WorldWideScience

Sample records for dimensional particle-in-cell simulations

  1. Enhanced stopping of macro-particles in particle-in-cell simulations

    International Nuclear Information System (INIS)

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Ren, C.

    2014-01-01

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q 2 /m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles

  2. A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, E. S.; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Korea Advanced Institute of Science and Technology, Yuseong-gu, DaeJeon 305-701 (Korea, Republic of)

    2014-03-15

    An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

  3. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  4. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    International Nuclear Information System (INIS)

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-01-01

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta β e = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field B o , and ion heating is preferentially perpendicular to B o . The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating

  5. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  6. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com; Deng, Bo; Chen, Tao; Deng, Keli [Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2016-07-15

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  7. Post-arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model

    Science.gov (United States)

    Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun

    2017-10-01

    The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.

  8. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  9. Parallel treatment of simulation particles in particle-in-cell codes on SUPRENUM

    International Nuclear Information System (INIS)

    Seldner, D.

    1990-02-01

    This report contains the program documentation and description of the program package 2D-PLAS, which has been developed at the Nuclear Research Center Karlsruhe in the Institute for Data Processing in Technology (IDT) under the auspices of the BMFT. 2D-PLAS is a parallel program version of the treatment of the simulation particles of the two-dimensional stationary particle-in-cell code BFCPIC which has been developed at the Nuclear Research Center Karlsruhe. This parallel version has been designed for the parallel computer SUPRENUM. (orig.) [de

  10. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    International Nuclear Information System (INIS)

    Batygin, Y.

    2004-01-01

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented

  11. Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.

    2004-10-28

    A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.

  12. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    Energy Technology Data Exchange (ETDEWEB)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M [Centre for Plasma Physics, The Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Murphy, G C; Drury, L O C [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dieckmann, M E; Ynnerman, A [Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoping (Sweden); Bret, A, E-mail: gsarri01@qub.ac.uk [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2011-07-15

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  13. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    International Nuclear Information System (INIS)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M; Murphy, G C; Drury, L O C; Dieckmann, M E; Ynnerman, A; Bret, A

    2011-01-01

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  14. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    International Nuclear Information System (INIS)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-01-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.

  15. Three-Dimensional Simulation of Ultrasound-Induced Microalgal Cell Disruption.

    Science.gov (United States)

    Wang, M; Yuan, W; Hale, Andy

    2016-03-01

    The three-dimensional distribution (x, y, and z) of ultrasound-induced microalgal cell disruption in a sonochemical reactor was predicted by solving the Helmholtz equation using a three-dimensional acoustic module in the COMSOL Multiphysics software. The simulated local ultrasound pressure at any given location (x, y, and z) was found to correlate with cell disruption of a freshwater alga, Scenedesmus dimorphus, represented by the change of algal cell particle/debris concentration, chlorophyll-a fluorescence density (CAFD), and Nile red stained lipid fluorescence density (LFD), which was also validated by the model reaction of potassium iodide oxidation (the Weissler reaction). Furthermore, the effect of ultrasound power intensity and processing duration on algal cell disruption was examined to address the limitation of the model.

  16. Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials

    Science.gov (United States)

    Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.

    2018-03-01

    The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.

  17. Progress of laser-plasma interaction simulations with the particle-in-cell code

    International Nuclear Information System (INIS)

    Sakagami, Hitoshi; Kishimoto, Yasuaki; Sentoku, Yasuhiko; Taguchi, Toshihiro

    2005-01-01

    As the laser-plasma interaction is a non-equilibrium, non-linear and relativistic phenomenon, we must introduce a microscopic method, namely, the relativistic electromagnetic PIC (Particle-In-Cell) simulation code. The PIC code requires a huge number of particles to validate simulation results, and its task is very computation-intensive. Thus simulation researches by the PIC code have been progressing along with advances in computer technology. Recently, parallel computers with tremendous computational power have become available, and thus we can perform three-dimensional PIC simulations for the laser-plasma interaction to investigate laser fusion. Some simulation results are shown with figures. We discuss a recent trend of large-scale PIC simulations that enable direct comparison between experimental facts and computational results. We also discharge/lightning simulations by the extended PIC code, which include various atomic and relaxation processes. (author)

  18. Visualization of particle in cell simulation

    International Nuclear Information System (INIS)

    Chen Ming; Cheng Yinhui

    2003-01-01

    This paper is trying to provide a new technique of the visualization for the Particle In Cell simulation, which takes effect by using the MATLAB external interface, so the real-time obsevation of particles came easier and more efficient. With this method, state of the particles, considered as 'particle cloud' can be found in the image produced automatically and their movement can be predicted. (authors)

  19. Electrostatic and electromagnetic instabilities associated with electrostatic shocks: Two-dimensional particle-in-cell simulation

    International Nuclear Information System (INIS)

    Kato, Tsunehiko N.; Takabe, Hideaki

    2010-01-01

    A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.

  20. Particle-in-cell plasma simulations of the modified two-stream instability

    Directory of Open Access Journals (Sweden)

    K. Schlegel

    1994-08-01

    Full Text Available We model the modified two-stream plasma instability occurring in the ionospheric E-region using a 2.5-dimensional particle-in-cell code. Compared to previous similar work we concentrate on simulated quantities that can easily be measured in the real ionosphere by coherent radars or rockets, such as the Doppler velocity, the backscattered power, backscattered spectra, aspect angle behaviour and electron temperature enhancement. Despite using a relatively small simulation model, we obtain remarkably good agreement between actual observed and simulated plasma parameters. The advantage of such a small system is that we were able to perform (other than in previous related work many simulation runs with different sets of input parameters, thus studying the unstable plasma under various conditions.

  1. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  2. LPIC++. A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction

    International Nuclear Information System (INIS)

    Lichters, R.; Pfund, R.E.W.; Meyer-ter-Vehn, J.

    1997-08-01

    The code LPIC++ presented here, is based on a one-dimensional, electromagnetic, relativistic PIC code that has originally been developed by one of the authors during a PhD thesis at the Max-Planck-Institut fuer Quantenoptik for kinetic simulations of high harmonic generation from overdense plasma surfaces. The code uses essentially the algorithm of Birdsall and Langdon and Villasenor and Bunemann. It is written in C++ in order to be easily extendable and has been parallelized to be able to grow in power linearly with the size of accessable hardware, e.g. massively parallel machines like Cray T3E. The parallel LPIC++ version uses PVM for communication between processors. PVM is public domain software, can be downloaded from the world wide web. A particular strength of LPIC++ lies in its clear program and data structure, which uses chained lists for the organization of grid cells and enables dynamic adjustment of spatial domain sizes in a very convenient way, and therefore easy balancing of processor loads. Also particles belonging to one cell are linked in a chained list and are immediately accessable from this cell. In addition to this convenient type of data organization in a PIC code, the code shows excellent performance in both its single processor and parallel version. (orig.)

  3. Low-noise Collision Operators for Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2005-01-01

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers

  4. Discrete particle noise in particle-in-cell simulations of plasma microturbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Hammett, G.W.; Dimits, A.M.; Dorland, W.; Shumaker, D.E.

    2005-01-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with the global particle-in-cell (PIC) code GTC [Z. Lin et al., Proceedings of the 20th Fusion Energy Conference, Vilamoura, Portugal, 2004 (IAEA, Vienna, 2005)] yielded different results from earlier flux-tube continuum code simulations [F. Jenko and W. Dorland, Phys. Rev. Lett. 89, 225001 (2002)] despite similar plasma parameters. Differences between the simulation results were attributed to insufficient phase-space resolution and novel physics associated with global simulation models. The results of the global PIC code are reproduced here using the flux-tube PIC code PG3EQ [A. M. Dimits et al., Phys. Rev. Lett. 77, 71 (1996)], thereby eliminating global effects as the cause of the discrepancy. The late-time decay of the ETG turbulence and the steady-state heat transport observed in these PIC simulations are shown to result from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and, by inference, the GTC simulations that they reproduced have little to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work several diagnostics are developed to retrospectively test whether a particular PIC simulation is dominated by discrete particle noise

  5. Investigation of Rising-Sun Magnetrons Operated at Relativistic Voltages Using Three Dimensional Particle-in-Cell Simulation

    International Nuclear Information System (INIS)

    Lemke, R.W.; Genoni, T.C.; Spencer, T.A.

    1999-01-01

    This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V ∼ 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the π-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%

  6. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  7. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  8. Particle-in-cell simulations of anomalous transport in a Penning discharge

    Science.gov (United States)

    Carlsson, Johan; Kaganovich, Igor; Powis, Andrew; Raitses, Yevgeny; Romadanov, Ivan; Smolyakov, Andrei

    2018-06-01

    Electrostatic particle-in-cell simulations of a Penning discharge are performed in order to investigate azimuthally asymmetric, spoke-like structures previously observed in experiments. Two-dimensional simulations show that for Penning-discharge conditions, a persistent nonlinear spoke-like structure forms readily and rotates in the direction of E × B and electron diamagnetic drifts. The azimuthal velocity is within about a factor of 2 of the ion acoustic speed. The spoke frequency follows the experimentally observed scaling with ion mass, which indicates the importance of ion inertia in spoke formation. The spoke provides enhanced (anomalous) radial electron transport, and the effective cross-field conductivity is several times larger than the classical (collisional) value. The level of anomalous current obtained in the simulations is in good agreement with the experimental data. The rotating spoke channels most of the radial current, observable by an edge probe as short pulses.

  9. Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles

    Science.gov (United States)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.

    2015-01-01

    A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.

  10. A general concurrent algorithm for plasma particle-in-cell simulation codes

    International Nuclear Information System (INIS)

    Liewer, P.C.; Decyk, V.K.

    1989-01-01

    We have developed a new algorithm for implementing plasma particle-in-cell (PIC) simulation codes on concurrent processors with distributed memory. This algorithm, named the general concurrent PIC algorithm (GCPIC), has been used to implement an electrostatic PIC code on the 33-node JPL Mark III Hypercube parallel computer. To decompose at PIC code using the GCPIC algorithm, the physical domain of the particle simulation is divided into sub-domains, equal in number to the number of processors, such that all sub-domains have roughly equal numbers of particles. For problems with non-uniform particle densities, these sub-domains will be of unequal physical size. Each processor is assigned a sub-domain and is responsible for updating the particles in its sub-domain. This algorithm has led to a a very efficient parallel implementation of a well-benchmarked 1-dimensional PIC code. The dominant portion of the code, updating the particle positions and velocities, is nearly 100% efficient when the number of particles is increased linearly with the number of hypercube processors used so that the number of particles per processor is constant. For example, the increase in time spent updating particles in going from a problem with 11,264 particles run on 1 processor to 360,448 particles on 32 processors was only 3% (parallel efficiency of 97%). Although implemented on a hypercube concurrent computer, this algorithm should also be efficient for PIC codes on other parallel architectures and for large PIC codes on sequential computers where part of the data must reside on external disks. copyright 1989 Academic Press, Inc

  11. ASPEN: A fully kinetic, reduced-description particle-in-cell model for simulating parametric instabilities

    International Nuclear Information System (INIS)

    Vu, H.X.; Bezzerides, B.; DuBois, D.F.

    1999-01-01

    A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal envelopes in order to model parametric instabilities with low-frequency and high-frequency daughter waves. Because temporal envelope approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. The RPIC model is fully three dimensional and has been implemented in two dimensions on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. The authors believe this code is the first particle-in-cell code capable of simulating the interaction between low-frequency and high-frequency parametric instabilities in multiple dimensions. Test simulations of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay instability are presented

  12. Particle-in-cell simulation of Trichel pulses in pure oxygen

    International Nuclear Information System (INIS)

    Soria-Hoyo, C; Pontiga, F; Castellanos, A

    2007-01-01

    The development and propagation of Trichel pulses in oxygen have been numerically simulated using an improved fluid particle-in-cell (PIC) method. The numerical method has been optimized to accurately reproduce sequences of about 100 Trichel pulses (∼1 ms). A classical one-dimensional model of negative corona in sphere-to-plane geometry has been used to formulate the continuity equations for electrons and ions. The effects of ionization, attachment and secondary-electron emission from the cathode have all been considered. The electric field has been obtained from the solution of Poisson's equation in two dimensions. Using this model, the temporal and electrical characteristics of Trichel pulses have been investigated, in particular, the relation between applied voltage, pulse frequency and time-averaged current intensity and charge

  13. Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators

    International Nuclear Information System (INIS)

    Qiang, J.; Ryne, R.D.; Habib, S.; Decky, V.

    1999-01-01

    In this paper, we present an object-oriented three-dimensional parallel particle-in-cell code for beam dynamics simulation in linear accelerators. A two-dimensional parallel domain decomposition approach is employed within a message passing programming paradigm along with a dynamic load balancing. Implementing object-oriented software design provides the code with better maintainability, reusability, and extensibility compared with conventional structure based code. This also helps to encapsulate the details of communications syntax. Performance tests on SGI/Cray T3E-900 and SGI Origin 2000 machines show good scalability of the object-oriented code. Some important features of this code also include employing symplectic integration with linear maps of external focusing elements and using z as the independent variable, typical in accelerators. A successful application was done to simulate beam transport through three superconducting sections in the APT linac design

  14. Particle simulation of a two-dimensional electrostatic plasma

    International Nuclear Information System (INIS)

    Patel, K.

    1989-01-01

    Computer simulation is a growing field of research and plasma physics is one of the important areas where it is being applied today. This report describes the particle method of simulating a two-dimensional electrostatic plasma. The methods used to discretise the plasma equations and integrate the equations of motion are outlined. The algorithm used in building a simulation program is described. The program is applied to simulating the Two-stream Instability occurring within an infinite plasma. The results of the simulation are presented. The growth rate of the instability as simulated is in excellent agreement with the growth rate as calculated using linear theory. Diagnostic techniques used in interpreting the data generated by the simulation program are discussed. A comparison of the computing environment of the ND and PC from a user's viewpoint is presented. It is observed that the PC is an acceptable computing tool for certain (non-trivial) physics problems, and that more extensive use of its computing power should be made. (author). 5 figs

  15. A Generalized Weight-Based Particle-In-Cell Simulation Scheme

    International Nuclear Information System (INIS)

    Lee, W.W.; Jenkins, T.G.; Ethier, S.

    2010-01-01

    A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution ((delta)f) and the full distribution (full-F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using (delta)f in the linear stage stage of the simulation, while retaining the flexibility of a full-F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise.

  16. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    Science.gov (United States)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  17. One and two dimensional simulations on beat wave acceleration

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.

    1984-01-01

    Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept

  18. Particle-in-cell simulation of Trichel pulses in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C [Dpto. Electronica y Electromagnetismo, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain); Pontiga, F [Dpto. Fisica Aplicada II, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain); Castellanos, A [Dpto. Electronica y Electromagnetismo, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain)

    2007-08-07

    The development and propagation of Trichel pulses in oxygen have been numerically simulated using an improved fluid particle-in-cell (PIC) method. The numerical method has been optimized to accurately reproduce sequences of about 100 Trichel pulses ({approx}1 ms). A classical one-dimensional model of negative corona in sphere-to-plane geometry has been used to formulate the continuity equations for electrons and ions. The effects of ionization, attachment and secondary-electron emission from the cathode have all been considered. The electric field has been obtained from the solution of Poisson's equation in two dimensions. Using this model, the temporal and electrical characteristics of Trichel pulses have been investigated, in particular, the relation between applied voltage, pulse frequency and time-averaged current intensity and charge.

  19. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

  20. Analysis of effects of laser profiles on fast electron generation by two-dimensional Particle-In-Cell simulations

    International Nuclear Information System (INIS)

    Hata, M.

    2010-01-01

    Complete text of publication follows. A cone-guided target is used in the Fast Ignition Realization Experiment project phase-I (FIREX-I) and optimization of its design is performed. However a laser profile is not optimized much, because the laser profile that is the best for core heating is not known well. To find that, it is useful to investigate characteristics of generated fast electrons in each condition of different laser profiles. In this research, effects of laser profiles on fast electron generation are investigated on somewhat simple conditions by two-dimensional Particle-In-Cell simulations. In these simulations, a target is made up of Au pre-plasma and Au plasma. The Au pre-plasma has the exponential profile in the x direction with the scale length L = 4.0 μm and the density from 0.10 n cr to 20 n cr . The Au plasma has the flat profile in the x direction with 10 μm width and 20 n cr . Plasma profiles are uniform in the y direction. The ionization degree and the mass number of plasmas are 40 and 197, where the ionization degree is determined by PINOCO simulations. PINOCO is a two-dimensional radiation hydrodynamics simulation code, which simulates formation of the high-density plasma during the compression phase in the fast ignition. A laser is assumed to propagate as plane wave from the negative x direction to the positive x direction. Laser profiles are supposed to be uniform in the y direction. Three different laser profiles, namely flat one with t flat = 100 fs, Gaussian one with t rise/fall = 47.0 fs and flat + Gaussian one with t rise/fall = 23.5 fs and t flat = 50 fs are used. The energy and the peak intensity are constant with E = 10 7 J/cm 2 and I L = 10 20 W/cm 2 in all cases of different laser profiles. We compare results in each condition of three different laser profiles and investigate effects of laser profiles on fast electron generation. Time-integrated energy spectra are similar in all cases of three different laser profiles. In the

  1. Particle-in-Cell Laser-Plasma Simulation on Xeon Phi Coprocessors

    OpenAIRE

    Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.

    2015-01-01

    This paper concerns development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss suitability of the method for Xeon Phi architecture and present our experience of porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting with no code modification gives performance on Xeon Phi close to 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step...

  2. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  3. IBSIMU: A three-dimensional simulation software for charged particle optics

    Energy Technology Data Exchange (ETDEWEB)

    Kalvas, T.; Tarvainen, O.; Ropponen, T.; Steczkiewicz, O.; Aerje, J. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae 40500 (Finland); Clark, H. [Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States)

    2010-02-15

    A general-purpose three-dimensional (3D) simulation code IBSIMU for charged particle optics with space charge is under development at JYFL. The code was originally developed for designing a slit-beam plasma extraction and nanosecond scale chopping for pulsed neutron generator, but has been developed further and has been used for many applications. The code features a nonlinear FDM Poisson's equation solver based on fast stabilized biconjugate gradient method with ILU0 preconditioner for solving electrostatic fields. A generally accepted nonlinear plasma model is used for plasma extraction. Magnetic fields can be imported to the simulations from other programs. The particle trajectories are solved using adaptive Runge-Kutta method. Steady-state and time-dependent problems can be modeled in cylindrical coordinates, two-dimensional (slit) geometry, or full 3D. The code is used via C++ programming language for versatility but it features an interactive easy-to-use postprocessing tool for diagnosing fields and particle trajectories. The open source distribution and public documentation make the code well suited for scientific use. IBSIMU has been used for modeling the 14 GHz ECR ion source extraction and for designing a four-electrode extraction for a 2.45 GHz microwave ion source at Jyvaeskylae. A grid extraction has also been designed for producing large uniform beam for creating conditions similar to solar wind. The code has also been used to design a H{sup -} extraction with electron dumping for the Cyclotron Institute of Texas A and M University.

  4. Three dimensional particle simulation of drift wave fluctuations in a sheared magnetic field

    International Nuclear Information System (INIS)

    Sydora, R.D.; Leboeuf, J.N.; Thayer, D.R.; Diamond, P.H.; Tajima, T.

    1985-08-01

    Three dimensional particle simulations of collisionless drift waves in sheared magnetic fields were performed in order to determine the nonlinear behavior of inverse electron resonance dynamics in the presence of thermal fluctuations. It is found that stochastic electron diffusion in the electron resonance overlap region can destabilize the drift wave eigenmodes. Numerical evaluations based on a nonlinear electron resonance broadening theory give predictions in accord with the frequency and growth rates found in the simulation of short wavelength modes (k/sub y/rho/sub s/ greater than or equal to1)

  5. The three-dimensional particle-in-cell simulation analysis of cavity of high power subterahertz pulsed gyrotron

    International Nuclear Information System (INIS)

    Ito, Koyu; Jiang, Weihua

    2013-01-01

    High power sub-terahertz pulsed gyrotrons for Collective Thomson Scattering (CTS) diagnostics of fusion plasmas are being developed. The typical target parameters are: output power of 100-200 kW, operation frequency of 300 GHz, and pulsed length > 10 us. In order to support experimental development, numerical simulations were carried out by using Particle-In-Cell (PIC) code MAGIC. The oscillation mode of the electromagnetic radiation was selected as TE_1_5_,_2, for which the beam parameters and cavity dimensions were determined accordingly. The simulation results have showed maximum power of 144 kW at oscillation frequency of 292.80 GHz, with oscillation efficiency of 22.15%. (author)

  6. Two dimensional numerical simulation of gas discharges: comparison between particle-in-cell and FCT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es

    2008-10-21

    Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.

  7. Two dimensional numerical simulation of gas discharges: comparison between particle-in-cell and FCT techniques

    International Nuclear Information System (INIS)

    Soria-Hoyo, C; Castellanos, A; Pontiga, F

    2008-01-01

    Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.

  8. Particle-in-cell Simulations with Kinetic Electrons

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    A new scheme, based on an exact separation between adiabatic and nonadiabatic electron responses, for particle-in-cell (PIC) simulations of drift-type modes is presented. The (linear and nonlinear) elliptic equations for the scalar fields are solved using a multi-grid solver. The new scheme yields linear growth rates in excellent agreement with theory and it is shown to conserve energy well into the nonlinear regime. It is also demonstrated that simulations with few electrons are reliable and accurate, suggesting that large-scale, PIC simulations with electron dynamics in toroidal geometry (e.g., tokamaks and stellarators plasmas) are within reach of present-day massively parallel supercomputers

  9. A One-Dimensional Particle-in-Cell Model of Plasma Build-Up in Vacuum Arcs

    CERN Document Server

    Timko, H; Kovermann, J; Taborelli, M; Nordlund, K; Descoeudres, A; Schneider, R; Calatroni, S; Matyash, K; Wuensch, W; Hansen, A; Grudiev, A

    2011-01-01

    Understanding the mechanism of plasma build-up in vacuum arcs is essential in many fields of physics. A one-dimensional particle-in-cell computer simulation model is presented, which models the plasma developing from a field emitter tip under electrical breakdown conditions, taking into account the relevant physical phenomena. As a starting point, only an external electric field and an initial enhancement factor of the tip are assumed. General requirements for plasma formation have been identified and formulated in terms of the initial local field and a critical neutral density. The dependence of plasma build-up on tip melting current, the evaporation rate of neutrals and external circuit time constant has been investigated for copper and simulations imply that arcing involves melting currents around 0.5-1 A/mu m(2),evaporation of neutrals to electron field emission ratios in the regime 0.01 - 0.05, plasma build-up timescales in the order of similar to 1 - 10 ns and two different regimes depending on initial ...

  10. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2016-10-01

    Full Text Available Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ∼O(10–100  MeV. Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

  11. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  12. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  13. On the stimulated Raman sidescattering in inhomogeneous plasmas: revisit of linear theory and three-dimensional particle-in-cell simulations

    Science.gov (United States)

    Xiao, C. Z.; Zhuo, H. B.; Yin, Y.; Liu, Z. J.; Zheng, C. Y.; Zhao, Y.; He, X. T.

    2018-02-01

    Stimulated Raman sidescattering (SRSS) in inhomogeneous plasma is comprehensively revisited on both theoretical and numerical aspects due to the increasing concern of its detriments to inertial confinement fusion. Firstly, two linear mechanisms of finite beam width and collisional effects that could suppress SRSS are investigated theoretically. Thresholds for the eigenmode and wave packet in a finite-width beam are derived as a supplement to the theory proposed by Mostrom and Kaufman (1979 Phys. Rev. Lett. 42 644). Collisional absorption of SRSS is efficient at high-density plasma and high-Z material, otherwise, it allows emission of sidescattering. Secondly, we have performed the first three-dimensional particle-in-cell simulations in the context of SRSS to investigate its linear and nonlinear effects. Simulation results are qualitatively agreed with the linear theory. SRSS with the maximum growth gain is excited at various densities, grows to an amplitude that is comparable with the pump laser, and evolutes to lower densities with a large angle of emergence. Competitions between SRSS and other parametric instabilities such as stimulated Raman backscattering, two-plasmon decay, and stimulated Brillouin scattering are discussed. These interaction processes are determined by gains, occurrence sites, scattering geometries of each instability, and will affect subsequent evolutions. Nonlinear effects of self-focusing and azimuthal magnetic field generation are observed to be accompanied with SRSS. In addition, it is found that SRSS is insensitive to ion motion, collision (low-Z material), and electron temperature.

  14. Implementing particle-in-cell plasma simulation code on the BBN TC2000

    International Nuclear Information System (INIS)

    Sturtevant, J.E.; Maccabe, A.B.

    1990-01-01

    The BBN TC2000 is a multiple instruction, multiple data (MIMD) machine that combines a physically distributed memory with a logically shared memory programming environment using the unique Butterfly switch. Particle-In-Cell (PIC) plasma simulations model the interaction of charged particles with electric and magnetic fields. This paper describes the implementation of both a 1-D electrostatic and a 2 1/2-D electromagnetic PIC (particle-in-cell) plasma simulation code on a BBN TC2000. Performance is compared to implementations of the same code on the shared memory Sequent Balance and distributed memory Intel iPSC hypercube

  15. A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices

    International Nuclear Information System (INIS)

    Stock, Andreas

    2013-01-01

    Within this thesis a parallelized, transient, three-dimensional, high-order discontinuous Galerkin Particle-in-Cell solver is developed and used to simulate the resonant cavity of a gyrotron. The high-order discontinuous Galerkin approach - a Finite-Element type method - provides a fast and efficient algorithm to numerically solve Maxwell's equations used within this thesis. Besides its outstanding dissipation and dispersion properties, the discontinuous Galerkin approach easily allows for using unstructured grids, as required to simulate complex-shaped engineering devices. The discontinuous Galerkin approach approximates a wavelength with significantly less degrees of freedom compared to other methods, e.g. Finite Difference methods. Furthermore, the parallelization capabilities of the discontinuous Galerkin framework are excellent due to the very local dependencies between the elements. These properties are essential for the efficient numerical treatment of the Vlasov-Maxwell system with the Particle-in-Cell method. This system describes the self-consistent interaction of charged particles and the electromagnetic field. As central application within this thesis gyrotron resonators are simulated with the discontinuous Galerkin Particle-in-Cell method on high-performance-computers. The gyrotron is a high-power millimeter wave source, used for the electron cyclotron resonance heating of magnetically confined fusion plasma, e.g. in the Wendelstein 7-X experimental fusion-reactor. Compared to state-of-the-art simulation tools used for the design of gyrotron resonators the Particle-in-Cell method does not use any significant physically simplifications w.r.t. the modelling of the particle-field-interaction, the geometry and the wave-spectrum. Hence, it is the method of choice for validation of current simulation tools being restricted by these simplifications. So far, the Particle-in-Cell method was restricted to be used for demonstration calculations only, because

  16. A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Andreas

    2013-04-26

    Within this thesis a parallelized, transient, three-dimensional, high-order discontinuous Galerkin Particle-in-Cell solver is developed and used to simulate the resonant cavity of a gyrotron. The high-order discontinuous Galerkin approach - a Finite-Element type method - provides a fast and efficient algorithm to numerically solve Maxwell's equations used within this thesis. Besides its outstanding dissipation and dispersion properties, the discontinuous Galerkin approach easily allows for using unstructured grids, as required to simulate complex-shaped engineering devices. The discontinuous Galerkin approach approximates a wavelength with significantly less degrees of freedom compared to other methods, e.g. Finite Difference methods. Furthermore, the parallelization capabilities of the discontinuous Galerkin framework are excellent due to the very local dependencies between the elements. These properties are essential for the efficient numerical treatment of the Vlasov-Maxwell system with the Particle-in-Cell method. This system describes the self-consistent interaction of charged particles and the electromagnetic field. As central application within this thesis gyrotron resonators are simulated with the discontinuous Galerkin Particle-in-Cell method on high-performance-computers. The gyrotron is a high-power millimeter wave source, used for the electron cyclotron resonance heating of magnetically confined fusion plasma, e.g. in the Wendelstein 7-X experimental fusion-reactor. Compared to state-of-the-art simulation tools used for the design of gyrotron resonators the Particle-in-Cell method does not use any significant physically simplifications w.r.t. the modelling of the particle-field-interaction, the geometry and the wave-spectrum. Hence, it is the method of choice for validation of current simulation tools being restricted by these simplifications. So far, the Particle-in-Cell method was restricted to be used for demonstration calculations only, because

  17. Electromagnetic ''particle-in-cell'' plasma simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1985-01-01

    ''PIC'' simulation tracks particles through electromagnetic fields calculated self-consistently from the charge and current densities of the particles themselves, external sources, and boundaries. Already used extensively in plasma physics, such simulations have become useful in the design of accelerators and their r.f. sources. 5 refs

  18. Optimized Loading for Particle-in-cell Gyrokinetic Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed using a quadratic optimization algorithm. Optimized loading in configuration space dramatically reduces the short wavelength modes in the electrostatic potential that are partly responsible for the non-conservation of total energy; further, the long wavelength modes are resolved with good accuracy. As a result, the conservation of energy for the optimized loading is much better that the conservation of energy for the random loading. The method is valid for any geometry and can be coupled to optimization algorithms in velocity space

  19. Advanced particle-in-cell simulation techniques for modeling the Lockheed Martin Compact Fusion Reactor

    Science.gov (United States)

    Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David

    2017-10-01

    We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.

  20. Sparse grid techniques for particle-in-cell schemes

    Science.gov (United States)

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  1. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    Science.gov (United States)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  2. Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations

    Science.gov (United States)

    Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott; Wang, Joseph; Parashar, Tulasi N.

    2018-06-01

    Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at β i = β e = 0.25 and kinetic Alfvén turbulence at β i = β e = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density ε o in the range 0 ≤ ε o ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as ε o , consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.

  3. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  4. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    International Nuclear Information System (INIS)

    QIANG, J.; RYNE, R.; HABIB, S.

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators

  5. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Science.gov (United States)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  6. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Boytsov A. Yu.

    2018-01-01

    Full Text Available Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  7. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Simões, F. J. R. Jr.; Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Gaelzer, R.; Ziebell, L. F. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  8. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors

    Science.gov (United States)

    Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.

    2016-05-01

    This paper concerns the development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss the suitability of the method for Xeon Phi architecture and present our experience in the porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting without code modification gives performance on Xeon Phi close to that of an 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step optimization techniques, such as improving data locality, enhancing parallelization efficiency and vectorization leading to an overall 4.2 × speedup on CPU and 7.5 × on Xeon Phi compared to the baseline version. The optimized version achieves 16.9 ns per particle update on an Intel Xeon E5-2660 CPU and 9.3 ns per particle update on an Intel Xeon Phi 5110P. For a real problem of laser ion acceleration in targets with surface grating, where a large number of macroparticles per cell is required, the speedup of Xeon Phi compared to CPU is 1.6 ×.

  9. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  10. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    Science.gov (United States)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  11. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    International Nuclear Information System (INIS)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-01-01

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated

  12. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong; Lim, Chwee Teck [Department of Mechanical Engineering, National University of Singapore, Singapore 119260 (Singapore)

    2014-11-15

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the other malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.

  13. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  14. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    International Nuclear Information System (INIS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-01-01

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer

  15. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Beck, A., E-mail: beck@llr.in2p3.fr [Laboratoire Leprince-Ringuet, École polytechnique, CNRS-IN2P3, Palaiseau 91128 (France); Frederiksen, J.T. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø (Denmark); Dérouillat, J. [CEA, Maison de La Simulation, 91400 Saclay (France)

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  16. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    International Nuclear Information System (INIS)

    Bao, Rong; Li, Yongdong; Liu, Chunliang; Wang, Hongguang

    2016-01-01

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.

  17. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  18. Enhanced quasi-static particle-in-cell simulation of electron cloud instabilities in circular accelerators

    Science.gov (United States)

    Feng, Bing

    Electron cloud instabilities have been observed in many circular accelerators around the world and raised concerns of future accelerators and possible upgrades. In this thesis, the electron cloud instabilities are studied with the quasi-static particle-in-cell (PIC) code QuickPIC. Modeling in three-dimensions the long timescale propagation of beam in electron clouds in circular accelerators requires faster and more efficient simulation codes. Thousands of processors are easily available for parallel computations. However, it is not straightforward to increase the effective speed of the simulation by running the same problem size on an increasingly number of processors because there is a limit to domain size in the decomposition of the two-dimensional part of the code. A pipelining algorithm applied on the fully parallelized particle-in-cell code QuickPIC is implemented to overcome this limit. The pipelining algorithm uses multiple groups of processors and optimizes the job allocation on the processors in parallel computing. With this novel algorithm, it is possible to use on the order of 102 processors, and to expand the scale and the speed of the simulation with QuickPIC by a similar factor. In addition to the efficiency improvement with the pipelining algorithm, the fidelity of QuickPIC is enhanced by adding two physics models, the beam space charge effect and the dispersion effect. Simulation of two specific circular machines is performed with the enhanced QuickPIC. First, the proposed upgrade to the Fermilab Main Injector is studied with an eye upon guiding the design of the upgrade and code validation. Moderate emittance growth is observed for the upgrade of increasing the bunch population by 5 times. But the simulation also shows that increasing the beam energy from 8GeV to 20GeV or above can effectively limit the emittance growth. Then the enhanced QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac

  19. Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations.

    Science.gov (United States)

    Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang

    2018-01-01

    For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.

  20. The effects of particle recycling on the divertor plasma: A particle-in-cell with Monte Carlo collision simulation

    Science.gov (United States)

    Chang, Mingyu; Sang, Chaofeng; Sun, Zhenyue; Hu, Wanpeng; Wang, Dezhen

    2018-05-01

    A Particle-In-Cell (PIC) with Monte Carlo Collision (MCC) model is applied to study the effects of particle recycling on divertor plasma in the present work. The simulation domain is the scrape-off layer of the tokamak in one-dimension along the magnetic field line. At the divertor plate, the reflected deuterium atoms (D) and thermally released deuterium molecules (D2) are considered. The collisions between the plasma particles (e and D+) and recycled neutral particles (D and D2) are described by the MCC method. It is found that the recycled neutral particles have a great impact on divertor plasma. The effects of different collisions on the plasma are simulated and discussed. Moreover, the impacts of target materials on the plasma are simulated by comparing the divertor with Carbon (C) and Tungsten (W) targets. The simulation results show that the energy and momentum losses of the C target are larger than those of the W target in the divertor region even without considering the impurity particles, whereas the W target has a more remarkable influence on the core plasma.

  1. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  2. Modeling an emittance-dominated elliptical sheet beam with a 212-dimensional particle-in-cell code

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2005-01-01

    Modeling a 3-dimensional (3-D) elliptical beam with a 212-D particle-in-cell (PIC) code requires a reduction in the beam parameters. The 212-D PIC code can only model the center slice of the sheet beam, but that can still provide useful information about the beam transport and distribution evolution, even if the beam is emittance dominated. The reduction of beam parameters and resulting interpretation of the simulation is straightforward, but not trivial. In this paper, we describe the beam parameter reduction and emittance issues related to the initial beam distribution. As a numerical example, we use the case of a sheet beam designed for use with a planar traveling-wave amplifier for high power generator for RF ranging from 95 to 300GHz [Carlsten et al., IEEE Trans. Plasma Sci. 33 (2005) 85]. These numerical techniques also apply to modeling high-energy elliptical bunches in RF accelerators

  3. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  4. Progress in the study of mesh refinement for particle-in-cell plasma simulations and its application to heavy ion fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and, despite rapid progress in computer power, one must consider the use of the most advanced numerical techniques. One of the difficulties of these simulations resides in the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the Adaptive-Mesh-Refinement (AMR) technique. We follow in this article the progress accomplished in the last few months in the merging of the AMR technique with Particle-In-Cell (PIC) method. This includes a detailed modeling of the Lampel-Tiefenback solution for the one-dimensional diode using novel techniques to suppress undesirable numerical oscillations and an AMR patch to follow the head of the particle distribution. We also report new results concerning the modeling of ion sources using the axisymmetric WARPRZ-AMR prototype showing the utility of an AMR patch resolving the emitter vicinity and the beam edge

  5. A comprehensive study of MPI parallelism in three-dimensional discrete element method (DEM) simulation of complex-shaped granular particles

    Science.gov (United States)

    Yan, Beichuan; Regueiro, Richard A.

    2018-02-01

    A three-dimensional (3D) DEM code for simulating complex-shaped granular particles is parallelized using message-passing interface (MPI). The concepts of link-block, ghost/border layer, and migration layer are put forward for design of the parallel algorithm, and theoretical scalability function of 3-D DEM scalability and memory usage is derived. Many performance-critical implementation details are managed optimally to achieve high performance and scalability, such as: minimizing communication overhead, maintaining dynamic load balance, handling particle migrations across block borders, transmitting C++ dynamic objects of particles between MPI processes efficiently, eliminating redundant contact information between adjacent MPI processes. The code executes on multiple US Department of Defense (DoD) supercomputers and tests up to 2048 compute nodes for simulating 10 million three-axis ellipsoidal particles. Performance analyses of the code including speedup, efficiency, scalability, and granularity across five orders of magnitude of simulation scale (number of particles) are provided, and they demonstrate high speedup and excellent scalability. It is also discovered that communication time is a decreasing function of the number of compute nodes in strong scaling measurements. The code's capability of simulating a large number of complex-shaped particles on modern supercomputers will be of value in both laboratory studies on micromechanical properties of granular materials and many realistic engineering applications involving granular materials.

  6. Electromagnetic particle-in-cell simulations of Applied-B proton diodes

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Coats, R.S.

    1986-01-01

    Fully electromagnetic particle-in-cell simulations of Applied-B ion diodes have been performed using the magic code. These calculations indicate that Applied-B diodes can be nearly 100% efficient. Furthermore, the simulations exhibit an impedance relaxation phenomenon due to the buildup of electron space charge near the anode which causes a time-dependent enhancement of the ion emission above the Child--Langmuir value. This phenomenon may at least partially explain the rapidly decreasing impedance that has been observed in Applied-B ion diode experiments. The results of our numerical simulations will be compared to experimental data on Applied-B ion diodes and to analytic theories of their operation

  7. Vectorization of a particle code used in the simulation of rarefied hypersonic flow

    Science.gov (United States)

    Baganoff, D.

    1990-01-01

    A limitation of the direct simulation Monte Carlo (DSMC) method is that it does not allow efficient use of vector architectures that predominate in current supercomputers. Consequently, the problems that can be handled are limited to those of one- and two-dimensional flows. This work focuses on a reformulation of the DSMC method with the objective of designing a procedure that is optimized to the vector architectures found on machines such as the Cray-2. In addition, it focuses on finding a better balance between algorithmic complexity and the total number of particles employed in a simulation so that the overall performance of a particle simulation scheme can be greatly improved. Simulations of the flow about a 3D blunt body are performed with 10 to the 7th particles and 4 x 10 to the 5th mesh cells. Good statistics are obtained with time averaging over 800 time steps using 4.5 h of Cray-2 single-processor CPU time.

  8. Computer-assisted Particle-in-Cell code development

    International Nuclear Information System (INIS)

    Kawata, S.; Boonmee, C.; Teramoto, T.; Drska, L.; Limpouch, J.; Liska, R.; Sinor, M.

    1997-12-01

    This report presents a new approach for an electromagnetic Particle-in-Cell (PIC) code development by a computer: in general PIC codes have a common structure, and consist of a particle pusher, a field solver, charge and current density collections, and a field interpolation. Because of the common feature, the main part of the PIC code can be mechanically developed on a computer. In this report we use the packages FIDE and GENTRAN of the REDUCE computer algebra system for discretizations of field equations and a particle equation, and for an automatic generation of Fortran codes. The approach proposed is successfully applied to the development of 1.5-dimensional PIC code. By using the generated PIC code the Weibel instability in a plasma is simulated. The obtained growth rate agrees well with the theoretical value. (author)

  9. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    Science.gov (United States)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  10. Interactive methods for exploring particle simulation data

    Energy Technology Data Exchange (ETDEWEB)

    Co, Christopher S.; Friedman, Alex; Grote, David P.; Vay, Jean-Luc; Bethel, E. Wes; Joy, Kenneth I.

    2004-05-01

    In this work, we visualize high-dimensional particle simulation data using a suite of scatter plot-based visualizations coupled with interactive selection tools. We use traditional 2D and 3D projection scatter plots as well as a novel oriented disk rendering style to convey various information about the data. Interactive selection tools allow physicists to manually classify ''interesting'' sets of particles that are highlighted across multiple, linked views of the data. The power of our application is the ability to correspond new visual representations of the simulation data with traditional, well understood visualizations. This approach supports the interactive exploration of the high-dimensional space while promoting discovery of new particle behavior.

  11. Fully implicit Particle-in-cell algorithms for multiscale plasma simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, Luis [Los Alamos National Laboratory

    2015-07-16

    The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ωpeΔt >> 1, and Δx >> λD. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.

  12. Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study

    International Nuclear Information System (INIS)

    Li, Xuejin; Karniadakis, George Em; Popel, Aleksander S

    2012-01-01

    The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a validated low-dimensional RBC model based on dissipative particle dynamics. Specifically, the RBC is represented as a closed torus-like ring of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation over a wide range of hematocrits. Adaptive no-slip wall boundary conditions were implemented to model hydrodynamic flow within a specific wall structure of diverging three-dimensional microfluidic channels, paying attention to controlling density fluctuations. Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic channel have been investigated in our simulations for healthy and diseased blood, including the size of a cell-free layer on the daughter branches. The feed hematocrit level in the parent channel has considerable influence on blood–plasma separation. Compared to the blood–plasma separation efficiencies of healthy RBCs, malaria-infected stiff RBCs (iRBCs) have a tendency to travel into the low flow-rate daughter branch because of their different initial distribution in the parent channel. Our simulation results are consistent with previously published experimental results and theoretical predictions. (paper)

  13. Particle in cell simulation of peaking switch for breakdown evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.; Saxena, A.; Singh, N.M., E-mail: sachin.b.umbarkar@gmail.com [Department of Electric Engineering, Veermata Jijabai Technological Institute, Mumbai (India); Sharma, Archana; Saroj, P.C.; Mittal, K.C. [Accelerator Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (without peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)

  14. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    International Nuclear Information System (INIS)

    Cheng-Sen, Liu; Hong-Ying, Han; Xiao-Qing, Peng; Ye, Chang; De-Zhen, Wang

    2010-01-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis

  15. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    Science.gov (United States)

    Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen

    2010-03-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.

  16. Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Supriya Dhabal

    2014-01-01

    Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.

  17. Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields

    International Nuclear Information System (INIS)

    Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi

    2009-01-01

    The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced

  18. Three-dimensional simulation and auto-stereoscopic 3D display of the battlefield environment based on the particle system algorithm

    Science.gov (United States)

    Ning, Jiwei; Sang, Xinzhu; Xing, Shujun; Cui, Huilong; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    The army's combat training is very important now, and the simulation of the real battlefield environment is of great significance. Two-dimensional information has been unable to meet the demand at present. With the development of virtual reality technology, three-dimensional (3D) simulation of the battlefield environment is possible. In the simulation of 3D battlefield environment, in addition to the terrain, combat personnel and the combat tool ,the simulation of explosions, fire, smoke and other effects is also very important, since these effects can enhance senses of realism and immersion of the 3D scene. However, these special effects are irregular objects, which make it difficult to simulate with the general geometry. Therefore, the simulation of irregular objects is always a hot and difficult research topic in computer graphics. Here, the particle system algorithm is used for simulating irregular objects. We design the simulation of the explosion, fire, smoke based on the particle system and applied it to the battlefield 3D scene. Besides, the battlefield 3D scene simulation with the glasses-free 3D display is carried out with an algorithm based on GPU 4K super-multiview 3D video real-time transformation method. At the same time, with the human-computer interaction function, we ultimately realized glasses-free 3D display of the simulated more realistic and immersed 3D battlefield environment.

  19. Three-dimensional simulation of super-radiant Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Li, D.; Imasaki, K.; Yang, Z.; Park, Gun-Sik

    2006-01-01

    A simulation of coherent and super-radiant Smith-Purcell radiation is performed in the gigahertz regime using a three-dimensional particle-in-cell code. The simulation model supposes a rectangular grating to be driven by a single electron bunch and a train of periodic bunches, respectively. The true Smith-Purcell radiation is distinguished from the evanescent wave, which has an angle independent frequency lower than the minimum allowed Smith-Purcell frequency. We also find that the super-radiant radiations excited by periodic bunches are emitted at higher harmonics of the bunching frequency and at the corresponding Smith-Purcell angles

  20. Development of 2D particle-in-cell code to simulate high current, low ...

    Indian Academy of Sciences (India)

    Abstract. A code for 2D space-charge dominated beam dynamics study in beam trans- port lines is developed. The code is used for particle-in-cell (PIC) simulation of z-uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam.

  1. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  2. Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Rikio; Takagi, Kenta; Ozaki, Kimihiro, E-mail: r-soda@aist.go.jp

    2015-12-15

    In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model.

  3. Thrust calculation of electric solar wind sail by particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Kento [Kyoto Univ. (Japan). Dept. of Electrical Engineering; Kojima, Hirotsugu; Yamakawa, Hiroshi [Kyoto Univ. (Japan). Research Inst. for Sustainable Humanosphere; Muranaka, Takanobu [Chukyo Univ., Nagoya (Japan). Dept. of Electrical Engineering

    2016-07-01

    In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full threedimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

  4. Thrust calculation of electric solar wind sail by particle-in-cell simulation

    International Nuclear Information System (INIS)

    Hoshi, Kento; Kojima, Hirotsugu; Yamakawa, Hiroshi; Muranaka, Takanobu

    2016-01-01

    In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full threedimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

  5. Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils

    Science.gov (United States)

    Huang, Kai; Lu, Quanming; Gao, Lan; Ji, Hantao; Wang, Xueyi; Fan, Feibin

    2018-05-01

    In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r ,z ) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction ( Bθ ) is generated in the diffusion region and a strong electron current along the r direction ( Je r ) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r =0 will lead to the asymmetry of Je r and Bθ between the two outflow regions of magnetic reconnection.

  6. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    Science.gov (United States)

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  7. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    Science.gov (United States)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  8. Pseudo three-dimensional modeling of particle-fuel packing using distinct element method

    International Nuclear Information System (INIS)

    Yuki, Daisuke; Takata, Takashi; Yamaguchi, Akira

    2007-01-01

    Vibration-based packing of sphere-pac fuel is a key technology in a nuclear fuel manufacturing. In the production process of sphere-pac fuel, a Mixed Oxide (MOX) fuel is formed to spherical form and is packed in a cladding tube by adding a vibration force. In the present study, we have developed a numerical simulation method to investigate the behavior of the particles in a vibrated tube using the Distinct Element Method (DEM). In general, the DEM requires a significant computational cost. Therefore we propose a new approach in which a small particle can move through the space between three larger particles even in the two-dimensional simulation. We take into account an equivalent three-dimensional effect in the equations of motion. Thus it is named pseudo three-dimensional modeling. (author)

  9. Quasi-three-dimensional particle imaging with digital holography.

    Science.gov (United States)

    Kemppinen, Osku; Heinson, Yuli; Berg, Matthew

    2017-05-01

    In this work, approximate three-dimensional structures of microparticles are generated with digital holography using an automated focus method. This is done by stacking a collection of silhouette-like images of a particle reconstructed from a single in-line hologram. The method enables estimation of the particle size in the longitudinal and transverse dimensions. Using the discrete dipole approximation, the method is tested computationally by simulating holograms for a variety of particles and attempting to reconstruct the known three-dimensional structure. It is found that poor longitudinal resolution strongly perturbs the reconstructed structure, yet the method does provide an approximate sense for the structure's longitudinal dimension. The method is then applied to laboratory measurements of holograms of single microparticles and their scattering patterns.

  10. Lattice Boltzmann method used to simulate particle motion in a conduit

    Directory of Open Access Journals (Sweden)

    Dolanský Jindřich

    2017-06-01

    Full Text Available A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.

  11. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates

    International Nuclear Information System (INIS)

    Van Liedekerke, P; Tijskens, E; Smeedts, B; Ramon, H; Ghysels, P; Samaey, G; Roose, D

    2010-01-01

    This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell–cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs–10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure

  12. Three-dimensional simulation of charge collection and multiple-bit upset in Si devices

    International Nuclear Information System (INIS)

    Dodd, P.E.; Sexton, F.W.; Winokur, P.S.

    1994-01-01

    In this paper, three-dimensional numerical simulation is used to explore the basic charge-collection mechanisms in silicon n + /p diodes. For diodes on lightly-doped substrates ( 15 cm -3 ) struck by a 100-MeV Fe ion, the funneling effect is very strong and essentially all collection is by funnel-assisted drift. This drift collection may occur as late as several nanoseconds after the strike, later than is usually associated with drift collection. For moderately-doped substrates (∼1 x 10 16 cm -3 ) and epitaxial structures grown on heavily-doped substrates, the funnel effect is weaker and drift and diffusion are of more equal importance. For 5-MeV He (α-particle) strikes with low-density charge tracks, the charge-collection transient exhibits both drift and diffusion regimes regardless of the substrate doping. Simulations of diodes with passive external loads indicate that while the current response is altered considerably by the load, total collected charge is not greatly affected for the simple resistive loads studied. Three-dimensional mixed-mode simulation is performed to investigate charge-collection behavior and upset mechanisms in complete CMOS SRAM cells. Simulations of double SRAM cell structures indicate that only collection by diffusion from ''between-node'' strikes is capable of producing multiple-bit upsets in the simulated technology. Limitations of the simulations, specifically carrier-carrier scattering models and large concentration gradients, are also discussed

  13. Realistic simulations of a cyclotron spiral inflector within a particle-in-cell framework

    Science.gov (United States)

    Winklehner, Daniel; Adelmann, Andreas; Gsell, Achim; Kaman, Tulin; Campo, Daniela

    2017-12-01

    We present an upgrade to the particle-in-cell ion beam simulation code opal that enables us to run highly realistic simulations of the spiral inflector system of a compact cyclotron. This upgrade includes a new geometry class and field solver that can handle the complicated boundary conditions posed by the electrode system in the central region of the cyclotron both in terms of particle termination, and calculation of self-fields. Results are benchmarked against the analytical solution of a coasting beam. As a practical example, the spiral inflector and the first revolution in a 1 MeV /amu test cyclotron, located at Best Cyclotron Systems, Inc., are modeled and compared to the simulation results. We find that opal can now handle arbitrary boundary geometries with relative ease. Simulated injection efficiencies and beam shape compare well with measured efficiencies and a preliminary measurement of the beam distribution after injection.

  14. Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

    International Nuclear Information System (INIS)

    Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X

    2005-01-01

    Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described

  15. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Krommes, John A.

    2007-01-01

    The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism

  16. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  17. High energy gain in three-dimensional simulations of light sail acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sgattoni, A., E-mail: andrea.sgattoni@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milano (Italy); CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Sinigardi, S. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); INFN sezione di Bologna, Bologna (Italy); Macchi, A. [CNR, Istituto Nazionale di Ottica, u.o.s. “Adriano Gozzini,” Pisa (Italy); Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa (Italy)

    2014-08-25

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  18. High energy gain in three-dimensional simulations of light sail acceleration

    International Nuclear Information System (INIS)

    Sgattoni, A.; Sinigardi, S.; Macchi, A.

    2014-01-01

    The dynamics of radiation pressure acceleration in the relativistic light sail regime are analysed by means of large scale, three-dimensional (3D) particle-in-cell simulations. Differently to other mechanisms, the 3D dynamics leads to faster and higher energy gain than in 1D or 2D geometry. This effect is caused by the local decrease of the target density due to transverse expansion leading to a “lighter sail.” However, the rarefaction of the target leads to an earlier transition to transparency limiting the energy gain. A transverse instability leads to a structured and inhomogeneous ion distribution.

  19. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.L. [College of Science, China Agricultural University, Beijing 100083 (China); Huang, F., E-mail: huangfeng@cau.edu.cn [College of Science, China Agricultural University, Beijing 100083 (China); Chen, Z.Y., E-mail: chenzy@mail.buct.edu.cn [Department of Physics, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Laser Propulsion & Application, Beijing 101416 (China); Liu, Y.H. [School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025 (China); Yu, M.Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2016-02-22

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  20. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    International Nuclear Information System (INIS)

    Song, Y.L.; Huang, F.; Chen, Z.Y.; Liu, Y.H.; Yu, M.Y.

    2016-01-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results. - Highlights: • Self-organization and oscillation of a 2-dimensional dusty plasma is investigated. • Effect of the confinement potential on dust self-organization and oscillation is given. • Effect of the attraction potential on dust self-organization and oscillation is studied.

  1. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  2. Particle-in-cell simulations of plasma opening switch with external magnetic field

    International Nuclear Information System (INIS)

    Chen Yulan; Zeng Zhengzhong; Sun Fengju

    2003-01-01

    Fully electromagnetic particle-in-cell simulations are performed to study the effects of an external magnetic field on coaxial plasma opening switch (POS). The simulation results show that POS opening performance can be significantly improved only when external longitudinal magnetic field coils are placed at the cathode side, and an additional azimuthal magnetic field is effective whether the central electrode is of positive or negative polarity. Voltage multiplication coefficient K rises with the additional magnetic field increasing till the electron current is completely magnetically insulated during the opening of POS

  3. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    Science.gov (United States)

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  4. Axisymmetric particle-in-cell simulations of diamagnetic-cavity formation in vacuum

    International Nuclear Information System (INIS)

    Gisler, G.

    1989-01-01

    Axisymmetric simulations of the expansion of a hot plasma suddenly introduced into a vacuum containing a weak magnetic field were performed using an electromagnetic particle-in-cell code. Both uniform and gradient fields have been used, with the simulation axis along the principle field direction. The formation of a diamagnetic cavity requires an initial plasma β > 1; as the expansion proceeds, β diminishes, and the field eventually recovers. The maximum spatial extent of the cavity and its duration can be obtained from simple dynamical considerations. Field-aligned ion acceleration behind the electron front is observed in all field geometries and strengths. In the case of expansion into a divergent field, the plasma is found to move down the field gradient by ambipolar diffusion. These simulations are relevant to active release experiments in the Earth's magnetosphere, to pellet ablation experiments, and to the naturally occurring diamagnetic bubbles observed at the Earth's foreshock

  5. A parallel electrostatic Particle-in-Cell method on unstructured tetrahedral grids for large-scale bounded collisionless plasma simulations

    Science.gov (United States)

    Averkin, Sergey N.; Gatsonis, Nikolaos A.

    2018-06-01

    An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization

  6. 3-D electromagnetic plasma particle simulations on the Intel Delta parallel computer

    International Nuclear Information System (INIS)

    Wang, J.; Liewer, P.C.

    1994-01-01

    A three-dimensional electromagnetic PIC code has been developed on the 512 node Intel Touchstone Delta MIMD parallel computer. This code is based on the General Concurrent PIC algorithm which uses a domain decomposition to divide the computation among the processors. The 3D simulation domain can be partitioned into 1-, 2-, or 3-dimensional sub-domains. Particles must be exchanged between processors as they move among the subdomains. The Intel Delta allows one to use this code for very-large-scale simulations (i.e. over 10 8 particles and 10 6 grid cells). The parallel efficiency of this code is measured, and the overall code performance on the Delta is compared with that on Cray supercomputers. It is shown that their code runs with a high parallel efficiency of ≥ 95% for large size problems. The particle push time achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Comparing with the performance on a single processor Cray C90, this represents a factor of 58 speedup. The code uses a finite-difference leap frog method for field solve which is significantly more efficient than fast fourier transforms on parallel computers. The performance of this code on the 128 node Cray T3D will also be discussed

  7. Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell

    Science.gov (United States)

    Osnes, A. N.; Vartdal, M.; Pettersson Reif, B. A.

    2018-05-01

    The formation of jets from a shock-accelerated cylindrical shell of particles, confined in a Hele-Shaw cell, is studied by means of numerical simulation. A number of simulations have been performed, systematically varying the coupling between the gas and solid phases in an effort to identify the primary mechanism(s) responsible for jet formation. We find that coupling through drag is sufficient for the formation of jets. Including the effect of particle volume fraction and particle collisions did not alter the general behaviour, but had some influence on the length, spacing and number of jets. Furthermore, we find that the jet selection process starts early in the dispersal process, during the initial expansion of the particle layer.

  8. The dynamics of low-β plasma clouds as simulated by a three-dimensional, electromagnetic particle code

    International Nuclear Information System (INIS)

    Neubert, T.; Miller, R.H.; Buneman, O.; Nishikawa, K.I.

    1992-01-01

    The dynamics of low-β plasma clouds moving perpendicular to an ambient magnetic field in vacuum and in a background plasma is simulated by means of a three-dimensional, electromagnetic, and relativistic particle simulation code. The simulations show the formation of the space charge sheaths at the sides of the cloud with the associated polarization electric field which facilitate the cross-field propagation, as well as the sheaths at the front and rear end of the cloud caused by the larger ion Larmor radius, which allows ions to move ahead and lag behind the electrons as they gyrate. Results on the cloud dynamics and electromagnetic radiation include the following: (1) In a background plasma, electron and ion sheaths expand along the magnetic field at the same rate, whereas in vacuum the electron sheath expands much faster than the ion sheath. (2) Sheath electrons are accelerated up to relativistic energies. This result indicates that artificial plasma clouds released in the ionosphere or magnetosphere may generate optical emissions (aurora) as energetic sheath electrons scatter in the upper atmosphere. (3) The expansion of the electron sheaths is analogous to the ejection of high-intensity electron beams from spacecraft. (4) Second-order and higher-order sheaths are formed which extend out into the ambient plasma. (5) Formation of the sheaths and the polarization field reduces the forward momentum of the cloud. (6) The coherent component of the particle gyromotion is damped in time as the particles establish a forward directed drift velocity. (7) The coherent particle gyrations generate electromagnetic radiation

  9. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  10. Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

    International Nuclear Information System (INIS)

    Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.

    1994-01-01

    One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 x speedup over our starting-point Cray2 simulation code's performance

  11. Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds

    Science.gov (United States)

    Onishi, Ryo; Kunishima, Yuichi

    2017-11-01

    We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).

  12. Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles

    Directory of Open Access Journals (Sweden)

    Che-Kai Yeh

    2017-06-01

    Full Text Available The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST, cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc. and some published experimental data.

  13. Quantifying the mechanical micro-environment during three-dimensional cell expansion on microbeads by means of individual cell-based modelling.

    Science.gov (United States)

    Smeets, Bart; Odenthal, Tim; Tijskens, Engelbert; Ramon, Herman; Van Oosterwyck, Hans

    2013-10-01

    Controlled in vitro three-dimensional cell expansion requires culture conditions that optimise the biophysical micro-environment of the cells during proliferation. In this study, we propose an individual cell-based modelling platform for simulating the mechanics of cell expansion on microcarriers. The lattice-free, particle-based method considers cells as individual interacting particles that deform and move over time. The model quantifies how the mechanical micro-environment of individual cells changes during the time of confluency. A sensitivity analysis is performed, which shows that changes in the cell-specific properties of cell-cell adhesion and cell stiffness cause the strongest change in the mechanical micro-environment of the cells. Furthermore, the influence of the mechanical properties of cells and microbead is characterised. The mechanical micro-environment is strongly influenced by the adhesive properties and the size of the microbead. Simulations show that even in the absence of strong biological heterogeneity, a large heterogeneity in mechanical stresses can be expected purely due to geometric properties of the culture system.

  14. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Science.gov (United States)

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  15. Particle-in-cell plasma simulation codes on the connection machine

    International Nuclear Information System (INIS)

    Walker, D.W.

    1991-01-01

    Methods for implementing three-dimensional, electromagnetic, relativistic PIC plasma simulation codes on the Connection Machine (CM-2) are discussed. The gather and scatter phases of the PIC algorithm involve indirect indexing of data, which results in a large amount of communication on the CM-2. Different data decompositions are described that seek to reduce the amount of communication while maintaining good load balance. These methods require the particles to be spatially sorted at the start of each time step, which introduced another form of overhead. The different methods are implemented in CM Fortran on the CM-2 and compared. It was found that the general router is slow in performing the communication in the gather and scatter steps, which precludes an efficient CM Fortran implementation. An alternative method that uses PARIS calls and the NEWS communication network to pipeline data along the axes of the VP set is suggested as a more efficient algorithm

  16. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    Science.gov (United States)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected

  17. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  18. Combining neural networks and signed particles to simulate quantum systems more efficiently

    Science.gov (United States)

    Sellier, Jean Michel

    2018-04-01

    Recently a new formulation of quantum mechanics has been suggested which describes systems by means of ensembles of classical particles provided with a sign. This novel approach mainly consists of two steps: the computation of the Wigner kernel, a multi-dimensional function describing the effects of the potential over the system, and the field-less evolution of the particles which eventually create new signed particles in the process. Although this method has proved to be extremely advantageous in terms of computational resources - as a matter of fact it is able to simulate in a time-dependent fashion many-body systems on relatively small machines - the Wigner kernel can represent the bottleneck of simulations of certain systems. Moreover, storing the kernel can be another issue as the amount of memory needed is cursed by the dimensionality of the system. In this work, we introduce a new technique which drastically reduces the computation time and memory requirement to simulate time-dependent quantum systems which is based on the use of an appropriately tailored neural network combined with the signed particle formalism. In particular, the suggested neural network is able to compute efficiently and reliably the Wigner kernel without any training as its entire set of weights and biases is specified by analytical formulas. As a consequence, the amount of memory for quantum simulations radically drops since the kernel does not need to be stored anymore as it is now computed by the neural network itself, only on the cells of the (discretized) phase-space which are occupied by particles. As its is clearly shown in the final part of this paper, not only this novel approach drastically reduces the computational time, it also remains accurate. The author believes this work opens the way towards effective design of quantum devices, with incredible practical implications.

  19. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions. The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  20. Vectorization of a particle simulation method for hypersonic rarefied flow

    Science.gov (United States)

    Mcdonald, Jeffrey D.; Baganoff, Donald

    1988-01-01

    An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.

  1. Vectorization of a particle simulation method for hypersonic rarefied flow

    International Nuclear Information System (INIS)

    Mcdonald, J.D.; Baganoff, D.

    1988-01-01

    An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry. 14 references

  2. Macroscale implicit electromagnetic particle simulation of magnetized plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1988-01-01

    An electromagnetic and multi-dimensional macroscale particle simulation code (MACROS) is presented which enables us to make a large time and spatial scale kinetic simulation of magnetized plasmas. Particle ions, finite mass electrons with the guiding-center approximation and a complete set of Maxwell equations are employed. Implicit field-particle coupled equations are derived in which a time-decentered (slightly backward) finite differential scheme is used to achieve stability for large time and spatial scales. It is shown analytically that the present simulation scheme suppresses high frequency electromagnetic waves and that it accurately reproduces low frequency waves in the plasma. These properties are verified by numerical examination of eigenmodes in a 2-D thermal equilibrium plasma and by that of the kinetic Alfven wave. (author)

  3. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  4. Low frequency, electrodynamic simulation of kinetic plasmas with the DArwin Direct Implicit Particle-In-Cell (DADIPIC) method

    International Nuclear Information System (INIS)

    Gibbons, M.R.

    1995-06-01

    This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell's equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents

  5. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    Science.gov (United States)

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinate

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Ridder, G. de; Sauter, O.; Tran, T.M.; Vaclavik, J.; Villard, L.; Appert, K.

    1997-08-01

    We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describing the instable spectrum of the ion-temperature-gradient modes in toroidal geometry. We formulate the Particle-In-Cell method with finite elements defined in magnetic coordinates, which provides excellent numerical convergence properties. The poloidal mode structure corresponding to k // =0 is extracted without approximation from the equations, which reduces drastically the numerical resolution needed. The code can simulate routinely modes with both very long and very short toroidal wavelengths, can treat realistic (MHD) equilibria of any size and runs on a massively parallel computer. (author) 10 figs., 28 refs

  7. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  8. Concurrent particle-in-cell plasma simulation on a multi-transputer parallel computer

    International Nuclear Information System (INIS)

    Khare, A.N.; Jethra, A.; Patel, Kartik

    1992-01-01

    This report describes the parallelization of a Particle-in-Cell (PIC) plasma simulation code on a multi-transputer parallel computer. The algorithm used in the parallelization of the PIC method is described. The decomposition schemes related to the distribution of the particles among the processors are discussed. The implementation of the algorithm on a transputer network connected as a torus is presented. The solutions of the problems related to global communication of data are presented in the form of a set of generalized communication functions. The performance of the program as a function of data size and the number of transputers show that the implementation is scalable and represents an effective way of achieving high performance at acceptable cost. (author). 11 refs., 4 figs., 2 tabs., appendices

  9. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    Science.gov (United States)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  10. Lattice-Boltzmann Method with Dynamic Grid Refinement for Simulating Particle Deposition on a Single Fibre

    Directory of Open Access Journals (Sweden)

    Helmut Schomburg

    2013-03-01

    Full Text Available In this work a numerical approach to predict the deposition behaviour of nano-scale particles on the surface of a single fibre by resolving the resulting dendrite-like particle structures in detail is presented. The gas flow simulation is carried out by a two-dimensional Lattice-Boltzmann method, which is coupled with a Lagrangian approach for the particle motion. To decrease calculation time and system requirements the Lattice-Boltzmann model is extended to allow for local grid refinement. Because of the a priori unknown location of deposition, the simulation procedure starts on a coarse mesh which is then locally refined in a fully adaptive way in regions of accumulated particles. After each deposition the fluid flow is recalculated in order to resolve the coupling of the flow with the growing particle structures correctly. For the purpose of avoiding unphysical blocking of flow by growing particle dendrites the Lattice-Boltzmann method is extended to permeable cells in these regions using the Brinkmann equation. This extended deposition model is compared to simpler approaches, where the deposit has no retroaction on the flow or is treated as a solid structure. It is clear that the permeable model is most realistic and allows considering the particle deposition on a fibre as two-dimensional problem. Comprehensive simulations were conducted for analysing the importance of different parameters, i.e. free-stream velocity and particle diameter on the deposit structure. The results of this sensitivity analysis agree qualitatively well with former published numerical and experimental results. Finally the structure of the particle deposit was quantitatively characterised by using a modified fractal dimension.

  11. Simulation of high-energy particle production through sausage and kink instabilities in pinched plasma discharges

    International Nuclear Information System (INIS)

    Haruki, Takayuki; Yousefi, Hamid Reza; Masugata, Katsumi; Sakai, Jun-Ichi; Mizuguchi, Yusuke; Makino, Nao; Ito, Hiroaki

    2006-01-01

    In an experimental plasma, high-energy particles were observed by using a plasma focus device, to obtain energies of a few hundred keV for electrons, up to MeV for ions. In order to study the mechanism of high-energy particle production in pinched plasma discharges, a numerical simulation was introduced. By use of a three-dimensional relativistic and fully electromagnetic particle-in-cell code, the dynamics of a Z-pinch plasma, thought to be unstable against sausage and kink instabilities, are investigated. In this work, the development of sausage and kink instabilities and subsequent high-energy particle production are shown. In the model used here, cylindrically distributed electrons and ions are driven by an external electric field. The driven particles spontaneously produce a current, which begins to pinch by the Lorentz force. Initially the pinched current is unstable against a sausage instability, and then becomes unstable against a kink instability. As a result high-energy particles are observed

  12. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    Science.gov (United States)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately

  13. An arbitrary curvilinear-coordinate method for particle-in-cell modeling

    International Nuclear Information System (INIS)

    Fichtl, C A; Finn, J M; Cartwright, K L

    2012-01-01

    A new approach to kinetic simulation of plasmas in complex geometries, based on the particle-in-cell (PIC) simulation method, is explored. In the two-dimensional (2D) electrostatic version of our method, called the arbitrary curvilinear-coordinate PIC method, all essential PIC operations are carried out in 2D on a uniform grid on the unit square logical domain, and mapped to a nonuniform boundary-fitted grid on the physical domain. As the resulting logical grid equations of motion are not separable, we have developed an extension of the semi-implicit modified leapfrog integration technique to preserve the symplectic nature of the logical grid particle mover. A generalized, curvilinear-coordinate formulation of Poisson's equations to solve for the electrostatic fields on the uniform logical grid is also developed. By our formulation, we compute the plasma charge density on the logical grid based on the particles' positions on the logical domain. That is, the plasma particles are weighted to the uniform logical grid and the self-consistent mean electrostatic fields obtained from the solution of the logical grid Poisson equation are interpolated to the particle positions on the logical grid. This process eliminates the complexity associated with the weighting and interpolation processes on the nonuniform physical grid and allows us to run the PIC method on arbitrary boundary-fitted meshes. (paper)

  14. Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions

    Science.gov (United States)

    Alves, E. Paulo; Mori, Warren; Fiuza, Frederico

    2017-10-01

    The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.

  15. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    International Nuclear Information System (INIS)

    Blandón, J S; Grisales, J P; Riascos, H

    2017-01-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed. (paper)

  16. HIDENEK: an implicit particle simulation of kinetic-MHD phenomena in three-dimensional plasmas

    International Nuclear Information System (INIS)

    Tanaka, Motohiko.

    1993-05-01

    An advanced 'kinetic-MHD' simulation method and its applications to plasma physics are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic processes associated with large space-scale, low-frequency electromagnetic phenomena of plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion for particle ions and guiding-center electrons are adopted. In order to retain only the low-frequency waves and instabilities, implicit particle-field equations are derived. The present implicit-particle method is proved to reproduce the MHD eigenmodes such as Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma. In the second part of the lecture, several physics applications are shown. These include not only the growth of the instabilities of beam ions against the background plasmas and helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability is also presented with a special emphasis on the mixing of plasma particles. (author)

  17. Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I ∼ 10 17 W/cm 2 by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated

  18. A Novel Microgravity Simulator Applicable for Three-Dimensional Cell Culturing

    Science.gov (United States)

    Wuest, Simon L.; Richard, Stéphane; Walther, Isabelle; Furrer, Reinhard; Anderegg, Roland; Sekler, Jörg; Egli, Marcel

    2014-10-01

    Random Positioning Machines (RPM) were introduced decades ago to simulate microgravity. Since then numerous experiments have been carried out to study its influence on biological samples. The machine is valued by the scientific community involved in space relevant topics as an excellent experimental tool to conduct pre-studies, for example, before sending samples into space. We have developed a novel version of the traditional RPM to broaden its operative range. This novel version has now become interesting to researchers who are working in the field of tissue engineering, particularly those interested in alternative methods for three-dimensional (3D) cell culturing. The main modifications concern the cell culture condition and the algorithm that controls the movement of the frames for the nullification of gravity. An incubator was integrated into the inner frame of the RPM allowing precise control over the cell culture environment. Furthermore, several feed-throughs now allow a permanent supply of gas like CO 2. All these modifications substantially improve conditions to culture cells; furthermore, the rewritten software responsible for controlling the movement of the frames enhances the quality of the generated microgravity. Cell culture experiments were carried out with human lymphocytes on the novel RPM model to compare the obtained response to the results gathered on an older well-established RPM as well as to data from space flights. The overall outcome of the tests validates this novel RPM for cell cultivation under simulated microgravity conditions.

  19. Multi-Algorithm Particle Simulations with Spatiocyte.

    Science.gov (United States)

    Arjunan, Satya N V; Takahashi, Koichi

    2017-01-01

    As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .

  20. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit

    International Nuclear Information System (INIS)

    Ren Junxue; Xie Kan; Qiu Qian; Tang Haibin; Li Juan; Tian Huabing

    2013-01-01

    Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the GPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1×10 6 . The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit

  1. The use of electromagnetic particle-in-cell codes in accelerator applications

    International Nuclear Information System (INIS)

    Eppley, K.

    1988-12-01

    The techniques developed for the numerical simulation of plasmas have numerous applications relevant to accelerators. The operation of many accelerator components involves transients, interactions between beams and rf fields, and internal plasma oscillations. These effects produce non-linear behavior which can be represented accurately by particle in cell (PIC) simulations. We will give a very brief overview of the algorithms used in PIC Codes. We will examine the range of parameters over which they are useful. We will discuss the factors which determine whether a two or three dimensional simulation is most appropriate. PIC codes have been applied to a wide variety of diverse problems, spanning many of the systems in a linear accelerator. We will present a number of practical examples of the application of these codes to areas such as guns, bunchers, rf sources, beam transport, emittance growth and final focus. 8 refs., 8 figs., 2 tabs

  2. Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations

    International Nuclear Information System (INIS)

    Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.; DiPeso, G.; Rognlien, T.D.

    1993-01-01

    Weakly ionized processing plasmas are studied in two dimensions using a bounded particle-in-cell (PIC) simulation code with a Monte Carlo collision (MCC) package. The MCC package models the collisions between charged and neutral particles, which are needed to obtain a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-dimensional capacitive radio-frequency (rf) discharge is investigated in detail. Simple frequency scaling laws for predicting the behavior of some plasma parameters are derived and then compared with simulation results, finding good agreements. It is found that as the drive frequency increases, the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduction of the ion angular spread at the target and an improvement of ion dose uniformity at the driven electrode

  3. Particle-In-Cell Simulations of Asymmetric Dual Frequency Capacitive Discharge Physics

    Science.gov (United States)

    Wu, Alan; Lichtenberg, A. J.; Lieberman, M. A.; Verboncoeur, J. P.

    2003-10-01

    Dual frequency capacitive discharges are finding increasing use for etching in the microelectronics industry. In the ideal case, the high frequency power (typically 27.1-160 MHz) controls the plasma density and the low frequency power (typically 2-13.56 MHz) controls the ion energy. The electron power deposition and the dynamics of dual frequency rf sheaths are not well understood. We report on particle-in-cell computer simulations of an asymmetric dual frequency argon discharge. The simulations are performed in 1D (radial) geometry using the bounded electrostatic code XPDP1. Operating parameters are 27.1/2 MHz high/low frequencies, 10/13 cm inner/outer radii, 3-200 mTorr pressures, and 10^9-10^11 cm-3 densities. We determine the power deposition and sheath dynamics for the high frequency power alone, and with various added low frequency powers. We compare the simulation results to simple global models of dual frequency discharges. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  4. photon-plasma: A modern high-order particle-in-cell code

    International Nuclear Information System (INIS)

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-01-01

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks

  5. A variational Bayesian multiple particle filtering scheme for large-dimensional systems

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-06-14

    This paper considers the Bayesian filtering problem in high-dimensional nonlinear state-space systems. In such systems, classical particle filters (PFs) are impractical due to the prohibitive number of required particles to obtain reasonable performances. One approach that has been introduced to overcome this problem is the concept of multiple PFs (MPFs), where the state-space is split into low-dimensional subspaces and then a separate PF is applied to each subspace. Remarkable performances of MPF-like filters motivated our investigation here into a new strategy that combines the variational Bayesian approach to split the state-space with random sampling techniques, to derive a new computationally efficient MPF. The propagation of each particle in the prediction step of the resulting filter requires generating only a single particle in contrast with standard MPFs, for which a set of (children) particles is required. We present simulation results to evaluate the behavior of the proposed filter and compare its performances against standard PF and a MPF.

  6. A variational Bayesian multiple particle filtering scheme for large-dimensional systems

    KAUST Repository

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2016-01-01

    This paper considers the Bayesian filtering problem in high-dimensional nonlinear state-space systems. In such systems, classical particle filters (PFs) are impractical due to the prohibitive number of required particles to obtain reasonable performances. One approach that has been introduced to overcome this problem is the concept of multiple PFs (MPFs), where the state-space is split into low-dimensional subspaces and then a separate PF is applied to each subspace. Remarkable performances of MPF-like filters motivated our investigation here into a new strategy that combines the variational Bayesian approach to split the state-space with random sampling techniques, to derive a new computationally efficient MPF. The propagation of each particle in the prediction step of the resulting filter requires generating only a single particle in contrast with standard MPFs, for which a set of (children) particles is required. We present simulation results to evaluate the behavior of the proposed filter and compare its performances against standard PF and a MPF.

  7. Revealing the sub-structures of the magnetic reconnection separatrix via particle-in-cell simulation

    International Nuclear Information System (INIS)

    Zhou, M.; Deng, X. H.; Pang, Y.; Xu, X. J.; Yao, M.; Huang, S. Y.; Yuan, Z. G.; Li, H. M.; Wang, D. D.; Wang, Y. H.

    2012-01-01

    Magnetic separatrix is an important boundary layer separating the inflow and outflow regions in magnetic reconnection. In this article, we investigate the sub-structures of the separatrix region by using two-and-half dimensional electromagnetic particle-in-cell simulation. The separatrix region can be divided into two sub-regions in terms of the ion and electron frozen-in conditions. Far from the neutral sheet, ions and electrons are magnetized in magnetic fields. Approaching the neutral sheet, ion frozen-in condition is broken in a narrow region (∼c/ω pi ) at the edge of a density cavity, while electrons are frozen-in to magnetic fields. In this region, electric field E z is around zero, and the convective term –(v i × B) is balanced by the Hall term in the generalized Ohm’s law because ions carry the perpendicular current. Inside the density cavity, both ion and electron frozen-in conditions are broken. The region consists of two sub-ion or electron-scale layers, which contain intense electric fields. Formation of the two sub-layers is due to the complex electron flow pattern around the separatrix region. In the layer, E z is balanced by a combination of Hall term and the divergence of electron pressure tensor, with the Hall term being dominant. Our preliminary simulation result shows that the separatrix region in guide field reconnection also contains two sub-regions: the inner region and the outer region. However, the inner region contains only one current layer in contrast with the case without guide field.

  8. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs

  9. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  10. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  11. Wavelet-Based Poisson Solver for Use in Particle-in-Cell Simulations

    CERN Document Server

    Terzic, Balsa; Mihalcea, Daniel; Pogorelov, Ilya V

    2005-01-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in 3D particle-in-cell simulations. One new aspect of our algorithm is its ability to treat the general (inhomogeneous) Dirichlet boundary conditions. The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modelling of the Fermilab/NICADD and AES/JLab photoinjectors.

  12. Wavelet-based Poisson Solver for use in Particle-In-Cell Simulations

    International Nuclear Information System (INIS)

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-01-01

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors

  13. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Wang, Liang; Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.

    2015-01-01

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed

  14. The Particle-in-Cell and Kinetic Simulation Software Center

    Science.gov (United States)

    Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; An, W.; Dalichaouch, T. N.; Davidson, A.; Hildebrand, L.; Joglekar, A.; May, J.; Miller, K.; Touati, M.; Xu, X. L.

    2017-10-01

    The UCLA Particle-in-Cell and Kinetic Simulation Software Center (PICKSC) aims to support an international community of PIC and plasma kinetic software developers, users, and educators; to increase the use of this software for accelerating the rate of scientific discovery; and to be a repository of knowledge and history for PIC. We discuss progress towards making available and documenting illustrative open-source software programs and distinct production programs; developing and comparing different PIC algorithms; coordinating the development of resources for the educational use of kinetic software; and the outcomes of our first sponsored OSIRIS users workshop. We also welcome input and discussion from anyone interested in using or developing kinetic software, in obtaining access to our codes, in collaborating, in sharing their own software, or in commenting on how PICKSC can better serve the DPP community. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  15. PARTICLE-IN-CELL SIMULATION OF A STRONG DOUBLE LAYER IN A NONRELATIVISTIC PLASMA FLOW: ELECTRON ACCELERATION TO ULTRARELATIVISTIC SPEEDS

    International Nuclear Information System (INIS)

    Dieckmann, Mark E.; Bret, Antoine

    2009-01-01

    Two charge- and current-neutral plasma beams are modeled with a one-dimensional particle-in-cell simulation. The beams are uniform and unbounded. The relative speed between both beams is 0.4c. One beam is composed of electrons and protons, and the other of protons and negatively charged oxygen (dust). All species have the temperature 9.1 keV. A Buneman instability develops between the electrons of the first beam and the protons of the second beam. The wave traps the electrons, which form plasmons. The plasmons couple energy into the ion acoustic waves, which trap the protons of the second beam. A structure similar to a proton phase-space hole develops, which grows through its interaction with the oxygen and the heated electrons into a rarefaction pulse. This pulse drives a double layer, which accelerates a beam of electrons to about 50 MeV, which is comparable to the proton kinetic energy. The proton distribution eventually evolves into an electrostatic shock. Beams of charged particles moving at such speeds may occur in the foreshock of supernova remnant (SNR) shocks. This double layer is thus potentially relevant for the electron acceleration (injection) into the diffusive shock acceleration by SNR shocks.

  16. Stochastic plasma heating by electrostatic waves: a comparison between a particle-in-cell simulation and a laboratory experiment

    International Nuclear Information System (INIS)

    Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.

    1993-08-01

    Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs

  17. Particle-in-cell simulations of the lasertron

    International Nuclear Information System (INIS)

    Jones, M.E.; Peter, W.K.

    1985-01-01

    The lasertron is a device (either rf or dc) for producing intense, very short, pulsed electron beams (tens of picoseconds). In the dc lasertron, a laser is pulsed repetitively onto a photoemissive cathode. In general, the current is not space-charge limited and follows the laser intensity. The electron pulse is then accelerated out of the device by a constant voltage. By using the laser the need for a subharmonic buncher is eliminated. In the rf lasertron, the diode becomes an rf cavity. This improves the breakdown characteristics of the device, allowing higher voltages to be applied and hence higher currents to be obtained. The calculations are aimed at producing a 10 nC electron beam with an emittance of less than 40π mm-mrad for use in free-electron laser experiments at Los Alamos. Other applications of the lasertron include efficient microwave or rf generation. A class of electrode shapes has been obtained which in the absence of space charge produces no emittance growth. These shapes have been studied with the particle-in-cell simulation model ISIS, and the electrodes which produce minimum emittance including the effect of space charge have been determined. Unique emittance problems associated with the time dependence of the beam pulse are studied and conditions for reducing these effects are discussed. 5 refs., 5 figs

  18. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  19. Optimization of Particle Search Algorithm for CFD-DEM Simulations

    Directory of Open Access Journals (Sweden)

    G. Baryshev

    2013-09-01

    Full Text Available Discrete element method has numerous applications in particle physics. However, simulating particles as discrete entities can become costly for large systems. In time-driven DEM simulation most computation time is taken by contact search stage. We propose an efficient collision detection method which is based on sorting particles by their coordinates. Using multiple sorting criteria allows minimizing number of potential neighbours and defines fitness of this approach for simulation of massive systems in 3D. This method is compared to a common approach that consists of placing particles onto a grid of cells. Advantage of the new approach is independence of simulation parameters upon particle radius and domain size.

  20. Explicit simulation of ice particle habits in a Numerical Weather Prediction Model

    Science.gov (United States)

    Hashino, Tempei

    2007-05-01

    This study developed a scheme for explicit simulation of ice particle habits in Numerical Weather Prediction (NWP) Models. The scheme is called Spectral Ice Habit Prediction System (SHIPS), and the goal is to retain growth history of ice particles in the Eulerian dynamics framework. It diagnoses characteristics of ice particles based on a series of particle property variables (PPVs) that reflect history of microphysieal processes and the transport between mass bins and air parcels in space. Therefore, categorization of ice particles typically used in bulk microphysical parameterization and traditional bin models is not necessary, so that errors that stem from the categorization can be avoided. SHIPS predicts polycrystals as well as hexagonal monocrystals based on empirically derived habit frequency and growth rate, and simulates the habit-dependent aggregation and riming processes by use of the stochastic collection equation with predicted PPVs. Idealized two dimensional simulations were performed with SHIPS in a NWP model. The predicted spatial distribution of ice particle habits and types, and evolution of particle size distributions showed good quantitative agreement with observation This comprehensive model of ice particle properties, distributions, and evolution in clouds can be used to better understand problems facing wide range of research disciplines, including microphysics processes, radiative transfer in a cloudy atmosphere, data assimilation, and weather modification.

  1. Three-dimensional electromagnetic solitary waves in an underdense plasma in PIC simulations

    International Nuclear Information System (INIS)

    Bulanov, Sergei; Esirkepov, Timur; Nishihara, Katsunobu; Pegoraro, Francesco

    2002-01-01

    A three-dimensional sub-cycle relativistic electromagnetic soliton has been observed for the first time in a 3D Particle-in-Cell simulation of the propagation of an intense short laser pulse in an underdense plasma. The structure of the 3D soliton is identified. It resembles an oscillating electric dipole and has a strong charge separation and toroidal magnetic field component. We call this structure a TM-soliton (transverse magnetic). The 3D TM-soliton resembles a 2D P-soliton in the plane of electric field polarization, and a 2D S-soliton in the perpendicular plane. The core of the soliton is positively charged on average in time, and this results in its Coulomb explosion and in ion heating. Then the soliton evolves into a post-soliton, which is a slowly expanding quasi-neutral cavity in the plasma

  2. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach.

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, Willem J.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision

  3. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  4. Fabricating large two-dimensional single colloidal crystals by doping with active particles

    NARCIS (Netherlands)

    van der Meer, B; Filion, L; Dijkstra, M

    2016-01-01

    Using simulations we explore the behaviour of two-dimensional colloidal (poly)crystals doped with active particles. We show that these active dopants can provide an elegant new route to removing grain boundaries in polycrystals. Specifically, we show that active dopants both generate and are

  5. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Weber, F.J.; Briels, W.J.; Boom, R.M.; Rinzema, A.

    2002-01-01

    A previously published two-dimensional discrete particle simulation model for radial mixing behavior of various slowly rotating drums for solid-state fermentation (SSF) has been extended to a three-dimensional model that also predicts axial mixing. Radial and axial mixing characteristics were

  6. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    International Nuclear Information System (INIS)

    Peng, Ivy Bo; Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-01-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration

  7. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  8. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-01-01

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  9. Mesh Refinement for Particle-In-Cell Plasma Simulations: Applications to - and benefits for - Heavy-Ion-Fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion. In particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at LBNL between the Applied Numerical Algorithms Group (ANAG) and the HIF group to couple the Adaptive Mesh Refinement (AMR) library (CHOMBO) developed by the ANAG group to the Particle-In-Cell accelerator code WARP developed by the HIF-VNL. They describe their progress and present their initial findings

  10. Cell-centered particle weighting algorithm for PIC simulations in a non-uniform 2D axisymmetric mesh

    Science.gov (United States)

    Araki, Samuel J.; Wirz, Richard E.

    2014-09-01

    Standard area weighting methods for particle-in-cell simulations result in systematic errors on particle densities for a non-uniform mesh in cylindrical coordinates. These errors can be significantly reduced by using weighted cell volumes for density calculations. A detailed description on the corrected volume calculations and cell-centered weighting algorithm in a non-uniform mesh is provided. The simple formulas for the corrected volume can be used for any type of quadrilateral and/or triangular mesh in cylindrical coordinates. Density errors arising from the cell-centered weighting algorithm are computed for radial density profiles of uniform, linearly decreasing, and Bessel function in an adaptive Cartesian mesh and an unstructured mesh. For all the density profiles, it is shown that the weighting algorithm provides a significant improvement for density calculations. However, relatively large density errors may persist at outermost cells for monotonically decreasing density profiles. A further analysis has been performed to investigate the effect of the density errors in potential calculations, and it is shown that the error at the outermost cell does not propagate into the potential solution for the density profiles investigated.

  11. Horizons in 2+1-dimensional collapse of particles

    Indian Academy of Sciences (India)

    A simple, geometrical construction is given for three-dimensional spacetimes with negative cosmological constant that contain two particles colliding head-on. Depending on parameters like particle masses and distance, the combined geometry will be that of a particle, or of a black hole. In the black hole case the horizon is ...

  12. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  13. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    Science.gov (United States)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  14. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...

  15. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell

    OpenAIRE

    Miyoshi, Kota; Iwai, Hiroshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2016-01-01

    A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering chromium poisoning on the cathode side has been developed to investigate the evolution of the SOFC performance over long-term operation. The degradation model applied in the simulation describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium manganite (LSM)/yttria-sta...

  16. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Simulation study of effects of initial particle size distribution on dissolution

    International Nuclear Information System (INIS)

    Wang, G.; Xu, D.S.; Ma, N.; Zhou, N.; Payton, E.J.; Yang, R.; Mills, M.J.; Wang, Y.

    2009-01-01

    Dissolution kinetics of γ' particles in binary Ni-Al alloys with different initial particle size distributions (PSD) is studied using a three-dimensional (3D) quantitative phase field model. By linking model inputs directly to thermodynamic and atomic mobility databases, microstructural evolution during dissolution is simulated in real time and length scales. The model is first validated against analytical solution for dissolution of a single γ' particle in 1D and numerical solution in 3D before it is applied to investigate the effects of initial PSD on dissolution kinetics. Four different types of PSD, uniform, normal, log-normal and bimodal, are considered. The simulation results show that the volume fraction of γ' particles decreases exponentially with time, while the temporal evolution of average particle size depends strongly on the initial PSD

  18. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  19. Hybrid three-dimensional variation and particle filtering for nonlinear systems

    International Nuclear Information System (INIS)

    Leng Hong-Ze; Song Jun-Qiang

    2013-01-01

    This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations. We present a hybrid three-dimensional variation (3DVar) and particle piltering (PF) method, which combines the advantages of 3DVar and particle-based filters. By minimizing the cost function, this approach will produce a better proposal distribution of the state. Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme. The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering (EnKF) and the standard PF, especially in highly nonlinear systems

  20. Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions

    Directory of Open Access Journals (Sweden)

    Riconda C.

    2013-11-01

    Full Text Available Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS, and Brillouin- (SBS, side/backscattering as well as Two-Plasmon-Decay (TPD are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.

  1. A deformable particle-in-cell method for advective transport in geodynamic modeling

    Science.gov (United States)

    Samuel, Henri

    2018-06-01

    This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.

  2. Particle Simulation of Fractional Diffusion Equations

    KAUST Repository

    Allouch, Samer

    2017-07-12

    This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.

  3. Particle Simulation of Fractional Diffusion Equations

    KAUST Repository

    Allouch, Samer; Lucchesi, Marco; Maî tre, O. P. Le; Mustapha, K. A.; Knio, Omar

    2017-01-01

    This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green's function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.

  4. Viscosity of dilute suspensions of rodlike particles: A numerical simulation method

    Science.gov (United States)

    Yamamoto, Satoru; Matsuoka, Takaaki

    1994-02-01

    The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.

  5. Fractional variational problems and particle in cell gyrokinetic simulations with fuzzy logic approach for tokamaks

    Directory of Open Access Journals (Sweden)

    Rastović Danilo

    2009-01-01

    Full Text Available In earlier Rastovic's papers [1] and [2], the effort was given to analyze the stochastic control of tokamaks. In this paper, the deterministic control of tokamak turbulence is investigated via fractional variational calculus, particle in cell simulations, and fuzzy logic methods. Fractional integrals can be considered as approximations of integrals on fractals. The turbulent media could be of the fractal structure and the corresponding equations should be changed to include the fractal features of the media.

  6. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    Science.gov (United States)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  7. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    International Nuclear Information System (INIS)

    Choi, Young Joon; Djilali, Ned

    2016-01-01

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified

  8. Optimization of the particle pusher in a diode simulation code

    International Nuclear Information System (INIS)

    Theimer, M.M.; Quintenz, J.P.

    1979-09-01

    The particle pusher in Sandia's particle-in-cell diode simulation code has been rewritten to reduce the required run time of a typical simulation. The resulting new version of the code has been found to run up to three times as fast as the original with comparable accuracy. The cost of this optimization was an increase in storage requirements of about 15%. The new version has also been written to run efficiently on a CRAY-1 computing system. Steps taken to affect this reduced run time are described. Various test cases are detailed

  9. Voro++: a three-dimensional Voronoi cell library in C++

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris

    2009-01-15

    Voro++ is a free software library for the computation of three dimensional Voronoi cells. It is primarily designed for applications in physics and materials science, where the Voronoi tessellation can be a useful tool in the analysis of densely-packed particle systems, such as granular materials or glasses. The software comprises of several C++ classes that can be modified and incorporated into other programs. A command-line utility is also provided that can use most features of the code. Voro++ makes use of a direct cell-by-cell construction, which is particularly suited to handling special boundary conditions and walls. It employs algorithms which are tolerant for numerical precision errors, and it has been successfully employed on very large particle systems.

  10. PRIAM: A self consistent finite element code for particle simulation in electromagnetic fields

    International Nuclear Information System (INIS)

    Le Meur, G.; Touze, F.

    1990-06-01

    A 2 1/2 dimensional, relativistic particle simulation code is described. A short review of the used mixed finite element method is given. The treatment of the driving terms (charge and current densities), initial, boundary conditions are exposed. Graphical results are shown

  11. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  12. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    Science.gov (United States)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  13. Simulation of bluff-body flows using iterative penalization in a multiresolution particle-mesh vortex method

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Hejlesen, Mads Mølholm; Walther, Jens Honore

    in the oncoming flow. This may lead to structural instability e.g. when the shedding frequency aligns with the natural frequency of the structure. Fluid structure interaction must especially be considered when designing long span bridges. A three dimensional vortex-in-cell method is applied for the direct......The ability to predict aerodynamic forces, due to the interaction of a fluid flow with a solid body, is central in many fields of engineering and is necessary to identify error-prone structural designs. In bluff-body flows the aerodynamic forces oscillate due to vortex shedding and variations...... numerical simulation of the flow past a bodies of arbitrary shape. Vortex methods use a simple formulation where only the trajectories of discrete vortex particles are simulated. The Lagrangian formulation eliminates the CFL type condition that Eulerian methods have to satisfy. This allows vortex methods...

  14. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    International Nuclear Information System (INIS)

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  15. Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Bai Lu

    2014-01-01

    Full Text Available During solar cell firing, volatile organic compounds (VOC and a small number of metal particles were removed using the gas flow. When the gas flow was disturbed by the thermal field of infrared belt furnace and structure, the metal particles in the discharging gas flow randomly adhered to the surface of solar cell, possibly causing contamination. Meanwhile, the gas flow also affected the thermal uniformity of the solar cell. In this paper, the heating mechanism of the solar cell caused by radiation, convection, and conduction during firing was analyzed. Afterward, four 2-dimensional (2D models of the furnace were proposed. The transient thermal fields with different gas inlets, outlets, and internal structures were simulated. The thermal fields and the temperature of the solar cell could remain stable and uniform when the gas outlets were installed at the ends and in the middle of the furnace, with the gas inlets being distributed evenly. To verify the results, we produced four types of furnaces according to the four simulated results. The experimental results indicated that the thermal distribution of the furnace and the characteristics of the solar cells were consistent with the simulation. These experiments improved the efficiency of the solar cells while optimizing the solar cell manufacturing equipment.

  16. Graphics processing unit accelerated three-dimensional model for the simulation of pulsed low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fierro, Andrew, E-mail: andrew.fierro@ttu.edu; Dickens, James; Neuber, Andreas [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-12-15

    A 3-dimensional particle-in-cell/Monte Carlo collision simulation that is fully implemented on a graphics processing unit (GPU) is described and used to determine low-temperature plasma characteristics at high reduced electric field, E/n, in nitrogen gas. Details of implementation on the GPU using the NVIDIA Compute Unified Device Architecture framework are discussed with respect to efficient code execution. The software is capable of tracking around 10 × 10{sup 6} particles with dynamic weighting and a total mesh size larger than 10{sup 8} cells. Verification of the simulation is performed by comparing the electron energy distribution function and plasma transport parameters to known Boltzmann Equation (BE) solvers. Under the assumption of a uniform electric field and neglecting the build-up of positive ion space charge, the simulation agrees well with the BE solvers. The model is utilized to calculate plasma characteristics of a pulsed, parallel plate discharge. A photoionization model provides the simulation with additional electrons after the initial seeded electron density has drifted towards the anode. Comparison of the performance benefits between the GPU-implementation versus a CPU-implementation is considered, and a speed-up factor of 13 for a 3D relaxation Poisson solver is obtained. Furthermore, a factor 60 speed-up is realized for parallelization of the electron processes.

  17. Study on Characteristics of Constricted DC Plasma Using Particle-In-Cell Simulator

    International Nuclear Information System (INIS)

    Jo, Jong Gap; Park, Yeong Shin; Hwang, Yong Seok

    2010-01-01

    In dc glow discharge, when anode size is smaller than cathode, very small and bright plasma ball occurs in front of anode. This plasma is called constricted dc plasma and characterized by a high plasma density in positive glow, so called plasma ball, compared to the conventional dc plasma. For the reason, this plasma is utilized to ion or electron beam sources since the beam currents are enhanced by the dense anode glow. However, correlations between characteristics of the plasma (plasma density, electron temperature and space potential) and discharge conditions (anode size, discharge voltage, discharge current, pressure) have been a little investigated definitely clear in previous study because of the trouble of a diagnosis. The plasma ball which is the most essential part of the constricted plasma is too small to diagnose precisely without disturbing plasma. Therefore, we tried to analyze the constricted plasma through computer simulation with Particle-In-Cell (PIC) code. In this study, simulation result of constricted dc plasma as well as conventional dc glow discharge will be addressed and compared with each others

  18. Three-dimensional simulation of flow and combustion for pulverised coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.Y.; Zulli, P.; Rogers, H.; Mathieson, J.G.; Yu, A.B. [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    A three-dimensional numerical model of pulverised coal injection has been developed for simulating coal flow and combustion in the tuyere and raceway of a blast furnace. The model has been used to simulate previously reported combustion tests, which feature an inclined co-axial lance with an annular cooling gas. The predicted coal burnout agrees well with that measured for three coals with volatile contents and particle size ranging between 20.2-36.4% and particle sizes 1-200 {mu}m. Many important phenomena including flow asymmetry, recirculating flow and particle dispersion in the combustion chamber have been predicted. The current model can reproduce the experimental observations including the effects on burnout of coal flowrate and the introduction of methane for lance cooling.

  19. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.

    2005-01-01

    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method......, and a spatial polarization-encoding scheme. Our experiments genuinely demonstrate real-time, interactive particle-position control for forming arbitrary volumetric constellations and complex three-dimensional trajectories of multiple particles. This opens up doors for cross-disciplinary cutting-edge research...

  20. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures

    NARCIS (Netherlands)

    Avci, Civan; Imaz, Inhar; Carné-Sánchez, Arnau; Pariente, Jose Angel; Tasios, Nikos; Pérez-Carvajal, Javier; Alonso, Maria Isabel; Blanco, Alvaro; Dijkstra, M.; López, Cefe; Maspoch, Daniel

    Self-assembly of particles into long-range, three-dimensional, ordered superstructures is crucial for the design of a variety of materials, including plasmonic sensing materials, energy or gas storage systems, catalysts and photonic crystals. Here, we have combined experimental and simulation data

  1. Development of a particle method of characteristics (PMOC) for one-dimensional shock waves

    Science.gov (United States)

    Hwang, Y.-H.

    2018-03-01

    In the present study, a particle method of characteristics is put forward to simulate the evolution of one-dimensional shock waves in barotropic gaseous, closed-conduit, open-channel, and two-phase flows. All these flow phenomena can be described with the same set of governing equations. The proposed scheme is established based on the characteristic equations and formulated by assigning the computational particles to move along the characteristic curves. Both the right- and left-running characteristics are traced and represented by their associated computational particles. It inherits the computational merits from the conventional method of characteristics (MOC) and moving particle method, but without their individual deficiencies. In addition, special particles with dual states deduced to the enforcement of the Rankine-Hugoniot relation are deliberately imposed to emulate the shock structure. Numerical tests are carried out by solving some benchmark problems, and the computational results are compared with available analytical solutions. From the derivation procedure and obtained computational results, it is concluded that the proposed PMOC will be a useful tool to replicate one-dimensional shock waves.

  2. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  3. A Coulomb collision algorithm for weighted particle simulations

    Science.gov (United States)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  4. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10 17 W/cm 2 . The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of ∼10 17 W/cm 2 by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function

  5. Simulation of the relationship between porosity and tortuosity in porous media with cubic particles

    International Nuclear Information System (INIS)

    Tang Xiao-Wu; Sun Zu-Feng; Cheng Guan-Chu

    2012-01-01

    Tortuosity is an important parameter used in areas such as vascular medicine, neurobiology, and the field of soil permeability and diffusion to express the mass transport in porous media. It is a function of the porosity and the shape and distribution of particles. In this paper, the tortuosity of cubic particles is calculated. With the assumption that the porous medium is homogeneous, the problem is converted to the micro-level over a unit cell, and geometry models of flow paths are proposed. In three-dimensional (3D) cells, the flow paths are too complicated to define. Hence, the 3D models are converted to two-dimensional (2D) models to simplify the calculation process. It is noticed that the path in the 2D model is shorter than that in the 3D model. As a result, triangular particles and the interaction are also taken into consideration to account for the longer distance respectively. We have proposed quadrate particle and interaction (QI) and quadrate and triangular particle (QT) models with cubic particles. Both models have shown good agreement with the experimental data. It is also found that they can predict the toruosities of some kinds of porous media, like freshwater sediment and Negev chalk

  6. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    International Nuclear Information System (INIS)

    Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.

    2014-01-01

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed

  7. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  8. Three-dimensional Virtual Simulation of Oil Spill of Yangtze River in Chongqing Area Based on Emergency Decision

    Science.gov (United States)

    Chen, Shuzhe; Huang, Liwen

    the river of Yangtze River in Chongqing area is continuous curved. Hydrology and channel situation is complex, and the transportation is busy. With the increasing of shipments of hazardous chemicals year by year, oil spill accident risk is rising. So establishment of three-dimensional virtual simulation of oil spill and its application in decision-making has become an urgent task. This paper detailed the process of three-dimensional virtual simulation of oil spill and established a system of three-dimensional virtual Simulation of oil spill of Yangtze River in Chongqing area by establishing an oil spill model of the Chongqing area based on oil particles model, and the system has been used in emergency decision to provide assistance for the oil spill response.

  9. Implementation of a 3D plasma particle-in-cell code on a MIMD parallel computer

    International Nuclear Information System (INIS)

    Liewer, P.C.; Lyster, P.; Wang, J.

    1993-01-01

    A three-dimensional plasma particle-in-cell (PIC) code has been implemented on the Intel Delta MIMD parallel supercomputer using the General Concurrent PIC algorithm. The GCPIC algorithm uses a domain decomposition to divide the computation among the processors: A processor is assigned a subdomain and all the particles in it. Particles must be exchanged between processors as they move. Results are presented comparing the efficiency for 1-, 2- and 3-dimensional partitions of the three dimensional domain. This algorithm has been found to be very efficient even when a large fraction (e.g. 30%) of the particles must be exchanged at every time step. On the 512-node Intel Delta, up to 125 million particles have been pushed with an electrostatic push time of under 500 nsec/particle/time step

  10. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    Science.gov (United States)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  11. Dynamic Simulation of Random Packing of Polydispersive Fine Particles

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário

    2018-02-01

    In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.

  12. Simulation of radiation effects on three-dimensional computer optical memories

    Science.gov (United States)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  13. Particle-in-cell vs straight line Gaussian calculations for an area of complex topography

    International Nuclear Information System (INIS)

    Lange, R.; Sherman, C.

    1977-01-01

    Two numerical models for the calculation of time integrated air concentraton and ground deposition of airborne radioactive effluent releases are compared. The time dependent Particle-in-Cell (PIC) model and the steady state Gaussian plume model were used for the simulation. The area selected for the comparison was the Hudson River Valley, New York. Input for the models was synthesized from meteorological data gathered in previous studies by various investigators. It was found that the PIC model more closely simulated the three-dimensional effects of the meteorology and topography. Overall, the Gaussian model calculated higher concentrations under stable conditions. In addition, because of its consideration of exposure from the returning plume after flow reversal, the PIC model calculated air concentrations over larger areas than did the Gaussian model

  14. Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance

    International Nuclear Information System (INIS)

    Batygin, Yuri K.

    2001-01-01

    A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given

  15. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification

    Directory of Open Access Journals (Sweden)

    Dongjia Cao

    2017-12-01

    Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.

  16. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  17. Particle-in-cell Simulation of Dipolarization Front Associated Whistlers

    Science.gov (United States)

    Lin, D.; Scales, W.; Ganguli, G.; Crabtree, C. E.

    2017-12-01

    Dipolarization fronts (DFs) are dipolarized magnetic field embedded in the Earthward propagating bursty bulk flows (BBFs), which separates the hot, tenuous high-speed flow from the cold, dense, and slowly convecting surrounding plasma [Runov et al. 2011]. Broadband fluctuations have been observed at DFs including the electromagnetic whistler waves and electrostatic lower hybrid waves in the Very Low Frequency (VLF) range [e.g., Zhou et al. 2009, Deng et al. 2010]. There waves are suggested to be able heat electrons and play a critical role in the plasma sheet dynamics [Chaston et al., 2012, Angelopoulos et al., 2013]. However, their generation mechanism and role in the energy conversion are still under debate. The gradient scale of magnetic field, plasma density at DFs in the near-Earth magnetotail is comparable to or lower than the ion gyro radius [Runov et al., 2011, Fu et al., 2012, Breuillard et al., 2016]. Such strongly inhomogeneous configuration could be unstable to the electron-ion hybrid (EIH) instability, which arises from strongly sheared transverse flow and is in the VLF range [Ganguli et al. 1988, Ganguli et al. 2014]. The equilibrium of the EIH theory implies an anisotropy of electron temperature, which are likely to drive the whistler waves observed in DFs [Deng et al., 2010, Gary et al., 2011]. In order to better understand how the whistler waves are generated in DFs and whether the EIH theory is applicable, a fully electromagnetic particle-in-cell (EMPIC) model is used to simulate the EIH instability with similar equilibrium configurations in DF observations. The EMPIC model deals with three dimensions in the velocity space and two dimensions in the configuration space, which is quite ready to include the third configuration dimension. Simulation results will be shown in this presentation.

  18. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  19. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms

    International Nuclear Information System (INIS)

    Ethier, S; Tang, W M; Lin, Z

    2005-01-01

    Since its introduction in the early 1980s, the gyrokinetic particle-in-cell (PIC) method has been very successfully applied to the exploration of many important kinetic stability issues in magnetically confined plasmas. Its self-consistent treatment of charged particles and the associated electromagnetic fluctuations makes this method appropriate for studying enhanced transport driven by plasma turbulence. Advances in algorithms and computer hardware have led to the development of a parallel, global, gyrokinetic code in full toroidal geometry, the gyrokinetic toroidal code (GTC), developed at the Princeton Plasma Physics Laboratory. It has proven to be an invaluable tool to study key effects of low-frequency microturbulence in fusion plasmas. As a high-performance computing applications code, its flexible mixed-model parallel algorithm has allowed GTC to scale to over a thousand processors, which is routinely used for simulations. Improvements are continuously being made. As the US ramps up its support for the International Tokamak Experimental Reactor (ITER), the need for understanding the impact of turbulent transport in burning plasma fusion devices is of utmost importance. Accordingly, the GTC code is at the forefront of the set of numerical tools being used to assess and predict the performance of ITER on critical issues such as the efficiency of energy confinement in reactors

  20. Computer simulation of phenomena in plasma via particles

    International Nuclear Information System (INIS)

    Alves, M.V.; Bittencourt, J.A.

    1988-06-01

    The method of plasma computer simulation via particles has become an efficient tool to investigate the time and spatial evolution of various physical phenomena in plasmas. This method is based on the study of the individual plasma particle motions interacting with one another and with the externally applied fields. Although fairly simple, it allows a non-linear analysis of complex plasma physical phenomena and to obtain diagnostics even for regions of the system where experimental measurements would be difficult to make. In this report, a general view of the electrostatic one-dimensional computer code ES1, originally developed by A. Bruce Langdon, is presented. The main mathematical artifice in this code is the use of a spatial grid in which various plasma particles are represented by ''superparticles'', using a given shape function. The principal characteristics of the model, the approximations made and the mathematical methods used to solve the equations involved, are described. The specification of the input parameters which characterize the system, the initial conditions and the graphic diagnostics which can be utilized, are also described. Results are presented illustrating graphically the behavior of the plasma oscillations, the two-stream instability and the beam-plasma instability. (author) [pt

  1. Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA enabled graphics processing unit

    Science.gov (United States)

    Sewell, Stephen

    This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.

  2. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    Energy Technology Data Exchange (ETDEWEB)

    PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.

  3. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    International Nuclear Information System (INIS)

    Plimpton, Steven J.; Seidel, David B.; Pasik, Michael F.; Coats, Rebecca S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER

  4. Radiation in Particle Simulations

    International Nuclear Information System (INIS)

    More, R.; Graziani, F.; Glosli, J.; Surh, M.

    2010-01-01

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of

  5. Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles

    Directory of Open Access Journals (Sweden)

    M. Shoaib

    2011-01-01

    Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.

  6. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  7. Simulation of dust-acoustic waves

    International Nuclear Information System (INIS)

    Winske, D.; Murillo, M.S.; Rosenberg, M.

    1998-01-01

    The authors use molecular dynamics (MD) and particle-in-cell (PIC) simulation methods to investigate the dispersion relation of dust-acoustic waves in a one-dimensional, strongly coupled (Coulomb coupling parameter Λ = ratio of the Coulomb energy to the thermal energy = 120) dusty plasma. They study both cases where the dust is represented by a small number of simulation particles that form into a regular array structure (crystal limit) as well as where the dust is represented by a much larger number of particles (fluid limit)

  8. E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory

    Science.gov (United States)

    Boeuf, J. P.; Garrigues, L.

    2018-06-01

    The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical

  9. Three-dimensional growth simulation: A study of substrate oriented films

    International Nuclear Information System (INIS)

    Besnard, A; Martin, N; Carpentier, L

    2010-01-01

    Monte Carlo simulations are developed to simulate the growth of three-dimensional columnar microstructure in thin films. We are studying in particular oriented microstructure like those produced with the Glancing Angle Deposition technique (GLAD). Some geometrical characteristics of the particles flux, the organization of defect sites on the substrate surface and the atomic surface diffusion are mainly investigated in order to predict the growth processes and the resulting features of the films. This study reports on simulations of thin film growth exhibiting an oblique and zigzag columnar microstructure. Column angle evolution and density are investigated versus incidence angle α or period number n and compared with experimental measurements.

  10. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  11. Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Fadaei, M.; Mohammadi, R.; Ghassemi, M.

    2014-01-01

    Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data

  12. Role of cell deformability in the two-dimensional melting of biological tissues

    Science.gov (United States)

    Li, Yan-Wei; Ciamarra, Massimo Pica

    2018-04-01

    The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.

  13. Particle-in-cell simulation for the effect of segmented electrodes near the exit of an aton-type Hall thruster on ion focusing acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, D.R.; Qing, S.W.; Liu, H.; Li, H. [Lab. of Plasma Propulsion, Harbin Institute of Technology (China)

    2011-12-15

    The effect of floating conductive electrodes near the channel exit of an Aton-type Hall thruster on ion focusing acceleration is studied by simulating the two-dimensional plasma flow with a fully kinetic Particle-in-Cell method for the gas flow rate j{sub a} ranged in 1{proportional_to}3 mg/s. Numerical results show that low-emissive electrodes can reduce plume divergence if the electrode length is less than 2 mm due to the low secondary electron emissive characteristic, but widen plume in all the gas flow rate range if the electrode length is greater than 2mm since the conductive property of segmented electrodes trends to make equipotential lines convex toward channel exit and is even parallel to the wall surface in the near-wall region. Further investigation predicts that the combination of high emissive dielectric wall and segmented low-emissive dielectric wall is a promising way to reduce plume divergence (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Performance of nitrogen-doped graphene aerogel particle electrodes for electro-catalytic oxidation of simulated Bisphenol A wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuang [Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Labortory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215026 (China); Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Labortory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215026 (China); Zhou, Lincheng; Zhu, Hao; Wan, Fei; Wang, Yue [Labortory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215026 (China); Zhang, Dandan [Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2017-06-15

    Highlights: • The new three-dimensional electrode system with the nitrogen-doped graphene aerogels particle electrodes is developed. • The optimal technique parameters were explored. • Simulated BPA waste waters are effectively degraded. • Degradation pathway and intermediates are proposed. • Three-dimensional electrode system shows good and stable removal performance. - Abstract: The treatment of effluent containing Bisphenol A (BPA) was investigated experimentally using nitrogen-doped graphene aerogel (NGAs) as particle electrodes in a three-dimensional electrode reactor for the electrochemical treatment was studied. The effects of the cell voltage, pH, the ratio of NGAs mass to solution volume and repeated times on the removal efficiency were investigated. Compared with commercial carbon particle electrodes, the NGAs exhibited stronger activity to remove BPA simulated wastewater. For 15 mg L{sup −1} of BPA solution, the degradation rate of BPA exceeded 90% after treatment for only 30 min under the optimum conditions. The COD{sub Cr} removal rate of BPA was 85%. Moreover, in the process of reused 50 times, the degradation rate of BPA can be kept in more than 85%. The COD{sub Cr} removal rate was stable at about 73%. The intermediate products of electrochemical degradation of BPA were identified by liquid chromatography-mass spectrometry liquid chromatography (LC–MS), and a probable BPA degradation pathway was proposed. It was considered that ·OH radicals by water electrolysis could constantly attack the aromatic ring to form various intermediates such as hydroxylated-BPA, isopropylphenol, hydroquinone, phenol and butantetraol, maleic acid, oxalic acid. These compounds were eventually mineralized by electrolysis into CO{sub 2} and H{sub 2}O.

  15. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  16. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  17. Simulation of radiation effects on three-dimensional computer optical memories

    International Nuclear Information System (INIS)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle close-quote s track axis may be lost. The magnitude of the effect is dependent on the particle close-quote s track structure. copyright 1997 American Institute of Physics

  18. Artificial cooling due to quiet injection in bounded plasma particle simulations

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1988-01-01

    An explanation is proposed for an artificial cooling effect seen in electrostatic particle-in-cell plasma simulations. The effect hinges on heat transport from the trapped electrons to fluctuations of the electric field, which are kept at a sub-thermal level through the continuous ''quiet'' injection of passing electrons. Further simulations are done which test and support the explanation. copyright 1988 Academic Press, Inc

  19. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.

    1991-01-01

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  20. Statistics, distillation, and ordering emergence in a two-dimensional stochastic model of particles in counterflowing streams

    Science.gov (United States)

    Stock, Eduardo Velasco; da Silva, Roberto; Fernandes, H. A.

    2017-07-01

    In this paper, we propose a stochastic model which describes two species of particles moving in counterflow. The model generalizes the theoretical framework that describes the transport in random systems by taking into account two different scenarios: particles can work as mobile obstacles, whereas particles of one species move in the opposite direction to the particles of the other species, or particles of a given species work as fixed obstacles remaining in their places during the time evolution. We conduct a detailed study about the statistics concerning the crossing time of particles, as well as the effects of the lateral transitions on the time required to the system reaches a state of complete geographic separation of species. The spatial effects of jamming are also studied by looking into the deformation of the concentration of particles in the two-dimensional corridor. Finally, we observe in our study the formation of patterns of lanes which reach the steady state regardless of the initial conditions used for the evolution. A similar result is also observed in real experiments involving charged colloids motion and simulations of pedestrian dynamics based on Langevin equations, when periodic boundary conditions are considered (particles counterflow in a ring symmetry). The results obtained through Monte Carlo simulations and numerical integrations are in good agreement with each other. However, differently from previous studies, the dynamics considered in this work is not Newton-based, and therefore, even artificial situations of self-propelled objects should be studied in this first-principles modeling.

  1. Large eddy simulation modeling of particle-laden flows in complex terrain

    Science.gov (United States)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  2. Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth

    International Nuclear Information System (INIS)

    Akaiwa, N.; Meiron, D.I.

    1995-01-01

    Numerical simulations of two-dimensional late-stage coarsening for nucleation and growth or Ostwald ripening are performed at area fractions 0.05 to 0.4 using the monopole and dipole approximations of a boundary integral formulation for the steady state diffusion equation. The simulations are performed using two different initial spatial distributions. One is a random spatial distribution, and the other is a random spatial distribution with depletion zones around the particles. We characterize the spatial correlations of particles by the radial distribution function, the pair correlation functions, and the structure function. Although the initial spatial correlations are different, we find time-independent scaled correlation functions in the late stage of coarsening. An important feature of the late-stage spatial correlations is that depletion zones exist around particles. A log-log plot of the structure function shows that the slope at small wave numbers is close to 4 and is -3 at very large wave numbers for all area fractions. At large wave numbers we observe oscillations in the structure function. We also confirm the cubic growth law of the average particle radius. The rate constant of the cubic growth law and the particle size distribution functions are also determined. We find qualitatively good agreement between experiments and the present simulations. In addition, the present results agree well with simulation results using the Cahn-Hilliard equation

  3. Optical separation and controllable delivery of cells from particle and cell mixture

    Directory of Open Access Journals (Sweden)

    Li Yuchao

    2015-11-01

    Full Text Available Cell separation and delivery have recently gained significant attention in biological and biochemical studies. In thiswork, an optical method for separation and controllable delivery of cells by using an abruptly tapered fiber probe is reported. By launching a laser beam at the wavelength of 980 nm into the fiber, a mixture of cells with sizes of ~5 and ~3 μm and poly(methyl methacrylate particles with size of 5 μm are separated into three chains along the direction of propagation of light. The cell and particle chains are delivered in three dimensions over 600 μm distance. Experimental results are interpreted by numerical simulations. Optical forces and forward migration velocities of different particles and cells are calculated and discussed.

  4. Four-dimensional Hall mechanics as a particle on CP3

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Casteill, Pierre-Yves; Nersessian, Armen

    2003-01-01

    In order to establish an explicit connection between four-dimensional Hall effect on S 4 and six-dimensional Hall effect on CP 3 , we perform the Hamiltonian reduction of a particle moving on CP 3 in a constant magnetic field to the four-dimensional Hall mechanics (i.e., a-bar particle on S 4 in a SU(2) instanton field). This reduction corresponds to fixing the isospin of the latter system

  5. Collective ratchet effects and reversals for active matter particles on quasi-one-dimensional asymmetric substrates.

    Science.gov (United States)

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-10-19

    Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.

  6. H5Part A Portable High Performance Parallel Data Interface for Particle Simulations

    CERN Document Server

    Adelmann, Andreas; Shalf, John M; Siegerist, Cristina

    2005-01-01

    Largest parallel particle simulations, in six dimensional phase space generate wast amont of data. It is also desirable to share data and data analysis tools such as ParViT (Particle Visualization Toolkit) among other groups who are working on particle-based accelerator simulations. We define a very simple file schema built on top of HDF5 (Hierarchical Data Format version 5) as well as an API that simplifies the reading/writing of the data to the HDF5 file format. HDF5 offers a self-describing machine-independent binary file format that supports scalable parallel I/O performance for MPI codes on a variety of supercomputing systems and works equally well on laptop computers. The API is available for C, C++, and Fortran codes. The file format will enable disparate research groups with very different simulation implementations to share data transparently and share data analysis tools. For instance, the common file format will enable groups that depend on completely different simulation implementations to share c...

  7. Self-Assembly of DNA-Coated Particles: Experiment, Simulation and Theory

    Science.gov (United States)

    Song, Minseok

    The bottom-up assembly of material architectures with tunable complexity, function, composition, and structure is a long sought goal in rational materials design. One promising approach aims to harnesses the programmability and specificity of DNA hybridization in order to direct the assembly of oligonucleotide-functionalized nano- and micro-particles by tailoring, in part, interparticle interactions. DNA-programmable assembly into three-dimensionally ordered structures has attracted extensive research interest owing to emergent applications in photonics, plasmonics and catalysis and potentially many other areas. Progress on the rational design of DNA-mediated interactions to create useful two-dimensional structures (e.g., structured films), on the other hand, has been rather slow. In this thesis, we establish strategies to engineer a diversity of 2D crystalline arrangements by designing and exploiting DNA-programmable interparticle interactions. We employ a combination of simulation, theory and experiments to predict and confirm accessibility of 2D structural diversity in an effort to establish a rational approach to 2D DNA-mediated particle assembly. We start with the experimental realization of 2D DNA-mediated assembly by decorating micron-sized silica particles with covalently attached single-stranded DNA through a two-step reaction. Subsequently, we elucidate sensitivity and ultimate controllability of DNA-mediated assembly---specifically the melting transition from dispersed singlet particles to aggregated or assembled structures---through control of the concentration of commonly employed nonionic surfactants. We relate the observed tunability to an apparent coupling with the critical micelle temperature in these systems. Also, both square and hexagonal 2D ordered particle arrangements are shown to evolve from disordered aggregates under appropriate annealing conditions defined based upon pre-established melting profiles. Subsequently, the controlled mixing of

  8. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  9. Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas

    Science.gov (United States)

    Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.

    2017-10-01

    Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.

  10. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  11. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  12. A Three-Dimensional Numerical Study of Gas-Particle Flow and Chemical Reactions in Circulating Fluidised Bed Reactors

    DEFF Research Database (Denmark)

    Hansen, Kim Granly

    Three-dimensional Computational Fluid Dynamics (CFD) simulations of Circulating Fluidized Beds (CFB's) have been performed. The computations are performed using a 3D multiphase computational fluid dynamics code with an Eulerian description of both gas and particle phases. The turbulent motion...... implemented in the CFD code FLOTRACS-MP-3D. The decomposition reaction is studied in a 3D representation of a 0.254 m i.d. riser, which has been studied experimentally by Ouyang et al. (1993). Comparison between measured and simulated time-averaged ozone concentration at different elevations in the riser...

  13. Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes

    International Nuclear Information System (INIS)

    Abbaspour, Ali; Luo Jingli; Nandakumar, K.

    2010-01-01

    A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.

  14. Three-dimensional single-particle tracking in live cells: news from the third dimension

    International Nuclear Information System (INIS)

    Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D

    2013-01-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)

  15. Three-dimensional simulation of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Centrella, J.; Melott, A.L.

    1983-09-15

    High and low density cloud-in-cell models were used to simulate the nonlinear growth of adiabatic perturbations in collisionless matter to demonstrate the development of a cellular structure in the universe. Account was taken of a short wvelength cutoff in collisionless matter, with a focus on resolving filaments and low density pancakes. The calculations were performed with a Friedmann-Robertson-Walker model, and the gravitational potential of dark matter was obtained through solution of the Poisson equation. The simulation began with z between 100-1000, and initial particle velocities were set at zero. Spherically symmetric voids were observed to form, then colide and interact. Sufficient particles were employed to avoid depletion during nonlinear collapse. No galaxies formed during the epoch studied, which has implications for the significance of dark, baryonic matter in the present universe.

  16. A fast sorting algorithm for a hypersonic rarefied flow particle simulation on the connection machine

    Science.gov (United States)

    Dagum, Leonardo

    1989-01-01

    The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.

  17. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  18. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  19. Particle-in-Cell Simulation Study on the Floating Potential of Spacecraft in the Low Earth Orbit

    International Nuclear Information System (INIS)

    Tang Daotan; Yang Shengsheng; Zheng Kuohai; Qin Xiaogang; Li Detian; Liu Qing; Zhao Chengxuan; Du Shanshan

    2015-01-01

    In order to further understand the characteristics of the floating potential of low earth orbit spacecraft, the effects of the electron current collection area, background electron temperature, photocurrent emission, spacecraft wake, and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit. The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft. By increasing the electron current collection area or background electron temperature, the spacecraft will float at a lower electric potential with respect to the surrounding plasma. However, the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft. The emission of the photocurrent from the spacecraft surface, which compensates for the electrons collected from background plasma, causes the floating potential to increase. The shape of the spacecraft is also an important factor influencing the floating potential. (paper)

  20. Three-dimensional simulation of the electromagnetic ion/ion beam instability: cross field diffusion

    Directory of Open Access Journals (Sweden)

    H. Kucharek

    2000-01-01

    Full Text Available In a system with at least one ignorable spatial dimension charged particles moving in fluctuating fields are tied to the magnetic field lines. Thus, in one-and two-dimensional simulations cross-field diffusion is inhibited and important physics may be lost. We have investigated cross-field diffusion in self-consistent 3-D magnetic turbulence by fully 3-dimensional hybrid simulation (macro-particle ions, massless electron fluid. The turbulence is generated by the electromagnetic ion/ion beam instability. A cold, low density, ion beam with a high velocity stream relative to the background plasma excites the right-hand resonant instability. Such ion beams may be important in the region of the Earth's foreshock. The field turbulence scatters the beam ions parallel as well as perpendicular to the magnetic field. We have determined the parallel and perpendicular diffusion coefficient for the beam ions in the turbulent wave field. The result compares favourably well (within a factor 2 with hard-sphere scattering theory for the cross-field diffusion coefficient. The cross-field diffusion coefficient is larger than that obtained in a static field with a Kolmogorov type spectrum and similar total fluctuation power. This is attributed to the resonant behaviour of the particles in the fluctuating field.

  1. Study of asymmetrical electric discharges using particle simulation

    International Nuclear Information System (INIS)

    Alves, M.V.

    1990-11-01

    Asymmetrical electric discharges are been widely used in the microelectronic industry. The asymmetry in the electrode areas determines the magnitude of the plasma-to-electrode voltage, V sub(a), at the powered electrode, which determines the ion bombarding energy, a critical plasma processing parameter. Two many-particle simulation codes, called P D C 1 and P D S 1, were developed. These codes are electrostatic, one-dimensional (radial) and model (a bounded plasma between two infinite cylinders or two concentric spheres that can be connected to a RLC external circuit. Both codes consider asymmetrical electrodes areas. In order to simulate electrical discharges, Monte-Carlo simulation of electron-neutral and ion-neutral collisions were included. These codes were used to study the relationship between the voltage area ratio across the sheaths, V sub(a) / V sub(b), and the electrode area ratio A sub(b) / A sub(a). Simulation results agree with experimental results and also with the analytical model that includes local ionization near the electrodes, observed to occur in almost all our simulations. (author)

  2. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-05-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  3. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-06-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  4. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  5. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  6. Particle simulation models and their application to controlled fusion

    International Nuclear Information System (INIS)

    Okuda, H.

    1977-01-01

    Plasma simulation models using particles are described which have been developed for studying the microscopic behavior of a confined plasma in a magnetic field. The first model is developed to investigate the anomalous diffusion of particles and energy due to low-frequency electrostatic microinstabilities in cylindrical and toroidal systems. The model makes use of the combination of eigenfunction expansion in one direction and the multipole expansion on a two-dimensional spatial grid for solving the Maxwell equations and for pushing particles. The second model is developed to study the neutral beam injection heating of a tokamak plasma taking into account the spatial variation of plasma parameters and the finite ion beam banana orbit. The self-consistent electric and magnetic fields are totally ignored in this model and the Fokker-Planck collisions on the beam ions due to background ions and electrons are built in through the Monte Carlo method

  7. Comparison of GPU-Based Numerous Particles Simulation and Experiment

    International Nuclear Information System (INIS)

    Park, Sang Wook; Jun, Chul Woong; Sohn, Jeong Hyun; Lee, Jae Wook

    2014-01-01

    The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment

  8. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three-dimensional

  9. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  10. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.

    2004-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  11. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  12. A one-dimensional transport code for the simulation of D-T burning tokamak plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Maki, Koichi; Kasai, Masao; Nishida, Hidetsugu

    1980-11-01

    A one-dimensional transport code for D-T burning tokamak plasma has been developed, which simulates the spatial behavior of fuel ions(D, T), alpha particles, impurities, temperatures of ions and electrons, plasma current, neutrals, heating of alpha and injected beam particles. The basic transport equations are represented by one generalized equation so that the improvement of models and the addition of new equations may be easily made. A model of burn control using a variable toroidal field ripple is employed. This report describes in detail the simulation model, numerical method and the usage of the code. Some typical examples to which the code has been applied are presented. (author)

  13. One-dimensional integral equations for a system of three identical particles in the boundary condition models and the possibility of changing the off-shell behaviour of the two-particle t-matrix

    International Nuclear Information System (INIS)

    Efimov, V.N.; Schulz, H.

    1976-01-01

    It is shown that in the framework of the boundary condition models (BCM) for the two-particle interaction the Schroedinger equation for the system of three identical bosons can be reduced to the one-dimensional integral equation in an exact way. The method used for obtaining such an equation is based on a special consideration of the two-particle off-shell wave functions. The binding energy of the simple three-particle system is calculated. It is indicated that by means of the equation obtained it is possible to change the off-shell behaviour of the two-particle t-matrix and therefore to simulate three particle effects. (Auth.)

  14. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    Science.gov (United States)

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  15. Simulating variable source problems via post processing of individual particle tallies

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-01-01

    Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source

  16. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  17. Partially linearized algorithms in gyrokinetic particle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas.

  18. Partially linearized algorithms in gyrokinetic particle simulation

    International Nuclear Information System (INIS)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas

  19. Three-dimensional simulation of viscous-flow agglomerate sintering.

    Science.gov (United States)

    Kirchhof, M J; Schmid, H -J; Peukert, W

    2009-08-01

    The viscous-flow sintering of different agglomerate particle morphologies is studied by three-dimensional computer simulations based on the concept of fractional volume of fluid. For a fundamental understanding of particle sintering characteristics, the neck growth kinetics in agglomerate chains and in doublets consisting of differently sized primary particles is investigated. Results show that different sintering contacts in agglomerates even during the first stages are not completely independent from each other, even though differences are small. The neck growth kinetics of differently sized primary particles is determined by the smaller one up to a size difference by a factor of approximately 2, whereas for larger size differences, the kinetics becomes faster. In particular, the agglomerate sintering kinetics is investigated for particle chains of different lengths and for different particle morphologies each having ten primary particles and nine initial sintering contacts. For agglomerate chains, the kinetics approximately can be normalized by using the radius of the fully coalesced sphere. In general, different agglomerate morphologies show equal kinetics during the first sintering stages, whereas during advanced stages, compact morphologies show significantly faster sintering progress than more open morphologies. Hence, the overall kinetics cannot be described by simply using constant morphology correction factors such as fractal dimension or mean coordination number which are used in common sintering models. However, for the first stages of viscous-flow agglomerate sintering, which are the most important for many particle processes, a sintering equation is presented. Although we use agglomerates consisting of spherical primary particles, our methodology can be applied to other aggregate geometries as well.

  20. Simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers

  1. A collision model in plasma particle simulations

    International Nuclear Information System (INIS)

    Ma Yanyun; Chang Wenwei; Yin Yan; Yue Zongwu; Cao Lihua; Liu Daqing

    2000-01-01

    In order to offset the collisional effects reduced by using finite-size particles, β particle clouds are used in particle simulation codes (β is the ratio of charge or mass of modeling particles to real ones). The method of impulse approximation (strait line orbit approximation) is used to analyze the scattering cross section of β particle clouds plasmas. The authors can obtain the relation of the value of a and β and scattering cross section (a is the radius of β particle cloud). By using this relation the authors can determine the value of a and β so that the collisional effects of the modeling system is correspondent with the real one. The authors can also adjust the values of a and β so that the authors can enhance or reduce the collisional effects fictitiously. The results of simulation are in good agreement with the theoretical ones

  2. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  3. Particle Demagnetization in Collisionless Magnetic Reconnection

    Science.gov (United States)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  4. Numerical simulation of particle settling and cohesion in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)

    2009-02-01

    In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.

  5. Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams

    CERN Document Server

    Qin, Hong; Hudson, Stuart R; Startsev, Edward

    2005-01-01

    The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. The...

  6. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    Science.gov (United States)

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our

  7. Response to a small external force and fluctuations of a passive particle in a one-dimensional diffusive environment

    Science.gov (United States)

    Huveneers, François

    2018-04-01

    We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.

  8. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    Science.gov (United States)

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Schussman, G.; Ko, K.; /SLAC

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the first parallel Finite Element 3D Particle-In-Cell (PIC) code, Pic3P, for simulations of RF guns and other space-charge dominated beam-cavity interactions. Pic3P solves the complete set of Maxwell-Lorentz equations and thus includes space charge, retardation and wakefield effects from first principles. Pic3P uses higher-order Finite Elementmethods on unstructured conformal meshes. A novel scheme for causal adaptive refinement and dynamic load balancing enable unprecedented simulation accuracy, aiding the design and operation of the next generation of accelerator facilities. Application to the Linac Coherent Light Source (LCLS) RF gun is presented.

  10. A 3D gyrokinetic particle-in-cell simulation of fusion plasma microturbulence on parallel computers

    Science.gov (United States)

    Williams, T. J.

    1992-12-01

    One of the grand challenge problems now supported by HPCC is the Numerical Tokamak Project. A goal of this project is the study of low-frequency micro-instabilities in tokamak plasmas, which are believed to cause energy loss via turbulent thermal transport across the magnetic field lines. An important tool in this study is gyrokinetic particle-in-cell (PIC) simulation. Gyrokinetic, as opposed to fully-kinetic, methods are particularly well suited to the task because they are optimized to study the frequency and wavelength domain of the microinstabilities. Furthermore, many researchers now employ low-noise delta(f) methods to greatly reduce statistical noise by modelling only the perturbation of the gyrokinetic distribution function from a fixed background, not the entire distribution function. In spite of the increased efficiency of these improved algorithms over conventional PIC algorithms, gyrokinetic PIC simulations of tokamak micro-turbulence are still highly demanding of computer power--even fully-vectorized codes on vector supercomputers. For this reason, we have worked for several years to redevelop these codes on massively parallel computers. We have developed 3D gyrokinetic PIC simulation codes for SIMD and MIMD parallel processors, using control-parallel, data-parallel, and domain-decomposition message-passing (DDMP) programming paradigms. This poster summarizes our earlier work on codes for the Connection Machine and BBN TC2000 and our development of a generic DDMP code for distributed-memory parallel machines. We discuss the memory-access issues which are of key importance in writing parallel PIC codes, with special emphasis on issues peculiar to gyrokinetic PIC. We outline the domain decompositions in our new DDMP code and discuss the interplay of different domain decompositions suited for the particle-pushing and field-solution components of the PIC algorithm.

  11. Helical structures in vertically aligned dust particle chains in a complex plasma

    Science.gov (United States)

    Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.

    2013-05-01

    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].

  12. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-02-16

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.

  13. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  14. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the

  15. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Sims, A.J.; Comber, C.; Hammond, N.D.A.

    1988-11-01

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  16. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  17. Particle-in-cell simulation of helical structure onset in plasma fiber with dust grains

    International Nuclear Information System (INIS)

    Kulhanek, Petr; Bren, David; Kaizr, Vaclav; Pasek, Jan

    2002-01-01

    Fully three dimensional PIC program package for the helical pinch numerical simulation was developed in our department. Both electromagnetic and gravitational interactions are incorporated into the model. Collisions are treated via Monte Carlo methods. The program package enabled to prove the conditions of onset of spiral and helical structures in the pinch

  18. Particle-in-cell simulations of multi-MeV pulsed X-ray induced air plasmas at low pressures

    International Nuclear Information System (INIS)

    Ribière, M.; D'Almeida, T.; Gaufridy de Dortan, F. de; Maulois, M.; Delbos, C.; Garrigues, A.; Cessenat, O.; Azaïs, B.

    2016-01-01

    A full kinetic modelling of the charge particles dynamics generated upon the irradiation of an air-filled cavity by a multi-MeV pulsed x-ray is performed. From the calculated radiative source generated by the ASTERIX generator, we calculated the electromagnetic fields generated by x-ray induced air plasmas in a metallic cavity at different pressures. Simulations are carried out based on a Particle-In-Cell interpolation method which uses 3D Maxwell-Vlasov calculations of the constitutive charged species densities of air plasmas at different pressures at equilibrium. The resulting electromagnetic fields within the cavity are calculated for different electron densities up to 4 × 10"1"0" cm"−"3. For each air pressure, we show electronic plasma waves formation followed by Landau damping. As electron density increases, the calculations exhibit space-charged neutralization and return current formation.

  19. Numerical Simulation of Particle Flow Motion in a Two-Dimensional Modular Pebble-Bed Reactor with Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2013-01-01

    Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.

  20. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  1. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Badia-Martinez, Daniel; Peralta, Bibiana [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); Andres, German; Guerra, Milagros [Electron Microscopy Unit, Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Campus Cantoblanco, 28049 Madrid (Spain); Gil-Carton, David [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); Abrescia, Nicola G.A., E-mail: nabrescia@cicbiogune.es [Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2012-09-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  2. Three-dimensional visualization of forming Hepatitis C virus-like particles by electron-tomography

    International Nuclear Information System (INIS)

    Badia-Martinez, Daniel; Peralta, Bibiana; Andrés, German; Guerra, Milagros; Gil-Carton, David; Abrescia, Nicola G.A.

    2012-01-01

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  3. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  4. Data parallel sorting for particle simulation

    Science.gov (United States)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  5. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  6. Visual interrogation of gyrokinetic particle simulations

    International Nuclear Information System (INIS)

    Jones, Chad; Ma, K-L; Sanderson, Allen; Myers, Lee Roy Jr

    2007-01-01

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data

  7. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  8. Analyzing heavy-ion-induced charge collection in Si devices by three-dimensional simulation

    International Nuclear Information System (INIS)

    Dodd, P.E.

    1994-01-01

    Properties of charge collection in Si devices in response to single-ion bombardment have been studied using transient three-dimensional drift-diffusion simulation. In unloaded Si diodes, the funnel effect is particularly strong in lightly-doped materials for high-density strikes such as 100 MeV Fe, and essentially all charge collection is by funnel-assisted drift. This drift collection may occur at time scales as late as several nanoseconds, much later than is traditionally associated with drift. For more heavily-doped materials or lower-density strikes, such as 5-MeV α-particles, drift and diffusion play more equal roles. In epitaxial structures the funnel is truncated by the heavily-doped substrate, collapses quickly, and a great deal of charge is collected at late times by diffusion. Charge collection in Si circuitry is influenced by the circuit external to the struck device. Loading effects on charge collection were studied using passive external circuit elements as well as by mixed-mode simulation, which allows modeling of active external circuitry. Simulations indicate that the funnel can be significantly affected by the inclusion of passive loads, while active loads may prevent any direct charge collection by funneling. Finally, the use of three-dimensional device simulators is presented as a method of analyzing results obtained from focused ion microbeam experiments

  9. Swelling of two-dimensional polymer rings by trapped particles.

    Science.gov (United States)

    Haleva, E; Diamant, H

    2006-09-01

    The mean area of a two-dimensional Gaussian ring of N monomers is known to diverge when the ring is subject to a critical pressure differential, p c ~ N -1. In a recent publication (Eur. Phys. J. E 19, 461 (2006)) we have shown that for an inextensible freely jointed ring this divergence turns into a second-order transition from a crumpled state, where the mean area scales as [A]~N-1, to a smooth state with [A]~N(2). In the current work we extend these two models to the case where the swelling of the ring is caused by trapped ideal-gas particles. The Gaussian model is solved exactly, and the freely jointed one is treated using a Flory argument, mean-field theory, and Monte Carlo simulations. For a fixed number Q of trapped particles the criticality disappears in both models through an unusual mechanism, arising from the absence of an area constraint. In the Gaussian case the ring swells to such a mean area, [A]~ NQ, that the pressure exerted by the particles is at p c for any Q. In the freely jointed model the mean area is such that the particle pressure is always higher than p c, and [A] consequently follows a single scaling law, [A]~N(2) f (Q/N), for any Q. By contrast, when the particles are in contact with a reservoir of fixed chemical potential, the criticality is retained. Thus, the two ensembles are manifestly inequivalent in these systems.

  10. Electron sub-cycling in particle simulation of plasma

    International Nuclear Information System (INIS)

    Adam, J.C.; Serveniere, A.G.; Langdon, A.B.

    1982-01-01

    A straightforward modification which reduces by half the computational cost of standard particle-in-cell algorithms for simulation of plasmas is described. The saving is obtained by integrating only the electrons through a number of time steps (sub-cycle) in order to resolve their evolution, while integrating the much slower ions only once per cycle, i.e., to match the time step of each species to their characteristic frequencies. A dispersion relation is derived which describes the numerical instabilities expected by sampling frequency arguments. Simulations support the broad features of the analytical results, viz., the maximum growth rate and domain of the instability, and its stabilization by the addition of weak damping. An implicit sub-cycling algorithm is suggested which may provide further saving while avoiding a limitation of implicit algorithms described elsewhere

  11. 2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum

    Science.gov (United States)

    Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang

    2018-04-01

    With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.

  12. Particle beam dynamics simulations using the POOMA framework

    International Nuclear Information System (INIS)

    Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang

    1998-01-01

    A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code

  13. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    Science.gov (United States)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  14. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  15. Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations

    Science.gov (United States)

    Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa

    Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.

  16. The Darwin direct implicit particle-in-cell (DADIPIC) method for simulation of low frequency plasma phenomena

    International Nuclear Information System (INIS)

    Gibbons, M.R.; Hewett, D.W.

    1995-01-01

    We describe a new algorithm for simulating low frequency, kinetic phenomena in plasma. Darwin direct implicit particle-in-cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. Through the Darwin method the hyperbolic Maxwell's equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The direct implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. We discuss the algorithms for pushing the particles and solving the fields in 2D cartesian geometry. We also detail boundary conditions for conductors and dielectrics. Finally, we present two test cases, electron cyclotron waves and collisionless heating in inductively coupled plasmas. For these test cases DADIPIC shows agreement with analytic kinetic theory and good energy conservation characteristics. 33 refs., 7 figs., 2 tabs

  17. New relativistic particle-in-cell simulation studies of prompt and early afterglows from GRBs

    International Nuclear Information System (INIS)

    Ken-Ichi Nishikawa

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons' transverse deflection behind the jet head. The '' jitter '' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. (author)

  18. New apparatus for direct counting of β particles from two-dimensional gels and an application to changes in protein synthesis due to cell density

    International Nuclear Information System (INIS)

    Anderson, H.L.; Puck, T.T.; Shera, E.B.

    1987-07-01

    A new method is described for scanning two-dimensional gels by the direct counting of β particles instead of autoradiography. The methodology is described; results are compared with autoradiographic results; and data are presented demonstrating changed patterns of protein synthesis accompanying changes in cell density. The method is rapid and permits identification of differences in protein abundance of approximately 10% for a substantial fraction of the more prominent proteins. A modulation effect of more than 5 standard deviations, accompanying contact inhibition of cell growth, is shown to occur for an appreciable number of these proteins. The method promises to be applicable to a variety of biochemical and genetic experiments designed to delineate changes in protein synthesis accompanying changes in genome, molecular environment, history, and state of differentiation of the cell populations studied. 13 refs., 8 figs., 4 tabs

  19. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-20

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.

  20. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  1. Noiseless Vlasov–Poisson simulations with linearly transformed particles

    Energy Technology Data Exchange (ETDEWEB)

    Campos Pinto, Martin, E-mail: campos@ann.jussieu.fr [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Sonnendrücker, Eric, E-mail: sonnen@math.unistra.fr [IRMA, UMR 7501, Université de Strasbourg and CNRS, 7 rue René Descartes, F-67084 Strasbourg Cedex (France); Project-team CALVI, INRIA Nancy Grand Est, 7 rue René Descartes, F-67084 Strasbourg Cedex (France); Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Grote, David P., E-mail: grote1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lund, Steve M., E-mail: smlund@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-10-15

    We introduce a deterministic discrete-particle simulation approach, the Linearly-Transformed Particle-In-Cell (LTPIC) method, that employs linear deformations of the particles to reduce the noise traditionally associated with particle schemes. Formally, transforming the particles is justified by local first order expansions of the characteristic flow in phase space. In practice the method amounts of using deformation matrices within the particle shape functions; these matrices are updated via local evaluations of the forward numerical flow. Because it is necessary to periodically remap the particles on a regular grid to avoid excessively deforming their shapes, the method can be seen as a development of Denavit's Forward Semi-Lagrangian (FSL) scheme (Denavit, 1972 [8]). However, it has recently been established (Campos Pinto, 2012 [20]) that the underlying Linearly-Transformed Particle scheme converges for abstract transport problems, with no need to remap the particles; deforming the particles can thus be seen as a way to significantly lower the remapping frequency needed in the FSL schemes, and hence the associated numerical diffusion. To couple the method with electrostatic field solvers, two specific charge deposition schemes are examined, and their performance compared with that of the standard deposition method. Finally, numerical 1d1v simulations involving benchmark test cases and halo formation in an initially mismatched thermal sheet beam demonstrate some advantages of our LTPIC scheme over the classical PIC and FSL methods. Benchmarked test cases also indicate that, for numerical choices involving similar computational effort, the LTPIC method is capable of accuracy comparable to or exceeding that of state-of-the-art, high-resolution Vlasov schemes.

  2. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    International Nuclear Information System (INIS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  3. Three dimensional δf simulations of beams in the SSC

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.; Machida, S.

    1993-01-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed

  4. Three dimensional [delta]f simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Machida, S. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1993-02-01

    A three dimensional [delta]f strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a [delta]f code. The [delta]f method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  5. Three dimensional {delta}f simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Machida, S. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-02-01

    A three dimensional {delta}f strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a {delta}f code. The {delta}f method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  6. Three dimensional δf simulations of beams in the SSC

    International Nuclear Information System (INIS)

    Koga, J.; Tajima, T.

    1993-02-01

    A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3-dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6-dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3-dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense where finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed

  7. Simulations of living cell origins using a cellular automata model.

    Science.gov (United States)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  8. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Rahbari, Alireza [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Shakibi, Ashkan [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidabadi, Mehdi [Combustion Research Laboratory, Narmak, Tehran (Iran, Islamic Republic of)

    2015-09-15

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  9. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    International Nuclear Information System (INIS)

    Rahbari, Alireza; Shakibi, Ashkan; Bidabadi, Mehdi

    2015-01-01

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  10. An EDDY/particle-in-cell simulation of erosion of plasma facing walls bombarded by a collisional plasma

    International Nuclear Information System (INIS)

    Inai, Kensuke; Ohya, Kaoru

    2011-01-01

    To investigate the erosion of a plasma-facing wall intersecting an oblique magnetic field, we performed a kinetic particle-in-cell (PIC) simulation of magnetized plasma, in which collision processes between charged and neutral particles were taken into account. Sheath formation and local physical quantities, such as the incident angle and energy distributions of plasma ions at the wall, were examined at a plasma density of 10 18 m -3 , a temperature of 10 eV, and a magnetic field strength of 5 T. The erosion rate of a carbon wall was calculated using the ion-solid interaction code EDDY. At a high neutral density (>10 20 m -3 ), the impact energy of the ions dropped below the threshold for physical sputtering, so that the sputtering yield was drastically decreased and wall erosion was strongly suppressed. Sputter erosion was also suppressed when the angle of the magnetic field with respect to the surface normal was sufficiently large. (author)

  11. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  12. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  13. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  14. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  15. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography

    International Nuclear Information System (INIS)

    Lee, H.; Brandyberry, M.; Tudor, A.; Matous, K.

    2009-01-01

    In this paper, we present a systematic approach for characterization and reconstruction of statistically optimal representative unit cells of polydisperse particulate composites. Microtomography is used to gather rich three-dimensional data of a packed glass bead system. First-, second-, and third-order probability functions are used to characterize the morphology of the material, and the parallel augmented simulated annealing algorithm is employed for reconstruction of the statistically equivalent medium. Both the fully resolved probability spectrum and the geometrically exact particle shapes are considered in this study, rendering the optimization problem multidimensional with a highly complex objective function. A ten-phase particulate composite composed of packed glass beads in a cylindrical specimen is investigated, and a unit cell is reconstructed on massively parallel computers. Further, rigorous error analysis of the statistical descriptors (probability functions) is presented and a detailed comparison between statistics of the voxel-derived pack and the representative cell is made.

  16. Modeling and simulation of viscoelastic biological particles' 3D manipulation using atomic force microscopy

    Science.gov (United States)

    Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.

    2018-05-01

    Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.

  17. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    Science.gov (United States)

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  18. Three-dimensional manipulation of single cells using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  19. Low-noise electromagnetic δf particle-in-cell simulation of electron Bernstein waves

    International Nuclear Information System (INIS)

    Xiang Nong; Cary, John R.; Barnes, Daniel C.; Carlsson, John

    2006-01-01

    The conversion of the extraordinary (X) mode to an electron Bernstein wave (EBW) is one way to get rf energy into an overdense plasma. Analysis of this is complex, as the EBW is a fully kinetic wave, and so its linear propagation is described by an intractable integro-differential equation. Nonlinear effects cannot be calculated within this rubric at all. Full particle-in-cell (PIC) simulations cannot be used for these analyses, as the noise levels for reasonable simulation parameters are much greater than the typical rf amplitudes. It is shown that the delta-f computations are effective for this analysis. In particular, the accuracy of those computations has been verified by comparison with full PIC, cold plasma theory, and small gyroradius theory. This computational method is then used to analyze mode conversion in different frequency regimes. In particular, reasonable agreement with the theoretical predictions of Ram and Schultz [Phys. Plasmas 7, 4084 (2000)] in the linear regime is found, where 100% X-B mode conversion has been obtained when the driving frequency is less than twice the electron gyrofrequency. The results show that cold-plasma theory well predicts the mode conversion efficiency, as is consistent with the phase-space picture of mode conversion. From this it can be shown that nearly 100% X-B mode conversion cannot be obtained when the frequency is higher than the electron second harmonic cyclotron frequency

  20. Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Blazniak Andreasen, Marcin; Andresen, Henrik Assenholm

    2010-01-01

    The inlet effect on the manifold flow in a fuel cell stack was investigated by means of numerical methods (computational fluid dynamics) and experimental methods (particle image velocimetry). At a simulated high current density situation the flow field was mapped on a 70 cell simulated cathode...

  1. Simulation and detection of massive Dirac fermions with cold atoms in one-dimensional optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)

    2012-09-15

    We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.

  2. Development of a two-dimensional simulation code (koad) including atomic processes for beam direct energy conversion

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.

    1987-01-01

    A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code

  3. Delocalization of Relativistic Dirac Particles in Disordered One-Dimensional Systems and Its Implementation with Cold Atoms

    International Nuclear Information System (INIS)

    Zhu Shiliang; Zhang Danwei; Wang, Z. D.

    2009-01-01

    We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.

  4. Parallel Finite Element Particle-In-Cell Code for Simulations of Space-charge Dominated Beam-Cavity Interactions

    International Nuclear Information System (INIS)

    Candel, A.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.

    2007-01-01

    Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element (FE) particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order FE methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented

  5. Simulation of dust particles in dual-frequency capacitively coupled silane discharges

    International Nuclear Information System (INIS)

    Liu Xiangmei; Song Yuanhong; Xu Xiang; Wang Younian

    2010-01-01

    The behavior of nanoparticles in dual-frequency capacitively coupled silane discharges is investigated by employing a one-dimensional self-consistent fluid model. The numerical simulation tries to trace the formation, charging, growth, and transport of dust particles during the discharge, under the influences of the high- and low-frequency electric sources, as well as the gas pressure. The effects of the presence of the nanoparticles and larger anions on the plasma properties are also discussed, especially, for the bulk potential, electron temperature, and densities of various particles. The calculation results show that the nanoparticle density and charge distribution are mainly influenced by the voltage and frequency of the high-frequency source, while the voltage of the low-frequency source can also exert an effect on the nanoparticle formation, compared with the frequency. As the discharge lasts, the electric potential and electron density keep decreasing, while the electron temperature gets increasing after a sudden drop.

  6. Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime

    Science.gov (United States)

    Övgün, A.; Sakalli, I.

    2018-02-01

    In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.

  7. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  8. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  9. Three-Dimensional Simulation of DRIE Process Based on the Narrow Band Level Set and Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Jia-Cheng Yu

    2018-02-01

    Full Text Available A three-dimensional topography simulation of deep reactive ion etching (DRIE is developed based on the narrow band level set method for surface evolution and Monte Carlo method for flux distribution. The advanced level set method is implemented to simulate the time-related movements of etched surface. In the meanwhile, accelerated by ray tracing algorithm, the Monte Carlo method incorporates all dominant physical and chemical mechanisms such as ion-enhanced etching, ballistic transport, ion scattering, and sidewall passivation. The modified models of charged particles and neutral particles are epitomized to determine the contributions of etching rate. The effects such as scalloping effect and lag effect are investigated in simulations and experiments. Besides, the quantitative analyses are conducted to measure the simulation error. Finally, this simulator will be served as an accurate prediction tool for some MEMS fabrications.

  10. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Holland, C. [University of California at San Diego, La Jolla, California 92093 (United States); Howard, N. T. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37831 (United States)

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.

  11. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity

    Science.gov (United States)

    Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A.

    1992-01-01

    High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 X 10(7) cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

  12. Gyrokinetic particle simulation of neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-01-01

    A time varying weighting (δf ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. copyright 1995 American Institute of Physics

  13. McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space

    Science.gov (United States)

    Brdar, S.; Seifert, A.

    2018-01-01

    We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.

  14. Parking simulation of three-dimensional multi-sized star-shaped particles

    International Nuclear Information System (INIS)

    Zhu, Zhigang; Chen, Huisu; Xu, Wenxiang; Liu, Lin

    2014-01-01

    The shape and size of particles may have a great impact on the microstructure as well as the physico-properties of particulate composites. However, it is challenging to configure a parking system of particles to a geometrical shape that is close to realistic grains in particulate composites. In this work, with the assistance of x-ray tomography and a spherical harmonic series, we present a star-shaped particle that is close to realistic arbitrary-shaped grains. To realize such a hard particle parking structure, an inter-particle overlapping detection algorithm is introduced. A serial sectioning approach is employed to visualize the particle parking structure for the purpose of justifying the reliability of the overlapping detection algorithm. Furthermore, the validity of the area and perimeter of solids in any arbitrary section of a plane calculated using a numerical method is verified by comparison with those obtained using an image analysis approach. This contribution is helpful to further understand the dependence of the micro-structure and physico-properties of star-shaped particles on the realistic geometrical shape. (paper)

  15. Coupling motion of colloidal particles in quasi-two-dimensional confinement

    International Nuclear Information System (INIS)

    Ma, Jun; Jing, Guangyin

    2014-01-01

    The Brownian motion of colloidal particles in quasi-two-dimensional (q2D) confinement displays a distinct kinetic character from that in bulk. Here we experimentally report dynamic coupling motion of Brownian particles in a relatively long process (∼100 h), which displays a quasi-equilibrium state in the q2D system. In the quasi-equilibrium state, the q2D confinement results in the coupling of particle motions, which slowly damps the motion and interaction of particles until the final equilibrium state is reached. The process of approaching the equilibrium is a random relaxation of a many-body interaction system of Brownian particles. As the relaxation proceeds for ∼100 h, the system reaches the equilibrium state in which the energy gained by the particles from the stochastic collision in the whole system is counteracted by the dissipative energy resulting from the collision. The relaxation time of this stochastic q2D system is 17.7 h. The theory is developed to explain coupling motions of Brownian particles in q2D confinement. (paper)

  16. Impenetrable Mass-Imbalanced Particles in One-Dimensional Harmonic Traps

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.

    2016-01-01

    Strongly interacting particles in one dimension subject to external confinement have become a topic of considerable interest due to recent experimental advances and the development of new theoretical methods to attack such systems. In the case of equal mass fermions or bosons with two or more...... internal degrees of freedom, one can map the problem onto the well-known Heisenberg spin models. However, many interesting physical systems contain mixtures of particles with different masses. Therefore, a generalization of the recent strong-coupling techniques would be highly desirable....... This is particularly important since such problems are generally considered non-integrable and thus the hugely successful Bethe ansatz approach cannot be applied. Here we discuss some initial steps towards this goal by investigating small ensembles of one-dimensional harmonically trapped particles where pairwise...

  17. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  18. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  19. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B [Northwestern Memorial Hospital, Chicago, IL (United States); Georgia Institute of Technology, Atlanta, GA (Georgia); Wang, C [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2016-06-15

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities. These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell

  20. Few quantum particles on one dimensional lattices

    Energy Technology Data Exchange (ETDEWEB)

    Valiente Cifuentes, Manuel

    2010-06-18

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and

  1. Few quantum particles on one dimensional lattices

    International Nuclear Information System (INIS)

    Valiente Cifuentes, Manuel

    2010-01-01

    There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and extended Hubbard models

  2. Parallel pic plasma simulation through particle decomposition techniques

    International Nuclear Information System (INIS)

    Briguglio, S.; Vlad, G.; Di Martino, B.; Naples, Univ. 'Federico II'

    1998-02-01

    Particle-in-cell (PIC) codes are among the major candidates to yield a satisfactory description of the detail of kinetic effects, such as the resonant wave-particle interaction, relevant in determining the transport mechanism in magnetically confined plasmas. A significant improvement of the simulation performance of such codes con be expected from parallelization, e.g., by distributing the particle population among several parallel processors. Parallelization of a hybrid magnetohydrodynamic-gyrokinetic code has been accomplished within the High Performance Fortran (HPF) framework, and tested on the IBM SP2 parallel system, using a 'particle decomposition' technique. The adopted technique requires a moderate effort in porting the code in parallel form and results in intrinsic load balancing and modest inter processor communication. The performance tests obtained confirm the hypothesis of high effectiveness of the strategy, if targeted towards moderately parallel architectures. Optimal use of resources is also discussed with reference to a specific physics problem [it

  3. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors

    International Nuclear Information System (INIS)

    Nishiura, Daisuke; Sakaguchi, Hide

    2011-01-01

    Over the last few decades, the computational demands of massive particle-based simulations for both scientific and industrial purposes have been continuously increasing. Hence, considerable efforts are being made to develop parallel computing techniques on various platforms. In such simulations, particles freely move within a given space, and so on a distributed-memory system, load balancing, i.e., assigning an equal number of particles to each processor, is not guaranteed. However, shared-memory systems achieve better load balancing for particle models, but suffer from the intrinsic drawback of memory access competition, particularly during (1) paring of contact candidates from among neighboring particles and (2) force summation for each particle. Here, novel algorithms are proposed to overcome these two problems. For the first problem, the key is a pre-conditioning process during which particle labels are sorted by a cell label in the domain to which the particles belong. Then, a list of contact candidates is constructed by pairing the sorted particle labels. For the latter problem, a table comprising the list indexes of the contact candidate pairs is created and used to sum the contact forces acting on each particle for all contacts according to Newton's third law. With just these methods, memory access competition is avoided without additional redundant procedures. The parallel efficiency and compatibility of these two algorithms were evaluated in discrete element method (DEM) simulations on four types of shared-memory parallel computers: a multicore multiprocessor computer, scalar supercomputer, vector supercomputer, and graphics processing unit. The computational efficiency of a DEM code was found to be drastically improved with our algorithms on all but the scalar supercomputer. Thus, the developed parallel algorithms are useful on shared-memory parallel computers with sufficient memory bandwidth.

  4. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    Science.gov (United States)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  5. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    Science.gov (United States)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific

  6. Simulation of charge generation and transport in semi-conductors under energetic-particle bombardment

    International Nuclear Information System (INIS)

    Martin, R.C.

    1990-01-01

    The passage of energetic ions through semiconductor devices generates excess charge which can produce logic upset, memory change, and device damage. This single event upset (SEU) phenomenon is increasingly important for satellite communications. Experimental and numerical simulation of SEUs is difficult because of the subnanosecond times and large charge densities within the ion track. The objective of this work is twofold: (1) the determination of the track structure and electron-hole pair generation profiles following the passage of an energetic ion; (2) the development and application of a new numerical method for transient charge transport in semiconductor devices. A secondary electron generation and transport model, based on the Monte Carlo method, is developed and coupled to an ion transport code to simulate ion track formation in silicon. A new numerical method is developed for the study of transient charge transport. The numerical method combines an axisymmetric quadratic finite-element formulation for the solution of the potential with particle simulation methods for electron and hole transport. Carrier transport, recombination, and thermal generation of both majority and minority carriers are included. To assess the method, transient one-dimensional solutions for silicon diodes are compared to a fully iterative finite-element method. Simulations of charge collection from ion tracks in three-dimensional axisymmetric devices are presented and compared to previous work. The results of this work for transient current pulses following charged ion passage are in agreement with recent experimental data

  7. Dissipative particle dynamics simulations for biological tissues: rheology and competition

    International Nuclear Information System (INIS)

    Basan, Markus; Prost, Jacques; Joanny, Jean-François; Elgeti, Jens

    2011-01-01

    In this work, we model biological tissues using a simple, mechanistic simulation based on dissipative particle dynamics. We investigate the continuum behavior of the simulated tissue and determine its dependence on the properties of the individual cell. Cells in our simulation adhere to each other, expand in volume, divide after reaching a specific size checkpoint and undergo apoptosis at a constant rate, leading to a steady-state homeostatic pressure in the tissue. We measure the dependence of the homeostatic state on the microscopic parameters of our model and show that homeostatic pressure, rather than the unconfined rate of cell division, determines the outcome of tissue competitions. Simulated cell aggregates are cohesive and round up due to the effect of tissue surface tension, which we measure for different tissues. Furthermore, mixtures of different cells unmix according to their adhesive properties. Using a variety of shear and creep simulations, we study tissue rheology by measuring yield stresses, shear viscosities, complex viscosities as well as the loss tangents as a function of model parameters. We find that cell division and apoptosis lead to a vanishing yield stress and fluid-like tissues. The effects of different adhesion strengths and levels of noise on the rheology of the tissue are also measured. In addition, we find that the level of cell division and apoptosis drives the diffusion of cells in the tissue. Finally, we present a method for measuring the compressibility of the tissue and its response to external stress via cell division and apoptosis

  8. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  9. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  10. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    International Nuclear Information System (INIS)

    Chen, Yang

    2012-01-01

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global δf-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 α (0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects in the hybrid model we have studied a kinetic electron closure scheme for the fluid electron model. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E || , derived by combining the quasi-neutrality condition, the Ampere's equation and the v || moment of the gyrokinetic equations. A discretization method for the closure scheme is studied in detail for a three-dimensional shear-less slab plasma. It is found that for long-wavelength shear Alfven waves the kinetic closure scheme

  11. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  12. Structures and dynamics in a two-dimensional dipolar dust particle system

    Science.gov (United States)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  13. Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells

    Science.gov (United States)

    Kunrugsa, Maetee

    2018-06-01

    Two-dimensional (2D) simulation of GaAsSb/GaAs quantum dot (QD) solar cells is presented. The effects of As mole fraction in GaAsSb QDs on the performance of the solar cell are investigated. The solar cell is designed as a p-i-n GaAs structure where a single layer of GaAsSb QDs is introduced into the intrinsic region. The current density–voltage characteristics of QD solar cells are derived from Poisson’s equation, continuity equations, and the drift-diffusion transport equations, which are numerically solved by a finite element method. Furthermore, the transition energy of a single GaAsSb QD and its corresponding wavelength for each As mole fraction are calculated by a six-band k · p model to validate the position of the absorption edge in the external quantum efficiency curve. A GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4 provides the best power conversion efficiency. The overlap between electron and hole wave functions becomes larger as the As mole fraction increases, leading to a higher optical absorption probability which is confirmed by the enhanced photogeneration rates within and around the QDs. However, further increasing the As mole fraction results in a reduction in the efficiency because the absorption edge moves towards shorter wavelengths, lowering the short-circuit current density. The influences of the QD size and density on the efficiency are also examined. For the GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4, the efficiency can be improved to 26.2% by utilizing the optimum QD size and density. A decrease in the efficiency is observed at high QD densities, which is attributed to the increased carrier recombination and strain-modified band structures affecting the absorption edges.

  14. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population

    International Nuclear Information System (INIS)

    Roeske, John C; Stinchcomb, Thomas G

    2006-01-01

    Alpha-particle emitters are currently being considered for the treatment of micrometastatic disease. Based on in vitro studies, it has been speculated that only a few alpha-particle hits to the cell nucleus are considered lethal. However, such estimates do not consider the stochastic variations in the number of alpha-particle hits, energy deposited, or in the cell survival process itself. Using a tumour control probability (TCP) model for alpha-particle emitters, we derive an estimate of the average number of hits to the cell nucleus required to provide a high probability of eradicating a tumour cell population. In simulation studies, our results demonstrate that the average number of hits required to achieve a 90% TCP for 10 4 clonogenic cells ranges from 18 to 108. Those cells that have large cell nuclei, high radiosensitivities and alpha-particle emissions occurring primarily in the nuclei tended to require more hits. As the clinical implementation of alpha-particle emitters is considered, this type of analysis may be useful in interpreting clinical results and in designing treatment strategies to achieve a favourable therapeutic outcome. (note)

  15. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    Science.gov (United States)

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  16. Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

    International Nuclear Information System (INIS)

    Qiang, Ji; Corlett, John; Staples, John

    2009-01-01

    In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H 2 ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns

  17. A multilevel particle method for gas dynamics: application to multi-fluids simulation

    International Nuclear Information System (INIS)

    Weynans, Lisl

    2006-12-01

    In inertial confinement fusion, laser implosions require to know hydrodynamic flow in presence of shocks. This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gas dynamics, especially multi-fluids. First, we develop a particle method, associated with a conservative re-meshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite difference schemes. We introduce a new scheme for the advection of particles. Then we implement a multilevel technique, inspired from AMR, which allows us to increase locally the accuracy of the computations. Finally we develop a level set-like technique, discretized on the particles, to simulate the interface between compressible flows. We use the multilevel technique to improve the interface resolution and the conservation of partial masses. (author)

  18. Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs

    International Nuclear Information System (INIS)

    Benz, W.; Thielemann, F.K.; Hills, J.G.

    1989-01-01

    Three-dimensional numerical simulations are presented for collisions between white dwarfs, using a smooth-particle hydrodynamics code with 5000 particles. The code allows for radiation and degenerate pressure and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision models are considered over a range of impact parameters: between two 0.06 solar-mass C-O white dwarfs and between 0.9 solar-mass and 0.7 solar-mass C-O white dwarfs. In nearly head-on collisions, a very substantial fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, the fraction of mass lost is close to that produced in collisions between main-sequence stars. The quantity of processed elements ejected into the ISM by these collisions does not significantly affect the chemical evolution of the Galaxy. 24 refs

  19. Particle-in-cell simulation of electron trajectories and irradiation uniformity in an annular cathode high current pulsed electron beam source

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Zhou, Guangxue; Wang, Xiaofeng

    2017-02-01

    Highlights: • The transmission process of electrons and irradiation uniformity was simulated. • Influence of the irradiation parameters on irradiation uniformity are discussed. • High irradiation uniformity can be obtained in a wide processing window. - Abstract: In order to study electron trajectories in an annular cathode high current pulsed electron beam (HCPEB) source based on carbon fiber bunches, the transmission process of electrons emitted from the annular cathode was simulated using a particle-in-cell model with Monte Carlo collisions (PIC-MCC). The simulation results show that the intense flow of the electrons emitted from the annular cathode are expanded during the transmission process, and the uniformity of the electron distribution is improved in the transportation process. The irradiation current decreases with the irradiation distance and the pressure, and increases with the negative voltage. In addition, when the irradiation distance and the cathode voltage are larger than 40 mm and −15 kV, respectively, a uniform irradiation current distribution along the circumference of the anode can be obtained. The simulation results show that good irradiation uniformity of circular components can be achieved by this annular cathode HCPEB source.

  20. Three dimensional [delta][ital f] simulations of beams in the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Koga, J.; Tajima, T. (Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)); Machida, S. (SSC Laboratory, 2550 Beckleymeade Avenue, Dallas, Texas 75237 (United States))

    1993-12-25

    A three dimensional [delta][ital f] strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a [delta][ital f] code. The [delta][ital f] method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.

  1. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  2. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  3. Numerical and experimental validation of a particle Galerkin method for metal grinding simulation

    Science.gov (United States)

    Wu, C. T.; Bui, Tinh Quoc; Wu, Youcai; Luo, Tzui-Liang; Wang, Morris; Liao, Chien-Chih; Chen, Pei-Yin; Lai, Yu-Sheng

    2018-03-01

    In this paper, a numerical approach with an experimental validation is introduced for modelling high-speed metal grinding processes in 6061-T6 aluminum alloys. The derivation of the present numerical method starts with an establishment of a stabilized particle Galerkin approximation. A non-residual penalty term from strain smoothing is introduced as a means of stabilizing the particle Galerkin method. Additionally, second-order strain gradients are introduced to the penalized functional for the regularization of damage-induced strain localization problem. To handle the severe deformation in metal grinding simulation, an adaptive anisotropic Lagrangian kernel is employed. Finally, the formulation incorporates a bond-based failure criterion to bypass the prospective spurious damage growth issues in material failure and cutting debris simulation. A three-dimensional metal grinding problem is analyzed and compared with the experimental results to demonstrate the effectiveness and accuracy of the proposed numerical approach.

  4. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  5. Spatial distribution patterns of energy deposition and cellular radiation effects in lung tissue following simulated exposure to alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.

    1990-01-01

    Randomly oriented sections of rat tissue have been digitised to provide the contours of tissue-air interfaces and the locations of individual cell nuclei in the alveolated region of the lung. Sources of alpha particles with varying irradiation geometries and densities are simulated to compute the resulting random pattern of cellular irradiation, i.e. spatial coordinates, frequency, track length, and energy of traversals by the emitted alpha particles. Probabilities per unit track lengths, derived from experimental data on in vitro cellular inactivation and transformation, are then applied to the results of the alpha exposure simulations to yield an estimate of the number of both dead and viable transformed cells and their spatial distributions. If lung cancer risk is linearly related to the number of transformed cells, the carcinogenic risk for hot particles is always smaller than that for a uniform nuclide distribution of the same activity. (author)

  6. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  7. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  8. Four-dimensional image display for associated particle imaging

    International Nuclear Information System (INIS)

    Headley, G.; Beyerle, A.; Durkee, R.; Hurley, P.; Tunnell, L.

    1994-01-01

    Associated particle imaging (API) is a three-dimensional neutron gamma imaging technique which provides both spatial and spectral information about an unknown. A local area network consisting of a UNIX fileserver and multiple DOS workstations has been chosen to perform the data acquisition and display functions. The data are acquired with a CAMAC system, stored in list mode, and sorted on the fileserver for display on the DOS workstations. Three of the display PCs, interacting with the fileserver, provide coordinated views as the operator ''slices'' the image. The operator has a choice of: a one-dimensional shadowgram from any side, two-dimensional shadowgrams from any side; a three-dimensional view (either perspective projection or stereoscopic). A common color scheme is used to carry energy information into the spatial images. ((orig.))

  9. Streamline three-dimensional thermal model of a lithium titanate pouch cell battery in extreme temperature conditions with module simulation

    Science.gov (United States)

    Jaguemont, Joris; Omar, Noshin; Martel, François; Van den Bossche, Peter; Van Mierlo, Joeri

    2017-11-01

    In this paper, the development of a three-dimensional (3D) lithium titanium oxide (LTO) pouch cell is presented to first better comprehend its thermal behavior within electrified vehicle applications, but also to propose a strong modeling base for future thermal management system. Current 3D-thermal models are based on electrochemical reactions which are in need for elaborated meshing effort and long computational time. There lacks a fast electro-thermal model which can capture voltage, current and thermal distribution variation during the whole process. The proposed thermal model is a reduce-effort temperature simulation approach involving a 0D-electrical model accommodating a 3D-thermal model to exclude electrochemical processes. The thermal model is based on heat-transfer theory and its temperature distribution prediction incorporates internal conduction and heat generation effect as well as convection. In addition, experimental tests are conducted to validate the model. Results show that both the heat dissipation rate and surface temperature uniformity data are in agreement with simulation results, which satisfies the application requirements for electrified vehicles. Additionally, a LTO battery pack sizing and modeling is also designed, applied and displays a non-uniformity of the cells under driving operation. Ultimately, the model will serve as a basis for the future development of a thermal strategy for LTO cells that operate in a large temperature range, which is a strong contribution to the existing body of scientific literature.

  10. Acoustofluidic particle dynamics: Beyond the Rayleigh limit.

    Science.gov (United States)

    Baasch, Thierry; Dual, Jürg

    2018-01-01

    In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.

  11. Flukacad/Pipsicad: three-dimensional interfaces between Fluka and Autocad

    International Nuclear Information System (INIS)

    Helmut Vincke

    2001-01-01

    FLUKA is a widely used 3-D particle transport program. Up to now there was no possibility to display the simulation geometry or the calculated tracks in three dimensions. Even with FLUKA there exists only an option to picture two-dimensional views through the geometry used. This paper covers the description of two interface programs between the particle transport code FLUKA and the CAD program AutoCAD. These programs provide a three-dimensional facility not only for illustrating the simulated FLUKA geometry (FLUKACAD), but also for picturing simulated particle tracks (PIPSICAD) in a three-dimensional set-up. Additionally, the programming strategy for connecting FLUKA with AutoCAD is shown. A number of useful features of the programs themselves, but also of AutoCAD in the context of FLUKACAD and PIPSICAD, are explained. (authors)

  12. Pickup protons at quasi-perpendicular shocks: full particle electrodynamic simulations

    Directory of Open Access Journals (Sweden)

    S. Matsukiyo

    2007-02-01

    Full Text Available We have performed 3 one-dimensional full particle electromagnetic simulations of a quasi-perpendicular shock with the same Alfvén Mach number MA~5, shock normal-magnetic field angle ΘBn=87° and ion and electron beta (particle to magnetic field pressure of 0.1. In the first run we used an ion to electron mass ratio close to the physical one (mi/me=1024. As expected from previous high mass ratio simulations the Modified Two-Stream instability develops in the foot of the shock, and the shock periodically reforms itself. We have then self-consistently included in the simulation 10% pickup protons distributed on a shell in velocity space as a third component. In a run with an unrealistically low mass ratios of 200 the shock still reforms itself; reformation is due to accumulation of specularly reflected particles at the upstream edge of the foot. In a third run including pickup protons we used a mass ratio of 1024. The shock reforms periodically as in the low mass ratio run with a somewhat smaller time constant. The specular reflection of pickup protons results in an increase of the shock potential some distance ahead of the shock foot and ramp. The minimum scale of the cross shock potential during reformation is about 7 electron inertial length λe. We do not find any pickup proton acceleration in the ramp or downstream of the shock beyond the energy which specularly reflected ions gain by the motional electric field of the solar wind during their upstream gyration.

  13. A Particle-In-Cell approach to particle flux shaping with a surface mask

    Directory of Open Access Journals (Sweden)

    G. Kawamura

    2017-08-01

    Full Text Available The Particle-In-Cell simulation code PICS has been developed to study plasma in front of a surface with two types of masks, step-type and roof-type. Parameter scans with regard to magnetic field angle, electron density, and mask height were carried out to understand their influence on ion particle flux distribution on a surface. A roof-type mask with a small mask height yields short decay length in the flux distribution which is consistent with that estimated experimentally. A roof-type mask with a large height yields very long decay length and the flux value does not depend on a mask height or an electron density, but rather on a mask length and a biasing voltage of the surface. Mask height also changes the flux distribution apart from the mask because of the shading effect of the mask. Electron density changes the distribution near the mask edge according to the Debye length. Dependence of distribution on parameters are complicated especially for a roof-type mask, and simulation study with various parameters are useful to understand the physical reasons of dependence and also is useful as a tool for experiment studies.

  14. Particle-in-cell simulations of electron beam control using an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  15. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    Science.gov (United States)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  16. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  17. Particle-in-Cell Codes for plasma-based particle acceleration

    CERN Document Server

    Pukhov, Alexander

    2016-01-01

    Basic principles of particle-in-cell (PIC ) codes with the main application for plasma-based acceleration are discussed. The ab initio full electromagnetic relativistic PIC codes provide the most reliable description of plasmas. Their properties are considered in detail. Representing the most fundamental model, the full PIC codes are computationally expensive. The plasma-based acceler- ation is a multi-scale problem with very disparate scales. The smallest scale is the laser or plasma wavelength (from one to hundred microns) and the largest scale is the acceleration distance (from a few centimeters to meters or even kilometers). The Lorentz-boost technique allows to reduce the scale disparity at the costs of complicating the simulations and causing unphysical numerical instabilities in the code. Another possibility is to use the quasi-static approxi- mation where the disparate scales are separated analytically.

  18. Experimental and simulation study of the effects of cosmic particles on CMOS/SOS RAMs

    International Nuclear Information System (INIS)

    Worley, E.; Williams, R.; Groninger, J.

    1990-01-01

    Van De Graaff particle accelerator data was taken on three different CMOS/SOS RAM cells. The resulting LET upset thresholds were then used to calculate the deposited charge needed to upset the cells. Detailed SPICE simulations of the various cells were used to determine the collected charge required for upset. A comparison of the two values indicated that the charge needed to upset the cells was greater than the deposited charge, thus confirming Rollins' results. Shorter channel lengths and higher power supply voltages caused the ratio, M, of upset charge to deposited charge to increase. As a result of this multiplication factor, actual devices are more likely to upset (i.e., upset at lower energy) than expected from an analysis of only the collected charge. A mixed mode simulator was then used to model the charge collection process. This simulator study showed that the M factor is a very fluid number which is dependent on minority carrier lifetime, drain voltage, and the switching dynamics of the cell in addition to the dependence on mobility ratio and channel length. Parasitic bipolar gain at high injection levels appears to be the primary mechanism allowing collected charge to be greater than deposited charge. In conclusion, the simulator and experimental data show that, as floating body static memory transistors are down scaled, the particle energy needed to upset the cell is reduced because of the enhanced parasitic bipolar gain effect as well as a reduction in the node capacitance. This result is shown by simulation to also apply to fully depleted SOI transistors

  19. ZnO/TiO{sub 2} particles and their solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Kerli, S., E-mail: suleymankerli@ksu.edu.tr [Department of EnergySystemsEngineering, Faculty of Elbistan Technology, Kahramanmaras SutcuImamUniversity, Kahramanmaras (Turkey); Akgül, Ö., E-mail: omeraakgul@gmail.com [Kahramanmaras Sutcu Imam University, Dept. of Physics, 46100 K.Maras-Turkey (Turkey); Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Eng. 61080, Trabzon-Turkey (Turkey)

    2016-03-25

    ZnO/TiO{sub 2} particles were investigated for dye-sensitized solar cells (DSSC). Nano-structured ZnO particles were produced by the hydrothermal method. TiO{sub 2} (P25) nanoparticles, was bought from the company of Degussa. Crystal structures and morphological properties of particles were examined by XRD and SEM. As an application, dye sensitized solar cells were fabricated from nano-structured produced metal oxide particles. The working electrodes of the DSSCs were obtained by mixture of ZnO and TiO{sub 2} powders. I-V characteristics of the cells were measured by using a solar simulator and the efficiency of the solar cells were obtained by using I-V graphs. ZnO cells sensitized with Ruthenium 535-bisTBA (N719) dyes yield higher efficiencies than corresponding TiO{sub 2} cells. By increasing TiO{sub 2} amount in the mixture of ZnO/TiO{sub 2}, it was observed that efficiencies of cells are getting lower.

  20. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  1. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Science.gov (United States)

    Stonko, David P; Manning, Lathiena; Starz-Gaiano, Michelle; Peercy, Bradford E

    2015-01-01

    Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.

  2. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment.

    Directory of Open Access Journals (Sweden)

    David P Stonko

    Full Text Available Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of

  3. Three-Dimensional Design of a Non-Axisymmetric Periodic Permanent Magnet Focusing System

    CERN Document Server

    Chen Chi Ping; Radovinsky, Alexey; Zhou, Jing

    2005-01-01

    A three-dimensional (3D) design is presented of a non-axisymmetric periodic permanent magnet focusing system which will be used to focus a large-aspect-ratio, ellipse-shaped, space-charge-dominated electron beam. In this design, an analytic theory is used to specify the magnetic profile for beam transport. The OPERA3D code is used to compute and optimize a realizable magnet system. Results of the magnetic design are verified by two-dimensional particle-in-cell and three-dimensional trajectory simulations of beam propagation using PFB2D and OMNITRAK, respectively. Results of fabrication tolerance studies are discussed.

  4. Particle-in-cell studies of laser-driven hot spots and a statistical model for mesoscopic properties of Raman backscatter

    International Nuclear Information System (INIS)

    Albright, B.J.; Yin, L.; Bowers, K.J.; Kline, J.L.; Montgomery, D.S.; Fernandez, J.C.; Daughton, W.

    2006-01-01

    The authors use explicit particle-in-cell simulations to model stimulated scattering processes in media with both solitary and multiple laser hot spots. These simulations indicate coupling among hot spots, whereby scattered light, plasma waves, and hot electrons generated in one laser hot spot may propagate to neighboring hot spots, which can be destabilized to enhanced backscatter. A nonlinear statistical model of a stochastic beam exhibiting this coupled behavior is described here. Calibration of the model using particle-in-cell simulations is performed, and a threshold is derived for 'detonation' of the beam to high reflectivity. (authors)

  5. On the confinement of a Dirac particle to a two-dimensional ring

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.

    2012-01-01

    In this contribution, we propose a new model for studying the confinement of a spin-half particle to a two-dimensional quantum ring for systems described by the Dirac equation by introducing a new coupling into the Dirac equation. We show that the introduction of this new coupling into the Dirac equation yields a generalization of the two-dimensional quantum ring model proposed by Tan and Inkson [W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11 (1996) 1635] for relativistic spin-half quantum particles. -- Highlights: ► Two-dimensional ring model for condensed matter systems described by the Dirac equation. ► Exact solutions of the Dirac equation. ► Persistent currents for Dirac-like systems confined to a two-dimensional quantum ring.

  6. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  7. Ultrasound directed self-assembly of three-dimensional user-specified patterns of particles in a fluid medium

    Science.gov (United States)

    Prisbrey, M.; Greenhall, J.; Guevara Vasquez, F.; Raeymaekers, B.

    2017-01-01

    We use ultrasound directed self-assembly to organize particles dispersed in a fluid medium into a three-dimensional (3D) user-specified pattern. The technique employs ultrasound transducers that line the boundary of a fluid reservoir to create a standing ultrasound wave field. The acoustic radiation force associated with the wave field drives particles dispersed in the fluid medium into organized patterns, assuming that the particles are much smaller than the wavelength and do not interact with each other. We have theoretically derived a direct solution method to calculate the ultrasound transducer operating parameters that are required to assemble a user-specified 3D pattern of particles in a fluid reservoir of arbitrary geometry. We formulate the direct solution method as a constrained optimization problem that reduces to eigendecomposition. We experimentally validate the solution method by assembling 3D patterns of carbon nanoparticles in a water reservoir and observe good quantitative agreement between theory and experiment. Additionally, we demonstrate the versatility of the solution method by simulating ultrasound directed self-assembly of complex 3D patterns of particles. The method works for any 3D simple, closed fluid reservoir geometry in combination with any arrangement of ultrasound transducers and enables employing ultrasound directed self-assembly in a myriad of engineering applications, including biomedical and materials fabrication processes.

  8. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    Science.gov (United States)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  9. Three-dimensional simulations of cellular non-premixed jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Valaer, A.L.; Frouzakis, C.E.; Boulouchos, K. [Aerothermochemistry and Combustion System Laboratory, Swiss Federal Institute of Technology, CH-8092 Zurich (Switzerland); Papas, P. [Division of Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Tomboulides, A.G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2010-04-15

    The formation, dynamics and structure of cellular flames in circular non-premixed jets are examined with three-dimensional numerical simulations incorporating detailed descriptions of chemistry and transport. Similar to past experiments reported in the literature, CO{sub 2}-diluted hydrogen in diluted or pure oxygen co-flowing streams in the proximity of the extinction limit are considered. As in the experiments, several preferred cellular states are found to co-exist with the particular state realized depending on initial conditions as well as on the jet characteristics. The simulations provide additionally the temporal transitions to different stationary or rotating cellular flames, their detailed structure, and the dependence of the scaling of the realized number of cells with the vorticity thickness. (author)

  10. Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio

    2012-07-01

    Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the

  11. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

  12. Fully kinetic particle simulations of high pressure streamer propagation

    Science.gov (United States)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  13. Exactly integrable analogue of a one-dimensional gravitating system

    International Nuclear Information System (INIS)

    Miller, Bruce N.; Yawn, Kenneth R.; Maier, Bill

    2005-01-01

    Exchange symmetry in acceleration partitions the configuration space of an N particle one-dimensional gravitational system (OGS) into N! equivalent cells. We take advantage of the resulting small angular separation between the forces in neighboring cells to construct a related integrable version of the system that takes the form of a central force problem in N-1 dimensions. The properties of the latter, including the construction of trajectories and possible continuum limits, are developed. Dynamical simulation is employed to compare the two models. For some initial conditions, excellent agreement is observed

  14. Assessing the role of secondary electron emission on the characteristics of 6-cavity magnetrons with transparent cathode through particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hao; Joshi, Ravi P., E-mail: rjoshi@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246 (United States); Prasad, Sarita; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Ludeking, Lars [ATK Mission Systems, 8560 Cinderbed Road, Suite 700, Newington, Virginia 22122 (United States)

    2014-05-21

    Effects of secondary electron emission (SEE) on the performance of a 6-cavity relativistic magnetron with transparent cathodes are probed through particle-in-cell simulations. Appropriate relations for the secondary electron yield have been developed and used. For comparisons, separate simulations have been performed with- and without electron cascading. Simulation results seem to indicate SEE to be detrimental to the power output due to deviations in the starting trajectories of secondary electrons, and the reduced fraction with synchronized rotational velocity. A higher reduction in output power is predicted with electron cascading, though mode competition was not seen at the 0.65 T field. A possible solution to mitigating SEE in magnetrons for high power microwave applications would be to alter the surface properties of emitting electrodes through irradiation, which can lead to graphitic film formation.

  15. Bayesian approach to MSD-based analysis of particle motion in live cells.

    Science.gov (United States)

    Monnier, Nilah; Guo, Syuan-Ming; Mori, Masashi; He, Jun; Lénárt, Péter; Bathe, Mark

    2012-08-08

    Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  17. Deposition of nano-size particles on reticulated vitreous carbon using colloidal precursors : three-dimensional anodes for borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2006-07-01

    In addition to their inherently larger specific surface area, mesoscopic materials also possess a higher density of surface constrained sites, which could serve as active sites in catalysis as well as facilitate the surface diffusion of small molecules and ions relevant to various catalytic steps. This study investigated the organosol method for the deposition of platinum (Pt), iridium (Ir), gold (Au) and nickel (Ni) nano-particles on reticulated vitreous carbon to evaluate the electrocatalytic activity for BH{sub 4} oxidation by both fundamental electrochemical studies and fuel cell experiments. The application of the organosol nanometal preparation technique was based on the quaternary ammonium compound N(C{sub 8}H{sub 17}){sub 4}B(C{sub 2}H{sub 5}){sub 3}H acting as both reductant and colloid stabilizer. A current assisted variant was also studied where the reticulated vitreous carbon substrate served as the cathode operating at superficial current densities between 1.0 and 2.5 mA per cm{sup 2}. The organosol method produced a low catalyst load on reticulated vitreous carbons between 0.01 and 0.12 mg per cm{sup 2}. The electrodes were evaluated for catalytic activity toward the electro-oxidation of BH{sub 4} by cyclic voltammetry, chronopotentiometry and fuel cell experiments. Borohydride fuel cells with liquid electrolyte (2 M NaOH) were assembled using a 3-dimensional anode, a cation exchange membrane and a commercial oxygen cathode. Results showed that the anode catalyst mass activity was higher for the 3-D design compared to the case when a gas diffusion electrode served as the anode. It was concluded that the extended reaction zone of the three-dimensional anode with liquid electrolyte improved the catalyst utilization efficiency by allowing the reduction of the catalyst load. 6 refs., 1 fig.

  18. On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2009-11-01

    Full Text Available The distribution of ice layers in the polar summer mesosphere (called polar mesospheric clouds or PMCs is sensitive to background atmospheric conditions and therefore affected by global-scale dynamics. To investigate this coupling it is necessary to simulate the global distribution of PMCs within a 3-dimensional (3-D model that couples large-scale dynamics with cloud microphysics. However, modeling PMC microphysics within 3-D global chemistry climate models (GCCM is a challenge due to the high computational cost associated with particle following (Lagrangian or sectional microphysical calculations. By characterizing the relationship between the PMC effective radius, ice water content (iwc, and local temperature (T from an ensemble of simulations from the sectional microphysical model, the Community Aerosol and Radiation Model for Atmospheres (CARMA, we determined that these variables can be described by a robust empirical formula. The characterized relationship allows an estimate of an altitude distribution of PMC effective radius in terms of local temperature and iwc. For our purposes we use this formula to predict an effective radius as part of a bulk parameterization of PMC microphysics in a 3-D GCCM to simulate growth, sublimation and sedimentation of ice particles without keeping track of the time history of each ice particle size or particle size bin. This allows cost effective decadal scale PMC simulations in a 3-D GCCM to be performed. This approach produces realistic PMC simulations including estimates of the optical properties of PMCs. We validate the relationship with PMC data from the Solar Occultation for Ice Experiment (SOFIE.

  19. Computational simulation of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos; Ventikos, Yiannis

    2005-08-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.

  20. Mathematical Model and Simulation of Particle Flow around Choanoflagellates Using the Method of Regularized Stokeslets

    Science.gov (United States)

    Nararidh, Niti

    2013-11-01

    Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. We investigated the role of the microvilli in the feeding and swimming behavior of the organism using a three-dimensional model based on the method of regularized Stokeslets. This model allows us to examine the velocity generated around the feeding organism tethered in place, as well as to predict the paths of surrounding free flowing particles. In particular, we can depict the effective capture of nutritional particles and bacteria in the fluid, showing the hydrodynamic cooperation between the cell, flagellum, and microvilli of the organism. Funding Source: Murchison Undergraduate Research Fellowship.

  1. Three-dimensional Monte Carlo simulations of W7-X plasma transport: density control and particle balance in steady-state operations

    International Nuclear Information System (INIS)

    Sharma, D.; Feng, Y.; Sardei, F.; Reiter, D.

    2005-01-01

    This paper presents self-consistent three-dimensional (3D) plasma transport simulations in the boundary of stellarator W7-X obtained with the Monte Carlo code EMC3-EIRENE for three typical island divertor configurations. The chosen 3D grid consists of relatively simple nested finite toroidal surfaces defined on a toroidal field period and covering the whole edge topology, which includes closed surfaces, islands and ergodic regions. Local grid refinements account for the required high resolution in the divertor region. The distribution of plasma density and temperature in the divertor region, as well as the power deposition profiles on the divertor plates, are shown to strongly depend on the island geometry, i.e. on the position and size of the dominant island chain. Configurations with strike-point positions closer to the gap of the divertor chamber generally favour the neutral compression in the divertor chamber and hence the pumping efficiency. The ratio of pumping to recycling fluxes is found to be roughly independent of the separatrix density and is thus a figure of merit for the quality of the configuration and of the divertor system in terms of density control. Lower limits for the achievable separatrix density, which determine the particle exhaust capabilities in stationary conditions, are compared for the three W7-X configurations

  2. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  3. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  4. Dixon-Souriau equations from a 5-dimensional spinning particle in a Kaluza-Klein framework

    International Nuclear Information System (INIS)

    Cianfrani, F.; Milillo, I.; Montani, G.

    2007-01-01

    The dimensional reduction of Papapetrou equations is performed in a 5-dimensional Kaluza-Klein background and Dixon-Souriau results for the motion of a charged spinning body are obtained. The splitting provides an electric dipole moment, and, for elementary particles, the induced parity and time-reversal violations are explained

  5. Study of effect of grain size on dust charging in an RF plasma using three-dimensional PIC-MCC simulations

    International Nuclear Information System (INIS)

    Ikkurthi, V. R.; Melzer, A.; Matyash, K.; Schneider, R.

    2008-01-01

    A 3-dimensional Particle-Particle Particle-Mesh (P 3 M) code is applied to study the charging process of micrometer size dust grains confined in a capacitive RF discharge. In our model, particles (electrons and ions) are treated kinetically (Particle-in-Cell with Monte Carlo Collisions (PIC-MCC)). In order to accurately resolve the plasma particles' motion close to the dust grain, the PIC technique is supplemented with Molecular Dynamics (MD), employing an an analytic electrostatic potential for the interaction with the dust grain. This allows to self-consistently resolve the dust grain charging due to absorption of plasma electrons and ions. The charging of dust grains confined above lower electrode in a capacitive RF discharge and its dependence on the size and position of the dust is investigated. The results have been compared with laboratory measurements

  6. A parallel 3D particle-in-cell code with dynamic load balancing

    International Nuclear Information System (INIS)

    Wolfheimer, Felix; Gjonaj, Erion; Weiland, Thomas

    2006-01-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated

  7. A parallel 3D particle-in-cell code with dynamic load balancing

    Energy Technology Data Exchange (ETDEWEB)

    Wolfheimer, Felix [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)]. E-mail: wolfheimer@temf.de; Gjonaj, Erion [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany); Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)

    2006-03-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated.

  8. Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2011-10-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and with BEPS using various cell sizes. In this poster, we compare the wakes we observe in these simulations with each other and predictions from Vlasov theory. Prepared by LLNL under Contract DE-AC52-07NA27344 and by UCLA under Grant DE-FG52-09NA29552.

  9. Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Meli, A; Mastichiadis, A [Department of Physics, National University of Athens, Panepistimiopolis, Zografos 15783 (Greece); Drury, L O C [Dublin Institute for Advanced Studies, Dublin 2 (Ireland)], E-mail: markd@tp4.rub.de

    2008-06-15

    Supernova remnant blast shells can reach the flow speed v{sub s} = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed v{sub b} {approx} v{sub s}. For v{sub b} << v{sub s} the Buneman or upper-hybrid instabilities dominate, while for v{sub b} >> v{sub s} the filamentation and mixed modes grow faster. Here the relevant waves for v{sub b} {approx} v{sub s} are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed v{sub s} is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to {approx}10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.

  10. Simulation studies for the in-vivo dose verification of particle therapy

    International Nuclear Information System (INIS)

    Rohling, Heide

    2015-01-01

    An increasing number of cancer patients is treated with proton beams or other light ion beams which allow to deliver dose precisely to the tumor. However, the depth dose distribution of these particles, which enables this precision, is sensitive to deviations from the treatment plan, as e.g. anatomical changes. Thus, to assure the quality of the treatment, a non-invasive in-vivo dose verification is highly desired. This monitoring of particle therapy relies on the detection of secondary radiation which is produced by interactions between the beam particles and the nuclei of the patient's tissue. Up to now, the only clinically applied method for in-vivo dosimetry is Positron Emission Tomography which makes use of the β + -activity produced during the irradiation (PT-PET). Since from a PT-PET measurement the applied dose cannot be directly deduced, the simulated distribution of β + -emitting nuclei is used as a basis for the analysis of the measured PT-PET data. Therefore, the reliable modeling of the production rates and the spatial distribution of the β + -emitters is required. PT-PET applied during instead of after the treatment is referred to as in-beam PET. A challenge concerning in-beam PET is the design of the PET camera, because a standard full-ring scanner is not feasible. Thus, for in-beam PET and PGI dedicated detection systems and, moreover, profound knowledge about the corresponding radiation fields are required. Using various simulation codes, this thesis contributes to the modelling of the β + -emitters and photons produced during particle irradiation, as well as to the evaluation and optimization of hardware for both techniques. Concerning the modeling of the production of the relevant β + -emitters, the abilities of the Monte Carlo simulation code PHITS and of the deterministic, one-dimensional code HIBRAC were assessed. HIBRAC was substantially extended to enable the modeling of the depth-dependent yields of specific nuclides. For proton

  11. Three dimensional hair model by means particles using Blender

    Science.gov (United States)

    Alvarez-Cedillo, Jesús Antonio; Almanza-Nieto, Roberto; Herrera-Lozada, Juan Carlos

    2010-09-01

    The simulation and modeling of human hair is a process whose computational complexity is very large, this due to the large number of factors that must be calculated to give a realistic appearance. Generally, the method used in the film industry to simulate hair is based on particle handling graphics. In this paper we present a simple approximation of how to model human hair using particles in Blender. [Figure not available: see fulltext.

  12. Well-balanced compressible cut-cell simulation of atmospheric flow.

    Science.gov (United States)

    Klein, R; Bates, K R; Nikiforakis, N

    2009-11-28

    Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.

  13. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  14. Simulation of concentration distribution of urban particles under wind

    Science.gov (United States)

    Chen, Yanghou; Yang, Hangsheng

    2018-02-01

    The concentration of particulate matter in the air is too high, which seriously affects people’s health. The concentration of particles in densely populated towns is also high. Understanding the distribution of particles in the air helps to remove them passively. The concentration distribution of particles in urban streets is simulated by using the FLUENT software. The simulation analysis based on Discrete Phase Modelling (DPM) of FLUENT. Simulation results show that the distribution of the particles is caused by different layout of buildings. And it is pointed out that in the windward area of the building and the leeward sides of the high-rise building are the areas with high concentration of particles. Understanding the concentration of particles in different areas is also helpful for people to avoid and reduce the concentration of particles in high concentration areas.

  15. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  16. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  17. Numerical modelling of adsorption of metallic particles on graphite substrate via molecular dynamics simulation

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    1998-01-01

    A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation related to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specially formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. (author)

  18. Saturation of backward stimulated scattering of laser in kinetic regime: Wavefront bowing, trapped particle modulational instability, and trapped particle self-focusing of plasma waves

    International Nuclear Information System (INIS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Daughton, W.; Rose, H. A.

    2008-01-01

    Backward stimulated Raman and Brillouin scattering (SRS and SBS) of laser are examined in the kinetic regime using particle-in-cell simulations. The SRS reflectivity measured as a function of the laser intensity in a single hot spot from two-dimensional (2D) simulations shows a sharp onset at a threshold laser intensity and a saturated level at higher intensities, as obtained previously in Trident experiments [D. S. Montgomery et al., Phys. Plasmas 9, 2311 (2002)]. In these simulations, wavefront bowing of electron plasma waves (ion acoustic waves) due to the trapped particle nonlinear frequency shift, which increases with laser intensity, is observed in the SRS (SBS) regime for the first time. Self-focusing from trapped particle modulational instability (TPMI) [H. A. Rose, Phys. Plasmas 12, 12318 (2005)] is shown to occur in both two- and three-dimensional SRS simulations. The key physics underlying nonlinear saturation of SRS is identified as a combination of wavefront bowing, TPMI, and self-focusing of electron plasma waves. The wavefront bowing marks the beginning of SRS saturation and self-focusing alone is sufficient to terminate the SRS reflectivity, both effects resulting from cancellation of the source term for SRS and from greatly increased dissipation rate of the electron plasm waves. Ion acoustic wave bowing also contributes to the SBS saturation. Velocity diffusion by transverse modes and rapid loss of hot electrons in regions of small transverse extent formed from self-focusing lead to dissipation of the wave energy and an increase in the Landau damping rate in spite of strong electron trapping that reduces Landau damping initially. The ranges of wavelength and growth rate associated with transverse breakup of the electron-plasma wave are also examined in 2D speckle simulations as well as in 2D periodic systems from Bernstein-Greene-Kruskal equilibrium and are compared with theory predictions

  19. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    Science.gov (United States)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  20. Particle-in-a-box model of one-dimensional excitons in conjugated polymers

    Science.gov (United States)

    Pedersen, Thomas G.; Johansen, Per M.; Pedersen, Henrik C.

    2000-04-01

    A simple two-particle model of excitons in conjugated polymers is proposed as an alternative to usual highly computationally demanding quantum chemical methods. In the two-particle model, the exciton is described as an electron-hole pair interacting via Coulomb forces and confined to the polymer backbone by rigid walls. Furthermore, by integrating out the transverse part, the two-particle equation is reduced to one-dimensional form. It is demonstrated how essentially exact solutions are obtained in the cases of short and long conjugation length, respectively. From a linear combination of these cases an approximate solution for the general case is obtained. As an application of the model the influence of a static electric field on the electron-hole overlap integral and exciton energy is considered.

  1. Full particle simulations of quasi-perpendicular shocks

    Science.gov (United States)

    Lembège, B.

    This tutorial-style review is dedicated to the different strategies and constraints used for analysing the dynamics of a collisionless shocks with full particle simulations. Main results obtained with such simulations can be found in published materials (recent references are provided in this text); these will be only quoted herein in order to illustrate a few aspects of these simulations. Thanks to the large improvement of super computers, full particle simulations reveal to be quite helpful for analyzing in details the dynamics of collisionless shocks. The main characteristics of such codes can be shortly reminded as follows: one resolves the full set of Poisson and Maxwell's equations without any approximation. Two approaches are commonly used for resolving this equation's set, more precisely the space derivatives: (i) the finite difference approach and (ii) the use of FFT's (Fast Fourier Transform). Two advantages of approach (ii) are that FFT's are highly optimized in supercomputers libraries, and these allow to separate all fields components into two groups: the longitudinal electrostatic component El (solution of Poisson equation) and the transverse electromagnetic components Et and Bt solutions of the Maxwell's equations (so called "fields pusher"). Such a separation is quite helpful in the post processing stage necessary for the data analysis, as will be explained in the presentation. both ions and electrons populations are treated as individual finite-size particles and suffer the effects of all fields via the Lorentz force, so called "particle pusher", which is applied to each particle. Because of the large number of particles commonly used, the particle pusher represents the most expensive part of the calculations on which most efforts of optimisation needs to be performed (in terms of "vectorisation" or of "parallelism"). Relativistic effects may be included in this force via the use of particle momemtum. Each particle has three velocity components (vx

  2. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    International Nuclear Information System (INIS)

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  3. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    Science.gov (United States)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  4. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  5. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  6. Three-dimensional discrete element method simulation of core disking

    Science.gov (United States)

    Wu, Shunchuan; Wu, Haoyan; Kemeny, John

    2018-04-01

    The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.

  7. Stochastic self-propagating star formation in three-dimensional disk galaxy simulations

    International Nuclear Information System (INIS)

    Statler, T.; Comins, N.; Smith, B.F.

    1983-01-01

    Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored

  8. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results

  9. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  10. Visualization techniques in plasma numerical simulations

    International Nuclear Information System (INIS)

    Kulhanek, P.; Smetana, M.

    2004-01-01

    Numerical simulations of plasma processes usually yield a huge amount of raw numerical data. Information about electric and magnetic fields and particle positions and velocities can be typically obtained. There are two major ways of elaborating these data. First of them is called plasma diagnostics. We can calculate average values, variances, correlations of variables, etc. These results may be directly comparable with experiments and serve as the typical quantitative output of plasma simulations. The second possibility is the plasma visualization. The results are qualitative only, but serve as vivid display of phenomena in the plasma followed-up. An experience with visualizing electric and magnetic fields via Line Integral Convolution method is described in the first part of the paper. The LIC method serves for visualization of vector fields in two dimensional section of the three dimensional plasma. The field values can be known only in grid points of three-dimensional grid. The second part of the paper is devoted to the visualization techniques of the charged particle motion. The colour tint can be used for particle temperature representation. The motion can be visualized by a trace fading away with the distance from the particle. In this manner the impressive animations of the particle motion can be achieved. (author)

  11. Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal

    International Nuclear Information System (INIS)

    Li-Mei, Qi; Zi-Qiang, Yang; Feng, Lan; Xi, Gao; Da-Zhi, Li

    2010-01-01

    This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is made clear by using the Maxwell–Garnett effective medium theory, and the influences of dielectric filling factor and dielectric constant on effective plasma frequency are analysed. Moreover, the occurence of large gaps in dielectric plasma photonic crystal is demonstrated by comparing the skin depth with the lattice constant, and the influence of plasma frequency on the first three gaps is also studied. Finally, by using the particle-in-cell simulation method, a transmission curve in the Γ – X direction is obtained in dielectric plasma photonic crystal, which is in accordance with the dispersion curves calculated by the modified plane wave method, and the large gap between the transmission points of 27 GHz and 47 GHz is explained by comparing the electric field patterns in particle-in-cell simulation

  12. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tooprakai, P. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Seripienlert, A.; Ruffolo, D.; Chuychai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Matthaeus, W. H., E-mail: david.ruf@mahidol.ac.th [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-11-10

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  13. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    International Nuclear Information System (INIS)

    Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W. H.

    2016-01-01

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  14. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  15. Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2015-01-01

    Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,

  16. Interplay of single particle and collective response in molecular dynamics simulation of dusty plasma system

    Science.gov (United States)

    Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar

    2018-04-01

    The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.

  17. Simulating immersed particle collisions: the Devil's in the details

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2015-11-01

    Simulating densely-packed particle-laden flows with any degree of confidence requires accurate modeling of particle-particle collisions. To this end, we investigate a few collision models from the fluids and granular flow communities using sphere-wall collisions, which have been studied by a number of experimental groups. These collisions involve enough complexities--gravity, particle-wall lubrication forces, particle-wall contact stresses, particle-wake interactions--to challenge any collision model. Evaluating the successes and shortcomings of the collision models, we seek improvements in order to obtain more consistent results. We will highlight several implementation details that are crucial for obtaining accurate results.

  18. Iced airfoil separation bubble measurements by particle image velocimetry

    Science.gov (United States)

    Jacobs, Jason J.

    Not long after the birth of aviation, pilots began to recognize the dangers posed by aircraft icing. Since that time, research has improved the awareness of this problem and the scientific understanding of the associated aerodynamic impacts, however, few studies have involved detailed, quantitative, flowfield measurements. For this reason, the current investigation was conducted in which high spatial-resolution flowfield measurements were acquired of a NACA 0012 airfoil with two- and three-dimensional, simulated, leading-edge, horn-ice accretions utilizing particle image velocimetry (PIV). These measurements complemented existing iced airfoil performance measurements, revealed previously unknown details regarding the structure and behavior of these flowfields, and could potentially facilitate the development and improvement of computational schemes used to predict largely separated flows, including that of an iced airfoil near stall. Previous iced airfoil investigations have demonstrated somewhat reduced aerodynamic penalties resulting from a three-dimensional ice simulation, compared to those of a two-dimensional ice simulation of a representative cross section. Correspondingly, the current measurements revealed accelerated transition of the separated shear layer emanating from a three-dimensional ice simulation and therefore enhanced pressure recovery and reduced mean separation bubble length, each relative to the flowfield of a representative two-dimensional ice simulation. These effects appeared to result from the quasi-steady distribution of discrete, streamwise vortices which aided the turbulent entrainment of fluid from the recirculation region of the three-dimensional ice simulation separation bubble flowfield. These vortices were generated by a streamwise-vortex instability excited by roughness along the three-dimensional ice simulation and produced spanwise-cell structures throughout this flowfield, as well as significant spanwise variation in peak

  19. Macroscale particle simulation of externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya.

    1991-09-01

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  20. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  1. Simulating Isotope Enrichment by Gaseous Diffusion

    Science.gov (United States)

    Reed, Cameron

    2015-04-01

    A desktop-computer simulation of isotope enrichment by gaseous diffusion has been developed. The simulation incorporates two non-interacting point-mass species whose members pass through a cascade of cells containing porous membranes and retain constant speeds as they reflect off the walls of the cells and the spaces between holes in the membranes. A particular feature is periodic forward recycling of enriched material to cells further along the cascade along with simultaneous return of depleted material to preceding cells. The number of particles, the mass ratio, the initial fractional abundance of the lighter species, and the time between recycling operations can be chosen by the user. The simulation is simple enough to be understood on the basis of two-dimensional kinematics, and demonstrates that the fractional abundance of the lighter-isotope species increases along the cascade. The logic of the simulation will be described and results of some typical runs will be presented and discussed.

  2. The von Neumann entanglement entropy for Wigner-crystal states in one dimensional N-particle systems

    International Nuclear Information System (INIS)

    Kościk, Przemysław

    2015-01-01

    We study one-dimensional systems of N particles in a one-dimensional harmonic trap with an inverse power law interaction ∼|x| −d . Within the framework of the harmonic approximation we derive, in the strong interaction limit, the Schmidt decomposition of the one-particle reduced density matrix and investigate the nature of the degeneracy appearing in its spectrum. Furthermore, the ground-state asymptotic occupancies and their natural orbitals are derived in closed analytic form, which enables their easy determination for a wide range of values of N. A closed form asymptotic expression for the von Neumann entanglement entropy is also provided and its dependence on N is discussed for the systems with d=1 (charged particles) and with d=3 (dipolar particles). - Highlights: • We study confined systems of N particles with an inverse power law interaction. • We apply the harmonic approximation to the systems. • We derive closed form expressions for the asymptotic von Neumann entropy. • The asymptotic von Neumann entropy grows monotonically as N increases

  3. Interplay of differential cell mechanical properties, motility, and proliferation in emergent collective behavior of cell co-cultures

    Science.gov (United States)

    Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita

    The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.

  4. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  5. Track-structure simulations for charged particles.

    Science.gov (United States)

    Dingfelder, Michael

    2012-11-01

    Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.

  6. Effect of flexibility on the growth of concentration fluctuations in a suspension of sedimenting fibers: Particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Manikantan, Harishankar; Saintillan, David [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093 (United States)

    2016-01-15

    Three-dimensional numerical simulations are performed to study the stability of a sedimenting suspension of weakly flexible fibers. It is well known that a suspension of rigid rods sedimenting under gravity at low Reynolds number is unstable to concentration fluctuations owing to hydrodynamic interactions. Flexible fibers, however, reorient while settling and even weak flexibility can alter their collective dynamics. In our recent work [Manikantan et al., “The instability of a sedimenting suspension of weakly flexible fibres,” J. Fluid Mech. 756, 935–964 (2014)], we developed a mean-field theory to predict the linear stability of such a system. Here, we verify these predictions using accurate and efficient particle simulations based on a slender-body model. We also demonstrate the mechanisms by which flexibility-induced reorientation alters suspension microstructure, and through it, its stability. Specifically, we first show that the anisotropy of the base state in the case of a suspension of flexible fibers has a destabilizing effect compared to a suspension of rigid rods. Second, a conflicting effect of flexibility is also shown to suppress particle clustering and slow down the growth of the instability. The relative magnitude of filament flexibility and rotational Brownian motion dictates which effect dominates, and our simulations qualitatively follow theoretically predicted trends. The mechanism for either effects is tied to the flexibility-induced reorientation of particles, which we illustrate using velocity and orientation statistics from our simulations. Finally, we also show that, in the case of an initially homogeneous and isotropic suspension, flexibility always acts to suppress the growth of the instability.

  7. Effect of flexibility on the growth of concentration fluctuations in a suspension of sedimenting fibers: Particle simulations

    International Nuclear Information System (INIS)

    Manikantan, Harishankar; Saintillan, David

    2016-01-01

    Three-dimensional numerical simulations are performed to study the stability of a sedimenting suspension of weakly flexible fibers. It is well known that a suspension of rigid rods sedimenting under gravity at low Reynolds number is unstable to concentration fluctuations owing to hydrodynamic interactions. Flexible fibers, however, reorient while settling and even weak flexibility can alter their collective dynamics. In our recent work [Manikantan et al., “The instability of a sedimenting suspension of weakly flexible fibres,” J. Fluid Mech. 756, 935–964 (2014)], we developed a mean-field theory to predict the linear stability of such a system. Here, we verify these predictions using accurate and efficient particle simulations based on a slender-body model. We also demonstrate the mechanisms by which flexibility-induced reorientation alters suspension microstructure, and through it, its stability. Specifically, we first show that the anisotropy of the base state in the case of a suspension of flexible fibers has a destabilizing effect compared to a suspension of rigid rods. Second, a conflicting effect of flexibility is also shown to suppress particle clustering and slow down the growth of the instability. The relative magnitude of filament flexibility and rotational Brownian motion dictates which effect dominates, and our simulations qualitatively follow theoretically predicted trends. The mechanism for either effects is tied to the flexibility-induced reorientation of particles, which we illustrate using velocity and orientation statistics from our simulations. Finally, we also show that, in the case of an initially homogeneous and isotropic suspension, flexibility always acts to suppress the growth of the instability

  8. Simulation study of one-dimensional self-organized pattern in an atmospheric-pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    A two-dimensional fluid model is developed to simulate the one-dimensional self-organized patterns in an atmospheric-pressure dielectric barrier discharge (DBD) driven by sinusoidal voltage in argon. Under certain conditions, by changing applied voltage amplitude, the transversely uniform discharge can evolve into the patterned discharge and the varied self-organized patterned discharges with different numbers and arrangements of discharge channels can be observed. Similar to the uniform atmospheric-pressure DBD, the patterned discharge mode is found to undergo a transition from Townsend regime, sub-glow regime to glow regime with increasing applied voltage amplitude. In the different regimes, charged particles and electric field display different dynamical behaviors. If the voltage amplitude is increased over a certain value, the discharge enters an asymmetric patterned discharge mode, and then transforms into the spatially chaotic state with out-of-order discharge channels. The reason for forming the one-dimensional self-organized pattern is mainly due to the so-called activation-inhibition effect resulting from the local high electron density region appearing in discharge space. Electrode arrangement is the reason that induces local high electron density.

  9. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    aspects of structure and composition. The thesis is composed of the five papers: (A) Calculation of conductivity and polarization resistance of composite SOFC-electrodes from random resistor networks, (B) Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells, (C) Monte Carlo Simulations of the Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells (D) Calculations of Impedance of Composite Modes for Solid Oxide Fuel Cells (E) Simulations of Composite Electrodes in Fuel Cells. The major results are: (1) A Monte Carlo method is constructed for electrochemical applications, (2) The Monte Carlo simulations of conductivity with respect to its dependence on composition and temperature are validated quantitatively with respect to experimental results (papers A, B and E), (3) The Monte Carlo method is validated qualitatively with respect polarisation resistance and its thickness dependence (papers A, C, and E), (Considerable scatter in the experimental results prevents a more strict quantitative evaluation of the model.), (4) A dependence of the percolation threshold on particle size in the composite is suggested as a major reason for electrode deactivation in fuel cells employing composite electrodes in which particle aggregation occur (paper B), (5) The range of compositions within which there will be a thickness dependence of the polarisation resistance is calculated as a function of relative ratio of particle radii (paper C), (6) The shapes of impedance-plane plots for composite electrodes will usually differ significantly from their point-contact counterparts exclusively for reasons related structure (paper D), (7) The macroscopic porous-electrode theory is adapted for composite electrodes (papers C and E), (8) A model for internal reforming of methane at a composite fuel-cell anode is formulated, based on the macroscopic porous-electrode theory (paper E). The model includes a description of gas-phase transport and non

  10. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  11. The Particle inside a Ring: A Two-Dimensional Quantum Problem Visualized by Scanning Tunneling Microscopy

    Science.gov (United States)

    Ellison, Mark D.

    2008-01-01

    The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…

  12. Numerical Schemes for Charged Particle Movement in PIC Simulations

    International Nuclear Information System (INIS)

    Kulhanek, P.

    2001-01-01

    A PIC model of plasma fibers is developed in the Department of Physics of the Czech Technical University for several years. The program code was written in FORTRAN 95, free-style (without compulsory columns). Fortran compiler and linker were used from Compaq Visual Fortran 6.1A embedded in the Microsoft Development studio GUI. Fully three-dimensional code with periodical boundary conditions was developed. Electromagnetic fields are localized on a grid and particles move freely through this grid. One of the partial problems of the PIC model is the numerical particle solver, which will be discussed in this paper. (author)

  13. Quantum mechanical treatment of a constrained particle on two dimensional sphere

    Energy Technology Data Exchange (ETDEWEB)

    Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com; Panahi, H., E-mail: t-panahi@guilan.ac.ir

    2016-12-15

    In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen–Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky–Winternitz potential model.

  14. Intermittency in the relative separations of tracers and of heavy particles in turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Lanotte, A.S.; Scatamacchia, R.; Toschi, F.

    2014-01-01

    Results from direct numerical simulations (DNS) of particle relative dispersion in three-dimensional homogeneous and isotropic turbulence at Reynolds number Re_¿ ~ 300 are presented. We study point-like passive tracers and heavy particles, at Stokes number St = 0.6, 1 and 5. Particles are emitted

  15. Pair production of Dirac particles in a d + 1-dimensional noncommutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ousmane Samary, Dine [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), Cotonou (Benin); N' Dolo, Emanonfi Elias; Hounkonnou, Mahouton Norbert [University of Abomey-Calavi, International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), Cotonou (Benin)

    2014-11-15

    This work addresses the computation of the probability of fermionic particle pair production in d + 1-dimensional noncommutative Moyal space. Using Seiberg-Witten maps, which establish relations between noncommutative and commutative field variables, up to the first order in the noncommutative parameter θ, we derive the probability density of vacuum-vacuum pair production of Dirac particles. The cases of constant electromagnetic, alternating time-dependent, and space-dependent electric fields are considered and discussed. (orig.)

  16. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  17. Gyrotactic suppression and emergence of chaotic trajectories of swimming particles in three-dimensional flows

    Science.gov (United States)

    Richardson, S. I. Heath; Baggaley, A. W.; Hill, N. A.

    2018-02-01

    We study the effects of imposed three-dimensional flows on the trajectories and mixing of gyrotactic swimming microorganisms and identify phenomena not seen in flows restricted to two dimensions. Through numerical simulation of Taylor-Green and Arnold-Beltrami-Childress (ABC) flows, we explore the role that the flow and the cell shape play in determining the long-term configuration of the cells' trajectories, which often take the form of multiple sinuous and helical "plumelike" structures, even in the chaotic ABC flow. This gyrotactic suppression of Lagrangian chaos persists even in the presence of random noise. Analytical solutions for a number of cases reveal the how plumes form and the nature of the competition between torques acting on individual cells. Furthermore, studies of Lyapunov exponents reveal that, as the ratio of cell swimming speed relative to the flow speed increases from zero, the initial chaotic trajectories are first suppressed and then give way to a second unexpected window of chaotic trajectories at speeds greater than unity, before suppression of chaos at high relative swimming speeds.

  18. Computational simulation of a non-newtonian model of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos

    2005-12-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.

  19. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    Science.gov (United States)

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  20. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented