillations relative to the electrodes. A method of decomposition of the measured spatio-temporal structure of the potential in components associated with the plasma oscillations and ionization wave propagation is proposed. A biorthogonal decomposition of the spatio-temporal structure of the potential is performed. A comparison of the decomposition results obtained by the two methods is made. The experiments revealed a two-dimensional structure of the potential field in an ionization wave. Qualitative discussions of the reasons for the occurrence of this two-dimensional structure are presented based on the analysis of the kinetic equation and the equation for the potential

  13. Sensitivity of peak positions to flight-path parameters in a deep-inelastic scattering neutron TOF spectrometer

    International Nuclear Information System (INIS)

    Gray, E.MacA.; Chatzidimitriou-Dreismann, C.A.; Blach, T.P.

    2012-01-01

    The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.

  14. Three dimensional indoor positioning based on visible light with Gaussian mixture sigma-point particle filter technique

    Science.gov (United States)

    Gu, Wenjun; Zhang, Weizhi; Wang, Jin; Amini Kashani, M. R.; Kavehrad, Mohsen

    2015-01-01

    Over the past decade, location based services (LBS) have found their wide applications in indoor environments, such as large shopping malls, hospitals, warehouses, airports, etc. Current technologies provide wide choices of available solutions, which include Radio-frequency identification (RFID), Ultra wideband (UWB), wireless local area network (WLAN) and Bluetooth. With the rapid development of light-emitting-diodes (LED) technology, visible light communications (VLC) also bring a practical approach to LBS. As visible light has a better immunity against multipath effect than radio waves, higher positioning accuracy is achieved. LEDs are utilized both for illumination and positioning purpose to realize relatively lower infrastructure cost. In this paper, an indoor positioning system using VLC is proposed, with LEDs as transmitters and photo diodes as receivers. The algorithm for estimation is based on received-signalstrength (RSS) information collected from photo diodes and trilateration technique. By appropriately making use of the characteristics of receiver movements and the property of trilateration, estimation on three-dimensional (3-D) coordinates is attained. Filtering technique is applied to enable tracking capability of the algorithm, and a higher accuracy is reached compare to raw estimates. Gaussian mixture Sigma-point particle filter (GM-SPPF) is proposed for this 3-D system, which introduces the notion of Gaussian Mixture Model (GMM). The number of particles in the filter is reduced by approximating the probability distribution with Gaussian components.

  15. Critical Dynamics of the Xy-Model on the One-Dimensional Superlattice by Position Space Renormalization Group

    Science.gov (United States)

    Lima, J. P. De; Gonçalves, L. L.

    The critical dynamics of the isotropic XY-model on the one-dimensional superlattice is considered in the framework of the position space renormalization group theory. The decimation transformation is introduced by considering the equations of motion of the operators associated to the excitations of the system, and it corresponds to an extension of the procedure introduced by Stinchcombe and dos Santos (J. Phys. A18, L597 (1985)) for the homogeneous lattice. The dispersion relation is obtained exactly and the static and dynamic scaling forms are explicitly determined. The dynamic critical exponent is also obtained and it is shown that it is identical to the one of the XY-model on the homogeneous chain.

  16. Successful use of a linear position-sensitive neutron detector in solid state physics and materials science

    International Nuclear Information System (INIS)

    Schefer, J.; Fischer, P.; Heer, H.; Isacson, A.; Koch, M.; Thut, R.

    1991-01-01

    The double axis multicounter diffractometer (DMC) installed at the 10 MW reactor SAPHIR (PSI) has been designed as a good flux-good resolution (presently Δd/d≥4x10 -3 ) neutron poder diffractometer. The detector bank is based on a commercial position-sensitive linear BF 3 detector which may be automatically and precisely positioned on air cushions on inexpensive floors. This detector type has an 80deg angular opening, not allowing any standard collimation in front of the detector. We therefore developed an oscillating collimator system allowing easy use of the instrument even with sample environments such as a dilution cryostat. (orig.)

  17. Istaroxime, a positive inotropic agent devoid of proarrhythmic properties in sensitive chronic atrioventricular block dogs.

    Science.gov (United States)

    Bossu, Alexandre; Kostense, Amée; Beekman, Henriette D M; Houtman, Marien J C; van der Heyden, Marcel A G; Vos, Marc A

    2018-05-10

    Current inotropic agents in heart failure therapy associate with low benefit and significant adverse effects, including ventricular arrhythmias. Istaroxime, a novel Na + /K + -transporting ATPase inhibitor, also stimulates SERCA2a activity, which would confer improved inotropic and lusitropic properties with less proarrhythmic effects. We investigated hemodynamic, electrophysiological and potential proarrhythmic and antiarrhythmic effects of istaroxime in control and chronic atrioventricular block (CAVB) dogs sensitive to drug-induced Torsades de Pointes arrhythmias (TdP). In isolated normal canine ventricular cardiomyocytes, istaroxime (0.3-10 μM) evoked no afterdepolarizations and significantly shortened action potential duration (APD) at 3 and 10 μM. Istaroxime at 3 μg/kg/min significantly increased left ventricular (LV) contractility (dP/dt + ) and relaxation (dP/dt-) respectively by 81 and 94% in anesthetized control dogs (n = 6) and by 61 and 49% in anesthetized CAVB dogs (n = 7) sensitive to dofetilide-induced TdP. While istaroxime induced no ventricular arrhythmias in control conditions, only single ectopic beats occurred in 2/7 CAVB dogs, which were preceded by increase of short-term variability of repolarization (STV) and T wave alternans in LV unipolar electrograms. Istaroxime pre-treatment (3 μg/kg/min for 60 min) did not alleviate dofetilide-induced increase in repolarization and STV, and mildly reduced incidence of TdP from 6/6 to 4/6 CAVB dogs. In six CAVB dogs with dofetilide-induced TdP, administration of istaroxime (90 μg/kg/5 min) suppressed arrhythmic episodes in two animals. Taken together, inotropic and lusitropic properties of istaroxime in CAVB dogs were devoid of significant proarrhythmic effects in sensitive CAVB dogs, and istaroxime provides a moderate antiarrhythmic efficacy in prevention and suppression of dofetilide-induced TdP. Copyright © 2018. Published by Elsevier Ltd.

  18. Design and Performance Analysis of Laser Displacement Sensor Based on Position Sensitive Detector (PSD)

    International Nuclear Information System (INIS)

    Song, H X; Wang, X D; Ma, L Q; Cai, M Z; Cao, T Z

    2006-01-01

    By using PSD as sensitive element, and laser diode as emitting element, laser displacement sensor based on triangulation method has been widely used. From the point of view of design, sensor and its performance were studied. Two different sensor configurations were described. Determination of the dimension, sensing resolution and comparison of the two different configurations were presented. The factors affecting the performance of the laser displacement sensor were discussed and two methods, which can eliminate the affection of dark current and environment light, are proposed

  19. Endocrine sensitivity of the receptor-positive T61 human breast carcinoma serially grown in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Spang-Thomsen, M; Skovgaard Poulsen, H

    1985-01-01

    A study was made on the effect of ovariectomy, 17 beta-oestradiol, and tamoxifen on the oestrogen and progesterone receptor-positive T61 human breast carcinoma grown in nude mice. The effect of the treatment was evaluated by the specific growth delay calculated on the basis of Gompertz growth cur...... but is not a sufficiently clear marker to allow prediction of the endocrine sensitivity of individual breast tumours....

  20. A Highly Sensitive Two-Dimensional Inclinometer Based on Two Etched Chirped-Fiber-Grating Arrays †

    Science.gov (United States)

    Chang, Hung-Ying; Chang, Yu-Chung; Liu, Wen-Fung

    2017-01-01

    We present a novel two-dimensional fiber-optic inclinometer with high sensitivity by crisscrossing two etched chirped fiber Bragg gratings (CFBG) arrays. Each array is composed of two symmetrically-arranged CFBGs. By etching away most of the claddings of the CFBGs to expose the evanescent wave, the reflection spectra are highly sensitive to the surrounding index change. When we immerse only part of the CFBG in liquid, the effective index difference induces a superposition peak in the refection spectrum. By interrogating the peak wavelengths of the CFBGs, we can deduce the tilt angle and direction simultaneously. The inclinometer has a resolution of 0.003° in tilt angle measurement and 0.00187 rad in tilt direction measurement. Due to the unique sensing mechanism, the sensor is temperature insensitive. This sensor can be useful in long term continuous monitoring of inclination or in real-time feedback control of tilt angles, especially in harsh environments with violent temperature variation. PMID:29244770

  1. Position sensitive X-ray or X-ray detector and 3-D-tomography using same

    International Nuclear Information System (INIS)

    1975-01-01

    A fan-shaped beam of penetrating radiation, such as X-ray or γ-ray radiation, is directed through a slice of the body to be analyzed into a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source

  2. Position sensitivity of the proposed segmented germanium detectors for the DESPEC project

    International Nuclear Information System (INIS)

    Khaplanov, A.; Tashenov, S.; Cederwall, B.

    2009-01-01

    The DESPEC HPGe array is a part of the NuSTAR project at FAIR, Germany. It is aimed at the spectroscopy of the stopped decaying exotic nuclei. Segmented γ-ray tracking detectors are proposed for this array in order to maximize detection efficiency and background suppression when searching for very rare events. Two types of detector modules-stacks of three 16-fold segmented planar crystals and 12- and 16-fold segmented clover detectors-have been investigated and compared from the point of view of the achievable position resolution using pulse shape analysis (PSA). To this end, detector signals from realistic γ-ray interactions have been calculated. These signals were treated by PSA in order to reconstruct the photon interaction locations. Comparing the initial interaction locations to the reconstructed ones, it was found that the double-sided strip planar detector yielded position reconstruction errors at least a factor 2 lower than the other detectors considered.

  3. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  4. Output pulse-shapes of position-sensitive proportional counters using high resistance single wire

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Nishiyama, Fumitaka; Hasai, Hiromi

    1980-01-01

    The measurements and model analysis of the output pulse-shapes from a single wire proportional counter (SWPC) which has a high resistance anode are described. The characteristics of the observed pulse-shapes are determined by only one parameter which is a function of anode resistance and load resistance and they are reproduced by a simple model. Using this model, the methods for position read-out are discussed in a systematical way. (author)

  5. Time-of-flight position-sensitive x-ray detection

    International Nuclear Information System (INIS)

    Mowat, J.W.

    1981-01-01

    A new method for recording beam-foil time-of-flight data is described. A stationary, side-window, position-senstive proportional counter, oriented with anode wire parallel to the ion beam, views the decay in flight of excited ions through a Soller slit x-ray collimator. In contrast to the standard method, the exciter foil, placed within or upstream from the field of view, is not moved during the acquisition of a decay curve. Each point on the anode acts like an independent detector seeing a unique segment of the ion beam. The correspondence between the downstream distance at which an ion decays and the position along the anode at which the x-ray is detected makes a pulse-height spectrum of position pulses equivalent to a time-of-flight decay curve. Thus an entire decay curve can now be acquired without moving the foil. Increased efficiency is the most significant improvement over the standard method in which the radiation detector views only a small segment of the flight path at any one time. Experiments using translating foils are subject to a spurious dependence of x-ray intensity on foil position if the foil is non-uniform (or non-uniformly aged) and wobbles as it moves. This effect is eliminated here. Foil aging effects which influence excitation rates and introduce a slowly varying time dependence of the x-ray intensity are automatically normalized by this multichannel technique. The application of this method to metastable x-ray emitting states of low-Z ions are discussed

  6. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    Science.gov (United States)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  7. Study of efficacy in a mercury-free flat discharge fluorescent lamp using a zero-dimensional positive column model

    CERN Document Server

    Shiga, T; Boeuf, J P; Mikoshiba, S

    2003-01-01

    A zero-dimensional model of the positive column in Ar/Ne/Xe gas mixtures has been developed to help understand the measured dependence of the efficacy on operating conditions in a mercury-free flat fluorescent lamp in a dielectric barrier geometry. The experimental conditions are such that the radiation from the discharge is homogeneous over most of the discharge voltage. The model uses as input the discharge current waveform from the experiments, and it yields the time variations of the mean electron energy and the species densities. From these quantities we calculate the number of vacuum ultraviolet (VUV) photons emitted by the xenon resonance atoms and excimers during one current pulse and the efficiency for generation of VUV radiation in the positive column, which are compared with the measured luminance and efficacy for various voltages, pulse intervals, and lamp sizes. Over the range of conditions studied, we find that most electrical energy dissipated in xenon excitation is converted to VUV radiation; ...

  8. Three-dimensional computer graphics-based ankle morphometry with computerized tomography for total ankle replacement design and positioning.

    Science.gov (United States)

    Kuo, Chien-Chung; Lu, Hsuan-Lun; Leardini, Alberto; Lu, Tung-Wu; Kuo, Mei-Ying; Hsu, Horng-Chaung

    2014-05-01

    Morphometry of the bones of the ankle joint is important for the design of joint replacements and their surgical implantations. However, very little three-dimensional (3D) data are available and not a single study has addressed the Chinese population. Fifty-eight fresh frozen Chinese cadaveric ankle specimens, 26 females, and 32 males, were CT-scanned in the neutral position and their 3D computer graphics-based models were reconstructed. The 3D morphology of the distal tibia/fibula segment and the full talus was analyzed by measuring 31 parameters, defining the relevant dimensions, areas, and volumes from the models. The measurements were compared statistically between sexes and with previously reported data from Caucasian subjects. The results showed that, within a general similarity of ankle morphology between the current Chinese and previous Caucasian subjects groups, there were significant differences in 9 out of the 31 parameters analyzed. From a quantitative comparison with available prostheses designed for the Caucasian population, few of these designs have both tibial and talar components suitable in dimension for the Chinese population. The current data will be helpful for the sizing, design, and surgical positioning of ankle replacements and for surgical instruments, especially for the Chinese population. Copyright © 2013 Wiley Periodicals, Inc.

  9. Preparation of three-dimensionally ordered macroporous polycysteine film and application in sensitive detection of 4-chlorophenol

    International Nuclear Information System (INIS)

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou; Cheng, Qin; Wu, Kangbing

    2014-01-01

    Highlights: • Polycysteine film with three-dimensionally ordered porous structures was prepared. • 3-DOM polycysteine film exhibited large active area and signal enhancement effects. • 3-DOM polycysteine film increased oxidation signal of 4-chlorophenol by 5-fold. - Abstract: Polystyrene microspheres with diameter of 350 nm were prepared, and then used to arrange on the surface of glassy carbon electrode (GCE) as structure-directing template. By successive cyclic sweeps between −1.0 V and 2.0 V in pH 7 phosphate buffer containing 10 mM cysteine, polycysteine film was electrodeposited on polystyrene microspheres-arranged GCE. After removing polystyrene template, a three-dimensionally ordered macroporous (3-DOM) polycysteine film was achieved, as confirmed by scanning electron microscopy measurements. Electrochemical responses of K 3 [Fe(CN) 6 ] probe indicated that 3-DOM polycysteine film-modified GCE exhibited larger active area, compared with GCE, polycysteine film-modified GCE and electrochemically oxidized GCE. The application of 3-DOM polycysteine film in electrochemical detection of 4-chlorophenol was studied. Due to ordered porous structures, the 3-DOM polycysteine film-modified GCE displayed signal enhancement effects, and enhanced the oxidation peak currents of 4-chlorophenol. As a result, a sensitive electrochemical method was developed for the detection of 4-chlorophenol, and the detection limit was 1.67 × 10 −8 M. This new method was used to detect 4-chlorophenol in water samples, and the value of recovery was over the range from 99.6% to 107%

  10. Current status and requirements for position-sensitive detectors in medicine

    CERN Document Server

    Speller, R

    2002-01-01

    This review considers the current status of detector developments for medical imaging using ionising radiation. This field is divided into two major areas; the use of X-rays for transmission imaging and the use of radioactive tracers in emission imaging (nuclear medicine). Until recently, most detector developments were for applications in nuclear medicine. However, in the past 5 years new developments in large area, X-ray-sensitive detectors have meant that both application domains are equally served. In X-ray imaging, work in CT and mammography are chosen as examples of sensor developments. Photodiode arrays in multi-slice spiral CT acquisitions are described and for mammography the use of amorphous silicon flat panel arrays is considered. The latter is an excellent example where new detector developments have required a re-think of traditional imaging methods. In gamma-ray imaging the recent developments in small area, task-specific cameras are described. Their limitations and current proposals to overcome...

  11. A general technique for characterizing x-ray position sensitive arrays

    International Nuclear Information System (INIS)

    Dufresne, E.; Bruning, R.; Sutton, M.; Stephenson, G.B.

    1994-03-01

    We present a general statistical technique for characterizing x-ray sensitive linear diode arrays and CCD arrays. We apply this technique to characterize the response of a linear diode array, Princeton Instrument model X-PDA, and a virtual phase CCD array, TI 4849, to direct illumination by x-rays. We find that the response of the linear array is linearly proportional to the incident intensity and uniform over its length to within 2 %. Its quantum efficiency is 38 % for Cu K α x-rays. The resolution function is evaluated from the spatial autocorrelation function and falls to 10 % of its peak value after one pixel. On the other hand, the response of the CCD detecting system to direct x-ray exposure is non-linear. To properly quantify the scattered x-rays, one must correct for the non- linearity. The resolution is two pixels along the serial transfer direction. We characterize the noise of the CCD and propose a model that takes into account the non-linearity and the resolution function to estimate the quantum efficiency of the detector. The quantum efficiency is 20 %

  12. Evaluation of the positional accuracy and dosimetric properties of a three-dimensional printed device for head and neck immobilization

    International Nuclear Information System (INIS)

    Sato, Kiyokazu; Yanagawa, Isao; Takeda, Ken; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Mizuki; Jingu, Keiichi; Kishi, Kazuma

    2017-01-01

    Our aim was to investigate the feasibility of a three-dimensional (3D)-printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) consisting of a mask and headrest with acrylonitrile-butadiene-styrene resin developed from the computed tomography data obtained by imaging a HN phantom. For comparison, a CID comprising a thermoplastic mask and headrest was prepared using the same HN phantom. We measured the setup error using the ExacTrac X-ray image system. Furthermore, using the ionization chamber and the water-equivalent phantom, we measured the changes in the dose due to the difference in the immobilization device material from the photon of 4 MV and 6 MV. The positional accuracy of the two devices were almost similar in each direction except in the vertical, lateral, and pitch directions (t-test, p<0.0001), and the maximum difference was 1 mm, and 1deg. The standard deviations were not statistically different in each direction except in the longitudinal (F-test, p=0.034) and roll directions (F-test, p<0.0001). When the thickness was the same, the dose difference was almost similar at a 50 mm depth. At a 1 mm depth, the 3DID-plate had a 2.9-4.2% lower dose than the CID-plate. This study suggested that the positional accuracy and dosimetric properties of 3DID were almost similar to those of CID. (author)

  13. Amazingly resilient Indigenous people! Using transformative learning to facilitate positive student engagement with sensitive material.

    Science.gov (United States)

    Jackson, Debra; Power, Tamara; Sherwood, Juanita; Geia, Lynore

    2013-12-01

    If health professionals are to effectively contribute to improving the health of Indigenous people, understanding of the historical, political, and social disadvantage that has lead to health disparity is essential. This paper describes a teaching and learning experience in which four Australian Indigenous academics in collaboration with a non-Indigenous colleague delivered an intensive workshop for masters level post-graduate students. Drawing upon the paedagogy of Transformative Learning, the objectives of the day included facilitating students to explore their existing understandings of Indigenous people, the impact of ongoing colonisation, the diversity of Australia's Indigenous people, and developing respect for alternative worldviews. Drawing on a range of resources including personal stories, autobiography, film and interactive sessions, students were challenged intellectually and emotionally by the content. Students experienced the workshop as a significant educational event, and described feeling transformed by the content, better informed, more appreciative of other worldviews and Indigenous resilience and better equipped to contribute in a more meaningful way to improving the quality of health care for Indigenous people. Where this workshop differs from other Indigenous classes was in the involvement of an Indigenous teaching team. Rather than a lone academic who can often feel vulnerable teaching a large cohort of non-Indigenous students, an Indigenous teaching team reinforced Indigenous authority and created an emotionally and culturally safe space within which students were allowed to confront and explore difficult truths. Findings support the value of multiple teaching strategies underpinned by the theory of transformational learning, and the potential benefits of facilitating emotional as well as intellectual student engagement when presenting sensitive material.

  14. Characterization of Sensitivity Encoded Silicon Photomultiplier (SeSP) with 1-Dimensional and 2-Dimensional Encoding for High Resolution PET/MR

    Science.gov (United States)

    Omidvari, Negar; Schulz, Volkmar

    2015-06-01

    This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.

  15. Modern trends in position-sensitive neutron detectors development for condensed matter research

    International Nuclear Information System (INIS)

    Belushkin, A.V.

    2007-01-01

    Detecting neutrons is a more complicated task compared to the detection of ionizing particles or ionizing radiation. This is why the variety of neutron detectors is much more limited. Meanwhile, different types of neutron experiments pose specific and often contradictory requirements for detector characteristics. For experiments on the high-intensity neutron sources, the high counting rate is one of the key issues. This is very important, for example, for small-angle neutron scattering and neutron reflectometry. For other experiments, characteristics like detection efficiency, high position resolution, high time resolution, neutron/gamma discrimination, large-area imaging, or compactness, are very important. Today, the cost of the detector also became one of the most important factors. There is no single type of detector which satisfies all the above criteria. Therefore, compromise is inevitable and some of the characteristics are trade off in favor of others. The present report gives an overview of detector systems presently operating at the leading neutron scattering facilities as well as some development work around the globe

  16. Position sensitive plastic scintillating fibre-detectors for heavy ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, Sebastian; Tscheuschner, Joachim; Paschalis, Stefanos; Aumann, Thomas; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The R{sup 3}B (Reactions with Relativistic Radioactive Beams) experiment at FAIR will be able to perform kinematically complete measurements of reactions with relativistic heavy-ion beams up to 1 AGeV. In order to track the beam before the target and to determine the mass number of the scattered nucleus after the reaction, five fibre detectors with sizes between 10.24 x 10.24 cm{sup 2} and 120 x 80 cm{sup 2} are going to be built for the R{sup 3}B setup. These fibre detectors will provide x-y-position of the trajectory of charged particles after the reaction target. The light from the fibre detector is sensed using MPPCs (Multi Pixel Photon Counter). For the readout of the MPPCs we test different electronics. In this contribution we present results obtained using an α-source and a LED light source to generate light in the fibre and use the PADI-VFTX for readout.

  17. Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images

    International Nuclear Information System (INIS)

    Ju, Sang Gyu; Hong, Chae Seon; Park, Hee Chul; Ahn, Jong Ho; Shin, Eun Hyuk; Shin, Jung Suk; Kim, Jin Sung; Han, Young Yih; Lim, Do Hoon; Choi, Doo Ho

    2010-01-01

    In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimensional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Medians of inter

  18. A novel resveratrol-salinomycin combination sensitizes ER-positive breast cancer cells to apoptosis.

    Science.gov (United States)

    Venkatadri, Rajkumar; Iyer, Anand Krishnan V; Kaushik, Vivek; Azad, Neelam

    2017-08-01

    Resveratrol is a dietary compound that has been widely reported for its anticancer activities. However, successful extrapolation of its effects to pre-clinical studies is met with limited success due to inadequate bioavailability. We investigated the potential of combination therapy to improve the efficacy of resveratrol in a more physiologically relevant dose range. The effect of resveratrol on canonical Wnt signaling was evaluated by Western blotting. Wnt modulators HLY78 (activator) and salinomycin (inhibitor) were evaluated in combination with resveratrol for their effect on breast cancer cell viability (MTT assay), cell cycle progression and apoptosis (Western blotting). Bliss independency model was used to evaluate combinatorial effects of resveratrol-salinomycin combination. Resveratrol downregulated canonical Wnt signaling proteins in treated breast cancer cells (MCF-7, MDA-MB-231 and MDA-MB-468) in the dose range of 50-200μM, which also affected cellular viability. However, at very low doses (0-50μM), resveratrol exhibited no cellular toxicity. Co-treatment with salinomycin significantly potentiated the anti-cancer effects of resveratrol, whereas HLY78 co-treatment had minimal effect. Bliss independency model revealed that Wnt inhibition synergistically potentiates the effects of resveratrol in MCF-7 and BT474 cells. Significantly downregulated canonical Wnt signaling proteins and marker of epithelial-mesenchymal transition (EMT), vimentin were observed in cells treated with resveratrol-salinomycin combination. Cell cycle arrest, caspase activation and apoptosis induction in cells treated with resveratrol-salinomycin combination further confirmed the efficacy of the combination. We report a novel resveratrol-salinomycin combination for targeting ER-positive breast cancer cells and present evidence for successful pre-clinical implementation of resveratrol. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban

  19. Data acquisition system for linear position sensitive detector based neutron diffractometer

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Behere, A.; Prafulla, S.; Srivastava, V.D.; Mukhopadhyaya, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2003-03-01

    This data acquisition system is developed to serve the requirements of various linear 1PSD based neutron diffractometers. A neutron diffractometer uses a neutron beam as a probe to study the crystallographic properties of materials. Presently two multi-PSD and two single-PSD diffractometers are commissioned and a few more are being installed in Dhruva. This data acquisition system is installed at each of these - diffractometers. Different requirements of individual diffractometers were studied and reconciled to design a single data acquisition system, which can be easily configured or customized for individual setups. The charge division in a linear PSD is converted to a position output with the help of an RDC (Ratio ADC). The ftont-end electronics, which consist of preamplifiers and shaping amplifiers, provide an interface between a PSD and an RDC. A PC add-on card is designed around a Transputer. It can interface 16 RDCs, a few motor controls and on/off controls. Data acquisition and other controls are implemented in the Transputer program. A front-end Windows98 application merges the raw data of different RDCs to obtain the equiangular data. Through software the data acquisition system can be configured for diffetent diffractometers. Commercially available hardware is also integrated as,a part of the data acquisition system in some of the setups. The data acquisition system is working reliably as a part of two single PSD and two multi-PSD diffractometers. It can handle data rates upto 15 K/Sec without any loss of counts. It has played a significant role in providing improved throughput and utilization ofvarious diffractometers. The'data acquisition system and its different applications are presented in this report. (author)

  20. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Hsieh, Chien-Kuo; Tsai, Ming-Chi; Su, Ching-Yuan; Wei, Sung-Yen; Yen, Ming-Yu; Ma, Chen-Chi M; Chen, Fu-Rong; Tsai, Chuen-Horng

    2011-11-07

    We directly synthesized a platinum-nanoparticles/graphitic-nanofibers (PtNPs/GNFs) hybrid nanostructure on FTO glass. We applied this structure as a three-dimensional counter electrode in dye-sensitized solar cells (DSSCs), and investigated the cells' photoconversion performance. This journal is © The Royal Society of Chemistry 2011

  1. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    KAUST Repository

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-01-01

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  2. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    Science.gov (United States)

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  3. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection

    KAUST Repository

    Peng, Yongwu

    2017-06-03

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C3v molecular symmetry as building units, a novel imine-linked COF, namely TPA-COF, with hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e. the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  4. ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Strout, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McClelland, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ellsworth, Fred Ellsworth [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-28

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.

  5. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  6. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer

    Science.gov (United States)

    Shen, Yalong; Yu, Dejian; Wang, Xiong; Huo, Chengxue; Wu, Ye; Zhu, Zhengfeng; Zeng, Haibo

    2018-02-01

    Inorganic halide perovskites exhibited promising potentials for high-performance wide-band photodetectors (PDs) due to their high light absorption coefficients, long carrier diffusion length and wide light absorption ranges. Here, we report two-dimensional (2D) CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible PDs, whose performances can be greatly boosted by the charge transfer through the energy-aligned interface. The 2D CsPbBr3 nanosheets with high crystallinity were fabricated via a simple solution-process at room temperature, and then assembled into flexible heterojunctions films with polymerphenyl-C61-butyric acid methyl ester (PCBM). Significantly, the efficient and fast charge transfer at the heterojunctions interface was evidenced by the obvious photoluminescence quenching and variation of recombination dynamics. Subsequently, such heterojunctions PD exhibited an enhanced responsivity of 10.85 A W-1 and an ultrahigh detectivity of 3.06 × 1013 Jones. In addition, the PD shows a broad linear dynamic range of 73 dB, a fast response speed with rise time of 44 μs and decay time of 390 μs, respectively. Moreover, the PD lying on polyethylene terephthalate substrates exhibited an outstanding mechanical flexibility and a robust electrical stability. These results could provide a new avenue for integration of 2D perovskites and organic functional materials and for high-performance flexible PDs.

  7. A primary scintillation gated high pressure position sensitive gas scintillation proportional counter (HPGSPC) for applications to x-ray astronomy

    International Nuclear Information System (INIS)

    Giarrusso, S.; Manzo, G.; Re, S.

    1985-01-01

    The authors describe a new instrument for x-ray astronomy. The instrument, based on a high pressure (5 atm.), xenon filled, position sensitive Gas Scintillation Proportional counter (HPGSPC) is expected to feature an energy resolution better than 4% at 60 keV, an angular resolution of approximately 20 arc-minutes over the full energy range (4 to 100 keV) and a field of view (FOV) of up to 30x30 degrees. A prototype flight unit of the gas cell on which the instrument is based is presently under technological development in the framework of the SAX project

  8. Electrophoresis of biomass decomposition products and position sensitive detection of the separated C-14 labelled substrates by plastic scintillator measurements

    International Nuclear Information System (INIS)

    Gruenwald, M.

    1985-12-01

    The subject of this work is separation and analysis of hydrothermally decomposed biomass solution by zone electrophoresis of charged hydrocarbon-borate complexes. The first half is dedicated to the electrophoresis. The second half describes a new evaluation method for chromatographs and electropherograms by position sensitive detection of C-14 β radiation in a 1 mm thick plastic scintillator. This method is applied to hydrothermally decomposed (U-C-14)-D glucose solutions and the results are compared to conventional chromatography. Performance numbers of the method are given. Extension to isoelectrically focused gels is also considered. (G.Q.)

  9. Front-end circuit for position sensitive silicon and vacuum tube photomultipliers with gain control and depth of interaction measurement

    International Nuclear Information System (INIS)

    Herrero, Vicente; Colom, Ricardo; Gadea, Rafael; Lerche, Christoph W.; Cerda, Joaquin; Sebastia, Angel; Benlloch, Jose M.

    2007-01-01

    Silicon Photomultipliers, though still under development for mass production, may be an alternative to traditional Vacuum Photomultipliers Tubes (VPMT). As a consequence, electronic front-ends initially designed for VPMT will need to be modified. In this simulation, an improved architecture is presented which is able to obtain impact position and depth of interaction of a gamma ray within a continuous scintillation crystal, using either kind of PM. A current sensitive preamplifier stage with individual gain adjustment interfaces the multi-anode PM outputs with a current division resistor network. The preamplifier stage allows to improve front-end processing delay and temporal resolution behavior as well as to increase impact position calculation resolution. Depth of interaction (DOI) is calculated from the width of the scintillation light distribution, which is related to the sum of voltages in resistor network input nodes. This operation is done by means of a high-speed current mode scheme

  10. Sensitivity analysis for plane orientation in three-dimensional cephalometric analysis based on superimposition of serial cone beam computed tomography images

    Science.gov (United States)

    Lagravère, M O; Major, P W; Carey, J

    2010-01-01

    Objectives The purpose of this study was to evaluate the potential errors associated with superimposition of serial cone beam CT (CBCT) images utilizing reference planes based on cranial base landmarks using a sensitivity analysis. Methods CBCT images from 62 patients participating in a maxillary expansion clinical trial were analysed. The left and right auditory external meatus (AEM), dorsum foramen magnum (DFM) and the midpoint between the left and right foramen spinosum (ELSA) were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Intraclass correlation coefficients for all four landmarks were obtained. Transformation of the reference system was carried out using the four landmarks and mathematical comparison of values. Results Excellent intrareliability values for each dimension were obtained for each landmark. Evaluation of the method to transform the co-ordinate system was first done by comparing interlandmark distances before and after transformations, giving errors in lengths in the order of 10–14% (software rounding error). A sensitivity evaluation was performed by adding 0.25 mm, 0.5 mm and 1 mm error in one axis of the ELSA. A positioning error of 0.25 mm in the ELSA can produce up to 1.0 mm error in other cranial base landmark co-ordinates. These errors could be magnified to distant landmarks where in some cases menton and infraorbital landmarks were displaced 4–6 mm. Conclusions Minor variations in location of the ELSA, both the AEM and the DFM landmarks produce large and potentially clinically significant uncertainty in co-ordinate system alignment. PMID:20841457

  11. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, E McKenzie; DeMarco, J; Steers, J; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readings are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.

  12. Palmitate-induced ER stress increases trastuzumab sensitivity in HER2/neu-positive breast cancer cells

    International Nuclear Information System (INIS)

    Baumann, Jan; Wong, Jason; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    CHOP-dependent apoptosis as well as a partial activation of the ER stress response network via XBP1 and ATF6. This response appears to be a general feature of HER2/neu-positive breast cancer cells but not cells that overexpress only HER2/neu. Exogenous palmitate reduces HER2 and HER3 protein levels without changes in phosphorylation and sensitizes HER2/neu-positive breast cancer cells to treatment with the HER2-targeted therapy trastuzumab. Several studies have shown that HER2, FASN and fatty acid synthesis are functionally linked. Exogenous palmitate exerts its toxic effects in part through inducing ER stress, reducing HER2 expression and thereby sensitizing cells to trastuzumab. These data provide further evidence that HER2 signaling and fatty acid metabolism are highly integrated processes that may be important for disease development and progression. The online version of this article (doi:10.1186/s12885-016-2611-8) contains supplementary material, which is available to authorized users

  13. HIV symptom distress and anxiety sensitivity in relation to panic, social anxiety, and depression symptoms among HIV-positive adults.

    Science.gov (United States)

    Gonzalez, Adam; Zvolensky, Michael J; Parent, Justin; Grover, Kristin W; Hickey, Michael

    2012-03-01

    Although past work has documented relations between HIV/AIDS and negative affective symptoms and disorders, empirical work has only just begun to address explanatory processes that may underlie these associations. The current investigation sought to test the main and interactive effects of HIV symptom distress and anxiety sensitivity in relation to symptoms of panic disorder (PD), social anxiety disorder (SA), and depression among people with HIV/AIDS. Participants were 164 adults with HIV/AIDS (17.1% women; mean age, 48.40) recruited from AIDS service organizations (ASOs) in Vermont/New Hampshire and New York City. The sample identified as 40.9% white/Caucasian, 31.1% black, 22.0% Hispanic, and 6.1% mixed/other; with more than half (56.7%) reporting an annual income less than or equal to $10,000. Both men and women reported unprotected sex with men as the primary route of HIV transmission (64.4% and 50%, respectively). HIV symptom distress and anxiety sensitivity (AS) were significantly positively related to PD, SA, and depression symptoms. As predicted, there was a significant interaction between HIV symptom distress and anxiety sensitivity in terms of PD and SA symptoms, but not depressive symptoms. Results suggest that anxiety sensitivity and HIV symptom distress are clinically relevant factors to consider in terms of anxiety and depression among people living with HIV/AIDS. It may be important to evaluate these factors among patients with HIV/AIDS to identify individuals who may be at a particularly high risk for anxiety and depression problems. Limitations included recruitment from ASOs, cross-sectional self-report data, and lack of a clinical diagnostic assessment.

  14. Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors

    International Nuclear Information System (INIS)

    Sherman, I.S.; Strauss, M.G.; Brenner, R.

    1978-01-01

    The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter

  15. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Budde, Adam; Hsieh, Jiang [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 and GE Healthcare, 3000 N Grandview Boulevard, Waukesha, Wisconsin 53188 (United States)

    2016-08-15

    Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of

  16. Impact of bowtie filter and object position on the two-dimensional noise power spectrum of a clinical MDCT system

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Cruz-Bastida, Juan Pablo; Li, Ke; Chen, Guang-Hong; Budde, Adam; Hsieh, Jiang

    2016-01-01

    Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of

  17. Analyzing three-dimensional position of region of interest using an image of contrast media using unilateral X-ray exposure

    International Nuclear Information System (INIS)

    Harauchi, Hajime; Gotou, Hiroshi; Tanooka, Masao

    1994-01-01

    Analyzing three-dimensional internal structure of object in an X-ray study is usually performed by using two or more of the incidents of an X-ray direction. In this report, we analyzed the three-dimensional position of tubes with a phantom by using both contrast media and imaging of one direction in the X-ray study. The concentration of the iodine in contrast media can be known by using the log-subtraction image of only the one-directional incident X-ray. Also the diameter of tube filled with contrast media is calculated by the concentration of iodine. So we can show the three-dimensional position of tubes geometrically, by the diameter of tube and the measured value of the film. We verified this method by an experiment according to the theory. (author)

  18. [Evaluating the accuracy of three-dimensional reconstruction of the intercuspal position for dentition casts aided by a mechanical appliance].

    Science.gov (United States)

    Hu, Z W; Li, W W; Zhang, X Y; Fan, B L; Wang, Y; Sun, Y C

    2016-08-01

    To develop a aided mechanical appliance for rapid reconstruction of three-dimensional(3D)relationship of dentition model after scanning and evaluation of its accuracy. The appliance was designed by forward engineering software and fabricated by a high precision computer numerical control(CNC)system. It contained upper and lower body, magnetic pedestal and three pillars. Nine 3 mm diameter hemispheres were distributed equally on the axial surface of each pedestal. Faro Edge 1.8m was used to directly obtain center of each hemisphere(contact method), defined as known center. A pair of die-stone standard dentition model were fixed in intercuspal position and then fixed on the magnetic pedestals with low expansion ratio plaster. Activity 880 dental scanner was used to scan casts after the plaster was completely set. In Geomagic 2012, the centers of each hemisphere were fitted and defined as scanning centers. Scanning centers were aligned to known centers by reference point system to finish the 3D reconstruction of the intercuspal occlusion for the dentition casts. An observation coordinate system was interactively established. The straight-line distances in the X(coronal), Y(saggital), and Z(vertical)between the remaining 6 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. The differences of the straight-line distances of the remaining 6 pairs of center points between the two methods were X:(-0.05±0.10)mm, Y:(0.02±0.06)mm, and Z:(0.01 ± 0.05)mm. The results of paired t-test showed no significant differences(P>0.05). The mechanical appliance can help to reconstruct 3D jaw relation by scanning single upper and lower dentition model with usual commercial available dental cast scanning system.

  19. The reliability and validity of radiographic measurements for determining the three-dimensional position of the talus in varus and valgus osteoarthritic ankles

    NARCIS (Netherlands)

    Nosewicz, Tomasz L.; Knupp, Markus; Bolliger, Lilianna; Hintermann, Beat

    2012-01-01

    To assess the most accurate radiographic method to determine talar three-dimensional position in varus and valgus osteoarthritic ankles, we evaluated the reliability and validity of different radiographic measurements. Nine radiographic measurements were performed blindly on weight-bearing mortise,

  20. BACTERIOLOGICAL STUDY OF COAGULASE-POSITIVE AND COAGULASE-NEGATIVE STAPHYLOCOCCI IN RELATION TO METHICILLIN SENSITIVITY TESTING

    Directory of Open Access Journals (Sweden)

    Padmanabham Yalangi

    2016-10-01

    Full Text Available BACKGROUND Staphylococcus aureus has long been recognised as an important pathogen in human disease. Staphylococci infection occurs regularly in hospitalised patients and has serious consequences despite antibiotic therapy. Shortly after introduction of methicillin after clinical use Methicillin-Resistant Staphylococcus Aureus (MRSA were identified in many countries and become one of the most common causes of nosocomial infections. The aim of the study is to know the methicillin sensitivity of both coagulase-negative and coagulase-positive staphylococci isolated from various samples. MATERIALS AND METHODS 100 strains of staphylococci both coagulase positive and coagulase negative were isolated in the Department of Microbiology from various clinical samples. They were confirmed by morphology, staining methods and by using standard bacteriological procedures and biochemical reactions. Antibiotic susceptibility testing was performed by Kirby Bauer disc diffusion test. RESULTS Predominant species from pus were S. epidermidis (42.42% and from sputum S. haemolyticus (31.81% from blood S. haemolyticus (53.33%. 53% of strains produced beta-lactamase. Majority 47.22% by S. epidermidis from pus followed by S. haemolyticus 23.33% from pus. Beta-lactamase production was least from throat swab (5.55%. Out of 32 coagulase-positive staphylococci tested to methicillin 15 (46.87% were found to be sensitive, 17 (53.13% were found to be resistant. Out of 68 coagulase-negative staphylococci tested, 13 (19.11% were found to sensitive and 55 (80.88% were found to be resistant. 72% of strains were sensitive to novobiocin and 28% resistant to novobiocin. 43% showed drug resistance to 2 drugs. 14% to 3 drugs and 5 drugs. 6% of staphylococci sensitive to all the 10 drugs. CONCLUSION MRSA is a type of bacteria that is resistant to a number of widely used antibiotics. This means MRSA infections can be more difficult to treat than other bacterial infections. In recent years

  1. Simultaneous acquisition of X-ray spectra using a multi-wire, position-sensitive gas flow detector

    International Nuclear Information System (INIS)

    Beaven, Peter A.; Marmotti, Mauro; Kampmann, Reinhard; Knoth, Joachim; Schwenke, Heinrich

    2003-01-01

    A multi-wire, gas-filled position-sensitive detector has been developed for the simultaneous recording of wavelength-dispersed X-ray signals that enables X-ray fluorescence spectrometry with a limited multi-element capability in the low Z element range. Details of the modular construction of the detector are given. The detector performance was characterized using Al-Kα radiation and a variable slit system. The detector has been applied in a laboratory spectrometer equipped with an electron source and a double multilayer mirror device as the wavelength-dispersing element. Spectra from Al and Si obtained in the simultaneous acquisition mode show good agreement with calculations performed using a ray-tracing model

  2. Evaluation of the x-ray response of a position-sensitive microstrip detector with an integrated readout chip

    International Nuclear Information System (INIS)

    Rossington, C.; Jaklevic, J.; Haber, C.; Spieler, H.; Reid, J.

    1990-08-01

    The performance of an SVX silicon microstrip detector and its compatible integrated readout chip have been evaluated in response to Rh Kα x-rays (average energy 20.5 keV). The energy and spatial discrimination capabilities, efficient data management and fast readout rates make it an attractive alternative to the CCD and PDA detectors now being offered for x-ray position sensitive diffraction and EXAFS work. The SVX system was designed for high energy physics applications and thus further development of the existing system is required to optimize it for use in practical x-ray experiments. For optimum energy resolution the system noise must be decreased to its previously demonstrated low levels of 2 keV FWHM at 60 keV or less, and the data handling rate of the computer must be increased. New readout chips are now available that offer the potential of better performance. 15 refs., 7 figs

  3. Measurement of 18O + 10B fusion cross section and construction of a position sensitive ionization chamber

    International Nuclear Information System (INIS)

    Added, N.

    1987-01-01

    The 18 O + 10 B fusion reaction has been investigated within the bombarding energy range of 29,0 MeV lab 0 lab 0 angular range. For this purpose, a high resolution position sensitive ionization chamber has been developed and constructed. Experimental results compared to model predictions and experimental systematics found in the literature allows to reject compound nucleus limitation to the fusion cross section up to energies as high as five times the coulomb barrier. Statistical model fits to the residues elementary distributions reveal a quite difuse partial fusion cross section in the angular momentum space. Systematic analysis of fusion barrier height (V B ) and radius (R B ) for neighbouring nuclei point out the importance of the nuclear matter difuseness in the competition between the fusion and quasi-direct process. Calculations within this framework were performed. (author) [pt

  4. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  5. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  6. Intraoperative three-dimensional fluoroscopy after transpedicular positioning of Kirschner-wire versus conventional intraoperative biplanar fluoroscopic control: A retrospective study of 345 patients and 1880 pedicle screws

    Directory of Open Access Journals (Sweden)

    Ghassan Kerry

    2014-01-01

    Full Text Available Study Design: Retrospective study. Objective: The aim was to find out whether intraoperative three-dimensional imaging after transpedicular positioning of Kirschner wire (K-wire in lumbar and thoracic posterior instrumentation procedures is of benefit to the patients and if this technique is accurately enough to make a postoperative screw position control through computer tomography (CT dispensable. Patients and Methods: Lumbar and thoracic posterior instrumentation procedures conducted at our department between 2002 and 2012 were retrospectively reviewed. The patients were divided into two groups: group A, including patients who underwent intraoperative three-dimensional scan after transpedicular positioning of the K-wire and group B, including patients who underwent only intraoperative biplanar fluoroscopy. An early postoperative CT of the instrumented section was done in all cases to assess the screw position. The rate of immediate intraoperative correction of the K-wires in cases of mal-positioning, as well as the rate of postoperative screw revisions, was measured. Results: In general, 345 patients (1880 screws were reviewed and divided into two groups; group A with 225 patients (1218 screws and group B with 120 patients (662 screws. One patient (0.44% (one screw [0.082%] of group A underwent postoperative screw correction while screw revisions were necessary in 14 patients (11.7% (28 screws [4.2%] of group B. Twenty-three patients (10.2% (28 K-wires [2.3%] of group A underwent intraoperative correction due to primary intraoperative detected K-wire mal-position. None of the corrected K-wires resulted in a corresponding neurological deficit. Conclusion: Three-dimensional imaging after transpedicular K-wire positioning leads to solid intraoperative identification of misplaced K-wires prior to screw placement and reduces screw revision rates compared with conventional fluoroscopic control. When no clinical deterioration emerges, a

  7. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  8. Influence of multiple sclerosis, age and degree of disability, in the position of the contrast sensitivity curve peak

    Directory of Open Access Journals (Sweden)

    A F Nunes

    2014-01-01

    Full Text Available Context: Contrast sensitivity (CS function is one of the most important tests available for evaluating visual impairment. Multiple sclerosis (MS can produce highly selective losses in visual function and psychophysical studies have demonstrated CS deficits for some spatial frequencies. Aims: This work studies the differences in CS between a group of controls and a group of MS patients, focusing on the location of the maximum sensitivity peak, shape of the curve, and determination of the most affected spatial frequencies. Materials and Methods: Using a sinusoidal stimulus the authors assessed CS function in 28 subjects with definitive relapsing remitting MS, and in 50 controls with acuities of 20/25 or better. The peaks of the CS curves were studied by fitting third degree polynomials to individual sets of data. Results: Compared with the control group, the CS function curve for MS subjects showed more deficits in extreme points (low- and high-spatial frequencies. Our results display significant CS losses, at the high-frequencies band level, in the beginning of the disease. When the disease progresses and the disabilities appear, there are greater losses at the low-frequencies band level. In average, the CS curve peaks for the MS group were shifted in relation to the control group. Conclusions: CS losses in the MS group suggest an association with ageing and disability level in the expanded disability status scale. The position of the CS function peak is influenced by MS, age, and degree of disability.

  9. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  10. Transverse Position Reconstruction in a Liquid Argon Time Projection Chamber using Principal Component Analysis and Multi-Dimensional Fitting

    Science.gov (United States)

    Watson, Andrew William

    2017-08-01

    pocket above the liquid region, respectively. One of the lingering challenges in this experiment, however, is the determination of an event's position along the other two spatial dimensions, that is, its transverse or "xy" position. Some liquid noble element TPCs have achieved remarkably accurate event position reconstructions, typically using the relative amounts of S2 light collected by Photo-Multiplier Tubes ("PMTs") as the input data to their reconstruction algorithms. This approach has been partic- ularly challenging in DarkSide-50, partly due to unexpected asymmetries in the detector, and partly due to the design of the detector itself. A variety of xy-Reconstruction methods ("xy methods" for short) have come and gone in DS- 50, with only a few of them providing useful results. The xy method described in this dissertation is a two-step Principal Component Analysis / Multi-Dimensional Fit (PCAMDF) reconstruction. In a nutshell, this method develops a functional mapping from the 19-dimensional space of the signal received by the PMTs at the "top" (or the "anode" end) of the DarkSide-50 TPC to each of the transverse coordinates, x and y. PCAMDF is a low-level "machine learning" algorithm, and as such, needs to be "trained" with a sample of representative events; in this case, these are provided by the DarkSide geant4-based Monte Carlo, g4ds. In this work, a thorough description of the PCAMDF xy-Reconstruction method is provided along with an analysis of its performance on MC events and data. The method is applied to several classes of data events, including coincident decays, external gamma rays from calibration sources, and both atmospheric argon "AAr" and underground argon "UAr". Discrepancies between the MC and data are explored, and fiducial volume cuts are calculated. Finally, a novel method is proposed for finding the accuracy of the PCAMDF reconstruction on data by using the asymmetry of the S2 light collected on the anode and cathode PMT arrays as a function

  11. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Murazaki, Minoru; Uno, Yuichi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of {+-}13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, {alpha}, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and {sup 3}He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, calculated value agreed well with measurement data of PSPC without Cd cover. (author)

  12. Measurement and analysis of neutron flux distribution of STACY heterogeneous core by position sensitive proportional counter. Contract research

    CERN Document Server

    Murazaki, M; Uno, Y

    2003-01-01

    We have measured neutron flux distribution around the core tank of STACY heterogeneous core by position sensitive proportional counter (PSPC) to develop the method to measure reactivity for subcritical systems. The neutron flux distribution data in the position accuracy of +-13 mm have been obtained in the range of uranium concentration of 50g/L to 210g/L both in critical and in subcritical state. The prompt neutron decay constant, alpha, was evaluated from the measurement data of pulsed neutron source experiments. We also calculated distribution of neutron flux and sup 3 He reaction rates at the location of PSPC by using continuous energy Monte Carlo code MCNP. The measurement data was compared with the calculation results. As results of comparison, calculated values agreed generally with measurement data of PSPC with Cd cover in the region above half of solution height, but the difference between calculated value and measurement data was large in the region below half of solution height. On the other hand, ...

  13. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  14. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies

    Science.gov (United States)

    Briscoe, Adriana D.; Bybee, Seth M.; Bernard, Gary D.; Yuan, Furong; Sison-Mangus, Marilou P.; Reed, Robert D.; Warren, Andrew D.; Llorente-Bousquets, Jorge; Chiao, Chuan-Chin

    2010-01-01

    The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate. PMID:20133601

  15. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  16. Evaluation of moderately cooled pure NaI as a scintillator for position-sensitive PET detectors

    International Nuclear Information System (INIS)

    Wear, J.A.; Karp, J.S.; Haigh, A.T.; Freifelder, R.

    1996-01-01

    A new evaluation of pure NaI has been performed to determine if moderate cooling would lead to better performance than that of existing, activated NaI(Tl) position-sensitive detectors, particularly at high countrates. Using a freezer, an initial effort was performed to cool the crystal assembly to -90 C (183 K). At this temperature, pure NaI has a decay constant of 35 nsec, a light output which is about 20% that of room temperature NaI(Tl), and an energy resolution of 15%. For the PET applications the signal of room temperature (25 C) NaI(Tl) is normally pulse clipped, reducing the light output to 40% of the unclipped signal and yielding an energy resolution of 10.5%. Since the long decay of NaI(Tl) causes it to suffer more significantly than pure NaI from pre-pulse pileup, the difference in energy resolution between the two crystals at high countrates will be reduced. Also, a significantly shorter trigger deadtime with pure NaI will lead to a reduction in coincidence deadtime losses in PET. Computer simulations of large-area crystals operating at high countrates have been performed to quantify their trigger deadtime behavior and position resolution as a function of light output and pulse decay time. Having gained experience with the practical issues of cooling large crystals, measurements of position resolution have been performed with a NaI bar detector of similar geometry to the NaI(Tl) detectors in use in the PENN-PET scanner

  17. Three dimensional analysis of impacted maxillary third molars: A cone-beam computed tomographic study of the position and depth of impaction

    Energy Technology Data Exchange (ETDEWEB)

    De Andrade, Priscila Ferreira; Silva, Jesca Neftali Nogueira; Sotto-Maior, Bruno Sales; Devito, Karina Lopes; Assis, Neuza Maria Souza Picorelli [Faculty of Dentistry, Federal University of Juiz de Fora, Juiz de Fora (Brazil); Ribeiro, CleideGisele [Faculty of Medical and Health Sciences - SUPREMA, Juiz de Fora (Brazil)

    2017-09-15

    The classification of impacted maxillary third molars (IMTMs) facilitates interdisciplinary communication and helps estimate the degree of surgical difficulty. Thus, this study aimed to develop a 3-dimensional classification of the position and depth of impaction of IMTMs and to estimate their prevalence with respect to gender and age. This cross-sectional retrospective study analyzed images in sagittal and coronal cone-beam computed tomography (CBCT) sections of 300 maxillary third molars. The proposed classification was based on 3 criteria: buccolingual position (buccal, lingual, or central), mesial-distal position (mesioangular, vertical, or distoangular), and depth of impaction (low, medium, or high). CBCT images of IMTMs were classified, and the associations of the classifications with gender and age were examined using analysis of variance with the Scheffé post-hoc test. To determine the associations among the 3 classifications, the chi-square test was used (P<.05). No significant association of the classifications with gender was observed. Age showed a significant relationship with depth of impaction (P=.0001) and mesial-distal position (P=.005). The most common positions were buccal (n=222), vertical (n=184), and low (n=124). Significant associations among the 3 tested classifications were observed. CBCT enabled the evaluation of IMTMs in a 3-dimensional format, and we developed a proposal for a new classification of the position and depth of impaction of IMTMs.

  18. The reliability and validity of radiographic measurements for determining the three-dimensional position of the talus in varus and valgus osteoarthritic ankles

    OpenAIRE

    Nosewicz, Tomasz L.; Knupp, Markus; Bolliger, Lilianna; Hintermann, Beat

    2012-01-01

    Objective To assess the most accurate radiographic method to determine talar three-dimensional position in varus and valgus osteoarthritic ankles, we evaluated the reliability and validity of different radiographic measurements. Materials and methods Nine radiographic measurements were performed blindly on weight-bearing mortise, sagittal, and horizontal radiographs of 33 varus and 33 valgus feet (63 patients). Intra- and interobserver reliability was determined with the intraclass coefficien...

  19. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could

  20. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    Science.gov (United States)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  1. A study of an optimal technological solution for the electronics of particle position sensitive gas detectors (multiwire proportional chambers)

    International Nuclear Information System (INIS)

    Zojceski, Z.

    1997-01-01

    This work aims at optimizing the electronics for position sensitive gas detectors. The first part is a review of proportional chamber operation principles and presents the different possibilities for the architecture of the electronics. The second part involves electronic signal processing for best signal-to-noise ratio. We present a time-variant filter based on a second order base line restorer.It allows a simple pole-zero and tail cancellation at high counting rates. Also, various interpolating algorithms for cathode strip chambers have been studied. The last part reports the development of a complete electronic system, from the preamplifiers up to the readout and control interface, for the cathode strip chambers in the focal plane of the BBS Spectrometer at KVI, Holland. The system is based on application specific D-size VXI modules. In all modules, the 16-bit ADCs and FIFO memory are followed by a Digital Signal Processor, which performs data filtering and cathode induced charge interpolation. Very good analog noise performance is obtained in a multi-processor environment. (author)

  2. The Multi-Dimensional Blood/Injury Phobia Inventory : Its psychometric properties and relationship with disgust propensity and disgust sensitivity

    NARCIS (Netherlands)

    van Overveld, Mark; de Jong, Peter J.; Peters, Madelon L.

    The Multi-Dimensional Blood Phobia Inventory (MBPI: Wenzel & Holt, 2003) is the only instrument available that assesses both disgust and anxiety for blood-phobic stimuli. As inflated levels of disgust propensity (i.e., tendency to experience disgust more readily) are often observed in blood phobia,

  3. Dimensionality reduction based on distance preservation to local mean for symmetric positive definite matrices and its application in brain-computer interfaces

    Science.gov (United States)

    Davoudi, Alireza; Shiry Ghidary, Saeed; Sadatnejad, Khadijeh

    2017-06-01

    Objective. In this paper, we propose a nonlinear dimensionality reduction algorithm for the manifold of symmetric positive definite (SPD) matrices that considers the geometry of SPD matrices and provides a low-dimensional representation of the manifold with high class discrimination in a supervised or unsupervised manner. Approach. The proposed algorithm tries to preserve the local structure of the data by preserving distances to local means (DPLM) and also provides an implicit projection matrix. DPLM is linear in terms of the number of training samples. Main results. We performed several experiments on the multi-class dataset IIa from BCI competition IV and two other datasets from BCI competition III including datasets IIIa and IVa. The results show that our approach as dimensionality reduction technique—leads to superior results in comparison with other competitors in the related literature because of its robustness against outliers and the way it preserves the local geometry of the data. Significance. The experiments confirm that the combination of DPLM with filter geodesic minimum distance to mean as the classifier leads to superior performance compared with the state of the art on brain-computer interface competition IV dataset IIa. Also the statistical analysis shows that our dimensionality reduction method performs significantly better than its competitors.

  4. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  5. The three-dimensional positioning system at the VINETA.II experiment—a multipurpose tool for in situ plasma diagnostics

    Science.gov (United States)

    Shesterikov, I.; Milojevic, D.; von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2017-08-01

    The manipulator systems installed at the VINETA.II magnetic reconnection experiment are essential elements for experimental investigation of local plasma parameters. A novel three-dimensional (3D) probe manipulator has been designed, implemented and successfully operated at VINETA.II. This work presents its design and performance for three-dimensional measurements of VINETA.II plasmas. Its design consists of three vertically stacked independent and mutually perpendicular linear motion stages which allow flexible positioning of diagnostic tools such as electrical and magnetic probes or optical diagnostics within the vacuum vessel. Its design features include a wide spatial coverage, sub-millimeter positioning accuracy and the capability to operate in a harsh environment under the influence of microwaves, radio-frequency waves and direct contact with plasma. Manipulator performance is assessed by measuring a volumetric distribution of plasma parameters by a B-dot probe. A typical discharge of the magnetic reconnection setup in VINETA.II with a pulse time of τ=600 μs is chosen for this purpose. The azimuthal magnetic field distribution measured with the 3D manipulator agrees favorably with measurements obtained by the two-dimensional (2D) manipulator, used at VINETA.II as a standard reference diagnostic tool, thereby demonstrating its reliability and performance. A programmable stepper motor controller (TMCM-1110) that is operated remotely by a PC drives all possible features of the manipulator system.

  6. Development and applications of a two-dimensional tip-tilting stage system with nanoradian-level positioning resolution

    Energy Technology Data Exchange (ETDEWEB)

    Shu Deming, E-mail: shu@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Lee, Wah-Keat; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Ice, Gene E. [MST Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6132 (United States); Shvyd' ko, Yuri; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In this paper, designs of a novel rotary weak-link stage for a vertical rotation axis and a two-dimensional tip-tilting system are presented. Applications of these new stage systems include: an advanced X-ray stereo imaging instrument for particle tracking velocimetry, an alignment stage system for hard X-ray nano-focusing Montel mirror optics, and an ultra-precision crystal manipulator for cryo-cooling optical cavities of an X-ray free-electron-laser oscillator (XFELO).

  7. [Early detection of the cardiotoxicity induced by chemotherapy drug through two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T].

    Science.gov (United States)

    Wang, W; Kang, Y; Shu, X H; Shen, X D; He, B

    2017-11-23

    Objective: To investigate the clinical value of two-dimensional speckle tracking echocardiography(2D-STE) combined with high-sensitive cardiac troponin T (hs-cTnT) in early detection of the cardiotoxicity induced by chemotherapy drug. Methods: Seventy-five non-Hodgkin's lymphoma patients who received the CHOP regimen were recruited in this study. Conventional echocardiography and 2D-STE were performed on these patients before chemotherapy, the second day after the third course of chemotherapy (during chemotherapy) and the second day after the last course of chemotherapy (after chemotherapy). The parameters included left ventricular ejection fraction (LVEF), global longitudinal strain (LS), global circumferential strain (CS) and global radial strain (RS). The serum hs-cTNT levels were tested simultaneously. Results: Three cycles of CHOP were completed in 30 patients and 6-8 cycles of CHOP were completed in 45 patients. The LVEF of 75 patients before, during and after chemotherapy was (63.8±2.6)%, (63.8±2.8)% and (64.0±3.3)%, respectively, without significant difference ( P =0.91). However, the LS of 75 patients before, during and after chemotherapy was (-18.5±1.7)%, (-16.5±1.9)% and (-16.0±1.6)%, respectively. The CS was (-20.9±2.9)%, (-19.3±3.5)% and (-19.2±3.2)%, respectively. The RS was (39.2±6.4)%, (35.3±5.2)% and (35.0±6.2)%, respectively. The hs-cTnT was (0.001 0±0.002 0)ng/ml, (0.006 3±0.008 9)ng/ml and (0.007 3±0.003 8)ng/ml, respectively. The LS, CS and RS were significantly decreased while hs-cTnT was significantly increased during chemotherapy when compared to those before chemotherapy (all of P chemotherapy were marginally different from those during chemotherapy (all of P >0.05). Moreover, T(LS-SD), T(CS-SD) and T(RS-SD) showed no significant difference before, during and after chemotherapy (all of P >0.05). The reduction of LS was positively associated with the enhancement of hs-cTnT after chemotherapy ( r =0.60, P effectively and

  8. Sensitivity and specificity of CT colonography for the detection of colonic neoplasia after positive faecal occult blood testing: systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Plumb, Andrew A.; Pendse, Douglas A.; Taylor, Stuart A. [University College London, Centre for Medical Imaging, London (United Kingdom); Halligan, Steve [University College London, Centre for Medical Imaging, London (United Kingdom); University College London, University College Hospital, Centre for Medical Imaging, Podium Level 2, London (United Kingdom); Mallett, Susan [University of Oxford, Department of Primary Care Health Sciences, Oxford (United Kingdom)

    2014-05-15

    CT colonography (CTC) is recommended after positive faecal occult blood testing (FOBt) when colonoscopy is incomplete or infeasible. We aimed to estimate the sensitivity and specificity of CTC for colorectal cancer and adenomatous polyps following positive FOBt via systematic review. The MEDLINE, EMBASE, AMED and Cochrane Library databases were searched for CTC studies reporting sensitivity and specificity for colorectal cancer and adenomatous polyps. Included subjects had tested FOBt-positive by guaiac or immunochemical methods. Per-patient detection rates were summarized via forest plots. Meta-analysis of sensitivity and specificity was conducted using a bivariate random effects model and the average operating point calculated. Of 538 articles considered, 5 met inclusion criteria, describing results from 622 patients. Research study quality was good. CTC had a high per-patient average sensitivity of 88.8 % (95 % CI 83.6 to 92.5 %) for ≥6 mm adenomas or colorectal cancer, with low between-study heterogeneity. Specificity was both more heterogeneous and lower, at an average of 75.4 % (95 % CI 58.6 to 86.8 %). Few studies have investigated CTC in FOBt-positive individuals. CTC is sensitive at a ≥6 mm threshold but specificity is lower and variable. Despite the limited data, these results suggest that CTC may adequately substitute for colonoscopy when the latter is undesirable. (orig.)

  9. Sensitivity and specificity of CT colonography for the detection of colonic neoplasia after positive faecal occult blood testing: systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Plumb, Andrew A.; Pendse, Douglas A.; Taylor, Stuart A.; Halligan, Steve; Mallett, Susan

    2014-01-01

    CT colonography (CTC) is recommended after positive faecal occult blood testing (FOBt) when colonoscopy is incomplete or infeasible. We aimed to estimate the sensitivity and specificity of CTC for colorectal cancer and adenomatous polyps following positive FOBt via systematic review. The MEDLINE, EMBASE, AMED and Cochrane Library databases were searched for CTC studies reporting sensitivity and specificity for colorectal cancer and adenomatous polyps. Included subjects had tested FOBt-positive by guaiac or immunochemical methods. Per-patient detection rates were summarized via forest plots. Meta-analysis of sensitivity and specificity was conducted using a bivariate random effects model and the average operating point calculated. Of 538 articles considered, 5 met inclusion criteria, describing results from 622 patients. Research study quality was good. CTC had a high per-patient average sensitivity of 88.8 % (95 % CI 83.6 to 92.5 %) for ≥6 mm adenomas or colorectal cancer, with low between-study heterogeneity. Specificity was both more heterogeneous and lower, at an average of 75.4 % (95 % CI 58.6 to 86.8 %). Few studies have investigated CTC in FOBt-positive individuals. CTC is sensitive at a ≥6 mm threshold but specificity is lower and variable. Despite the limited data, these results suggest that CTC may adequately substitute for colonoscopy when the latter is undesirable. (orig.)

  10. Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions

    International Nuclear Information System (INIS)

    Kitamura, Kei; Shirato, Hiroki; Seppenwoolde, Yvette; Onimaru, Rikiya; Oda, Makoto; Fujita, Katsuhisa; Shimizu, Shinichi; Shinohara, Nobuo; Harabayashi, Toru; Miyasaka, Kazuo

    2002-01-01

    Purpose: To quantify three-dimensional (3D) movement of the prostate gland with the patient in the supine and prone positions and to analyze the movement frequency for each treatment position. Methods and Materials: The real-time tumor-tracking radiotherapy (RTRT) system was developed to identify the 3D position of a 2-mm gold marker implanted in the prostate 30 times/s using two sets of fluoroscopic images. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within the region of the planned coordinates relative to the isocenter. Ten patients with prostate cancer treated with RTRT were the subjects of this study. The coordinates of the gold marker were recorded every 0.033 s during RTRT in the supine treatment position for 2 min. The patient was then moved to the prone position, and the marker was tracked for 2 min to acquire data regarding movement in this position. Measurements were taken 5 times for each patient (once a week); a total of 50 sets for the 10 patients was analyzed. The raw data from the RTRT system were filtered to reduce system noise, and the amplitude of movement was then calculated. The discrete Fourier transform of the unfiltered data was performed for the frequency analysis of prostate movement. Results: No apparent difference in movement was found among individuals. The amplitude of 3D movement was 0.1-2.7 mm in the supine and 0.4-24 mm in the prone positions. The amplitude in the supine position was statistically smaller in all directions than that in the prone position (p < 0.0001). The amplitude in the craniocaudal and AP directions was larger than in the left-right direction in the prone position (p < 0.0001). No characteristic movement frequency was detected in the supine position. The respiratory frequency was detected for all patients regarding movement in the craniocaudal and AP directions in the prone position. The results of the frequency analysis suggest that prostate movement is

  11. A position sensitive detector using a NaI(Tl)/photomultiplier tube combination for the energy range 200 keV to 10 MeV

    International Nuclear Information System (INIS)

    Court, A.J.; Dean, A.J.; Yearworth, M.; Younis, F.; Chiappetti, L.; Perotti, F.; Villa, G.; Ubertini, P.; La Padula, C.

    1988-01-01

    The performance of the position sensitive detector for the ZEBRA low energy gamma-ray imaging telescope is described. The detector consists of 9 position sensitive NaI(Tl) elements each 5.8x5.0x56.0 cm viewed at either end of the long axis by 2 in. photomultiplier tubes. The total active area is 2470 cm 2 with an average positional resolution of 2.1 cm and energy resolution of 15% FWHM at 661.6 keV. The method of flight calibration is described together with the provision within the on-board electronics to correct for sources of error in the calculation of event energy loss and position. The results presented are obtained from the calibration phase of the ZEBRA telescope project. (orig.)

  12. The reliability and validity of radiographic measurements for determining the three-dimensional position of the talus in varus and valgus osteoarthritic ankles.

    Science.gov (United States)

    Nosewicz, Tomasz L; Knupp, Markus; Bolliger, Lilianna; Hintermann, Beat

    2012-12-01

    To assess the most accurate radiographic method to determine talar three-dimensional position in varus and valgus osteoarthritic ankles, we evaluated the reliability and validity of different radiographic measurements. Nine radiographic measurements were performed blindly on weight-bearing mortise, sagittal, and horizontal radiographs of 33 varus and 33 valgus feet (63 patients). Intra- and interobserver reliability was determined with the intraclass coefficient (ICC). Discriminant validity of measurements between varus and valgus feet was assessed with effect size (ES). Convergent validity (Pearson's r) was evaluated by correlating measurements to the dichotomized varus and valgus groups. Obtained measurements in both groups were finally compared with each other and with 30 control feet. Reliability was excellent (ICC > 0.80) in all but two measurements. Whereas frontal plane validity was excellent (ES and r > 0.80), horizontal and sagittal measurements showed poor to moderate validity (ES and r between 0.00 and 0.60). Four measurements were significantly different among all groups (p reliability, validity, and difference among the groups. The frontal tibiotalar surface angle, sagittal talocalcaneal inclination angle, and horizontal talometatarsal I angle accurately determine talar three-dimensional radiographic position in weight-bearing varus and valgus osteoarthritic ankles. Careful radiographic evaluation is important, as these deformities affect talar position in all three planes.

  13. Geometrical modeling of a two-dimensional sensor array for determining spatial position of a passive object

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2004-01-01

    This paper presents a model of an active sensor array which can determine the spatial position of a passive object by illuminating the object via a small set of emitters and measure the intensity of the reflection by means of a small set of receivers. All emitters and receivers are located...

  14. Three-Dimensional Finite Element Analysis of Maxillary Sinus Floor Augmentation with Optimal Positioning of a Bone Graft Block

    Directory of Open Access Journals (Sweden)

    Peter Schuller-Götzburg

    2018-01-01

    Full Text Available Purpose: the aim of the computational 3D-finite element study is to evaluate the influence of an augmented sinus lift with additional inserted bone grafting. The bone graft block stabilizes the implant in conjunction with conventional bone augmentation. Two finite element models were applied: the real geometry based bone models and the simplified geometry models. The bone graft block was placed in three different positions. The implants were loaded first with an axial force and then with forces simulating laterotrusion and protrusion. This study examines whether the calculated stress behavior is symmetrical for both models. Having established a symmetry between the primary axis, the laterotrusion and protrusion behavior reduces calculation efforts, by simplifying the model. Material and Methods: a simplified U-shaped 3D finite element model of the molar region of the upper jaw and a more complex anatomical model of the left maxilla with less cortical bone were created. The bone graft block was placed in the maxillary sinus. Then the von Mises stress distribution was calculated and analyzed at three block positions: at contact with the sinus floor, in the middle of the implant helix and in the upper third of the implant. The two finite element models were then compared to simplify the modelling. Results: the position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for

  15. Three-dimensional accuracy and interfractional reproducibility of patient fixation and positioning using a stereotactic head mask system

    International Nuclear Information System (INIS)

    Karger, Christian P.; Jaekel, Oliver; Debus, Juergen; Kuhn, Sabine; Hartmann, Guenther H.

    2001-01-01

    Purpose: Conformal radiotherapy in the head and neck region requires precise and reproducible patient setup. The definition of safety margins around the clinical target volume has to take into account uncertainties of fixation and positioning. Data are presented to quantify the involved uncertainties for the system used. Methods and Materials: Interfractional reproducibility of fixation and positioning of a target point in the brain was evaluated by biplanar films. 118 film pairs obtained at 52 fractions in 4 patients were analyzed. The setup was verified at the actual treatment table position by diagnostic X-ray units aligned to the isocenter and by a stereotactic X-ray localization technique. The stereotactic coordinates of the treated isocenter, of fiducials on the mask, and of implanted internal markers within the patient were measured to determine systematic and random errors. The data are corrected for uncertainty of the localization method. Results: Displacements in target point positioning were 0.35±0.41 mm, 1.22±0.25 mm, and -0.74±0.32 mm in the x, y, and z direction, respectively. The reproducibility of the fixation of the patient's head within the mask was 0.48 mm (x), 0.67 mm (y), and 0.72 mm (z). Rotational uncertainties around an axis parallel to the x, y, and z axis were 0.72 deg., 0.43 deg., and 0.70 deg., respectively. A simulation, based on the acquired data, yields a typical radial overall uncertainty for positioning and fixation of 1.80±0.60 mm. Conclusions: The applied setup technique showed to be highly reproducible. The data suggest that for the applied technique, a safety margin between clinical and planning target volume of 1-2 mm along one axis is sufficient for a target at the base of skull

  16. Low incidence of minor BRAF V600 mutation-positive subclones in primary and metastatic melanoma determined by sensitive and quantitative real-time PCR

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Clemmensen, Ole; Hoejberg, Lise

    2013-01-01

    BRAF V600 mutation is an important biological marker for therapeutic guidance in melanoma, where mutation-positive cases are candidates for therapy targeting mutant B-Raf. Recent studies showing intratumor variation in BRAF mutation status have caused concern that sensitive mutation analysis can ...

  17. Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs

    International Nuclear Information System (INIS)

    Inoue, K.; Saito, H.; Nagashima, Y.; Hyodo, T.; Nagai, Y.; Muramatsu, S.; Nagai, S.

    2000-01-01

    We constructed a position-sensitive gamma-ray detector consisting of an array of BGO scintillators, a light guide and compact PS-PMTs. The effects of refractive index and thickness of the light guide of a glass plate on the detector performance were investigated. A light guide with higher refractive index and smaller thickness is found better for a good spatial resolution.

  18. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.

    Science.gov (United States)

    Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F

    2000-07-01

    SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.

  19. Taking into account positioning errors during a three dimensional conformal radiotherapy for a non at small cells lung cancer

    International Nuclear Information System (INIS)

    Fernandez, D.; Maisonobe, J.A.; Leignel, D.; Durdux, C.; Henni, M.; Dessard-Diana, B.; Housset, M.; Giraud, P.

    2009-01-01

    Purpose: According to the report 62 of the International commission on radiation units and measurements (ICRU), the estimated target volume adds to the internal margin that takes into account the movements of the target volume during breathing, an external margin that takes into account the uncertainties of beams positioning. Our objective was to describe a method of estimated target volume calculation taking into account the technique of irradiation chosen in the service. (N.C.)

  20. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction.

    Science.gov (United States)

    van Winkel, Mark; Peeters, Frenk; van Winkel, Ruud; Kenis, Gunter; Collip, Dina; Geschwind, Nicole; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Myin-Germeys, Inez; Wichers, Marieke

    2014-06-01

    A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factor(Val66Met) (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subjects with residual depressive symptoms the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity, (ii) replicate the neutralizing impact of positive emotions, (iii) extend these analyses to other variations in the BDNF gene in the new independent sample and the original sample of non-depressed individuals. Previous findings were replicated in an experience sampling method (ESM) study. Negative Affect (NA) responses to social stress were stronger in "Val/Met" carriers of BDNF(Val66Met) compared to "Val/Val" carriers. Positive emotions neutralized the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity in a dose-response fashion. Finally, two of four additional BDNF SNPs (rs11030101, rs2049046) showed similar moderating effects on social stress-sensitivity across both samples. The neutralizing effect of positive emotions on the moderating effects of these two additional SNPs was found in one sample. In conclusion, ESM has important advantages in gene-environment (GxE) research and may attribute to more consistent findings in future GxE research. This study shows how the impact of BDNF genetic variation on depressive symptoms may be explained by its impact on subtle daily life responses to social stress. Further, it shows that the generation of positive affect (PA) can buffer social stress sensitivity and partially undo the genetic susceptibility. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  1. Sensitivity improvement for correlations involving arginine side-chain Nε/Hε resonances in multi-dimensional NMR experiments using broadband 15N 180o pulses

    International Nuclear Information System (INIS)

    Iwahara, Junji; Clore, G. Marius

    2006-01-01

    Due to practical limitations in available 15 N rf field strength, imperfections in 15 N 180 o pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino 15 Nε (∼85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg Nε-Hε groups, we have incorporated 15 N broadband 180 deg. pulses into 3D 15 N-separated NOE-HSQC and HNCACB experiments. Two 15 N-WURST pulses incorporated at the INEPT transfer steps of the 3D 15 N-separated NOE-HSQC pulse sequence resulted in a ∼1.5-fold increase in sensitivity for the Arg Nε-Hε signals at 800 MHz. For the 3D HNCACB experiment, five 15 N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg 1 Hε- 15 Nε- 13 Cγ/ 13 Cδ correlation peaks was enhanced by a factor of ∼1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg 1 Hε and 15 Nε resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the 15 Nε/ 1 Hε of Arg in 3D 15 N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains

  2. The reliability and validity of radiographic measurements for determining the three-dimensional position of the talus in varus and valgus osteoarthritic ankles

    Energy Technology Data Exchange (ETDEWEB)

    Nosewicz, Tomasz L. [Kantonsspital Liestal, Department of Orthopaedic Surgery and Traumatology, Liestal (Switzerland); Academic Medical Center, Department of Orthopaedic Surgery, Meibergdreef 9, AZ, Amsterdam (Netherlands); Knupp, Markus; Bolliger, Lilianna; Hintermann, Beat [Kantonsspital Liestal, Department of Orthopaedic Surgery and Traumatology, Liestal (Switzerland)

    2012-12-15

    To assess the most accurate radiographic method to determine talar three-dimensional position in varus and valgus osteoarthritic ankles, we evaluated the reliability and validity of different radiographic measurements. Nine radiographic measurements were performed blindly on weight-bearing mortise, sagittal, and horizontal radiographs of 33 varus and 33 valgus feet (63 patients). Intra- and interobserver reliability was determined with the intraclass coefficient (ICC). Discriminant validity of measurements between varus and valgus feet was assessed with effect size (ES). Convergent validity (Pearson's r) was evaluated by correlating measurements to the dichotomized varus and valgus groups. Obtained measurements in both groups were finally compared with each other and with 30 control feet. Reliability was excellent (ICC > 0.80) in all but two measurements. Whereas frontal plane validity was excellent (ES and r > 0.80), horizontal and sagittal measurements showed poor to moderate validity (ES and r between 0.00 and 0.60). Four measurements were significantly different among all groups (p < 0.05). Talar positional tendency was found towards dorsiflexion or endorotation in the varus group and towards plantarflexion or exorotation in the valgus group. The frontal tibiotalar surface angle, sagittal talocalcaneal inclination angle, and horizontal talometatarsal I angle showed the best reliability, validity, and difference among the groups. The frontal tibiotalar surface angle, sagittal talocalcaneal inclination angle, and horizontal talometatarsal I angle accurately determine talar three-dimensional radiographic position in weight-bearing varus and valgus osteoarthritic ankles. Careful radiographic evaluation is important, as these deformities affect talar position in all three planes. (orig.)

  3. The reliability and validity of radiographic measurements for determining the three-dimensional position of the talus in varus and valgus osteoarthritic ankles

    International Nuclear Information System (INIS)

    Nosewicz, Tomasz L.; Knupp, Markus; Bolliger, Lilianna; Hintermann, Beat

    2012-01-01

    To assess the most accurate radiographic method to determine talar three-dimensional position in varus and valgus osteoarthritic ankles, we evaluated the reliability and validity of different radiographic measurements. Nine radiographic measurements were performed blindly on weight-bearing mortise, sagittal, and horizontal radiographs of 33 varus and 33 valgus feet (63 patients). Intra- and interobserver reliability was determined with the intraclass coefficient (ICC). Discriminant validity of measurements between varus and valgus feet was assessed with effect size (ES). Convergent validity (Pearson's r) was evaluated by correlating measurements to the dichotomized varus and valgus groups. Obtained measurements in both groups were finally compared with each other and with 30 control feet. Reliability was excellent (ICC > 0.80) in all but two measurements. Whereas frontal plane validity was excellent (ES and r > 0.80), horizontal and sagittal measurements showed poor to moderate validity (ES and r between 0.00 and 0.60). Four measurements were significantly different among all groups (p < 0.05). Talar positional tendency was found towards dorsiflexion or endorotation in the varus group and towards plantarflexion or exorotation in the valgus group. The frontal tibiotalar surface angle, sagittal talocalcaneal inclination angle, and horizontal talometatarsal I angle showed the best reliability, validity, and difference among the groups. The frontal tibiotalar surface angle, sagittal talocalcaneal inclination angle, and horizontal talometatarsal I angle accurately determine talar three-dimensional radiographic position in weight-bearing varus and valgus osteoarthritic ankles. Careful radiographic evaluation is important, as these deformities affect talar position in all three planes. (orig.)

  4. Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade

    International Nuclear Information System (INIS)

    Lee, Wu Sang; Kim, Dae Hyun; Min, Jae Hong; Chung Jin Taek

    2007-01-01

    Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance

  5. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  6. Novel three dimensional position analysis of the mandibular foramen in patients with skeletal class III mandibular prognathism

    International Nuclear Information System (INIS)

    Kang, Sang Hoon; Kim, Yeon Ho; Won, Yu Jin; Kim, Moon Key

    2016-01-01

    To analyze the relative position of the mandibular foramina (MnFs) in patients diagnosed with skeletal class III malocclusion. Computed tomography (CT) images were collected from 85 patients. The vertical lengths of each anatomic point from the five horizontal planes passing through the MnF were measured at the coronoid process, sigmoid notch, condyle, and the gonion. The distance from the anterior ramus point to the posterior ramus point on the five horizontal planes was designated the anteroposterior horizontal distance of the ramus for each plane. The perpendicular distance from each anterior ramus point to each vertical plane through the MnF was designated the horizontal distance from the anterior ramus to the Mn F. The horizontal and vertical positions were examined by regression analysis. Regression analysis showed the heights of the coronoid process, sigmoid notch, and condyle for the five horizontal planes were significantly related to the height of the MnF, with the highest significance associated with the MnF-mandibular plane (coefficients of determination (R2): 0.424, 0.597, and 0.604, respectively). The horizontal anteroposterior length of the ramus and the distance from the anterior ramus point to the MnF were significant by regression analysis. The relative position of the MnF was significantly related to the vertical heights of the sigmoid notch, coronoid process, and condyle as well as to the horizontal anteroposterior length of the ascending ramus. These findings should be clinically useful for patients with skeletal class III mandibular prognathism

  7. Novel three dimensional position analysis of the mandibular foramen in patients with skeletal class III mandibular prognathism

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Hoon; Kim, Yeon Ho; Won, Yu Jin; Kim, Moon Key [Dept. of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang (Korea, Republic of)

    2016-06-15

    To analyze the relative position of the mandibular foramina (MnFs) in patients diagnosed with skeletal class III malocclusion. Computed tomography (CT) images were collected from 85 patients. The vertical lengths of each anatomic point from the five horizontal planes passing through the MnF were measured at the coronoid process, sigmoid notch, condyle, and the gonion. The distance from the anterior ramus point to the posterior ramus point on the five horizontal planes was designated the anteroposterior horizontal distance of the ramus for each plane. The perpendicular distance from each anterior ramus point to each vertical plane through the MnF was designated the horizontal distance from the anterior ramus to the Mn F. The horizontal and vertical positions were examined by regression analysis. Regression analysis showed the heights of the coronoid process, sigmoid notch, and condyle for the five horizontal planes were significantly related to the height of the MnF, with the highest significance associated with the MnF-mandibular plane (coefficients of determination (R2): 0.424, 0.597, and 0.604, respectively). The horizontal anteroposterior length of the ramus and the distance from the anterior ramus point to the MnF were significant by regression analysis. The relative position of the MnF was significantly related to the vertical heights of the sigmoid notch, coronoid process, and condyle as well as to the horizontal anteroposterior length of the ascending ramus. These findings should be clinically useful for patients with skeletal class III mandibular prognathism.

  8. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Hougardy, BMT; Maduro, JH; van der Zee, AGJ; de Groot, DJA; van den Heuvel, FAJ; de Vries, EGE; de Jong, S

    2006-01-01

    In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize

  9. Reflexive Positioning in a Politically Sensitive Situation: Dealing with the Threats of Researching the West Bank Settler Experience

    Science.gov (United States)

    Possick, Chaya

    2009-01-01

    For the past 7 years, the author has conducted qualitative research projects revolving around the experiences of West Bank settlers. The political situation in Israel in general, and the West Bank in particular, has undergone rapid and dramatic political, military, and social changes during this period. In highly politically sensitive situations…

  10. Quasi Two-Dimensional Dye-Sensitized In 2 O 3 Phototransistors for Ultrahigh Responsivity and Photosensitivity Photodetector Applications

    KAUST Repository

    Mottram, Alexander D.

    2016-02-10

    © 2016 American Chemical Society. We report the development of dye-sensitized thin-film phototransistors consisting of an ultrathin layer (<10 nm) of indium oxide (In2O3) the surface of which is functionalized with a self-assembled monolayer of the light absorbing organic dye D102. The resulting transistors exhibit a preferential color photoresponse centered in the wavelength region of ∼500 nm with a maximum photosensitivity of ∼106 and a responsivity value of up to 2 × 103 A/W. The high photoresponse is attributed to internal signal gain and more precisely to charge carriers generated upon photoexcitation of the D102 dye which lead to the generation of free electrons in the semiconducting layer and to the high photoresponse measured. Due to the small amount of absorption of visible photons, the hybrid In2O3/D102 bilayer channel appears transparent with an average optical transmission of >92% in the wavelength range 400-700 nm. Importantly, the phototransistors are processed from solution-phase at temperatures below 200 °C hence making the technology compatible with inexpensive and temperature sensitive flexible substrate materials such as plastic.

  11. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the chinese raccoon dog.

    Science.gov (United States)

    Kociucka, B; Sosnowski, J; Kubiak, A; Nowak, A; Pawlak, P; Szczerbal, I

    2013-01-01

    Great progress has been achieved over the last years in studies on chromosome arrangement in mammalian cell nuclei. Growing evidence indicates that the genome's spatial organization is of functional relevance. So far, no attention has been paid to the nuclear organization of B chromosomes (Bs). In this study we have examined nuclear positioning of Bs in 2 species from the Canidae family--the red fox and the Chinese raccoon dog. Using 2D and 3D fluorescence in situ hybridization and 2 gene-specific probes (C-KIT and PDGFRA), we analyzed the location of Bs in fibroblast nuclei. We found that small Bs of the red fox occupied mostly the interior of the nucleus, while medium-sized Bs of the Chinese raccoon dog were observed in the peripheral area of the nucleus as well as in intermediate and interior locations. The more uniform distribution of B chromosomes in the Chinese raccoon dog may be the result of differences in their size, since 3 morphological types of Bs are distinguished in this species. Our results indicate that 3D positioning of B chromosomes in fibroblast nuclei of the 2 canid species is in agreement with the chromosome size-dependent theory. Copyright © 2013 S. Karger AG, Basel.

  12. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-04-30

    An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.

  13. Three-dimensional noble-metal nanostructure: A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Tian Cui-Feng; You Hong-Jun; Fang Ji-Xiang

    2014-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate. In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional (3D) noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of 3D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed. (invited review — international conference on nanoscience and technology, china 2013)

  14. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  15. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    Science.gov (United States)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  16. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    International Nuclear Information System (INIS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-01-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  17. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    Energy Technology Data Exchange (ETDEWEB)

    Jiguet Jiglaire, Carine, E-mail: carine.jiguet-jiglaire@univ-amu.fr [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); Metellus, Philippe [Aix Marseille Université, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille (France); CRO2, UMR 911, Faculté de Médecine de la Timone, 27 boulevard Jean Moulin, 13284 Marseille Cedex (France); INSERM, U911, 13005 Marseille (France); APHM, Timone Hospital, Department of Neurosurgery, 13005 Marseille (France); Timone Hospital, 264 Rue Saint Pierre, 13385 Marseille Cedex 5 (France); and others

    2014-02-15

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening.

  18. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    International Nuclear Information System (INIS)

    Jiguet Jiglaire, Carine; Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane; Metellus, Philippe

    2014-01-01

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening

  19. A two-dimensional analysis of the sensitivity of a pulse first break to wave speed contrast on a scale below the resolution length of ray tomography.

    Science.gov (United States)

    Willey, Carson L; Simonetti, Francesco

    2016-06-01

    Mapping the speed of mechanical waves traveling inside a medium is a topic of great interest across many fields from geoscience to medical diagnostics. Much work has been done to characterize the fidelity with which the geometrical features of the medium can be reconstructed and multiple resolution criteria have been proposed depending on the wave-matter interaction model used to decode the wave speed map from scattering measurements. However, these criteria do not define the accuracy with which the wave speed values can be reconstructed. Using two-dimensional simulations, it is shown that the first-arrival traveltime predicted by ray theory can be an accurate representation of the arrival of a pulse first break even in the presence of diffraction and other phenomena that are not accounted for by ray theory. As a result, ray-based tomographic inversions can yield accurate wave speed estimations also when the size of a sound speed anomaly is smaller than the resolution length of the inversion method provided that traveltimes are estimated from the signal first break. This increased sensitivity however renders the inversion more susceptible to noise since the amplitude of the signal around the first break is typically low especially when three-dimensional anomalies are considered.

  20. Three-dimensional activated graphene network-sulfonate-terminated polymer nanocomposite as a new electrode material for the sensitive determination of dopamine and heavy metal ions.

    Science.gov (United States)

    Yuan, Xiaoyan; Zhang, Yijia; Yang, Lu; Deng, Wenfang; Tan, Yueming; Ma, Ming; Xie, Qingji

    2015-03-07

    We report here that three-dimensional activated graphene networks (3DAGNs) are a better matrix to prepare graphene-polymer nanocomposites for sensitive electroanalysis than two-dimensional graphene nanosheets (2DGNs). 3DAGNs were synthesized in advance by the direct carbonization and simultaneous chemical activation of a cobalt ion-impregnated D113-type ion exchange resin, which showed an interconnected network structure and a large specific surface area. Then, the 3DAGN-sulfonate-terminated polymer (STP) nanocomposite was prepared via the in situ chemical co-polymerization of m-aminobenzene sulfonic acid and aniline in the presence of 3DAGNs. The 3DAGN-STP nanocomposite can adsorb dopamine (DA) and heavy metal ions, which was confirmed by quartz crystal microbalance studies. The 3DAGN-STP modified glassy carbon electrode (GCE) was used for the electrochemical detection of DA in the presence of ascorbic acid and uric acid, with a linear response range of 0.1-32 μM and a limit of detection of 10 nM. In addition, differential pulse voltammetry was used for the simultaneous determination of Cd(2+) and Pb(2+) at the 3DAGN-STP/GCE further modified with a bismuth film, exhibiting linear response ranges of 1-70 μg L(-1) for Cd(2+) and 1-80 μg L(-1) for Pb(2+) with limits of detection of 0.1 μg L(-1) for Cd(2+) and 0.2 μg L(-1) for Pb(2+). Because the 3DAGN-STP can integrate the advantages of 3DAGNs with STPs, the 3DAGN-STP/GCE was more sensitive than the bare GCE, 3DAGN/GCE, and 2DGN-STP/GCE for the determination of DA and heavy metal ions.

  1. Low-dimensional chaotic attractors in drift wave turbulence

    International Nuclear Information System (INIS)

    Persson, M.; Nordman, H.

    1991-01-01

    Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)

  2. Neutral vs positive oral contrast in diagnosing acute appendicitis with contrast-enhanced CT: sensitivity, specificity, reader confidence and interpretation time

    Science.gov (United States)

    Naeger, D M; Chang, S D; Kolli, P; Shah, V; Huang, W; Thoeni, R F

    2011-01-01

    Objective The study compared the sensitivity, specificity, confidence and interpretation time of readers of differing experience in diagnosing acute appendicitis with contrast-enhanced CT using neutral vs positive oral contrast agents. Methods Contrast-enhanced CT for right lower quadrant or right flank pain was performed in 200 patients with neutral and 200 with positive oral contrast including 199 with proven acute appendicitis and 201 with other diagnoses. Test set disease prevalence was 50%. Two experienced gastrointestinal radiologists, one fellow and two first-year residents blindly assessed all studies for appendicitis (2000 readings) and assigned confidence scores (1=poor to 4=excellent). Receiver operating characteristic (ROC) curves were generated. Total interpretation time was recorded. Each reader's interpretation with the two agents was compared using standard statistical methods. Results Average reader sensitivity was found to be 96% (range 91–99%) with positive and 95% (89–98%) with neutral oral contrast; specificity was 96% (92–98%) and 94% (90–97%). For each reader, no statistically significant difference was found between the two agents (sensitivities p-values >0.6; specificities p-values>0.08), in the area under the ROC curve (range 0.95–0.99) or in average interpretation times. In cases without appendicitis, positive oral contrast demonstrated improved appendix identification (average 90% vs 78%) and higher confidence scores for three readers. Average interpretation times showed no statistically significant differences between the agents. Conclusion Neutral vs positive oral contrast does not affect the accuracy of contrast-enhanced CT for diagnosing acute appendicitis. Although positive oral contrast might help to identify normal appendices, we continue to use neutral oral contrast given its other potential benefits. PMID:20959365

  3. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cheng-Kuan, E-mail: chengkuan@ntou.edu.tw [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC (China); Hsieh, Meng-Hsuan [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China); Sun, Yuh-Chang, E-mail: ycsun@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China)

    2016-03-31

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag{sup +}) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag{sup +} ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag{sup +} ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L{sup −1} when determining Ag{sup +} ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L{sup −1} when determining Ag{sup +} ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag{sup +}/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag{sup +} ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag{sup +} ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is

  4. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    International Nuclear Information System (INIS)

    Su, Cheng-Kuan; Hsieh, Meng-Hsuan; Sun, Yuh-Chang

    2016-01-01

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag + ) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag + ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag + ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L −1 when determining Ag + ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L −1 when determining Ag + ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag + /AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag + ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag + ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is available for retaining Ag + ion species. • The

  5. Sensitivity of a two-dimensional chemistry-transport model to changes in parameterizations of radiative processes

    International Nuclear Information System (INIS)

    Grant, K.E.; Ellingson, R.G.; Wuebbles, D.J.

    1988-08-01

    Radiative processes strongly effect equilibrium trace gas concentrations both directly, through photolysis reactions, and indirectly through temperature and transport processes. As part of our continuing radiative submodel development and validation, we have used the LLNL 2-D chemical-radiative-transport (CRT) model to investigate the net sensitivity of equilibrium ozone concentrations to several changes in radiative forcing. Doubling CO 2 from 300 ppmv to 600 ppmv resulted in a temperature decrease of 5 K to 8 K in the middle stratosphere along with an 8% to 16% increase in ozone in the same region. Replacing our usual shortwave scattering algorithms with a simplified Rayleigh algorithm led to a 1% to 2% increase in ozone in the lower stratosphere. Finally, modifying our normal CO 2 cooling rates by corrections derived from line-by-line calculations resulted in several regions of heating and cooling. We observed temperature changes on the order of 1 K to 1.5 K with corresponding changes of 0.5% to 1.5% in O 3 . Our results for doubled CO 2 compare favorably with those by other authors. Results for our two perturbation scenarios stress the need for accurately modeling radiative processes while confirming the general validity of current 2-D CRT models. 15 refs., 5 figs

  6. Two-Dimensional Modeling of Heat and Moisture Dynamics in Swedish Roads: Model Set up and Parameter Sensitivity

    Science.gov (United States)

    Rasul, H.; Wu, M.; Olofsson, B.

    2017-12-01

    Modelling moisture and heat changes in road layers is very important to understand road hydrology and for better construction and maintenance of roads in a sustainable manner. In cold regions due to the freezing/thawing process in the partially saturated material of roads, the modeling task will become more complicated than simple model of flow through porous media without freezing/thawing pores considerations. This study is presenting a 2-D model simulation for a section of highway with considering freezing/thawing and vapor changes. Partial deferential equations (PDEs) are used in formulation of the model. Parameters are optimized from modelling results based on the measured data from test station on E18 highway near Stockholm. Impacts of phase change considerations in the modelling are assessed by comparing the modeled soil moisture with TDR-measured data. The results show that the model can be used for prediction of water and ice content in different layers of the road and at different seasons. Parameter sensitivities are analyzed by implementing a calibration strategy. In addition, the phase change consideration is evaluated in the modeling process, by comparing the PDE model with another model without considerations of freezing/thawing in roads. The PDE model shows high potential in understanding the moisture dynamics in the road system.

  7. Sensitivity of the corneal-plane refractive compensation to change in power and axial position of an intraocular lens

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available If an intraocular lens is displaced or if its power is changed what are the consequences for the refractive compensation of the eye?  Gaussian optics is used to obtain explicit formulae for the sensitivityof the corneal-plane refractive compensation (also called the refraction, refractive state, etc to change in power and axial displacement of a thin intraocular lens implanted in a simple eye.  In particular, for a pseudophakic Gullstrand simplified eye with intraocular lens placed 5 mm behind the cornea the sensitivity to errors in the power of the intraocular lens is about  71 . 0 − 71 for an intraocular lens of power   for an intraocular lens of power 20 D, that is, the refractive compensation decreases by about 0.71 dioptres per dioptre increase in the power of the intraocular lens.  More generally the sensitivity is approximately  ( m   0037 . 0 63 . 0 F − − 0.63 ( 003 . 0 63 . 0 − − (0.0037mF where FI is the power of the intraocular lens.  Also for Gullstrand’s simplified eye the sensitivity of refractive compensation to axial displacement of the intraocular lens is approximately linear in FI about  (64D FI, in fact.  That is, for each dioptre of the power of the intraocular lens the refractive compensation increases by about 0.064 dioptres per millimetre of axial displacement towards the retina. 

  8. Semiautomatic imputation of activity travel diaries : use of global positioning system traces, prompted recall, and context-sensitive learning algorithms

    NARCIS (Netherlands)

    Moiseeva, A.; Jessurun, J.; Timmermans, H.J.P.

    2010-01-01

    The new generation of dynamic activity-based models requires multiday or multiweek activity-travel data. Global Positioning System (GPS) tracers may be a powerful technology to collect such data, but previous applications of this technology to collect data of full activity travel patterns (not just

  9. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results

    DEFF Research Database (Denmark)

    Pastorello, Elide A; Vieths, Stefan; Pravettoni, Valerio

    2002-01-01

    The hazelnut major allergens identified to date are an 18-kd protein homologous to Bet v 1 and a 14-kd allergen homologous to Bet v 2. No studies have reported hazelnut allergens recognized in patients with positive double-blind, placebo-controlled food challenge (DBPCFC) results or in patients...

  10. Design and construction techniques for one-meter position sensitive proportional counters of the helical delay line type

    International Nuclear Information System (INIS)

    Orbesen, S.D.; Sherman, J.D.; Flynn, E.R.

    1976-03-01

    A description is given of the techniques involved in the construction of a one-meter long helical proportional counter which produces excellent position accuracy of 1 mm while yielding particle identification through a measurement of energy loss and total energy

  11. A position sensitive gamma-ray detector which employs photodiode and CsI (T1) crystals

    International Nuclear Information System (INIS)

    Dean, A.J.; Graham, G.; Hopkins, C.J.; Ramsden, D.; Lei, M.

    1987-01-01

    A compact CsI(Tl)/photodiode gamma-ray detector is described which is capable of locating the point of interaction of incident gamma-ray photons in the spectral region around 1 MeV. Laboratory tests are used to quantify both the spectral and positional resolutions of the detectors. Their likely application in space gamma-ray astronomy is also discussed

  12. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States)

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion due to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.

  13. Assessment of skin sensitization under REACH: A case report on vehicle choice in the LLNA and its crucial role preventing false positive results.

    Science.gov (United States)

    Watzek, Nico; Berger, Franz; Kolle, Susanne Noreen; Kaufmann, Tanja; Becker, Matthias; van Ravenzwaay, Bennard

    2017-04-01

    In the EU, chemicals with a production or import volume in quantities of one metric ton per year or more have to be tested for skin sensitizing properties under the REACH regulation. The murine Local Lymph Node Assay (LLNA) and its modifications are widely used to fulfil the data requirement, as it is currently considered the first-choice method for in vivo testing to cover this endpoint. This manuscript describes a case study highlighting the importance of understanding the chemistry of the test material during testing for 'skin sensitization' of MCDA (mixture of 2,4- and 2,6-diamino-methylcyclohexane) with particular focus on the vehicle used. While the BrdU-ELISA modification of the LLNA using acetone/olive oil (AOO) as vehicle revealed expectable positive results. However, the concentration control analysis unexpectedly revealed an instability of MCDA in the vehicle AOO. Further studies on the reactivity showed MCDA to rapidly react with AOO under formation of various imine structures, which might have caused the positive LLNA result. The repetition of the LLNA using propylene glycol (PG) as vehicle did not confirm the positive results of the LLNA using AOO. Finally, a classification of MCDA as skin sensitizer according to the Globally Harmonized System (GHS) was not justified. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Highly Sensitive and Selective Hydrogen Peroxide Biosensor Based on Gold Nanoparticles and Three-Dimensional Porous Carbonized Chicken Eggshell Membrane.

    Directory of Open Access Journals (Sweden)

    Di Zhang

    Full Text Available A sensitive and noble amperometric horseradish peroxidase (HRP biosensor is fabricated via the deposition of gold nanoparticles (AuNPs onto a three-dimensional (3D porous carbonized chicken eggshell membrane (CESM. Due to the synergistic effects of the unique porous carbon architecture and well-distributed AuNPs, the enzyme-modified electrode shows an excellent electrochemical redox behavior. Compared with bare glass carbon electrode (GCE, the cathodic peak current of the enzymatic electrode increases 12.6 times at a formal potential of -100 mV (vs. SCE and charge-transfer resistance decreases 62.8%. Additionally, the AuNPs-CESM electrode exhibits a good biocompatibility, which effectively retains its bioactivity with a surface coverage of HRP 6.39×10(-9 mol cm(-2 (752 times higher than the theoretical monolayer coverage of HRP. Furthermore, the HRP-AuNPs-CESM-GCE electrode, as a biosensor for H2O2 detection, has a good accuracy and high sensitivity with the linear range of 0.01-2.7 mM H2O2 and the detection limit of 3 μM H2O2 (S/N = 3.

  15. Simulation of Transient Response of Ir-TES for Position-Sensitive TES with Waveform Domain Multiplexing

    Science.gov (United States)

    Minamikawa, Y.; Sato, H.; Mori, F.; Damayanthi, R. M. T.; Takahashi, H.; Ohno, M.

    2008-04-01

    We are developing a new x-ray microcalorimeter based on a superconducting transition edge sensor (TES) as an imaging sensor. Our measurement shows unique waveforms which we consider as an expression of thermal nonuniformity of TES films. This arises from the different thermal responses, so that response signal shapes would vary according to the position of the incident x-ray. This position dependency deteriorate the measured energy resolution, but with appropriate waveform analysis, this would be useful for imaging device. For more inspection, we have developed a simulation code which enables a dynamic simulation to obtain a transient response of the TES by finite differential method. Temperature and electric current distributions are calculated. As a result, we successfully obtained waveform signals. The calculated signal waveforms have similar characteristics to the measured signals. This simulation visualized the transition state of the device and will help to design better detector.

  16. Positional enrichment by proton analysis (PEPA). A one-dimensional "1H-NMR approach for "1"3C stable isotope tracer studies in metabolomics

    International Nuclear Information System (INIS)

    Vinaixa, Maria; Yanes, Oscar; Rodriguez, Miguel A.; Capellades, Jordi; Aivio, Suvi; Stracker, Travis H.; Gomez, Josep; Canyellas, Nicolau

    2017-01-01

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of "1"3C-satellite peaks using 1D-"1H-NMR spectra. In comparison with "1"3C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of "1"3C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of "1H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  17. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  18. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  19. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  20. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna [Univ. of South Carolina, Columbia, SC (United States)

    2017-09-29

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron (10B) and enriched lithium (6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (tg ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  1. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    International Nuclear Information System (INIS)

    Mandal, Krishna

    2017-01-01

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3 He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3 He will be very desirable. To address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10 B) and enriched lithium ( 6 Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2 ), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.

  2. Low Temperature-Induced 30 (LTI30 positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    Directory of Open Access Journals (Sweden)

    Haitao eShi

    2015-10-01

    Full Text Available As a dehydrin belonging to group II late embryogenesis abundant protein (LEA family, Arabidopsis Low Temperature-Induced 30 (LTI30/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT. Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2 accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  3. Validation of lower limb segmental volumetry with hand-held, self-positioning three-dimensional laser scanner against water displacement.

    Science.gov (United States)

    Mestre, Sandrine; Veye, Florent; Perez-Martin, Antonia; Behar, Thomas; Triboulet, Jean; Berron, Nicolas; Demattei, Christophe; Quéré, Isabelle

    2014-01-01

    Measurement of limb volume is helpful for the evaluation and follow-up of edema, especially in patients with chronic venous insufficiency (CVI) or lymphedema. Water displacement (WD) is the reference method for limb volumetry but is not really suitable for clinical routine. Indirect volumetry based on circumference measurements as well as the more expansive but automatic optoelectronic techniques do not allow detailed measurement at the extremity of the limb. We used a self-positioning laser scanner with dynamic referencing for acquisition and real-time three-dimensional (3D) reconstruction of the lower limb volume in 30 patients with CVI, 30 patients with lymphedema, and 30 healthy controls. Two independent observers performed either one or two laser scans, whose results were tested for intra- and interobserver reproducibility and compared with WD volumetry by Lin's concordance correlation coefficient and Bland and Altman graphic analysis. Automatic volume calculation from 3D laser scanning data failed in one patient with major lymphedema. Lin's concordance correlation coefficient was 0.99 and 0.98, respectively, for intraobserver no. 1 and no. 2, 0.98 for interobserver reproducibility, and 0.98 and 0.96, respectively, for observer no. 1 and observer no. 2 vs WD comparison. The 3D laser scanning yielded 1.99% precision. Accuracy was 3.12% for observer no. 1 and 2.71% for observer no. 2, laser scanning values being 90 mL higher than WD, which could be attributed to the different posture during measurement. Three-dimensional laser scanning is accurate and reproducible, and appears suitable for the evaluation of limb volume in patients with CVI or lymphedema. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. Positive association between high-sensitivity C-reactive protein level and diabetes mellitus among US non-Hispanic black adults.

    Science.gov (United States)

    Shankar, A; Li, J

    2008-08-01

    Previous epidemiologic studies have demonstrated a positive association between serum C-reactive protein (CRP) level and diabetes mellitus. However among US race-ethnicities, the putative association between CRP and diabetes mellitus in non-Hispanic Blacks is not clear. We specifically examined the association between high-sensitivity CRP level and diabetes mellitus in a representative sample of US non-Hispanic blacks. Cross-sectional study among 1,479 National Health and Nutrition Examination Survey 1999-2002 non-Hispanic black participants aged > or = 20 years. Main outcome-of-interest was the presence of diabetes mellitus (fasting plasma glucose > or = 126 mg/dL, non-fasting plasma glucose > or = 200 mg/dL, or self-reported current use of oral hypoglycemic medication or insulin) (n=204). Higher CRP levels were positively associated with diabetes mellitus, independent of smoking, waist circumference, hypertension, and other confounders. Multivariable odds ratio (OR) [95% confidence intervals (CI)] comparing elevated CRP level (>3 mg/L) to low CRP level (diabetes mellitus appeared to be present across the full range of CRP, without any threshold effect. Higher serum high-sensitivity CRP levels are positively associated with diabetes mellitus in a sample of US non-Hispanic blacks. Inflammatory processes previously shown to be related to diabetes mellitus in other race-ethnicities may be involved in non-Hispanic blacks also.

  5. School, Supervision and Adolescent-Sensitive Clinic Care: Combination Social Protection and Reduced Unprotected Sex Among HIV-Positive Adolescents in South Africa.

    Science.gov (United States)

    Toska, Elona; Cluver, Lucie D; Boyes, Mark E; Isaacsohn, Maya; Hodes, Rebecca; Sherr, Lorraine

    2017-09-01

    Social protection can reduce HIV-risk behavior in general adolescent populations, but evidence among HIV-positive adolescents is limited. This study quantitatively tests whether social protection is associated with reduced unprotected sex among 1060 ART-eligible adolescents from 53 government facilities in South Africa. Potential social protection included nine 'cash/cash-in-kind' and 'care' provisions. Analyses tested interactive/additive effects using logistic regressions and marginal effects models, controlling for covariates. 18 % of all HIV-positive adolescents and 28 % of girls reported unprotected sex. Lower rates of unprotected sex were associated with access to school (OR 0.52 95 % CI 0.33-0.82 p = 0.005), parental supervision (OR 0.54 95 % CI 0.33-0.90 p = 0.019), and adolescent-sensitive clinic care (OR 0.43 95 % CI 0.25-0.73 p = 0.002). Gender moderated the effect of adolescent-sensitive clinic care. Combination social protection had additive effects amongst girls: without any provisions 49 % reported unprotected sex; with 1-2 provisions 13-38 %; and with all provisions 9 %. Combination social protection has the potential to promote safer sex among HIV-positive adolescents, particularly girls.

  6. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu, E-mail: 48151660@qq.com

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  7. Phase correction for three-dimensional (3D) diffusion-weighted interleaved EPI using 3D multiplexed sensitivity encoding and reconstruction (3D-MUSER).

    Science.gov (United States)

    Chang, Hing-Chiu; Hui, Edward S; Chiu, Pui-Wai; Liu, Xiaoxi; Chen, Nan-Kuei

    2018-05-01

    Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Hybrid integrated sensor for position measurement

    International Nuclear Information System (INIS)

    Schmidt, B.; Schott, H.; Just, H.-J.

    1986-01-01

    The design, fabrication and performance of an integrated two-dimensional position sensitive photodetector are presented. The optoelectronic device used as sensitive element in the circuit is a full area position sensitive photodiode (PPD) with high linearity over the full sensitive area. The PPD is integrated with the analog electronics in a hybrid circuit using thick film technology. The analog electronics includes the signal amplification and the signal conditioning to form the output signals proportional to the light beam center position at the sensor surface and an output signal proportional to the light beam intensity. Using hybrid integration a new position sensitive transducer is developed giving output signals, transmiting in large distances without problems and driving directly actuators in any control system

  9. Computed tomography with thermal neutrons and gaseous position sensitive detector; Tomografia computadorizada com neutrons termicos e detetor a gas sensivel a posicao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Maria Ines Silvani

    2001-12-01

    A third generation tomographic system using a parallel thermal neutron beam and gaseous position sensitive detector has been developed along three discrete phases. At the first one, X-ray tomographic images of several objects, using a position sensitive detector designed and constructed for this purpose have been obtained. The second phase involved the conversion of that detector for thermal neutron detection, by using materials capable to convert neutrons into detectable charged particles, testing afterwards its performance in a tomographic system by evaluation the quality of the image arising from several test-objects containing materials applicable in the engineering field. High enriched {sup 3} He, replacing the argon-methane otherwise used as filling gas for the X-ray detection, as well as, a gadolinium foil, have been utilized as converters. Besides the pure enriched {sup 3} He, its mixture with argon-methane and later on with propane, have been also tested, in order to evaluate the detector efficiency and resolution. After each gas change, the overall performance of the tomographic system using the modified detector, has been analyzed through measurements of the related parameters. This was done by analyzing the images produced by test-objects containing several materials having well known attenuation coefficients for both thermal neutrons and X-rays. In order to compare the performance of the position sensitive detector as modified to detect thermal neutrons, with that of a conventional BF{sub 3} detector, additional tomographs have been conducted using the last one. The results have been compared in terms of advantages, handicaps and complementary aspects for different kinds of radiation and materials. (author)

  10. The use of a position sensitive detector or of a multidetector for the measurement of pole figures by neutron time-of-flight technique

    International Nuclear Information System (INIS)

    Walther, K.

    1990-01-01

    The neutron flux of even high flux reactors is weak in comparison with the quantum flux of X-ray tubes and therefore in order to decrease the expense on measuring time more and more neutron diffractometers are equipped with position sensitive detectors or multidetectors. In this paper the peculiarities of the use of such detecting devices are discussed for the measurement of pole figures. A special arrangement of a multidetector is proposed which will allow one to scan the whole pole figure by rotating the sample about only one axis and considerably will save measuring time. 4 refs.; 5 figs

  11. Three-Dimensional Porous Nickel Frameworks Anchored with Cross-Linked Ni(OH)2 Nanosheets as a Highly Sensitive Nonenzymatic Glucose Sensor.

    Science.gov (United States)

    Mao, Weiwei; He, Haiping; Sun, Pengcheng; Ye, Zhizhen; Huang, Jingyun

    2018-05-02

    A facile and scalable in situ microelectrolysis nanofabrication technique is developed for preparing cross-linked Ni(OH) 2 nanosheets on a novel three-dimensional porous nickel template (Ni(OH) 2 @3DPN). For the constructed template, the porogen of NaCl particles not only induces a self-limiting surficial hot corrosion to claim the "start engine stop" mechanism but also serves as the primary battery electrolyte to greatly accelerate the growth of Ni(OH) 2 . As far as we know, the microelectrolysis nanofabrication is superior to the other reported Ni(OH) 2 synthesis methods due to the mild condition (60 °C, 6 h, NaCl solution, ambient environment) and without any post-treatment. The integrated Ni(OH) 2 @3DPN electrode with a highly suitable microstructure and a porous architecture implies a potential application in electrochemistry. As a proof-of-concept demonstration, the electrode was employed for nonenzymatic glucose sensing, which exhibits an outstanding sensitivity of 2761.6 μA mM -1 cm -2 ranging from 0.46 to 2100 μM, a fast response, and a low detection limit. The microelectrolysis nanofabrication is a one-step, binder-free, entirely green, and therefore it has a distinct advantage to improve clean production and reduce energy consumption.

  12. Sensitivity, specificity and predictive probability values of serum agglutination test titres for the diagnosis of Salmonella Dublin culture-positive bovine abortion and stillbirth.

    Science.gov (United States)

    Sánchez-Miguel, C; Crilly, J; Grant, J; Mee, J F

    2018-06-01

    The objective of this study was to determine the diagnostic value of maternal serology for the diagnosis of Salmonella Dublin bovine abortion and stillbirth. A retrospective, unmatched, case-control study was carried out using twenty year's data (1989-2009) from bovine foetal submissions to an Irish government veterinary laboratory. Cases (n = 214) were defined as submissions with a S. Dublin culture-positive foetus from a S. Dublin unvaccinated dam where results of maternal S. Dublin serology were available. Controls (n = 415) were defined as submissions where an alternative diagnosis other than S. Dublin was made in a foetus from an S. Dublin unvaccinated dam where the results of maternal S. Dublin serology were available. A logistic regression model was fitted to the data: the dichotomous dependent variable was the S. Dublin foetal culture result, and the independent variables were the maternal serum agglutination test (SAT) titre results. Salmonella serology correctly classified 87% of S. Dublin culture-positive foetuses at a predicted probability threshold of 0.44 (cut-off at which sensitivity and specificity are at a maximum, J = 0.67). The sensitivity of the SAT at the same threshold was 73.8% (95% CI: 67.4%-79.5%), and the specificity was 93.2% (95% CI: 90.3%-95.4%). The positive and negative predictive values were 84.9% (95% CI: 79.3%-88.6%) and 87.3% (95% CI: 83.5%-91.3%), respectively. This study illustrates that the use of predicted probability values, rather than the traditional arbitrary breakpoints of negative, inconclusive and positive, increases the diagnostic value of the maternal SAT. Veterinary laboratory diagnosticians and veterinary practitioners can recover from the test results, information previously categorized, particularly from those results declared to be inconclusive. © 2017 Blackwell Verlag GmbH.

  13. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant Gram-positive and Gram-negative bacterial species.

    Science.gov (United States)

    Farrell, David J; Robbins, Marion; Rhys-Williams, William; Love, William G

    2010-06-01

    The antibacterial activity of XF-73, a dicationic porphyrin drug, was investigated against a range of Gram-positive and Gram-negative bacteria with known antibiotic resistance profiles, including resistance to cell wall synthesis, protein synthesis, and DNA and RNA synthesis inhibitors as well as cell membrane-active antibiotics. Antibiotic-sensitive strains for each of the bacterial species tested were also included for comparison purposes. XF-73 was active [minimum inhibitory concentration (MIC) 0.25-4 mg/L] against all of the Gram-positive bacteria tested, irrespective of the antibiotic resistance profile of the isolates, suggesting that the mechanism of action of XF-73 is unique compared with the major antibiotic classes. Gram-negative activity was lower (MIC 1 mg/L to > 64 mg/L). Minimum bactericidal concentration data confirmed that the activity of XF-73 was bactericidal. Time-kill kinetics against healthcare-associated and community-associated meticillin-resistant Staphylococcus aureus isolates demonstrated that XF-73 was rapidly bactericidal, with > 5 log(10) kill obtained after 15 min at 2 x MIC, the earliest time point sampled. The post-antibiotic effect (PAE) for XF-73 under conditions where the PAE for vancomycin was 5.4 h. XF-73 represents a novel broad-spectrum Gram-positive antibacterial drug with potentially beneficial characteristics for the treatment and prevention of Gram-positive bacterial infections. 2010. Published by Elsevier B.V.

  14. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds

    International Nuclear Information System (INIS)

    Qi Jun; Chen Anmin; You Hongbo; Li Kunpeng; Zhang Di; Guo Fengjing

    2011-01-01

    Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105 + ) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-β 3 and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105 + enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.

  15. Comparison of multi-pole shaping and delay line clipping pre-amplifiers for position sensitive NaI(Tl) detectors

    International Nuclear Information System (INIS)

    Freifelder, R.; Karp, J.S.; Wear, J.A.; Lockyer, N.S.; Newcomer, F.M.; Surti, S.; Berg, R. van

    1998-01-01

    NaI(Tl) position sensitive detectors have been used in medical imaging for many years. For PET applications without collimators, the high counting rates place severe demands on such large area detectors. The NaI(Tl) detectors in the PENN-PET scanners are read-out via photomultiplier tubes and preamplifiers. Those preamplifiers use a delay-line clipping technique to shorten the characteristic 240 ns fall time of the NaI(Tl) signal. As an alternative, the authors have investigated a pole-zero network to shorten the signal followed by a multi-pole shaper to produce a symmetric signal suitable for high counting rates. This has been compared to the current design by measuring the energy and spatial resolution of a single detector as a function of different preamplifier designs. Data were taken over a range of ADC integration times and countrates. The new design shows improved energy resolution with short integration times. Effects on spatial resolution and deadtime are reported for large position sensitive detectors at different countrates

  16. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    Science.gov (United States)

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  17. Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chao-Kuang Cheng

    2017-10-01

    Full Text Available This paper reports architecturally designed nanocomposites synthesized by hybridizing the two-dimensional (2D nanostructure of molybdenum disulfide (MoS2 nanosheet (NS-supported Pt nanoparticles (PtNPs as counter electrodes (CEs for dye-sensitized solar cells (DSSCs. MoS2 NSs were prepared using the hydrothermal method; PtNPs were subsequently reduced on the MoS2 NSs via the water–ethylene method to form PtNPs/MoS2 NSs hybrids. The nanostructures and chemical states of the PtNPs/MoS2 NSs hybrids were characterized by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Detailed electrochemical characterizations by electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurement demonstrated that the PtNPs/MoS2 NSs exhibited excellent electrocatalytic activities, afforded a higher charge transfer rate, a decreased charge transfer resistance, and an improved exchange current density. The PtNPs/MoS2 NSs hybrids not only provided the exposed layers of 2D MoS2 NSs with a great deal of catalytically active sites, but also offered PtNPs anchored on the MoS2 NSs enhanced I3− reduction. Accordingly, the DSSCs that incorporated PtNPs/MoS2 NSs CE exhibited an outstanding photovoltaic conversion efficiency (PCE of 7.52%, which was 8.7% higher than that of a device with conventional thermally-deposited platinum CE (PCE = 6.92%.

  18. Three dimensional variability in patient positioning using bite block immobilization in 3D-conformal radiation treatment for ENT-tumors

    International Nuclear Information System (INIS)

    Willner, Jochen; Haedinger, Ulrich; Neumann, Michael; Schwab, Franz J.; Bratengeier, Klaus; Flentje, Michael

    1997-01-01

    Background and purpose: The aim of this prospective study was to analyze the three-dimensional (3D) reproducibility of the isocenter position and of patient positioning with the use of bite block immobilization by means of a simple verification procedure for a complex beam arrangement applied for ENT-tumors. Materials and methods: We analyzed the positioning data of 29 consecutive patients treated for ENT-tumors at the Department of Radiotherapy and Oncology of the University of Wuerzburg. A total of 136 treatment sessions were analyzed. Patients were positioned and immobilized using an individualized bite block system and a head and neck support. A complex beam arrangement was applied combining two offset rotational and two oblique wedge fields on a 5 MV linear accelerator. Orthogonal verification films were taken once weekly. Four to six film pairs per patient were obtained (during 4-6 weeks) with a mean number of 4.7 film pairs per patient. These were compared to the corresponding orthogonal simulator films taken during primary simulation. Deviations of the verified isocenter from isocenter on the simulator film were measured and analyzed in three dimensions in terms of overall, systematic and random categories. A 3D-deviation vector was calculated from these 3D data as well as a 2D-deviation vector (for comparison with literature data) from the lateral verification films. Results: The overall setup deviation showed standard deviations (SD) of 2.5, 2.7 and 3.1 mm along the cranio-caudal, anterior-posterior and medio-lateral axes, respectively. The random component ranged from SD 1.9 to 2.1 mm and the systematic component ranged from SD 1.8 to 2.2 mm. The mean length of the 3D-vector was 3.1 mm for the systematic as well as the random component. Ninety percent of 3D systematic and random deviations were less than 5 mm. The mean length of the 2D-vector was 2.4 mm for the random component and 2.2 mm for the systematic component. Ninety percent of 2D-random and

  19. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jun; Chen Anmin; You Hongbo; Li Kunpeng; Zhang Di; Guo Fengjing, E-mail: fjguo@tjh.tjmu.edu.cn [Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2011-02-15

    Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105{sup +}) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-{beta}{sub 3} and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105{sup +} enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.

  20. Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors

    International Nuclear Information System (INIS)

    Silva, E C C M; Vliet, K J van

    2006-01-01

    The atomic force microscope is used increasingly to investigate the mechanical properties of materials via sample displacement under an applied force. However, both the extent of forces attainable and the accuracy of those forces measurements are significantly limited by the optical lever configuration that is commonly used to infer nanoscale deflection of the cantilever. We present a robust and general approach to characterize and compensate for the nonlinearity of the position-sensitive optical device via data processing, requiring no modification of existing instrumentation. We demonstrate that application of this approach reduced the maximum systematic error on the gradient of a force-displacement response from 50% to 5%, and doubled the calibrated force application range. Finally, we outline an experimental protocol that optimizes the use of the quasi-linear range of the most commonly available optical feedback configurations and also accounts for the residual systematic error, allowing the user to benefit from the full detection range of these indirect force sensors

  1. Measurable position-sensitive wide-angle interference effects of single photons radiated by a nitrogen-vacancy center in diamond

    International Nuclear Information System (INIS)

    Sandor Varro

    2014-01-01

    Single-photon wide-angle interference phenomena have been studied theoretically for glass-diamond-oil (air) layered structures. As a single optical radiator, one NV-center has been assumed close to the upper surface of a diamond plate, and it was represented by a Hertzian dipole of arbitrary orientation. It has been shown that the far-field interference pattern (of 3/5 or 100% visibility) is sensitive to the vertical position of the NV-center, to that extent that ∼2 nm difference in distance from the upper surface of the diamond results in ∼0.01 degree shift of the pattern, which should be a measurable effect. (author)

  2. Source Apportionment of PM2.5 Mass and Optical Attenuation Over an Ecologically Sensitive Zone in Central India by Positive Matrix Factorization

    Science.gov (United States)

    Nirmalkar, J.; Raman, R. S.

    2016-12-01

    Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.

  3. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee; Costa, Pedro; Borgnat, Pierre

    2015-01-01

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ CEP varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  4. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee [Universite Claude Bernard de Lyon, Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Villeurbanne Cedex (France); Costa, Pedro [Universidade de Coimbra, Centro de Fisica Computacional, Departamento de Fisica, Coimbra (Portugal); Borgnat, Pierre [CNRS, l' Ecole normale superieure de Lyon, Laboratoire de Physique, Lyon Cedex 07 (France)

    2015-09-15

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ {sub CEP} varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  5. Hyperfunctioning parathyroid tumours in patients with thyroid nodules. Sensitivity and positive predictive value of high-resolution ultrasonography and 99mTc-sestamibi scintigraphy.

    Science.gov (United States)

    Lumachi, F; Marzola, M C; Zucchetta, P; Tregnaghi, A; Cecchin, D; Bui, F

    2003-09-01

    A series of 112 consecutive patients with primary hyperparathyroidism who underwent both high-resolution neck ultrasonography (US) and 99mTc-sestamibi/99mTc-pertechnetate subtraction scintigraphy (SS) prior to successful parathyroidectomy was reviewed. There were 29 (25.9%) men and 83 (74.1%) women, with a median age of 58 years (range 13-78 years). Patients were divided into two groups, according to the preoperative US findings: group A (87 patients, 77.7%) without thyroid diseases, and group B (25 patients, 22.3%) with either multinodular goitre or a solitary nontoxic thyroid nodule. In group B patients partial or total thyroidectomy was also performed, according to the intraoperative findings and frozen-section examination results. Final histopathology showed 99 (88.4%) solitary parathyroid (PT) adenomas and 3 (2.7%) PT carcinomas, while 10 (8.9%) patients had a multiglandular disease. The sensitivity and positive predictive value (PPV) were (group A vs group B) 79.8% vs 70.8% (P=0.25) and 95.7% vs 94.4% (P=0.58) for US, and 83.3% vs 87.0% (P=0.47) and 95.9% vs 90.9% (P=0.32) for SS respectively. Better but similar (P=not significant) results were obtained in patients with solitary PT tumours: 81.5% vs 77.8% (US) and 85.0 vs 94.1% (SS) sensitivity; 97.1% vs 93.3% (US) and 95.8% vs 88.9% (SS) PPV. Overall, the combination of US and SS was 92.9% sensitive (group A=93.1%, group B=92.0%; P=0.55), and the PPV reached 100% in each group. In conclusion, in patients with primary hyperparathyroidism the results of both US and SS are independent of coexistent thyroid disease, especially in patients with solitary PT tumours.

  6. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    Directory of Open Access Journals (Sweden)

    Barbara Gasse

    2017-06-01

    Full Text Available Amelogenesis imperfecta (AI designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20 produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues, pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  7. Development of 2-d position-sensitive neutron detector with individual readout. Operation test and establishment of detection system by means of neutron beam

    International Nuclear Information System (INIS)

    Tanaka, Hiroki; Yamagishi, Hideshi; Nakamura, Tatsuya; Soyama, Kazuhiko; Aizawa, Kazuya

    2005-04-01

    We have been developing the 2-d position-sensitive neutron detector with individual readout as next-generation-type detector system for neutron scattering experiments using intense pulsed neutron source. The detection system is designed to fulfill the specifications required for each neutron spectrometer, such as a count rate, efficiency, neutron/gamma-ray ratio, a spatial resolution and a size, by using suitable detector heads. The fundamental and imaging performances of the developed system assembled with a Multi-wire proportional counter head were evaluated using a collimated neutron beam. The system worked stably for long hours at the 4 He gas pressure of 5 atm with a mixture of 30% C 2 H 6 (0.26 atom 3 He) at gas gain of 450. The spatial resolutions were 1.4, 1.6 mm (FWHM) for a cathode- and a back strip- direction, respectively, considering a beam size. It was also confirmed that the spatial uniformity of the detection efficiency over the whole sensitive detection area was rather good, ±8% deviation from the average with the optimum discrimination level. (author)

  8. Therapy-refractory Panton Valentine Leukocidin-positive community-acquired methicillin-sensitive Staphylococcus aureus sepsis with progressive metastatic soft tissue infection: a case report

    Directory of Open Access Journals (Sweden)

    Schefold Joerg C

    2007-12-01

    Full Text Available Abstract We report a case of fulminant multiple organ failure including the Acute Respiratory Distress Syndrome (ARDS, haemodynamic, and renal failure due to community-acquired methicillin-sensitive Panton Valentine Leukocidin (PVL positive spa-type 284 (ST121 Staphylococcus aureus septic shock. The patient's first clinical symptom was necrotizing pneumonia. Despite organism-sensitive triple antibiotic therapy with linezolid, imipenem and clindamycin from the first day of treatment, progressive abscess formation in multiple skeletal muscles was observed. As a result, repeated surgical interventions became necessary. Due to progressive soft tissue infection, the anti-microbial therapy was changed to a combination of clindamycin and daptomycin. Continued surgical and antimicrobial therapy finally led to a stabilisation of the patients' condition. The clinical course of our patient underlines the existence of a "PVL-syndrome" which is independent of in vitro Staphylococcus aureus susceptibility. The PVL-syndrome should not only be considered in patients with soft tissue or bone infection, but also in patients with pneumonia. Such a condition, which may easily be mistaken for uncomplicated pneumonia, should be treated early, aggressively and over a long period of time in order to avoid relapsing infection.

  9. High Dynamics and Precision Optical Measurement Using a Position Sensitive Detector (PSD in Reflection-Mode: Application to 2D Object Tracking over a Smart Surface

    Directory of Open Access Journals (Sweden)

    Ioan Alexandru Ivan

    2012-12-01

    Full Text Available When related to a single and good contrast object or a laser spot, position sensing, or sensitive, detectors (PSDs have a series of advantages over the classical camera sensors, including a good positioning accuracy for a fast response time and very simple signal conditioning circuits. To test the performance of this kind of sensor for microrobotics, we have made a comparative analysis between a precise but slow video camera and a custom-made fast PSD system applied to the tracking of a diffuse-reflectivity object transported by a pneumatic microconveyor called Smart-Surface. Until now, the fast system dynamics prevented the full control of the smart surface by visual servoing, unless using a very expensive high frame rate camera. We have built and tested a custom and low cost PSD-based embedded circuit, optically connected with a camera to a single objective by means of a beam splitter. A stroboscopic light source enhanced the resolution. The obtained results showed a good linearity and a fast (over 500 frames per second response time which will enable future closed-loop control by using PSD.

  10. An apparatus for high speed measurements of small-angle x-ray scattering profiles with a linear position sensitive detector

    International Nuclear Information System (INIS)

    Hashimoto, Takeji; Suehiro, Shoji; Shibayama, Mitsuhiro; Saijo, Kenji; Kawai, Hiromichi

    1981-01-01

    An apparatus for high speed measurements of small-angle X-ray scattering (SAXS) is described. This apparatus utilizes a 12 kW rotating anode X-ray generator, a linear position sensitive proportional counter (multicathode delay line PSPC), and a two-parameter multichannel pulse height analyzer (MCA) with 12 kwords (16 bits/word) memory area available for SAXA intensity data as a function of position (scattering angles) and time slice. The two-parameter MCA is constructed within a microcomputer system, by utilizing its R/W memory for data storage, and the memory incrementing and real-time CRT display is implemented by using two direct memory access (DMA) controllers. The cycle time of the access is about 10 μs. The measuring time for SAXS profiles with this apparatus can be shortened approximately by three orders of magnitude in comparison with the measuring time with SAXS apparatuses utilizing a conventional step-scanning goniometer and a conventional X-ray tube, thus permitting time-resolved analyses of SAXS profiles. Some applications of the apparatus to dynamic SAXS measurements are presented for polymeric systems, the preliminary results of which seem to indicate the possibility of obtaining a new class of data on dynamics in structural transformation, deformation, formation and annihilation in the scale of a few tens to several hundred Angstroms. (author)

  11. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  12. Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry

    International Nuclear Information System (INIS)

    Schmidt, Lukas; Belov, Vladimir N.; Göen, Thomas

    2013-01-01

    Highlights: •Sensitive monitoring of 10 metabolites of (R)-limonene, α-pinene, and Δ 3 -carene in human urine samples. •Fast and simple sample preparation and derivatisation procedure using two-step silylation for unreactive tertiary hydroxyl groups. •Synthesis of reference substances and isotopically labelled internal standards of (R)-limonene, α-pinene, and Δ 3 -carene metabolites. •Study on (R)-limonene, α-pinene, and Δ 3 -carene metabolite background exposure of 36 occupationally unexposed volunteers. -- Abstract: A gas chromatographic–positive chemical ionisation-tandem mass spectrometric (GC–PCI-MS/MS) method for the simultaneous determination of 10 oxidative metabolites of the monoterpenoid hydrocarbons α-pinene, (R)-limonene, and Δ 3 -carene ((+)-3-carene) in human urine was developed and tested for the monoterpene biomonitoring of the general population (n = 36). The method involves enzymatic cleavage of the glucuronides followed by solid-supported liquid–liquid extraction and derivatisation using a two-step reaction with N,O-bis(trimethylsilyl)-trifluoroacetamide and N-(trimethylsilyl)imidazole. The method proved to be both sensitive and reliable with detection limits ranging from 0.1 to 0.3 μg L −1 . In contrast to the frequent and distinct quantities of (1S,2S,4R)-limonene-1,2-diol, the (1R,2R,4R)-stereoisomer could not be detected. The expected metabolite of (+)-3-carene, 3-caren-10-ol was not detected in any of the samples. All other metabolites were detected in almost all urine samples. The procedure enables for the first time the analysis of trace levels of a broad spectrum of mono- and bicyclic monoterpenoid metabolites (alcohols, diols, and carboxylic acids) in human urine. This analytical procedure is a powerful tool for population studies as well as for the discovery of human metabolism and toxicokinetics of monoterpenes

  13. Mechanistic study on lowering the sensitivity of positive atmospheric pressure photoionization mass spectrometric analyses: size-dependent reactivity of solvent clusters.

    Science.gov (United States)

    Ahmed, Arif; Choi, Cheol Ho; Kim, Sunghwan

    2015-11-15

    Understanding the mechanism of atmospheric pressure photoionization (APPI) is important for studies employing APPI liquid chromatography/mass spectrometry (LC/MS). In this study, the APPI mechanism for polyaromatic hydrocarbon (PAH) compounds dissolved in toluene and methanol or water mixture was investigated by use of MS analysis and quantum mechanical simulation. In particular, four different mechanisms that could contribute to the signal reduction were considered based on a combination of MS data and quantum mechanical calculations. The APPI mechanism is clarified by combining MS data and density functional theory (DFT) calculations. To obtain MS data, a positive-mode (+) APPI Q Exactive Orbitrap mass spectrometer was used to analyze each solution. DFT calculations were performed using the general atomic and molecular electronic structure system (GAMESS). The experimental results indicated that methanol significantly reduced the signal in (+) APPI, but no significative signal reduction was observed when water was used as a co-solvent with toluene. The signal reduction is more significant especially for molecular ions than for protonated ions. Therefore, important information about the mechanism of methanol-induced signal reduction in (+) APPI-MS can be gained due its negative impact on APPI efficiency. The size-dependent reactivity of methanol clusters ((CH3 OH)n , n = 1-8) is an important factor in determining the sensitivity of (+) APPI-MS analyses. Clusters can compete with toluene radical ions for electrons. The reactivity increases as the sizes of the methanol clusters increase and this effect can be caused by the size-dependent ionization energy of the solvent clusters. The resulting increase in cluster reactivity explains the flow rate and temperature-dependent signal reduction observed in the analytes. Based on the results presented here, minimizing the sizes of methanol clusters can improve the sensitivity of LC/(+)-APPI-MS. Copyright © 2015 John

  14. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    Science.gov (United States)

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  15. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Luchuan; Lv, Bin; Chen, Bo [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Guan, Ming [Department of General Surgery, Qihe People' s Hospital, Qihe, Shandong 251100 (China); Sun, Yongfeng [Department of General Surgery, Licheng District People' s Hospital, Jinan, Shandong 250115 (China); Li, Haipeng [Department of General Surgery, Caoxian People' s Hospital, Caoxian, Shandong 274400 (China); Zhang, Binbin; Ding, Changyuan; He, Shan [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Zeng, Qingdong, E-mail: qingdz0201@163.com [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China)

    2015-07-10

    Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, was picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.

  16. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    Science.gov (United States)

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-07

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.

  17. A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control

    Directory of Open Access Journals (Sweden)

    Delogu Mauro

    2006-05-01

    Full Text Available Abstract Background Avian influenza viruses (AIVs are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR with a Minor Groove Binder (MGB probe for the detection of different subtypes of AIVs. This technique also includes an IPC. Methods RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. Results The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 108 copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. Conclusion The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with

  18. Efficacy of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline in Twin Families (VIPP-Twins): Study protocol for a randomized controlled trial.

    Science.gov (United States)

    Euser, Saskia; Bakermans-Kranenburg, Marian J; van den Bulk, Bianca G; Linting, Mariëlle; Damsteegt, Rani C; Vrijhof, Claudia I; van Wijk, Ilse C; Crone, Eveline A; van IJzendoorn, Marinus H

    2016-06-06

    Intervention programs with the aim of enhancing parenting quality have been found to be differentially effective in decreasing negative child outcomes such as externalizing behavioral problems, resulting in modest overall effect sizes. Here we present the protocol for a randomized controlled trial to examine the efficacy of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline for Twin Families (VIPP-Twins) on parenting quality and children's behavioral control and social competence. In addition, we aim to test the differential susceptibility theory; we examine differential efficacy of the intervention based on genetic make-up or temperament for both parents and children. Lastly, we explore neurobiological mechanisms underlying intervention effects on children's developmental outcomes. The original VIPP-SD was adapted for use in families with twins. The VIPP-Twins consists of five biweekly sessions in which the families are visited at home, parent-child interactions are videotaped and parents receive positive feedback on selected video fragments. Families (N = 225) with a same sex twin (mean age = 3.6 years) were recruited to participate in the study. The study consists of four assessments. After two baseline assessments in year 1 and year 2, a random 40 % of the sample will receive the VIPP-Twins program. The first post-test assessment will be carried out one month after the intervention and there will be a long term follow-up assessment two years after the intervention. Measures include observational assessments of parenting and children's social competence and behavioral control, and neurobiological assessments (i.e., hormonal functioning and neural (re-)activity). Results of the study will provide insights in the efficacy of the VIPP-Twins and reveal moderators and mediators of program efficacy. Overall the randomized controlled trial is an experimental test of the differential susceptibility theory. Dutch Trial

  19. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  20. High-Energy 3D Calorimeter based on position-sensitive virtual Frisch-grid CdZnTe detectors for use in Gamma-ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, GianLuigi [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, Emerson [Brookhaven National Lab. (BNL), Upton, NY (United States); Hays, Elizabeth [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Thompson, David [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); James, Ralph [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Moiseev, Alexander [Center for Research and Exploration; Technology, NASA Goddard Space Flight Center (GSFC) and Univ. of Maryland, Greenbelt, MD (United States)

    2017-08-12

    We present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frischgrid CZT detectors. This calorimeter aims to measure photons with energies from ~100 keV to 10 (goal 50) MeV. The expected energy resolution at 662 keV is ~1% FWHM, and the photon interaction positionmeasurement accuracy is ~1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section of 6x6 mm2 and length of 2-4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., > 1 cm). Also, it allows us to relax the requirements on the quality of the crystals, maintaining good energy resolution and significantly reducing the instrument cost. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons. Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays. Another viable option is to use this calorimeter as a focal plane to conduct spectroscopic measurements of cosmic γ-ray events. In combination with a coded-aperture mask, it potentially could provide mapping of the 511-keV radiation from the Galactic Center region.