Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Three-dimensional numerical simulation during laser processing of CFRP
Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro
2017-09-01
We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.
Three dimensional direct numerical simulation of complex jet flows
Shin, Seungwon; Kahouadji, Lyes; Juric, Damir; Chergui, Jalel; Craster, Richard; Matar, Omar
2016-11-01
We present three-dimensional simulations of two types of very challenging jet flow configurations. The first consists of a liquid jet surrounded by a faster coaxial air flow and the second consists of a global rotational motion. These computations require a high spatial resolution and are performed with a newly developed high performance parallel code, called BLUE, for the simulation of two-phase, multi-physics and multi-scale incompressible flows, tested on up to 131072 threads with excellent scalability performance. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. Coriolis forces are taken into account and solved via an exact time-integration method that ensures numerical accuracy and stability. EPSRC UK Programme Grant EP/K003976/1.
Three-dimensional numerical simulations of three-phase flows
Pavlidis, Dimitrios; Xie, Zhizhua; Salinas, Pablo; Pain, Chris; Matar, Omar
2015-11-01
The objective of this study is to investigate the fluid dynamics of three-dimensional three-phase flow problems, such as droplet impact on a gas-liquid interface and bubble rising through a liquid-liquid interface. An adaptive unstructured mesh modelling framework is employed here to study three-phase flow problems, which can modify and adapt unstructured meshes to better represent the underlying physics of multiphase problems and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid' type method for the interface capturing based on a compressive control volume advection method and second-order finite element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in such flow simulations. The surface tension coefficient decomposition method has been employed to deal with surface tension pairing between different phases via a compositional approach. Numerical examples of some benchmark tests and the dynamics of three-phase flows are presented to demonstrate the ability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Parallel direct numerical simulation of three-dimensional spray formation
Chergui, Jalel; Juric, Damir; Shin, Seungwon; Kahouadji, Lyes; Matar, Omar
2015-11-01
We present numerical results for the breakup mechanism of a liquid jet surrounded by a fast coaxial flow of air with density ratio (water/air) ~ 1000 and kinematic viscosity ratio ~ 60. We use code BLUE, a three-dimensional, two-phase, high performance, parallel numerical code based on a hybrid Front-Tracking/Level Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces and a precise treatment of surface tension forces. The parallelization of the code is based on the technique of domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The interface method is also parallelized and defines the interface both by a discontinuous density field as well as by a triangular Lagrangian mesh and allows the interface to undergo large deformations including the rupture and/or coalescence of interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
One dimensional numerical simulation of small scale CFB combustors
Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)
2009-03-15
In this study, a one-dimensional model which includes volatilization, attrition and combustion of char particles for a circulating fluidized bed (CFB) combustor has been developed. In the modeling, the CFB combustor is analyzed in two regions: bottom zone considering as a bubbling fluidized bed in turbulent fluidization regime and upper zone core-annulus solids flow structure is established. In the bottom zone, a single-phase back-flow cell model is used to represent the solid mixing. Solids exchange, between the bubble phase and emulsion phase is a function of the bubble diameter and varies along the axis of the combustor. In the upper zone, particles move upward in the core and downward in the annulus. Thickness of the annulus varies according to the combustor height. Using the developed simulation program, the effects of operational parameters which are the particle diameter, superficial velocity and air-to-fuel ratio on net solids flux, oxygen and carbon dioxide mole ratios along the bed height and carbon content and bed temperature on the top of the riser are investigated. Simulation results are compared with test results obtained from the 50 kW Gazi University Heat Power Laboratory pilot scale unit and good agreement is observed. (author)
Jansen, Thomas la Cour; Knoester, Jasper
2007-01-01
We combine numerical Langevin simulations with numerical integration of the Schrodinger equation to calculate two-dimensional infrared spectra of ultrafast chemical exchange. This provides a tool to model and interpret such spectra of molecules undergoing chemical processes, such as isomerization an
Numerical simulations of the 2-dimensional Robin-Hood model
Cwilich, Gabriel; Fox, Perry; Zypman, Fredy; Buldyrev, Sergey
2007-03-01
The Robin Hood, or Zaitsev model [1] has been successfully used to model depinning of interfaces, friction, dislocation motion and flux creep, because it is one of the simplest extremal models for self-organized criticallity Until now, its properties have been well understood theoretically in one dimension and its scaling laws numerically verified. It is important to extend the range of validity of these laws into higher dimensions, to find precise values for the scaling exponents, and to investigate how they depend on the details of the model (like anisotropy). The case of two dimensions is of particular importance when studying surface friction [2]. Here, we numerically evaluate high precision scaling exponents for the avalanche size distribution, the avalanche fractal dimension, and the Levy flight-like distribution of the jumps between extremal active sites. [1] S.I. Zaitsev , Physica A 189, 411 (1992). [2] S. Buldyrev, J. Ferrante and F. Zypman Phys. Rev E (accepted)
Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation
Nichiporuk, O.; Kaminski, A.; Lemiti, M.; Fave, A. [Instituit National des Sciences Appliquees Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Skryshevsky, V. [National Taras Shevchenko Univ., Kiev (Ukraine). Radiophysics Dept.
2005-04-01
In this paper we present the results of the simulation of interdigitated back contacts solar cell on thin-film ({approx}{mu}m) silicon layer. The influence of several parameters (surface recombination rate, substrate thickness and type, diffusion length, device geometry, doping levels) on device characteristics are simulated using the accurate two-dimensional numerical simulator DESSIS that allows to optimise the cell design. (Author)
Numerical simulation of two-dimensional salt fingers
Shen, Colin Y.; Veronis, George
1997-10-01
Numerical calculations of unperturbed, regularly spaced fingers in the heat-salt system (with a ratio of salt to heat diffusivities of 1/80) were carried out for a configuration in which a reservoir of uniformly salty, warm fluid lies initially above a reservoir of fresh, cold fluid. Cases were calculated in which the stability ratio, Rρ, was 1.5 and 3.0, and they were calculated for different magnitudes of the destabilizing salt increment, ΔS, expressed in terms of a salt Rayleigh number, Rs. Blobs of fluid with a salt anomaly accumulate at the ends of the evolving fingers. The magnitude and size of the anomaly increase with decreasing Rρ and increasing Rs. The density of those blobs is gravitationally unstable to perturbations. In the range of parameters used in these calculations the ratio of the flux of density due to heat to that due to salt varies from 0.17 to 0.74 for the unperturbed fingers. Essentially, the flux ratio decreases when the vertical velocity in the fingers is small, so that a relatively large amount of heat is diffused laterally from warm, salty descending fingers to cool, fresh ascending ones. A detailed account of the evolution of the perturbed system describes the various stages of the instability, concluding with the formation of larger structures in the reservoirs, which squash the fingers near the interface, so that isotherms and isohaline contours at midlevel are more or less horizontal. There is an indication of three period doublings in the spacing of the unstable blobs as they penetrate into the lower reservoir. The destruction of the regular array of upright, uniformly spaced fingers appears to be the natural evolution of perturbed systems in which Rρ is near unity and Rs is large.
Three dimensional numerical simulation of welding temperature fields in stainless steel
董志波; 魏艳红; 刘仁培; 董祖珏
2004-01-01
Three kinds of mathematical models representing welding heat sources are presented. Among them, Gaussian model and double ellipsoidal model are used to analyze the thermal distributions with finite element method. At the same time, this paper analyzed the influences of the heat source models, the latent heat and the welding parameters on the temperature distributions. The comparisons between the simulated results and the experiments show double ellipsoidal model is good for three-dimensional numerical simulations. Furthermore, the adaptive mesh technique is applied in the three-dimensional model which greatly reduces the number of nodes and elements in the simulation.
Numerical simulation of three-dimensional turbulent flow in multistage axial compressor blade row
Jian JIANG; Bo LIU; Yangang WANG; Xiangyi NAN
2008-01-01
Numerical simulation of three-dimensional turbulent flow in a multistage axial compressor blade row is conducted. A high resolution, third-order ENN scheme is adopted to catch the shockwave and simulate the turbulent flow correctly, while an LU-SGS implicit method is chosen to improve computation rate. A detailed and highly efficient numerical simulation system is thus constructed. The investigation is focused on the grid con-necting methods between the rotor and the stator and the corresponding treatment of rotor-stator interactional sur-face. The final results of a three-stage axial compressor with inlet guide vanes conform well to the experimental data.
Zhi-yue Zhang
2002-01-01
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system of three dimensional nonlinear partial differential equations with initial-boundary value problems. In this paper, according to the actual conditions of molecular and three-dimensional characteristic of the problem,we construct the characteristic finite element alternating-direction schemes which can be divided into three continuous one-dimensional problems. By making use of tensor product algorithm, and priori estimation theory and techniques, the optimal order estimates in H1 norm are derived for the error in the approximate solution.
YanQuanying; ShangDeku; 等
1999-01-01
A two-dimensional mathematical model was built to describe the melting process of cylindrical basalt particle bed in a crucible.The melting processes with respect to the factors of thermal boundary conditions and particle sizes of basalt were simulated by using the numerical method (FDM).The governing equations were discretized in tridiagonal matrix form and were solved by using the tridiagonal matrix algorithm (TDMA) as well as the alternative direction implicit(ADI) solver.The temperature distribution,the moving law of the two dimensional phase-change boundaries the thermal current distribution were given through the numerical simulation.The results provided a theoretical basis for deciding heating procedure,for evaluating power import and controlling furnace temperature and for predicting basalt melting states etc.In the experiment,an electrical furnace was designed based on the computations.It has been proved that the simulation results are reasonably coincident with the experimental data.
Three-Dimensional Numerical Simulation of Plate Forming by Line Heating
Clausen, Henrik Bisgaard
1999-01-01
addressed the problem of simulating the process, and although very few have been successful in gaining accurate results valuable information about the mechanics have been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three......-dimensional thermo-mechanical model. Although very few have been successful in gaining accurate results valuable information about the mechanics has been derived. However, the increasing power of computers now allows for numerical simulations of the forming process using a three-dimensional thermo-mechanical model.......Line Heating is the process of forming (steel) plates into shape by means of localised heating often along a line. Though any focussed heat source will do, the inexpensive and widely available oxyacettylene gas torch is commonly applied in ship production.Over the years, many researchers have...
JIN Yuzhen; LI Jun; ZHU Linhang; DU Jiayou; JIN Yingzi; LIN Peifeng
2014-01-01
For the large deformation of the flexible body may cause the fluid grid distortion,which will make the numerical calculation tedious,even to end,the numerical simulation of the flexible body coupling with the fluid is always a tough problem.In this paper,the flexible body is under two kinds of constrained conditions and the ratio of length-diameter is 1:30.The Reynolds number of the airflow is 513,belonging to the area of low Reynolds number.The control equations of the coupling of flexible body with airflow are built and the adaptive grid control method is adopted to conduct the three-dimensional numerical simulation of the movement of the flexible body.The numerical results show that it is possible to simulate the characteristics of the flexible body's movement in the low Reynolds number airflow when the appropriate control equations are modeled and suitable equation-solving method is adopted.Unconstrained flexible body would turn over forward along the airflow's diffusion direction,while constrained flexible body in the flow field will make periodic rotation motion along the axis of the flexible body,and the bending deformation is more obvious than that of unconstrained flexible body.The preliminary three-dimensional numerical simulation can provide references for further research on the characteristics of the yam movement in high Reynolds number airflow.
CALCULATION OF VISCOUS FLOW AROUND CIRCULAR CYLINDER WITH THREE-DIMENSIONAL NUMERICAL SIMULATION
无
2001-01-01
Three-dimensional numerical simulation of a uniform incompressible viscous flow around a stationary circular cylinder was conducted. The CFX-4 software was used to calculate the hydrodynamic characteristics of the flow and the finite volume method for incompressible Navier-Stokes equations was employed in the program. The simulation of the flow was performed for Re=103 and Re=104 respectively within the sub-critical region. In order to overcome numerical instability for the high Reynolds number flows, a quadratic upwind scheme was incorporated for the Navier-Stokes equations. The periodicity boundary condition was used at the ends of the cylinder. It was found that the evolution of the lift and drag coefficients in each plane along the cylinder span is different. Comparison between the predicted results based on the three-dimensional and the two-dimensional analysis was also given. It is concluded that at the high Reynolds number the effect of three-dimensionality of the flow around the circular cylinder is remarkable, and in addition hydrodynamic coefficients with of 3-D simulation are less than those given by 2-D simulation.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
C. Wang
2008-02-01
Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Wang, C.; Li, S.; Esaki, T.
2008-02-01
This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
THREE-DIMENSIONAL NUMERICAL SIMULATION OF WAVE SLAMMING ON AN OPEN STRUCTURE
DING Zhao-qiang; WANG Guo-yu; REN Bing
2012-01-01
The three-dimensional numerical simulation of wave slamming on an open structure in the splash zone is carried out based upon the Volume Of Fluid (VOF) method.A wave basin is established by solving the continuity equation and the Navier-Stoke equations.The linear wave-maker is placed on the left side of the basin,and the numerical sponge layer and the SRC are placed on the right side of the basin to damp the incident waves.The three-dimensional wave slamming boundary condition is adopted to model waves in contact with and separated from the underside of the structure.The numerical results of wave slamming on a foursquare structure for various parametric cases are verified by the experimental results.Meanwhile,the characteristics of the wave impact forces on the undersides of the rectangular structures with various length-breadth ratios are discussed.
TESHIMA, Koji; NAKATSUJI, Hiroyuki
1987-01-01
Flowfields resulted from interaction of two equivalent freejets issued from two parallel two-dimensional sonic nozzles at various nozzle distances and at various values of the stagnation to ambient pressure ratio are investigated numerically and by visualization. A strong shear flow region appears between the two jets, which is observed by visualization, is simulated well by the present calculation. Agreements of the parameters representing the whole structure of the flowfield, such as the lo...
WU Wei; YAN Zhong-min; WU Long-hua
2006-01-01
Saline intrusion into marine sewage outfalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established. The RNG k-ε model is selected for turbulence modeling. The time-averaged volume fraction equations are introduced to simulate the stratification and interfacial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in outfalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the interfacial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the interfacial turbulent mixing is not important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main outfall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interfacial turbulent mixing.
Three-Dimensional Viscous Numerical Simulation of Tip Clearance Flow in Axial-Flow Pump
Changming Yang; Cichang Chen; Jinnuo Wang; Quankai Ji
2003-01-01
The blade tip clearance flow in axial-flow pump is simulated based on three-dimensional N-S equations, RNG k-ε turbulence model, and SIMPLEC algorithm. It shows that numerical results agree well with experiment data measured by 5-hole probe through validation. Flow fields at the blade tip and velocity distribution at the exit of rotor are analyzed in detail. The numerical results show that the increase in tip clearance reduces hydro-head, especially at small flow rate. Experiment equipment is also introduced.
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Direct Numerical Simulation of Three-Dimensional Richtmyer-Meshkov Instability
FU De-Xun; MA Yan-Wen; LI Xin-Liang
2008-01-01
Direct numerical simulation(DNS)is used to study flow characteristics after interaction of a planar shock with a spherical media interface in each side of which the density is different.This interfacial instability is known as the Richtmyer-Meshkov(R-M)instability.The compressible Nayier-Stoke equations are discretized with group velocity control(GVC)modified fourth order accurate compact difference scheme.Three-dimensional numerical simulations are performed for R-M instability installed passing a shock through a spherical interface.Based on numerical results the characteristics of 3D R-M instability are analysed.The evaluation for distortion of the interface.the deformation of the incident shock wave and effects of refraction,reflection and diffraction are Dresented.The effects of the interfacial instability on produced vorticity and mixing is discussed.
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
Ma, Fa-Jun, E-mail: Fajun.Ma@nus.edu.sg; Duttagupta, Shubham [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore); Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius [Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, 117574 (Singapore); Samudra, Ganesh S. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore); Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, 117574 (Singapore)
2014-11-14
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed.
THREE-DIMENSIONAL NUMERICAL SIMULATION OF INTAKE MODEL WITH CROSS FLOW
CHUANG Wei-Liang; HSIAO Shih-Chun
2011-01-01
The hydrodynamics of a pump sump consisting of a main channel, pump sump, and intake pipe is examined using Truchas,a three-dimensional Navier-Stokes solver, with a Large Eddy Simulation (LES) turbulence model. The numerical results of streamwise velocity profiles and flow patterns are discussed and compared with experimental data of Ansar and Nakato. Fairly good agreement is obtained. Furthermore, unlike Ansar et al.'s inviscid solution, the proposed numerical model includes the effect of fluid viscosity and considers more realistic simulation conditions. Simulation results show that viscosity affects the prediction of flow patterns and that the streamwise velocity can be better captured by including cross flow. The effects of the submergence Froude number on the free surface and streamwise velocity are also examined. The free surface significantly fluctuates at high submergence Froude number flows and the corresponding distribution of streamwise velocity profiles exhibits a trend different from that obtained for low submergence Froude number flows.
NUMERICAL SIMULATION OF A TWO-DIMENSIONAL SQUARE MOVING NEAR FREE SURFACE
无
2001-01-01
The body moving near the free surface is a focus in fluid dynamicresearch. Many numerical methods were developed for the simulation of the induced flow field. In this paper, a two-dimensional square moving near the free surface was simulated by the volume of fluid method (VOF). The flow field and drag exerted on the square were studied. The drag would increase due to the presence of the free surface.The iteration factor of the pressure interpolation of surface cells was modified, and through this modification the iteration became more stable. The capability of dealing with the large deformation of the free surface was raised.
A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems
Garrard, Doug; Davis, Milt, Jr.; Cole, Gary
1999-01-01
The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.
Two-dimensional numerical simulation of flow around three-stranded rope
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
Yamada, T.
1978-01-01
Cooling ponds receive large amounts of waste heat from industrial sources and release the heat to the atmosphere. These large area sources of warm and moist air may have significant inadvertent effects. This paper is a preliminary step in the development of a method for estimating the perturbations in the atmosphere produced by a cooling pond. A three-dimensional numerical model based on turbulence second-moment closure equations and Gaussian cloud relations has been developed. A simplified version of the model, in which only turbulent energy and length-scale equations are solved prognostically, is used. Numerical simulations are conducted using as boundary conditions the data from a cooling pond study conducted in northern Illinois during the winter of 1976-1977. Preliminary analyses of these simulations indicate that formation of clouds over a cooling pond is sensitive to the moisture content in the ambient atmosphere.
Numerical simulations of three-dimensional magnetic swirls in a solar flux-tube
Chmielewski, Piotr; Murawski, Krzysztof; Solov'ev, Alexandr A.
2014-07-01
We aim to numerically study evolution of Alfvén waves that accompany short-lasting swirl events in a solar magnetic flux-tube that can be a simple model of a magnetic pore or a sunspot. With the use of the FLASH code we numerically solve three-dimensional ideal magnetohydrodynamic equations to simulate twists which are implemented at the top of the photosphere in magnetic field lines of the flux-tube. Our numerical results exhibit swirl events and Alfvén waves with associated clockwise and counterclockwise rotation of magnetic lines, with the largest values of vorticity at the bottom of the chromosphere, and a certain amount of energy flux.
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Three-Dimensional Numerical Simulation of Surface-Wave Plasma Source
LAN Chaohui; CHEN Zhaoquan; LIU Minghai; JIANG Zhonghe; HU Xiwei
2009-01-01
A three-dimensional model of a surface-wave plasma(SWP)source is built numerically using the finite-difference time-domain(FDTD)method to investigate the structure of the surface wave propagation along the plasma-dielectric interface and the distributions of electromagnetic fields in the whole system.A good-performance excitation source technique for the waveguide which is pivotal to the simulation is presented.The technique can avoid the dc distortions of magnetic fields caused by the forcing electric wall.An example of simulation is given to confirm the existence of the surface waves.The simulation also shows that the code developed is a useful tool in the computer-aided design of the antenna of the SWP source.
Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel
2008-12-01
Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and
Numerical simulation of ac conduction in three-dimensional heterogeneous materials
Pazhoohesh, Elaheh; Hamzehpour, Hossein; Sahimi, Muhammad
2006-05-01
Three-dimensional wavelet transformations and a finite-volume method are combined to develop an efficient method for computing the effective frequency-dependent conductivity of three-dimensional (3D) disordered materials at low temperatures. Such computations have, in the past, been beset by numerical difficulties arising from the local conductivities g(r) varying over many orders of magnitude. A disordered matrerial is modeled by a 3D lattice, and it is assumed that conduction is thermally activated, so that g(r) is related to the activation energies which are distributed according to a probability distribution function (PDF). Five distinct PDF’s are used and, depending on the form of the PDF, the corresponding g(r) varies over 3-17 orders of magnitude. The ac conduction is simulated over 10 orders of magnitude variations in the frequency. The speedup in the computations is up to four orders of magnitude.
Bauer, S; Röder, G; Bär, M
2007-03-01
Cardiac propagation is investigated by simulations using a realistic three-dimensional (3D) geometry including muscle fiber orientation of the ventricles of a rabbit heart and the modified Beeler-Reuter ionic model. Electrical excitation is introduced by a periodic pacing of the lower septum. Depending on the pacing frequency, qualitatively different dynamics are observed, namely, normal heart beat, T-wave alternans, and 2:1 conduction block at small, intermediate, and large pacing frequencies, respectively. In a second step, we performed a numerical stability and bifurcation analysis of a pulse propagating in a one-dimensional (1D) ring of cardiac tissue. The precise onset of the alternans instability is obtained from computer-assisted linear stability analysis of the pulse and computation of the associated spectrum. The critical frequency at the onset of alternans and the profiles of the membrane potential agree well with the ones obtained in the 3D simulations. Next, we computed changes in the wave profiles and in the onset of alternans for the Beeler-Reuter model with modifications of the sodium, calcium, and potassium channels, respectively. For this purpose, we employ the method of numerical bifurcation and stability analysis. While blocking of calcium channels has a stabilizing effect, blocked sodium or potassium channels lead to the occurrence of alternans at lower pacing frequencies. The findings regarding channel blocking are verified within three-dimensional simulations. Altogether, we have found T-wave alternans and conduction block in 3D simulations of a realistic rabbit heart geometry. The onset of alternans has been analyzed by numerical bifurcation and stability analysis of 1D wave trains. By comparing the results of the two approaches, we find that alternans is not strongly influenced by ingredients such as 3D geometry and propagation anisotropy, but depends mostly on the frequency of pacing (frequency of subsequent action potentials). In addition
Numerical simulation of two-dimensional fluid flow with strong shocks
Woodward, P.; Colella, P.
1984-04-01
Results of an extensive comparison of numerical methods for simulating hydrodynamics are presented and discussed. This study focuses on the simulation of fluid flows with strong shocks in two dimensions. By ''strong shocks,'' we here refer to shocks in which there is substantial entropy production. For the case of shocks in air, we therefore refer to Mach numbers of three and greater. For flows containing such strong shocks we find that a careful treatment of flow discontinuities is of greatest importance in obtaining accurate numerical results. Three aproaches to treating discontinuities in the flow are discussed-artificial viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions to Riemann's problem. The advantages and disadvantages of each approach are discussed and illustrated by computed results for three test problems. In this comparison we have focused our attention entirely upon the performance of schemes for differencing the hydrodynamic equations. We have regarded the nature of the grid upon which such differencing schemes are applied as an independent issue outside the scope of this work. Therefore we have restricted our study to the case of uniform, square computational zones in Cartesian coordinates. For simplicity we have further restricted our attention to two-dimensional difference schemes which are built out of symmetrized products of one-dimensional difference operators.
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2014-11-01
Direct Numerical Simulations (DNS) are conducted at low to medium Reynolds numbers for a turbulent pipe flow with roughness. The roughness, which is comprised of three-dimensional sinusoidal elements, causes a downward shift in the mean velocity profile known as the Hama roughness function ΔU+ . In engineering applications, ΔU+ (which is related to the coefficient of drag Cf) is an important parameter as it is used to quantify the increase in drag and the decrease in efficiency. To have a better understanding of roughness and how it affects the flow, a range of numerical studies were conducted where the roughness height h+, wavelength λ+ and Reynolds number of the flow are varied. For the range of cases simulated, it is found that the roughness average height ka+ (which is proportional to h+) is strongly correlated to the roughness function ΔU+ whereas λ+ has a weaker influence on the flow. Results from simulations of more complicated surfaces comprised of two superimposed modes of different wavelength are also presented. Analysis of the turbulence statistics convincingly supports Townsend's outer-layer hypothesis for all of the cases simulated.
郑金海; 严以新; 诸裕良
2002-01-01
For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model isdeveloped, in which the gradients of horizontal pressure contain the gradient of barotropic pressure arising from the gradi-ent of tidal level and the gradient of baroclinic pressure due to the gradient of salinity. The Eulerian-Lagrangian method isemployed to descretize both the momentum equations of tidal motion and the equation of salt water diffusion so as to im-prove the computational stability and accuracy. The methods to provide the boundary conditions and the initial conditionsare proposed, and the criterion for computational stability of the salinity fields is presented. The present model is used formodeling fresh and salt water mixing in the Yangtze Estuary. Computations show that the salinity distribution has thecharacteristics of partial mixing pattern, and that the present model is suitable for simulation of fresh and salt water mixing in the Yangtze Estuary.
Srivastava, Shubham
The past few decades have seen a great amount of interest in the field of nanotechnology. As our world moves towards miniaturized devices nanotechnology is set to revolutionize the electronics, storage and sensing industry. Various methods for synthesis of different types of nanoparticles are being explored. A few of these processes that hold great promise for the future are the flame synthesis methods. These methods are highly efficient but at the same time it is difficult to control the morphology of the produced nanoparticles due to a high number of control parameters involved because of the complex flow processes. These issues demand a better understanding before these processes can be exploited to their maximum potential. Most numerical methods developed cater to the simulation of spherical nanoparticles. However, it is now being increasingly understood that the shape and structure of a nanoparticle plays critical role in determining its chemical, physical and electronic properties. Therefore a high level of control on the shape of nanoparticles is highly imperative. With this purpose in mind this work proposes a novel numerical scheme to simulate the synthesis of one-dimensional nanorods and further presents mathematical simulations based on it followed by validation with experimental results. The ability to predict the morphology of a nanoparticle formed by a synthesis process adds a distinct advantage. Therefore, intricate solutions have been found for the fluid flow and these have been coupled to each stage of nanoparticle development, namely monomer formation, nucleation, particle growth and particle transport. The numerical scheme takes into account all the details of the complex surface phenomena taking place on a nanorod. Later, factors are studied which transition the growth characteristics of a nanoparticle from one dimensional to a spherical structure, thus encompassing all the factors that influence the particle shape. Group characteristics of
LUO Zu-jiang; ZHANG Ying-ying; WU Yong-xia
2008-01-01
For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In this work, a three-dimensional finite element simulation method was applied in the forth subway of Dongjiadu tunnel repair foundation pit dewatering in Shanghai. In order to control the decrease of the underground water level around the foundation pit, the foundation pit dewatering method was used to design the optimization project of dewatering ,which was simulated under these conditions that the aquifers deposited layer by layer, the bottom of the aquifers went deep to 144.45 m, the retaining wall of foundation pit shield went deep to 65 m, the filters of the extraction wells were located between 44 m to 59 m, the water level in the deep foundation pit was decreased by 34 m, and the maximum decrease of water level outside the foundation pit was 3 m. It is shown that the optimization project and the practical case are consistent with each other. Accordingly, the three-dimensional finite element numerical simulation is the basic theory of optimization design of engineering structures of dewatering in deep foundation pit in such areas.
Beam model and three dimensional numerical simulations on suspended microchannel resonators
Kuan-Rong Huang
2012-12-01
Full Text Available At the microscale level, the vibrational characteristics of microstructures have been widely applied on biochemical microchips, especially for bio-molecules detection. The vibrational mechanics and mechanism of microcantilever beams immersed in the fluids for detecting target bio-molecules carried in the fluids have been widely studied and realized in recent years. However, it is not the case for microcantilever beams containing fluids inside (called suspended microchannel resonators, SMR. In this paper, an 1-D beam model for SMR is proposed and the formula for prediction of resonant frequency and resonant frequency shift are derived. For verification of validity of the 1-D beam model, three dimensional finite element simulations using ANSYS are performed. The effects of relevant parameters, such as density and viscosity of the fluids, on the frequency response are investigated. A link between numerical simulations and mathematical modeling is established through an equivalence relation. Subsequently, a useful formula of the resonant frequency shift as a function of the mass variation and the viscosity of the contained fluid is derived. Good agreement between the numerical simulations and the experimental data is obtained and the physical mechanism is elucidated.
Three-dimensional numerical simulations of three-phase slug flows in horizontal pipes
Wang, Yan; Yang, Junfeng; Matar, Omar
2015-11-01
One of the most common flow regimes in pipelines is that of slug flow: slug bodies corresponding to alternating blocks of aerated liquid which bridge the pipe, separated by elongated bubbles; the latter ride atop a liquid layer. The slugs travel at velocities that exceed the mixture superficial velocity; this can potentially cause structural damage, particularly at pipe bends and junctions. Two-phase slug flows have received considerable attention in the literature both experimentally and computationally but there has been very little work carried out on three-phase slugging. In the present work, the evolution of oil-water-air three-phase slug flow in a horizontal cylindrical pipe is investigated using two-dimensional and three-dimensional computational fluid dynamics simulations. The parameters characterising three-phase slug flow, e.g. slug length, propagation velocity, and slug formation frequency, are determined for various gas and liquid superficial velocities for a given pipe geometry. The results of this work are compared to available experimental data and numerical solutions based on approximate, one-dimensional models relying on the use of empirical correlations. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical simulations of Kelvin-Helmholtz instability: a two-dimensional parametric study
Tian, Chunlin
2016-01-01
Using two-dimensional simulations, we numerically explore the dependences of Kelvin-Helmholtz instability upon various physical parameters, including viscosity, width of sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirm that the linear coupling between magnetic field and Kelvin-Helmholtz modes is negligible if the magnetic field is weak enough. The morphological behaviour suggests that the multi-vortex coalescence might be driven by the underlying wave-wave interaction. Based on these results, we make a preliminary discussion about seve...
Numerical Filling Simulation of Injection Molding Using Three-Dimensional Model
GengTie; LiDequn; ZhouHuamin
2003-01-01
Most injection molded parts are three-dimensional, with complex geometrical configurations and thick/thin wall sections. A 3D simulation model will predict more accurately the filling process than a 2.5D model. This paper gives a mathematical model and numeric method based on 3D model, in which an equal-order velocity-pressure interpolation method is employed successfully. The relation between velocity and pressure is obtained from the discretized momentum equations in order to derive the pressure equation. A 3D control volume scheme is employed to track the flow front. The validity of the model has been tested through the analysis of the flow in cavity.
Yu Daren; Wu Zhiwen; Wu Xiaoling
2005-01-01
Based on the analysis of the physical mechanism of the Stationary Plasma Thruster (SPT), an integral equation describing the ion density of the steady SPT and the ion velocity distribution function at an arbitrary axial position of the steady SPT channel are derived. The integral equation is equivalent to the Vlasov equation, but the former is simpler than the latter. A one dimensional steady quasineutral hybrid model is established. In this model, ions are described by the above integral equation, and neutrals and electrons are described by hydrodynamic equations. The transferred equivalency to the differential equation and the integral equation, together with other equations, are solved by an ordinary differential equation (ODE) solver in the Matlab.The numerical simulation results show that under various circumstances, the ion average velocity would be different and needs to be deduced separately.
Three-dimensional numerical simulation of a bird model in unsteady flight
Lin-Lin, Zhu; Hui, Guan; Chui-Jie, Wu
2016-07-01
In this paper, a type of numerical simulation of a three-dimensional (3D) bionic bird with flapping wings in a viscous flow is studied. The model is a self-propelled flying bird capable of free rotation and translation whose flying motion follows the laws of conservation of momentum and angular momentum. The bird is propelled and lifted through flapping and rotating wings and most of thrust force and lift force are exerted on both wings. Both the vortex structures and the flight characteristics are also presented. The relationship between both wings' movement and the vortex structures as well as that between both wings' movement and flight characteristics are also analyzed in this paper. The study uses a 3D computational fluid dynamics package that includes the combined immersed boundary method, volume of fluid method, adaptive multigrid finite volume method, and control strategy for swimming and flying.
无
2001-01-01
In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and zero attack angle. The three dimensional Reynolds-averaged NavierStokes equations and implicit finite volume TVD scheme grid of single zone including projectile base was produced by algebraic arithmetic. Body-fitted grid was generated for the lateral nozzle exit successfully so that the nozzle exit can be simulated more accurately. The high Reynolds number two-equation κ-ε turbulence models were used.The main features of the complex flow are captured. The two kinds of flow field over projectile with and without lateral jets are compared from shock structure, pressure of body and base, etc. It shows that lateral jets not only can provide push force, but also change aerodynamics characteristic of projectile significantly. The results are very important for the study of projectile with lateral rocket boosters.``
Follen, Gregory; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.
A general spectral method for the numerical simulation of one-dimensional interacting fermions
Clason, Christian; von Winckel, Gregory
2012-02-01
This work introduces a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient MATLAB program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. Program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 102 No. of bytes in distributed program, including test data, etc.: 2294 Distribution format: tar.gz Programming language: MATLAB Computer: Any architecture supported by MATLAB Operating system: Any supported by MATLAB; tested under Linux (x86-64) and Mac OS X (10.6) RAM: Depends on the data Classification: 4.3, 2.2 Nature of problem: The direct numerical solution of the multi-particle one-dimensional Schrödinger equation in a quantum well is challenging due to the exponential growth in the number of degrees of freedom with increasing particles. Solution method: A nodal spectral Galerkin scheme is used where the basis functions are constructed to obey the antisymmetry relations of the fermionic wave
Three-dimensional numerical simulation of the 20 June 1991, Orlando microburst
Proctor, Fred H.
1992-01-01
On 20 June 1991, NASA's Boeing 737, equipped with in-situ and look-ahead wind-shear detection systems, made direct low-level penetrations (300-350 m AGL) through a microburst during several stages of its evolution. This microburst was located roughly 20 km northeast of Orlando International Airport and was monitored by a Terminal Doppler Weather Radar (TDWR) located about 10 km south of the airport. The first NASA encounter with this microburst (Event 142), at approximately 2041 UTC, was during its intensification phase. At flight level, in-situ measurements indicated a peak 1-km (averaged) F-factor of approximately 0.1. The second NASA encounter (Event 143) occurred at approximately 2046 UTC, about the time of microburst peak intensity. It was during this penetration that a peak 1-km F-factor of approximately 17 was encountered, which was the largest in-situ measurement of the 1991 summer deployment. By the third encounter (Event 144), at approximately 2051 UTC, the microburst had expanded into a macroburst. During this phase of evolution, an in-situ 1-km F-factor of 0.08 was measured. The focus of this paper is to examine this microburst via numerical simulation from an unsteady, three-dimensional meteorological cloud model. The simulated high-resolution data fields of wind, temperature, radar reflectivity factor, and precipitation are closely examined so as to derive information not readily available from 'observations' and to enhance our understanding of the actual event. Characteristics of the simulated microburst evolution are compared with TDWR and in-situ measurements.
THREE-DIMENSIONAL NUMERICAL SIMULATION OF WIND-INDUCED CIRCULATION IN LAKE TAIHU
LUO Lian-cong; QIN Bo-qiang
2004-01-01
A three-dimensional (3-D) numerical circulation model for shallow-lake is presented and described in detail in this paper, which employs model-splitting technique in order to calculate water level, mean-depth velocities and horizontal and vertical velocities at different depth simultaneously. The results show the current circulation pattern features four eddies with two clockwise and two anticlockwise induced by prevailing wind. Opposite wind field will lead to opposite current pattern with phase shifted by 180°. The surface convergence zone is located in the upwind area and the surface divergence part in the downwind region, This results in drastic vertical movement in the two zones and the return currents at the bottom with phase shifted by 180°from the surface current vectors. Thus the water level decreases significantly at the leeward side and increases quickly at the windward part. Verification and calibration for the model were made based on the water-level and current data observed during the 9711 Storm in Lake Taihu. The predicted results are in satisfactory agreement with the observed data, which raises the possibility that this model can be used to decide the bottom current stress for sediment resuspension and also to simulate sediment transportation. It can provide a fundamental tool to study the nutrient release from bottom sediment in Lake Taihu.
Numerical Simulations of an atmospheric pressure discharge using a two dimensional fluid model
Iqbal, Muhammad M.; Turner, Miles M.
2008-10-01
We present numerical simulations of a parallel-plate dielectric barrier discharge using a two-dimensional fluid model with symmetric boundary conditions in pure helium and He-N2 gases at atmospheric pressure. The periodic stationary pattern of electrons and molecular helium ions density is shown at different times during one breakdown pulse for the pure helium gas. The temporal behavior of the helium metastables and excimers species density is examined and their influences on the discharge characteristics are exhibited for an APD. The atmospheric pressure discharge modes (APGD and APTD) are affected with small N2 impurities and the discharge mode structures are described under different operating conditions. The uniform and filamentary behavior of the discharge is controlled with the variable relative permittivity of the dielectric barrier material. The influence of nitrogen impurities plays a major role for the production of the filaments in the after glow phase of He-N2 discharge and the filaments are clearly observed with the increased recombination coefficient of nitrogen ions. The creation and annihilation mechanism of filaments is described with the production and destruction of nitrogen ions at different applied voltages and driving frequencies for a complete cycle. The results of the fluid model are validated by comparison with the experimental atmospheric pressure discharge results in He-N2 plasma discharge.
Aleutdinova, V. A.; Borisov, A. V.; Shaparev, V. É.; Shapovalov, A. V.
2011-09-01
Numerical solutions of the generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with nonlocal competitive losses and convection are constructed. The influence function for nonlocal losses is chosen in the form of a Gaussian distribution. The effect of convection on the dynamics of the spatially inhomogeneous distribution of the population density is investigated.
One-dimensional numerical simulation of non-uniform sediment transport under unsteady flows
Hongwei FANG; Minghong CHEN; Qianhai CHEN
2008-01-01
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two-and three-dimensional numerical models.In particular,they possess greater capacity to be applied in large river basins with many tributaries.This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport.The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model.This one-dimensional model,therefore,can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River.Moreover,a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed.The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River.A comparison of the calculated water level and river bed deformation with field measurements shows that the improved numerical model is capable of predicting flow,sediment transport,bed changes,and bed-material sorting in various situations,with reasonable accuracy and reliability.
H. S. Shukla
2015-01-01
Full Text Available In this paper, a modified cubic B-spline differential quadrature method (MCB-DQM is employed for the numerical simulation of two-space dimensional nonlinear sine-Gordon equation with appropriate initial and boundary conditions. The modified cubic B-spline works as a basis function in the differential quadrature method to compute the weighting coefficients. Accordingly, two dimensional sine-Gordon equation is transformed into a system of second order ordinary differential equations (ODEs. The resultant system of ODEs is solved by employing an optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme (SSP-RK54. Numerical simulation is discussed for both damped and undamped cases. Computational results are found to be in good agreement with the exact solution and other numerical results available in the literature.
YUAN YiRang; LIANG Dong; RUI HongXing
2009-01-01
For the three-dimensional seawater intrusion and protection system, the model of dynamics of fluids in porous media and the modified upwind finite difference fractional steps schemes are put forward. Based on the numerical simulation of the practical situation in the Laizhou Bay Area of Shandong Province, predictive numerical simulation and analysis of the consequence of protection projects, un-derground dams, tidal barrage projects and the applied modular form of project adjustment have been finished. By using the theory and techniques of differential equation prior estimates, the convergence results have been got.
无
2009-01-01
For the three-dimensional seawater intrusion and protection system, the model of dynamics of fluids in porous media and the modified upwind finite difference fractional steps schemes are put forward. Based on the numerical simulation of the practical situation in the Laizhou Bay Area of Shandong Province, predictive numerical simulation and analysis of the consequence of protection projects, underground dams, tidal barrage projects and the applied modular form of project adjustment have been finished. By using the theory and techniques of differential equation prior estimates, the convergence results have been got.
Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es
2008-10-21
Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.
NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS
无
2007-01-01
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.
Direct numerical simulation of three-dimensional coherent structure in plane mixing layer
无
2001-01-01
The three-dimensional temporally evolving plane mixing layer is sinulated by directly solying the Navier-Stokes equations using pseudo-spectral method. The process of loss of stability, and the formation paring, and development of vortex are presented. The simulated result shows that the evolving characteristics of coherent structure are important mechanism of growing and entrainment of mixing layer.
Three-dimensional numerical simulation of the basic pulse tube refrigerator
Wenjing DING; Liang GONG; Yaling HE; Wenquan TAO
2008-01-01
A three-dimensional physical and numerical model of the basic pulse tube refrigerator (PTR) was developed. The compressible and oscillating fluid flow and heat transfer phenomenon in the pulse tube were numerically investigated using a self-developed code. Some cross-section average parameter variations such as velocity, temperature and pressure wave during one cycle were revealed. The variations of velocity and temperature distributions in the pulse tube were also analyzed in detail for further understanding of the working process and refrigeration mechanism of PTRs.
3-Dimensional numerical simulations of the dynamics of the Venusian mesosphere and thermosphere
Tingle, S.; Mueller-Wodarg, I. C.
2009-12-01
We present the first results from a new 3-dimensional numerical simulation of the steady state dynamics of the Venusian mesosphere and thermosphere (60-300 km). We have adapted the dynamical core of the Titan thermosphere global circulation model (GCM) [1] to a steady state background atmosphere. Our background atmosphere is derived from a hydrostatic combination of the VTS3 [2] and Venus International Reference Atmosphere (VIRA) [3] empirical models, which are otherwise discontinuous at their 100 km interface. We use 4th order polynomials to link the VTS3 and VIRA thermal profiles and employ hydrostatic balance to derive a consistent density profile. We also present comparisons of our background atmosphere to data from the ESA Venus Express Mission. The thermal structure of the Venusian mesosphere is relatively well documented; however, direct measurements of wind speeds are limited. Venus’ slow rotation results in a negligible Coriolis force. This suggests that the zonal circulation should arise from cyclostrophic balance; where the equatorward component of the centrifugal force balances poleward meridional pressure gradients [4]. The sparseness of direct and in-situ measurements has resulted in the application of cyclostrophic balance to measured thermal profiles to derive wind speeds [5] [6] [7] [8]. However, cyclostrophic balance is only strictly valid at mid latitudes (˜ ± 30-75°) and its applicability to the Venusian mesosphere has not been conclusively demonstrated. Our simulations, by solving the full Navier-Stokes momentum equation, will enable us assess the validity of cyclostrophic balance as a description of mesospheric dynamics. This work is part of an ongoing project to develop the first GCM to encompass the atmosphere from the cloud tops into the thermosphere. When complete, this model will enable self-consistent calculations of the dynamics, energy and composition of the atmosphere. It will thus provide a framework to address many of the
无
2005-01-01
Three-dimensional transient numerical simulation of gas exchange process in a four-stroke motorcycle engine with a semi-spherical combustion chamber with two tilt valves was studied. Combination of the grid re-meshing method and the snapper technique made the valves move smoothly. The flow structure and pattern in a complete engine cycle were described in detail. Tumble ratios around the x-axis and y-axis were analyzed. Comparison of computed pressure with experimental pressure under motored condition revealed that the simulation had high calculation precision; CFD simulation can be regarded as an important tool for resolving the complex aerodynamic behavior in motorcycle engines.
Liu, Jianjun; Song, Rui; Cui, Mengmeng
2014-01-01
A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384
The 3-dimensional numerical simulation of artificially altitude-triggered negative lightning
Zhang, Bo; Chen, Bin; Shi, Lihua; Chen, Qiang
2013-03-01
A 3-dimensional numerical model for artificially altitude-triggered negative lightning is developed based on an analytic thunderstorm model and the Dielectric Breakdown Model (DBM). Two major parameters are concerned, they are the thundercloud electric field and the length of the nylon wire which isolates the triggering wire from the ground. A few groups of contrast numerical experiments are done to study their effects on the success rates of altitude-triggered lightning. It is found that the success rates of altitude-triggered lightning increase when the thundercloud electric field enhances or the length of the nylon wire increases. Another interesting phenomenon is that the upward positive leader is always initiated earlier than the downward negative leader in either case.
Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method
Yongzhi ZHAO; Yi CHENG; Maoqiang JIANG; Yong JIN
2008-01-01
A discrete element method (DEM)-computa-tional fluid dynamics (CFD) two-way coupling method was employed to simulate the hydrodynamics in a two-dimensional spouted bed with draft plates. The motion of particles was modeled by the DEM and the gas flow was modeled by the Navier-Stokes equation. The interactions between gas and particles were considered using a two-way coupling method. The motion of particles in the spouted bed with complex geometry was solved by com-bining DEM and boundary element method (BEM). The minimal spouted velocity was obtained by the BEM-DEM-CFD simulation and the variation of the flow pat-tern in the bed with different superficial gas velocity was studied. The relationship between the pressure drop of the spouted bed and the superficial gas velocity was achieved from the simulations. The radial profile of the averaged vertical velocities of particles and the profile of the aver-aged void fraction in the spout and the annulus were stat-istically analyzed. The flow characteristics of the gas-solid system in the two-dimensional spouted bed were clearly described by the simulation results.
Bing He
2015-01-01
Full Text Available Using parallel computation can enhance the performance of numerical simulation of electromagnetic radiation and get great runtime reduction. We simulate the electromagnetic radiation calculation based on the multicore CPU and GPU Parallel Architecture Clusters by using MPI-OpenMP and MPI-CUDA hybrid parallel algorithm. This is an effective solution comparing to the traditional finite-difference time-domain method which has a shortage in the calculation of the electromagnetic radiation on the problem of inadequate large data space and time. What is more, we use regional segmentation, subregional data communications, consolidation, and other methods to improve procedures nested parallelism and finally verify the correctness of the calculation results. Studying these two hybrid models of parallel algorithms run on the high-performance cluster computer, we draw the conclusion that both models are suitable for large-scale numerical calculations, and MPI-CUDA hybrid model can achieve higher speedup.
NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE
WANG Can-xing; YI Lin
2006-01-01
The three-dimension gas-particle flow in a spiral cyclone is simulated numerically in this paper. The gas flow field was obtained by solving the three-dimension Navier-Stokes equations with Reynolds Stress Model (RSM). It is shown that there are two regions in the cyclone, the steadily tangential flow in the spiral channel and the combined vortex flow in the centre. Numerical results for particles trajectories show that the initial position of the particle at the inlet plane substantially affects its trajectory in the cyclone. The particle collection efficiency curves at different inlet velocities were obtained and the effects of inlet flow rate on the performance of the spiral cyclone were presented.Numerical results also show that the increase of flow rate leads to the increase of particles collection efficiency, but the pressure drop increases sharply.
无
1996-01-01
A numerical study of natural convection beat transfer in an inclined cylindrical annulus has been conducted.The inner cylinder of the annulus is maintained at uniform heat flux and the outer cylinder at constant temperature.the two end walls are assumed to be insulated.A numerical code has been developed to calculate the steady state three-dimensional natural convection in an inclined cylindrical annulus,and the research emphasis is placed on the influences of inclination angle α and modified Rayleigh number Ra on the natural convection heat transfer in the annulus.Computations were carried out in the ranges of 0°≤α≤90*,2.5×105≤Ra*≤7and Pr=0.7 with fixed aspect ratio of H=28.97 and radius ratio of K=3.33,The numerical results are compared with the experimental correlations from the literature and the inclination angle effect on heat transfer is found to be insignificant.Detailed results of heat transfer rate,temperature,and velocity fields are presented for the case of α=45° and discussion is also made concerning the comparison between the numerical and experimental results for the specific case of α=90°。
Three-Dimensional Numerical Simulations of Magnetized Winds of Low-Mass Stars
Vidotto, A. A.
2009-11-01
The subject of this thesis is the mass loss of low-mass stars through magnetized coronal winds. Stellar winds have been a topic of extensive research in Astrophysics for a long time, and their first investigations focused on the solar wind. Nowadays, we know that the magnetic field plays a crucial role in the acceleration and heating of coronal winds. Despite of the knowledge of the fine structure of the solar magnetic field, much less information is known regarding the configuration of the magnetic field in other stars. In this thesis, we investigate the structure of the magnetic field in the coronae of solar-like stars and young stars by means of three-dimensional magnetohydrodynamical numerical simulations. We self-consistently take into consideration the interaction of the outflowing wind with the magnetic field and vice versa. Hence, from the interplay between magnetic forces and wind forces, we are able to determine the configuration of the magnetic field and the structure of the coronal winds. We investigate solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional magnetohydrodynamics equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from B0 = 1 to 20 G and we show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. The increase of the field intensity generates a larger "dead zone" in the wind, i.e., the closed loops that inhibit matter to escape from
A method for the three-dimensional numerical simulation of superfluid helium
Bottura, L; Patankar, N A; Van Sciver, S W
2009-01-01
Transport phenomena in superfluid helium can be described using the two-fluid Landau-Khalatnikov model and the Gorter-Mellink mutual friction. Here we discuss a mathematical formulation of the two-fluid model that uses macroscopic conservation balances of mass, momentum and energy of each species, and assumes local thermodynamic equilibrium. A particularity of this model is that it describes the state of He II as well as that of each of the two-fluid components in terms of pressure p and temperature T, which is convenient for stable numerical solution. The equations of the model form a system of partial differential equations (PDE) that can be written in matrix form for convenience. On this base, a three-dimensional numerical model using a complete and consistent, while still practical, system of PDEs was developed. In the form described, the PDE can be solved using three-dimensional Lagrangian finite element in space supplemented by a Beam-Warming time-marching algorithm. Once validated, this solver will all...
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
THREE-DIMENSIONAL NUMERICAL SIMULATION OF MULTIPLE JETS IN SHALLOW FLOWING RECEIVING WATERS
无
2000-01-01
This paper is concerned with the simulation of the mixing mechanism of submerged multiport diffusers used to discharge heated water from thermal-electric power plants and households into shallow receiving waters. The three-dimensional turbulence model and hybrid finite analytic method are used to predict the behavior of near field for multiport buoyant jets in rivers. The predicted temperature dilution and velocity prove good by comparison with available laboratory measurements. An empirical formula for temperature dilution and velocity in near field for this kind of flow is given. The effect of parameters on the dilution behavior of multiple jets are also discussed.
Three Dimensional Numerical Simulation for the Driving Force of Weld Solidification Cracking
Zhibo DONG; Yanhong WEI; Renpei LIU; Zujue DONG
2005-01-01
The double ellipsoidal model of heat source is used to analyze the thermal distributions with a three dimensional finite element method (FEM). In the mechanical model, solidification effects are treated by a dynamic element rebirth scheme. The driving force is obtained in the cracking susceptible temperature range. Moreover, this paper presents the effect of solidification shrinkage, external restraint, weld start locations and material properties on the driving force. The comparison between the simulated driving force and the experimental measurements of the material resistance predicts the susceptibility of weld metal solidification cracking.
LU Yong-jin; LIU Hua; WU Wei; ZHANG Jiu-shan
2007-01-01
A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard k-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.
Yoshimitsu, Nana; Furumura, Takashi; Maeda, Takuto
2016-09-01
The coda part of a waveform transmitted through a laboratory sample should be examined for the high-resolution monitoring of the sample characteristics in detail. However, the origin and propagation process of the later phases in a finite-sized small sample are very complicated with the overlap of multiple unknown reflections and conversions. In this study, we investigated the three-dimensional (3D) geometric effect of a finite-sized cylindrical sample to understand the development of these later phases. This study used 3D finite difference method simulation employing a free-surface boundary condition over a curved model surface and a realistic circular shape of the source model. The simulated waveforms and the visualized 3D wavefield in a stainless steel sample clearly demonstrated the process of multiple reflections and the conversions of the P and S waves at the side surface as well as at the top and bottom of the sample. Rayleigh wave propagation along the curved side boundary was also confirmed, and these waves dominate in the later portion of the simulated waveform with much larger amplitudes than the P and S wave reflections. The feature of the simulated waveforms showed good agreement with laboratory observed waveforms. For the simulation, an introduction of an absorbing boundary condition at the top and bottom of the sample made it possible to efficiently separate the contribution of the vertical and horizontal boundary effects in the simulated wavefield. This procedure helped to confirm the additional finding of vertically propagating multiple surface waves and their conversion at the corner of the sample. This new laboratory-scale 3D simulation enabled the appearance of a variety of geometric effects that constitute the later phases of the transmitted waves.
Numerical simulation of shallow-water flooding using a two-dimensional finite volume model
YUAN Bing; SUN Jian; YUAN De-kui; TAO Jian-hua
2013-01-01
A 2-D Finite Volume Model (FVM) is developed for shallow water flows over a complex topography with wetting and drying processes.The numerical fluxes are computed using the Harten,Lax,and van Leer (HLL) approximate Riemann solver.Second-order accuracy is achieved by employing the MUSCL reconstruction method with a slope limiter in space and an explicit two-stage Runge-Kutta method for time integration.A simple and efficient method is introduced to deal with the wetting and drying processes without any correction of the numerical flux term or the source term.In this new method,a switch of alternative schemes is used to compute the water depths at the cell interface to obtain the numerical flux.The model is verified against benchmark tests with analytical solutions and laboratory experimental data.The numerical results show that the model can simulate different types of flood waves from the ideal flood wave to cases over complex terrains.The satisfactory performance indicates an extensive application prospect of the present model in view of its simplicity and effectiveness.
Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie
2013-04-01
-isothermal porous media numerical flow simulator in order to model the evolution and injection-related operational dynamics of The Geysers geothermal field. At the bottom of the domain in the felsite, we impose a constant temperature, constant saturation, low-permeability boundary. Laterally we set no-flow boundaries (no mass or heat flow), while at the top we use a fully aqueous-phase-saturated constant atmospheric pressure boundary condition. We compute initial conditions for two different conceptual models. The first conceptual model has two phases (gas and aqueous) with decreasing proportions of gas from the steam zone downward; the second model has dry steam all the way from the steam zone to the bottom. The first may be more similar to a pre-exploitation condition, before production reduced pressure and dried out the system, while the second is calibrated to the pressure and temperature actually measured in the reservoir today. Our preliminary results are in reasonable agreement with the pressure monitoring at Prati State 31. These results will be used in hydrogeomechanical modeling to plan, design, and validate the effects of injection in the system.
Takiya, Toshio; Terada, Yukihiro; Komura, Akio [Hitachi Zosen Corp., Osaka (Japan); Higashino, Fumio; Miyajima, Shinichi; Ando, Masami
1997-05-01
A simulation for shock wave propagation in a vacuum tube has been conducted from the viewpoint of protection from vacuum accidents in beamlines of a synchrotron radiation facility. Inserted devices in beamlines such as absorbers, slits, masks and beryllium windows were replaced with orifices installed in a shock tube as a simulation model. One-dimensional Euler`s equations with friction terms were used for estimating the effects on shock wave decay as well as the effects of friction along a tube on shock attenuation. The results indicated that the entrance diameter of the shock tube was an important parameter for determining the strength of shock waves generated by the expansion of gases at the tube entrance and that the friction effects were too large to delay the arrival time of shock waves at the end of a long tube. Moreover, shock wave propagation in a long beamline model based on the MR beamline in the National Laboratory for High Energy Physics was simulated for designing adequate protection from vacuum accidents. The present simulation provides necessary information for the design of a protection system for vacuum accidents in other facilities. (author)
THREE-DIMENSIONAL TURBULENCE NUMERICAL SIMULATION OF A STEPPED SPILLWAY OVERFLOW
CHEN Qun; DAI Guang-qing; ZHU Fen-qing; YANG Qing
2004-01-01
In this paper, the k-ε two-equation turbulence model was used to simulate the three-dimensional turbulent flow of the stepped spillway at the Yubeishan reservoir. In order to solve the curved free water surface and to handle the complex boundary conditions, the fractional Volume Of Fluid (VOF) model that is applicable to the solution of the stratified two-phase flow was intorduced to the k-ε turbulence model and the unstructured grid was used for the discretization of the irregular simulation domain. By these methods, the turbulent flow field of the stepped spillway was simulated successfully. The location of the free surface along the spillway, the magnitude and distribution of the velocity, the pressure distribution on the step surface, the turbulence kinetic energy and turbulence dissipation rate were obtained by simulation. The changes and distributions of these characteristics along the width of the spillway were also obtained. The energy dissipation ratio of the stepped spillway was calculated according to the upstream and downstream water depth and velocities.
THREE-DIMENSIONAL TURBULENCE NUMERICAL SIMULATION OF A STEPPED SPILLWAY OVERFLOW
无
2002-01-01
In this paper, the k-ε turbulence model is usedto simulate the three-dimensional turbulence flow over thestepped spillway at the Yubeishan reservoir. In order to solvethe curved free water surface and to handle the complexboundary conditions, the fractional Volume Of Fluid (VOF)model that is applicable to the solution of the stratified two-phase flow is introduced along with k-ε turbulence model and the unstructured grid is used for the discretization of the irreg-ular simulation domain. By these methods, the turbulenceflow field of the stepped spillway is simulated successfully.The location of the free surface along the spillway, the magni-tude and distribution of the velocity, the pressure on the stepsurface, the turbulence kinetic energy and turbulence dissipa-tion rate are obtained by simulation. The changes and distri-butions of these characteristics along the width of the spillwayare also obtained. The energy dissipation ratio of the steppedspillway is calculated according to the upstream and down-stream water depth and velocities.
Lu, Meijun; Das, Ujjwal; Bowden, Stuart; Hegedus, Steven; Birmire, Robert
2009-06-09
In this paper, two-dimensional (2D) simulation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells is presented using Sentaurus Device, a software package of Synopsys TCAD. A model is established incorporating a distribution of trap states of amorphous-silicon material and thermionic emission across the amorphous-silicon / crystalline-silicon heterointerface. The 2D nature of IBC-SHJ device is evaluated and current density-voltage (J-V) curves are generated. Optimization of IBC-SHJ solar cells is then discussed through simulation. It is shown that the open circuit voltage (VOC) and short circuit current density (JSC) of IBC-SHJ solar cells increase with decreasing front surface recombination velocity. The JSC improves further with the increase of relative coverage of p-type emitter contacts, which is explained by the simulated and measured position dependent laser beam induced current (LBIC) line scan. The S-shaped J-V curves with low fill factor (FF) observed in experiments are also simulated, and three methods to improve FF by modifying the intrinsic a-Si buffer layer are suggested: (i) decreased thickness, (ii) increased conductivity, and (iii) reduced band gap. With all these optimizations, an efficiency of 26% for IBC-SHJ solar cells is potentially achievable.
Numerical simulations of blast wave characteristics with a two-dimensional axisymmetric room model
Sugiyama, Y.; Homae, T.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.
2017-01-01
This paper numerically visualizes explosion phenomena in order to discuss blast wave characteristics with a two-dimensional axisymmetric room model. After the shock wave exits via an opening, the blast wave propagates into open space. In the present study, a parametric study was conducted to determine the blast wave characteristics from the room exit by changing the room shape and the mass of the high explosive. Our results show that the blast wave characteristics can be correctly estimated using a scaling factor proposed in the present paper that includes the above parameters. We conducted normalization of the peak overpressure curve using the shock overpressure at the exit and the length scale of the room volume. In the case where the scaling factor has the same value, the normalized peak overpressure curve does not depend on the calculation conditions, and the scaling factor describes the blast wave characteristics emerging from the current room model.
Song, P. P.; Wei, M. S.; Shi, L.; Ma, C. C.
2013-12-01
Three-dimensional numerical simulations of a scroll expander were performed with dynamic mesh technology. R245fa was selected as the working fluid in the simulations. The PISO algorithm was applied to solve the governing equations with RNG k-ε turbulent model. The distribution and variation of three-dimensional flow field inside the scroll expander were obtained. The research indicates that the flow field is nonuniform and asymmetrical distributions exist inside the expander. Vortex flows also exist in some working chambers. Dynamic clearance leakage flows and inlet orifice throttling have great effects on the flow field distribution. Transient output torque and the mass flux have periodic fluctuations during the working cycles.
Three-dimensional numerical simulation of wave interaction with perforated quasi-ellipse caisson
Yong-xue WANG
2011-03-01
Full Text Available The finite difference method and the VOF method have been used to develop a three dimensional numerical model to study wave interaction with a perforated caisson. And the partial cell method is also adopted to this type of problems for the first time. The validity of the present model, with and without the presence of structures, is examined by comparing the model results with experimental data. Then, the numerical model is used to investigate the effects of various wave and structure parameters on the wave forces and the wave runup of the perforated quasi-ellipse caisson. Compared with the solid quasi-ellipse caisson, the wave force of the perforated quasi-ellipse caisson is significantly reduced with the increasing of porosity on the perforated quasi-ellipse caisson. Furthermore, the perforated quasi-ellipse caisson can reduce the wave runup compared with the solid quasi-ellipse caisson. This reduction tends to increase as the porosity of the perforated quasi-ellipse caisson and relative wave height increase.
2008-01-01
Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in evaluation of oil resources and determination of the location and amount of oil deposits. Based on such actual conditions as the effects of fluid mechanics in porous media and 3-dimensional geology characteristics,a kind of modified method of second order upwind finite difference fractional steps implicit interactive scheme was put forward. As for the actual problem of Dongying hollow,Huimin hollow,Tanhai region and Yangxin hollow in Shengli Petroleum Oil Field,a numerical simulation test was carried out,and the result is basically coincident with the actual conditions. For the model problem,optimal order estimates were derived. Thus the well-known problem on oil resources was solved.
YUAN YiRang; HAN YuJi
2008-01-01
Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in evaluation of oil resources and determination of the location and amount of oil deposits. Based on such actual conditions as the effects of fluid mechanics in porous media and 3-dimensional geology characteristics, a kind of modified method of second order upwind finite difference fractional steps implicit interactive scheme was put forward. As for the actual problem of Dongying hollow, Huimin hollow, Tanhai re-gion and Yangxin hollow in Shengli Petroleum Oil Field, a numerical simulation test was carried out, and the result is basically coincident with the actual conditions. For the model problem, optimal order estimates were derived. Thus the well-known problem on oil resources was solved.
Two-dimensional numerical simulation of a continuous needle-like argon electron-beam plasma
Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong
2017-05-01
The fluid-Poisson equations coupled with the Monte Carlo method were used to simulate the spatio-temporal behavior of a needle-like argon electron-beam plasma. Based on the Monte Carlo simulation, three coupled parameters characterizing the electron beam propagation for initial energies above several keV were expressed using a universal dimensionless shape function given in terms of the beam range multiplied by a normalized coefficient. Therefore, a single run of the Monte Carlo code was sufficient for the simulations over a wide range of conditions. The spatial potential as a function of space and time was studied from the fluid-Poisson equations. The results indicate that the time evolution of the spatial potential was influenced by the presence of the slowed-down electrons and the flying beam electrons, whereas the potential in quasi-equilibrium was mainly determined from the spatial distribution of the secondary electron. The potential in quasi-equilibrium was positive near the beam entrance and most negative along the tip of the beam range, which was a result of ambipolar diffusion. When the enclosing boundary surfaces were moved within the beam range, the potential was nearly positive everywhere. The calculation on the diffusion-drift flux indicated that the net current of the secondary electrons flowing back to the incident plane in quasi-equilibrium balanced the incident beam current, which was the so-called return current in the three-dimensional space.
罗马吉; 陈国华; 马元镐
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
罗马吉; 陈国华; 马元镐
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine in-take system.
Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.
2005-10-01
The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.
Detailed analysis of fan-shaped jets in three dimensional numerical simulation
Rong-Lin Jiang; K. Shibata; H. Isobe; Cheng Fang
2011-01-01
We performed three dimensional resistive magnetohydrodynamic simulations to study the magnetic reconnection using an initially shearing magnetic field configuration (force free field with a current sheet in the middle of the computational box). It is shown that there are two types of reconnection jets: the ordinary reconnection jets and fan-shaped jets, which are formed along the guide magnetic field. The fan-shaped jets are significantly different from the ordinary reconnection jets which are ejected by magnetic tension force. There are two driving forces for accelerating the fan-shaped jets. One is the Lorentz force which initially dominates the motion of fluid elements, and then the gas pressure gradient force accelerates the fluid elements in the later stage. The dependence on magnetic reconnection angle and resistivity value has also been studied. The formation and evolution of these jets provide a new understanding of dynamic magnetohydrodynamicjets.
Omid Mahabadi
2014-12-01
Full Text Available This study presents the first step of a research project that aims at using a three-dimensional (3D hybrid finite-discrete element method (FDEM to investigate the development of an excavation damaged zone (EDZ around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibrated against standard laboratory experiments, including Brazilian disc test and uniaxial compression test. The effect of increasing confining pressure on the mechanical response and fracture propagation of the rock was quantified under triaxial compression tests. Polyaxial (or true triaxial simulations highlighted the effect of the intermediate principal stress (σ2 on fracture directions in the model: as the intermediate principal stress increased, fractures tended to align in the direction parallel to the plane defined by the major and intermediate principal stresses. The peak strength was also shown to vary with changing σ2.
THREE-DIMENSIONAL NUMERICAL SIMULATION OF TIDES AND CURRENTS IN FUSHAN BAY, QINGDAO
LI Ming-kui; HOU Yi-jun; WEI Ze-xun
2004-01-01
The three-dimensional Princeton Ocean Model(POM)was employed to simulate the tide and current simultanuously for the first time in the Fushan Bay,Qingdao,China.By adopting the elevation condition that was combined with the tides M2,S2,K1 and O1 at the open boundary and by choosing the proper value of bottom roughness,the horizontal and vertical distributions of the tidal current and water level variations in the bay were computed.The results agree well with the field observation data,indicating that this model can be used to predict accurately the variation of tides and currents in the Fushan Bay and other costal regions in the future.Our study also provides useful information and a data base for the Olympic Projects that will be conducted in the Fushan Bay in 2008.
A Solver for Massively Parallel Direct Numerical Simulation of Three-Dimensional Multiphase Flows
Shin, S; Juric, D
2014-01-01
We present a new solver for massively parallel simulations of fully three-dimensional multiphase flows. The solver runs on a variety of computer architectures from laptops to supercomputers and on 65536 threads or more (limited only by the availability to us of more threads). The code is wholly written by the authors in Fortran 2003 and uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of the LCRM hybrid Front Tracking/Level Set method designed to handle highly deforming interfaces with complex topology changes. We discuss the implementation of this interface method and its particular suitability to distributed processing where all operations are carried out locally on distributed subdomains. We have developed parallel GMRES and Multigrid iterative solvers suited to the linear systems arising from the implicit solution of the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across flu...
Three-dimensional numerical simulation on plastic damage in small punch specimen of Zirconium
Hu Ruomei, E-mail: huruomei2008@sina.co [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Ling Xiang, E-mail: xling@njut.edu.c [School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China)
2009-12-15
Small punch test (SPT) technique was used to evaluate the mechanical properties of Zirconium in this paper. The dimension of the disc specimen is phi 10 x 0.5 mm. Plastic damage in small punch specimen of Zirconium was investigated both experimentally and numerically, because it has great influence on small punch specimen. In order to simulate the plastic damage in the small punch specimen of Zirconium, the 3D finite element model incorporated with Gurson-Tvergaard-Needleman (GTN) plastic damage constitutive equation was established. Void growth and initiation of ductile crack of the small punch specimen were predicted. Results show that damage occurs on the bottom side of the specimen and grows across the specimen until complete failure, which has good agreement with the observation in the experiment.
Numerical Simulation of the Scalar Mixing Characteristics in Three-dimensional Microchannels
刘演华; 林建忠; 包福兵; 石兴
2005-01-01
Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.
Numerical simulation of flow characteristic in three-dimensional bend pipes
Wang, T.; Tu, S.; Dong, D.
2010-03-01
Variety of pipes with different types of layout is widely used in enterprise. Flow resistance and turbulence is increased by irrational layout of the pipes and flow conditions, and even the pipe system vibration will occur induced probably by fluid disturbance. In this paper, three typical bend pipes in three-dimension are analyzed from pressure loss and streamline by numerical simulation. The straight and bend section of the pipe is generated and meshed by the hexahedral elements. The quality of meshes is good, and the grid cells are about 300,000. Calculation shows that the first type with the inlet and outlet in opposite direction in one plane has the least resistance coefficient. Therefore, adopting plain layout may be the best choice of the three types mentioned in the paper.
Hyakutake, Toru; Nagai, Shinya
2015-01-01
We constructed three-dimensional microvascular bifurcation models using a parent vessel of diameter 10μm and investigated the flow behavior of the red blood cells (RBCs) through bifurcations. We considered symmetric and asymmetric model types. Two cases of equal daughter vessel diameter were employed for the asymmetric models, where the first was 10μm, which is the same as the parent vessel and the second was 7.94μm, which satisfies Murray's law. Simulated blood flow was computed using the lattice Boltzmann method in conjunction with the immersed boundary method for incorporating fluid-membrane interactions between the flow field and deformable RBCs. First, we investigated the flow behavior of a single RBC through microvascular bifurcations. In the case of the symmetric bifurcation, the turning point of the fractional plasma flow wherein the RBC flow changed from one daughter vessel to the other was 0.50. This turning point was however different for asymmetric bifurcations. Additionally, we varied the initial offset of RBCs from the centerline of the parent vessel. The simulation results indicated that the RBCs preferentially flow through the branch of a larger flow ratio. Next, we investigated the distribution characteristics of multiple RBCs. Simulations indicated that the results of the symmetric model were similar to those predicted by a previously published empirical model. On the other hand, results of asymmetric models deviated from those of the symmetric and empirical models. These results suggest that the distribution of RBCs varies according to the bifurcation angle and daughter vessel diameter in a microvascular bifurcation of the size considered.
Three-dimensional Numerical Simulations of Magnetized Winds of Solar-Like Stars
Vidotto, A A; Jatenco-Pereira, V; Gombosi, T I
2009-01-01
By means of self-consistent 3D MHD numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. The increase of the field intensity generates a larger dead zone in the wind, i. e., the closed loops that inhibit matter to escape from latitudes lower than ~45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the densit...
Huang, Yan-Hua; Yang, Sheng-Qi; Zhao, Jian
2016-12-01
A three-dimensional particle flow code (PFC3D) was used for a systematic numerical simulation of the strength failure and cracking behavior of rock-like material specimens containing two unparallel fissures under conventional triaxial compression. The micro-parameters of the parallel bond model were first calibrated using the laboratory results of intact specimens and then validated from the experimental results of pre-fissured specimens under triaxial compression. Numerically simulated stress-strain curves, strength and deformation parameters and macro-failure modes of pre-fissured specimens were all in good agreement with the experimental results. The relationship between stress and the micro-crack numbers was summarized. Crack initiation, propagation and coalescence process of pre-fissured specimens were analyzed in detail. Finally, horizontal and vertical cross sections of numerical specimens were derived from PFC3D. A detailed analysis to reveal the internal damage behavior of rock under triaxial compression was carried out. The experimental and simulated results are expected to improve the understanding of the strength failure and cracking behavior of fractured rock under triaxial compression.
Numerical simulation of multi-dimensional NMR response in tight sandstone
Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao
2016-06-01
Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.
Three-dimensional numerical simulation of M2 internal tides in the Luzon Strait
LI Bingtian; CAO Anzhou; LV Xianqing
2015-01-01
A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation, propagation, vertical structure and energy conversion of M2 internal tides in the Luzon Strait (LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations, demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.
Omid Mahabadi; Patrick Kaifosh; Paul Marschall; Tim Vietor
2014-01-01
This study presents the first step of a research project that aims at using a three-dimensional (3D) hybrid finite-discrete element method (FDEM) to investigate the development of an excavation damaged zone (EDZ) around tunnels in a clay shale formation known as Opalinus Clay. The 3D FDEM was first calibrated against standard laboratory experiments, including Brazilian disc test and uniaxial compression test. The effect of increasing confining pressure on the mechanical response and fracture propagation of the rock was quantified under triaxial compression tests. Polyaxial (or true triaxial) simulations highlighted the effect of the intermediate principal stress (s2) on fracture directions in the model: as the intermediate principal stress increased, fractures tended to align in the direction parallel to the plane defined by the major and intermediate principal stresses. The peak strength was also shown to vary with changing s2. ? 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. All rights reserved.
Joshi, Shrikrishna Nandkishor; Bolar, Gururaj
2017-06-01
Control of part deflection and deformation during machining of low rigidity thin-wall components is an important aspect in the manufacture of desired quality products. This paper presents a comparative study on the effect of geometry constraints on the product quality during machining of thin-wall components made of an aerospace alloy aluminum 2024-T351. Three-dimensional nonlinear finite element (FE) based simulations of machining of thin-wall parts were carried out by considering three variations in the wall constraint viz. free wall, wall constrained at one end, and wall with constraints at both the ends. Lagrangian formulation based transient FE model has been developed to simulate the interaction between the workpiece and helical milling cutter. Johnson-Cook material and damage model were adopted to account for material behavior during machining process; damage initiation and chip separation. A modified Coulomb friction model was employed to define the contact between the cutting tool and the workpiece. The numerical model was validated with experimental results and found to be in good agreement. Based on the simulation results it was noted that deflection and deformation were maximum in the thin-wall constrained at one end in comparison with those obtained in other cases. It was noted that three dimensional finite element simulations help in a better way to predict the product quality during precision manufacturing of thin-wall components.
Watanabe, R.; Higashino, F. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology; Fujii, K. [Institute of the Space and Astronautical Science, Tokyo (Japan)
1995-12-25
One-dimensional unsteady Euler equations are solved for the investigation of the flow field induced by a train entering a tunnel. The effect of the moving train is included in the basic equations as an area change in time. The equations are discretized by the finite difference method, and the calculations are performed for trains with various speeds, cross-sectional areas and nose area gradients. Effects of these parameters on the strength of a compression wave and the maximum pressure gradient are studied. Computed strength of the compression wave shows good agreement with the theoretical 1-D analysis and the axisymmetric numerical simulation. The one-dimensional flow model is validated through the comparison of computed pressure gradient with multidimensional numerical simulations. 15 refs., 11 figs.
Numerical Propulsion System Simulation
Naiman, Cynthia
2006-01-01
The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.
Latencies in action potential stimulation in a two-dimensional bidomain: A numerical simulation
Barach, John Paul
1991-05-01
A numerical simulation is performed in which a uniform planar slab of idealized cardiac tissue is stimulated at the center. The cardiac slab is modeled as an anisotropic bidomain; within each domain current flow is determined by a forced diffusion equation in which the transmembrane current connecting the domains provides the forcing term. An action potential (AP) propagates outward after a time latency dependent upon the stimulus size and the physiological variables. Its isochrones are elliptical with an asymmetry that is a small fraction of the imposed asymmetry in resistivity. External voltages resemble the first derivative of those in the internal domain and tests with continuing stimuli exhibit a relaxation time of about 3 ms and space constants that agree with other work. The AP latency increases very strongly near threshold stimulus and decreases as the log (stimulus) for large stimuli in the ``virtual cathode'' range. Latencies in the longitudinal, transverse, and diagonal directions are found to be the same over a wide range of stimulus size and type.
Farhaoui, Asma; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar
2016-11-01
We carry out three-dimensional numerical simulations of co/counter current Gas-Liquid annular flows using the parallel code, BLUE, based on a projection method for the resolution of the Navier-Stokes equations and a hybrid Front-Tracking/Level-Set method for the interface advection. Gas-Liquid annular flows and falling films in a pipe are present in a broad range of industrial processes. This configuration consists of an important multiphase flow regime where the liquid occupies the area adjacent to the internal circumference of the pipe and the gas flows in the pipe core. Experimentally, four distinctive flow regimes were identified ('dual-wave', 'thick ripple', 'disturbance wave' and 'regular wave' regimes), that we attempt to simulate. In order to visualize these different regimes, various liquid (water) and gas (air) flow-rates are investigated. EPSRC UK Programme Grant EP/K003976/1.
Le Guennec, Yves; Savin, Éric
2011-12-01
The theory of microlocal analysis shows that the energy density associated with the high-frequency vibrations of a three-dimensional Timoshenko beam satisfies a Liouville-type transport equation. In the present application, the material of the beam is assumed to be isotropic. Its parameters are allowed to vary along the beam axis at length scales much larger than the wavelength of the high-frequency waves traveling in it. Moreover, the curvature and torsion of the beam are accounted for. The first part of the paper focuses on the derivation of the transport model for a single three-dimensional beam. In order to extend this model to beam trusses, the reflection/transmission phenomena of the energy fluxes at junctions of beams are described by power flow reflection/transmission operators in a subsequent part. For numerical simulations, a discontinuous Galerkin finite element method is used on account of the discontinuities of the energy density field at the junctions. Thus, a complete mechanical-numerical modeling of the linear transient dynamics of beam trusses is proposed. It is illustrated by numerical examples highlighting some remarkable features of high-frequency vibrations: The onset of a diffusive regime characterized by energy equipartition rules at late times. Energy diffusion is prompted by the multiple reflection/transmission of waves at the junctions, with possible mode (polarization) conversions. This is the regime applicable to the statistical energy analysis of structural acoustics systems. The main purpose of this research is to develop an effective strategy to simulate and predict the transient response of beam trusses impacted by acoustic or mechanical shocks.
Zhang, Hong-Na; Li, Feng-Chen; Li, Xiao-Bin; Li, Dong-Yang; Cai, Wei-Hua; Yu, Bo
2016-09-01
Direct numerical simulations (DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional (3D) parallel plate channel were carried out, by which numerical databases were established. Based on the numerical databases, the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns, the wall effect on the turbulent kinetic energy spectrum, and the local relationship between the flow motion and the microstructures’ behavior. Moreover, to address the underlying physical mechanism of elastic turbulence, its generation was presented in terms of the global energy budget. The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length, and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched. In addition, the patterns of microstructures’ elongation behave like a filament. From the results of the turbulent kinetic energy budget, it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status. Project supported by the National Natural Science Foundation of China (Grant Nos. 51276046 and 51506037), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421063), the China Postdoctoral Science Foundation (Grant No. 2016M591526), the Heilongjiang Postdoctoral Fund, China (Grant No. LBH-Z15063), and the China Postdoctoral International Exchange Program.
ZHU Chang-sheng; XIAO Rong-zhen; WANG Zhi-ping; FENG Li
2009-01-01
A accelerated arithmetic algorithm of the dynamic computing regions was designed, and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented. The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated. The effects of cooling rate on dendritic patterns and microsegregation patterns were studied. The computed results indicate that, with the increment of the cooling rate, the dendritic growth velocity increases, both the main branch and side-branches become slender, the secondary dendrite arm spacing becomes smaller, the inadequate solute diffusion in solid aggravates, and the severity of microsegregation ahead of interface aggravates. At a higher cooling rate, the binary alloy presents recalescence; while the cooling rate is small, no recalescence occurs.
Furuichi, M.; Kameyama, M.; Kageyama, A.
2007-12-01
Reproducing a realistic plate tectonics with mantle convection simulation is one of the greatest challenges in computational geophysics. We have developed a three dimensional Eulerian numerical procedure toward plate-mantle simulation, which includes a finite deformation of the plate in the mantle convection. Our method, combined with CIP-CSLR (Constrained Interpolation Profile method-Conservative Semi-Lagrangian advection scheme with Rational function) and ACuTE method, enables us to solve advection and force balance equations even with a large and sharp viscosity jump, which marks the interface between the plates and surrounding upper mantle materials. One of the typical phenomena represented by our method is a fluid rope coiling event, where a stream of viscous fluid is poured onto the bottom plane from a certain height. This coiling motion is due to delicate balances between bending, twisting and stretching motions of fluid rope. In the framework of the Eulerian scheme, the fluid rope and surrounding air are treated as a viscosity profile which differs by several orders of magnitude. Our method solves the complex force balances of the fluid rope and air, by a multigrid iteration technique of ACuTE algorithm. In addition, the CIP-CSLR advection scheme allows us to obtain a deforming shape of the fluid rope, as a low diffusive solution in the Eulerian frame of reference. In this presentation, we will show the simulation result of the fluid rope coiling as an accuracy test for our simulation scheme, by comparing with the simplified numerical solution for thin viscous jet.
Seshadri, Banavara R.; Smith, Stephen W.
2007-01-01
Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is
Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A.
2016-07-01
Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2-20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10-5 to 1 × 10-3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
CASE STUDIES OF THREE-DIMENSIONAL NUMERICAL SIMULATION FOR TOTAL SEDIMENT TRANSPORT
Hongwei FANG
2003-01-01
The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because of the many complex and interacting physical phenomena that need to be accounted for realistically in a model that has predictive power. This paper presents two study cases of three-dimensional calculation, respectively, of suspended sediment transport for the Three Gorges Project on the Yangtze River, China, and of bed load transport on the Elbe River, Germany. The suspended sediment transport calculation and bed load transport calculation are compared with experimental data whenever possible.
Numerical Simulation of the Flow around Two-dimensional Partially Cavitating Hydrofoils
Fahri Celik; Yasemin Arikan Ozden; Sakir Bal
2014-01-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
Numerical simulation of the flow around two-dimensional partially cavitating hydrofoils
Celik, Fahri; Ozden, Yasemin Arikan; Bal, Sakir
2014-09-01
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
Parallelised direct numerical simulation of three-dimensional wavy falling films
Juric, Damir; Chergui, Jalel; Kahouadji, Lyes; Matar, Omar; Shin, Seungwon
2015-11-01
We present a computational study of falling liquid films in a three-dimensional inclined rectangular domain using the new massively parallel code, BLUE. Calculations are carried out in order to obtain several wave patterns such as occasional solitary waves, which travel downstream at a constant velocity, or less coherent structures. BLUE uses parallelization algorithms based on MPI and algebraic domain decomposition. The velocity field is solved by a parallel GMRES method for the viscous terms and the pressure by a parallel multigrid method. The method for the treatment of the fluid interfaces and capillary forces uses a parallelized Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture and/or coalescence of fluid interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Three-dimensional Numerical Simulation of Combustion Field in the Combustion Chamber
YAN Ping; QIAN Zhi-bo; YANG Jie; ZHANG Jin-jun
2006-01-01
In order to study the effect of rotation on the combustion in the underwater vehicle, a two-phase turbulent combustion process is described with Reynolds stress turbulence model, eddy-dissipation turbulent combustion model, P-1 radiation model and particle tracking model of liquid. The flow in the rotating combustion chamber is simulated at two different working speeds, 0 r/min and 1 000 r/min by Fluent software. The temperature, gas velocity, static pressure of wall and fuel concentration are computed and compared. The results show that the combustion in rotating combustor is faster and more effective.
Ruith, Michael Rudolf
Vortex breakdown of nominally axisymmetric, swirling incompressible jets and wakes issuing into a semi-infinite domain is studied by means of direct numerical simulations, as well as local and global linear stability analyses. From the point of view of specifying conditions at the open boundaries, this class of flows is particularly challenging due to its ability to support traveling waves. Several boundary conditions, ranging from free-slip and various homogeneous Neumann conditions to radiation conditions, are implemented in a staggered grid, finite difference algorithm that solves the unsteady Navier-Stokes equations in cylindrical coordinates by means of a fractional step method. Their advantages and shortcomings are evaluated in detail, and the question of the proper implementation of intermediate step boundary conditions is addressed. The data obtained from a large variety of test simulations points to the radiation condition as the most suitable lateral and outflow boundary condition for both high and low entrainment jets and wakes. A two-parameterc low entrainment velocity profile for which the steady, axisymmetric breakdown is well studied is selected for further investigation. Hence, issues regarding the role of three-dimensionality and unsteadiness with respect to the existence, mode selection, and internal structure of vortex breakdown can be addressed in terms of the two governing parameters and the Reynolds number. Low Reynolds numbers are found to yield flow fields lacking breakdown bubbles or helical breakdown modes even for high swirl. In contrast, highly swirling flows at large Reynolds numbers exhibit bubble, helical or double helical breakdown modes, where the axisymmetric mode is promoted by a jet-like axial velocity profile, while a wake-like profile renders the flow helically unstable and ultimately yields non-axisymmetric breakdown modes. It is shown that a transition from super- to subcritical flow, accurately predicts the parameter
Deplano, V.; Pelissier, R.; Rieu, R.; Bontoux, P.
1994-01-01
Bifurcations are vascular singularities of interest because they are the privileged sites of atherosclerosis deposits, particularly the sites corresponding to wall shear stress extrema. The purpose of this paper is to compare the two- and three-dimensional characteristics of the velocity fields, the shear stress distributions and the secondary flows in a symmetrical aortic bifurcation. The branching angle is equal to 60^{circ} and the branch-to-trunk area ratio to 0.8. The numerical simulations are performed using the FIDAP programme. Although restrictive by the hypotheses of steady flow and rigid channel, with rectangular cross-sections, this study shows the importance of the three-dimensional effects in particular as far as concerned the wall shear stress behaviours. Les bifurcations sont des singularités vasculaires présentant un intérêt particulier car elles sont le site privilégié de dépôts athéromateux ; la localisation de ces dépôts dépendant des valeurs maximum du cisaillement en paroi. L'objectif de cette étude est de comparer les caractéristiques bidimensionnels et tridimensionnels des champs de vitesse, de la distribution du cisaillement pariétal et des écoulements secondaires dans un modèle de bifurcation aortique. L'angle de bifurcation est de 60^{circ} et le rapport des sections branche fille branche mère est de 0,8. Les simulations numériques sont effectuées sur la base du logiciel FIDAP. Bien que restrictifs de part certaines hypothèses, écoulement permanent dans un modèle de bifurcation rigide avec des sections rectangulaires, ces travaux montrent l'importance des effets tridimensionnels notamment au niveau du cisaillement pariétal.
Tripoli, Gregory J.; Thompson, Starley L.
1988-01-01
Researchers simulated the atmospheric response to a hypothetical basaltic fissure eruption using heating rates based on the Roza flow eruption. The simulation employs the Colorado State University Regional Atmospheric Model (RAMS) with scavenging effects. The numerical model is a three-dimensional non-hydrostatic time-split compressible cloud/mesoscale model. Explicit microphysics include prediction of cloud, rain, crystal, and hail precipitation types. Nucleation and phoretic scavenging are predicted assuming that the pollutant makes an effective cloud droplet nucleus. Smoke is carried as a passive tracer. Long and short wave radiation heating tendencies, including the effects of the smoke, are parameterized. The longwave emission by the lava surface is neglected in the parameterization and included as an explicit heating term instead. A regional scale domain of 100 x 100 km in the horizontal and 22 km high is used. The horizontal grid spacing is taken to be 2 km and the vertical spacing is taken to be 0.75 km. The initial atmospheric state is taken to be horizontally homogenous and based on the standard atmospheric sounding. The fissure is assumed to be 90 km long and oriented in a zig/zag pattern.
Numerical simulation of two-dimensional corner flows in a circulating water channel with guide vanes
Hung, Y.; Nishimoto, H.; Tamashima, M.; Yamazaki, R. [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan); Wang, G.
1998-09-04
A Navier-Stokes procedure is developed based on the Finite Volume Method to simulate the 2-D comer flows in a CWC. The staggered grid is adopted and a new method is presented to coupling the velocities and the pressure when the grid lines change direction by 90deg. The turbulince is approximated using {kappa} - {epsilon} model and a transfinite algebraic method is used to generate the body fitted coordinates. After validation of the computer code, the corner flows in a CWC was calculated and the effect of guide vanes was investigated. For laminar flows, the guide vanes may restrain the separations on the inner side but not so effective on the outside; for turbulent flows, separations on the inner side disappeared even without guide vanes but still remained on the outside. By incorporating guide vanes, the separation can be effectively controlled. 6 refs., 13 figs.
Numerical simulation of 3-dimensional Rayleigh-Benard system by particle method
Watanabe, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
As one of representative non-equilibrium thermal fluid system, there is a fluid system maintained at lower and higher temperatures at upper and lower faces, respectively, and Rayleigh-Benard (RB) system. On temperature difference between both faces smaller than a critical value, flow into the system is not developed to realize a thermal conductive state, while on that larger than a critical value, macroscopic convection vortex forms to realize a conventional thermal conductive state. A transition process from thermal conduction to convection is well-known for RB unstability and also the convection state is done for RB convection. In this paper, a transition process from thermal conduction to convection was simulated systematically by changing temperature difference at both faces using DSMC method known for one of statistical methods, to investigate the critical Rayleigh number in response to temperature difference at beginning point of the convection, variations and correlative function at proximity of the critical Rayleigh number, pattern formation of the convection and so forth. (G.K.)
Three-dimensional numerical simulation of red blood cell motion in Poiseuille flows
Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland
2014-11-01
An immersed boundary method based on a finite element method has been successfully combined with an elastic spring network model for simulating the dynamical behavior of a red blood cell (RBC) in Poiseuille flows. This elastic spring network preserves the biconcave shape of the RBC in the sense that after the removal of the body force for driving the Poiseuille flow, a RBC with its typical parachute shape in a tube does restore its biconcave resting shape. As a benchmark test, the relationship between the deformation index and the capillary number of the RBCs flowing through a narrow cylindrical tube has been validated. For the migration properties of a single cell in a slit Poiseuille flow, a slipper shape accompanied by a cell membrane tank-treading motion is obtained for Re >= 0 . 03 and the cell mass center is away from the center line of the channel due to its asymmetric slipper shape. For the lower Re wheel during the migration. The lower Reynolds number is, the longer the rolling motion lasts. This work is supported by an NSF Grant No. DMS-0914788.
无
2003-01-01
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
Guodong Liu
2013-01-01
Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.
蔡树群; 甘子钧; 苏纪兰; 刘秦玉
2002-01-01
A three-dimensional baroclinic shelf sea model's numerical simulation of the South China Sea (SCS) middle and deep layer circulation structure showed that: 1. In the SCS middle and deep layer, a southward boundary current exists along the east shore of the Indo-China Peninsula all year long. A cyclonic eddy (gyre) is formed by the current in the above sea areas except in the middle layer in spring, when an anticyclonic eddy exists on the eastern side of the current. In the deep layer, a large-scale anticyclonic eddy often exists in the sea areas between the Zhongsha Islands and west shore of southern Luzon Island. 2. In the middle layer in summer and autumn, and in the deep layer in autumn and winter, there is an anticyclonic eddy (gyre) in the northeastern SCS, while in the middle layer in winter and spring, and in the deep layer in spring and summer, there is a cyclonic one. 3. In the middle layer, there is a weak northeastward current in the Nansha Trough in spring and summer, while in autumn and winter it evolves into an anticyclonic eddy (gyre), which then spreads westward to the whole western Nansha Islands sea areas.
崔永章; 田茂诚; 张林华; 李广鹏; 朱建宾
2012-01-01
A three-dimensional numerical model is presented for studying the convection-condensation of mixture with vapor in a tube with edgefold-twisted-tape inserts under transition flow.According to the diffusion layer theory and laminar species transport,a condensation model with user defined function is proposed and compared with heat and mass transfer analogy and experimental test.With the condensation model,the influences of gap width and op-erating parameters on thermal-hydrodynamics performance are simulated.As the gap width increases,convection and condensation heat transfer increase initially and then decrease,while convection heat transfer increases sharply and then decreases slightly.Increasing vapor fraction has a significant effect on condensation heat transfer but it has little effect on convective heat transfer.With the increase of inner wall temperature both convection and condensa-tion heat transfer all decrease and the ratio of condensation to total heat decrease dramatically.Increases inlet tem-perature mainly affects convection heat transfer.
LU Tao; WANG Kuisheng
2009-01-01
In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.
Dewitt, K. J.; Baliga, G.
1982-01-01
A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Bozkurt, Ozgur; Pennell, Kelly G.; Suuberg, Eric M.
2009-01-01
This paper presents model simulation results of vapor intrusion into structures built atop sites contaminated with volatile or semi-volatile chemicals of concern. A three-dimensional finite element model was used to investigate the importance of factors that could influence vapor intrusion when the site is characterized by non-homogeneous soils. Model simulations were performed to examine how soil layers of differing properties alter soil gas concentration profiles and vapor intrusion rates i...
Xiang, G.L.; Vire, A.; Pavlidis, D.; Pain, C.
2015-01-01
A three-dimensional fracture model developed in the context of the combined finite-discrete element method is incorporated into a two-way fluid-solid coupling model. The fracture model is capable of simulating the whole fracturing process. It includes pre-peak hardening deformation, post-peak strain
Numerical simulation of gas explosions
Van den Berg, A.C.; Van Wingerden, J.M.; Verhagen, T.L.
1989-08-01
Recent developments in numerical fluid dynamics and computer technology enable detailed simulation of gas explosions. Prins Maurits Laboratory TNO of the Netherlands Organization for Applied Scientific Research developed the necessary software. This software is a useful tool to develop and evaluate explosion safe installations. One of the possible applications is the design of save offshore rigs. (f.i. to prevent Piper Alpha disasters). The two-dimensional blast model is described and an example is given. 4 figs., 6 refs.
Numerical Simulation for Two-Phase Water Hammer Flows in Pipe by Quasi-Two-Dimensional Model
Tae Uk Jang; Yuebin Wu; Ying Xu; Qiang Sun
2016-01-01
The features of a quasi⁃two⁃dimensional ( quasi⁃2D) model for simulating two⁃phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi⁃2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi⁃2D model for pure liquid zone and one⁃dimensional ( 1D ) discrete vapor cavity model for vaporous cavity zone. The quasi⁃2D model solves two⁃dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two⁃phase water flows caused by the rapid downstream valve closure in a reservoir⁃pipe⁃valve system. The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature, respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.
NUMERICAL SIMULATION OF INSECT FLIGHT
CHENG Mu-lin; MIAO Wen-bo; ZHONG Chang-sheng
2006-01-01
In the non-inertial coordinates attached to the model wing, the two-dimensional unsteady flow field triggered by the motion of the model wing, similar to the flapping of the insect wings, was numerically simulated. One of the advantages of our method is that it has avoided the difficulty related to the moving-boundary problem. Another advantage is that the model has three degrees of freedom and can be used to simulate arbitrary motions of a two-dimensional wing in plane only if the motion is known. Such flexibility allows us to study how insects control their flying. Our results show that there are two parameters that are possibly utilized by insects to control their flight: the phase difference between the wing translation and rotation, and the lateral amplitude of flapping along the direction perpendicular to the average flapping plane.
SUNHaiyan; WANGWeijing; 等
2002-01-01
In accordance to the anisotropic feature of turbulent flow, an anisotropic algebraic stress model is adopted to predict the turbulent flow field and turbulent characteristics generated by a Rushton disc turbine with the improved inner-outer iterative procedure. The predicted turbulent flow is compared with experimental data and the simulation by the standard κ-ε turbulence model. The anisotropic algebraic stress model is found to give better prediction than the standard κ-ε turbulence model. The predicted turbulent flow field is in accordance to experimental data and the trend of the turbulence intensity can be effectively reflected in the simulation. The distribution of turbulent shear rate in the stirred tanks was simulated with the established numerical procedure.
WANG Cui; ZHANG Xue-qing; SUN Ying-lan
2009-01-01
Based on theory of three-dimensional hydrodynamics,an Euler-Lagrangian particle model is established to study the transport and water exchange capability in the Jiaozhou Bay.The three-dimensional hydrodynamic model,driven by tide and wind,is used to study the effects of wetting and drying of eatuarine intertidal flats by the dry-wet grid technology based on the Estuarine,Coastal and Ocean Model (ECOM).The particle model includes the advection and the diffusion processes,of which the advection process is simulated with a certain method,and the diffusion process is simulated with the random walk method.The effect of the intertidal zone,the turbulent diffusion and the timescales of the water exchange are also discussed.The results show that a moving boundary model can simulate the transport process of the particle in the intertidal zone,where the particles are transported for a longer distance than that of the stationary result.Simulations with and without the turbulent random walk show that the effect of turbulent diffusion is very effective at spreading particles throughout the estuary and speeding up the particle movement.The spatial distribution of residence time is given to quantify the water exchange capability that has very important ramifications to water quality.The effect of wind on the water exchange is also examined and the southeasterly wind in summer tends to block the water exchange near the northeast coast,while the northerly wind in winter speeds up the transport process.These results indicate that the Lagrangian particle model is applicable and has a large potential to help understanding the water exchange capability in estuaries,which can also he useful to simulate the transport process of contaminant.
Nakamura, Naoki [Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Shibata, Kazunari [Kwaan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Isobe, Hiroaki, E-mail: nakamura@kwasan.kyoto-u.ac.jp, E-mail: shibata@kwasan.kyoto-u.ac.jp, E-mail: isobe@kwasan.kyoto-u.ac.jp [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)
2012-12-20
Three-dimensional (3D) component reconnection, where reconnecting field lines are not perfectly anti-parallel, is studied with a 3D magnetohydrodynamic simulation. In particular, we consider the asymmetry of the field strength of the reconnecting field lines. As the asymmetry increases, the generated reconnection jet tends to be parallel to stronger field lines. This is because weaker field lines have higher gas pressure in the initial equilibrium, and hence the gas pressure gradient along the reconnected field lines is generated, which accelerates the field-aligned plasma flow. This mechanism may explain penumbral microjets and other types of jets that are parallel to magnetic field lines.
De Marchis, Mauro; Freni, Gabriele; Napoli, Enrico
2014-11-01
The hydrodynamic circulation in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily, is analysed. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. To mitigate the risks connected with the industrial activities located near the harbour, it is important to analyse the hydrodynamic circulation in the coastal area. To perform such analysis, a parallel 3D numerical model is used to solve the Reynolds-averaged momentum and mass balance, employing the k-ε turbulence model for the Reynolds stresses. The numerical model is parallelized using the programing technology - Message Passing Interface (MPI) and applying the domain decomposition procedure. The Augusta Bay circulation is mainly due to the relative contribution of the wind force acting over the free surface and the tidal motion through the mouths. Due to the geometric complexity of the domain and the presence of several piers along the coast, a curvilinear boundary-fitted computational grid was used, where cells corresponding to land areas or to wharfs were excluded from the computation. Comparisons between numerical results and field measurements were performed. Three different simulations were performed to selectively isolate the effect of each force, wind and tide, acting in the considered domain. The current in the basin was successfully estimated on the basis of the numerical results, demonstrating the specific role of wind and tidal oscillation in the hydrodynamic circulation inside the harbour.
Three-dimensional numerical simulation of the exhaust stroke of a single-cylinder four-stroke ICE
Ogorevc, T.; Sekavcnik, M. [Ljubljana Univ. (Slovenia). Lab. for Heat and Power; Katrasnik, T. [Ljubljana Univ. (Slovenia). Lab. for Internal Combustion Engines; Zun, I. [Ljubljana Univ. (Slovenia). Lab. for Fluid Dynamics and Thermodynamics
2009-09-15
In this paper an extensive CFD simulation of the exhaust stroke of a single-cylinder fourstroke ICE, including the entire exhaust manifold is described. Guidelines for the implementation of the full threedimensional model of the discussed process are included. The simulation involves the time-dependent flow of exhaust gases through the exhaust valve and the flow dynamics within the 2.2-m-long, straight exhaust pipe during the period when the valve is closed. Also the intake port with the intake valve is being coupled during the valves' overlap period. The model geometry corresponds exactly to the actual engine geometry. The movement of the mesh follows the measured kinematics of the piston and the valves. The data obtained from the experimental environment was used for both the initialization and the validation of the computations. It was found that the phenomena affecting the dynamics of the exhaust flow are extremely three-dimensional and should be treated as such. In particular, the flow through the exhaust valve and the heat transfer along the exhaust pipe were influenced greatly by the effects of cold, fresh air breaking into the exhaust pipe in the period after the EVC. The presented study is the basis for future three-dimensional investigations of the entropy-generation rate along the exhaust system, including the exhaust valve. (orig.)
Eto, Taisuke; Takabayashi, Masanori; Okamoto, Atsushi; Bunsen, Masatoshi; Okamoto, Takashi
2016-08-01
A three-dimensional (3D) shift multiplexing technique is applied to increase the number of multiplexed datapages in self-referential holographic data storage (SR-HDS), enabling holographic recording with purely one-beam geometry. In the 3D shift multiplexing technique, the recording medium is shifted not only along the x- and y-axes but also along the z-axis to multiplex the datapages. Because the shift directions in the 3D shift multiplexing technique are expanded compared with the conventional 2D technique, the number of multiplexed datapages is expected to be increased. We numerically clarify the appropriate 3D recording layout of holograms in which the effect of the inter-page crosstalk can be reduced after showing that datapages are multiplexed on shifting the recording medium along the z-axis. The results show 3D shift multiplexing can effectively realize high-density SR-HDS when appropriately designed layouts are used.
ZHUGE Weilin; ZHANG Yangjun; MING Pingwen; LAO Xingsheng; CHEN Xiao
2007-01-01
Investigation into the formation and transport of liquid water in proton exchange membrane fuel cells (PEMFCs) is the key to fuel cell water management.A threedimensional gas/liquid two-phase flow and heat transfer model is developed based on the multiphase mixture theory.The reactant gas flow,diffusion,and chemical reaction as well as the liquid water transport and phase change process are modeled.Numerical simulations on liquid water distribution and its effects on the performance of a PEMFC are conducted.Results show that liquid water distributes mostly in the cathode,and predicted cell performance decreases quickly at high current density due to the obstruction of liquid water to oxygen diffusion.The simulation results agree well with experimental data.
ZHANG Jian-min; CHEN Jian-gang; XU Wei-lin; WANG Yu-rong; LI Gui-ji
2011-01-01
Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-ε turbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k -ε turbulence model with the Volume Of Fluid (VOF) Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover, the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.
Confidence in Numerical Simulations
Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-23
This PowerPoint presentation offers a high-level discussion of uncertainty, confidence and credibility in scientific Modeling and Simulation (M&S). It begins by briefly evoking M&S trends in computational physics and engineering. The first thrust of the discussion is to emphasize that the role of M&S in decision-making is either to support reasoning by similarity or to “forecast,” that is, make predictions about the future or extrapolate to settings or environments that cannot be tested experimentally. The second thrust is to explain that M&S-aided decision-making is an exercise in uncertainty management. The three broad classes of uncertainty in computational physics and engineering are variability and randomness, numerical uncertainty and model-form uncertainty. The last part of the discussion addresses how scientists “think.” This thought process parallels the scientific method where by a hypothesis is formulated, often accompanied by simplifying assumptions, then, physical experiments and numerical simulations are performed to confirm or reject the hypothesis. “Confidence” derives, not just from the levels of training and experience of analysts, but also from the rigor with which these assessments are performed, documented and peer-reviewed.
Research about two-dimensional IP numerical simulation%激电二维数值模拟研究
陈永凌; 蒋首进; 谢丹
2014-01-01
从点源二维地电问题出发，采用有限单元法进行了地电场进行数值模拟，采用自适应三角剖分来实现起伏地表的模拟，针对双边三极装置，实现了多种模型的正演研究；通过多种模型的正反演，总结异常产生的规律，为激电法的分析提供了有效的信息。%In this paper,starting from the question of point source and dimensional geoelectric field,we use finite element method to simulate geoelectric field,triangle subdivision algorithm to rolling surface,and various models to complete forward simulation according to the characteristic of bilateral three-pole device.By means of forward simulation and Inversion of various models,we have summarized some features about abnormity to offer some useful information for analysis of Induced polariza-tion.
Direct numerical simulation of dynamo transition for nonhelical MHD
Nath, Dinesh; Verma, Mahendra K [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Lessinnes, Thomas; Carati, Daniele [Physique Statistique et Plasmas, Universite Libre de Bruxellers, B-1050 Bruxelles (Belgium); Sarris, Ioannis [Department of Mechanical and Industrial Engineering, University of Thessaly, Volos (Greece)
2010-02-01
Pseudospectral Direct Numerical Simulation (DNS) has been performed to simulate dynamo transition for nonhelical magnetohydrodynamics turbulence. The numerical results are compared with a recent low-dimensional model [Verma et al. [13
Syed-shah KHALID; Liang ZHANG; Xue-wei ZHANG; Ke SUN
2013-01-01
The objective of this study was to develop,as well as validate the strongly coupled method(two-way fluid structural interaction(FSI))used to simulate the transient FSI response of the vertical axis tidal turbine (VATT)rotor,subjected to spatially varying inflow.Moreover,this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations.The blade's deformation for each new time step is considered in transient two-way FSI analysis,to make the design more reliable.Usually this is not considered in routine one-way FSI simulations.A rotor with four blades and 4-m diameter was modeled and numerically analyzed.We observed that two-way FSI,utilizing the strongly coupled method,was impossible for a complex model;and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench,as given in ANSYS-WORKBENCH,helped case examples 22 and 23,by giving an error when the solution was run.To make the method possible and reduce the computational power,a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results.Consequently,the results indicating a two-way transient FSI analysis is a time-and resource-consuming job,but with our proposed technique we can reduce the computational time.The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI.Similarly,fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results.Additionally,this study shows that,using the proposed method we can perform coupled simulation with simple multi-node PCs(core i5).
Lei Li
2013-01-01
Full Text Available This study of a lee wave event over three-dimensional (3D mountainous terrain in Lantau Island, Hong Kong, using a simulation combining mesoscale model and computational fluid dynamics (CFD model has shown that (1 3D steep mountainous terrain can trigger small scale lee waves under strong wind condition, and the horizontal extent of the wave structure is in a dimension of few kilometers and corresponds to the dimension of the horizontal cross-section of the mountain; (2 the life cycle of the lee wave is short, and the wave structures will continuously form roughly in the same location, then gradually move downstream, and dissipate over time; (3 the lee wave triggered by the mountainous terrain in this case can be categorized into “nonsymmetric vortex shedding” or “turbulent wake,” as defined before based on water tank experiments; (4 the magnitude of the wave is related to strength of wind shear. This study also shows that a simulation combining mesoscale model and CFD can capture complex wave structure in the boundary layer over realistic 3D steep terrain, and have a potential value for operational jobs on air traffic warning, wind energy utilization, and atmospheric environmental assessment.
Bozkurt, Ozgur; Pennell, Kelly G; Suuberg, Eric M
2009-01-01
This paper presents model simulation results of vapor intrusion into structures built atop sites contaminated with volatile or semi-volatile chemicals of concern. A three-dimensional finite element model was used to investigate the importance of factors that could influence vapor intrusion when the site is characterized by non-homogeneous soils. Model simulations were performed to examine how soil layers of differing properties alter soil gas concentration profiles and vapor intrusion rates into structures. The results illustrate difference in soil gas concentration profiles and vapor intrusion rates between homogeneous and layered soils. The findings support the need for site conceptual models to adequately represent the site's geology when conducting site characterizations, interpreting field data and assessing the risk of vapor intrusion at a given site. For instance, in layered geologies, a lower permeability and diffusivity soil layer between the source and building often limits vapor intrusion rates, even if a higher permeability layer near the foundation permits increased soil gas flow rates into the building. In addition, the presence of water-saturated clay layers can considerably influence soil gas concentration profiles. Therefore, interpreting field data without accounting for clay layers in the site conceptual model could result in inaccurate risk calculations. Important considerations for developing more accurate conceptual site models are discussed in light of the findings.
无
2007-01-01
A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ=0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed (U0=2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (δ=0.1m, U0=2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.
Wang, Weiling; Luo, Sen; Zhu, Miaoyong
2016-03-01
To improve the computational efficiency of the three-dimensional (3D) cellular-automaton-finite-volume-method (CA-FVM) model for describing the dendritic growth of alloy, the block-correction technique (BCT) and the parallel computation approach are introduced. Accordingly, a serial of investigations on the efficiency of the optimized codes in dealing with the designed cases for the melt flow and the heat transfer problems is carried out. Moreover, the accuracy of the present codes is evaluated by the comparisons between the solution to the melt flow and the heat transfer problems and the results from analytical equations and the commercial software. Additionally, the capability of the present CA model is evaluated by comparing the steady growth parameters of the equiaxed dendritic tip and the morphology and the secondary dendrite arm spacing (SDAS) of columnar dendrites with the LGK analytical model and the experimental results of the unidirectional solidification of high-carbon steels. The results show that with the introduction of the 3D BCT, the iteration process of the serial tri-diagonal matrix algorithm (TDMA) code changes from the fluctuation type to the smooth one, and thus, the computational cost is reduced significantly. Moreover, the parallel Jacobi code with one two-dimensional (2D) iteration in 3D BCT is proved to be the most efficient one among the codes compiled in the present work, and therefore, accordingly it is employed to simulate the 3D dendritic growth of alloys. The calculated velocity distribution and temperature variation agree well with the results from the analytical equations and the commercial software. The predicted steady tip velocities agree with the LGK analytical model as the undercooling is 6 K to 7 K. Moreover, the predicted columnar dendritic morphology and SDAS of high-carbon Fe-C alloys during the unidirectional solidification agree with the experimental results.
Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.
2010-10-01
Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.
无
2009-01-01
Water is a primary controlling factor for economic development and ecological environmental protection in the inland river basins of arid western China. And it is groundwater, as the most important component of total water resources, that plays a dominant role in the development of western China. In recent years, the use-ratio of surface water has been raised, the groundwater recharge rate from surface water has been reduced, and groundwater has been exploited on a large scale. This has led to the decline of ground-water levels and the degradation of eco-environments in the Heihe watershed. Therefore, the study on the change in groundwater levels in recent years, as well as simulating and predicting groundwater levels in the future, have become very significant for im-proving the ecological environment of the Heihe River Basin, to coordinate the water contradiction among upper, middle and lower reaches of Heihe River Basin and to allocate the water resources. The purpose of this study is to analyze the groundwa-ter-level variations of the Ejina region based on a large scale, to develop and evaluate a conceptual groundwater model in Ejina Basin, to establish the groundwater flow model using the experimental observation data and combining Modular Three-Dimensional Groundwater Flow Model (MODFLOW) and GIS software, to simulate the regional hydrologic regime in re-cent 10 years and compare various water-delivery scenarios from midstream, and to determine which one would be the best plan for maintaining and recovering the groundwater levels and increasing the area of Ejina oasis. Finally this paper discusses the pos-sible vegetation changes of Ejina Basin in the future.
吴波; 汪西力; 徐海良
2015-01-01
Based on RNGk-ε turbulence model and sliding grid technique, solid−liquid two-phase three-dimensional (3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid−liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.
Buras, R; Janka, H T; Kifonidis, K
2005-01-01
Supernova models with a full spectral treatment of the neutrino transport are presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a ``ray-by-ray plus'' approximation for treating two- (or three-) dimensional problems. The method is described in detail and critically assessed with respect to its capabilities, limitations, and inaccuracies in the context of supernova simulations. In this first paper of a series, 1D and 2D core-collapse calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in the treatment of the equation of state -- numerical and physical -- are tested, Newtonian results are compared with simulations using a general relativistic potential, bremsstrahlung and interactions of neutrinos of different flavors are investigated, and the standard approximation in neutrino-nucleon interactions with zero energy transfer is replaced by rates that include corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon correlations. Models with t...
Zi-han WANG; Jian ZHOU
2011-01-01
As a new kind of technology in retaining structures,the characteristics of double-row piles are significantly affected by spatial effects.In this paper,double-row piles as a retaining structure are simulated numerically in three-dimension by finite element software PLAXIS 3D FOUNDATION.The behavior differences of piles in different positions around the foundation pit are analyzed.By changing the parameters,including the length-width ratio,the excavation depth,the distance between rows and the diameter of piles,the variations of the lateral deformation,the bending moment and the earth pressure around the piles are determined.The reasonable values of parameters and some suggestions with consideration of earth pressure are proposed for the design of double-row piles as a retaining structure.The results show that the lateral deformation and bending moment are the largest in the middle of long side of the foundation pit,which is identified as the most unfavorable position.It is indicated that the earth pressure between rows above pit bottom is close to active earth pressure,while the earth pressure between rows under pit bottom is close to static earth pressure.It is suggested that 1/2-2/3 of pile length,0.6-1.2 m,3d-6d,and 2d-2.5d be chosen as embedded depth of piles,diameter of piles,distance between rows,and distance between piles,respectively,where d is the pile diameter.
Boundary acquisition for setup of numerical simulation
Diegert, C. [Sandia National Lab., Albuquerque, NM (United States)
1997-12-31
The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discovered in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.
Kaijin HUANG; Dawen ZENG; Changsheng XIE; Desheng XU
2003-01-01
A 3D unsteady state numerical model of heat transfer in the circumferential laser oxygen cutting of pipes wasdeveloped. In order to minimize the computing time required for solving the finite difference equations as much aspossible, the alternating direct
Numerical simulation of dusty plasmas
Winske, D.
1995-09-01
The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.
Izawa, S.; Kiya, M.; Mochizuki, O. [Hokkaido University, Sapporo (Japan)
1998-09-25
The evolution of vortical structure in an impulsively started round jet has been studied numerically by means of a three-dimensional vortex blob method. The viscous diffusion of vorticity is approximated by a core spreading model originally proposed by Leonard (1980). The jet is forced by axisymmetric, helical and multiple disturbances. The multiple disturbances are combinations of two helical disturbances of the same mode rotating in the opposite directions. The multiple disturbances are found to enhance both the generation of small-scale structures and the growth rate of the jet. The small-scale structures have highly organized spatial distributions. The core spreading method is effective in aquiring the core overlapping in regions of high extensional rate of strain. 21 refs., 12 figs.
Golubev, V. I.; Gilyazutdinov, R. I.; Petrov, I. B.; Khokhlov, N. I.; Vasyukov, A. V.
2017-05-01
This paper touches upon the computer simulation of the propagation of elastic waves in three-dimensional multilayer fractured media. The dynamic processes are described using the defining system of equations in the partial derivatives of the deformed solid mechanics. The numerical solution of this system is carried out via the grid-characteristic method on curvilinear structural grids. The fractured nature of the medium is accounted for by explicitly selecting the boundaries of individual cracks and setting special boundary conditions in them. Various models of heterogeneous deformed media with a fractured structures are considered: a homogeneous medium, a medium with horizontal boundaries, a medium with inclined boundaries, and a medium curvilinear boundaries. The wave fields detected on the surface are obtained, and their structures are analyzed. It is demonstrated that it is possible to detect the waves scattered from fractured media even in the case of nonparallel (inclined and curvilinear) boundaries of geological layers.
Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari
2001-01-01
We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...
Spectral Methods in Numerical Plasma Simulation
Coutsias, E.A.; Hansen, F.R.; Huld, T.;
1989-01-01
An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...
Liang, Xian-Ting
2014-07-28
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time.
Guodong Liu; Yining Zhang; Huilin Lu; Ersheng You; Xiang Li
2013-01-01
Modular pebble-bed nuclear reactor (MPBNR) technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pe...
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Study of Cardiac Defibrillation Through Numerical Simulations
Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.
Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in
Numerical simulation of welding
Hansen, Jan Langkjær; Thorborg, Jesper
Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... is limited to 2D and as regards the thermal model we assume plain cross section when comparing with experiments and analytical solutions.Stresses and deformations based on the thermal model is mainly described qualitatively in relation to the mechanical model in ABAQUS. As regards the mechanical model, plain...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...
Numerical simulation of welding
Hansen, Jan Langkjær; Thorborg, Jesper
Aim of project:To analyse and model the transient thermal field from arc welding (SMAW, V-shaped buttweld in 15mm plate) and to some extend the mechanical response due to the thermal field. - To implement this model in a general purpose finite element program such as ABAQUS.The simulation...... stress is also taken into account.Work carried out:With few means it is possible to define a thermal model which describes the thermal field from the welding process in reasonable agreement with reality. Identical results are found with ABAQUS and Rosenthal’s analytical solution of the governing heat...... transfer equation under same conditions. It is relative easy tointroduce boundary conditions such as convection and radiation where not surprisingly the radiation has the greatest influence especially from the high temperature regions in the weld pool and the heat affected zone.Due to the large temperature...
Numerical simulations of catastrophic disruption: Recent results
Benz, W.; Asphaug, E.; Ryan, E. V.
1994-01-01
Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.
郭红民; 向光明; 谢洋; 李江
2013-01-01
For a better form of energy dissipation in spillway of Maojiahe hydropower station,к-εturbulent model is built based on conservation of mass and momentum. With the method of VOF tracking the free surface, three-dimensional numerical simulation of the release water is conducte. Simulated result is well coincided with the model test. According to engineering practice, a variety of programs are analyzed numerically (such as the simulation of the whole region of the spillway and the cushion pool). The resuts show that the program of setting up a wall to divide the flip bucket can make the flow pattern of release water better and produce smooth flow articulation between the jet flow and the downstream channel with little bank-slope scour. So, it has good effect on the whole.%为寻求毛家河水电站溢洪道较优的泄洪消能形式,以质量守恒及动量守恒为基础,建立了κ-ε湍流模型封闭雷诺方程组,采用VOF方法追踪自由液面,对溢洪道泄流能力、水面线、底板压力及槽身和下游河道的流速进行了三维数值计算,数值计算结果与模型试验结果吻合较好,并根据工程实际情况拟定了多种方案对溢洪道全域及下游河道进行了数值模拟.计算结果表明,设置中隔墙并使左、右泄槽挑流鼻坎错开布置方案,溢洪道槽身段水流流态较好,挑射水流与下游河道水流衔接平顺且对两岸岸坡冲刷较轻,总体效果较好.
Cerqueira, A H; Raga, A C; Vasconcelos, M J; De Colle, F
2005-01-01
Using the Yguazu-a three-dimensional hydrodynamic code, we have computed a set of numerical simulations of heavy, supersonic, radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence). In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile, in agreement with some recent observational evidence found in jets from T Tauri stars which seems to support the presence of a rotation velocity pattern inside the jet beam, near the jet production region. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the H, [O I]6300, [S II]6716 and [N II]6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of di...
Numerical simulation of droplet impact on interfaces
Kahouadji, Lyes; Che, Zhizhao; Matar, Omar; Shin, Seungwon; Chergui, Jalel; Juric, Damir
2015-11-01
Simulations of three-dimensional droplet impact on interfaces are carried out using BLUE, a massively-parallel code based on a hybrid Front-Tracking/Level-Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. High resolution numerical results show fine details and features of droplet ejection, crown formation and rim instability observed under similar experimental conditions. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Study on numerical simulation of nodular graphite iron microstructure formation
无
2004-01-01
In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.
Numerical simulation of three dimensional flow fields of fiber filter media%纤维过滤介质内部三维流场模拟
李艳艳; 付海明; 胡玉乐
2011-01-01
利用计算机技术创建了不同纤维排列方式下的纤维过滤介质三维模型,并对其内部的气相流场在不同填充率及过滤风速条件下进行数值模拟,得出3种纤维过滤介质结构的无因次压力损失表达式.模拟结果与Davies的实验关联式吻合较好.研究表明:过滤器压力损失随过滤风速呈现线性增加,随填充密度呈现非线性增加;3种纤维排列方式下纤维过滤介质的压力损失按大小排序依次为纤维交错排列、纤维对齐排列、纤维随机排列.%Three-dimensional models of fiber filter media made up of fibers with different arrangements were created with computer technology. And numerical simulation of the internal gas flow fields of the models under conditions of different solid volume fraction (SVF) , different face velocity and different fibrous arrangement was undertaken. Three dimensionless pressure drop expressions corresponding to the three kinds of fiber filter media were obtained. There is a good agreement between the simulated values and the Davies’s equation. The results indicate that the pressure drop increases linearly with the face velocity but it increases non-linear with the SVF. The pressure drop of these three types of fiber arrangement is as follows: staggered arrangement ＞ alignment arrangement ＞ random arrangement.
Higher dimensional Numerical Relativity: code comparison
Witek, Helvi; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Shibata, Masaru; Sperhake, Ulrich; Zilhao, Miguel
2014-01-01
The nonlinear behavior of higher dimensional black hole spacetimes is of interest in several contexts, ranging from an understanding of cosmic censorship to black hole production in high-energy collisions. However, nonlinear numerical evolutions of higher dimensional black hole spacetimes are tremendously complex, involving different diagnostic tools and "dimensional reduction methods". In this work we compare two different successful codes to evolve Einstein's equations in higher dimensions, and show that the results of such different procedures agree to numerical precision, when applied to the collision from rest of two equal-mass black holes. We calculate the total radiated energy to be E/M=9x10^{-4} in five dimensions and E/M=8.1x10^{-4} in six dimensions.
Direct numerical simulation of axisymmetric turbulence
Qu, Bo; Bos, Wouter J. T.; Naso, Aurore
2017-09-01
The dynamics of decaying, strictly axisymmetric, incompressible turbulence is investigated using direct numerical simulations. It is found that the angular momentum is a robust invariant of the system. It is further shown that long-lived coherent structures are generated by the flow. These structures can be associated with stationary solutions of the Euler equations. The structures obey relations in agreement with predictions from selective decay principles, compatible with the decay laws of the system. Two different types of decay scenarios are highlighted. The first case results in a quasi-two-dimensional flow with a dynamical behavior in the poloidal plane similar to freely decaying two-dimensional turbulence. In a second regime, the long-time dynamics is dominated by a single three-dimensional mode.
Numerical Simulation of Protoplanetary Vortices
2003-12-01
UNCLASSIFIED Center for Turbulence Research 81 Annual Research Briefs 2003 Numerical simulation of protoplanetary vortices By H. Lin, J.A. Barranco t AND P.S...planetesimals and planets. In earlier works ( Barranco & Marcus 2000; Barranco et al. 2000; Lin et al. 2000) we have briefly described the possible physical...transport. In particular, Barranco et al. (2000) provided a general mathe- matical framework that is suitable for the asymptotic regime of the disk
Dellacherie, St
2004-07-01
This work deals with the derivation of a diphasic low Mach number model obtained through a Mach number asymptotic expansion applied to the compressible diphasic Navier Stokes system, expansion which filters out the acoustic waves. This approach is inspired from the work of Andrew Majda giving the equations of low Mach number combustion for thin flame and for perfect gases. When the equations of state verify some thermodynamic hypothesis, we show that the low Mach number diphasic system predicts in a good way the dilatation or the compression of a bubble and has equilibrium convergence properties. Then, we propose an entropic and convergent Lagrangian scheme in mono-dimensional geometry when the fluids are perfect gases and we propose a first approach in Eulerian variables where the interface between the two fluids is captured with a level set technique. (author)
固液火箭发动机工作过程三维数值仿真%Three-dimensional numerical simulation of hybrid rocket motor operation process
李新田; 田辉; 曾鹏; 蔡国飙
2012-01-01
根据固体燃料壁面与气相间的流固耦合得出了固体燃料燃速模型,对采用星形装药的H2O2/HTPB（hydroxyl-terminated polybutadiene）固液火箭发动机进行了燃烧流动三维数值仿真,得到了流场参数的分布及不同位置的固体燃料燃速,与二维轴对称仿真结果进行了对比.计算结果表明：装药截面的火焰层形状与装药星孔型面形状相似,但火焰层厚度与位置在星根与星角处存在差异;随着轴向位置的增加,氧化剂不断消耗,火焰层向通道中心移动;固体燃料燃速与氧化剂流率及不同装药位置有关,其大小随氧化剂流率的增加而增加,星根处燃速比星角处大;在相同氧化剂流率下,三维星形装药比二维轴对称装药的平均固体燃料燃速大.%According to the coupling between the solid fuel and gaseous phases, the sol- id fuel regression rate model was established. Three-dimensional numerical simulation of a star-shaped fuel grain hybrid rocket motor with hydrogen peroxide （H2O2） and hydroxyl- terminated polybutadiene （HTPB） propellants combination was presented. The flow field and the solid fuel grain regression rate distribution were obtained, and the results were com- pared with that of two-dimensional axial symmetry engine. The results indicate that the flame layer profile is similar with the star-shaped fuel port, while the thickness and the loca- tion of the flame makes differences in the root and the slot of the star-shape. With the axial coordinate increasing, the oxidizer consumes continually, and the flame layer shifts toward the centre of the fuel grain port. The solid fuel regression rate relates with the oxidizer mass flux and solid fuel location. It increases with the oxidizer mass flux growing, and is higher in the root of the star-shape than in the slot. The solid fuel regression rate of three-dimen-sional fuel grain is larger than two-dimensional axial symmetry under the same oxidizer mass
Numerical Propulsion System Simulation Architecture
Naiman, Cynthia G.
2004-01-01
The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Chono, S.; Tsuji, T. [Fukui University, Fukui (Japan). Faculty of Engineering
1995-05-25
Finite difference solutions to the Leslie-Ericksen equations were obtained for flows in two-dimensional L-shaped channels with various contraction ratios of the upstream to downstream channel width. A streamline shift toward the outer wall occurs upstream of the reentrant corner. Such behavior is similar to that of viscoelastic fluids. With increasing contraction ratio, the streamline shift occurs further upstream. The effect of the wall anchoring angle for the director is remarkable; for example, when the anchoring angle along the downstream walls is set to be opposite to the main flow direction, a distortion of streamlines is produced in the corner region and the director moves to the downstream region upside down. At small Ericksen numbers, the orientation angle for the director is varied over a wide area so as to suppress its local deformation. In contrast, when the Ericksen number is large, the director profile in the upstream region is retained close to the corner region where the director turns rapidly to the downstream direction. 7 refs., 9 figs., 1 tab.
Numerical simulations of vibrating sessile drop
Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard; Matar, Omar
2016-11-01
A vibrated drop constitutes a very rich physical system, blending both interfacial and volume phenomena. A remarkable experimental study was performed by M. Costalonga highlighting sessile drop motion subject to horizontal, vertical and oblique vibration. Several intriguing phenomena are observed such as drop walking and rapid droplet ejection. We perform three-dimensional direct numerical simulations of vibrating sessile drops where the phenomena described above are computed using the massively parallel multiphase code BLUE. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).
Tornado structure interaction: a numerical simulation
Wilson, T.
1977-05-20
The effects of tornadoes on buildings are examined to determine the wind forces on structures. The American National Standards Institute (ANSI) has developed guidelines for building code requirements for the minimum wind loads a building must be designed to withstand. The conservatism or nonconservatism on the ANSI approach is evaluated by simulating tornado-structure interaction numerically with a two-dimensional fluid dynamics computer code and a vortex model. Only external pressures are considered. The computer calculations yield the following percentages of the ANSI design pressures: rigid frame, 50 to 90%; individual wall panels, 75 to 200%; and wall corners, 50 to 75%.
Dense magnetized plasma numerical simulations
Bilbao, L [INFIP-CONICET, and Physics Department (FCEN-UBA), Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina); Bernal, L, E-mail: bilbao@df.uba.a [Physics Department (FCEYN-UNMDP), Complejo Universitario, Funes y Pena, 7600 Mar del Plata (Argentina)
2010-06-15
The scope for developing the present numerical method was to perform parametric studies for optimization of several configurations in magnetized plasmas. Nowadays there exist several efficient numerical codes in the subject. However, the construction of one's own computational codes brings the following important advantages: (a) to get a deeper knowledge of the physical processes involved and the numerical methods used to simulate them and (b) more flexibility to adapt the code to particular situations in a more efficient way than would be possible for a closed general code. The code includes ion viscosity, thermal conduction (electrons and ions), magnetic diffusion, thermonuclear or chemical reaction, Bremsstrahlung radiation, and equation of state (from the ideal gas to the degenerate electron gas). After each calculation cycle, mesh vertices are moved arbitrarily over the fluid. The adaptive method consists of shifting mesh vertices over the fluid in order to keep a reasonable mesh structure and increase the spatial resolution where the physical solution demands. The code was a valuable tool for parametric study of different physical problems, mainly optimization of plasma focus machine, detonation and propagation of thermonuclear reactions and Kelvin-Helmholtz instabilities in the boundary layer of the terrestrial magnetopause.
Bjelić Mišo B.
2016-01-01
Full Text Available Simulation models of welding processes allow us to predict influence of welding parameters on the temperature field during welding and by means of temperature field and the influence to the weld geometry and microstructure. This article presents a numerical, finite-difference based model of heat transfer during welding of thin sheets. Unfortunately, accuracy of the model depends on many parameters, which cannot be accurately prescribed. In order to solve this problem, we have used simulated annealing optimization method in combination with presented numerical model. This way, we were able to determine uncertain values of heat source parameters, arc efficiency, emissivity and enhanced conductivity. The calibration procedure was made using thermocouple measurements of temperatures during welding for P355GH steel. The obtained results were used as input for simulation run. The results of simulation showed that represented calibration procedure could significantly improve reliability of heat transfer model. [National CEEPUS Office of Czech Republic (project CIII-HR-0108-07-1314 and to the Ministry of Education and Science of the Republic of Serbia (project TR37020
Numerical simulations of pendant droplets
Pena, Carlos; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2015-11-01
We simulate the evolution of a three-dimensional pendant droplet through pinch-off using a new parallel two-phase flow solver called BLUE. The parallelization of the code is based on the technique of algebraic domain decomposition where the velocity field is solved by a parallel GMRes method for the viscous terms and the pressure by a parallel multigrid/GMRes method. Communication is handled by MPI message passing procedures. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique which defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. This structure allows the interface to undergo large deformations including the rupture and coalescence of fluid interfaces. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
On numerical evaluation of two-dimensional phase integrals
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Numerical simulation and nasal air-conditioning
Keck, Tilman
2010-01-01
Full Text Available Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning.
THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD
LUO Shao-ming; ZHANG Xiang-wei; L(U) Wen-ge; JIANG Dong-ru
2005-01-01
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.
Jiao LUO; Ying-gang LIU; Miao-quan LI
2016-01-01
The microstructure models were integrated into finite element (FE)code,and a three-dimensional (3D) FE analysis on the entire hot forging processes of 300M steel large components was performed to predict the distri-butions of effective strain,temperature field and austenite grain size.The simulated results show that the finest grains distribute in the maximum effective strain region because large strain induces the occurrence of dynamic re-crystallization.However,coarse macro-grains appear in the minimum effective strain region.Then,300M steel forg-ing test was performed to validate the results of FE simulation,and microstructure observations and quantitative analysis were implemented.The average relative difference between the calculated and experimental austenite grain size is 7.5 6%,implying that the present microstructure models are reasonable and can be used to analyze the hot forging processes of 300M steel.
Numerical Simulation of Level Magnetic Field
无
2003-01-01
According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.
Numerical Simulation on New Perforator
姚志华; 王志军; 李德战; 付盟
2011-01-01
To study a new shaped charge of perforator, the jet formation and penetration processes in concrete targets are simulated numerically by using LS-DYNA finite element analysis software. The results show that the cylindrical liner can form jet and most materials on top of liner form the tip of jet, while the others form the tail of jet. The jet has a better continuity, and the ratio of cumulative jet length to the liner diameter can reach to 7.56. Furthermore, the ratio of bore diameter to the liner diameter is from 0. 36 and 1, and the ratio of penetration depth to the liner diameter can be up to 5.5.
Relativistic Positioning Systems: Numerical Simulations
Puchades, Neus
2014-01-01
The motion of satellite constellations similar to GPS and Galileo is numerically simulated and, then, the region where bifurcation (double positioning) occurs is appropriately represented. In the cases of double positioning, the true location may be found using additional information (angles or times). The zone where the Jacobian, J, of the transformation from inertial to emission coordinates vanishes is also represented and interpreted. It is shown that the uncertainties in the satellite world lines produce positioning errors, which depend on the value of |J|. The smaller this quantity the greater the expected positioning errors. Among all the available 4-tuples of satellites, the most appropriate one -for a given location- should minimize positioning errors (large enough |J| values) avoiding bifurcation. Our study is particularly important to locate objects which are far away from Earth, e.g., satellites.
Szymkiewicz Adam
2015-09-01
Full Text Available Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions, water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting. It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
Szymkiewicz, Adam; Tisler, Witold; Burzyński, Kazimierz
2015-09-01
Flow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting). It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.
马纲; 赵伟; 沈心敏
2012-01-01
根据端面、柱面气膜密封的结构特点,建立端面螺旋槽与柱面螺旋槽气膜密封三维数值分析模型,基于有限体积法利用Fluent软件对端面、柱面气膜密封三维流场特性进行数值模拟研究.与试验结果和相关文献的算例比较验证了该三维数值模拟方法的正确性,为进一步进行密封界面表面状态模拟分析及气膜密封的设计应用提供了理论基础.%Based on the structure characteristics of the gas face and cylinder seal,the three dimensional model of spiral groove gas face and cylindrical seal were built, and the three dimensional micro-gap flow field was simulated by Fluent. The numerical simulation results agree well with the experimental data and theoretical value, which proves that it is feasible to simulate the micro-gap flow field of spiral groove gas film seal by the three dimensional numerical method. This research provides theoretical basis for further analysis of seal interface state and the design of gas film seal.
Numerical simulation of real-world flows
Hayase, Toshiyuki
2015-10-01
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc.
Numerical simulation of real-world flows
Hayase, Toshiyuki, E-mail: hayase@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan)
2015-10-15
Obtaining real flow information is important in various fields, but is a difficult issue because measurement data are usually limited in time and space, and computational results usually do not represent the exact state of real flows. Problems inherent in the realization of numerical simulation of real-world flows include the difficulty in representing exact initial and boundary conditions and the difficulty in representing unstable flow characteristics. This article reviews studies dealing with these problems. First, an overview of basic flow measurement methodologies and measurement data interpolation/approximation techniques is presented. Then, studies on methods of integrating numerical simulation and measurement, namely, four-dimensional variational data assimilation (4D-Var), Kalman filters (KFs), state observers, etc are discussed. The first problem is properly solved by these integration methodologies. The second problem can be partially solved with 4D-Var in which only initial and boundary conditions are control parameters. If an appropriate control parameter capable of modifying the dynamical structure of the model is included in the formulation of 4D-Var, unstable modes are properly suppressed and the second problem is solved. The state observer and KFs also solve the second problem by modifying mathematical models to stabilize the unstable modes of the original dynamical system by applying feedback signals. These integration methodologies are now applied in simulation of real-world flows in a wide variety of research fields. Examples are presented for basic fluid dynamics and applications in meteorology, aerospace, medicine, etc. (topical review)
Numerical recipes for mold filling simulation
Kothe, D.; Juric, D.; Lam, K.; Lally, B.
1998-07-01
Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.
Direct numerical simulation of turbulent reacting flows
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Three-dimensional Numerical Simulation on Momentumless Wake%无动量亏损尾迹三维数值模拟
许坤; 吴亚东; 欧阳华
2011-01-01
利用计算流体力学软件,对粘性不可压缩流体的平板翼型绕流进行了三维数值模拟,采用有限体积法计算程式,求解不可压缩Navier - Stokes方程,模拟平板翼型在尾缘有无吹气时的流动情况,得到了平板翼型尾迹的传播特性.并使用四种常用湍流模型在相同的网格条件下进行数值模拟,模拟结果与相应的试验数据对比,分析各种湍流模型对带尾缘吹气的三维模型数值模拟结果的影响,得出了不同湍流模型对带尾缘吹气的模型的适用性以及精度的评估性结论.数值模拟的结果表明SST湍流模拟对模拟尾迹区流动具有很好的适应性,预测得到的轴向速度分布、尾迹特征长度变化以及流动相似性和试验结果进行了对比,和试验结果吻合较好.%A viscous, incompressible and 3D flow around a plate airfoil was numerically simulated using CFD software. The finite volume method for incompressible Navier - Stokes equations is employed in the program to simulate the flow in the wake of the plate airfoil with and without trailing edge blowing. The wake spreading characteristics of the airfoil are gained through the simulation. The CFD simulation was carried out using four turbulence models in the commercial CFD software under the same grid system. Then results were compared with the experimental results. The turbulence model effect to the wake flow simulation of plate airfoil with trailing edge blowing was analyzed and gains the evaluating conclusion of the turbulence model adaptability on the model with trailing edge blowing. According to the simulation results, SST turbulence model shows well adaptability to simulate the wake flow. The axial velocity profile, wake characteristic length scale and flow similarity gained through CFD simulation using SST turbulence model agree well with the experiment.
康海贵; 郭伟
2013-01-01
基于Realizable κ-ε湍流模型和三维N-S方程,应用CFD软件FLUENT的滑动网格方法,对一种新型变攻角竖轴水轮机三维情况下的水动力响应及能量转换系数进行理论分析和数值模拟计算.研究结果表明:连接杆件的截面为NACA翼型时对转轴提供的附加扭矩大于圆形截面连接杆件；选取截面翼型为NACA4415的连接杆件对其安装角度的影响进行比较分析,可知当连接杆件翼型的弦线与来流平行时,能量转换系数最大,与实验数据有较高的吻合度.表明Realizable κ-ε湍流模型是一种有效的数值模拟方法.%Based on Realizable k-ε turbulence model and three-dimensional Navier-Stokes equation, the hydro-dynamic response of the vertical-axis variable-pitch tidal turbine under three-dimensional was theoretical analyzed and numerically simulated by advanced CFD software FLUENT with Moving Mesh method. The numerical simulation results showed that the torque generated by different NACA aerofoils connecting rods are higher than generated by circular section connecting rod. It suggests that when the chord of the NACA4415 aerofoil parallels with the coming flow, the torque is the biggest after analyzing the influence of installation angle of aerofoils. Finally the results showed that Realizable k-ε turbulence model is a kind of effective numerical simulation method for predicting three-dimensional hydrodynamic response.
Roswintiarti, O.; Raman, S.
- This paper describes the meteorological processes responsible for the mean transport of air pollutants during the ENSO-related forest fires in Kalimantan, Indonesia from 00 UTC 21 September to 00 UTC 25 September, 1997. The Fifth Generation of the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate three-dimensional winds at 6-hourly intervals. A nonhydrostatic version of the model is run using two nested grids with horizontal resolutions of 45 km and 15 km. From the simulated wind fields, the backward and forward trajectories of the air parcel are investigated using the Vis5D model.The results indicate that the large-scale subsidence over Indonesia, the southwest monsoon low-level flows (2-8 m s-1), and the shallow planetary boundary layer height (400-800 m) play a key role in the transport of air pollutants from Kalimantan to Malaysia, Singapore and Brunei.
Numerical simulation of transition in wall-bounded shear flows
Kleiser, Leonhard; Zang, Thomas A.
1991-01-01
The current status of numerical simulation techniques for the transition to turbulence in incompressible channel and boundary-layer flows is surveyed, and typical results are presented graphically. The focus is on direct numerical simulations based on the full nonlinear time-dependent Navier-Stokes equations without empirical closure assumptions for prescribed initial and boundary conditions. Topics addressed include the vibrating ribbon problem, space and time discretization, initial and boundary conditions, alternative methods based on the triple-deck approximation, two-dimensional channel and boundary-layer flows, three-dimensional boundary layers, wave packets and turbulent spots, compressible flows, transition control, and transition modeling.
Numerical simulation of transonic flows in diffusers
Liou, M.-S.; Coakley, T. J.; Bergmann, M. Y.
1981-01-01
Numerical simulations were made of two-dimensional transonic flows in diffusers, including flow separation induced by a shock or adverse pressure gradient. The mass-averaged, time-dependent, compressible Navier-Stokes equations, simplified by the thin-layer approximation, were solved using MacCormack's hybrid method. The eddy-viscosity formulation was described by the Wilcox-Rubesin's two-equation, k-omega model. Detailed comparison of the computed results with measurements showed good agreement in all cases, including one with massive separation induced by a strong shock. The computation correctly predicted the details of a distinct lambda shock pattern, closely duplicating the configuration observed experimentally in spark-schlieren photographs.
Vanhille, Christian
2017-01-17
This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs).
Numerical Simulations of Granular Processes
Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko
2014-11-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran
Zhu, Yanxia; Song, Kedong; Jiang, Siyu; Chen, Jinglian; Tang, Lingzhi; Li, Siyuan; Fan, Jiangli; Wang, Yiwei; Zhao, Jiaquan; Liu, Tianqing
2017-01-01
Cartilage tissue engineering is believed to provide effective cartilage repair post-injuries or diseases. Biomedical materials play a key role in achieving successful culture and fabrication of cartilage. The physical properties of a chitosan/gelatin hybrid hydrogel scaffold make it an ideal cartilage biomimetic material. In this study, a chitosan/gelatin hybrid hydrogel was chosen to fabricate a tissue-engineered cartilage in vitro by inoculating human adipose-derived stem cells (ADSCs) at both dynamic and traditional static culture conditions. A bioreactor that provides a dynamic culture condition has received greater applications in tissue engineering due to its optimal mass transfer efficiency and its ability to simulate an equivalent physical environment compared to human body. In this study, prior to cell-scaffold fabrication experiment, mathematical simulations were confirmed with a mass transfer of glucose and TGF-β2 both in rotating wall vessel bioreactor (RWVB) and static culture conditions in early stage of culture via computational fluid dynamic (CFD) method. To further investigate the feasibility of the mass transfer efficiency of the bioreactor, this RWVB was adopted to fabricate three-dimensional cell-hydrogel cartilage constructs in a dynamic environment. The results showed that the mass transfer efficiency of RWVB was faster in achieving a final equilibrium compared to culture in static culture conditions. ADSCs culturing in RWVB expanded three times more compared to that in static condition over 10 days. Induced cell cultivation in a dynamic RWVB showed extensive expression of extracellular matrix, while the cell distribution was found much more uniformly distributing with full infiltration of extracellular matrix inside the porous scaffold. The increased mass transfer efficiency of glucose and TGF-β2 from RWVB promoted cellular proliferation and chondrogenic differentiation of ADSCs inside chitosan/gelatin hybrid hydrogel scaffolds. The
Sun, Guangyuan; Lignell, David; Hewson, John; Gin, Craig
2013-11-01
We present three algorithms (type-I, type-C and type-IC) for Lagrangian particle transport within the context of the one-dimensional turbulence (ODT) approach. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. Two of the particle transport algorithms are new as is an algorithm to provide two-way momentum and energy coupling between the particle and carrier phases. Using these methods we investigate particle-laden turbulent jet flow. In contrast to other previous particle implementation in ODT, the two new methods allow the particles to interact with multiple eddies simultaneously and evolve the particle phase continuously, and therefore are able to accurately capture turbulent mixing and fluctuation seen by inertial particles in ODT. Simulation results are compared with experimental data including the effect of two particle Stokes numbers (St = 3.6 and 10.8). Turbulence modification, particle number density PDFs and particle velocity evolution are presented.
Numerical study of three-dimensional free surface dynamics
Baozeng Yue; Zhaolin Wang
2006-01-01
The dynamic problem of three-dimensional free surface is numerically studied in this paper.The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the control equation system.The ALE description method is used to track free surface.Accurate formulations for calculating the normal vector on the free surface are presented.The discrete numerical equations by finite element method are developed by Galerkin weighted residual method.The boundary condition about free-surface tension is represented in the form of weak integration that can be computed by a differential geometry method derived in the present paper.The effect of contact angle is incorporated in the numerical algorithm.Furthermore, the numerical computations are performed and the comparison between computational and analytical results validated the effectiveness of the method.The results of this paper provide a fundamental understandings of the dynamics of liquid free surfaces,in which the surface tension and contact angle boundary conditions are taken into account.Finally,numerical simulation of largescale amplitude sloshing of liquid in a cylindrical container is performed and a numerical analysis of the effect of an annular ring-shaped rigid damping baffle on liquid sloshing oscillations in a cylindrical tank is also carried out.
Numerical simulation package for speckle metrology
Kornis, Janos; Bokor, Nandor; Nemeth, Attila
1998-09-01
A computer program package for numerical simulation of speckle phenomena has been developed. It is suitable for simulating both objective and subjective speckle effects in various optical setups. Several simulation results are presented in this paper. The simulations was made in UNIX and Windows NT environment.
Wang, Weiling; Luo, Sen; Zhu, Miaoyong
2016-03-01
In the second part (Part II) of the present simulation work, the three-dimensional (3D) dendritic growth of Fe-0.82wtpctC alloy is investigated with the 3D CA-FVM cellular automaton-finite volume method model developed in Part I. The influences of the melt undercooling, the interfacial anisotropy, and the forced flow on the equiaxed dendritic growth, especially the formation of secondary arms, are discussed. The comparisons of equiaxed dendritic growth in 3D and two-dimensional (2D) are also carried out. Finally, the columnar dendritic growth under different cooling conditions is investigated including the morphology and the secondary dendrite arm spacing (SDAS). The results show that the high undercooling can promote the formation of secondary arms as the anisotropy parameter is 0.04. With the increase of the anisotropy parameter, the secondary arms first reduce and then well develop again; meanwhile the tertiary arms are gradually developed. However, the secondary arms vanish at the undercooling of 5 K as the anisotropy parameter increases to 0.04. With the introduction of the forced flow with the inlet velocity of 0.001 m/s along the x axis, the secondary arms at the left (upstream) arm become more developed. However, they become slightly less developed with the forced flow intensifying. Secondary arms at the left side (upstream) of the perpendicular arms and in the y-z symmetrical plane become more and more developed as the inlet velocity increases. The competition of the secondary arms at the right side (downstream) of the perpendicular arms and at the right (downstream) arm becomes significant as the undercooling increases from 10 to 15 K. The solute-enriched envelope in 2D is much thicker than in the 3D case, so that the dendritic growth in 2D is influenced more by the melt flow and the undercooling; moreover, the secondary arms in 2D are hard to form even at the undercooling of 15 K and with the forced convection in the present article. Meanwhile, the
Numerical simulation of installation of skirt foundations
Vangelsten, Bjoern Vidar
1997-12-31
Skirt foundation has been increasingly used for permanent offshore oil installations and anchors for drilling ships. Suction is commonly used in skirt foundation installing. If a large amount of suction is applied, the soil around the foundation may fail and the foundation become useless. This thesis studies failure due to high seepage gradients, aiming to provide a basis for reducing the risk of such failures. Skirt penetration model testing has shown that to solve the problem one must understand what is going on at the skirt tip during suction installation. A numerical model based on micro mechanics was developed as continuum hypothesis was seen to be unsuitable to describe the processes in the critical phases of the failure. The numerical model combines two-dimensional elliptical particles with the finite difference method for flow to model water flow in a granular material. The key idea is to formulate the permeability as a function of the porosity of the grain assembly and so obtain an interaction between the finite difference method on flow and the particle movement. A computer program, DYNELL, was developed and used to simulate: (1) weight penetration of a skirt wall, (2) combined suction and weight penetration of a skirt wall, and (3) critical gradient tests around a skirt wall to study failure mechanisms. The model calculations agree well with laboratory experiments. 16 refs., 124 figs., 21 tabs.
Numerical simulation of detonation failure in nitromethane
Kipp, M E; Nunziato, J W
1981-01-01
Detonation failure in the homogeneous liquid explosive nitromethane has been observed experimentally in a wide variety of confining geometries. However, numerical simulation of these failure situations with a wave propagation code has been essentially non-existent due to the large differences between the critical diameter and the length of the reaction zone - characteristic dimensions which differ by about two orders of magnitude. This inability to spatially resolve both the reaction zone and geometries of significant size has led us to propose a new numerical technique, based on the stability criterion for rate-type material models, in which only temporal resolution of the reaction zone is required. Using an improved model for nitromethane, we have carried out a series of two-dimensional calculations which illustrate the utility of the present approach in predicting a wide range of experimental observations. Of particular computational significance is the removal of the difficulty requiring spatial resolution of the reaction zone, so that problems of practical size can be analyzed with existing computer capabilities.
Numerical Simulation of Preferential Flow of Contaminants in Soil
无
2001-01-01
A simple modeling approach was suggested to simulate preferential transport of water and contaminants in soil.After saturated hydraulic conductivity was interpolated by means of Krige interpolation method or scaling method, and then zoned,the locations where saturated hydraulic conductivity was larger represented regions where preferential flow occurred,because heterogeneity of soil,one of the mechanisms resulting in preferential flow,could be reflected through the difference in saturated hydraulic conductivity.The modeling approach was validated through numerical simulation of contaminant transport in a two-dimensional hypothetical soil profile.The results of the numerical simulation showed that the approach suggested in this study was feasible.
Numerical simulations of unsteady flows in turbomachines
Dorney, Daniel Joseph
The performance of axial and centrifugal turbomachines is significantly affected by the presence of unsteady and viscous flow mechanisms. Most contemporary design systems, however, use steady or linearized unsteady inviscid flow analyses to generate new blade shapes. In an effort to increase the understanding of unsteady viscous flows in turbomachinery blade rows, and to determine the limitations of linearized inviscid flow analyses, a two-part investigation was conducted. In the first portion of this investigation, a nonlinear viscous flow analysis was developed for the prediction of unsteady flows in two dimensional axial turbomachinery blade rows. The boundary conditions were formulated to allow the specification of vortical, entropic and acoustic excitations at the inlet, and acoustic excitations at exit, of a cascade. Numerical simulations were performed for flat plate and compressor exit guide vane cascades, and the predicted results were compared with solutions from classical linearized theory and linearized inviscid flow analysis. The unsteady pressure fields predicted with the current analysis showed close agreement with the linearized solutions for low to moderate temporal frequency vortical and acoustic excitations. As the temporal frequency of the excitations was increased, nonlinear effects caused discrepancies to develop between the linearized and Navier-Stokes solution sets. The inclusion of viscosity had a significant impact on the unsteady vorticity field, but only a minimal effect on the unsteady pressure field. In the second part of this investigation, a quasi-three-dimensional Navier-Stokes analysis was modified and applied to flows in centrifugal turbomachinery blade rows. Inviscid and viscous flow simulations were performed for a centrifugal impeller at three operating conditions. By comparing the predicted and experimental circumferential distributions of the relative frame velocity and flow angle downstream of the impeller, it was
Numerical Simulation of DC Coronal Heating
Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco
2016-05-01
Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.
二维超音速喷管型线设计仿真研究%Design and Numerical Simulation on the Two-Dimensional Supersonic Nozzle Profile
刘晓东; 高丽敏; 李永增
2014-01-01
采用计算软件FLUENT，对四种经典收缩段型线下的流场特性进行数值模拟，为选择超声速风洞收缩段的型线提供依据。基于特征线理论，利用解析法完成超音速喷管膨胀段型线设计，通过分析总压恢复系数及均匀度等流场参数，确定型线膨胀角角度及喷管长度。结果表明，收缩段型线选用双三次曲线，膨胀角度3.5°的情况下，超音速喷管出口达到了设计要求马赫数，并获得了较好的气流品质。%In this paper, the research results about numerical simulation on the flow field of four classic convergent curves are gained by computational software FLUENT, which provides basis for selecting a kind of optimal curve to design the supersonic nozzle convergent profile. Based on the theory of characteristics line, the curve of supersonic nozzle expansion is designed with analytical method. Finally, comparing total pressure recovery coefficient and uniformity of flow field parameters, the angle of expansion curve and nozzle length are confirmed. The results show that exit velocity of the supersonic nozzle achieves the design requirements for Mach number and uniformity when Bipartite Cubic is the method of the contraction profile and the angle of expansion profile is 3.5°.
Marcial Trilha Junior
2009-01-01
Full Text Available OBJETIVO: Por ser a articulação mecanicamente mais solicitada de nossa estrutura e pelo grande número de lesões associadas, motivaram a construção de um modelo tridimensional da articulação do joelho humano para simular a cinemática da articulação e obter as solicitações mecânicas nos principais ligamentos durante o movimento de flexão do joelho. Essas informações podem futuramente ser empregada como ferramenta de apoio à decisão médica em ortopedia, fornecendo subsídios na escolha do procedimento cirúrgico. MÉTODOS: Método dos Elementos Finitos foi utilizado para construir um modelo biomecânico, tridimensional, da articulação do joelho. Nesse modelo com seis graus de liberdade é aplicado movimento de flexão/extensão sendo os demais cinco graus de liberdade governados pelas interações entre os componentes da articulares. RESULTADOS: Foram obtidas informações dos movimentos, das rotações interna/externa e adução/abdução, das translações anterior/posterior, lateral/medial e superior/inferior e dos esforços nos quatro principais ligamentos articulares, no decorrer de um amplo movimento de flexão/extensão. Estes valores foram comparados, de forma qualitativa, com valores equivalentes obtidos na literatura. CONCLUSÃO: A análise de resultados permitiu observar que vários aspectos cinemáticos são satisfatoriamente reproduzidos. A pré-carga inicial dos ligamentos e o posicionamento das inserções ligamentares no modelo mostraram-se variáveis relevantes nos resultados.OBJECTIVE: The knee joint is the part of our structure upon which most mechanical demands are placed and a large number of lesions are associated to it. These factors motivated the construction of a three-dimensional model of the human knee joint in order to simulate joint kinematics and obtain the mechanical demands on the main ligaments during knee flexion movements. METHODS: The finite elements method was used to build a three-dimensional
Numerical simulation of the RAMAC benchmark test
Leblanc, J.E.; Sugihara, M.; Fujiwara, T. [Nagoya Univ. (Japan). Dept. of Aerospace Engineering; Nusca, M. [Nagoya Univ. (Japan). Dept. of Aerospace Engineering; U.S. Army Research Lab., Ballistics and Weapons Concepts Div., AMSRL-WM-BE, Aberdeen Proving Ground, MD (United States); Wang, X. [Nagoya Univ. (Japan). Dept. of Aerospace Engineering; School of Mechanical and Production Engineering, Nanyang Technological Univ. (Singapore); Seiler, F. [Nagoya Univ. (Japan). Dept. of Aerospace Engineering; French-German Research Inst. of Saint-Louis, ISL, Saint-Louis (France)
2000-11-01
Numerical simulations of the same ramac geometry and boundary conditions by different numerical and physical models highlight the variety of solutions possible and the strong effect of the chemical kinetics model on the solution. The benchmark test was defined and announced within the community of ramac researchers. Three laboratories undertook the project. The numerical simulations include Navier-Stokes and Euler simulations with various levels of physical models and equations of state. The non-reactive part of the simulation produced similar steady state results in the three simulations. The chemically reactive part of the simulation produced widely different outcomes. The original experimental data and experimental conditions are presented. A description of each computer code and the resulting flowfield is included. A comparison between codes and results is achieved. The most critical choice for the simulation was the chemical kinetics model. (orig.)
肖玉红
2011-01-01
Based on N-S equation and standard k-ε turbulence model, CFD computational fluid dynamics software was adapted in two-di mensional steady numerical simulation for internal flow of volute, guide vane and turning wheel of HLA616-WJ-55 axial flow turbine, and the results were compared and analyzed with three-dimensional numerical simulation of the same turbine type. The results showed that the internal flow rule of volute of two-dimensional was consistent with three-dimensional numerical simulation, and the distribution of pressure and speed were uniform, the flow condition was better. Two-dimensional CFD analysis could predict the structures of internal flows of volute, guide vane and turning wheel roundly, and numerical simulation results had important directive significance to turbines selection and optimization design.%基于N-S方程和标准k-ε紊流模型,采用CFD计算流体力学软件对HLA616 -W J-55混流式水轮机原型机的蜗壳、导叶及转轮内部水流进行二维定常数值模拟,并与同型式水轮机的蜗壳、导叶及转轮内部流动三维数值模拟结果进行比较分析.结果表明,二维与三维蜗壳内部流动的规律基本一致,压力分布和速度分布比较均匀,流动状况较为理想.二维CFD分析能较全面地预测水轮机蜗壳、导叶及转轮内部流场的结构,数值模拟结果对水轮机选型和优化设计均具有重要的指导意义.
APPLICATION OF NUMERICAL SIMULATION TO STUDY ON THERMAL CONDUCTION
C. Zhu; Z. Xu; D.E. Wu
2004-01-01
In this paper, using computer simulation and mathematic experiment method to solve the simplified one dimensional thermal conduction equation and to obtain the temperature distribution in a metal bar when its one end was heated. According to principle of hot expansion, a holograph of temperature distribution in the bar by laser holotechnique was taken. The results of numerical simulation and experiments are in good agreement and a new method for study on thermal conduction by laser holo-technique was found.
Initiation Style Optimization of Aimed Warhead by Numerical Simulation
WEI Ji-feng; LI Na; WEN Yu-quan; WANG Wen-jie
2008-01-01
The kill characteristics of aimed warhead were studied.Emphasis on the improvement of initiation system,experiments and three dimensional numerical investigations were carried out.Simulation results of side three initiation points fit experiments well.Optimal initiation style is obtained through further simulation.It shows that the effective fragments and the effective kill energy of the optimal scheme increase 12.8%and 10.1%respectively.
Abbasian, F.; Yu, S.D. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Cao, J. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)], E-mail: jcao@ryerson.ca
2009-11-15
Computational fluid dynamics (CFD) is used to simulate highly turbulent coolant flows surrounding a simulation CANDU fuel bundle structure inside a flow channel. Three CFD methods are used: large eddy simulation (LES), detached eddy simulation (DES), and Reynolds stress model (RSM). The outcome of the simulations is compared with the experimental pressure data measured using an in-water microphone and a miniature pressure transducer placed at various locations in the vicinity of the bundle structure. Among all the three methods employed in developing computational models, LES provides the most accurate results for turbulent pressures.
Direct numerical simulation of double-diffusive gravity currents
Penney, Jared; Stastna, Marek
2016-08-01
This paper presents three-dimensional direct numerical simulations of laboratory-scale double-diffusive gravity currents. Flow is governed by the incompressible Navier-Stokes equations under the Boussinesq approximation, with salinity and temperature coupled to the equations of motion using a nonlinear approximation to the UNESCO equation of state. The effects of vertical boundary conditions and current volume are examined, with focus on flow pattern development, current propagation speed, three-dimensionalization, dissipation, and stirring and mixing. It was observed that no-slip boundaries cause the gravity current head to take the standard lobe-and-cleft shape and encourage both a greater degree and an earlier onset of three-dimensionalization when compared to what occurs in the case of a free-slip boundary. Additionally, numerical simulations with no-slip boundary conditions experience greater viscous dissipation, stirring, and mixing when compared to similar configurations using free-slip conditions.
Numerical simulation of muzzle blast
Tyler-Street, M.
2014-01-01
Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large nume
Numerical Simulations of HH 555
Kajdic, Primoz
2007-01-01
We present 3D gasdynamic simulations of the Herbig Haro object HH 555. HH 555 is a bipolar jet emerging from the tip of an elephant trunk entering the Pelican Nebula from the adjacent molecular cloud. Both beams of HH 555 are curved away from the center of the H II region. This indicates that they are being deflected by a side-wind probably coming from a star located inside the nebula or by the expansion of the nebula itself. HH 555 is most likely an irradiated jet emerging from a highly embedded protostar, which has not yet been detected. In our simulations we vary the incident photon flux, which in one of our models is equal to the flux coming from a star 1 pc away emitting 5x10^48 ionizing (i. e., with energies above the H Lyman limit) photons per second. An external, plane-parallel flow (a ``side-wind'') is coming from the same direction as the photoionizing flux. We have made four simulations, decreasing the photon flux by a factor of 10 in each simulation. We discuss the properties of the flow and we co...
Advanced numerical simulation of collapsible earth dams
De Farias, M.M.; Cordao Neto, M.P. [Brasilia Univ., Federal District (Brazil). Dept. of Civil and Environmental Engineering
2010-12-15
This paper discussed a systematic methodology for the hydromechanical coupled numerical analysis of earth dams constructed with unsaturated collapsible soil. Every design stage was considered, including construction, reservoir filling, and advance of saturation front until the steady-state flow condition is attained. A transient analysis of safety factors applicable to 3-dimensional conditions was presented, giving consideration to unsaturated materials and the interrelation between hydraulic and mechanical phenomena by solving equilibrium and continuity conditions at the same time. The finite element method was used to formulate equilibrium and continuity conditions for both soil skeleton and pore water, which necessitated a realistic mechanical model for the stress-strain-suction relation in unsaturated porous material and adequate constitutive models related to water flow and storage, giving special consideration to imposing appropriate boundary conditions for each simulation stage. The methodology was applied to the analysis of earth dams composed of soils at optimum, dry of optimum, and mixed compaction conditions. The dry section simulated dams constructed using poorly compacted, dry material, which are prone to collapse. By strategically placing the optimum materials in the areas of the earth fill that are most stressed, the mixed section could be designed less expensively with the same or better performance as the homogenous section at optimum conditions. The coupled analysis provides a higher safety factor than uncoupled analysis and a realistic picture of end-of-construction pore pressure distribution. The simulation of reservoir filling and saturation front advance permitted clear identification of the initialization, development, and evolution of internal failure mechanisms. 21 refs., 6 tabs., 19 figs.
Design and numerical simulation of novel DBRs
Wei Su (苏伟); Jingchang Zhong (钟景昌); Wenli Liu (刘文莉); Yan-Kuin Su (苏炎坤); Shoou-Jinn Chang (张守进); Hsin-Chieh Yu (龙信介); Liangwen Ji (姬梁文); Lin Li (李林); Yingjie Zhao (赵英杰)
2003-01-01
In this paper, a numerical simulation of the traditional graded distributed Bragg reflector (DBR) and a design of the novel DBR with short period superlattices (SPSs DBR) used by vertical cavity surface emitting laser (VCSEL) are reported. First, the optical characteristic matrix of the graded DBRs is derived using the theories of thin film optics. Second, its reflective spectrum is numerical simulated and it is found that the simulative results are similar with the experimental data. The difference of the cavity mode position between the experimental and simulative data is discussed. Finally, based on the simulative results of graded DBR, a novel DBR with 4.5-pair GaAs/AlAs SPSs is designed, and its reflective spectrum is numerical simulated and analyzed.
Numerical Simulations of Bouncing Jets
Bonito, Andrea; Lee, Sanghyun
2015-01-01
Bouncing jets are fascinating phenomenons occurring under certain conditions when a jet impinges on a free surface. This effect is observed when the fluid is Newtonian and the jet falls in a bath undergoing a solid motion. It occurs also for non-Newtonian fluids when the jets falls in a vessel at rest containing the same fluid. We investigate numerically the impact of the experimental setting and the rheological properties of the fluid on the onset of the bouncing phenomenon. Our investigations show that the occurrence of a thin lubricating layer of air separating the jet and the rest of the liquid is a key factor for the bouncing of the jet to happen. The numerical technique that is used consists of a projection method for the Navier-Stokes system coupled with a level set formulation for the representation of the interface. The space approximation is done with adaptive finite elements. Adaptive refinement is shown to be very important to capture the thin layer of air that is responsible for the bouncing.
Numerical simulations of quasar absorbers
Theuns, T
2005-01-01
The physical state of the intergalactic medium can be probed in great detail with the intervening absorption systems seen in quasar spectra. The properties of the Hydrogen absorbers depend on many cosmological parameters, such as the matter-power spectrum, reionisation history, ionising background and the nature of the dark matter. The spectra also contain metal lines, which can be used to constrain the star formation history and the feedback processes acting in large and small galaxies. Simulations have been instrumental in investigating to what extent these parameters can be unambiguously constrained with current and future data. This paper is meant as an introduction to this subject, and reviews techniques and methods for simulating the intergalactic medium.
NUMERICAL SIMULATIONS OF CAVITATING FLOWS
Wu Lei
2003-01-01
A new model, which involves viscous and multi-phase effects, was given to study cavitating flows. A local compressible model was established by introducing a density-pressure function to account for the two-phase flow of water/vapor and the transition from one phase to the other. An algorithm for calculating variable-density N-S equations of cavitating flow problem was put forward. The present method yields reasonable results for both steady and unsteady cavitating flows in 2D and 3D cases. The numerical results of unsteady character of cavitating flows around hydrofoils coincide well with experimental data. It indicates the feasibility to apply this method to a variety of cavitating flows of practical problems.
Numerical methods in simulation of resistance welding
Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi
2015-01-01
Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...
Numerical simulation of wall-bounded turbulent shear flows
Moin, P.
1982-01-01
Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included.
杨红卫; 慕振峰; 姜舒宁
2012-01-01
Transmission coefficient of the one-dimensional photonic crystal with various dielectric materials is simulated by using precise integration, and simulation results are analyzed. Photonic crystal is divided into different sections. Potential energy of the section and mixed energy of the section are introduced. The export stiffness matrix of each section can be obtained by using precise integration, and then each stiffness matrix is combined. The problem can be solved by imposing boundary conditions on the stiffness matrix. The curves of lose rate D are drawn to check the validity and accuracy of the numerical solution. The simulation results show that this method is accurate, efficient and applicable for the simulation of one-dimensional photonic crystal.%应用精细积分法对含各种介质材料的一维光子晶体进行了数值模拟,并对结果进行了分析.计算时将光子晶体分成不同的区段,引入区段势能和区段混合能,利用精细积分法求出各个区段的出口刚度矩阵,然后将各个区段的刚度矩阵合并,再结合边界条件便可求解问题.利用透射率和反射率之间的关系,判断了本算法的准确度,数值计算结果表明,对于一维光子晶体的数值模拟,此方法准确、有效、适用性强.
Numerical simulations of rotating axisymmetric sunspots
Botha, G. J. J.; Busse, F.H.; Hurlburt, N. E.; Rucklidge, A.M.
2008-01-01
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the nonlinear MHD equations, with density and temperature gradients simulating the upper layer of the sun's convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rotat...
Numerical simulations of rotating axisymmetric sunspots
Botha, Gert; Busse, F.H.; Hurlburt, Neal; Rucklidge, Alistair
2008-01-01
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the non-linear MHD equations, with density and temperature gradients simulating the upper layer of the Sun’s convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rota...
Numerical simulation of mechatronic sensors and actuators
Kaltenbacher, Manfred
2007-01-01
Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.
Direct Numerical Simulation of Cell Printing
Qiao, Rui; He, Ping
2010-11-01
Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.
申志超; 别社安; 刘欣; 倪敏; 王胜年
2016-01-01
对饱和状态下开裂混凝土裂缝附近区域氯离子的二维扩散进行了数值模拟.以Fick第二扩散定律(FSDL)修正模型及二维氯离子扩散理论模型为基础,建立了开裂混凝土氯离子扩散有限差分数值模型,并编制了计算程序.通过与试验结果的对比,证明了模型的有效性.利用建立的模型分析了裂缝、水胶比、衰减系数和时间因素对氯离子扩散的影响,提出了裂缝影响区的概念.在裂缝影响区内,氯离子呈二维扩散,在其外,氯离子呈一维扩散;在时间上,氯离子扩散存在快速期、过渡期与缓慢期;从长期来看,裂缝深度对氯离子的扩散影响显著,而裂缝宽度几乎对其无影响.%Numerical simulation of two-dimensional chloride diffusion is carried out in the crack area of saturated and cracked concrete. Based on correction model of Fick's second law and two-dimensional model of chloride diffusion, a finite differential model for chloride diffusion in cracked concrete is established. A calculation program is codedand turns out to be effective through the comparison with experimental results. The effect of crack,water-binder ratio, attenuation coefficient and time on chloride diffusion is analyzed through the established numerical model. The con-cept of crack-affected zone is put forward,within which,chloride diffuses in two-dimensional way,and beyond which,chloride diffuses in one-dimensional way. There are three stages in chloride diffusion,including rapid diffu-sion period,transitional period and slow diffusion period. The simulation results show that crack depth has significant effect on chloride diffusion in the long-term situation,while crack width nearly makes no difference.
3-dimensional Oil Drift Simulations
Wettre, C.; Reistad, M.; Hjøllo, B.Å.
Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.
Numerical simulations of the solar atmosphere
Leenaarts, J.
2007-01-01
In this thesis several aspects of the solar atmosphere are investigated using numerical simulations. Simulations and observations of reversed solar granulation are compared. It is concluded that reversed granulation is a hydrodynamical process and is a consequence of convection reversal. Images are
Numerical Simulation of Nanostructure Growth
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.
2004-01-01
Nanoscale structures, such as nanowires and carbon nanotubes (CNTs), are often grown in gaseous or plasma environments. Successful growth of these structures is defined by achieving a specified crystallinity or chirality, size or diameter, alignment, etc., which in turn depend on gas mixture ratios. pressure, flow rate, substrate temperature, and other operating conditions. To date, there has not been a rigorous growth model that addresses the specific concerns of crystalline nanowire growth, while demonstrating the correct trends of the processing conditions on growth rates. Most crystal growth models are based on the Burton, Cabrera, and Frank (BCF) method, where adatoms are incorporated into a growing crystal at surface steps or spirals. When the supersaturation of the vapor is high, islands nucleate to form steps, and these steps subsequently spread (grow). The overall bulk growth rate is determined by solving for the evolving motion of the steps. Our approach is to use a phase field model to simulate the growth of finite sized nanowire crystals, linking the free energy equation with the diffusion equation of the adatoms. The phase field method solves for an order parameter that defines the evolving steps in a concentration field. This eliminates the need for explicit front tracking/location, or complicated shadowing routines, both of which can be computationally expensive, particularly in higher dimensions. We will present results demonstrating the effect of process conditions, such as substrate temperature, vapor supersaturation, etc. on the evolving morphologies and overall growth rates of the nanostructures.
Multistage Turbomachinery Flows Simulated Numerically
Hathaway, Michael D.; Adamczyk, John J.; Shabbir, Aamir; Wellborn, Steven R.
1999-01-01
At the NASA Lewis Research Center, a comprehensive assessment was made of the predictive capability of the average passage flow model as applied to multistage axial-flow compressors. This model, which describes the time-averaged flow field within a typical passage of a blade row embedded in a multistage configuration, is being widely used throughout U.S. aircraft industry as an integral part of their design systems. Rotor flow-angle deviation. In this work, detailed data taken within a four and one-half stage large low-speed compressor were used to assess the weaknesses and strengths of the predictive capabilities of the average passage flow model. The low-speed compressor blading is of modern design and employs stator end-bends. Measurements were made with slow- and high response instrumentation. The high-response measurements revealed the velocity components of both the rotor and stator wakes. From the measured wake profiles, we found that the flow exiting the rotors deviated from the rotor exit metal angle to a lesser degree than was predicted by the average passage flow model. This was found to be due to blade boundary layer transition, which recently has been shown to exist on multistage axial compressor rotor and stator blades, but was not accounted for in the average passage model. Consequently, a model that mimics the effects of blade boundary layer transition, Shih k-epsilon model, was incorporated into the average passage model. Simulations that incorporated this transition model showed a dramatic improvement in agreement with data. The altered model thus improved predictive capability for multistage axial-flow compressors, and this was verified by detailed experimental measurement.
On the numerical simulation of machining processes
Vaz Jr.,M.
2000-01-01
Numerical simulation of machining processes can be traced back to the early seventies when finite element models for continuous chip formation were proposed. The advent of fast computers and development of new techniques to model large plastic deformations have favoured machining simulation. Relevant aspects of finite element simulation of machining processes are discussed in this paper, such as solution methods, material models, thermo-mechanical coupling, friction models, chip separation an...
Numerical method of characteristics for one-dimensional blood flow
Acosta, Sebastian; Riviere, Beatrice; Penny, Daniel J; Rusin, Craig G
2014-01-01
Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time-step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the ...
Two-dimensional Numerical Modeling Research on Continent Subduction Dynamics
WANG Zhimin; XU Bei; ZHOU Yaoqi; XU Hehua; HUANG Shaoying
2004-01-01
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction.
Shao Hao; Jiang Shuguang; Wang Lanyun; Wu Zhengyan
2011-01-01
The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad. A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model. The method of taking value for interstice and permeability ratios is also proposed. The law of air leakage of fully mechanized top coal is researched in this study. The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face. When the amount of air at the working face exceeds a critical amount, the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section. In this situation, the key is preventing the coal left in the upper and lower crossheadings from self-igniting. Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone, especially the width near the upper and lower crossheadings. This also moves the spontaneous combustion zone in the direction of the working face. It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.
Stock, Andreas; Neudorfer, Jonathan; Riedlinger, Marc;
2012-01-01
Fast design codes for the simulation of the particle–field interaction in the interior of gyrotron resonators are available. They procure their rapidity by making strong physical simplifications and approximations, which are not known to be valid for many variations of the geometry and the operat...
Numerical Simulation of Sediment Transport due to Plunging Breaking Waves
Pedersen, Claus
A numerical model simulating the sediment transport due to plunging breaking waves has been developed. The model is two-dimensional, assuming conditions in the long-shore direction invariable. A plunging breaker is simulated by superimposing a non-breaking wave with a jet. Based on the description...... of the sediment transport rates, a simple model describing the morphological changes has been applied to simulate the evolution of a plunge point generated vorticity included, the bottom topography from the experiments by Dette & Uliczka was not in equilibrium according to the model....
Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method
无
2002-01-01
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growthin a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material wasnumerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domainof undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solvedusing the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patternswas shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.
Numerical Simulation and Experimental Investigation of 3-D Separated Flow Field around a Blunt Body
无
1999-01-01
@@Motivated by re-designing a fuselage in engineering application, the numerical and experimental investigation of the separated flow field around a special blunt body is described in this thesis. The aerodynamic response of the blunt body is successively studied. The thesis consists of four parts: the numerical simulation of the flow field around a two-dimensional blunt body; the numerical simulation of the flow field around a three-dimensional blunt body; the flow
Cai Qing-Dong; Chen Shi-Yi; Sheng Xiao-Wei
2011-01-01
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone. . In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent friction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough.
Numerical Simulation of a Hypersonic Air Intake
Soumyajit Saha
2015-05-01
Full Text Available Numerical simulations were carried out to study the unsteady flow in an intake of hypersonic air-breathing vehicle. Unsteady RANS simulations were performed to examine started flow of the intake when cowl surface is parallel to the ramp surface. Though started, the flow was unsteady due to flow separation bubbles inside intake. Intake with larger cowl opening at which intake unstarted was also simulated. Simulations indicated unstarted flow, with large pressure oscillations. The numerically simulation results match reasonably well with experimental data. Calculated unstarting Mach number was found to be 3.0-3.2 in comparison of wind tunnel data of 3.6 for the same cowl opening angle.Defence Science Journal, Vol. 65, No. 3, May 2015, pp.189-195, DOI: http://dx.doi.org/10.14429/dsj.65.8254
A numerical simulation of a contrail
Levkov, L.; Boin, M.; Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)
1997-12-31
The formation of a contrail from an aircraft flying near the tropopause is simulated using a three-dimensional mesoscale atmospheric model including a very complex scheme of parameterized cloud microphysical processes. The model predicted ice concentrations are in very good agreement with data measured during the International Cirrus Experiment (ICE), 1989. Sensitivity simulations were run to determine humidity forcing on the life time of contrails. (author) 4 refs.
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
Martin, A.; Alvarez, D.; Cases, F.; Stelletta, S. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique
1997-06-01
This report explains the last results about the mixing in the 900 MW PWR vessels. The accurate fluid flow transient, induced by the RCP starting-up, is represented. In a first time, we present the Thermalhydraulic Finite Element Code N3S used for the 3D numerical computations. After that, results obtained for one reactor operation case are given. This case is dealing with the transient mixing of a clear plug in the vessel when one primary pump starts-up. A comparison made between two injection modes; a steady state fluid flow conditions or the accurate RCP transient fluid flow conditions. The results giving the local minimum of concentration and the time response of the mean concentration at the core inlet are compared. The results show the real importance of the unsteadiness characteristics of the fluid flow transport of the clear water plug. (author) 12 refs.
Numerical Simulation of Underwater Explosion Loads
XIN Chunliang; XU Gengguang; LIU Kezhong
2008-01-01
Numerical simulation of TNT underwater explosion was carried out with AUTODYN software.Influences of artificial viscosity and mesh density on simulation results were discussed.Detonation waves in explosive and shock wave in water during early time of explosion are high frequency waves.Fine meshes (less than 1 mm) in explosive and water nearby,and small linear viscosity coefficients and quadratic viscosity coefficients (0.02 and 0.1 respectively,1/10 of default values) are needed in numerical simulation model.According to these rules,numerical computing pressure profiles can match well with those calculated by Zamyshlyayev empirical formula.Otherwise peak pressure would be smeared off and upstream relative errors would be cumulated downstream to make downstream peak pressure lower.
ZENG Zhihua; DUAN Yihong; LIANG Xudong; MA Leiming; Johnny Chung-leung CHAN
2005-01-01
In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to study the effect of assimilating the sea-wind data from QuikSCAT on the prediction of typhoon track and intensity. The case of Typhoon Dujuan (2003) is first tested and the results show appreciable improvements. Twelve other cases in 2003 are then evaluated. The assimilation of the QuikSCAT data produces significant impacts on the structure of Dujuan in terms of the horizontal and vertical winds, sealevel pressure and temperature at the initial time. With the assimilation, the 24-h (48-h) track prediction of 11 (10) out of the 12 typhoons is improved. The 24-h (48-h) prediction of typhoon intensity is also improved in 10 (9) of the 12 cases. These experiments therefore demonstrate that assimilation of the QuikSCAT sea-wind data can increase the accuracy of typhoon track and intensity predictions through modification of the initial fields associated with the typhoon.
Numerical simulation of "An American Haboob"
Vukovic, A; M. Vujadinovic; Pejanovic, G.; J. Andric; Kumjian, M. R.; V. Djurdjevic; M. Dacic; Prasad, A. K.; H. M. El-Askary; B. C. Paris; S. Petkovic; S. Nickovic; Sprigg, W. A.
2013-01-01
A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts...
Numerical simulation of thin layer coffee drying by control volumes
CIRO-VELÁSQUEZ, HÉCTOR J.; ABUD-CANO, LUIS C.; PÉREZ-ALEGRÍA, LUIS. R.
2011-01-01
The thin layer drying model proposed by Sokhansanj and Bruce (1987) was implemented to model the drying process of parchment coffee beans. A computational model based on a control volume approach was developed to simulate the drying process of parchment coffee. A one dimensional transient analysis was implemented in the radial direction applied to a spherical coffee bean of equivalent radius. The results found that, even though the numerical value for the mass transfer coefficient is a small ...
Numerical simulation of internal flow in aerocraft engine
Makida, Mitsumasa; 牧田 光正
1998-01-01
A parallel numerical simulation code for three-dimensional spray combustion in an aircraft combustor has been developed. In this code, the Euler equations are used for the droplet phase assuming a continuous fluid, and the full Navier-Stokes equations are applied for the gas phase. Both phases are connected through mass, momentum and energy exchange equations, and solved simultaneously. The droplet phase has a radius distribution, and is divided into five groups of different initial radius, a...
Fastening elements in concrete structures - numerical simulations
Ozbolt, Josko; Eligehausen, Rolf
1993-01-01
Anchoring elements such as headed and expansion studs and grouted or undercut anchors, are often used for local transfer of loads into concrete members. In order to better understand the failure mechanism, a large number of experiments have been carried out in the past. However, due to the complicated three-dimensional load transfer a very few or no numerical studies have been performed for a number of different fastening situations i.e. influence of the embedment depth, crack-width inftuence...
Numerical blowup in two-dimensional Boussinesq equations
Yin, Zhaohua
2009-01-01
In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.
NUMERICAL SIMULATION OF SEPARATED FLOW NEAR GROYNE
无
2002-01-01
A numerical model was developed to simulate flow around non-submeged groyne in two dimensions, which was based on N-S equations with Smagorinsky's subgrid-scale turbulence model. Flow phenomenon and results measured practically agree with the calculation results very well, and this model could be used to simulate the characteristics of the eddies of upper and down reaches around spur-dikes successfully.
Gökcan, M Kürşat; Günaydinoğlu, Erkan; Kurtuluş, D Funda
2016-10-01
Glottic obstruction is a major cause of dyspnea. Without understanding the normal function of the glottis in breathing, treating dyspnea does not restore normal physiology. Therefore, we designed a computational fluid dynamics (CFD) model that tested the respiratory cycle in larynges with normal glottis and congenital glottic web (CGW). A CGW case and a control subject (CC) were selected from the computed tomography (CT) archive. 3D computational models of the larynges with structured boundary layer were constructed from axial CT images after mesh refinement study. CFD analyses were based on the Reynolds-averaged Navier-Stokes approach. Incompressible flow solver (pressure-based) and SST k-w turbulence model were chosen for this study. To simulate a real-time breathing process, time varying flow rate boundary condition was derived from the spirometer of a healthy, non-smoking woman. Glottic areas were measured as 51.64 and 125.43 mm(2) for the CGW patient and CC, respectively. Time-dependent velocity contours and streamlines for the CC and CGW patient were drawn. The CC showed uniform flow, all through the inspiration and expiration phases. However, the CGW patient showed separation of flow at the glottis level, which caused areas of stagnation in the supraglottis (during expiration) and the subglottis and trachea (during inspiration). Specialized geometry of the normal larynx maintained uniform flow with low shear stress values on the wall even at high mass flow rates. Distortion of this geometry may cause obstruction of flow at multiple levels and, therefore, should be evaluated at multiple levels.
Numerical simulation of polariton Bose gas thermalization
Kartsev, P. F.; Kuznetsov, I. O.
2016-08-01
In this work, we present the numerical simulation of the process a Bose gas thermalization and the formation of the condensate. Our approach is based on kinetic equations and “Fermi's golden rule” in the incoherent approximation. Direct summation of terms is performed using GPGPU OpenCL parallel code using AMD Radeon HD 7970.
Numerical Simulations of a Vibrating Elasticum
Sinclair, Robert
1999-01-01
Two robust numerical algorithms for simulating the dynamics of a clamped, massless, incompressibleelasticum with a unit point mass at the free end are presented, along with some first results concerning various modes of oscillation, and further data with some relevance to the question of whether...
Database application platform for earthquake numerical simulation
LUO Yan; ZHENG Yue-jun; CHEN Lian-wang; LU Yuan-zhong; HUANG Zhong-xian
2006-01-01
@@ Introduction In recent years, all kinds of observation networks of seismology have been established, which have been continuously producing numerous digital information. In addition, there are many study results about 3D velocity structure model and tectonic model of crust (Huang and Zhao, 2006; Huang et al, 2003; Li and Mooney, 1998),which are valuable for studying the inner structure of the earth and earthquake preparation process. It is badly needed to combine the observed data, experimental study and theoretical analyses results by the way of numerical simulation and develop a database and a corresponding application platform to be used by numerical simulation,and is also a significant way to promote earthquake prediction.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
Numerical Simulation of Asynchronous Simulated Moving Bed Chromatography
卢建刚
2004-01-01
Asynchronous simulated moving bed chromatography (ASMBC), known also as the "VARICOL" process, is more efficient and flexible than the well-known and traditional simulated moving bed chromatography (SMBC). A detailed model of ASMBC, taking account of non-linear competitive isotherms, mass transfer parameters, and complex port switching schedule parameters, was developed to simulate the complex dynamics of ASMBC.The simulated performance is in close agreement with the experimental data of chiral separation reported in the literature. The simulation results show that ASMBC can achieve the performance similar to SMBC with fewer columns and can achieve better performance than SMBC with the same total column number. All design and operation parameters can be chosen correctly by numerical simulation. This detailed ASMBC model and the numerical technique are useful for design, operation, optimization and scale-up of ASMBC.
Numerical simulation of internal reconnection event in spherical tokamak
Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-07-01
Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Numerical simulation of thermal behavior during laser metal deposition shaping
LONG Ri-sheng; LIU Wei-jun; XING Fei; WANG Hua-bing
2008-01-01
Based on the element life and death theory of finite element analysis (FEA),a three-dimensional multi-track and multi-layer model for laser metal deposition shaping (LMDS) was developed with ANSYS parametric design language (APDL),and detailed numerical simulations of temperature and thermal stress were conducted.Among those simulations,long-edge parallel reciprocating scanning method was introduced.The distribution regularities of temperature,temperature gradient,Von Mise's effective stress,X-directional,Y-directional and Z-directional thermal stresses were studied.LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation.The measured temperatures of molten pool are in accordance with the simulated results.The crack engendering and developing regularities of samples show good agreement with the simulation results.
Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method
T G Sitharam; S V Dinesh
2003-09-01
In this paper, numerical simulation of 3-dimensional assemblies of 1000 polydisperse sphere particles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of granular materials. Numerical simulations of cyclic triaxial shear tests under undrained conditions are performed at different confining pressures under constant strain amplitude. Results obtained in these numerical simulations indicate that with increase in confining pressure there is an increase in liquefaction resistance.
Three Dimensional Numerical Relativity with a Hyperbolic Formulation
Bona, C; Seidel, E; Walker, P; Bona, Carles; Masso, Joan; Seidel, Edward; Walker, Paul
1998-01-01
We discuss a successful three-dimensional cartesian implementation of the Bona-Massó hyperbolic formulation of the 3+1 Einstein evolution equations in numerical relativity. The numerical code, which we call ``Cactus,'' provides a general framework for 3D numerical relativity, and can include various formulations of the evolution equations, initial data sets, and analysis modules. We show important code tests, including dynamically sliced flat space, wave spacetimes, and black hole spacetimes. We discuss the numerical convergence of each spacetime, and also compare results with previously tested codes based on other formalisms, including the traditional ADM formalism. This is the first time that a hyperbolic reformulation of Einstein's equations has been shown appropriate for three-dimensional numerical relativity in a wide variety of spacetimes.
宁靖卫; 胡彦杰; 李春忠; 丁宏秋
2012-01-01
采用标准的k-ε湍流模型、EDC（涡耗散）燃烧模型和D0（离散坐标）辐射换热模型对多重射流燃烧反应器内的流动及燃烧状况进行了三维全尺寸数值模拟。研究了不同工艺条件下燃烧反应器内温度、速度以及各反应组分的分布状况，考察了燃烧反应器径向温度分布等参数对最终颗粒尺寸、形貌特征的影响规律，并与同工艺条件下实验结果进行了验证，数值模拟与实验结果吻合良好。所建立的数学模型为燃烧反应器结构设计和工艺条件优化提供了依据，同时模拟结果也为纳米颗粒成核生长过程的研究提供理论依据。%Three-dimensional numerical simulation with full size of the flow and the comb process in the multi-jet flame combustion reactor was performed by using the standard k-ε turbulent model, EDC combustion model and discrete-ordinates radiation model. The temperature, velocity and species concentration distribution in the reactor under various process conditions, as well as the effects of the flame radial temperature on the size and morphology of the particles and aggregates were simulated and tested by the experimental data. The results from numerical simulation and experiment agree very well. This work will provide a theoretical basis for optimization of the geometrical structure and operational parameters of the combustion reactor as well as the study of nanoparticle growth process.
Numerical Simulation and Shrinkage Defects Prediction of a Turbine Blade Investment Casting
Jing TIAN; Xiang XUE; Yuebing ZHANG; Yalong GAO; Luzhi LIU; Qin SUN; Shiyou YUAN
2003-01-01
By adopting the solid modeling software SoldEdge and the enmeshment software SRIFCast as the pre-processingplatform, a Ni based alloy turbine blade was three-dimensionally modeled and automatically enmeshed. A softwarecode for numerical simulation of flui
马小晶; 胡申华; 闫亚岭
2012-01-01
在入口雷诺数Re从5 000到25 000的变化范围内,分别采用5种不同尺寸的波节管,利用三维数值模拟方法以及场协同原理对波节管的管内流动及传热特性进行分析,发现波节管的传热效果明显优于等长度且内径等于波节管小径的光壁管,同时发现波节管传热能力随着波峰处的直径和相邻两波节之间的距离增大而增大,而波节的长度对传热影响较小.%The flow and heat transfer in five different sizes of corrugated tubes with Reynolds number from 5 000 to 25 000 at the inlet are analyzed by three dimensional numerical simulation and field synergy principle. The results show that the heat transfer performance of corrugated tube is better than that of straight tube with same length and inner diameter, the heat transfer capacity of corrugated tube will be improved with the increase of depth and pitch and the length of corrugated tube has little influence on heat transfer.
Wichman, Adam R.; DeWames, Roger E.; Bellotti, Enrico
2014-06-01
Processing improvements have facilitated manufacturing reduced pixel dimensions for lattice-matched InGaAs on InP short-wave infrared detectors. Due to its technological maturity, this material system continues to garner attention for low-light level imaging applications. With pixel dimensions smaller than minority carrier diffusion lengths, optimizing array performance by reducing crosstalk from lateral carrier diffusion remains an important design issue. Analytical models, however, have provided limited insight on underlying mechanisms limiting device performance in the conventional planar double heterointerface device. Quantitative modeling provides tools to investigate performance sensitivities and their underlying mechanisms. In this work we develop a three-dimensional numerical simulation for dense P+n In0.53Ga0.47As on InP photo detector focal plane arrays using a conventional planar, back-illuminated structure. We evaluate optical generation with finite-difference time-domain analysis, and model carrier transport in a drift diffusion analysis simultaneously solving the carrier continuity and Poisson equations. Using this model we investigate modulation transfer function variations with pixel pitch and diffused junction geometries for small dimension arrays. By accounting for carrier diffusion effects, these results should provide a benchmark against which to evaluate modulation transfer function contributions from other effects, such as crosstalk attributable to photon recycling.
廖宁放; 巩马理; 徐端颐; 王宇兴; 张凯
2001-01-01
针对双光子光存储系统的单光束聚焦扫描方式，建立了一种离散的衍射光斑计算模型，并实现了计算机仿真计算.与传统计算方法相比，克服了“菲涅尔近似”或“夫朗和费近似”的限制，且对于大数值孔径物镜的情况也有效.实验结果表明，该模型可以快速实现存储介质内部不同记录层面上双光子记录信号强度分布的仿真计算.%The two-photon processes based optical storage is one of the most promising three-dimensional technologies for increasing the capacity of data storage. In order to compute the diffraction patterns within the storage medium produced by a single-beam-two-photon recording system, we have set up a mathematical model by using the techniques of ray-tracing and amplitude-combination. This model gets rid of the limitation in Fresnel or Fraunhofer approximations. So it is valid for the objective lens with a large numerical aperture. The numerical simulation results in this paper show that our model can rapidly compute the intensity distribution in different recoding planes in a storage medium.
Numerical Simulation of a Tornado Generating Supercell
Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.
2012-01-01
The development of tornadoes from a tornado generating supercell is investigated with a large eddy simulation weather model. Numerical simulations are initialized with a sounding representing the environment of a tornado producing supercell that affected North Carolina and Virginia during the Spring of 2011. The structure of the simulated storm was very similar to that of a classic supercell, and compared favorably to the storm that affected the vicinity of Raleigh, North Carolina. The presence of mid-level moisture was found to be important in determining whether a supercell would generate tornadoes. The simulations generated multiple tornadoes, including cyclonic-anticyclonic pairs. The structure and the evolution of these tornadoes are examined during their lifecycle.
Numerical simulation of centrifugal casting of pipes
Kaschnitz, E.
2012-07-01
A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.
Issues in Numerical Simulation of Fire Suppression
Tieszen, S.R.; Lopez, A.R.
1999-04-12
This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.
Numerical simulation of semisolid continuous casting process
无
2001-01-01
A general mathematical model and boundary condition applicable to momentum and heat transfer in the semisolid continuous casting(SCC) process was established. Using the model, the numerical simulation of the momentum and heat transfer of molten metal was carried out in the SCC system. The obtained results fit well with the measured ones. Moreover, using the numerical simulating software, the effect of various factors on breakout and breakage was explored. The obtained results show that heat flow density of copper mold and the withdrawal beginning time are two major influencing factors. The larger the heat flow density of copper mold, or the shorter the withdrawal beginning time, the more stable the semisolid continuous casting process.
First Numerical Simulations of Anomalous Hydrodynamics
Hongo, Masaru; Hirano, Tetsufumi
2013-01-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.
Numerical simulation of pulsatile flow in rough pipes
Chin, Cheng; Monty, Jason; Ooi, Andrew; Illingworth, Simon; Marusic, Ivan; Skvortsov, Alex
2016-11-01
Direct numerical simulation (DNS) of pulsatile turbulent pipe flow is carried out over three-dimensional sinusoidal surfaces mimicking surface roughness. The simulations are performed at a mean Reynolds number of Reτ 540 (based on friction velocity, uτ, and pipe radii, δ) and at various roughness profiles following the study of Chan et al., where the size of the roughness (roughness semi-amplitude height h+ and wavelength λ+) is increased geometrically while maintaining the height-to-wavelength ratio of the sinusoidal roughness element. Results from the pulsatile simulations are compared with non-pulsatile simulations to investigate the effects of pulsation on the Hama roughness function, ΔU+ . Other turbulence statistics including mean turbulence intensities, Reynolds stresses and energy spectra are analysed. In addition, instantaneous phase (eg. at maximum and minimum flow velocities) and phase-averaged flow structures are presented and discussed.
Numerical simulation of axial flow compressors.
Jesuino Takachi Tomita
2002-01-01
This work deals with the numerical simulation of axial flow compressors, from design to performance prediction. The stage performance prediction uses the meanline flow properties. Stage-stacking is used to analyse a multi-stage compressor. A computer program, written in FORTRAN, was developed and is able to design an axial flow compressor given air mass flow, total pressure ratio, overall efficiency and design speed. All geometrical data relevant to the compressor performance prediction is ca...
Numerical Simulation on CCOS Controllable Variable
CHENG Hao-bo; FENG Zhi-jing
2003-01-01
On the basis of Preston hypothesis,the motion relationship between tool and workpiece upon the tool's motion in planar model is analyzed.The effect on computer controlled optical surfacing (CCOS) caused by controllable variable is simulated except for the dwelling time,thus,some reference on theory is provided to optimize the former numerical control (NC) model,and fast manufacturing of large departure aspherics is realized.
Efficient Numerical Inversion for Financial Simulations
Derflinger, Gerhard; Hörmann, Wolfgang; Leydold, Josef; Sak, Halis
2009-01-01
Generating samples from generalized hyperbolic distributions and non-central chi-square distributions by inversion has become an important task for the simulation of recent models in finance in the framework of (quasi-) Monte Carlo. However, their distribution functions are quite expensive to evaluate and thus numerical methods like root finding algorithms are extremely slow. In this paper we demonstrate how our new method based on Newton interpolation and Gauss-Lobatto quadrature can be util...
关晖; 苏晓冰; 田俊杰
2011-01-01
Since internal solitary waves carry large amount of energy and widely exist in oceans all over the world,they have significant influence on the safty of submarines.Using the finite volume algorithm with adaptive semi-structure grids, multi-grid method and the volume of fluid (VOF) method to solve the Navier-Stokes equations, a numerical internal solitary wave flume, based on the idea of pushing two plates in opposite directions in the tank, with the metability of wave generation is developed, and the validity for such a method is numerically confirmed, and the results are compared well with the analytical solution of KdV equation. This study laid a solid foundation for the future study of the interactions between internal solitary waves and submarines.%海洋内孤立波因其分布广泛和携带巨大能量,对于潜艇安全航行影响很大.本文采用有限体积自适应半结构多重网格法求解Navier-Stokes方程,并用VOF方法追踪两层流体界面,应用双推板造波法进行内孤立波数值造波,建立了两层流体中的内孤立波数值水槽.数值模拟结果证实了该数值水槽数值造波的有效性和可靠性,为后续研究打下了基础.
Numerical simulation of nuclear pebble bed configurations
Shams, A., E-mail: shams@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Roelofs, F., E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Baglietto, E., E-mail: emiliob@MIT.EDU [Massachusetts Institute of Technology (MIT) (United States)
2015-08-15
Highlights: • Numerical simulations of a single face cubic centred pebble bed are performed. • Wide range of turbulence modelling techniques are used to perform these calculations. • The methods include 1-DNS, 1-LES, 3-Hybrid (RANS/LES) and 3-RANS models, respectively. • The obtained results are extensively compared to provide guidelines for such flow regimes. • These guidelines are used to perform reference LES for a limited sized random pebble bed. - Abstract: High Temperature Reactors (HTRs) are being considered all over the world. An HTR uses helium gas as a coolant, while the moderator function is taken up by graphite. The fuel is embedded in the graphite moderator. A particular inherent safety advantage of HTR designs is that the graphite can withstand very high temperatures, that the fuel inside will stay inside the graphite pebble and cannot escape to the surroundings even in the event of loss of cooling. Generally, the core can be designed using a graphite pebble bed. Some experimental and demonstration reactors have been operated using a pebble bed design. The test reactors have shown safe and efficient operation, however questions have been raised about possible occurrence of local hot spots in the pebble bed which may affect the pebble integrity. Analysis of the fuel integrity requires detailed evaluation of local heat transport phenomena in a pebble bed, and since such phenomena cannot easily be modelled experimentally, numerical simulations are a useful tool. As a part of a European project, named Thermal Hydraulics of Innovative Nuclear Systems (THINS), a benchmarking quasi-direct numerical simulation (q-DNS) of a well-defined pebble bed configuration has been performed. This q-DNS will serve as a reference database in order to evaluate the prediction capabilities of different turbulence modelling approaches. A wide range of numerical simulations based on different available turbulence modelling approaches are performed and compared with
2001 Numerical Propulsion System Simulation Review
Lytle, John; Follen, Gregory; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2002-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA's Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 2000 effort and the actions taken over the past year to
2000 Numerical Propulsion System Simulation Review
Lytle, John; Follen, Greg; Naiman, Cynthia; Veres, Joseph; Owen, Karl; Lopez, Isaac
2001-01-01
The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective. high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. Major accomplishments include the first formal release of the NPSS object-oriented architecture (NPSS Version 1) and the demonstration of a one order of magnitude reduction in computing cost-to-performance ratio using a cluster of personal computers. The paper also describes the future NPSS milestones, which include the simulation of space transportation propulsion systems in response to increased emphasis on safe, low cost access to space within NASA'S Aerospace Technology Enterprise. In addition, the paper contains a summary of the feedback received from industry partners on the fiscal year 1999 effort and the actions taken over the past year to
Numerical Simulation on Stratified Flow over an Isolated Mountain Ridge
LI Ling; Shigeo Kimura
2007-01-01
The characteristics of stratified flow over an isolated mountain ridge have been investigated numerically. The two-dimensional model equations, based on the time-dependent Reynolds averaged NavierStokes equations, are solved numerically using an implicit time integration in a fitted body grid arrangement to simulate stratified flow over an isolated ideally bell-shaped mountain. The simulation results are in good agreement with the existing corresponding analytical and approximate solutions. It is shown that for atmospheric conditions where non-hydrostatic effects become dominant, the model is able to reproduce typical flow features. The dispersion characteristics of gaseous pollutants in the stratified flow have also been studied. The dispersion patterns for two typical atmospheric conditions are compared. The results show that the presence of a gravity wave causes vertical stratification of the pollutant concentration and affects the diffusive characteristics of the pollutants.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
Numerical simulation of synthesis gas incineration
Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.
2016-04-01
The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Numerical simulation of a natural circulation loop
Verissimo, Gabriel L.; Moreira, Maria de Lourdes; Faccini, Jose Luiz H., E-mail: gabrielverissimo@poli.ufrj.b, E-mail: malu@ien.gov.b, E-mail: faccini@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2011-07-01
This work presents a numerical simulation of a natural circulation loop using computational fluid dynamics. The simulated loop is an experimental model in a reduced scale of 1:10 of a passive heat removal system typical of advanced PWR reactors. The loop is composed of a heating vessel containing 52 electric heaters, a vertical shell-tube heat exchanger and a column of expansion. The working fluid is distilled water. Initially it was created a tridimensional geometric model of the loop components. After that, it was generated a tridimensional mesh of finite elements in order to calculate the variables of the problem. The boundaries of the numerical simulation were the power of the electric resistances and the cooling flow in the secondary side of the heat exchanger. The initial conditions were the temperature, the pressure and the fluid velocity at the time just before the power has been switched on. The results of this simulation were compared with the experimental data, in terms of the evolution of the temperatures in different locations of the loop, and of the average natural circulation flow as a function of time for a given power. (author)
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Lecture Notes: Numerical Relativity in higher dimensional spacetimes
Witek, Helvi
2013-01-01
Black holes are among the most exciting phenomena predicted by General Relativity and play a key role in fundamental physics. Many interesting phenomena involve dynamical black hole configurations in the high curvature regime of gravity. In these lecture notes I will summarize the main numerical relativity techniques. to explore highly dynamical phenomena, such as black hole collisions, in generic $D$-dimensional spacetimes.
Thermal numerical simulator for laboratory evaluation of steamflood oil recovery
Sarathi, P.
1991-04-01
A thermal numerical simulator running on an IBM AT compatible personal computer is described. The simulator was designed to assist laboratory design and evaluation of steamflood oil recovery. An overview of the historical evolution of numerical thermal simulation, NIPER's approach to solving these problems with a desk top computer, the derivation of equations and a description of approaches used to solve these equations, and verification of the simulator using published data sets and sensitivity analysis are presented. The developed model is a three-phase, two-dimensional multicomponent simulator capable of being run in one or two dimensions. Mass transfer among the phases and components is dictated by pressure- and temperature-dependent vapor-liquid equilibria. Gravity and capillary pressure phenomena were included. Energy is transferred by conduction, convection, vaporization and condensation. The model employs a block centered grid system with a five-point discretization scheme. Both areal and vertical cross-sectional simulations are possible. A sequential solution technique is employed to solve the finite difference equations. The study clearly indicated the importance of heat loss, injected steam quality, and injection rate to the process. Dependence of overall recovery on oil volatility and viscosity is emphasized. The process is very sensitive to relative permeability values. Time-step sensitivity runs indicted that the current version is time-step sensitive and exhibits conditional stability. 75 refs., 19 figs., 19 tabs.
Numerical characteristics of quantum computer simulation
Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.
2016-12-01
The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.
Numerical simulation of magmatic hydrothermal systems
Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.
2010-01-01
The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.
A Numerical Simulation of the Density Oscilator
Hernandez Zapata, Sergio; Lopez Sanchez, Erick Javier; Ruiz Chavarria, Gerardo
2016-11-01
In this work we carry out a numerical simulation for the dynamics that originates when a fluid (salty water) is located on top of another less dense fluid (pure water) in the presence of gravity. This is an unstable situation that leads to the development of intercalating lines of descending salty water and ascending pure water. Another situation is studied where the fluids are in two containers joined by a small hole. In this case a time pattern of alternating flows develops leading to an oscillator. The study of the velocity field around the hole shows than in a certain interval of time it develops intercalating lines like in the former situation. An interesting result is the fact that when a given fluid is flowing in one direction a vorticity pattern develops in the other fluid. The Navier-Stokes, continuity and salt diffusion equations, are solved numerically in cylindrical coordinates, using a finite difference scheme in the axial and radial directions and a Fourier spectral method for the angular coordinate. On the other hand, the second order Adams-Bashfort method is used for the time evolution. The results are compared to a numerical simulation of a pedestrian oscillator we developed based on the Hebling and Molnar social force model. The authors want to acknowledge support by DGAPA-UNAM (Project PAPIIT IN-115315 "Ondas y estructuras coherentes en dinámica de fluidos".
Numerical Simulations of Magnetized Winds of Solar-Like Stars
Vidotto, A A; Jatenco-Pereira, V; Gombosi, T I
2009-01-01
We investigate magnetized solar-like stellar winds by means of self-consistent three-dimensional (3D) magnetohydrodynamics (MHD) numerical simulations. We analyze winds with different magnetic field intensities and densities as to explore the dependence on the plasma-beta parameter. By solving the fully ideal 3D MHD equations, we show that the plasma-beta parameter is the crucial parameter in the configuration of the steady-state wind. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite of its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Development of three-dimensional numerical model for combustion-flow in interior ballistics
Jang, Jin Sung; Oh, Seok Hawn; Roh, Tae Seong [Inha University, Incheon (Korea, Republic of)
2016-04-15
Interior ballistics analysis is required for the development of the gun system. Interior ballistics is a complex phenomenon containing the propellant combustion and gas flow and is completed in tens of milliseconds during gun firing. Thus, some data cannot be directly measured by experiment. Numerical analysis is therefore traditionally used to understand the complex gun firing phenomena. In previous studies, the two-dimensional axisymmetric numerical method for interior ballistics using the Eulerian-Lagrangian approach has been developed. There are some limits in depicting the actual phenomena with two-dimensional models. Therefore, a three-dimensional numerical model has been built in the present study. Unlike the conventional method, the calculation has been conducted by separating the physical phenomena into the combustion part and the flow part for simplicity and efficiency. The internal flow in the gun barrel has been calculated by using the STAR-CCM+ and the source terms produced by the propellant combustion has been computed by utilizing the existing code. The developed numerical model has been compared with the AGARD gun results and the simulation of 40 mm gun firings. The reliability of the developed model has been confirmed because the results of the numerical analysis greatly agree with the simulation results. The basis of the three-dimensional analysis of the interior ballistics has been formed through this study.
Reckinger, Scott James [Montana State Univ., Bozeman, MT (United States); Livescu, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vasilyev, Oleg V. [Univ. of Colorado, Boulder, CO (United States)
2016-09-02
A comprehensive numerical methodology has been developed that handles the challenges introduced by considering the compressive nature of Rayleigh-Taylor instability (RTI) systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification-dependent vorticity production. The computational framework is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
邓韶辉; 王晓玲; 敖雪菲; 任炳昱; 李瑞金
2016-01-01
Because of the grouting engineering of masking and the complexity of geological conditions, how to accurately determine the diffusion regularity of grout under complicated geological conditions is the key and difficult point of grouting numerical simulation analysis. Binghamian grouts two-phase flow characteris⁃tics in the process of grout diffusion and complex geological conditions of dam bedrock is not considered in the present numerical simulation research of grouting in the hydraulic engineering. These research objects mainly focus on a single fracture or a single grout hole, while the simulation of grout front has not in⁃volved. Aim at the above-mentioned problems,a three-dimensional refined geological information model,in⁃cluded different formations,unfavorable geological body, curtains, grouting holes, was firstly established in this paper. Then, coupled with the volume of fluid (VOF) method in the CFD commercial software STAR-CCM+, a three-dimensional grouting mathematical model of Binghamian grouts air-grout two-phase flow was developed to achieve the numerical simulation of the multiple holes and sequencing grouting in the dam bedrock,also analyzing the grout diffusion rule and curtain lap after grouting. Finally,a hydropow⁃er station of bedrock curtain grouting process was taken as a case. The results show that the grout diffu⁃sion radius increases with time in a certain time range,but its rate of change shows a decline trend. After grouting completion of each sequence hole,grout front laps well. Furthermore,comparing the simulation val⁃ue with the actual measuring value of the grouting quantity and time, the average errors were 9.08% and 6.32% respectively,which verified the reliability of the method.%由于灌浆工程的掩蔽性和地质条件的复杂性，如何准确地确定复杂地质条件下浆液的扩散规律是灌浆数值模拟分析的关键及难点。目前，在水利工程中灌浆数值模拟的
Fluent-based numerical simulation of flow centrifugal fan
LI Xian-zhang
2011-01-01
Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics software FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
Study on the numerical simulation of batch sieving process
JIAO Hong-guang; MA Jiao; ZHAO Yue-min; CHEN Lun-jian
2006-01-01
Screening was widely used in many sectors of industry. However, it is rather incomplete to the cognition of the sieving process for us due to the daedal separation process involving interactions of thousands of particulates. To address this problem, two dimensional numerical simulation of batch sieving process was performed by adopting advanced discrete element method (DEM), which is one of the highly nonlinear digitized dynamic simulative methods and can be used to reveal the quantitative change from particle dimension level. DEM simulation results show that the jam phenomena of sieve-plate apertures of the "blinding particles" in the screen feed can be demonstrated vividly and results also reveal that the velocity of particle moving on the screen plate will vary along with the screen length. This conclusion will be helpful to the design and operation of screen.
Numerical integration methods for large-scale biophysical simulations
Chignola, Roberto; Milotti, Edoardo
2009-01-01
Simulations of biophysical systems inevitably include steps that correspond to time integrations of ordinary differential equations. These equations are often related to enzyme action in the synthesis and destruction of molecular species, and in the regulation of transport of molecules into and out of the cell or cellular compartments. Enzyme action is almost invariably modeled with the quasi-steady-state Michaelis-Menten formula or its close relative, the Hill formula: this description leads to systems of equations that may be stiff and hard to integrate, and poses unusual computational challenges in simulations where a smooth evolution is interrupted by the discrete events that mark the cells' lives. This is the case of a numerical model (Virtual Biophysics Lab - VBL) that we are developing to simulate the growth of three-dimensional tumor cell aggregates (spheroids). The program must be robust and stable, and must be able to accept frequent changes in the underlying theoretical model: here we study the app...
王伟; 宋文艳; 罗飞腾; 李宁
2011-01-01
喷管是发动机产生推力的主要部件,其气动性能对发动机的性能具有决定性的影响。本文利用简化特征线法设计二元收敛-扩张（2DCD）推力矢量喷管模型;采用RNGk-ε湍流模型和非平衡壁面函数对单缝二次流喷射后的喷管流场进行数值模拟,分析了射流位置、主流落压比（NPR）、二次流与主流总压比（SPR）等参数对矢量喷管气动性能的影响。计算结果表明：二次射流位置对激波强度及推力矢量角有较大影响,开缝位置越接近喷管出口,推力矢量越大;喷射位置固定,激波强度和推力矢量角主要受SPR影响;SPR相同,随着NPR的增加,存在着一个最大推力矢量角。%Nozzle is the main component of an engine,which produces thrust.Its aerodynamic performance is of a decisive influence to engine performance.A Two-Dimensional Convergent-Divergent（2DCD） thrust vectoring nozzle model with fixed length is designed by the simplified method of characteristics in this paper.The full flow-field of the 2DCD thrust vectoring nozzle with single secondary injection are numerically simulated by CFD method,with the RNG turbulence model and non-equilibrium wall functions employed.The influence of secondary injection locations,Nozzle Pressure Ratio（NPR） and Secondary Pressure Ratio（SPR） on aerodynamic performance of thrust vectoring nozzle are examined.The numerical results indicate that：the secondary injection location is of significant effect on shock intensity and thrust vectoring angle,the thrust vectoring angle gradually increase when secondary injection location is transferred toward the nozzle;at the same secondary injection location,the shock intensity and thrust vectoring angle are mainly affected by SPR;at the same of SPR,there exists a maximum thrust vectoring angle as NPR increasing.
NUMERICAL SIMULATION OF SEDIMENT RELEASE FROM RESERVOIRS
无
2006-01-01
For the computation of the sediment quantity released from reservoirs, a vertical two-dimensional hydrodynamic model is combined with a sediment transport model. The hydrodynamic model is based on the equations of mass and momentum conservation along with a k - ε model for closure of the Reynolds stresses. The sediment transport model is based on the convection-diffusion equation of sediment concentration and the sediment continuity equation. Both the hydrodynamic and sediment transport models are developed in a boundary-fitted curvilinear co-ordinate system. Comparison of the predicted mean velocity field with laboratory results indicates that the present model captures most experimental trends with reasonable accuracy. Also good agreement is found in comparison of the sediment transport results for the numerical model and the experimental model.
Numerical simulation of icing, deicing, and shedding
Wright, W. B.; Dewitt, K. J.; Keith, T. G., Jr.
1991-01-01
An algorithm has been developed to numerically model the concurrent phenomena of two-dimensional transient heat transfer, ice accretion, ice shedding and ice trajectory which arise from the use of electrothermal pad. The Alternating Direction Implicit method is used to simultaneously solve the heat transfer and accretion equations occurring in the multilayered body covered with ice. In order to model the phase change between ice and water, a technique was used which assumes a phase for each node. This allows the equations to be linearized such that a direct solution is possible. This technique requires an iterative procedure to find the correct phase at each node. The computer program developed to find this solution has been integrated with the NASA-Lewis flow/trajectory code LEWICE.
Numerical considerations in simulating the global magnetosphere
A. J. Ridley
2010-08-01
Full Text Available Magnetohydrodynamic (MHD models of the global magnetosphere are very good research tools for investigating the topology and dynamics of the near-Earth space environment. While these models have obvious limitations in regions that are not well described by the MHD equations, they can typically be used (or are used to investigate the majority of magnetosphere. Often, a secondary consideration is overlooked by researchers when utilizing global models – the effects of solving the MHD equations on a grid, instead of analytically. Any discretization unavoidably introduces numerical artifacts that affect the solution to various degrees. This paper investigates some of the consequences of the numerical schemes and grids that are used to solve the MHD equations in the global magnetosphere. Specifically, the University of Michigan's MHD code is used to investigate the role of grid resolution, numerical schemes, limiters, inner magnetospheric density boundary conditions, and the artificial lowering of the speed of light on the strength of the ionospheric cross polar cap potential and the build up of the ring current in the inner magnetosphere. It is concluded that even with a very good solver and the highest affordable grid resolution, the inner magnetosphere is not grid converged. Artificially reducing the speed of light reduces the numerical diffusion that helps to achieve better agreement with data. It is further concluded that many numerical effects work nonlinearly to complicate the interpretation of the physics within the magnetosphere, and so simulation results should be scrutinized very carefully before a physical interpretation of the results is made. Our conclusions are not limited to the Michigan MHD code, but apply to all MHD models due to the limitations of computational resources.
Numerical simulation and experimental investigation of incremental sheet forming process
HAN Fei; MO Jian-hua
2008-01-01
In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.
Numerical simulation of large fabric filter
Kovařík Petr
2012-04-01
Full Text Available Fabric filters are used in the wide range of industrial technologies for cleaning of incoming or exhaust gases. To achieve maximal efficiency of the discrete phase separation and long lifetime of the filter hoses, it is necessary to ensure uniform load on filter surface and to avoid impacts of heavy particles with high velocities to the filter hoses. The paper deals with numerical simulation of two phase flow field in a large fabric filter. The filter is composed of six chambers with approx. 1600 filter hoses in total. The model was simplified to one half of the filter, the filter hoses walls were substituted by porous zones. The model settings were based on experimental data, especially on the filter pressure drop. Unsteady simulations with different turbulence models were done. Flow field together with particles trajectories were analyzed. The results were compared with experimental observations.
Numerical simulation of large fabric filter
Sedláček, Jan; Kovařík, Petr
2012-04-01
Fabric filters are used in the wide range of industrial technologies for cleaning of incoming or exhaust gases. To achieve maximal efficiency of the discrete phase separation and long lifetime of the filter hoses, it is necessary to ensure uniform load on filter surface and to avoid impacts of heavy particles with high velocities to the filter hoses. The paper deals with numerical simulation of two phase flow field in a large fabric filter. The filter is composed of six chambers with approx. 1600 filter hoses in total. The model was simplified to one half of the filter, the filter hoses walls were substituted by porous zones. The model settings were based on experimental data, especially on the filter pressure drop. Unsteady simulations with different turbulence models were done. Flow field together with particles trajectories were analyzed. The results were compared with experimental observations.
Numerical simulation of space UV spectrographs
Yushkin, Maksim; Fatkhullin, Timur; Panchuk, Vladimir; Sachkov, Mikhail; Kanev, Evgeny
2016-07-01
Based on the ray tracing method, we developed algorithms for constructing numerical model of spectroscopic instrumentation. The Software is realized in C ++ using nVidia CUDA technology. The software package consists of three separate modules: the ray tracing module, a module for calculating energy efficiency and module of CCD image simulation. The main objective of this work was to obtain images of the spectra for the cross-dispersed spectrographs as well as segmented aperture Long Slit Spectrograph. The software can be potentially used by WSO-UV project. To test our algorithms and the software package we have performed simulations of the ground cross-dispersed Nasmyth Echelle Spectrometer (NES) installed on the platform of the Nasmyth focus of the Russian 6-meter BTA telescope. The comparison of model images of stellar spectra with observations on this device confirms that the software works well. The high degree of agreement between the theoretical and real spectra is shown.
Numerical Simulation on Ship Bubbly Wake
Huiping Fu; Pengcheng Wan
2011-01-01
Based on a volume of fluid two-phase model imbedded in the general computational fluid dynamics code FLUENT6.3.26,the viscous flow with free surface around a model-scaled KRISO container ship(KCS)was first numerically simulated.Then with a rigid-lid-free-surface method,the underwater flow field was computed based on the mixture multiphase model to simulate the bubbly wake around the KCS hull.The realizable k-ε two-equation turbulence model and Reynolds stress model were used to analyze the effects of turbulence model on the ship bubbly wake.The air entrainment model,which is relative to the normal velocity gradient of the free surface,and the solving method were verified by the qualitatively reasonable computed results.
Numerical simulation of flow through orifice meters
Barry, J. J.; Sheikholeslami, M. Z.; Patel, B. R.
1992-05-01
The FLUENT and FLUENT/BFC computer programs have been used to numerically model turbulent flow through orifice meters. These simulations were based on solution of the Navier-Stokes equations incorporating a k-epsilon turbulence model. For ideal installations, trends in the discharge coefficient with Reynolds number, beta ratio, and surface roughness have been reproduced, and the value of the discharge coefficient has been computed to within 2 percent. Nonideal installations have also been simulated, including the effects of expanders, reducers, valves, and bends. Detailed modeling of flow through a bend has yielded results in good agreement with experimental data. The trend in discharge coefficient shifts for orifice meters downstream of bends has been predicted reasonably well.
Numerical methods for high-dimensional probability density function equations
Cho, H.; Venturi, D.; Karniadakis, G. E.
2016-01-01
In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.
Numerical methods for high-dimensional probability density function equations
Cho, H. [Department of Mathematics, University of Maryland College Park, College Park, MD 20742 (United States); Venturi, D. [Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Karniadakis, G.E., E-mail: gk@dam.brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2016-01-15
In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker–Planck and Dostupov–Pugachev equations), random wave theory (Malakhov–Saichev equations) and coarse-grained stochastic systems (Mori–Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.
李刚; 韩文月; 禹志超; 王鹏; 郭鹏; 任晶鑫
2012-01-01
基于ANSYS数值模拟平台,建立了三维瞬态激光堆焊40Cr钢温度场有限元模型,利用APDL参数设计语言实现热源的移动,对40Cr钢表面激光相变硬化处理过程的温度场进行模拟,得出熔池温度随时间的变化规律,并对比了不同功率和不同扫描速度对温度场的影响。结果表明：随热源的移动,温度场呈现彗星状云图,且激光光斑前缘温度梯度大,后部温度梯度小;不同功率对比结果表明,在相同的激光扫描速度6 mm/s时,表面温度最大值随激光功率增大而升高,在900 W时达到4238℃;不同速度对比结果表明,在相同功率800 W时,表面温度最大值随激光速度增大而减小,在6 mm/s时达到3738℃。%Based on a numerical simulation platform ANSYS,a finite element model of three-dimensional transient laser surfacing temperature field of 40Cr steel was build,and heat source movement was realized using APDL parameter design language.The temperature field on 40Cr steel surface in laser hardening process was simulated,the molten bath temperature change law with time was deduced,and the influence of laser power and scanning speed on temperature field was compared.The results show that the temperature field shows contour map like Comet during the heat source movement,and there exist large temperature gradient in the front of laser spot and small temperature gradient at the back of it.The maximum surface temperature increases with the increase of laser power,and it reaches 4238 ℃ when laser power is 900 W and scanning speed is 6 mm/s;The maximum surface temperature increases with the decrease of laser scanning speed,and it reaches 3738 ℃ when scanning speed is 6 mm/s and laser power is 800 W.
无
2000-01-01
The dynamic effects in measurements of unsteady flow when using a probe with quasi-steady calibration curves has been investigated in this paper by numerical simulation of the compressible flow around a fixed two-dimensional 3-hole probe. The unsteady velocity and pressure distributions, as well as the hole-pressures, are calculated for high frequency flow variations. The measurement errors caused by the dynamic effects indicate that considerable measurement errors may occur for high frequency flow fluctuation, e.g., 2000Hz, especially, when the flow around the probe head approaches separation. This work shows how numerical simulation can be used to investigate and correct for the dynamic effects.
Study of numerical errors in direct numerical simulation and large eddy simulation
YANG Xiao-long; FU Song
2008-01-01
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.
Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.
2016-05-01
An investigation of compressible Rayleigh-Taylor instability (RTI) using Direct Numerical Simulations (DNS) requires efficient numerical methods, advanced boundary conditions, and consistent initialization in order to capture the wide range of scales and vortex dynamics present in the system, while reducing the computational impact associated with acoustic wave generation and the subsequent interaction with the flow. An advanced computational framework is presented that handles the challenges introduced by considering the compressive nature of RTI systems, which include sharp interfacial density gradients on strongly stratified background states, acoustic wave generation and removal at computational boundaries, and stratification dependent vorticity production. The foundation of the numerical methodology described here is the wavelet-based grid adaptivity of the Parallel Adaptive Wavelet Collocation Method (PAWCM) that maintains symmetry in single-mode RTI systems to extreme late-times. PAWCM is combined with a consistent initialization, which reduces the generation of acoustic disturbances, and effective boundary treatments, which prevent acoustic reflections. A dynamic time integration scheme that can handle highly nonlinear and potentially stiff systems, such as compressible RTI, completes the computational framework. The numerical methodology is used to simulate two-dimensional single-mode RTI to extreme late-times for a wide range of flow compressibility and variable density effects. The results show that flow compressibility acts to reduce the growth of RTI for low Atwood numbers, as predicted from linear stability analysis.
Numerical Simulation of a Centrifugal Compressor
S.M.Swamy
2017-06-01
Full Text Available In this paper, the tip clearance effects on flow field of a low speed centrifugal compressor without and with partial shroud (PS fitted on to the rotor blade tip at three values of tip clearance, viz. = 2.2%, 5.1% and 7.9% of rotor blade height at the exit at three flow coefficients, namely, = 0.18, 0.28, and 0.34, was studied. Based on the theory of computational fluid dynamics (CFD, performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using ANSYS CFX 15.0. The centrifugal compressor in aerodynamic requirement is that edge velocities along the impeller channel passage surfaces like hub, shroud, pressure and suction surfaces vary smoothly without sudden decelerations, which cause flow separation leading to losses. Using the periodic boundaries and defined flow conditions at inflow / exit flow and blade rotations, the turbulent viscous flow between blade channels are computed. The efficiency related parameters using average quantities, besides flow pattern in terms of velocities, streamlines and pressure distribution on blade surfaces are graphically interpreted. An attempt is also made to study the influence of pressure loads on structural deformations in the chosen blade profile. This paper highlights aero-mechanical features of centrifugal impeller obtained from several numerical simulations, which are expected to provide a sound basis for further investigations
The numerical simulation based on CFD of hydraulic turbine pump
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
A. BOUCHIKHI
2012-01-01
This paper presents an investigation of a DC glow discharge at low pressure in the normal mode and with Einstein's relation of electron diffusivity. Two-dimensional distributions in Cartesian geometry are presented in the stationary state, including electric potential, electron and ion densities, longitudinal and transverse electrics fields as well as electron temperature. Our results are compared with those obtained in existing literature. The model used in this work is based on the first three moments of Boltzmann's equation. They serve as the continuity equation, the momentum transfer and the energy equations. The set of equations for charged particles presented in monatomic argon gas are coupled in a self-consistent way with Poisson's equation. A parametric study varying the cathode voltage, gas pressure, and secondary electron emission coefficient predicts many of the well-known features of DC discharges.
2-dimensional numerical modeling of active magnetic regeneration
Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders
2009-01-01
Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...... system represents a linear, parallel-plate based AMR. The idealized version of the model is able to predict the theoretical performance of AMR in terms of cooling power and temperature span. This is useful to a certain extent, but a model reproducing experiments to a higher degree is desirable. Therefore...
Numerical simulation of superheated vapor bubble rising in stagnant liquid
Samkhaniani, N.; Ansari, M. R.
2017-09-01
In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.
Accurate complex scaling of three dimensional numerical potentials.
Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan; Deutsch, Thierry
2013-05-28
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schrödinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.
THEORETICAL STATISTICAL SOLUTION AND NUMERICAL SIMULATION OF HETEROGENEOUS BRITTLE MATERIALS
陈永强; 姚振汉; 郑小平
2003-01-01
The analytical stress-strain relation with heterogeneous parameters is derived for the heterogeneous brittle materials under a uniaxial extensional load,in which the distributions of the elastic modulus and the failure strength are assumed to be statistically independent.This theoretical solution gives an approximate estimate of the equivalent stress-strain relations for 3-D heterogeneous materials.In one-dimensional cases it may provide comparatively accurate results.The theoretical solution can help us to explain how the heterogeneity influences the mechanical behaviors.Further,a numerical approach is developed to model the non-linear behavior of three-dimensional heterogeneous brittle materials.The lattice approach and statistical techniques are applied to simulate the initial heterogeneity of heterogeneous materials.The load increment in each loading stage is adaptively determined so that the better approximation of the failure process can be realized.When the maximum tensile principal strain exceeds the failure strain,the elements are considered to be broken,which can be carried out by replacing its Young's modulus with a very small value.A 3-D heterogeneous brittle material specimen is simulated during a full failure process.The numerical results are in good agreement with the analytical solutions and experimental data.
Numerical simulation for the Gross-Pitaevskii equation based on the lattice Boltzmann method
Wang, Huimin
2017-09-01
A lattice Boltzmann model for the Gross-Pitaevskii equation is proposed in this paper. Some numerical tests for one- and two-dimensional Gross-Pitaevskii equation have been conducted. The waves of the Gross-Pitaevskii equation are simulated. Numerical results show that the lattice Boltzmann method is an effective method for the wave of the Gross-Pitaevskii equation.
Numerical Study of Two-Dimensional Viscous Flow over Dams
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests
Zilhão, Miguel; Witek, Helvi; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Nerozzi, Andrea
2010-04-01
The numerical evolution of Einstein’s field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.
Interrogation of numerical simulation for modeling of flow induced microstructure
Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Aerospace Engineering and Mechanics
1994-12-31
This paper summarizes recent efforts using direct numerical simulations to determine microstructural properties of fluidized suspensions of a few particles. The authors have been studying the motions of a few particles in a viscous fluid by direct numerical simulation at moderate values of the Reynolds number in the 100`s. From these simulations, they find the mechanisms which give rise to lateral migration of particles and turn the broad side of long bodies perpendicular to the stream. They find that a viscous ``stagnation`` point is a point on the body where the shear stress vanishes and the pressure is nearly a maximum. They show how the migration is controlled by stagnation and separation points and go further than before in the discussion of Segre-Silberberg effects of cross-streamline migration in two dimensions. They have analyzed the lift off and steady flight of solid capsules in Poiseuille flows. They do a three-dimensional simulation of steady flow at slow speeds and show that the extensional stresses in a viscoelastic flow change the sign of the normal stress which would exist at points of stagnation in a Newtonian fluid, causing the long side of the body to line up with the stream.
Direct numerical simulation of human phonation
Saurabh, Shakti; Bodony, Daniel
2016-11-01
A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).
The Numerical Propulsion System Simulation: An Overview
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Three-Dimensional Simulations of Deep-Water Breaking Waves
Brucker, Kyle A; Dommermuth, Douglas G; Adams, Paul
2014-01-01
The formulation of a canonical deep-water breaking wave problem is introduced, and the results of a set of three-dimensional numerical simulations for deep-water breaking waves are presented. In this paper fully nonlinear progressive waves are generated by applying a normal stress to the free surface. Precise control of the forcing allows for a systematic study of four types of deep-water breaking waves, characterized herein as weak plunging, plunging, strong plunging, and very strong plunging.
Numerical simulation of oil-water two-phase flow in horizontal pipes
Santos, Michelly Martuchele; Ramirez, Ramiro Gustavo [Federal University of Itajuba (UNIFEI), MG (Brazil)], E-mail: ramirez@unifei.edu.br
2010-07-01
The numerical simulation of two phase flow through the CFD techniques have become of great interest due to the complexity of this type of flow. The present work aims to simulate the oil-water two-phase flow in horizontal pipes for stratification analysis of the mixture. In numerical simulations, incompressible flow, isothermal, steady state and laminar flow were considered. Numerical analysis of flow stratification was carried out for horizontal straight and curved pipe. FLUENT was the commercial software employed in the simulation. Three-dimensional mesh generated by ICEM-CFD program was used for numerical simulation. The numerical analysis flow pattern was carried out employing the Eulerian model, considering the drag and lift interphase forces. The simulation results for the horizontal straight pipe were qualitatively validated with experimental data obtained in the Laboratory of Phase Separation of UNIFEI. (author)
Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition
Yong Zhao; Tianlin Wang; Zhi Zong
2014-01-01
As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.
Numerical Propulsion System Simulation: An Overview
Lytle, John K.
2000-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play
NUMERICAL SIMULATION OF FLOW PATTERNS IN PLANAR JETS
无
2001-01-01
Two-dimensional spatial developing turbulent planar jets with different velocity ratios of jet fluid to co-flow fluid at the inlet section are simulated with large eddy simulation give detailed information of transient behaviors of coherent structures in turbulent jets and depict how the velocity ratios will affect the evolution of coherent structures. The motion of small-scale structures is described by the standard Smagorinsky SGS model. Transport equation of passive scalar is also solved in order to perform numerical visualization of flow field. Transient distributions of velocity are obtained at different evolution periods of turbulent jets. Evolutions of coherent structures in flow field are also given in this paper as well as the comparison of flow patterns among three different velocity ratios.``
Reliability of numerical wind tunnels for VAWT simulation
Raciti Castelli, M.; Masi, M.; Battisti, L.; Benini, E.; Brighenti, A.; Dossena, V.; Persico, G.
2016-09-01
Computational Fluid Dynamics (CFD) based on the Unsteady Reynolds Averaged Navier Stokes (URANS) equations have long been widely used to study vertical axis wind turbines (VAWTs). Following a comprehensive experimental survey on the wakes downwind of a troposkien-shaped rotor, a campaign of bi-dimensional simulations is presented here, with the aim of assessing its reliability in reproducing the main features of the flow, also identifying areas needing additional research. Starting from both a well consolidated turbulence model (k-ω SST) and an unstructured grid typology, the main simulation settings are here manipulated in a convenient form to tackle rotating grids reproducing a VAWT operating in an open jet wind tunnel. The dependence of the numerical predictions from the selected grid spacing is investigated, thus establishing the less refined grid size that is still capable of capturing some relevant flow features such as integral quantities (rotor torque) and local ones (wake velocities).
Numerical simulations of black-hole spacetimes
Chu, Tony
This thesis covers various aspects of the numerical simulation of black-hole spacetimes according to Einstein's general theory of relativity, using the Spectral Einstein Code developed by the Caltech-Cornell-CITA collaboration. The first topic is improvement of binary-black-hole initial data. One such issue is the construction of binary-black-hole initial data with nearly extremal spins that remain nearly constant during the initial relaxation in an evolution. Another concern is the inclusion of physically realistic tidal deformations of the black holes to reduce the high-frequency components of the spurious gravitational radiation content, and represents a first step in incorporating post-Newtonian results in constraint-satisfying initial data. The next topic is the evolution of black-hole binaries and the gravitational waves they emit. The first spectral simulation of two inspiralling black holes through merger and ringdown is presented, in which the black holes are nonspinning and have equal masses. This work is extended to perform the first spectral simulations of two inspiralling black holes with moderate spins and equal masses, including the merger and ringdown. Two configurations are considered, in which both spins are either anti-aligned or aligned with the orbital angular momentum. Highly accurate gravitational waveforms are computed for all these cases, and are used to calibrate waveforms in the effective-one-body model. The final topic is the behavior of quasilocal black-hole horizons in highly dynamical situations. Simulations of a rotating black hole that is distort ed by a pulse of ingoing gravitational radiation are performed. Multiple marginally outer trapped surfaces are seen to appear and annihilate with each other during the evolution, and the world tubes th ey trace out are all dynamical horizons. The dynamical horizon and angular momentum flux laws are evaluated in this context, and the dynamical horizons are contrasted with the event horizon
Numerical simulation of ventilation in blinding heading
CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi
2008-01-01
The way of ventilation in all its forms and characteristics in the blinding heading was studied. On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up, and the calculation boundary condi-tions were analyzed. According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics soft-ware. The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained. The ventilation in blinding heading under certain circumstances was calculated and simulated for optimiza-tion. The optimal ventilation form and related parameters under given condition were ob-tained. The rule of the ventilation in blinding heading was theoretical analyzed, which pro-vided reference for the research on the process of mass transfer, the rule of hazardous substances transportation and ventilation efficiency, provided a new method for the study of reasonable and effective ventilation in blinding heading.
Numerical simulation of ventilation in blinding heading
CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi
2008-01-01
The way of ventilation in all its forms and characteristics in the blinding heading was studied.On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up,and the calculation boundary conditions were analyzed.According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics software.The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained.The ventilation in blinding heading under certain circumstances was calculated and simulated for optimization.The optimal ventilation form and related parameters under given condition were obtained.The rule of the ventilation in blinding heading was theoretical analyzed,which provided reference for the research on the process of mass transfer,the rule of hazardous substances transportation and ventilation efficiency,provided a new method for the study of reasonable and effective ventilation in blinding heading.
Numerical simulations of coupled problems in engineering
2014-01-01
This book presents and discusses mathematical models, numerical methods and computational techniques used for solving coupled problems in science and engineering. It takes a step forward in the formulation and solution of real-life problems with a multidisciplinary vision, accounting for all of the complex couplings involved in the physical description. Simulation of multifaceted physics problems is a common task in applied research and industry. Often a suitable solver is built by connecting together several single-aspect solvers into a network. In this book, research in various fields was selected for consideration: adaptive methodology for multi-physics solvers, multi-physics phenomena and coupled-field solutions, leading to computationally intensive structural analysis. The strategies which are used to keep these problems computationally affordable are of special interest, and make this an essential book.
Numerical Simulation of Solitary Kinetic Alfven Waves
DING Jian; LI Yi; WANG Shui
2008-01-01
Using the two-fluid model in the case of α1 (α=β/2Q, β is the ratio of thermal pressure to magnetic pressure, and Q=m,e/m,I), we numerically investigate the interactions between two solitary kinetic Alfven waves (SKAWs) and between an SKAW and a density discontinuity. The results show that the two SKAWs would remain in their original shapes and propagate at their initiating speeds, which indicates that SKAWs behave just like standard solitons. The simulation also shows that SKAWs will reflect and refract when crossing a discontinuity and propagating into a higher density region. The transmission wave is an SKAW with increasing density, and the reverberation is a disturbance with lower amplitude.
Direct numerical simulation of compressible isotropic turbulence
LI; Xinliang(李新亮); FU; Dexun(傅德薰); MAYanwen(马延文)
2002-01-01
Direct numerical simulation (DNS) of decaying compressible isotropic turbulence at tur-bulence Mach numbers of Mt = 0.2-0.7 and Taylor Reynolds numbers of 72 and 153 is per-formed by using the 7th order upwind-biased difference and 8th order center difference schemes.Results show that proper upwind-biased difference schemes can release the limit of "start-up"problem to Mach numbers.Compressibility effects on the statistics of turbulent flow as well as the mechanics of shockletsin compressible turbulence are also studied, and the conclusion is drawn that high Mach numberleads to more dissipation. Scaling laws in compressible turbulence are also analyzed. Evidence isobtained that scaling laws and extended self similarity (ESS) hold in the compressible turbulentflow in spite of the presence of shocklets, and compressibility has little effect on scaling exponents.
Numerical simulation of facet dendrite growth
CHEN Zhi; CHEN Chang-le; HAO Li-mei
2008-01-01
Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.
Collisionless microinstabilities in stellarators II - numerical simulations
Proll, Josefine Henriette Elise; Helander, Per
2013-01-01
Microinstabilities exhibit a rich variety of behavior in stellarators due to the many degrees of freedom in the magnetic geometry. It has recently been found that certain stellarators (quasi-isodynamic ones with maximum-$J$ geometry) are partly resilient to trapped-particle instabilities, because fast-bouncing particles tend to extract energy from these modes near marginal stability. In reality, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with the National Compact Stellarator Experiment (NCSX) and the DIII-D tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, ion-temperature-gradient modes, trapped-electron modes and mixed-type instabilities are studied. Wendelstein 7-X and QIPC exhibit significantly reduce...
夏力农; 苗云东; 廖常斌
2012-01-01
通过对复合地基在正常使用条件下和地基土沉降后的三维数值模拟,研究了复合地基由地下水位下降引起的地基土沉陷后的沉降、桩体摩阻力分布和桩身轴力分布的变化.分析表明:随着地基土沉降的增加,加固桩体和基础的沉降加大,中性点位置逐渐下降,桩身轴力有所增大；在加强桩中,中心桩的中性点最低,边桩次之,角桩最高；随着地基土沉降的增加,各桩中性点位置差异逐渐减小,桩体上部负摩阻力作用的桩身长度更长,负摩阻力值逐渐增大.%Based on three-dimensional numerical simulations of composite foundation both on the condition of ordinary use and ground subsidence, changes of settlement, skin friction distribution and axial force of pile in composite foundation after ground subsidence induced by groundwater level lowering are analyzed. It is shown that, settlement of reinforced pile and foundation increases, and neutral point in pile moves down gradually, axial forces in reinforced pile increase gradually along with ground subsidence increasing. In reinforced piles of composite foundation, neutral point in centre pile is the lowest, neutral point in border pile is the second, neutral point in corner pile is the highest. Along with ground subsidence increasing, the differences of neutral point position in centre pile, border pile and corner pile decrease gradually, the length impacted by negative skin friction of upper part pile over neutral point lengthens gradually, value of negative skin friction increases gradually.
朱萍; 成明
2012-01-01
为了研究流场的空间分布特点,建立了垂直轴潮流水轮机在水槽中的物理模型,采用Fluent软件中的滑移网格技术对模型的流场进行了三维数值模拟,分析了不同时刻不同截面上模型速度场的变化规律以及同一时刻不同直线上模型速度场和压力场的分布特点.结果表明,叶轮在水槽中旋转,所处位置不同,流场的分布有所差异,流动充分后,流场的变化具有周期性；叶轮内部速度场的变化最为紊乱,叶片周围的速度发生急剧变化；叶轮在旋转过程中产生漩涡,叶片迎流面的压力急剧上升,背流面的负压最为强烈.%In order to study the spatial distribution of the flow field, a physical model of the vertical axis tidal current turbine inside the sink is established. Based on the physical model and sliding grid technology, the three dimensional numerical simulation of the flow field is given by using the software Fluent. Both the velocity field on different sections at different moments and the distribution of the velocity and pressure field on different lines at the same moment are analyzed. The result shows that the distribution of the flow field varies at different positions with the impeller rotating in the sink and the change of the flow field will be cyclical under fully developed flow areas. The velocity field is very disordered inside the impellers and the speed changes rapidly around the blades. Under the impeller rotating, vortexes appear. The pressure increases rapidly in the front of the blades facing the flow and decreases to negative pressure rapidly in the back of the blades.
Numerical simulation of turbulent slurry flows
Haghgoo, Mohammad Reza; Spiteri, Reymond J.; Bergstrom, Donlad J.
2016-11-01
Slurry flows, i.e., the flow of an agglomeration of liquid and particles, are widely employed in many industrial applications, such as hydro-transport systems, pharmaceutical batch crystallizers, and wastewater disposal. Although there are numerous studies available in the literature on turbulent gas-particle flows, the hydrodynamics of turbulent liquid-particle flows has received much less attention. In particular, the fluid-phase turbulence modulation due to the particle fluctuating motion is not yet well understood and remains challenging to model. This study reports the results of a numerical simulation of a vertically oriented slurry pipe flow using a two-fluid model based on the kinetic theory of granular flows. The particle stress model also includes the effects of frictional contact. Different turbulence modulation models are considered, and their capability to capture the characteristic features of the turbulent flow is assessed. The model predictions are validated against published experimental data and demonstrate the significant effect of the particles on the fluid-phase turbulence.
Numerical simulations of dissipationless disk accretion
Bogovalov, S. V.; Tronin, I. V.
2017-09-01
Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/ r ≫ 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.
Direct Numerical Simulation of Automobile Cavity Tones
Kurbatskii, Konstantin; Tam, Christopher K. W.
2000-01-01
The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.
Numerical simulation of friction stir welding
Mijajlović Miroslav
2014-01-01
Full Text Available Friction stir welding is a solid-state welding technique that utilizes thermo-mechanical influence of the rotating welding tool on parent material resulting with monolith joint-weld. On the contact of welding tool and parent material, significant stirring and deformation of parent material appears, and during this process mechanical energy is partially transformed into heat. The paper describes the software for the numerical simulation of friction stir welding developed at Mechanical Engineering Faculty, University of Nis. Numerical solution for estimation of welding plates temperature is estimated using finite difference method-explicit scheme with adaptive grid, considering influence of temperature on material's conductivity, contact conditions between welding tool and parent material, material flow around welding tool etc. The calculated results are in good agreement with the experimental results. [Projekat Ministarstva nauke Republike Srbije, br. TR35034: The research of modern non-conventional technologies application in manufacturing companies with the aim of increase efficiency of use, product quality, reduce of costs and save energy and materials
Numerical simulation of supersonic gap flow.
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Numerical simulation of supersonic gap flow.
Xu Jing
Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
夏兴兰; 李德桃; 董刚; 杨文明
1998-01-01
The combustion in the swirl chamber is broken into three phases: low temperature ignition kinetics, high temperature premixed kinetics burn and diffusion burn phase.While the burn in the main chamber is considered as diffusion combustion. The shell ignition model, global Arrhenius equation and coherent flamelet model are used to model low temperature ignition, high temperature premixed burn and diffusion burn respectively. Three-dimensional numerical calculation code is developed. The change of temperature fields in the swirl chamber is studied. The pressure and the heat release rate predicted by the model are coincided with the results derived from experiments.
Numerical simulation of tulip flame dynamics
Cloutman, L.D.
1991-11-30
A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.
Numerical simulation of tulip flame dynamics
Cloutman, L.D.
1991-11-30
A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.
Numerical simulations of capillary barrier field tests
Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)
1997-12-31
Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.
Numerical simulation for nuclear pumped laser
Sakasai, Kaoru [Japan Atomic Energy Research Inst., Tokyo (Japan)
1998-07-01
To apply nuclear pumped laser of {sup 3}He-Ne-Ar gas to detect neutron, the optimum gas mixture was investigated by numerical simulation. When {sup 3}He-Ne-Ar mixture gas are irradiated by neutron, proton and triton with high velocity are produced by {sup 3}He(np)T and two charge particles ionized {sup 3}He, Ne and Ar which reacted each other and attained to 3p`(1/2){sub 0}-3S`(1/2). The calculation method is constructed by defining the rate equations of each ion and exited atom and the electron energy balance equation and by time integrating the simultaneous differential equations of the above two equations and the law of conservation of charge. Penning ionization and energy transport by elastic collision of neutral atom were considered in the transport process of electron energy direct ionization by secondary charge particle. Calculation time was 1 msec. The optimum component was shown 3 atm He, 24 Torr He and 8 Torr Ar by simulation. Laser oscilation was generated under the conditions 3.3 x 10{sup 14} (N/cm{sup 2}/5) thermal neutron flux at 50 cm laser cell length and 99% coefficient of reflection of mirror. After laser oscilation, laser output was proportional to neutron flux. These results showed nuclear pumped laser of {sup 3}He-Ne-Ar was able to detect optically neutron. (S.Y)
Numerical simulation of Richtmyer-Meshkov instability
FU Dexun; MA Yanwen; ZHANG Linbo; TIAN Baolin
2004-01-01
The compressible Navier-Stokes equations discretized with a fourth order accurate compact finite difference scheme with group velocity control are used to simulate the Richtmyer-Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface with shock Mach number Ms=1.2 and density ratio 1:20 (interior density/outer density). Effect of shock refraction, reflection, interaction of the reflected shock with the material interface, and effect of initial perturbation modes on R-M instability are investigated numerically. It is noted that the shock refraction is a main physical mechanism of the initial phase changing of the material surface. The multiple interactions of the reflected shock from the origin with the interface and the R-M instability near the material interface are the reason for formation of the spike-bubble structures. Different viscosities lead to different spike-bubble structure characteristics. The vortex pairing phenomenon is found in the initial double mode simulation. The mode interaction is the main factor of small structures production near the interface.
Numerical Simulation of Internal Tide Generation at a Continental Shelf Break
Brandt, Laura K; Brucker, Kyle A; Dommermuth, Douglas G
2014-01-01
A fully nonlinear, three-dimensional numerical model is developed for the simulation of tidal flow over arbitrary bottom topography in an ocean with realistic stratification. The model is capable of simulating accurately the generation of fine-scale internal wave tidal beams, their interaction with an ocean thermocline and the subsequent generation of solitary internal waves that propagate on this thermocline. Several preliminary simulation results are shown for uniform and non-uniform flow over an idealized two-dimensional ridge, which are compared with linear theory, and for flow over an idealized two-dimensional continental shelf.
Numerical Simulations of Disk-Planet Interactions
D'Angelo, Gennaro
2003-06-01
The aim of this thesis is the study the dynamical interactions occurring between a forming planet and its surrounding protostellar environment. This task is accomplished by means of both 2D and 3D numerical simulations. The first part of this work concerned global simulations in 3D. These were intended to investigate large-scale effects caused by a Jupiter-size body still in the process of accreting matter from its surroundings. Simulations show that, despite a density gap forms along the orbital path, Jupiter-mass protoplanets still accrete at a rate on the order of 0.01 Earth's masses per year when they are embedded in a minimum-mass Solar nebula. In the same conditions, the migration time scale due to gravitational torques by the disk is around 100000 years. The second part of the work was dedicated to perform 2D calculations, by employing a nested-grid technique. This method allows to carry out global simulations of planets orbiting in disks and, at the same time, to resolve in great detail the dynamics of the flow inside the Roche lobe of both massive and low-mass planets. Regardless of the planet mass, the high resolution supplied by the nested-grid technique permits an evaluation of the torques, resulting from short and very short range gravitational interactions, more reliable than the one previously estimated with the aid of numerical methods. Likewise, the mass flow onto the planet is computed in a more accurate fashion. Resulting migration time scales are in the range from 20000 years, for intermediate-mass planets, to 1000000 years, for very low-mass as well as high-mass planets. Circumplanetary disks form inside of the Roche lobe of Jupiter-size secondaries. In order to evaluate the consequences of the flat geometry on the local flow structure around planets, 3D nested-grid simulations were carried out to investigate a range of planetary masses spanning from 1.5 Earth's masses to one Jupiter's mass. Outcomes show that migration rates are relatively
A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering
Qingzhen Xu
2013-01-01
Full Text Available Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.
Numerical Simulation of Waves Generated by Seafloor Movements
无
2008-01-01
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that the linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations ηmax0 are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on ηmax0 are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the ηmax0 near-linearly varies with the wave amplitudes of the surface waves, and the ηmax0 has significant depndences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, and these differences are significantly affected by the wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
Numerical simulation of a semi-indirect evaporative cooler
Martin, R. Herrero [Departamento de Ingenieria Termica y de Fluidos, Universidad Politecnica de Cartagena, C/Dr. Fleming, s/n (Campus Muralla), 30202 Cartagena, Murcia (Spain)
2009-11-15
This paper presents the experimental study and numerical simulation of a semi-indirect evaporative cooler (SIEC), which acts as an energy recovery device in air conditioning systems. The numerical simulation was conducted by applying the CFD software FLUENT implementing a UDF to model evaporation/condensation. The numerical model was validated by comparing the simulation results with experimental data. Experimental data and numerical results agree for the lower relative humidity series but not for higher relative humidity values. (author)
NUMERICAL SIMULATION OF A PREMIXED TURBULENT V-SHAPED FLAME
M I El Khazen
2011-01-01
Full Text Available In this paper we simulate a turbulent premixed V-shape flame stabilized on a hot wire. The device used is composed of a vertical combustion chamber where the methane-air mixture is convected upwards with a mean velocity of 4ms-1. The flow was simulated running Fluent 6.3, which numerically solved the stationary Favre-averaged mass balance; Navier-Stokes equations; combustion progress variable, and k-ε equations on a two-dimensional numerical mesh. We model gaseous mixture, ignoring Soret and Dufour effects and radiation heat transfer. The progress variable balance equation was closed using Eddy Break Up model. The results of our simulations allow us to analyze the influence of equivalence ratio and the turbulent intensity on the properties of the flame (velocity, fluctuation, progress variable and Thickness of flame.This work gives us an idea on the part which turbulence can play to decrease the risks of extinction and instabilities caused by the lean premixed combustion.
Numerical simulation of nanoparticle pattern fabricated by electrostatic spray deposition
Wei Wei; Zhaolin Gu; Sheng Wang; Takeshi Fukuda; Kiwamu Kase; Jungmyoung Ju; Yutaka Yamagata
2013-01-01
Electrospray deposition (ESD) as a patterning method of nanoparticles deposited on a substrate has attracted much attention due to several advantages over other methods.However,obtaining an optimum ESD processing condition for nanoparticle pattern relies much on trial experiments because of the lack of reliable numerical simulation.In this study,the deposition characteristics of nanoparticle generated by electrospray were investigated by using a three-dimensional Lagrangian model.Three important process parameters,including solution dielectric constant,applied voltage and surface charge density on mask were considered by fixing the geometrical parameters of the ESD device.Simulation result showed that under the condition of without a mask,the spray diameter increases with increasing solvent dielectric constant,and higher applied voltage makes the spray area wider.Controllability of focusing by changing surface charge density on the mask was confirmed:higher surface charge density on the mask results in more focused deposition.Validity of the numerical simulation developed in this study was verified by comparison with experimental data.
For numerical differentiation, dimensionality can be a blessing!
Anderssen, Robert S.; Hegland, Markus
Finite difference methods, such as the mid-point rule, have been applied successfully to the numerical solution of ordinary and partial differential equations. If such formulas are applied to observational data, in order to determine derivatives, the results can be disastrous. The reason for this is that measurement errors, and even rounding errors in computer approximations, are strongly amplified in the differentiation process, especially if small step-sizes are chosen and higher derivatives are required. A number of authors have examined the use of various forms of averaging which allows the stable computation of low order derivatives from observational data. The size of the averaging set acts like a regularization parameter and has to be chosen as a function of the grid size h. In this paper, it is initially shown how first (and higher) order single-variate numerical differentiation of higher dimensional observational data can be stabilized with a reduced loss of accuracy than occurs for the corresponding differentiation of one-dimensional data. The result is then extended to the multivariate differentiation of higher dimensional data. The nature of the trade-off between convergence and stability is explicitly characterized, and the complexity of various implementations is examined.
Numerical Relativity in D dimensional space-times: Collisions of unequal mass black holes
Witek, Helvi; Cardoso, Vitor; Sperhake, Ulrich [CENTRA, Departamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa - UTL, Av. Rovisco Pais 1, 1049 Lisboa (Portugal); Gualtieri, Leonardo [Dipartimento di Fisica, Universita di Roma ' Sapienza' and Sezione INFN Roma1, P.A. Moro 5, 00185, Roma (Italy); Herdeiro, Carlos [Departamento de Fisica da Universidade de Aveiro, Campus de Santiago, 3810-183 Aveiro (Portugal); Zilhao, Miguel, E-mail: helvi.witek@ist.utl.pt [Centro de Fisica do Porto - CFP, Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto - FCUP, Rua do Campo Alegre, 4169-007 Porto (Portugal)
2011-09-22
We present unequal mass head-on collisions of black holes in D = 5 dimensional space-times. We have simulated BH systems with mass ratios q 1,1/2, 1/3, 1/4. We extract the total energy radiated throughout the collision and compute the linear momentum flux and the recoil velocity of the final black hole. The numerical results show very good agreement with point particle calculations when extrapolated to this limit.
Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids.
Alcubierre, M.; Brandt, S; Brügmann, B.; Holz, D.; Seidel, E; Takahashi, R.; Thornburg, J.
2001-01-01
We present a new technique for the numerical simulation of axisymmetric systems. This technique avoids the coordinate singularities which often arise when cylindrical or polar-spherical coordinate finite difference grids are used, particularly in simulating tenser partial differential equations like those of 3 + 1 numerical relativity. For a system axisymmetric about the r axis, the basic idea is to use a three-dimensional Cartesian (x,y,z) coordinate grid which covers (say) the y = 0 plane, ...
姜治兵; 陆虹; 杨青远
2016-01-01
In order to study the law of salt transportation in the operation of ship lock and its influence on salinity in freshwater area, we set up a three⁃dimensional numerical model for k⁃εtwo⁃phase mixed flow. In the model, control equation groups are dispersed by finite volume method, velocity⁃pressure coupling by SIMPLEC algorithm, time term by single⁃order implicit expression, and convection term by second⁃order upwind scheme, with computing area divided by hexahedral mesh. This model is verified by comparison with prototype experimental results of sea water intrusion into a ship lock, and simulated data are well in agreement with measured data of salinity in lock chamber. The simulation results about the process of seawater intrusion into freshwater zone show that 1) distribution of salini⁃ty in upstream waterway can be divided to 3 sections:density current section, transition section and diffusion sec⁃tion, whose salt transporting speed reduces in order;2) salinity periodically changes at each section and it gradual⁃ly tends to be at a dynamic balance after ship lock operates for a period;3) as for a given cycle, saline intrusion quantity is big at early stage of ship lock operation, then, it gradually reduces and tends to be stable. The research results offer scientific reference for the design and operation of ship lock.%为研究船闸运行过程中盐分的输运规律及其对淡水水域的盐度影响，建立了三维k⁃ε两相混合流数值模型，模型控制方程组采用有限体积法进行离散，流速与压力耦合采用SIMPLEC算法，时间项采用一阶隐式格式，流项采用二阶迎风格式，计算区域采用六面体网格划分。采用某船闸的海水入侵原型试验成果对数值模型进行了验证，闸室内盐度的模拟值与实测值吻合较好。海水入侵淡水水域模拟结果表明：上游航道盐度分布可分为异重流段、过渡段和扩散段，各段盐分输运速度依次
Numerical Analysis of Three-Dimensional Object Recognition with Digital Holography
DING De-Hua; HE Qing-Sheng; WANG Jian-Gang; WU Min-Xian; JIN Guo-Fan
2004-01-01
@@ We describe an intrinsic correlation peak of three-dimensional (3D) pattern recognition, which is higher than that of the two-dimensional (2D) pattern recognition and whose difference can reach up to five orders of magnitude in our numerical simulation. The relationship between the 3D objects and their recognition result is formalized and the comparison between the 3D and 2D pattern recognitions as well as the former's independency of the reconstruction distance is presented. Finally, the augmentation of the 3D pattern recognition sensitivity with the increasing surface complexity of the 3D object is also demonstrated.
Numerical tests of conjectures of conformal field theory for three-dimensional systems
Weigel, Martin; Janke, Wolfhard
1998-11-01
The concept of conformal field theory provides a general classification of statistical systems on two-dimensional geometries at the point of a continuous phase transition. Considering the finite-size scaling of certain special observables, one thus obtains not only the critical exponents but even the corresponding amplitudes of the divergences analytically. A first numerical analysis brought up the question whether analogous results can be obtained for those systems on three-dimensional manifolds. Using Monte Carlo simulations based on the Wolff single-cluster update algorithm we investigate the scaling properties of O(n) symmetric classical spin models on a three-dimensional, hyper-cylindrical geometry with a toroidal cross-section considering both periodic and antiperiodic boundary conditions. Studying the correlation lengths of the Ising, the XY, and the Heisenberg model, we find strong evidence for a scaling relation analogous to the two-dimensional case, but in contrast here for the systems with antiperiodic boundary conditions.
One-Dimensional Simulation of Clay Drying
Siljan Siljan
2002-04-01
Full Text Available Drying of clay is simulated by a one-dimensional model. The background of the work is to form a better basis for investigation of the drying process in production of clay-based building materials. A model of one-dimensional heat and mass transfer in porous material is used and modified to simulate drying of clay particles. The convective terms are discretized by first-order upwinding, and the diffusive terms are discretized by central differencing. DASSL was used to solve the set of algebraic and differential equations. The different simulations show the effect of permeability, initial moisture content and different boundary conditions. Both drying of a flat plate and a spherical particle are modelled.
NUMERICAL SIMULATIONS OF SEA ICE WITH DIFFERENT ADVECTION SCHEMES
LIU Xi-ying
2011-01-01
Numerical simulations are carried out for sea ice with four different advection schemes to study their effects on the simulation results.The sea ice model employed here is the Sea Ice Simulator (SIS) of the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 4b (MOM4b) and the four advection schemes are, the upwind scheme originally used in the SIS, the Multi-Dimensional Positive Advection (MDPA) scheme, the Incremental Remapping Scheme (IRS) and the Two Step Shape Preserving (TSSP) scheme.The latter three schemes are newly introduced.To consider the interactions between sea ice and ocean, a mixed layer ocean model is introduced and coupled to the SIS.The coupled model uses a tri-polar coordinate with 120×65 grids,covering the whole earth globe, in the horizontal plane.Simulation results in the northern high latitudes are analyzed.In all simulations, the model reproduces the seasonal variation of sea ice in the northern high latitudes well.Compared with the results from the observation, the sea ice model produces some extra sea ice coverage in the Greenland Sea and Barents Sea in winter due to the exclusion of ocean current effects and the smaller simulated sea ice thickness in the Arctic basin.There are similar features among the results obtained with the introduced three advection schemes.The simulated sea ice thickness with the three newly introduced schemes are all smaller than that of the upwind scheme and the simulated sea ice velocities of movement are all smaller than that of the upwind scheme.There are more similarities shared in the results obtained with the MPDA and TSSP schemes.
Numerical simulation of "An American Haboob"
A. Vukovic
2013-10-01
Full Text Available A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM with 3.5 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the Normalized Difference Vegetation Index (NDVI data from the Moderate Resolution Imaging Spectroradiometer (MODIS. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~ 25 km, the model PM10 surface dust concentration reached ~ 2500 μg m−3, but underestimated the values measured by the PM10stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD, employing deep blue (DB algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further
Applying recursive numerical integration techniques for solving high dimensional integrals
Ammon, Andreas [IVU Traffic Technologies AG, Berlin (Germany); Genz, Alan [Washington State Univ., Pullman, WA (United States). Dept. of Mathematics; Hartung, Tobias [King' s College, London (United Kingdom). Dept. of Mathematics; Jansen, Karl; Volmer, Julia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, Hernan [Humboldt Univ. Berlin (Germany). Inst. fuer Mathematik
2016-11-15
The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.
Applying recursive numerical integration techniques for solving high dimensional integrals
Ammon, Andreas; Hartung, Tobias; Jansen, Karl; Leövey, Hernan; Volmer, Julia
2016-01-01
The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with $N$ samples behaves like $1/\\sqrt{N}$. This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points $m$ that is at least exponential.
无
2007-01-01
Numerical analysis and simulation have been an effective means to develop the advanced growth technology and to control the defects type, size and density for silicon crystals of 300 mm and beyond In the present paper, numerical analysis of the melt flow in the Czochralski (CZ) crystal growth configuration, the three dimensional (3D) modeling, the simulation of melt flow under the magnetic field, the inverse modeling and the time-dependent simulation are reviewed. Finally, comparison of numerical analysis with experimental measurements is discussed.
Photon Conserving Radiative Transfer around Point Sources in multi-dimensional Numerical Cosmology
Abel, T; Madau, P; Abel, Tom; Norman, Michael L.; Madau, Piero
1998-01-01
Many questions in physical cosmology regarding the thermal and ionization history of the intergalactic medium are now successfully studied with the help of cosmological hydrodynamical simulations. Here we present a numerical method that solves the radiative transfer around point sources within a three dimensional cartesian grid. The method is energy conserving independently of resolution: this ensures the correct propagation speeds of ionization fronts. We describe the details of the algorithm, and compute as first numerical application the ionized region surrounding a mini-quasar in a cosmological density field at z=7.
Transonic aeroelastic numerical simulation in aeronautical engineering
Yang, G. [Chinese Academy of Sciences, LHD of the Inst. of Mechanics, Beijing (China)]. E-mail: gwyang@imech.ac.cn
2005-07-01
An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
Numerical simulation of flows around long-span flat roof
SUN Xiao-ying; WU Yue; SHEN Shi-zhao
2005-01-01
Long-span roof with span larger than height always has a complicated three-dimensional curve. Wind pressure on the roof is often influenced not only by the atmospheric turbulence, but also by the "signature" turbulence provoked in the wind by the structure itself. So it is necessary to study characteristics of flows around the roof. In this paper, three-dimensional numerical simulation of wind-induced pressure has been performed on a long-span flat roof by means of Computational Fluid Dynamics (CFD) software--FLUENT. The flow characteristics are studied by considering some parameters, such as wind direction, span-height ratio, roof pitch, flow characteristics, roughness of terrain. The simulation is based upon the Reynolds-averaged equations, in which Reynolds stress equation model (RSM) and SIMPLE technology (Semi-Implicit Method for Pressure-Linked Equations) have been used. Compared with wind tunnel tests, the computational results have good agreement with the experimental data. It is proved that the results are creditable and the method is feasible.
Numerical Simulations of Separated Flows Using Wall-Modeled LES
Vane, Zachary; Ortega, Jason; Salari, Kambiz
2014-11-01
Calculations using an unstructured, wall-modeled large eddy simulation (WMLES) solver are performed for several high Reynolds number test cases of interest. While the equilibrium formulation of this wall-model (Bodart, Larsson & Moin, AIAA 2013-2724) has proven to be accurate for steady, attached boundary layers, its application to non-equilibrium or highly three-dimensional problems has yet to be fully explored. A series of turbulent flows that exhibit boundary layer separation due to the geometries involved in each test case are considered. First, spanwise-periodic simulations for the flow over periodic hills are performed at multiple Reynolds numbers. Next, calculations involving separation caused by three-dimensional bodies are used to generate more complex flow fields and to evaluate the accuracy of the WMLES in the separated wake region downstream. The performance of the WMLES is quantified through comparisons with existing numerical and experimental data sets. The effects of grid resolution and variations in several wall-model parameters are also investigated to determine their influence on the overall calculation.
Numerical Simulation of Flow Behavior within a Venturi Scrubber
M. M. Toledo-Melchor
2014-01-01
Full Text Available The present work details the three-dimensional numerical simulation of single-phase and two-phase flow (air-water in a venturi scrubber with an inlet and throat diameters of 250 and 122.5 mm, respectively. The dimensions and operating parameters correspond to industrial applications. The mass flow rate conditions were 0.483 kg/s, 0.736 kg/s, 0.861 kg/s, and 0.987 kg/s for the gas only simulation; the mass flow rate for the liquid was 0.013 kg/s and 0.038 kg/s. The gas flow was simulated in five geometries with different converging and diverging angles while the two-phase flow was only simulated for one geometry. The results obtained were validated with experimental data obtained by other researchers. The results show that the pressure drop depends significantly on the gas flow rate and that water flow rate does not have significant effects neither on the pressure drop nor on the fluid maximum velocity within the scrubber.
Water and heat fluxes in desert soils: 2. Numerical simulations
Scanlon, Bridget R.; Milly, P. C. D.
1994-03-01
Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0- to 0.3-m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations
Gas-kinetic numerical schemes for one- and two-dimensional inner flows
Zhi-hui LI; Lin BI; Zhi-gong TANG
2009-01-01
Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation.The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers.The numerical remainder-effects of the difference schemes are investigated and analyzed based on the computed results.The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.
Shock Simulation of the Optics Mirror Assembly By Numerical Method
Mr. Brijeshkumar Patel
2015-09-01
Full Text Available Satellite faces many extreme types of loading throughout their life time from the harsh launch environment to the critical space environment. Launch load mainly dynamic is the main design concern for space structure. Shocks are the one of the most critical dynamic load occurs in spacecraft. Optics Mirror Assembly (OMA is used in the telescope of the satellite. The telescope performance relies on dimensional control & the geometric positioning of the mirror, pointing accuracy and controlled surface deformation of the mirror; Mirror fixation device (MFD is used for controlling all these factors. It should not distort due to launch loads mainly shocks as well as loads during operation of the telescope. In the present work an attempt has been made to perform experimental and computational analysis of the shock load on Optics Mirror Assembly. The FE modal for Shock Analysis purpose has been analysed with a specific Linear Transient Response Analysis in order to obtain the time history of acceleration in several output points. The analysis has been conducted over the time interval 0 to 62 ms and frequency band between 10 - 10 KHz. In order to verify the feasibility and reliability of the numerical (Implicit Finite Element Code, Nastran analysis, the numerical results obtained by Nastran have been compared with those obtained experimentally in the form of SRS. The overall outcome of the simulation method has proven its reliability in simulating Satellite payloads subjected to shocks.
NUMERICAL SIMULATION OF SOLUTE TRANSPORTSIN TWO DIMENSIONAL VIRTUAL SOIL%二维虚拟土壤中溶质迁移行为的数值模拟研究
陶亚奇; 蒋新; 卞永荣; 杨兴伦; 王芳
2009-01-01
Virtual soils, rich in macropore, but different in level, were constructed with the aid of the Voronoi tesselation algorithm on two dimensional lattices and transport behaviors of solute particles therein numerically simulated using random walk models. It was found that the solute diffusion was anomalous and its mean square of displacement was positively correlated with time, being ＜(r→)~2(t)＞∝t~K. Values of K depended on the types of soils and the types of random walk models. With biased random walk models, the values increased with the time, which means the particles diffused faster with the time went on. The first passage time of solute transport satisfied the logarithmic normal distribution. Non-fick effect of the diffusion was obvious with the continuous time random walk theory. And it was found that soils different in por structure would have different corresponding fitting parameters with the random walk models, that is to say, they also affected the transport behaviors of solute particles. The findings of the study are found to be helpful to researchers in understanding and predicting behaviors of water and solutes in macroporous soil, and hence in helping protect the underground water environment.%利用Voronoi图逐级碎裂方法,在二维正方网格上构造出不同等级的虚拟土壤来仿真具有丰富孔隙结构的真实土壤,并借助于随机行走模型,数值模拟了溶质粒子在该虚拟土壤中的迁移行为.结果表明,溶质粒子表现出反常扩散行为.对有偏倚的随机行走模型,其均方位移与时间呈正比关系＜r~2(t)＞∝t~K,即扩散系数D=K-1,长时间的K值更大,溶质粒子扩散更快;首次穿越时间满足正态对数分布,说明溶质粒子迁移是一阶随机过程;由连续时间随机行走理论,发现溶质粒子扩散非费克现象明显.同时发现不同的土壤孔隙结构及随机行走类型所对应的拟合参数不同,即它们也影响溶质粒子的迁移行为.该
The Numerical Simulation of Ship Waves using Cartesian Grid Methods
Sussman, Mark
2014-01-01
Two different cartesian-grid methods are used to simulate the flow around the DDG 5415. The first technique uses a "coupled level-set and volume-of-fluid" (CLS) technique to model the free-surface interface. The no-flux boundary condition on the hull is imposed using a finite-volume technique. The second technique uses a level-set technique (LS) to model the free-surface interface. A body-force technique is used to impose the hull boundary condition. The predictions of both numerical techniques are compared to whisker-probe measurements of the DDG 5415. The level-set technique is also used to investigate the breakup of a two-dimensional spray sheet.
Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence
Zrake, Jonathan; 10.1063/1.3621748
2011-01-01
Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...
Numerical simulations of magnetic reconnection in the lower solar atmosphere
Xiao-Yan Xu; Cheng Fang; Ming-De Ding; Dan-Hui Gao
2011-01-01
Observations indicate that Ellerman bombs (EBs) and chromospheric microflares both occur in the lower solar atmosphere, and share many common features,such as temperature enhancements, accompanying jet-like mass motions, short lifetime, and so on. These strongly suggest that EBs and chromospheric microflares could both probably be induced by magnetic reconnection in the lower solar atmosphere.With gravity, ionization and radiation considered, we perform two-dimensional numerical simulations of magnetic reconnection in the lower solar atmosphere. The influence of different parameters, such as intensity of the magnetic field and anomalous resistivity, on the results are investigated. Our result demonstrates that the temperature increases are mainly due to the joule dissipation caused by magnetic reconnection.The spectral profiles of EBs and chromospheric microflares are calculated with the non-LTE radiative transfer theory and compared with observations. It is found that the typical features of the two phenomena can be qualitatively reproduced.
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel
2013-07-14
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Song, Kedong; Wang, Hai; Zhang, Bowen; Lim, Mayasari; Liu, Yingchao; Liu, Tianqing
2013-03-01
In this paper, two-dimensional flow field simulation was conducted to determine shear stresses and velocity profiles for bone tissue engineering in a rotating wall vessel bioreactor (RWVB). In addition, in vitro three-dimensional fabrication of tissue-engineered bones was carried out in optimized bioreactor conditions, and in vivo implantation using fabricated bones was performed for segmental bone defects of Zelanian rabbits. The distribution of dynamic pressure, total pressure, shear stress, and velocity within the culture chamber was calculated for different scaffold locations. According to the simulation results, the dynamic pressure, velocity, and shear stress around the surface of cell-scaffold construction periodically changed at different locations of the RWVB, which could result in periodical stress stimulation for fabricated tissue constructs. However, overall shear stresses were relatively low, and the fluid velocities were uniform in the bioreactor. Our in vitro experiments showed that the number of cells cultured in the RWVB was five times higher than those cultured in a T-flask. The tissue-engineered bones grew very well in the RWVB. This study demonstrates that stress stimulation in an RWVB can be beneficial for cell/bio-derived bone constructs fabricated in an RWVB, with an application for repairing segmental bone defects.
Comparison of two- and three-dimensional simulations of miscible Rayleigh-Taylor instability
Cabot, W
2006-02-23
A comparison of two-dimensional and three-dimensional high-resolution numerical large-eddy simulations of planar, miscible Rayleigh-Taylor instability flows are presented. The resolution of the three-dimensional simulation is sufficient to attain a fully turbulent state. A number of different statistics from the mixing region (e.g., growth rates, PDFs, mixedness measures, and spectra) are used to demonstrate that two-dimensional flow simulations differ substantially from the three-dimensional one. It is found that the two-dimensional flow grows more quickly than its three-dimensional counterpart at late times, develops larger structures, and is much less well mixed. These findings are consistent with the concept of inverse cascade in two-dimensional flow, as well as the influence of a reduced effective Atwood number on miscible flow.
NUMERICAL SIMULATION OF BED DEFORMATION IN DIKE BURST
无
2001-01-01
The key point in the numerical simulation of breach growth and bed deformation process in a dike burst is the accurate computation of flow and sediment transport. A numerical model for horizontal 2-D non-uniform sediment was developed to simulate the bed deformation process in the dike burst. The first-order scheme was used in computation. Several simulated results were worked out to demonstrate the applicability of the numerical model.
Numerical simulation of lowest-order short-crested wave instabilities
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2006-01-01
A numerical study of doubly periodic deep-water short-crested wave instabilities, arising from various quartet resonant interactions, is conducted using a high-order Boussinesq-type model. The model is first verified through a series of simulations involving classical class I plane wave...... demonstrates a reasonably similar evolution. These simulations consider the simplest physical situations involving three-dimensional instabilities of genuinely three-dimensional progressive waves, revealing qualitative differences from classical two-dimensional descriptions. This study is therefore...
Rian, Kjell Erik
2003-07-01
In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to
Numerical simulations of shoaling internal solitary waves of elevation
Xu, Chengzhu; Subich, Christopher; Stastna, Marek
2016-07-01
We present high-resolution, two- and three-dimensional direct numerical simulations of large amplitude internal solitary waves of elevation on the laboratory scale, shoaling onto and over a small-amplitude shelf. The three-dimensional, mapped coordinate, spectral collocation method used for the simulations allows for accurate modelling of both the shoaling waves and the bottom boundary layer. The shoaling of the waves is characterized by the formation of a quasi-trapped core which undergoes a spatially growing stratified shear instability at its edge and a lobe-cleft instability in its nose. Both of these instabilities develop and three-dimensionalize concurrently, leading to strong bottom shear stress. We explore significant regions of Schmidt and Reynolds number space and demonstrate that the formation of shear instabilities during shoaling is robust and should be readily observable in a number of standard laboratory setups. In the experiments with a corrugated bottom boundary, boundary layer separation is found inside each of the corrugations during shoaling. This more complex boundary layer phenomenology precludes the formation of the lobe-cleft instability almost completely and hence provides a different mechanism for fluid and material exchange across the bottom boundary layer. Our analyses suggest that all of these wave-induced instabilities can lead to enhanced turbulence in the water column and increased shear stress on the bottom boundary. Through the generation and evolution of these instabilities, the shoaling of internal solitary waves of elevation is likely to provide systematic mechanisms for material mixing, cross-boundary layer transport, and sediment resuspension.
Optimization of the Turbulence Model on Numerical Simulations of Flow Field within a Hydrocyclone
Yan Xu
2015-01-01
Full Text Available Reynolds Stress Model and Large Eddy Simulation are used to respectively perform numerical simulation for the flow field of a hydrocyclone. The three-dimensional hexahedral computational grids were generated. Turbulence intensity, vorticity, and the velocity distribution of different cross sections were gained. The velocity simulation results were compared with the LDV test results, and the results indicated that Large Eddy Simulation was more close to LDV experimental data. Large Eddy Simulation was a relatively appropriate method for simulation of flow field within a hydrocyclone.
Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering
1997-09-01
A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.
A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.
Boileau, Etienne; Nithiarasu, Perumal; Blanco, Pablo J; Müller, Lucas O; Fossan, Fredrik Eikeland; Hellevik, Leif Rune; Donders, Wouter P; Huberts, Wouter; Willemet, Marie; Alastruey, Jordi
2015-10-01
Haemodynamical simulations using one-dimensional (1D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. Recent interest in verifying 1D numerical schemes has led to the development of alternative experimental setups and the use of three-dimensional numerical models to acquire data not easily measured in vivo. In most studies to date, only one particular 1D scheme is tested. In this paper, we present a systematic comparison of six commonly used numerical schemes for 1D blood flow modelling: discontinuous Galerkin, locally conservative Galerkin, Galerkin least-squares finite element method, finite volume method, finite difference MacCormack method and a simplified trapezium rule method. Comparisons are made in a series of six benchmark test cases with an increasing degree of complexity. The accuracy of the numerical schemes is assessed by comparison with theoretical results, three-dimensional numerical data in compatible domains with distensible walls or experimental data in a network of silicone tubes. Results show a good agreement among all numerical schemes and their ability to capture the main features of pressure, flow and area waveforms in large arteries. All the information used in this study, including the input data for all benchmark cases, experimental data where available and numerical solutions for each scheme, is made publicly available online, providing a comprehensive reference data set to support the development of 1D models and numerical schemes.
Numerical Simulation of HIWC Conditions with the Terminal Area Simulation System
Proctor, Fred H.; Switzer, George F.
2016-01-01
Three-dimensional, numerical simulation of a mesoconvective system is conducted in order to better understand conditions associated with High Ice Water Content (HIWC) and its threat to aviation safety. Although peak local values of ice water content may occur early in the storm lifetime, large areas of high concentrations expand with time and persist even when the storm tops begin to warm. The storm canopy which contains HIWC, has low radar reflectivity factor and is fed by an ensemble of regenerating thermal pulses.
Numerical Simulation of a Solar Domestic Hot Water System
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
Numerical simulations of a filament in a flowing soap film
Farnell, D. J. J.; David, T.; Barton, D. C.
2004-01-01
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two-dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non- oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non-oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large.
Design of a single-phase PTS numerical experiment for a reference Direct Numerical Simulation
Shams, A., E-mail: shams@nrg.eu; Damiani, G.; Rosa, D.; Komen, E.M.J.
2016-04-15
Highlights: • A numerical experiment is designed to perform DNS for a PTS scenario. • A wide range of RANS calculations are performed to design this numerical experiment. • Mesh estimation for the targeted DNS is also performed. - Abstract: The integrity assessment of the Reactor Pressure Vessel (RPV) is considered to be an important issue for lifetime extension of nuclear reactors. A severe transient that can threaten the integrity of the RPV is the existence of a Pressurized Thermal Shock (PTS) during a Loss-of-Coolant Accident (LOCA). A PTS consists of a rapid cooling of the RPV wall under pressurized conditions that may induce the criticality of existing or postulated defects inside the vessel wall. The most severe PTS event has been identified by Emergency Core Cooling (ECC) injection during a LOCA. The traditional one-dimensional system codes fail to reliably predict the complex three-dimensional thermal mixing phenomena in the downcomer occurring during the ECC injection. Hence, CFD can bring real benefits in terms of more realistic and more predictive capabilities. However, to gain trust in the application of CFD modelling for PTS, a comprehensive validation programme is necessary. In the absence of detailed experimental data for the RPV cooling during ECC injection, high fidelity Direct Numerical Simulation (DNS) databases constitute a valid alternative and can serve as a reference. The aim of this work is to design a numerical experiment aimed to generate a high quality reference DNS database for a simplified PTS scenario. This takes into account the turbulent mixing in the downcomer and the evolution of the temperature distribution for both structures and fluid during a single-phase flow PTS scenario. In spite of simplifications, such a DNS analysis represents a very demanding application. A priori, it should be demonstrated that all the relevant turbulent scales will be fully resolved, which requires a huge computational power. A wide range of
Numerical Simulation of Low Mach Number Fluid - Phenomena.
Reitsma, Scott H.
A method for the numerical simulation of low Mach number (M) fluid-acoustic phenomena is developed. This computational fluid-acoustic (CFA) methodology is based upon a set of conservation equations, termed finite-compressible, derived from the unsteady Navier-Stokes equations. The finite-compressible and more familiar pseudo-compressible equations are compared. The impact of derivation assumptions are examined theoretically and through numerical experimentation. The error associated with these simplifications is shown to be of O(M) and proportional to the amplitude of unsteady phenomena. A computer code for the solution of the finite -compressible equations is developed from an existing pseudo -compressible code. Spatial and temporal discretization issues relevant in the context of near field fluid-acoustic simulations are discussed. The finite volume code employs a MUSCL based third order upwind biased flux difference splitting algorithm for the convective terms. An explicit, three stage, second order Runge-Kutta temporal integration is employed for time accurate simulations while an implicit, approximately factored time quadrature is available for steady state convergence acceleration. The CFA methodology is tested in a series of problems which examine the appropriateness of the governing equations, the exacerbation of spatial truncation errors and the degree of temporal accuracy. Characteristic based boundary conditions employing a spatial formulation are developed. An original non-reflective boundary condition based upon the generalization and extension of existing methods is derived and tested in a series of multi-dimensional problems including those involving viscous shear flows and propagating waves. The final numerical experiment is the simulation of boundary layer receptivity to acoustic disturbances. This represents the first simulation of receptivity at a surface inhomogeneity in which the acoustic phenomena is modeled using physically appropriate
Numerical simulation of seasonal groundwater pumping
Filimonova, Elena; Baldenkov, Mikhail
2015-04-01
Increasing scarcity and contamination of water recourses require innovative water management strategies such as combined water system. The combined water system is a complex technology comprising two separate wells, major catchment-zone well and compensation pumping well, located inside a single stream basin. The major well is supplied by the well's catchment zone or surface flow, thus depleting the stream flow. The pumping rate of a major well is determined by the difference between the current stream flow and the minimum permissible stream flow. The deficiency of the stream flow in dry seasons can be compensated for by the short-term pumping of groundwater. The compensation pumping rate is determined by the difference between water demand and the permissible water withdrawal of the major well. The source for the compensation well is the aquifer storage. The estimation of streamflow depletion caused by compensation pumping is major question to evaluate the efficiency of the combined water system. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Traditionally pumping simulation calculates in two-step procedure. Natural conditions, an aquifer system is in an approximate dynamic equilibrium, describe by steady-state model. A steady-state solution provides an initial heads, a set of flows through boundaries, and used as initial state for transient solutions, when pumping is imposed on an aquifer system. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions estimates the capture and the streamflow depletion. Numerical modeling of cyclical compensation pumping has special features: the periodic solution, the seasonal changes through the boundaries and the importance even small drawdown of stream level. When seasonality is a modeling feature, traditional approach leads to mistaken values of
Kamiya, Tetsu; Toyama, Yoshio; Michiwaki, Yukihiro; Kikuchi, Takahiro
2013-01-01
The aim of the present study was to evaluate the possibility of numerical simulation of the swallowing process using a moving particle simulation (MPS) method, which defined the food bolus as a number of particles in a fluid, a solid, and an elastic body. In order to verify the accuracy of the simulation results, a simple water bolus falling model was solved using the three-dimensional (3D) MPS method. We also examined the simplified swallowing simulation using a two-dimensional (2D) MPS method to confirm the interactions between the liquid, solid, elastic bolus, and organ structure. In a comparison of the 3D MPS simulation and experiments, the falling time of the water bolus and the configuration of the interface between the liquid and air corresponded exactly to the experimental measurements and the visualization images. The results showed that the accuracy of the 3D MPS simulation was qualitatively high for the simple falling model. Based on the results of the simplified swallowing simulation using the 2D MPS method, each bolus, defined as a liquid, solid, and elastic body, exhibited different behavior when the organs were transformed forcedly. This confirmed that the MPS method could be used for coupled simulations of the fluid, the solid, the elastic body, and the organ structures. The results suggested that the MPS method could be used to develop a numerical simulator of the swallowing process.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
李祺; 孙铁; 张素香; 王贤明
2011-01-01
The fluid flow and heat transfer process of declinational wave fin and increase-angle declinational wave fin were numerically simulated with the CFD calculation software FLUENT, and distributions of temperature field, velocity field and pressure field on the fin surface were obtained. The heat transfer enhancement effect was compared with the plane fin, the simulation results were analyzed by the theory of fluid dynamic and fluid field synergy principle. The simulation results show that the declinational wave fin has better heat transfer effect, which can provide a theory foundation for the research of heat transfer enhancement with declinational wave fin.%利用CFD计算软件FLUENT,对均匀倾斜波纹翅片和倾角渐增倾斜波纹翅片的流体流动和传热过程进行了数值模拟,得到了翅片表面温度场、速度场和压力场的分布情况,并将其强化传热效果与平板翅片进行了对比,应用流体力学和场协同理论分析了模拟结果.模拟结果表明倾斜波纹翅片具有较好的传热效果,为热管翅片强化传热的研究提供了理论基础.
Numerical simulation for explosion wave propagation of combustible mixture gas
WANG Cheng; NING Jian-guo; MA Tian-bao
2008-01-01
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code, Young's technique was employed to track the interface between the explosion products and air, and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct, for point initiation, the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall, multi-peak values appear on pressure-time curve, and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct, explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products, and indicate that the ignition model and multi-material interface treatment method are feasible.
Probing Strong Field Gravity Through Numerical Simulations
Choptuik, Matthew W; Pretorius, Frans
2015-01-01
This article is an overview of the contributions numerical relativity has made to our understanding of strong field gravity, to be published in the book "General Relativity and Gravitation: A Centennial Perspective", commemorating the 100th anniversary of general relativity.
Coherent Structures in Numerically Simulated Plasma Turbulence
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
Numerical Simulation of Microgravity Flame Spread Over Solid Combustibles
JIANGXi; FANWeicheng
1995-01-01
A computational model of three-dimensional,time-dependent flame spread in microgravity environment is presented.THe solid is assumed to be a thermally-thin,pyrolysing cellulosic sheet.The gas phase model includes the full Navier-Stokes equations with density and pressure variations and six-flus model of radiation heat transfer,The solid phase model consists of continuity and energy equations whose solution provides boundary conditions for the gas phase equatons.In the numerical procedure,the gas-and solid -phase equations are solved separately and iteratively at each time step.Predictions have been made of flame spreas in slow forced flow under gravitational acceleration normal to fuel surface and flame spread in a quiescent environment in an enclosed chamber under gravitational acceleration parallel to fuel surface.Numerical simulations show that,under microgravity,slow-flow conditions,flame spread process is highly unsteady with the upstream flame spreads faster than the downstream flame after a period of ignition,It has also been shown that the level of microgravity has a significant effect on the flame spread process.
Numerical simulation of electro-fishing in seawater
Edo D'Agaro
2010-01-01
Full Text Available We evaluated the feasibility of an electro-fishing system using numerical simulations for laboratory tanks and the open sea. A non-homogeneous bi-dimensional electric-field model for water and fish based on discrete formulation of electro-magnetic field equations was developed using GAME (geometric approach for Maxwell equations software. Current densities (μA/cm2 and voltage differences (V/m were calculated for a fixed shape and spatial geometry of electrodes (one circular anode central to two symmetric linear cathodes 10 m distant from each other. Voltage gradients inside the fish and close to the body (head–tail potential difference and mean, maximum and minimum field modules were determined. Tank and open sea environments were numerically described for single fish 10 cm or 30 cm long and for groups of 30 fish 10 cm long. In the open sea, a tension of 90 V at the electrodes and a water conductibility of 5 S/m resulted in an area of fish attraction (voltage gradient >10 V/m of about 30 m2. Fish in the open sea and in groups had greater internal voltage differences than did fish in tanks and single fish.
Numerical Experiment on Two-Dimensional Line Thermal
J.H.W.LEE; G.Q.CHEN(陈国谦)
2002-01-01
The time evolution of a two-dimensional line thermal-a turbulent flow produced by an initial element with signifi-cant buoyancy released in a large water body, is numerically studied with the two-equation k - s model for turbulenceclosure. The numerical results show that the thermal is characterized by a vortex pair flow and a kidney shaped concentra-tion structure with double peak maxima; the computed flow details and scalar mixing characteristics can be described byself-similar relations beyond a dimensionless time around 10. There are two regions in the flow field of a line thermal: amixing region where the concentration of tracer fluid is high and the flow is turbulent and rotational with a pair of vortexeyes, and an ambient region where the concentration is zero and the flow is potential and well-described by a model ofdoublet with strength very close to those given by early experimental and analytical studies. The added virtual mass coeffi-cient of the thermal motion is found to be approximately 1. The aspect ratio for the kidney-shaped sectional thermal isfound to be around 1.45 for the self-similar phase. The predicted thermal spreading and mixing rate compares well withexperimental data.
刘演华; 林建忠; 包福兵; 石兴
2005-01-01
Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.
Numerical simulation of the coal combustion process initiated by a plasma source
Askarova, A. S.; Messerle, V. E.; Ustimenko, A. B.; Bolegenova, S. A.; Maksimov, V. Yu.
2014-12-01
Numerical experiments on the torch combustion of the coal dust prepared by a plasma-thermochemical treatment for combustion have been done using the method of three-dimensional simulation. It is shown that the plasma preparation of coal for combustion enables one to optimize the process, improve the conditions for inflammation and combustion and minimize the emissions of harmful substances.
骆祖江; 李伟; 王琰; 张德忠; 方连育
2014-01-01
In order to simulate and predict the change law of heat balance accurately and avoid heat penetration phenomenon during the groundwater heat pump operation, a three dimensional coupling numerical model of groundwater seepage and thermal transport was established and applied to the demonstration project of groundwater heat pump system in Zhengding, Hebei province. The model was based on the groundwater seepage theory, saturated water-bearing medium thermal transport theory and Terzaghi effective stress principle, combined with the design scheme and operation situation of groundwater heat pump, the future heat balance development tendency of groundwater heat pump system under three different conditions was forecasted and analyzed. The water temperature difference between the pumping well and recharge well reduced by 20%(eight degree centigrade) or increased by 20%(twelve degree centigrade) was the first condition which means the cooling and heating load was kept constant. Second condition was the water temperature difference between pumping well and recharge well confirmed and the circulating water volume increased by 20%, or the volume of circulating water kept constant and water temperature difference between pumping well and recharge well increased 20%, which means the cooling and heating load was increased. Meanwhile, in the third condition, the cooling and heating load was reduced. The water temperature difference between the pumping well and recharge well was confirmed and the volume of circulating water reduced 20%, or the water temperature difference between pumping well and recharge well reduced 20%while the circulating water volume kept constant. It was shown that there is a heat penetration phenomenon between the pumping well and recharge well in the demonstration project under the condition of design scheme, which has one pumping well and one recharge well. When the cooling and heating load of the groundwater heat pump system is confirmed, increasing 20
Numerical simulation of linear fiction welding (LFW) processes
Fratini, L.; La Spisa, D.
2011-05-01
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining "unweldable" materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries. LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Numerical simulation of a turning alpine ski during recreational skiing.
Hirano, Y; Tada, N
1996-09-01
While downhill snow skiing, recreational alpine skiers enjoy making turning motions with their skis. These motions are mainly induced by skidding, while turning by alpine ski racers is made by carving a trace in the snow. In the present study we treat the turning motions by recreational alpine skiers. This "skidding" turning motion is made possible by centripetal forces acting on the ski and skier dynamic motion systems, with these forces arising due to the skier placing the ski's longitudinal axis at an angle that is inclined away from the velocity vector and edging the ski into the snow. When snow is soft, the edged ski creates a snow impacting force, whereas a snow cutting force occurs when it is hard. Here, we calculate the former force using a three-dimensional water jet analogy, while the latter one using conventional metal cutting theory, after which the corresponding equations of motion for each system are derived and numerically solved. This methodology enables simulating the curvilinear and rotational motion of the ski and skier systems. Resultant simulations quantitatively show for the first time that the resultant radius of curvature of a ski track while downhill skiing is strongly dependent on the location of the ski boot on the ski's longitudinal axis and also on its side-cut (midlength taper).
Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection
Zi Jun Meng
2013-01-01
Full Text Available Magnetic resonance electrical impedance tomography (MREIT is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull’s low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.
Numerical simulations of MREIT conductivity imaging for brain tumor detection.
Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2013-01-01
Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.
Three-dimensional numerical modeling of nearshore circulation
SUN Detong
2008-01-01
A three-dimensional nearshore circulation model was developed by coupling CH3D, a three-dimensional hydrodynamic model and REF/DIF, a nearsbore wave transformation model. The model solves the three-dimensional wave-averaged equations of motion. Wave-induced effects on circulation were introduced in the form of radiation stresses, wave-induced mass transport, wave-induced enhancement of bottom friction and wave-induced turbulent mixing. Effects of breaking waves were considered following Svendsen (1984a and 1984b) and Stive and Wind (1986). The model was successfully tested against the analytical solution of longshore currents by Longuet and Higgins (1970). The model successfully simulated the undertow as observed in a laboratory experiment by Stive and Wind (1982). In addition, the model was applied to a physical model by Mory and Hamm (1997) and successfully reproduced the eddy behind a detached breakwater as well as the longshore current on the open beach and the contiguous eddy in the open area of the wave tank. While the qualitative agreement between model results and experimental observations was very good, the quantitative agreement needs to be further improved. Albeit difficult to explain every discrepancy between the model re- suits and observations, in general, sources of errors are attributed to the lack of understanding and comprehensive description of following processes: (1) the horizontal and vertical distribution of radiation stress, especially for breaking waves; (2) the detailed structure of turbulence;(3)Wave-current interaction (not included at this moment) ; and (4)the wave- current boundary layer and the resulting bottom shear stress.
Numerical Simulation of Cyclic Thermodynamic Processes
Andersen, Stig Kildegård
2006-01-01
and a brief overview of the current state of the art in methods for simulating such machines is presented. It was found that different simulation approaches, which model the machines with different levels of detail, currently coexist. Methods using many simplifications can be easy to use and can provide......, and with simulation results from current state of the art software, for two Stirling machines and two pulse tube coolers. Parallelised single and multiple shooting methods were studied and were found to be reliable for finding periodic steady state solutions. Multiple shooting methods had better parallel scalability...
Numerical Propulsion System Simulation for Space Transportation
Owen, Karl
2000-01-01
Current system simulations are mature, difficult to modify, and poorly documented. Probabilistic life prediction techniques for space applications are in their early application stage. Many parts of the full system, variable fidelity simulation, have been demonstrated individually or technology is available from aeronautical applications. A 20% reduction in time to design with improvements in performance and risk reduction is anticipated. GRC software development will proceed with similar development efforts in aeronautical simulations. Where appropriate, parallel efforts will be encouraged/tracked in high risk areas until success is assured.
Numerical simulation of the fractional Langevin equation
Guo Peng
2012-01-01
Full Text Available In this paper, we study the fractional Langevin equation, whose derivative is in Caputo sense. By using the derived numerical algorithm, we obtain the displacement and the mean square displacement which describe the dynamic behaviors of the fractional Langevin equation.
Numerical simulations of stellar winds: polytropic models
Keppens, R.; Goedbloed, J. P.
1999-01-01
We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spher
Numerical simulation of tyre/road noise
Schutte, Jan Henk
2011-01-01
In modern society, traffic noise has become an important issue for mental health. A significant contributor to this noise pollution is exterior tyre/road noise, which is caused by the interaction between tyre and road surface and. In order to reduce tyre/road noise at the source, accurate numerical
Detailed numerical simulations of laser cooling processes
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
Numerical investigations in three-dimensional internal flows
Rose, William C.
1988-01-01
An investigation into the use of computational fluid dynamics (CFD) was performed to examine the expected heat transfer rates that will occur within the NASA-Ames 100 megawatt arc heater nozzle. This nozzle was tentatively designed and identified to provide research for a directly connected combustion experiment specifically related to the National Aerospace Plane Program (NASP) aircraft, and is expected to simulate the flow field entering the combustor section. It was found that extremely fine grids, that is very small mesh spacing near the wall, are required to accurately model the heat transfer process and, in fact, must contain a point within the laminar sublayer if results are to be taken directly from a numerical simulation code. In the present study, an alternative to this very fine mesh and its attendant increase in computational time was invoked and is based on a wall-function method. It was shown that solutions could be obtained that give accurate indications of surface heat transfer rate throughout the nozzle in approximately 1/100 of the computer time required to do the simulation directly without the use of the wall-function implementation. Finally, a maximum heating value in the throat region of the proposed slit nozzle for the 100 megawatt arc heater was shown to be approximately 6 MW per square meter.
Numerical Simulation of a Linear Filter.
1967-05-05
spectral density function . The study determines to what degree this method simulates a linear filter. Also included are correlation analyses of equidistributed sequences which are used in the method. (Author)
Polarization transmission at RHIC, numerical simulations
Meot F.; Bai, M.; Liu, C.; Minty, M.; Ranjbar, V.
2012-05-20
Typical tracking simulations regarding the transmission of the polarization in the proton-proton collider RHIC are discussed. They participate in general studies aimed at understanding and improving polarization performances during polarized proton-proton runs.
Three-dimensional fracture simulations based on the SDA
Feist, C.; Hofstetter, G.
2007-02-01
A numerical model within the framework of a non-symmetric strong discontinuity approach (SDA) suitable for fracture simulations of plain concrete is presented. The model is based on the fixed crack concept and is formulated within the framework of elements with embedded discontinuities. Discontinuity segments of individual elements are considered to form a C0-continuous surface. Enforcement of continuity of the crack surface across adjacent elements is established by the so-called partial domain crack tracking algorithm (PDTA). Orientation of individual crack segments is derived from a non-local strain field. Within the present work emphasis is put on the formulation for the three-dimensional case. The implications on the respective algorithms are highlighted. The capabilities of the model are shown by means of numerical examples. Copyright
Numerical simulation of wheel wear evolution for heavy haul railway
王璞; 高亮
2015-01-01
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht’s material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel−rail rolling contact calculation is carried out based on Hertz’s theory and Kalker’s FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht’s model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway, dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step. Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root;while the wear of inner wheels mainly distributes around the
Numerical Improvement of The Three-dimensional Boundary Element Method
Ortiz-Aleman, C.; Gil-Zepeda, A.; SÃ¡nchez-Sesma, F. J.; Luzon-Martinez, F.
2001-12-01
Boundary element methods have been applied to calculate the seismic response of various types of geological structures. Dimensionality reduction and a relatively easy fulfillment of radiation conditions at infinity are recognized advantages over domain approaches. Indirect Boundary Element Method (IBEM) formulations give rise to large systems of equations, and the considerable amount of operations required for solving them suggest the possibility of getting some benefit from exploitation of sparsity patterns. In this article, a brief study on the structure of the linear systems derived from the IBEM method is carried out. Applicability of a matrix static condensation algorithm to the inversion of the IBEM coefficient matrix is explored, in order to optimize the numerical burden of such method. Seismic response of a 3-D alluvial valley of irregular shape, as originally proposed by Sánchez-Sesma and Luzon (1995), was computed and comparisons on time consumption and memory allocation are established. An alternative way to deal with those linear systems is the use of threshold criteria for the truncation of the coefficient matrix, which implies the solution of sparse approximations instead of the original full IBEM systems (Ortiz-Aleman et al., 1998). Performance of this optimized approach is evaluated on its application to the case of a three-dimensional alluvial basin with irregular shape. Transfer functions were calculated for the frequency range from 0 to 1.25 Hz. Inversion of linear systems by using this algorithm lead to significant saving on computer time and memory allocation relative to the original IBEM formulation. Results represent an extension in the range of application of the IBEM method.
Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code
Trent, D.S.
1973-06-01
The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.
Three-dimensional quasi-conformal transformation optics through numerical optimization.
Junqueira, Mateus A F C; Gabrielli, Lucas H; Beltrán-Mejía, Felipe; Spadoti, Danilo H
2016-07-25
In this paper we demonstrate the possibility to achieve 3-dimensional quasi-conformal transformation optics through parametrization and numerical optimization without using sliding boundary conditions. The proposed technique, which uses a quasi-Newton method, is validated in two cylindrical waveguide bends as design examples. Our results indicate an arbitrarily small average anisotropy can be achieved in 3D transformation optics as the number of degrees of freedom provided by the parametrization was increased. The waveguide simulations confirm modal preservation when the residual anisotropy is neglected.
Numerical simulation of CO{sub 2} dispersion in an auditorium
Papakonstantinou, K.A.; Kiranoudis, C.T.; Markatos, N.C. [Chemical Engineering Department, National Technical University of Athens, Athens (Greece)
2001-07-01
This paper presents the simulation of the air flow field in an auditorium. A computer fluid dynamics code is used for the numerical simulation of CO{sub 2} dispersion caused by breathing of people present in the closed space. Two different ventilation systems, air induction and abduction flow rate, the number of the people, as well as the lighting equipment are taken into account. The geometry considered is three-dimensional and the turbulence phenomena are also accounted for. (author)
Numerical Simulation of the Lightning Return Stroke.
da Frota Mattos, Marcos Andre
Available from UMI in association with The British Library. Requires signed TDF. Several lightning return stroke models were developed in this work. Initially very simple models were developed, and subsequently many of the main features of the channel were added. The corona effect, the geometrical parameters, non-linear losses and the cloud losses are these features. To solve the RLC network model of the channel the numerical technique known as TLM was used. A numerical sensitivity study was made to analyse the influence of the filtering and the Gibbs effects on the results. A sensitivity study of the channel's parameters was also made. For the first time three of the main measured lightning channel quantities were calculated showing good agreement with observations. These quantities are the electromagnetic field, current waveshape at ground and the velocity of propagation. The surge impedence and the current rise-time were also calculated at all heights.
Numerical Simulation of Oil Spill in Ocean
Yong-Sik Cho
2012-01-01
Full Text Available The spreading of oil in an open ocean may cause serious damage to a marine environmental system. Thus, an accurate prediction of oil spill is very important to minimize coastal damage due to unexpected oil spill accident. The movement of oil may be represented with a numerical model that solves an advection-diffusion-reaction equation with a proper numerical scheme. In this study, the spilled oil dispersion model has been established in consideration of tide and tidal currents simultaneously. The velocity components in the advection-diffusion-reaction equation are obtained from the shallow-water equations. The accuracy of the model is verified by applying it to a simple but significant problem. The results produced by the model agree with corresponding analytical solutions and field-observed data. The model is then applied to predict the spreading of an oil spill in a real coastal environment.
Numerical Simulation of Piston Ring Lubrication
Felter, Christian Lotz
2006-01-01
This paper describes a numerical method that can be used to model the lubrication of piston rings. Classical lubrication theory is based on the Reynolds equation which is ap- plicable to confined geometries and open geometries where the flooding conditions are known. Lubrication of piston rings...... is extended to include also the oil film outside the piston rings. The numerical model consists of a 2D free surface code that solves the time dependent compressible Navier-Stokes equations. The equations are cast in Lagrangian form and discretized by a meshfree moving least squares method using the primitive......, however, fall outside this category of problems since the piston rings might suffer from starved running conditions. This means that the com- putational domain where Reynold equation is applicable (including a cavitation criteria) is unknown. In order to overcome this problem the computational domain...
MATHEMATICAL MODELS AND NUMERICAL SIMULATION FOR DENSE PARTICULATE FLOWS
WU Chun-liang
2004-01-01
Sedimentation of particles in inclined and vertical vessels is numerically simulated by the Eulerian two-fluid model. The numerical results show an interesting phenomenon with two circulation vortexes in a vertical vessel but one in the inclined vessel. Sensitivity tests indicate that the boundary layer effect is the key to induce this phenomenon. A numerical method based on 2D unstructured meshes is presented to solve the hard-sphere discrete particle model. Several applications show the numerical method has a good performance to simulate dense particulate flows in irregular domains without regard to element types of the mesh.
Numerical simulation of AM1 microstructure
Rougier Luc
2014-01-01
Full Text Available A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate radius during isothermal heat treatments at 1100 ∘C and 1210 ∘C. The chained microsegregation and precipitation simulations indicate that the global sequences of precipitation events remains are qualitatively the same at the different locations in the microstructure, but the growth and dissolution kinetics are strongly influenced by the local compositions. Local supersaturations have a larger effect on the average radius of the precipitates than certain stages of the precipitation heat treatment.
Numerical simulation of hot stamping of side impact beam
Guo Yihui; Ma Mingtu; Fang Gang; Song Leifeng; Liu Qiang; Wang Xiaona; Zhou Dianwu
2012-01-01
Ls-DYNA software is adopted to conduct research of numerical simulation on hot stamping of side impact beam to calculate the temperature field distribution, stress field distribution, forming limit diagram (FLD) figure, etc. in the course of hot stamping so as to predict and analyze the formability of parts. ProCAST software is employed to conduct research of numerical simulation on solid quenching course concerning hot stamping to calculate temperature field distri- bution of tools and component of muhiple stamping cycles. The results obtained from numerical simulation can provide significant reference value to hot stamping part design, formability predication and tools cooling system design.
Numerical analysis of the three-dimensional cloud cavitating flow around a twisted hydrofoil
Park, Sunho; Hyung Rhee, Shin, E-mail: shr@snu.ac.kr [Department of Naval Architecture and Ocean Engineering, Research Institute of Marine Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)
2013-02-15
Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using a Reynolds-averaged Navier-Stokes simulation technique based on a cell-centered finite volume method. As a verification test of the computational method, the leading edge and mid-chord cavitating flows over a two-dimensional modified NACA66 foil section were simulated for various cavitation numbers and validated against existing experimental data. The cavitation model parameters and numerical schemes were determined by a comparison with the measured pressure distribution. Non-cavitating and cavitating flows around a three-dimensional twisted hydrofoil were simulated with the selected computational method. The computed pressure on the foil and the cavity shedding patterns were validated by comparing these results with existing experimental data. The cavity shedding dynamics due to a re-entrant jet and a side entrant jet were investigated in terms of the cavity shedding cycles. The computed lift force and Strouhal number were compared against existing experimental data. (paper)
Numerical earthquake simulations for seismic hazard assessment
Ismail-Zadeh, Alik; Sokolov, Vladimir; Soloviev, Alexander
2017-04-01
A comprehensive seismic hazard assessment can contribute to earthquake preparedness and preventive measures aimed to reduce impacts of earthquakes, especially in the view of growing population and increasing vulnerability and exposure. Realistic earthquake simulations coupled with a seismic hazard analysis can provide better assessments of potential ground shaking due to large earthquakes. We present a model of block-and-fault dynamics, which simulates earthquakes in response to lithosphere movements and allows for studying the influence of fault network properties on seismic patterns. Using case studies (e.g., the Tibet-Himalayan region and the Caucasian region), we analyse the model's performance in terms of reproduction of basic features of the observed seismicity, such as the frequency-magnitude relationship, clustering of earthquakes, occurrences of large events, fault slip rates, and earthquake mechanisms. We examine a new approach to probabilistic seismic hazard assessment, which is based on instrumentally recorded, historical and simulated earthquakes. Based on predicted and observed peak ground acceleration values, we show that the hazard level associated with large events significantly increases if the long record of simulated seismicity is considered in the hazard assessment.
Pseudo-reconnection in MHD numerical simulation
无
2000-01-01
A class of pseudo-reconnections caused by a shifted mesh in magnetohydrodynamics (MHD) simulations is reported. In terms of this mesh system, some non-physical results may be obtained in certain circumstances, e.g. magnetic reconnection occurs without resistivity. After comparison, another kind of mesh is strongly recommended.
Numerical simulations of nanostructured gold films
Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.
2017-01-01
We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...
NUMERICAL SIMULATION OF SCOURING PROCESS UNDER SPILLWAY
无
2001-01-01
The scour problem under spillway has received a lot of attention in the past decades. For such a complicated problem, most numerical modeling presented only dealt with the water flows in equilibrium scour pools without considering the changing topography of the riverbed. In this paper, the dynamic process is handled with moving grids, and the governing equations are solved using finite volume method with colocated variable arrangement on boundary-fitted non-orthogonal grids. The results show that the given method is efficient, with which the variation of flow parameters, such as mean velocity and mean pressure, etc., can be computed correctly.
杨侠; 罗燕; 郭嘉; 张捷; 吴艳阳
2011-01-01
The three-dimensional flow field of vertical circulative impinging stream reactor was simulated. The results show that the velocity and pressure distribution in it are symmetrical to the impinging plane and stagnation surface, and prove the existence of dead bands on right and left sides of the draft tube and in the impinging zone; because of the guiding of the draft tube, the max. velocity in x-axis of impinging zone can appear near the wall of the draft tube, and the dimensional coefficient K defined as the mixing efficiency at the initial velocity of different impinging streams can change with the increase of the initial velocity( u0 ), and of which,K fluctuates lightly while the initial velocity ranges between 0.1 and 0.3m/s and increases smoothly while the initial velocity exceeds 0.3m/s.%利用Fluent软件对立式循环撞击流反应器三堆流场进行数值模拟和分析.立式循环撞击流反应器内速度场和压力场分布关于撞击面对称,证实了驻面的存在,导流筒外侧和撞击面边缘存在死区;由于导流筒对流体引导作用,撞击区水平面x轴上速度最大的点出现在导流筒近壁面位置;定义了表征不同撞击流初始速度下混合效率无量纲系数k,且k值随撞击流初始速度μo增加而增大,其中在0.1-0.3m/s之间有小幅波动.大于0.3m/s后增幅平稳.
Numerical Simulation of Rotating Vertical Bridgman Growth
S. Nouri
2016-01-01
Full Text Available The present work is proposed a numerical parametric study of heat and mass transfer in a rotating vertical cylinder during the solidification of a binary metallic alloy. The aim of this paper is to present an enthalpy formulation based on the fixed grid methodology for the numerical solution of convective-diffusion during the phase change in the case of the steady crucible rotation. The extended Darcy model including the time derivative and Coriolis terms was applied as momentum equation. It was found that the buoyancy driven flow and solute distribution can be affected significantly by the rotating cylinder. The problem is governed by the Navier-Stokes equations coupled with the conservation laws of energy and solute. The resulting system was discretized by the control volume method and solved by the SIMPLER algorithm proposed by Patankar. A computer code was developed and validated by comparison with previous studies. It can be observed that the forced convection introduced by rotation, dramatically changes the flow and solute distribution at the interface (liquid-mushy zone. The effect of Reynolds number on the Nusselt number, flow and solute distribution is presented and discussed.
Numerical simulation of avascular tumor growth
Slezak, D Fernandez; Suarez, C; Soba, A; Risk, M; Marshall, G [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (C1428EGA) Buenos Aires (Argentina)
2007-11-15
A mathematical and numerical model for the description of different aspects of microtumor development is presented. The model is based in the solution of a system of partial differential equations describing an avascular tumor growth. A detailed second-order numeric algorithm for solving this system is described. Parameters are swiped to cover a range of feasible physiological values. While previous published works used a single set of parameters values, here we present a wide range of feasible solutions for tumor growth, covering a more realistic scenario. The model is validated by experimental data obtained with a multicellular spheroid model, a specific type of in vitro biological model which is at present considered to be optimum for the study of complex aspects of avascular microtumor physiology. Moreover, a dynamical analysis and local behaviour of the system is presented, showing chaotic situations for particular sets of parameter values at some fixed points. Further biological experiments related to those specific points may give potentially interesting results.
Radiative Transfer in 3D Numerical Simulations
Stein, R; Stein, Robert; Nordlund, Aake
2002-01-01
We simulate convection near the solar surface, where the continuum optical depth is of order unity. Hence, to determine the radiative heating and cooling in the energy conservation equation, we must solve the radiative transfer equation (instead of using the diffusion or optically thin cooling approximations). A method efficient enough to calculate the radiation for thousands of time steps is needed. We assume LTE and a non-gray opacity grouped into 4 bins according to strength. We perform a formal solution of the Feautrier equation along a vertical and four straight, slanted, rays (at four azimuthal angles which are rotated 15 deg. every time step). We present details of our method. We also give some results: comparing simulated and observed line profiles for the Sun, showing the importance of 3D transfer for the structure of the mean atmosphere and the eigenfrequencies of p-modes, illustrating Stokes profiles for micropores, and analyzing the effect of radiation on p-mode asymmetries.
Numerical simulation of imaging laser radar system
Han, Shaokun; Lu, Bo; Jiang, Ming; Liu, Xunliang
2008-03-01
Rational and effective design of imaging laser radar systems is the key of imaging laser radar system research. Design must fully consider the interrelationship between various parameters. According to the parameters, choose suitable laser, detector and other components. To use of mathematical modeling and computer simulation is an effective imaging laser radar system design methods. This paper based on the distance equation, using the detection statistical methods, from the laser radar range coverage, detection probability, false-alarm rate, SNR to build the laser radar system mathematical models. In the process of setting up the mathematical models to fully consider the laser, atmosphere, detector and other factors on the performance that is to make the models be able to respond accurately the real situation. Based on this using C# and Matlab designed a simulation software.
Numerical simulation of the LAGEOS thermal behavior and thermal accelerations
Andrés, J.I.; Noomen, R.; Vecellio None, S.
2006-01-01
The temperature distribution throughout the LAGEOS satellites is simulated numerically with the objective to determine the resulting thermal force. The different elements and materials comprising the spacecraft, with their energy transfer, have been modeled with unprecedented detail. The radiation i
Numerical simulation for SI model with variable-order fractional
mohamed mohamed
2016-04-01
Full Text Available In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-Moulton algorithm has been extended to study this problem, where the derivative is defined in the Caputo variable-order fractional sense. Special attention is given to prove the error estimate of the proposed method. Numerical test examples are presented to demonstrate utility of the method. Chaotic behaviors are observed in variable-order one dimensional delayed systems.
Joseph Harari
1985-01-01
Full Text Available A three-dimensional linear hydrodynamical numerical model, Heaps type, was developed and applied to the southeastern Brazilian continental shelf, to simulate motions in the sea due to astronomical and meteorological effects. The first experiment of the model reproduced the propagation of the principal lunar tidal component (M2, allowing the plotting of its cotidal lines and current ellipses. In the second experiment, the circulation generated by astronomical factors only was simulated. And in the third experiment, the effect of the principal astronomical tidal components and meteorological effects observed in the area were reproduced, representing the total circulation in the shelf, in a period of high tidal elevations in the coast, due to the incursion of a deep cold front in this region.
Numerical computation of the critical energy constant for two-dimensional Boussinesq equations
Kolkovska, N.; Angelow, K.
2015-10-01
The critical energy constant is of significant interest for the theoretical and numerical analysis of Boussinesq type equations. In the one-dimensional case this constant is evaluated exactly. In this paper we propose a method for numerical evaluation of this constant in the multi-dimensional cases by computing the ground state. Aspects of the numerical implementation are discussed and many numerical results are demonstrated.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Numerical Simulation of a Negative Impulsive Wave
ToshiakiSETOGUCHI; ShenYU; 等
1996-01-01
A compression wave discharged from an open end of a tube causes positive impulsive noise,Active noise cancellation which is the cancelling of the noise by the addition of an inverse wave is a useful technique for reducing impulsive noise,The main objective of this study is to present the design for a negative impulsive wave generator utilizing unsteady mass influx.In this paper,in order to clarify the relationship between the unsteady mass influx and the negative impulsive wave,numerical and aeroacoustic analyses have been carried out using an unsteady expansion wave discharged from an open end of a shock tube.As a result,the effect of an unsteady expansion wave on a negative impulsive wave was charified.
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Numerical simulations of stellar winds polytropic models
Keppens, R
1999-01-01
We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the...
Numerical simulation of distributed parameter processes
Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad
2013-01-01
The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...
Vector Potential Generation for Numerical Relativity Simulations
Silberman, Zachary; Faber, Joshua; Adams, Thomas; Etienne, Zachariah; Ruchlin, Ian
2017-01-01
Many different numerical codes are employed in studies of highly relativistic magnetized accretion flows around black holes. Based on the formalisms each uses, some codes evolve the magnetic field vector B, while others evolve the magnetic vector potential A, the two being related by the curl: B=curl(A). Here, we discuss how to generate vector potentials corresponding to specified magnetic fields on staggered grids, a surprisingly difficult task on finite cubic domains. The code we have developed solves this problem in two ways: a brute-force method, whose scaling is nearly linear in the number of grid cells, and a direct linear algebra approach. We discuss the success both algorithms have in generating smooth vector potential configurations and how both may be extended to more complicated cases involving multiple mesh-refinement levels. NSF ACI-1550436
王涛; 施周; 周石庆; 陆先镭
2012-01-01
利用计算流体力学软件Fluent,结合标准κ-ε模型和组分输运模型,建立了臭氧接触池和清水池的三维紊流模型;通过计算流体的停留时间分布曲线（RTD）,对臭氧接触池的水力效率进行了模拟研究。在此基础上,提出了在清水池前段第一廊道设置臭氧接触池的合建方案。结果表明：单一的臭氧接触池水力效率较低,T10/HRT值仅为0.42;而臭氧接触池与清水池经过合建后,T10/HRT值达到0.65,其臭氧消毒水力效率提高了55%。%The computational fluid dynamics software Fluent was adopted to build the three dimensional model of ozone contactor and clear water tank,and a standard κ-ε model and a species transport model were employed.An optimized simulation of the hydraulic efficiency for ozone contactor and clear water tank was conducted through simulating and calculating the retention time distribution(RTD) curve.And on the above basis,the modified design of setting an ozone contactor in the first corridor of clear water tank was proposed.The results of our experiments indicated that the single ozone contactor had a low hydraulic efficiency with the T10/HRT=0.42.However,after the optimization of design by combining the clear water tank and the ozone contactor,the hydraulic efficiency increased by 55%,and the value of T10/HRT reached up to 0.65.
螺旋埋弧焊管焊接过程的三维数值模拟%Three-dimensional Numerical Simulation of Spiral Welded Pipe Submerged-arc Welding
晁利宁; 毕宗岳; 鲜林云; 余晗; 张晓峰; 张国超; 李鸿斌; 汪海涛; 马璇
2014-01-01
By using large-scale general finite element analysis software ABAQUS, the finite element calculation model of spiral welded pipe two-wire submerged arc welding temperature field was built. The inside and outside welding process of spiral welded pipe two-wire submerged arc welding was simulated based on welding subroutine DFLUX which was compiled by FORTRAN language, combined with the element of birth and death technology in three-dimensional finite element method. It also realized finite element calculation under moving heat source load, and obtained temperature fields distribution in welding process, after cooling down, and in the full pipe body. The results indicated that during welding process, the temperature gradient near weld is large;it is tend to smooth transition far away from the weld. With welding heat source moving, the temperature center also move, the highest temperature can reach the melting point of base metal. Through the experiment, it is consistent with simulation results.%利用大型通用有限元分析软件ABAQUS，建立了螺旋焊管双丝埋弧焊温度场的有限元计算模型。通过ABAQUS软件的FORTRAN语言编写焊接子程序DFLUX，结合“生死”单元技术，模拟了螺旋焊管双丝埋弧焊的内外焊接过程，实现在移动热源载荷下的有限元计算，获得了焊接过程和冷却后的温度场分布，以及在整个管体上的分布情况。结果表明，在焊接过程中焊缝附近温度梯度很大，在远离焊缝的地方温度梯度渐渐趋于平缓；随着热源的移动，温度中心也随之移动，最高温度可达母材的熔点。通过试验验证，与仿真结果比较吻合。
Numerical Simulations of a Possible Hypercomputational Quantum Algorithm
Sicard, Andrés; Ospina, Juan; Vélez, Mario
2005-01-01
The hypercomputers compute functions or numbers, or more generally solve problems or carry out tasks, that cannot be computed or solved by a Turing machine. Several numerical simulations of a possible hypercomputational algorithm based on quantum computations previously constructed by the authors are presented. The hypercomputability of our algorithm is based on the fact that this algorithm could solve a classically non-computable decision problem, Hilbert's tenth problem. The numerical simul...
Numerical Simulation of Physical and Chemical Processes in Fluidized Bed
Baturin, D. A.; Gil, A. V.
2015-10-01
The paper presents a numerical simulation of the furnace with a circulating fluidized bed. Numerical study carried out for the bottom of the combustion chamber with the varying heights of volume filling. The results contours of particulate matter concentration and of velocities, as well as a graphical representation of changes in the concentration of particles on the bed height are shown. Simulation performed in Eulerian - Eulerian representation on a 2D model.
Numerical simulation of thermo-mechanical fatigue properties for particulate reinforced composites
Ran Guo; Huiji Shi; Zhenhan Yao
2005-01-01
In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites.The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermomechanical behavior. Some related conclusions are obtained by examples of numerical simulation.
于彦东; 张凯锋; 郑海荣; 蒋大鸣
2003-01-01
The cavity growth was studied in uniaxial tension of superplastic magnesium alloy. An exponentially increasing cavity growth model was introduced into the numerical simulation effectively. A three-dimensional rigid visco-plastic finite element method (FEM) program was developed to predict the variation of radius and volume fraction of cavity. Experimental radius and volume fraction of cavity were determined based on the optical microscope observation and analyses. The values obtained by numerical simulation are perfectly in agreement with experimental results. The results are potentially helpful to designing the optimal processing parameters for superplastic forming of materials and to enhance their subsequent mechanical properties.
A numerical relativity scheme for cosmological simulations
Daverio, David; Mitsou, Ermis
2016-01-01
Fully non-linear cosmological simulations may prove relevant in understanding relativistic/non-linear features and, therefore, in taking full advantage of the upcoming survey data. We propose a new 3+1 integration scheme which is based on the presence of a perfect fluid (hydro) field, evolves only physical states by construction and passes the robustness test on an FLRW space-time. Although we use General Relativity as an example, the idea behind that scheme is applicable to any generally-covariant modified gravity theory and/or matter content, including a N-body sector.
Numerical simulations of cardiovascular diseases and global matter transport
Simakov, S S; Evdokimov, A V; Kholodov, Y A
2007-01-01
Numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. They combined together into the global model of blood circulation. Some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.
NUMERICAL SIMULATION OF TRANSIENT THERMAL FIELD IN LASER MELTING PROCESS
姚国凤; 陈光南
2004-01-01
Numerical simulation of thermal field was studied in laser processing. The 3 -D finite element model of transient thermal calculation is given by thermal conductive equation.The effects of phase transformation latent are considered. Numerical example is given to verify the model. Finally the real example of transient thermal field is given.
Stochastic Analysis Method of Sea Environment Simulated by Numerical Models
刘德辅; 焦桂英; 张明霞; 温书勤
2003-01-01
This paper proposes the stochastic analysis method of sea environment simulated by numerical models, such as wave height, current field, design sea levels and longshore sediment transport. Uncertainty and sensitivity analysis of input and output factors of numerical models, their long-term distribution and confidence intervals are described in this paper.
Numerical simulations of downward convective overshooting in giants
Tian, Chun-Lin; Chan, Kwing-Lam
2016-01-01
An attempt at understanding downward overshooting in the convective envelopes of post-main-sequence stars has been made on the basis of three-dimensional large-eddy simulations, using artificially modified OPAL opacity and taking into account radiation and ionization in the equation of state. Two types of star, an intermediate-mass star and a massive star, were considered. To avoid a long thermal relaxation time of the intermediate-mass star, we increased the stellar energy flux artificially while trying to maintain a structure close to the one given by a 1D stellar model. A parametric study of the flux factor was performed. For the massive star, no such process was necessary. Numerical results were analysed when the system reached the statistical steady state. It was shown that the penetration distance in pressure scaleheights is of the order of unity. The scaling relations between penetration distance, input flux and vertical velocity fluctuations studied by Singh et al. were checked. The anisotropy of the ...
Numerical Simulation and Scaling Analysis of Cell Printing
Qiao, Rui; He, Ping
2011-11-01
Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.
Numerical and laboratory simulations of auroral acceleration
Gunell, H.; De Keyser, J. [1Belgian Institute for Space Aeronomy, Avenue Circulaire 3, B-1180 Brussels (Belgium); Mann, I. [EISCAT Scientific Association, P.O. Box 812, SE-981 28 Kiruna, Sweden and Department of Physics, Umeå University, SE-901 87 Umeå (Sweden)
2013-10-15
The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.
Numerical Simulations of a Flux Rope Ejection
P. Pagano; D. H. Mackay; S. Poedts
2015-03-01
Coronal mass ejections (CMEs) are the most violent phenomena observed on the Sun. One of the most successful models to explain CMEs is the flux rope ejection model, where a magnetic flux rope is expelled from the solar corona after a long phase along which the flux rope stays in equilibrium while magnetic energy is being accumulated. However, still many questions are outstanding on the detailed mechanism of the ejection and observations continuously provide new data to interpret and put in the context. Currently, extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. In particular, observations show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. However, these observations are difficult to interpret in terms of basic physical mechanisms and quantities, thus, we need to compare equivalent quantities to test and improve our models. In our work, we intend to bridge the gap between models and observations with our model of flux rope ejection where we consistently describe the full life span of a flux rope from its formation to ejection. This is done by coupling the global non-linear force-free model (GNLFFF) built to describe the slow low- formation phase, with a full MHD simulation run with the software MPI-AMRVAC, suitable to describe the fast MHD evolution of the flux rope ejection that happens in a heterogeneous regime. We also explore the parameter space to identify the conditions upon which the ejection is favoured (gravity stratification and magnetic field intensity) and we produce synthesised AIA observations (171 Å and 211 Å). To carry this out, we run 3D MHD simulation in spherical coordinates where we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. Our model of flux
考虑破碎的堆石料二维颗粒流数值模拟%Numerical simulation of two-dimensional particle flow in broken rockfill materials
韩洪兴; 陈伟; 邱子锋; 傅旭东
2016-01-01
Rockfill materials are easily broken under external force. Based on the single particle crushing mechanism, the indestructible defect is simulated in particle of rockfill materials depending on the generated particles cluster units to overcome rigid circular particle. A broken numerical model for particle of rockfill materials is established by adopting the linear contact model. Indoor plane strain tests are simulated. The internal contact force, micro crack and a variety of energy changes in rockfill materials are analyzed under the loading process. The breakage mechanism for particle of rockfill materials is investigated. The results show that the numerical sample generated by particle clusters can more truly reflect the breakage of particle of rockfill materials through the internal bond strength fracture. The breakage of particle of rockfill materials occurs first in the large particle size and contact force larger particles, then gradually to direction of the maximum pressure, finally shear fracture sliding plane is generated. The number of shear micro crack is greater than that of tensile micro crack throughout the whole loading process, the particle breakage mainly is shear failure, and a lot of particle breakage is produced near the peak point. The total input energy stores in particle cluster in the form of elastic strain energy under small deformation. The elastic strain energy can be converted to other forms of energy dissipation in the form of storage release under large deformation. The research results can provide reference for the study on the deformation of rockfill dams.%堆石料在外力作用下极易发生破碎，基于单颗粒破碎机制，依靠生成的颗粒簇单元克服刚性圆形颗粒模拟堆石料颗粒不能破碎的缺陷，采用线性接触模型建立堆石料颗粒破碎的数值模型。模拟室内平面应变试验，分析堆石料在整个加载过程中内部接触力、微裂纹和各种能量的变化，探讨堆