Examples of integrable and non-integrable systems on singular symplectic manifolds
Delshams, Amadeu; Kiesenhofer, Anna; Miranda, Eva
2017-05-01
We present a collection of examples borrowed from celestial mechanics and projective dynamics. In these examples symplectic structures with singularities arise naturally from regularization transformations, Appell's transformation or classical changes like McGehee coordinates, which end up blowing up the symplectic structure or lowering its rank at certain points. The resulting geometrical structures that model these examples are no longer symplectic but symplectic with singularities which are mainly of two types: bm-symplectic and m-folded symplectic structures. These examples comprise the three body problem as non-integrable exponent and some integrable reincarnations such as the two fixed-center problem. Given that the geometrical and dynamical properties of bm-symplectic manifolds and folded symplectic manifolds are well-understood [10-12,9,15,13,14,24,20,22,25,28], we envisage that this new point of view in this collection of examples can shed some light on classical long-standing problems concerning the study of dynamical properties of these systems seen from the Poisson viewpoint.
Periodic trajectories for two-dimensional nonintegrable Hamiltonians
International Nuclear Information System (INIS)
Davies, K.T.R.
1990-02-01
I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs
Canonical and symplectic analysis for three dimensional gravity without dynamics
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)
2017-03-15
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Periodic trajectories for a two-dimensional nonintegrable Hamiltonian
International Nuclear Information System (INIS)
Baranger, M.; Davies, K.T.R.
1987-01-01
A numerical study is made of the classical periodic trajectories for the two-dimensional nonintegrable Hamiltonian H = 1/2(p 2 /sub x/+p 2 /sub y/)+(y-1/2x 2 ) 2 +0.05 x 2 . In addition to x--y pictures of the trajectories, E--tau (energy--period) plots of the periodic families are presented. Efforts have been ade to include all trajectories with short periods and all simple branchings of these trajectories. The monodromy matrix has been calculated in all cases, and from it the stability properties are derived. The topology of the E--tau plot has been explored, with the following results. One family may have several stable regions. The plot is not completely connected; there are islands. The plot is not a tree; there are cycles. There are isochronous branchings, period-doublings, and period-multiplyings of higher orders, and examples of each of these are presented. There is often more than one branch issuing from a branch point. Some general empirical rules are inferred. In particular, the existence of isochronous branching is seen to be a consequence of the symmetry of the Hamiltonian. All these results agree with the general classification of possible branchings derived in Ref. [10]. (M. A. M. de Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies, in preparation). Finally, some nonperiodic trajectories are calculated to illustrate the fact that stable periodic trajectories lie in ''regular'' regions of phase space, while unstable ones lie in ''chaotic'' regions
Signatures of chaos and non-integrability in two-dimensional gravity with dynamical boundary
Directory of Open Access Journals (Sweden)
Fitkevich Maxim
2016-01-01
Full Text Available We propose a model of two-dimensional dilaton gravity with a boundary. In the bulk our model coincides with the classically integrable CGHS model; the dynamical boundary cuts of the CGHS strong-coupling region. As a result, classical dynamics in our model reminds that in the spherically-symmetric gravity: wave packets of matter fields either reflect from the boundary or form black holes. We find large integrable sector of multisoliton solutions in this model. At the same time, we argue that the model is globally non-integrable because solutions at the verge of black hole formation display chaotic properties.
International Nuclear Information System (INIS)
Chang, P.; Lee, S.Y.; Yan, Y.T.
2006-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
International Nuclear Information System (INIS)
Chang, P
2004-01-01
A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders
Construction of nonlinear symplectic six-dimensional thin-lens maps by exponentiation
Heinemann, K; Schmidt, F
1995-01-01
The aim of this paper is to construct six-dimensional symplectic thin-lens transport maps for the tracking program SIXTRACK, continuing an earlier report by using another method which consistes in applying Lie series and exponentiation as described by W. Groebner and for canonical systems by A.J. Dragt. We firstly use an approximate Hamiltonian obtained by a series expansion of the square root. Furthermore, nonlinear crossing terms due to the curvature in bending magnets are neglected. An improved Hamiltonian, excluding solenoids, is introduced in Appendix A by using the unexpanded square root mentioned above, but neglecting again nonlinear crossing terms...
Associated symplectic and co-symplectic structures
International Nuclear Information System (INIS)
Frescura, F.A.M.; Lubczonok, G.
1991-01-01
In a recent article, the authors introduced a new geometric structure which they proposed to call co-symplectic geometry. This structure is based on a symmetric bilinear form of signature zero and leads to a geometry that is, in many respects, analogous to the symplectic geometry. Its usefulness lies principally in the fact that it provides scope for the geometrization of a number of familiar structures in physics which are not so easily amenable by the methods of symplectic geometry. These include the angular momentum operators of quantum theory, the Dirac operators in relativistic quantum field theory. It is anticipated that, in conjunction with the more familiar symplectic geometry, the co-symplectic geometry will go some way to providing the tools necessary for a full geometrization of physics. In this paper, a co-symplectic structure on the cotangent bundle T * X of an arbitrary manifold X is defined, and the notion of associated symplectic and co-symplectic structures is introduced. By way of example, the two-dimensional case is considered in some detail. The general case is investigated, and some implications of these results for polarizations in geometric quantization are considered
Contact and symplectic topology
Colin, Vincent; Stipsicz, András
2014-01-01
Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.
International Nuclear Information System (INIS)
De Nicola, Sergio; Fedele, Renato; Man'ko, Margarita A; Man'ko, Vladimir I
2007-01-01
The tomographic-probability description of quantum states is reviewed. The symplectic tomography of quantum states with continuous variables is studied. The symplectic entropy of the states with continuous variables is discussed and its relation to Shannon entropy and information is elucidated. The known entropic uncertainty relations of the probability distribution in position and momentum of a particle are extended and new uncertainty relations for symplectic entropy are obtained. The partial case of symplectic entropy, which is optical entropy of quantum states, is considered. The entropy associated to optical tomogram is shown to satisfy the new entropic uncertainty relation. The example of Gaussian states of harmonic oscillator is studied and the entropic uncertainty relations for optical tomograms of the Gaussian state are shown to minimize the uncertainty relation
Energy Technology Data Exchange (ETDEWEB)
Chuang, Wu-yen; Kachru, Shamit; /Stanford U., ITP /SLAC; Tomasiello, Alessandro; /Stanford U., ITP
2005-10-28
We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.
The Maslov index in symplectic Banach spaces
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm; Zhu, Chaofeng
. Using such decompositions the authors define the Maslov index of the curve by symplectic reduction to the classical finite-dimensional case. The authors prove the transitivity of repeated symplectic reductions and obtain the invariance of the Maslov index under symplectic reduction while recovering all...... for varying well-posed boundary conditions on manifolds with boundary and obtain the splitting formula of the spectral flow on partitioned manifolds....
The Maslov index in symplectic Banach spaces
Booss-Bavnbek, Bernhelm
2018-01-01
The authors consider a curve of Fredholm pairs of Lagrangian subspaces in a fixed Banach space with continuously varying weak symplectic structures. Assuming vanishing index, they obtain intrinsically a continuously varying splitting of the total Banach space into pairs of symplectic subspaces. Using such decompositions the authors define the Maslov index of the curve by symplectic reduction to the classical finite-dimensional case. The authors prove the transitivity of repeated symplectic reductions and obtain the invariance of the Maslov index under symplectic reduction while recovering all the standard properties of the Maslov index. As an application, the authors consider curves of elliptic operators which have varying principal symbol, varying maximal domain and are not necessarily of Dirac type. For this class of operator curves, the authors derive a desuspension spectral flow formula for varying well-posed boundary conditions on manifolds with boundary and obtain the splitting formula of the spectral f...
Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics
Webb, G. M.; Anco, S. C.
2016-02-01
The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.
On local invariants of singular symplectic forms
Domitrz, Wojciech
2017-04-01
We find a complete set of local invariants of singular symplectic forms with the structurally stable Martinet hypersurface on a 2 n-dimensional manifold. In the C-analytic category this set consists of the Martinet hypersurface Σ2, the restriction of the singular symplectic form ω to TΣ2 and the kernel of ω n - 1 at the point p ∈Σ2. In the R-analytic and smooth categories this set contains one more invariant: the canonical orientation of Σ2. We find the conditions to determine the kernel of ω n - 1 at p by the other invariants. In dimension 4 we find sufficient conditions to determine the equivalence class of a singular symplectic form-germ with the structurally smooth Martinet hypersurface by the Martinet hypersurface and the restriction of the singular symplectic form to it. We also study the singular symplectic forms with singular Martinet hypersurfaces. We prove that the equivalence class of such singular symplectic form-germ is determined by the Martinet hypersurface, the canonical orientation of its regular part and the restriction of the singular symplectic form to its regular part if the Martinet hypersurface is a quasi-homogeneous hypersurface with an isolated singularity.
Conformal transformation and symplectic structure of self-dual fields
International Nuclear Information System (INIS)
Yang Kongqing; Luo Yan
1996-01-01
Considered two dimensional self-dual fields, the symplectic structure on the space of solutions is given. It is shown that this structure is Poincare invariant. The Lagrangian of two dimensional self-dual field is invariant under infinite one component conformal group, then this symplectic structure is also invariant under this conformal group. The conserved currents in geometrical formalism are also obtained
Polynomial field theories and nonintegrability
International Nuclear Information System (INIS)
Euler, N.; Steeb, W.H.; Cyrus, K.
1990-01-01
The nonintegrability of the nonlinear field equation v ηξ = v 3 is studied with the help of the Painleve test. The condition at the resonance is discussed in detail. Particular solutions are given. (orig.)
Classical Mechanics and Symplectic Integration
DEFF Research Database (Denmark)
Nordkvist, Nikolaj; Hjorth, Poul G.
2005-01-01
Content: Classical mechanics: Calculus of variations, Lagrange’s equations, Symmetries and Noether’s theorem, Hamilton’s equations, cannonical transformations, integrable systems, pertubation theory. Symplectic integration: Numerical integrators, symplectic integrators, main theorem on symplectic...
Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity
Bridges, Thomas J.; Reich, Sebastian
2001-06-01
The symplectic numerical integration of finite-dimensional Hamiltonian systems is a well established subject and has led to a deeper understanding of existing methods as well as to the development of new very efficient and accurate schemes, e.g., for rigid body, constrained, and molecular dynamics. The numerical integration of infinite-dimensional Hamiltonian systems or Hamiltonian PDEs is much less explored. In this Letter, we suggest a new theoretical framework for generalizing symplectic numerical integrators for ODEs to Hamiltonian PDEs in R2: time plus one space dimension. The central idea is that symplecticity for Hamiltonian PDEs is directional: the symplectic structure of the PDE is decomposed into distinct components representing space and time independently. In this setting PDE integrators can be constructed by concatenating uni-directional ODE symplectic integrators. This suggests a natural definition of multi-symplectic integrator as a discretization that conserves a discrete version of the conservation of symplecticity for Hamiltonian PDEs. We show that this approach leads to a general framework for geometric numerical schemes for Hamiltonian PDEs, which have remarkable energy and momentum conservation properties. Generalizations, including development of higher-order methods, application to the Euler equations in fluid mechanics, application to perturbed systems, and extension to more than one space dimension are also discussed.
Symplectic Maps from Cluster Algebras
Directory of Open Access Journals (Sweden)
Allan P. Fordy
2011-09-01
Full Text Available We consider nonlinear recurrences generated from the iteration of maps that arise from cluster algebras. More precisely, starting from a skew-symmetric integer matrix, or its corresponding quiver, one can define a set of mutation operations, as well as a set of associated cluster mutations that are applied to a set of affine coordinates (the cluster variables. Fordy and Marsh recently provided a complete classification of all such quivers that have a certain periodicity property under sequences of mutations. This periodicity implies that a suitable sequence of cluster mutations is precisely equivalent to iteration of a nonlinear recurrence relation. Here we explain briefly how to introduce a symplectic structure in this setting, which is preserved by a corresponding birational map (possibly on a space of lower dimension. We give examples of both integrable and non-integrable maps that arise from this construction. We use algebraic entropy as an approach to classifying integrable cases. The degrees of the iterates satisfy a tropical version of the map.
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Collective symplectic integrators
International Nuclear Information System (INIS)
McLachlan, Robert I; Modin, Klas; Verdier, Olivier
2014-01-01
We construct symplectic integrators for Lie–Poisson systems. The integrators are standard symplectic (partitioned) Runge–Kutta methods. Their phase space is a symplectic vector space equipped with a Hamiltonian action with momentum map J whose range is the target Lie–Poisson manifold, and their Hamiltonian is collective, that is, it is the target Hamiltonian pulled back by J. The method yields, for example, a symplectic midpoint rule expressed in 4 variables for arbitrary Hamiltonians on so(3) ∗ . The method specializes in the case that a sufficiently large symmetry group acts on the fibres of J, and generalizes to the case that the vector space carries a bifoliation. Examples involving many classical groups are presented. (paper)
Symplectic S5 action on symplectic homotopy K3 surfaces
Indian Academy of Sciences (India)
HONGXIA LI
Let X be a symplectic homotopy K3 surface and G = S5 act on X symplectically. In this paper, we give a weak classification of the G action on X by discussing the fixed-point set structure. Besides, we analyse the exoticness of smooth structures of X under the action of G. Keywords. K3 surfaces; symplectic actions; exotic ...
Symplectic geometry and Fourier analysis
Wallach, Nolan R
2018-01-01
Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.
Symplectic methods in circular accelerators
International Nuclear Information System (INIS)
Forest, E.
1994-01-01
By now symplectic integration has been applied to many problems in classical mechanics. It is my conviction that the field of particle simulation in circular rings is ideally suited for the application of symplectic integration. In this paper, I present a short description symplectic tools in circular storage rings
Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds
Lazaroiu, C. I.; Shahbazi, C. S.
2018-06-01
We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".
Birkhoffian Symplectic Scheme for a Quantum System
International Nuclear Information System (INIS)
Su Hongling
2010-01-01
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure-preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f. Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. (general)
Energy Technology Data Exchange (ETDEWEB)
Voit, Kay-Michael
2008-06-16
In the first part we considered the quantum phase space in terms of noncommutative differential geometry. Following relevant literature, a short introduction to vector fields and differential forms on the differential vector space M{sub N}(C) was given. Special emphasis has been laid on the construction of a canonical symplectic form analogous to the one known from classical mechanics. The canonical choice of this form has been shown to be just the (scaled) commutator of two matrices. Using the Schwinger basis, the symplectic form derived in the first sections has been further examined by calculating concrete expressions for products of general matrices and their commutators which are, as we remember, just the symplectic form. Subsequently, a discrete analog to the continuous theory has been developed, in which the lattice of the quantum phase space forms the base space, and the Heisenberg group including the Schwinger elements is identified with the fiber space. In the continuum limit it could be shown that the discrete theory seamlessly passed into the commonly known continuous theory of connection forms on fiber bundles. The connection form and its exterior covariant derivation, the curvature form, have been calculated. It has been found that the curvature form can even be pulled back to the symplectic form by the section defined by the Schwinger elements. (orig.)
International Nuclear Information System (INIS)
Kevrekidis, P.G.; Herring, G.J.; Lafortune, S.; Hoq, Q.E.
2012-01-01
We propose a consideration of the properties of the two-dimensional Ablowitz–Ladik discretization of the ubiquitous nonlinear Schrödinger (NLS) model. We use singularity confinement techniques to suggest that the relevant discretization should not be integrable. More importantly, we identify the prototypical solitary waves of the model and examine their stability, illustrating the remarkable feature that near the continuum limit, this discretization leads to the absence of collapse and complete spectral wave stability, in stark contrast to the standard discretization of the NLS. We also briefly touch upon the three-dimensional case and generalizations of our considerations therein, and also present some more exotic solutions of the model, such as exact line solitons and discrete vortices. -- Highlights: ► The two-dimensional version of the Ablowitz–Ladik discretization of the nonlinear Schrödinger (NLS) equation is considered. ► It is found that near the continuum limit the fundamental discrete soliton is spectrally stable. ► This finding is in sharp contrast with the case of the standard discretization of the NLS equation. ► In the three-dimensional version of the model, the fundamental solitons are unstable. ► Additional waveforms such as exact unstable line solitons and discrete vortices are also touched upon.
Energy Technology Data Exchange (ETDEWEB)
Kevrekidis, P.G., E-mail: kevrekid@gmail.com [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Herring, G.J. [Department of Mathematics and Statistics, Cameron University, Lawton, OK 73505 (United States); Lafortune, S. [Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Hoq, Q.E. [Department of Mathematics and Computer Science, Western New England College, Springfield, MA 01119 (United States)
2012-02-06
We propose a consideration of the properties of the two-dimensional Ablowitz–Ladik discretization of the ubiquitous nonlinear Schrödinger (NLS) model. We use singularity confinement techniques to suggest that the relevant discretization should not be integrable. More importantly, we identify the prototypical solitary waves of the model and examine their stability, illustrating the remarkable feature that near the continuum limit, this discretization leads to the absence of collapse and complete spectral wave stability, in stark contrast to the standard discretization of the NLS. We also briefly touch upon the three-dimensional case and generalizations of our considerations therein, and also present some more exotic solutions of the model, such as exact line solitons and discrete vortices. -- Highlights: ► The two-dimensional version of the Ablowitz–Ladik discretization of the nonlinear Schrödinger (NLS) equation is considered. ► It is found that near the continuum limit the fundamental discrete soliton is spectrally stable. ► This finding is in sharp contrast with the case of the standard discretization of the NLS equation. ► In the three-dimensional version of the model, the fundamental solitons are unstable. ► Additional waveforms such as exact unstable line solitons and discrete vortices are also touched upon.
A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods
International Nuclear Information System (INIS)
Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.
2007-01-01
We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one dimensional time independent Schroedinger equation is considered by trigonometrically fitted symplectic integrators. The Schroedinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential
Mason, A M
2018-01-01
In this paper the authors apply to the zeros of families of L-functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the n-correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or L-functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of L-functions have an underlying symmetry relating to one of the classical compact groups U(N), O(N) and USp(2N). Here the authors complete the work already done with U(N) (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the n-level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the n-level densities of zeros of L-functions with orthogonal or symplectic symmetry, including al...
A Note on Symplectic, Multisymplectic Scheme in Finite Element Method
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke
2001-01-01
We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``
Poisson traces, D-modules, and symplectic resolutions.
Etingof, Pavel; Schedler, Travis
2018-01-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Poisson traces, D-modules, and symplectic resolutions
Etingof, Pavel; Schedler, Travis
2018-03-01
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of symplectic resolutions, and its applications to quantizations. The main technique is the study of a canonical D-module on the variety. In the case the variety has finitely many symplectic leaves (such as for symplectic singularities and Hamiltonian reductions of symplectic vector spaces by reductive groups), the D-module is holonomic, and hence, the space of Poisson traces is finite-dimensional. As an application, there are finitely many irreducible finite-dimensional representations of every quantization of the variety. Conjecturally, the D-module is the pushforward of the canonical D-module under every symplectic resolution of singularities, which implies that the space of Poisson traces is dual to the top cohomology of the resolution. We explain many examples where the conjecture is proved, such as symmetric powers of du Val singularities and symplectic surfaces and Slodowy slices in the nilpotent cone of a semisimple Lie algebra. We compute the D-module in the case of surfaces with isolated singularities and show it is not always semisimple. We also explain generalizations to arbitrary Lie algebras of vector fields, connections to the Bernstein-Sato polynomial, relations to two-variable special polynomials such as Kostka polynomials and Tutte polynomials, and a conjectural relationship with deformations of symplectic resolutions. In the appendix we give a brief recollection of the theory of D-modules on singular varieties that we require.
Function theory on symplectic manifolds
Polterovich, Leonid
2014-01-01
This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...
Non-integrability of the generalized spring-pendulum problem
International Nuclear Information System (INIS)
Maciejewski, Andrzej J; Przybylska, Maria; Weil, Jacques-Arthur
2004-01-01
We investigate a generalization of the three-dimensional spring-pendulum system. The problem depends on two real parameters (k, a), where k is the Young modulus of the spring and a describes the nonlinearity of elastic forces. We show that this system is not integrable when k ≠ -a. We carefully investigated the case k = -a when the necessary condition for integrability given by the Morales-Ruiz-Ramis theory is satisfied. We discuss an application of the higher order variational equations for proving the non-integrability in this case
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Remark on Relations Between Different Non-integrable Phases
International Nuclear Information System (INIS)
Gu Zhiyu; Qian Shangwu
2005-01-01
There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the definitions and relations between these three non-integrable phases.
International Nuclear Information System (INIS)
Ding Qing
2007-01-01
We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model
Major shell centroids in the symplectic collective model
International Nuclear Information System (INIS)
Draayer, J.P.; Rosensteel, G.; Tulane Univ., New Orleans, LA
1983-01-01
Analytic expressions are given for the major shell centroids of the collective potential V(#betta#, #betta#) and the shape observable #betta# 2 in the Sp(3,R) symplectic model. The tools of statistical spectroscopy are shown to be useful, firstly, in translating a requirement that the underlying shell structure be preserved into constraints on the parameters of the collective potential and, secondly, in giving a reasonable estimate for a truncation of the infinite dimensional symplectic model space from experimental B(E2) transition strengths. Results based on the centroid information are shown to compare favorably with results from exact calculations in the case of 20 Ne. (orig.)
Free and constrained symplectic integrators for numerical general relativity
International Nuclear Information System (INIS)
Richter, Ronny; Lubich, Christian
2008-01-01
We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime
Symplectic and semiclassical aspects of the Schläfli identity
Hedeman, Austin; Kur, Eugene; Littlejohn, Robert G.; Haggard, Hal M.
2015-03-01
The Schläfli identity, which is important in Regge calculus and loop quantum gravity, is examined from a symplectic and semiclassical standpoint in the special case of flat, three-dimensional space. In this case a proof is given, based on symplectic geometry. A series of symplectic and Lagrangian manifolds related to the Schläfli identity, including several versions of a Lagrangian manifold of tetrahedra, are discussed. Semiclassical interpretations of the various steps are provided. Possible generalizations to three-dimensional spaces of constant (nonzero) curvature, involving Poisson-Lie groups and q-deformed spin networks, are discussed.
On orbifold criteria for symplectic toric quotients
DEFF Research Database (Denmark)
Farsi, Carla; Herbig, Hans-Christian; Seaton, Christopher
2013-01-01
We introduce the notion of regular symplectomorphism and graded regular symplectomorphism between singular phase spaces. Our main concern is to exhibit examples of unitary torus representations whose symplectic quotients cannot be graded regularly symplectomorphic to the quotient of a symplectic...
Formal Symplectic Groupoid of a Deformation Quantization
Karabegov, Alexander V.
2005-08-01
We give a self-contained algebraic description of a formal symplectic groupoid over a Poisson manifold M. To each natural star product on M we then associate a canonical formal symplectic groupoid over M. Finally, we construct a unique formal symplectic groupoid ‘with separation of variables’ over an arbitrary Kähler-Poisson manifold.
Elementary symplectic topology and mechanics
Cardin, Franco
2015-01-01
This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hörmander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in...
Symplectic and Hamiltonian structures of nonlinear evolution equations
International Nuclear Information System (INIS)
Dorfman, I.Y.
1993-01-01
A Hamiltonian structure on a finite-dimensional manifold can be introduced either by endowing it with a (pre)symplectic structure, or by describing the Poisson bracket with the help of a tensor with two upper indices named the Poisson structure. Under the assumption of nondegeneracy, the Poisson structure is nothing else than the inverse of the symplectic structure. Also in the degenerate case the distinction between the two approaches is almost insignificant, because both presymplectic and Poisson structures split into symplectic structures on leaves of appropriately chosen foliations. Hamiltonian structures that arise in the theory of evolution equations demonstrate something new in this respect: trying to operate in local terms, one is induced to develop both approaches independently. Hamiltonian operators, being the infinite-dimensional counterparts of Poisson structures, were the first to become the subject of investigations. A considerable period of time passed before the papers initiated research in the theory of symplectic operators, being the counterparts of presymplectic structures. In what follows, we focus on the main achievements in this field
Symplecticity in Beam Dynamics: An Introduction
Energy Technology Data Exchange (ETDEWEB)
Rees, John R
2003-06-10
A particle in a particle accelerator can often be considered a Hamiltonian system, and when that is the case, its motion obeys the constraints of the Symplectic Condition. This tutorial monograph derives the condition from the requirement that a canonical transformation must yield a new Hamiltonian system from an old one. It then explains some of the consequences of symplecticity and discusses examples of its applications, touching on symplectic matrices, phase space and Liouville's Theorem, Lagrange and Poisson brackets, Lie algebra, Lie operators and Lie transformations, symplectic maps and symplectic integrators.
Collective coordinates on symplectic manifolds
International Nuclear Information System (INIS)
Razumov, A.V.; Taranov, A.Yu.
1981-01-01
For an arbitrary Lie group of canonical transformations on a symplectic manifold collective coordinates are introduced. They describe a motion of the dynamical system as a whole under the group transformations. Some properties of Lie group of canonical transformations are considered [ru
Symplectic and trigonometrically fitted symplectic methods of second and third order
International Nuclear Information System (INIS)
Monovasilis, Th.; Simos, T.E.
2006-01-01
The numerical integration of Hamiltonian systems by symplectic and trigonometrically symplectic method is considered in this Letter. We construct new symplectic and trigonometrically symplectic methods of second and third order. We apply our new methods as well as other existing methods to the numerical integration of the harmonic oscillator, the 2D harmonic oscillator with an integer frequency ratio and an orbit problem studied by Stiefel and Bettis
Reduction of symplectic principal R-bundles
International Nuclear Information System (INIS)
Lacirasella, Ignazio; Marrero, Juan Carlos; Padrón, Edith
2012-01-01
We describe a reduction process for symplectic principal R-bundles in the presence of a momentum map. These types of structures play an important role in the geometric formulation of non-autonomous Hamiltonian systems. We apply this procedure to the standard symplectic principal R-bundle associated with a fibration π:M→R. Moreover, we show a reduction process for non-autonomous Hamiltonian systems on symplectic principal R-bundles. We apply these reduction processes to several examples. (paper)
Symplectic Geometric Algorithms for Hamiltonian Systems
Feng, Kang
2010-01-01
"Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development
Symplectic integration for complex wigglers
International Nuclear Information System (INIS)
Forest, E.; Ohmi, K.
1992-01-01
Using the example of the helical wiggler proposed for the KEK photon factory, we show how to integrate the equation of motion through the wiggler. The integration is performed in cartesian coordinates. For the usual expanded Hamiltonian (without square root), we derive a first order symplectic integrator for the purpose of tracking through a wiggler in a ring. We also show how to include classical radiation for the computation of the damping decrement
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Institute of Scientific and Technical Information of China (English)
Hua WANG; ALATANCANG; Junjie HUANG
2011-01-01
The authors investigate the completeness of the system of eigen or root vectors of the 2 x 2 upper triangular infinite-dimensional Hamiltonian operator H0.First,the geometrical multiplicity and the algebraic index of the eigenvalue of H0 are considered.Next,some necessary and sufficient conditions for the completeness of the system of eigen or root vectors of H0 are obtained. Finally,the obtained results are tested in several examples.
Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry
International Nuclear Information System (INIS)
Qin Hong; Guan Xiaoyin; Tang, William M.
2009-01-01
A variational symplectic integrator for the guiding center motion of charged particles in general magnetic fields is developed to enable accurate long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding center motion, the action of the guiding center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure and globally bounds the numerical error in energy by a small number for all simulation time steps. Compared with standard integrators, such as the fourth order Runge-Kutta method, the variational symplectic integrator has superior numerical properties over long integration time. For example, in a two-dimensional tokamak geometry, the variational symplectic integrator is able to guarantee the accuracy for both the trapped and transit particle orbits for arbitrarily long simulation time. This is important for modern large-scale simulation studies of fusion plasmas where it is critical to use algorithms with long-term accuracy and fidelity. The variational symplectic integrator is expected to have a wide range of applications.
Non-integrable quantum field theories as perturbations of certain integrable models
International Nuclear Information System (INIS)
Delfino, G.; Simonetti, P.
1996-03-01
We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab
Singularity theory and equivariant symplectic maps
Bridges, Thomas J
1993-01-01
The monograph is a study of the local bifurcations of multiparameter symplectic maps of arbitrary dimension in the neighborhood of a fixed point.The problem is reduced to a study of critical points of an equivariant gradient bifurcation problem, using the correspondence between orbits ofa symplectic map and critical points of an action functional. New results onsingularity theory for equivariant gradient bifurcation problems are obtained and then used to classify singularities of bifurcating period-q points. Of particular interest is that a general framework for analyzing group-theoretic aspects and singularities of symplectic maps (particularly period-q points) is presented. Topics include: bifurcations when the symplectic map has spatial symmetry and a theory for the collision of multipliers near rational points with and without spatial symmetry. The monograph also includes 11 self-contained appendices each with a basic result on symplectic maps. The monograph will appeal to researchers and graduate student...
Multi-symplectic Birkhoffian structure for PDEs with dissipation terms
International Nuclear Information System (INIS)
Su Hongling; Qin Mengzhao; Wang Yushun; Scherer, Rudolf
2010-01-01
A generalization of the multi-symplectic form for Hamiltonian systems to self-adjoint systems with dissipation terms is studied. These systems can be expressed as multi-symplectic Birkhoffian equations, which leads to a natural definition of Birkhoffian multi-symplectic structure. The concept of Birkhoffian multi-symplectic integrators for Birkhoffian PDEs is investigated. The Birkhoffian multi-symplectic structure is constructed by the continuous variational principle, and the Birkhoffian multi-symplectic integrator by the discrete variational principle. As an example, two Birkhoffian multi-symplectic integrators for the equation describing a linear damped string are given.
Generalized reciprocity principle for discrete symplectic systems
Directory of Open Access Journals (Sweden)
Julia Elyseeva
2015-12-01
Full Text Available This paper studies transformations for conjoined bases of symplectic difference systems $Y_{i+1}=\\mathcal S_{i}Y_{i}$ with the symplectic coefficient matrices $\\mathcal S_i.$ For an arbitrary symplectic transformation matrix $P_{i}$ we formulate most general sufficient conditions for $\\mathcal S_{i},\\, P_{i}$ which guarantee that $P_{i}$ preserves oscillatory properties of conjoined bases $Y_{i}.$ We present examples which show that our new results extend the applicability of the discrete transformation theory.
Chern-Simons theories of symplectic super-diffeomorphisms
International Nuclear Information System (INIS)
Sezgin, E.; Sokatchev, E.
1989-04-01
We discuss the symplectic diffeomorphisms of a class of supermanifolds and the structure of the underlying infinite dimensional superalgebras. We construct a Chern-Simons (CS) gauge theory in 2+1 dimensions for these algebras. There exists a finite dimensional supersymmetric truncation which is the (2 n -1)-dimensional Hamiltonian superalgebra H-tilde(n). With a central charge added, it is a superalgebra, C(n), associated with a Clifford algebra. We find an embedding of d=3, N=2 anti-de Sitter superalgebra OSp(2|2)+OSp(2|2) in C(4), and construct a CS action for its infinite dimensional extension. We also discuss the construction of a CS action for the infinite dimensional extension of the d=3, N=2 superconformal algebra OSp(2,4). (author). 18 refs
Multiparametric quantum symplectic phase space
International Nuclear Information System (INIS)
Parashar, P.; Soni, S.K.
1992-07-01
We formulate a consistent multiparametric differential calculus on the quadratic coordinate algebra of the quantum vector space and use this as a tool to obtain a deformation of the associated symplectic phase space involving n(n-1)/2+1 deformation parameters. A consistent calculus on the relation subspace is also constructed. This is achieved with the help of a restricted ansatz and solving the consistency conditions to directly arrive at the main commutation structures without any reference to the R-matrix. However, the non-standard R-matrices for GL r,qij (n) and Sp r,qij (2n) can be easily read off from the commutation relations involving coordinates and derivatives. (author). 9 refs
Symplectic Attitude Estimation for Small Satellites
National Research Council Canada - National Science Library
Valpiani, James M; Palmer, Phillip L
2006-01-01
.... Symplectic numerical methods are applied to the Extended Kalman Filter (EKF) algorithm to give the SKF, which outperforms the standard EKF in the presence of nonlinearity and low measurement noise in the 1-D case...
A symplectic coherent beam-beam model
International Nuclear Information System (INIS)
Furman, M.A.
1989-05-01
We consider a simple one-dimensional model to study the effects of the beam-beam force on the coherent dynamics of colliding beams. The key ingredient is a linearized beam-beam kick. We study only the quadrupole modes, with the dynamical variables being the 2nd-order moments of the canonical variables q, p. Our model is self-consistent in the sense that no higher order moments are generated by the linearized beam-beam kicks, and that the only source of violation of symplecticity is the radiation. We discuss the round beam case only, in which vertical and horizontal quantities are assumed to be equal (though they may be different in the two beams). Depending on the values of the tune and beam intensity, we observe steady states in which otherwise identical bunches have sizes that are equal, or unequal, or periodic, or behave chaotically from turn to turn. Possible implications of luminosity saturation with increasing beam intensity are discussed. Finally, we present some preliminary applications to an asymmetric collider. 8 refs., 8 figs
Note on Symplectic SVD-Like Decomposition
Directory of Open Access Journals (Sweden)
AGOUJIL Said
2016-02-01
Full Text Available The aim of this study was to introduce a constructive method to compute a symplectic singular value decomposition (SVD-like decomposition of a 2n-by-m rectangular real matrix A, based on symplectic refectors.This approach used a canonical Schur form of skew-symmetric matrix and it allowed us to compute eigenvalues for the structured matrices as Hamiltonian matrix JAA^T.
Symplectic topology of integrable Hamiltonian systems
International Nuclear Information System (INIS)
Nguyen Tien Zung.
1993-08-01
We study the topology of integrable Hamiltonian systems, giving the main attention to the affine structure of their orbit spaces. In particular, we develop some aspects of Fomenko's theory about topological classification of integrable non-degenerate systems, and consider some relations between such systems and ''pure'' contact and symplectic geometry. We give a notion of integrable surgery and use it to obtain some interesting symplectic structures. (author). Refs, 10 figs
Strongly stable real infinitesimally symplectic mappings
Cushman, R.; Kelley, A.
We prove that a mapA εsp(σ,R), the set of infinitesimally symplectic maps, is strongly stable if and only if its centralizerC(A) insp(σ,R) contains only semisimple elements. Using the theorem that everyB insp(σ,R) close toA is conjugate by a real symplectic map to an element ofC(A), we give a new
Differential and symplectic topology of knots and curves
Tabachnikov, S
1999-01-01
This book presents a collection of papers on two related topics: topology of knots and knot-like objects (such as curves on surfaces) and topology of Legendrian knots and links in 3-dimensional contact manifolds. Featured is the work of international experts in knot theory (""quantum"" knot invariants, knot invariants of finite type), in symplectic and contact topology, and in singularity theory. The interplay of diverse methods from these fields makes this volume unique in the study of Legendrian knots and knot-like objects such as wave fronts. A particularly enticing feature of the volume is
Chen, Qiang; Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei
2017-11-01
An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon-matter interactions described by the Schrödinger-Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon-matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.
Fan, Hong-Yi; Chen, Jun-Hua
2002-08-01
We find that the coherent state projection operator representation of symplectic transformation constitutes a loyal group representation of symplectic group. The result of successively applying squeezing operators on number state can be easily derived. The project supported by National Natural Science Foundation of China under Grant No. 10575057 and the President Foundation of the Chinese Academy of Sciences
International Nuclear Information System (INIS)
Maltsev, A Ya
2005-01-01
We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system
An algorithm for symplectic implicit Taylor-map tracking
International Nuclear Information System (INIS)
Yan, Y.; Channell, P.; Syphers, M.
1992-10-01
An algorithm has been developed for converting an ''order-by-order symplectic'' Taylor map that is truncated to an arbitrary order (thus not exactly symplectic) into a Courant-Snyder matrix and a symplectic implicit Taylor map for symplectic tracking. This algorithm is implemented using differential algebras, and it is numerically stable and fast. Thus, lifetime charged-particle tracking for large hadron colliders, such as the Superconducting Super Collider, is now made possible
Relative symplectic caps, 4-genus and fibered knots
Indian Academy of Sciences (India)
We prove relative versions of the symplectic capping theorem and sufficiency of Giroux's criterion for Stein fillability and use these to study the 4-genus of knots. More precisely, suppose we have a symplectic 4-manifold with convex boundary and a symplectic surface in such that is a transverse knot in .
Translating solitons to symplectic and Lagrangian mean curvature flows
International Nuclear Information System (INIS)
Han Xiaoli; Li Jiayu
2007-05-01
In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)
Infinitesimal Deformations of a Formal Symplectic Groupoid
Karabegov, Alexander
2011-09-01
Given a formal symplectic groupoid G over a Poisson manifold ( M, π 0), we define a new object, an infinitesimal deformation of G, which can be thought of as a formal symplectic groupoid over the manifold M equipped with an infinitesimal deformation {π_0 + \\varepsilon π_1} of the Poisson bivector field π 0. To any pair of natural star products {(ast,tildeast)} having the same formal symplectic groupoid G we relate an infinitesimal deformation of G. We call it the deformation groupoid of the pair {(ast,tildeast)} . To each star product with separation of variables {ast} on a Kähler-Poisson manifold M we relate another star product with separation of variables {hatast} on M. We build an algorithm for calculating the principal symbols of the components of the logarithm of the formal Berezin transform of a star product with separation of variables {ast} . This algorithm is based upon the deformation groupoid of the pair {(ast,hatast)}.
Characterization and solvability of quasipolynomial symplectic mappings
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito [ESCET (Edificio Departamental II), Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933-Mostoles-Madrid (Spain); Brenig, Leon [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles, Campus Plaine, CP 231, Boulevard du Triomphe, B-1050 Brussels (Belgium)
2004-02-13
Quasipolynomial (or QP) mappings constitute a wide generalization of the well-known Lotka-Volterra mappings, of importance in different fields such as population dynamics, physics, chemistry or economy. In addition, QP mappings are a natural discrete-time analogue of the continuous QP systems, which have been extensively used in different pure and applied domains. After presenting the basic definitions and properties of QP mappings in a previous paper, the purpose of this work is to focus on their characterization by considering the existence of symplectic QP mappings. In what follows such QP symplectic maps are completely characterized. Moreover, use of the QP formalism can be made in order to demonstrate that all QP symplectic mappings have an analytical solution that is explicitly and generally constructed. Examples are given.
Characterization and solvability of quasipolynomial symplectic mappings
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito; Brenig, Leon
2004-01-01
Quasipolynomial (or QP) mappings constitute a wide generalization of the well-known Lotka-Volterra mappings, of importance in different fields such as population dynamics, physics, chemistry or economy. In addition, QP mappings are a natural discrete-time analogue of the continuous QP systems, which have been extensively used in different pure and applied domains. After presenting the basic definitions and properties of QP mappings in a previous paper, the purpose of this work is to focus on their characterization by considering the existence of symplectic QP mappings. In what follows such QP symplectic maps are completely characterized. Moreover, use of the QP formalism can be made in order to demonstrate that all QP symplectic mappings have an analytical solution that is explicitly and generally constructed. Examples are given
Characterization and solvability of quasipolynomial symplectic mappings
Hernández-Bermejo, Benito; Brenig, Léon
2004-02-01
Quasipolynomial (or QP) mappings constitute a wide generalization of the well-known Lotka-Volterra mappings, of importance in different fields such as population dynamics, physics, chemistry or economy. In addition, QP mappings are a natural discrete-time analogue of the continuous QP systems, which have been extensively used in different pure and applied domains. After presenting the basic definitions and properties of QP mappings in a previous paper [1], the purpose of this work is to focus on their characterization by considering the existence of symplectic QP mappings. In what follows such QP symplectic maps are completely characterized. Moreover, use of the QP formalism can be made in order to demonstrate that all QP symplectic mappings have an analytical solution that is explicitly and generally constructed. Examples are given.
Energy Technology Data Exchange (ETDEWEB)
Cui, Jianbo, E-mail: jianbocui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Zhihui, E-mail: liuzhihui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Zhou, Weien, E-mail: weienzhou@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China)
2017-08-01
We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.
International Nuclear Information System (INIS)
Cui, Jianbo; Hong, Jialin; Liu, Zhihui; Zhou, Weien
2017-01-01
We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.
Infinitesimal deformations of a formal symplectic groupoid
Karabegov, Alexander
2010-01-01
Given a formal symplectic groupoid $G$ over a Poisson manifold $(M, \\pi_0)$, we define a new object, an infinitesimal deformation of $G$, which can be thought of as a formal symplectic groupoid over the manifold $M$ equipped with an infinitesimal deformation $\\pi_0 + \\epsilon \\pi_1$ of the Poisson bivector field $\\pi_0$. The source and target mappings of a deformation of $G$ are deformations of the source and target mappings of $G$. To any pair of natural star products $(\\ast, \\tilde\\ast)$ ha...
Coherent Structures and Entropy in Constrained, Modulationally Unstable, Nonintegrable Systems
International Nuclear Information System (INIS)
Rumpf, Benno; Newell, Alan C.
2001-01-01
Many studies have shown that nonintegrable systems with modulational instabilities constrained by more than one conservation law exhibit universal long time behavior involving large coherent structures in a sea of small fluctuations. We show how this behavior can be explained in detail by simple thermodynamic arguments
Nonintegrability of the unfolding of the fold-Hopf bifurcation
Yagasaki, Kazuyuki
2018-02-01
We consider the unfolding of the codimension-two fold-Hopf bifurcation and prove its meromorphic nonintegrability in the meaning of Bogoyavlenskij for almost all parameter values. Our proof is based on a generalized version of the Morales-Ramis-Simó theory for non-Hamiltonian systems and related variational equations up to second order are used.
DEFF Research Database (Denmark)
Nest, Ryszard; Tsygan, Boris
2001-01-01
Recently Kontsevich solved the classification problem for deformation quantizations of all Poisson structures on a manifold. In this paper we study those Poisson structures for which the explicit methods of Fedosov can be applied, namely the Poisson structures coming from symplectic Lie algebroids......, as well as holomorphic symplectic structures. For deformations of these structures we prove the classification theorems and a general a general index theorem....
Wigner functions on non-standard symplectic vector spaces
Dias, Nuno Costa; Prata, João Nuno
2018-01-01
We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.
Spherical complexes attached to symplectic lattices
van der Kallen, W.L.J.; Looijenga, E.J.N.
2011-01-01
To the integral symplectic group Sp(2g, Z) we associate two posets of which we prove that they have the Cohen-Macaulay property. As an application we show that the locus of marked decomposable principally polarized abelian varieties in the Siegel space of genus g has the homotopy type of a bouquet
Invariant metric for nonlinear symplectic maps
Indian Academy of Sciences (India)
In this paper, we construct an invariant metric in the space of homogeneous polynomials of a given degree (≥ 3). The homogeneous polynomials specify a nonlinear symplectic map which in turn represents a Hamiltonian system. By minimizing the norm constructed out of this metric as a function of system parameters, we ...
Symplectic integrators with adaptive time steps
Richardson, A. S.; Finn, J. M.
2012-01-01
In recent decades, there have been many attempts to construct symplectic integrators with variable time steps, with rather disappointing results. In this paper, we identify the causes for this lack of performance, and find that they fall into two categories. In the first, the time step is considered a function of time alone, Δ = Δ(t). In this case, backward error analysis shows that while the algorithms remain symplectic, parametric instabilities may arise because of resonance between oscillations of Δ(t) and the orbital motion. In the second category the time step is a function of phase space variables Δ = Δ(q, p). In this case, the system of equations to be solved is analyzed by introducing a new time variable τ with dt = Δ(q, p) dτ. The transformed equations are no longer in Hamiltonian form, and thus do not benefit from integration methods which would be symplectic for Hamiltonian systems. We analyze two methods for integrating the transformed equations which do, however, preserve the structure of the original equations. The first is an extended phase space method, which has been successfully used in previous studies of adaptive time step symplectic integrators. The second, novel, method is based on a non-canonical mixed-variable generating function. Numerical trials for both of these methods show good results, without parametric instabilities or spurious growth or damping. It is then shown how to adapt the time step to an error estimate found by backward error analysis, in order to optimize the time-stepping scheme. Numerical results are obtained using this formulation and compared with other time-stepping schemes for the extended phase space symplectic method.
Non-integrability of geodesic flow on certain algebraic surfaces
International Nuclear Information System (INIS)
Waters, T.J.
2012-01-01
This Letter addresses an open problem recently posed by V. Kozlov: a rigorous proof of the non-integrability of the geodesic flow on the cubic surface xyz=1. We prove this is the case using the Morales–Ramis theorem and Kovacic algorithm. We also consider some consequences and extensions of this result. -- Highlights: ► The behaviour of geodesics on surfaces defined by algebraic expressions is studied. ► The non-integrability of the geodesic equations is rigorously proved using differential Galois theory. ► Morales–Ramis theory and Kovacic's algorithm is used and the normal variational equation is of Fuchsian type. ► Some extensions and limitations are discussed.
Notes on qubit phase space and discrete symplectic structures
International Nuclear Information System (INIS)
Livine, Etera R
2010-01-01
We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.
Nonlinear dynamics non-integrable systems and chaotic dynamics
Borisov, Alexander
2017-01-01
This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.
Symplectic models for general insertion devices
International Nuclear Information System (INIS)
Wu, Y.; Forest, E.; Robin, D. S.; Nishimura, H.; Wolski, A.; Litvinenko, V. N.
2001-01-01
A variety of insertion devices (IDs), wigglers and undulators, linearly or elliptically polarized,are widely used as high brightness radiation sources at the modern light source rings. Long and high-field wigglers have also been proposed as the main source of radiation damping at next generation damping rings. As a result, it becomes increasingly important to understand the impact of IDs on the charged particle dynamics in the storage ring. In this paper, we report our recent development of a general explicit symplectic model for IDs with the paraxial ray approximation. High-order explicit symplectic integrators are developed to study real-world insertion devices with a number of wiggler harmonics and arbitrary polarizations
Symplectic discretization for spectral element solution of Maxwell's equations
International Nuclear Information System (INIS)
Zhao Yanmin; Dai Guidong; Tang Yifa; Liu Qinghuo
2009-01-01
Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.
Quantum symplectic geometry. 1. The matrix Hamiltonian formalism
International Nuclear Information System (INIS)
Djemai, A.E.F.
1994-07-01
The main purpose of this work is to describe the quantum analogue of the usual classical symplectic geometry and then to formulate the quantum mechanics as a (quantum) non-commutative symplectic geometry. In this first part, we define the quantum symplectic structure in the context of the matrix differential geometry by using the discrete Weyl-Schwinger realization of the Heisenberg group. We also discuss the continuous limit and give an expression of the quantum structure constants. (author). 42 refs
Quadratic brackets from symplectic forms
International Nuclear Information System (INIS)
Alekseev, Anton Yu.; Todorov, Ivan T.
1994-01-01
We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))
Stochastic deformation of a thermodynamic symplectic structure
Kazinski, P. O.
2008-01-01
A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...
Symplectic multi-particle tracking on GPUs
Liu, Zhicong; Qiang, Ji
2018-05-01
A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.
Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry
2014-01-01
Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
International Nuclear Information System (INIS)
Sha, Wei; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-01-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources
Smooth Maps of a Foliated Manifold in a Symplectic Manifold
Indian Academy of Sciences (India)
Let be a smooth manifold with a regular foliation F and a 2-form which induces closed forms on the leaves of F in the leaf topology. A smooth map f : ( M , F ) ⟶ ( N , ) in a symplectic manifold ( N , ) is called a foliated symplectic immersion if restricts to an immersion on each leaf of the foliation and further, the ...
The difficulty of symplectic analysis with second class systems
International Nuclear Information System (INIS)
Shirzad, A.; Mojiri, M.
2005-01-01
Using the basic concepts of the chain by chain method we show that the symplectic analysis, which was claimed to be equivalent to the usual Dirac method, fails when second class constraints are present. We propose a modification in symplectic analysis that solves the problem
The Maslov index in weak symplectic functional analysis
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm; Zhu, Chaofeng
2013-01-01
We recall the Chernoff-Marsden definition of weak symplectic structure and give a rigorous treatment of the functional analysis and geometry of weak symplectic Banach spaces. We define the Maslov index of a continuous path of Fredholm pairs of Lagrangian subspaces in continuously varying Banach...
Gauge theories of infinite dimensional Hamiltonian superalgebras
International Nuclear Information System (INIS)
Sezgin, E.
1989-05-01
Symplectic diffeomorphisms of a class of supermanifolds and the associated infinite dimensional Hamiltonian superalgebras, H(2M,N) are discussed. Applications to strings, membranes and higher spin field theories are considered: The embedding of the Ramond superconformal algebra in H(2,1) is obtained. The Chern-Simons gauge theory of symplectic super-diffeomorphisms is constructed. (author). 29 refs
Lorentz covariant canonical symplectic algorithms for dynamics of charged particles
Wang, Yulei; Liu, Jian; Qin, Hong
2016-12-01
In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies.
A symplectic framework for field theories
International Nuclear Information System (INIS)
Kijowski, J.; Tulczyjew, W.M.
1979-01-01
These notes are concerned with the formulation of a new conceptual framework for classical field theories. Although the formulation is based on fairly advanced concepts of symplectic geometry these notes cannot be viewed as a reformulation of known structures in more rigorous and elegant torns. Our intention is rather to communicate to theoretical physicists a set of new physical ideas. We have chosen for this purpose the language of local coordinates which is more elementary and more widely known than the abstract language of modern differntial geometry. Our emphasis is directed more to physical intentions than to mathematical vigour. We start with a symplectic analysis of staties. Both discrete and continuous systems are considered on a largely intuitive level. The notion of reciprocity and potentiality of the theory is discussed. Chapter II is a presentation of particle dynamics together with more rigorous definitions of the geometric structure. Lagrangian-Submanifolds and their generating function 3 are defined and the time evolution of particle states is studied. Chapter II form the main part of these notes. Here we describe the construction of canonical momenta and discuss the field dynamics in finite domains of space-time. We also establish the relation between our symplectic framework and the geometric formulation of the calculus of variations of multiple integrals. In the following chapter we give a few examples of field theories selected to illustrate various features of the new approach. A new formulation of the theory of gravity consists of using the affine connection in space-time as the field configuration. In the past section we present an analysis of hydrodynamics within our framework which reveals a formal analogy with electrodynamics. The discovery of potentials for hydrodynamics and the subsequent formulation of a variational principle provides an excellent example for the fruitfulness of the new approach to field theory. A short review of
Higher-order force gradient symplectic algorithms
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
On Non-Abelian Symplectic Cutting
DEFF Research Database (Denmark)
Martens, Johan; Thaddeus, Michael
2012-01-01
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro......-geometric terms. A key ingredient is the `universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors....
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
Canonical Drude Weight for Non-integrable Quantum Spin Chains
Mastropietro, Vieri; Porta, Marcello
2018-03-01
The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.
Symplectic invariants, entropic measures and correlations of Gaussian states
Energy Technology Data Exchange (ETDEWEB)
Serafini, Alessio; Illuminati, Fabrizio; Siena, Silvio De [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi, SA (Italy)
2004-01-28
We present a derivation of the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different hierarchies of mixed Gaussian states. A comparison between mutual information and entanglement of formation for symmetric states is considered, taking note of the crucial role of the symplectic eigenvalues in qualifying and quantifying the correlations present in a generic state. (letter to the editor)
Symplectic invariants, entropic measures and correlations of Gaussian states
International Nuclear Information System (INIS)
Serafini, Alessio; Illuminati, Fabrizio; Siena, Silvio De
2004-01-01
We present a derivation of the Von Neumann entropy and mutual information of arbitrary two-mode Gaussian states, based on the explicit determination of the symplectic eigenvalues of a generic covariance matrix. The key role of the symplectic invariants in such a determination is pointed out. We show that the Von Neumann entropy depends on two symplectic invariants, while the purity (or the linear entropy) is determined by only one invariant, so that the two quantities provide two different hierarchies of mixed Gaussian states. A comparison between mutual information and entanglement of formation for symmetric states is considered, taking note of the crucial role of the symplectic eigenvalues in qualifying and quantifying the correlations present in a generic state. (letter to the editor)
The GL(1 vertical stroke 1)-symplectic fermion correspondence
International Nuclear Information System (INIS)
Creutzig, Thomas; Roenne, Peter B.
2008-12-01
In this note we prove a correspondence between the Wess-Zumino-Novikov-Witten model of the Lie supergroup GL(1 vertical stroke 1) and a free model consisting of two scalars and a pair of symplectic fermions. This model was discussed earlier by LeClair. Vertex operators for the symplectic fermions include twist fields, and correlation functions of GL(1 vertical stroke 1) agree with the known results for the scalars and symplectic fermions. We perform a detailed study of boundary states for symplectic fermions and apply them to branes in GL(1 vertical stroke 1). This allows us to compute new amplitudes of strings stretching between branes of different types and confirming Cardy's condition. (orig.)
The GL(1 vertical stroke 1)-symplectic fermion correspondence
Energy Technology Data Exchange (ETDEWEB)
Creutzig, Thomas; Roenne, Peter B.
2008-12-15
In this note we prove a correspondence between the Wess-Zumino-Novikov-Witten model of the Lie supergroup GL(1 vertical stroke 1) and a free model consisting of two scalars and a pair of symplectic fermions. This model was discussed earlier by LeClair. Vertex operators for the symplectic fermions include twist fields, and correlation functions of GL(1 vertical stroke 1) agree with the known results for the scalars and symplectic fermions. We perform a detailed study of boundary states for symplectic fermions and apply them to branes in GL(1 vertical stroke 1). This allows us to compute new amplitudes of strings stretching between branes of different types and confirming Cardy's condition. (orig.)
Transversity results and computations in symplectic field theory
International Nuclear Information System (INIS)
Fabert, Oliver
2008-01-01
Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M φ of symplectic manifolds (M,ω M ) with symplectomorphisms φ. While the cylindrical contact homology of M φ is given by the Floer homologies of powers of φ, the other algebraic invariants of symplectic field theory for M φ provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian φ we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M φ ≅ S 1 x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic field theory are established, our result implies that the
Transversity results and computations in symplectic field theory
Energy Technology Data Exchange (ETDEWEB)
Fabert, Oliver
2008-02-21
Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M{sub {phi}} of symplectic manifolds (M,{omega}{sub M}) with symplectomorphisms {phi}. While the cylindrical contact homology of M{sub {phi}} is given by the Floer homologies of powers of {phi}, the other algebraic invariants of symplectic field theory for M{sub {phi}} provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian {phi} we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M{sub {phi}} {approx_equal} S{sup 1} x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic
Fedosov’s formal symplectic groupoids and contravariant connections
Karabegov, Alexander V.
2006-10-01
Using Fedosov's approach we give a geometric construction of a formal symplectic groupoid over any Poisson manifold endowed with a torsion-free Poisson contravariant connection. In the case of Kähler-Poisson manifolds this construction provides, in particular, the formal symplectic groupoids with separation of variables. We show that the dual of a semisimple Lie algebra does not admit torsion-free Poisson contravariant connections.
Smooth maps of a foliated manifold in a symplectic manifold
Indian Academy of Sciences (India)
Abstract. Let M be a smooth manifold with a regular foliation F and a 2-form ω which induces closed forms on the leaves of F in the leaf topology. A smooth map f : (M, F) −→ (N,σ) in a symplectic manifold (N,σ) is called a foliated symplectic immersion if f restricts to an immersion on each leaf of the foliation and further, the.
Symmetries of the Space of Linear Symplectic Connections
Fox, Daniel J. F.
2017-01-01
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
A modified symplectic PRK scheme for seismic wave modeling
Liu, Shaolin; Yang, Dinghui; Ma, Jian
2017-02-01
A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.
The symplectic algorithm for use in a model of laser field
International Nuclear Information System (INIS)
Liu Xiaoyan; Liu Xueshen; Ding Peizhu; Zhou Zhongyuan
2002-01-01
Using the asymptotic boundary condition the time-dependent Schroedinger equations with initial conditions in the infinite space can be transformed into the problem with initial and boundary conditions, and it can further be discrected into the inhomogeneous canonic equations. The symplectic algorithms to solve the inhomogeneous canonic equations have been developed and adopted to compute the high-order harmonics of one-dimensional Hydrogen in the laser field. We noticed that there is saturation intensity for generating high-order harmonics, which are agree with previous results, and there is a relationship between harmonics and bound state probabilities
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Design and Potential of Non-Integrating Lentiviral Vectors
Directory of Open Access Journals (Sweden)
Aaron Shaw
2014-01-01
Full Text Available Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors that do not integrate are predicted to have a safer profile compared to integrating vectors and should be considered for applications where transient expression is required or for sustained episomal expression such as in quiescent cells. In this review, the system for generating lentiviral vectors will be described and used to illustrate how alterations in the viral integrase or vector Long Terminal Repeats have been used to generate vectors that lack the ability to integrate. In addition to their safety advantages, these non-integrating lentiviral vectors can be used when persistent expression would have adverse consequences. Vectors are currently in development for use in vaccinations, cancer therapy, site-directed gene insertions, gene disruption strategies, and cell reprogramming. Preclinical work will be described that illustrates the potential of this unique vector system in human gene therapy.
A symplectic integration method for elastic filaments
Ladd, Tony; Misra, Gaurav
2009-03-01
Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.
Multi-symplectic Preissmann methods for generalized Zakharov-Kuznetsov equation
International Nuclear Information System (INIS)
Wang Junjie; Yang Kuande; Wang Liantang
2012-01-01
Generalized Zakharov-Kuznetsov equation, a typical nonlinear wave equation, was studied based on the multi-symplectic theory in Hamilton space. The multi-symplectic formulations of generalized Zakharov-Kuznetsov equation with several conservation laws are presented. The multi-symplectic Preissmann method is used to discretize the formulations. The numerical experiment is given, and the results verify the efficiency of the multi-symplectic scheme. (authors)
Deterministic factor analysis: methods of integro-differentiation of non-integral order
Directory of Open Access Journals (Sweden)
Valentina V. Tarasova
2016-12-01
Full Text Available Objective to summarize the methods of deterministic factor economic analysis namely the differential calculus and the integral method. nbsp Methods mathematical methods for integrodifferentiation of nonintegral order the theory of derivatives and integrals of fractional nonintegral order. Results the basic concepts are formulated and the new methods are developed that take into account the memory and nonlocality effects in the quantitative description of the influence of individual factors on the change in the effective economic indicator. Two methods are proposed for integrodifferentiation of nonintegral order for the deterministic factor analysis of economic processes with memory and nonlocality. It is shown that the method of integrodifferentiation of nonintegral order can give more accurate results compared with standard methods method of differentiation using the first order derivatives and the integral method using the integration of the first order for a wide class of functions describing effective economic indicators. Scientific novelty the new methods of deterministic factor analysis are proposed the method of differential calculus of nonintegral order and the integral method of nonintegral order. Practical significance the basic concepts and formulas of the article can be used in scientific and analytical activity for factor analysis of economic processes. The proposed method for integrodifferentiation of nonintegral order extends the capabilities of the determined factorial economic analysis. The new quantitative method of deterministic factor analysis may become the beginning of quantitative studies of economic agents behavior with memory hereditarity and spatial nonlocality. The proposed methods of deterministic factor analysis can be used in the study of economic processes which follow the exponential law in which the indicators endogenous variables are power functions of the factors exogenous variables including the processes
Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes
Harrington, James William
Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present
International Nuclear Information System (INIS)
Wang, Zhong-Min; Liu, Yan-Zhuang
2016-01-01
Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhong-Min, E-mail: wangzhongm@xaut.edu.cn; Liu, Yan-Zhuang
2016-03-15
Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.
Non-Integrated Standalone Tests of APR1400 Simulator
International Nuclear Information System (INIS)
Hwang, Su Hyun; Lee, Jeong Ik; Hong, Soon Joon; Lee, Byung Chul; Seo, Jeong Gwan; Lee, Myung Soo
2007-01-01
APR1400 being developed for the construction of New Kori 3 and 4 Units has improved safety and more economical efficiency compared with previous PWR. The ESF(Engineered Safety Features) newly introduced to enhance safety are as follows: DVI (Direct Vessel Injection), Fluidic Device, IRWST (In-containment Refueling Water Storage Tank). So the transient pattern of anticipated accidents will show different characteristics from previous PWR. There are multidimensional flow phenomena like as emergency core cooling coolant bypass discharge in the downcomer, downcomer boiling, and different safety injection characteristics due to fluidic device during LBLOCA. Also there is the phenomenon of critical flow due to the open of pressurizer POSRV (Pilot Operated Safety Relief valve) connected to IRWST and safety depressurization system and the prediction of discharge flow is very important. KEPRI is developing APR1400 simulator using RELAP-RT . RELAP-RT was developed by DS and S (Data systems and Solutions) based on RELAP5/MOD3.2. The improved features of RELAP-RT to function as a simulator are as follows: Add simulator functionality - Control by simulator executive - IC snap and reset capability - Back-track snap and reset capability - Fast time capability. Fast time capability(examples) - The rate of condensation has been limited. - Fictional choking model has been developed for internal junctions. - Wall heat transfer coefficients and heat fluxes has been limited. In this study, various NISTs (Non-Integrated Standalone Tests) were performed to verify the capability of RELAP-RT as APR1400 simulator by the comparison with RELAP5/MOD3.3
Explicit K-symplectic algorithms for charged particle dynamics
International Nuclear Information System (INIS)
He, Yang; Zhou, Zhaoqi; Sun, Yajuan; Liu, Jian; Qin, Hong
2017-01-01
We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.
Proton spin tracking with symplectic integration of orbit motion
Energy Technology Data Exchange (ETDEWEB)
Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-05-03
Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.
Explicit K-symplectic algorithms for charged particle dynamics
Energy Technology Data Exchange (ETDEWEB)
He, Yang [School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhou, Zhaoqi [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Sun, Yajuan, E-mail: sunyj@lsec.cc.ac.cn [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Jian [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States)
2017-02-12
We study the Lorentz force equation of charged particle dynamics by considering its K-symplectic structure. As the Hamiltonian of the system can be decomposed as four parts, we are able to construct the numerical methods that preserve the K-symplectic structure based on Hamiltonian splitting technique. The newly derived numerical methods are explicit, and are shown in numerical experiments to be stable over long-term simulation. The error convergency as well as the long term energy conservation of the numerical solutions is also analyzed by means of the Darboux transformation.
Rotation number of integrable symplectic mappings of the plane
Energy Technology Data Exchange (ETDEWEB)
Zolkin, Timofey [Fermilab; Nagaitsev, Sergei [Fermilab; Danilov, Viatcheslav [Oak Ridge
2017-04-11
Symplectic mappings are discrete-time analogs of Hamiltonian systems. They appear in many areas of physics, including, for example, accelerators, plasma, and fluids. Integrable mappings, a subclass of symplectic mappings, are equivalent to a Twist map, with a rotation number, constant along the phase trajectory. In this letter, we propose a succinct expression to determine the rotation number and present two examples. Similar to the period of the bounded motion in Hamiltonian systems, the rotation number is the most fundamental property of integrable maps and it provides a way to analyze the phase-space dynamics.
The classical limit of non-integrable quantum systems, a route to quantum chaos
International Nuclear Information System (INIS)
Castagnino, Mario; Lombardi, Olimpia
2006-01-01
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state
The classical limit of non-integrable quantum systems, a route to quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)
2006-05-15
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.
Associated quantum vector bundles and symplectic structure on a quantum space
International Nuclear Information System (INIS)
Coquereaux, R.; Garcia, A.O.; Trinchero, R.
2000-01-01
We define a quantum generalization of the algebra of functions over an associated vector bundle of a principal bundle. Here the role of a quantum principal bundle is played by a Hopf-Galois extension. Smash products of an algebra times a Hopf algebra H are particular instances of these extensions, and in these cases we are able to define a differential calculus over their associated vector bundles without requiring the use of a (bicovariant) differential structure over H. Moreover, if H is coquasitriangular, it coacts naturally on the associated bundle, and the differential structure is covariant. We apply this construction to the case of the finite quotient of the SL q (2) function Hopf algebra at a root of unity (q 3 = 1) as the structure group, and a reduced 2-dimensional quantum plane as both the 'base manifold' and fibre, getting an algebra which generalizes the notion of classical phase space for this quantum space. We also build explicitly a differential complex for this phase space algebra, and find that levels 0 and 2 support a (co)representation of the quantum symplectic group. On this phase space we define vector fields, and with the help of the Sp q structure we introduce a symplectic form relating 1-forms to vector fields. This leads naturally to the introduction of Poisson brackets, a necessary step to do 'classical' mechanics on a quantum space, the quantum plane. (author)
International Nuclear Information System (INIS)
Kong Linghua; Hong Jialin; Liu Ruxun
2008-01-01
In this paper, we propose a family of symplectic structure-preserving numerical methods for the coupled Klein-Gordon-Schroedinger (KGS) system. The Hamiltonian formulation is constructed for the KGS. We discretize the Hamiltonian system in space first with a family of canonical difference methods which convert an infinite-dimensional Hamiltonian system into a finite-dimensional one. Next, we discretize the finite-dimensional system in time by a midpoint rule which preserves the symplectic structure of the original system. The conservation laws of the schemes are analyzed in succession, including the charge conservation law and the residual of energy conservation law, etc. We analyze the truncation errors and global errors of the numerical solutions for the schemes to end the theoretical analysis. Extensive numerical tests show the accordance between the theoretical and numerical results
Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem
Nomikos, D. G.; Papageorgiou, V. G.
2009-02-01
We study the Anisotropic Stormer Problem (ASP) and the Isosceles Three-Body Problem (IP), from the viewpoint of integrability, using Morales-Ramis theory and its generalization. The study of their integrability presents particular interest since they model important physical phenomena. Both problems can be reduced with respect to the S1 symmetry. Almeida and Stuchi [M.A. Almeida, T.J. Stuchi, Non-integrability of the anisotropic Stormer problem with angular momentum, Physica D 189 (2004) 219-233] proved that the reduced ASP is non-integrable for almost all values of the parameters. In this paper we establish the non-integrability (in the extended Liouville sense) of the remaining cases. The IP is a special case of the three-body problem and it can be considered as a generalization of the Sitnikov problem. Here we prove that the complexified reduced IP does not admit an additional independent meromorphic first integral.
Symplectic dynamics of the nuclear mean-field
International Nuclear Information System (INIS)
Grigorescu, Marius
1996-01-01
Collective and microscopic pictures of the nuclear dynamics are related in the frame of time-dependent variational principle on symplectic trial manifolds. For symmetry braking systems such manifolds are constructed by cranking, and applied to study the nuclear isovector collective excitations. (author)
A survey of open problems in symplectic integration
Energy Technology Data Exchange (ETDEWEB)
McLachlan, R.I. [Univ. of Colorado, Boulder, CO (United States); Scovel, C. [Los Alamos National Lab., NM (United States)
1993-10-15
In the past few years there has been a substantial amount of research on symplectic integration. The subject is only part of a program concerned with numerically preserving a system`s inherent geometrical structures. Volume preservation, reversibility, local conservation laws for elliptic equations, and systems with integral invariants are but a few examples of such invariant structures. In many cases one requires a numerical method to stay in the smallest possible appropriate group of phase space maps. It is not the authors` opinion that symplecticity, for example, automatically makes a numerical method superior to all others, but it is their opinion that it should be taken seriously and that a conscious, informed decision be made in that regard. The authors present here a survey of open problems in symplectic integration, including other problems from the larger program. This is not intended as a review of symplectic integration and is naturally derived from the authors` own research interests. At present, this survey is incomplete, but the authors hope the help of the colleagues to be able to include in the proceedings of this conference a more comprehensive survey. Many of the problems mentioned here call for numerical experimentation, some for application of suggested but untested methods, some for new methods, and some for theorems, Some envisage large research programs.
Relative symplectic caps, 4-genus and fibered knots
Indian Academy of Sciences (India)
convex boundary embeds in a closed symplectic 4-manifold. ... We shall apply Theorem 1.2 in particular to study the 4-genus of a link in S3 by proving ...... [13] Honda Ko, Factoring nonrotative T 2×I layers, Erratum: On the classification of tight.
Local symplectic operators and structures related to them
International Nuclear Information System (INIS)
Dorfman, I.Y.; Mokhov, O.I.
1991-01-01
Matrices with entries being differential operators, that endow the phase space of an evolution system with a (pre)symplectic structure are considered. Special types of such structures are explicitly described. Links with integrability, geometry of loop spaces, and Baecklund transformations are traces
Deformations of coisotropic submanifolds in locally conformal symplectic manifolds
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van; Oh, Y.-G.
2016-01-01
Roč. 20, č. 3 (2016), s. 553-596 ISSN 1093-6106 Institutional support: RVO:67985840 Keywords : locally conformal symplectic manifold * coisotropic submanifold * b-twisted differential * bulk deformation Subject RIV: BA - General Mathematics Impact factor: 0.895, year: 2016 http://intlpress.com/site/pub/pages/journals/items/ajm/content/vols/0020/0003/a007/index.html
Deformations of Lagrangian subvarieties of holomorphic symplectic manifolds
Lehn, Christian
2011-01-01
We generalize Voisin's theorem on deformations of pairs of a symplectic manifold and a Lagrangian submanifold to the case of Lagrangian normal crossing subvarieties. Partial results are obtained for arbitrary Lagrangian subvarieties. We apply our results to the study of singular fibers of Lagrangian fibrations.
Non-integrability of first order resonances in Hamiltonian systems in three degrees of freedom
Christov, Ognyan
2012-02-01
The normal forms of the Hamiltonian 1:2: ω resonances to degree three for ω = 1, 3, 4 are studied for integrability. We prove that these systems are non-integrable except for the discrete values of the parameters which are well known. We use the Ziglin-Morales-Ramis method based on the differential Galois theory.
Acosta-Humánez, P.; Alvarez-Ramírez, M.; Stuchi, T.
2017-01-01
We show the non-integrability of the three-parameter Armburster-Guckenheimer-Kim quartic Hamiltonian using Morales-Ramis theory, with the exception of the three already known integrable cases. We use Poincar\\'e sections to illustrate the breakdown of regular motion for some parameter values.
Energy Technology Data Exchange (ETDEWEB)
Alexeyev, Alexander A [Laboratory of Computer Physics and Mathematical Simulation, Research Division, Room 247, Faculty of Phys.-Math. and Natural Sciences, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya street, Moscow 117198 (Russian Federation) and Department of Mathematics 1, Faculty of Cybernetics, Moscow State Institute of Radio Engineering, Electronics and Automatics, 78 Vernadskogo Avenue, Moscow 117454 (Russian Federation)
2004-11-26
In the framework of a multidimensional superposition principle a series of computer experiments with integrable and nonintegrable models are carried out with the goal of verifying the existence of switching effect and superposition in soliton-perturbation interactions for a wide class of nonlinear PDEs. (letter to the editor)
Non-integrability of time-dependent spherically symmetric Yang-Mills equations
Energy Technology Data Exchange (ETDEWEB)
Matinyan, S G; Prokhorenko, E B; Savvidy, G K
1988-03-07
The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. It is shown that the motion of this system is ergodic, while the system itself is non-integrable, i.e. manifests dynamical chaos.
Symplectic finite element scheme: application to a driven problem with a regular singularity
Energy Technology Data Exchange (ETDEWEB)
Pletzer, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear `tent` elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs.
Symplectic finite element scheme: application to a driven problem with a regular singularity
International Nuclear Information System (INIS)
Pletzer, A.
1996-02-01
A new finite element (FE) scheme, based on the decomposition of a second order differential equation into a set of first order symplectic (Hamiltonian) equations, is presented and tested on one-dimensional, driven Sturm-Liouville problem. Error analysis shows improved cubic convergence in the energy norm for piecewise linear 'tent' elements, as compared to quadratic convergence for the standard and hybrid FE methods. The convergence deteriorates in the presence of a regular singular point, but can be recovered by appropriate mesh node packing. Optimal mesh packing exponents are derived to ensure cubic (respectively quadratic) convergence with minimal numerical error. A further suppression of the numerical error by a factor proportional to the square of the leading exponent of the singular solution, is achieved for a model problem based on determining the nonideal magnetohydrodynamic stability of a fusion plasma. (author) 7 figs., 14 refs
Application of symplectic integrator to numerical fluid analysis
International Nuclear Information System (INIS)
Tanaka, Nobuatsu
2000-01-01
This paper focuses on application of the symplectic integrator to numerical fluid analysis. For the purpose, we introduce Hamiltonian particle dynamics to simulate fluid behavior. The method is based on both the Hamiltonian formulation of a system and the particle methods, and is therefore called Hamiltonian Particle Dynamics (HPD). In this paper, an example of HPD applications, namely the behavior of incompressible inviscid fluid, is solved. In order to improve accuracy of HPD with respect to space, CIVA, which is a highly accurate interpolation method, is combined, but the combined method is subject to problems in that the invariants of the system are not conserved in a long-time computation. For solving the problems, symplectic time integrators are introduced and the effectiveness is confirmed by numerical analyses. (author)
Period mappings with applications to symplectic complex spaces
Kirschner, Tim
2015-01-01
Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.
Noncommutativity and Duality through the Symplectic Embedding Formalism
Directory of Open Access Journals (Sweden)
Everton M.C. Abreu
2010-07-01
Full Text Available This work is devoted to review the gauge embedding of either commutative and noncommutative (NC theories using the symplectic formalism framework. To sum up the main features of the method, during the process of embedding, the infinitesimal gauge generators of the gauge embedded theory are easily and directly chosen. Among other advantages, this enables a greater control over the final Lagrangian and brings some light on the so-called ''arbitrariness problem''. This alternative embedding formalism also presents a way to obtain a set of dynamically dual equivalent embedded Lagrangian densities which is obtained after a finite number of steps in the iterative symplectic process, oppositely to the result proposed using the BFFT formalism. On the other hand, we will see precisely that the symplectic embedding formalism can be seen as an alternative and an efficient procedure to the standard introduction of the Moyal product in order to produce in a natural way a NC theory. In order to construct a pedagogical explanation of the method to the nonspecialist we exemplify the formalism showing that the massive NC U(1 theory is embedded in a gauge theory using this alternative systematic path based on the symplectic framework. Further, as other applications of the method, we describe exactly how to obtain a Lagrangian description for the NC version of some systems reproducing well known theories. Naming some of them, we use the procedure in the Proca model, the irrotational fluid model and the noncommutative self-dual model in order to obtain dual equivalent actions for these theories. To illustrate the process of noncommutativity introduction we use the chiral oscillator and the nondegenerate mechanics.
Hydrodynamic Covariant Symplectic Structure from Bilinear Hamiltonian Functions
Directory of Open Access Journals (Sweden)
Capozziello S.
2005-07-01
Full Text Available Starting from generic bilinear Hamiltonians, constructed by covariant vector, bivector or tensor fields, it is possible to derive a general symplectic structure which leads to holonomic and anholonomic formulations of Hamilton equations of motion directly related to a hydrodynamic picture. This feature is gauge free and it seems a deep link common to all interactions, electromagnetism and gravity included. This scheme could lead toward a full canonical quantization.
Asymptotic freedom and the symplectic and G2 groups
International Nuclear Information System (INIS)
Chaichian, M; Kolmakov, Yu. N.; Nelipa, N. F.
1978-01-01
It is shown that the symplectic Sp(4), Sp(6) and the exceptional G 2 gauge field theories with complete Spontaneous symmetry breaking through the Higgs mechanism are not asymptotically free. This, together with earlier results for other groups, hints at the existence of a general theorem according to which it would no longer be possible for asymptotic freedom to coexist with the absence of infrared divergences. (author)
Symplectic tomography of nonclassical states of trapped ion
International Nuclear Information System (INIS)
Man'ko, O.
1996-03-01
The marginal distribution for two types of nonclassical states of trapped ion - for squeezed and correlated states and for squeezed even and odd coherent states (squeezed Schroedinger cat states) is studied. The obtained marginal distribution for the two types of states is shown to satisfy classical dynamical equation equivalent to standard quantum evolution equation for density matrix (wave function) derived in symplectic tomography scheme. (author). 20 refs
Symplectic invariants of some families of Lagrangian T3-fibrations
International Nuclear Information System (INIS)
Castano Bernard, R.
2003-12-01
We construct families of Lagrangian 3-torus fibrations resembling the topology of some of the singularities in Topological Mirror Symmetry. We perform a detailed analysis of the affine structure on the base of these fibrations near their discriminant loci. This permits us to classify the aforementioned families up to fibre preserving symplectomorphism. The kind of degenerations we investigate give rise to a large number of symplectic invariants. (author)
Gauge properties of the guiding center variational symplectic integrator
International Nuclear Information System (INIS)
Squire, J.; Tang, W. M.; Qin, H.
2012-01-01
Variational symplectic algorithms have recently been developed for carrying out long-time simulation of charged particles in magnetic fields [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008); H. Qin, X. Guan, and W. Tang, Phys. Plasmas (2009); J. Li, H. Qin, Z. Pu, L. Xie, and S. Fu, Phys. Plasmas 18, 052902 (2011)]. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed for this type of system. It is found that for explicit algorithms, an instability arises because the discrete symplectic structure does not become the continuous structure in the t→0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the “antisymmetric discretization gauge,” in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and φ are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss’s law [J. Squire, H. Qin, and W. Tang (to be published)].
Global symplectic structure-preserving integrators for spinning compact binaries
Zhong, Shuang-Ying; Wu, Xin; Liu, San-Qiu; Deng, Xin-Fa
2010-12-01
This paper deals mainly with the application of the second-order symplectic implicit midpoint rule and its symmetric compositions to a post-Newtonian Hamiltonian formulation with canonical spin variables in relativistic compact binaries. The midpoint rule, as a basic algorithm, is directly used to integrate the completely canonical Hamiltonian system. On the other hand, there are symmetric composite methods based on a splitting of the Hamiltonian into two parts: the Newtonian part associated with a Kepler motion, and a perturbation part involving the orbital post-Newtonian and spin contributions, where the Kepler flow has an analytic solution and the perturbation can be calculated by the midpoint rule. An example is the second-order mixed leapfrog symplectic integrator with one stage integration of the perturbation flow and two semistage computations of the Kepler flow at every integration step. Also, higher-order composite methods such as the Forest-Ruth fourth-order symplectic integrator and its optimized algorithm are applicable. Various numerical tests including simulations of chaotic orbits show that the mixed leapfrog integrator is always superior to the midpoint rule in energy accuracy, while both of them are almost equivalent in computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides good precision and needs no expensive additional computational time. As a result, it is worth performing a more detailed and careful examination of the dynamical structure of chaos and order in the parameter windows and phase space of the binary system.
Symmetric integrable-polynomial factorization for symplectic one-turn-map tracking
International Nuclear Information System (INIS)
Shi, Jicong
1993-01-01
It was found that any homogeneous polynomial can be written as a sum of integrable polynomials of the same degree which Lie transformations can be evaluated exactly. By utilizing symplectic integrators, an integrable-polynomial factorization is developed to convert a symplectic map in the form of Dragt-Finn factorization into a product of Lie transformations associated with integrable polynomials. A small number of factorization bases of integrable polynomials enable one to use high order symplectic integrators so that the high-order spurious terms can be greatly suppressed. A symplectic map can thus be evaluated with desired accuracy
Directory of Open Access Journals (Sweden)
Cheng-Hsiung Yang
2013-01-01
Full Text Available A new symplectic chaos synchronization of chaotic systems with uncertain chaotic parameters is studied. The traditional chaos synchronizations are special cases of the symplectic chaos synchronization. A sufficient condition is given for the asymptotical stability of the null solution of error dynamics and a parameter difference. The symplectic chaos synchronization with uncertain chaotic parameters may be applied to the design of secure communication systems. Finally, numerical results are studied for symplectic chaos synchronized from two identical Lorenz-Stenflo systems in three different cases.
Real symplectic formulation of local special geometry
Ferrara, Sergio; Ferrara, Sergio; Macia, Oscar
2006-01-01
We consider a formulation of local special geometry in terms of Darboux special coordinates $P^I=(p^i,q_i)$, $I=1,...,2n$. A general formula for the metric is obtained which is manifestly $\\mathbf{Sp}(2n,\\mathbb{R})$ covariant. Unlike the rigid case the metric is not given by the Hessian of the real function $S(P)$ which is the Legendre transform of the imaginary part of the holomorphic prepotential. Rather it is given by an expression that contains $S$, its Hessian and the conjugate momenta $S_I=\\frac{\\partial S}{\\partial P^I}$. Only in the one-dimensional case ($n=1$) is the real (two-dimensional) metric proportional to the Hessian with an appropriate conformal factor.
Bustamante, M D
2003-01-01
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, w...
Energy Technology Data Exchange (ETDEWEB)
Bustamante, Miguel D [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile (Chile); Hojman, Sergio A [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile (Chile)
2003-01-10
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion.
Sources and fate of antimicrobials in integrated fish-pig and non-integrated tilapia farms
DEFF Research Database (Denmark)
Li, Kang; Liu, Liping; Zhan, Jia
2017-01-01
residues in fish skin from both integrated and non-integrated farms, and in pig manure. Enrofloxacin (3.9–129.3 μg/kg) and sulfadiazine (0.7–7.8 μg/kg) were commonly detected in fish skin and muscle, pig manure and pond sediment from integrated farms, with different types of antimicrobials found in pig...
Baranes, Edmond; Bardey, David
2015-12-01
This article examines a model of competition between two types of health insurer: Health Maintenance Organizations (HMOs) and nonintegrated insurers. HMOs vertically integrate health care providers and pay them at a competitive price, while nonintegrated health insurers work as indemnity plans and pay the health care providers freely chosen by policyholders at a wholesale price. Such difference is referred to as an input price effect which, at first glance, favors HMOs. Moreover, we assume that policyholders place a positive value on the provider diversity supplied by their health insurance plan and that this value increases with the probability of disease. Due to the restricted choice of health care providers in HMOs a risk segmentation occurs: policyholders who choose nonintegrated health insurers are characterized by higher risk, which also tends to favor HMOs. Our equilibrium analysis reveals that the equilibrium allocation only depends on the number of HMOs in the case of exclusivity contracts between HMOs and providers. Surprisingly, our model shows that the interplay between risk segmentation and input price effects may generate ambiguous results. More precisely, we reveal that vertical integration in health insurance markets may decrease health insurers' premiums.
Bianchi type A hyper-symplectic and hyper-Kaehler metrics in 4D
International Nuclear Information System (INIS)
De Andrés, L C; Fernández, M; Ivanov, S; Santisteban, J A; Ugarte, L; Vassilev, D
2012-01-01
We present a simple explicit construction of hyper-Kaehler and hyper-symplectic (also known as neutral hyper-Kaehler or hyper-para-Kaehler) metrics in 4D using the Bianchi type groups of class A. The construction underlies a correspondence between hyper-Kaehler and hyper-symplectic structures of dimension 4. (paper)
Bianchi type A hyper-symplectic and hyper-K\\"ahler metrics in 4D
de Andrés, Luis C.; Fernández, Marisa; Ivanov, Stefan; Santisteban, José A.; Ugarte, Luis; Vassilev, Dimiter
2011-01-01
We present a simple explicit construction of hyper-Kaehler and hyper-symplectic (also known as neutral hyper-Kaehler or hyper-parakaehler) metrics in 4D using the Bianchi type groups of class A. The construction underlies a correspondence between hyper-Kaehler and hyper-symplectic structures in dimension four.
A new multi-symplectic scheme for the generalized Kadomtsev-Petviashvili equation
Li, Haochen; Sun, Jianqiang
2012-09-01
We propose a new scheme for the generalized Kadomtsev-Petviashvili (KP) equation. The multi-symplectic conservation property of the new scheme is proved. Back error analysis shows that the new multi-symplectic scheme has second order accuracy in space and time. Numerical application on studying the KPI equation and the KPII equation are presented in detail.
Precise iteration formulae of the Maslov-type index theory for symplectic paths
International Nuclear Information System (INIS)
Yiming Long
1998-10-01
In this paper, using homotopy components of symplectic matrices, and basic properties of the Maslov-type index theory, we establish precise iteration formulae of the Maslov-type index theory for any path in the symplectic group starting from the identity. (author)
Symplectic manifolds, coadjoint orbits, and Mean Field Theory
International Nuclear Information System (INIS)
Rosensteel, G.
1986-01-01
Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit
The endoscopic classification of representations orthogonal and symplectic groups
Arthur, James
2013-01-01
Within the Langlands program, endoscopy is a fundamental process for relating automorphic representations of one group with those of another. In this book, Arthur establishes an endoscopic classification of automorphic representations of orthogonal and symplectic groups G. The representations are shown to occur in families (known as global L-packets and A-packets), which are parametrized by certain self-dual automorphic representations of an associated general linear group GL(N). The central result is a simple and explicit formula for the multiplicity in the automorphic discrete spectrum of G
Introduction to orthogonal, symplectic and unitary representations of finite groups
Riehm, Carl R
2011-01-01
Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea
Categorical Cell Decomposition of Quantized Symplectic Algebraic Varieties
Bellamy, Gwyn; Dodd, Christopher; McGerty, Kevin; Nevins, Thomas
2013-01-01
We prove a new symplectic analogue of Kashiwara’s equivalence from D–module\\ud theory. As a consequence, we establish a structure theory for module categories over\\ud deformation-quantizations that mirrors, at a higher categorical level, the BiałynickiBirula\\ud stratification of a variety with an action of the multiplicative group Gm . The\\ud resulting categorical cell decomposition provides an algebrogeometric parallel to the\\ud structure of Fukaya categories of Weinstein manifolds. From it,...
Method to render second order beam optics programs symplectic
International Nuclear Information System (INIS)
Douglas, D.; Servranckx, R.V.
1984-10-01
We present evidence that second order matrix-based beam optics programs violate the symplectic condition. A simple method to avoid this difficulty, based on a generating function approach to evaluating transfer maps, is described. A simple example illustrating the non-symplectricity of second order matrix methods, and the effectiveness of our solution to the problem, is provided. We conclude that it is in fact possible to bring second order matrix optics methods to a canonical form. The procedure for doing so has been implemented in the program DIMAT, and could be implemented in programs such as TRANSPORT and TURTLE, making them useful in multiturn applications. 15 refs
A Symplectic Beam-Beam Interaction with Energy Change
International Nuclear Information System (INIS)
Moshammer, Herbert
2003-01-01
The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the
Infinite dimensional groups and algebras in quantum physics
International Nuclear Information System (INIS)
Ottesen, J.T.
1995-01-01
This book is an introduction to the application of infite-dimensional groups and algebras in quantum physics. Especially considered are the spin representation of the infinite-dimensional orthogonal group, the metaplectic representation of the infinite-dimensional symplectic groups, and Loop and Virasoro algebras. (HSI)
An hp symplectic pseudospectral method for nonlinear optimal control
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
QCD gauge symmetries through Faddeev-Jackiw symplectic method
International Nuclear Information System (INIS)
Abreu, E.M.C.; Mendes, A.C.R.; Neves, C.; Oliveira, W.; Silva, R.C.N.
2013-01-01
Full text: The FJ method is an approach that is geometrically motivated. It is based on the symplectic structure of the phase space. The first-order characteristic allows to obtain the Hamiltonian equations of motion from a variational principle. Its geometric structure of the Hamiltonian phase-space will be carried out directly from the equations of motion via the inverse of the so-called symplectic two-form, if the inverse exists. Few years after its publication, the FJ formalism was extended and through the years it has been applied to different systems. Gauge invariance is one of the most well established concepts in theoretical physics and it is one of the main ingredients in Standard Model theory. However, we can ask if it could have an alternative origin connected to another theory or principle. With this motivation in mind we will show in this paper that gauge invariance could be considered an emergent concept having its origin in the algebraic formalism of a well known method that deals with constrained systems, namely, the Faddeev-Jackiw (FJ) technique. Of course the gauge invariance idea is older than FJ's, but the results obtained here will show that the connection between both will prove that SU(3) and SU(3) X SU(2) X U(1) gauge groups, which are fundamental to important theories like QCD and Standard Model, can be obtained through FJ formalism. (author)
Explicit symplectic algorithms based on generating functions for charged particle dynamics
Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan
2016-07-01
Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.
New results for time reversed symplectic dynamic systems and quadratic functionals
Directory of Open Access Journals (Sweden)
Roman Simon Hilscher
2012-05-01
Full Text Available In this paper, we examine time scale symplectic (or Hamiltonian systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresponding classical theory for time reversed discrete symplectic systems, as well as they complete the recently developed theory of time scale symplectic systems.
A symplectic Poisson solver based on Fast Fourier Transformation. The first trial
International Nuclear Information System (INIS)
Vorobiev, L.G.; Hirata, Kohji.
1995-11-01
A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)
Sources and fate of antimicrobials in integrated fish-pig and non-integrated tilapia farms.
Li, Kang; Liu, Liping; Zhan, Jia; Scippo, Marie-Louise; Hvidtfeldt, Kristian; Liu, Yuan; Dalsgaard, Anders
2017-10-01
Antimicrobial contamination in aquaculture products constitutes a food safety hazard, but little is known about the introduction and accumulation of antimicrobials in integrated fish-pig aquaculture. This study, conducted in 2013, aimed to determine the residues of 11 types of antimicrobials by UPLC-MS/MS analysis in fish feed (n=37), pig feed (n=9), pig manure (n=9), pond sediment (n=20), fish skin (n=20) and muscle tissue (n=20) sampled from integrated tilapia-pig farms, non-integrated tilapia farms and fish feed supply shops. There was a higher occurrence of antimicrobial residues in fish skin from both integrated and non-integrated farms, and in pig manure. Enrofloxacin (3.9-129.3μg/kg) and sulfadiazine (0.7-7.8μg/kg) were commonly detected in fish skin and muscle, pig manure and pond sediment from integrated farms, with different types of antimicrobials found in pig manure and tilapia samples. In non-integrated farms, sulfadiazine (2.5-89.9μg/kg) was the predominant antimicrobial detected in fish skin and muscle, fish feed and pond sediment. In general, antimicrobials seemed not to be commonly transmitted from pig to fish in tilapia-pig integrated farms, and fish feed, pig feed and pond sediment did not seem as important sources of the antimicrobials found in fish from both systems. The frequent findings of antimicrobial residues in fish skin compared with fish muscle was probably due to different pharmacokinetics in different tissue types, which have practical food safety implications since antimicrobial residues monitoring is usually performed analyzing mixed skin and fish muscle samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Kang; Petersen, Gitte; Barco, Lisa; Hvidtfeldt, Kristian; Liu, Liping; Dalsgaard, Anders
2017-08-01
Integrated tilapia-pig farming, which uses manure from pigs as fertilizers in fish pond, is a traditional and common production system practised by small-scale farmers in South-east Asia. Although such systems may be environmentally sustainable, they also pose potential food safety hazards including transmission of faecal zoonotic pathogens and accumulation of antimicrobial and other chemical residues. This study aimed to determine differences in occurrence and characteristics of Salmonella spp. isolated from tilapia-pig and non-integrated aquaculture systems in Guangdong province, China. A total of 77 samples (9 pig feed, 19 fish feed, 9 pig faeces, 20 fish mucus and 20 fish intestine) from 10 tilapia-pig ponds and 10 non-integrated ponds were analysed. Salmonella spp. was found in fish mucus (20.0%), fish intestine (40.0%) and pig faeces (11.1%) from integrated ponds, and from fish mucus (40.0%) and fish intestine (40.0%) from non-integrated ponds. S. Weltevreden (76.5%) was by far the most common serovar showing limited antimicrobial resistance. One pig faeces sample contained S. Typhimurium whereas feed samples were found free of Salmonella spp.. DNA fingerprinting by the PFGE method showed a clonal relationship of S. Weltevreden which was supported by similar antimicrobial resistance patterns (sulfamethoxazole and trimethoprim resistance) as well as most isolates harbouring a 147-kb sized plasmid. The common finding of S. Weltevreden in both tilapia production systems indicates that this serovar may have a different ecology and increased survival in aquaculture environments in comparison with other Salmonella serovars. Further in vivo studies of the ecology of S. Weltevreden in aquaculture environments are needed. Copyright © 2017. Published by Elsevier Ltd.
DEFF Research Database (Denmark)
Li, Kang; Petersen, Gitte; Barco, Lisa
2017-01-01
including transmission of faecal zoonotic pathogens and accumulation of antimicrobial and other chemical residues. This study aimed to determine differences in occurrence and characteristics of Salmonella spp. isolated from tilapia-pig and non-integrated aquaculture systems in Guangdong province, China...... method showed a clonal relationship of S. Weltevreden which was supported by similar antimicrobial resistance patterns (sulfamethoxazole and trimethoprim resistance) as well as most isolates harbouring a 147-kb sized plasmid. The common finding of S. Weltevreden in both tilapia production systems...
Existence and equivalence of twisted products on a symplectic manifold
International Nuclear Information System (INIS)
Lichnerowicz, A.
1979-01-01
The twisted products play an important role in Quantum Mechanics. A distinction is introduced between Vey *sub(γ) products and strong Vey *sub(γ) products and it is proved that each *sub(γ) product is equivalent to a Vey *sub(γ) product. If b 3 (W) = 0, the symplectic manifold (W,F) admits strong Vey *sub(Gn) products. If b 2 (W) = 0, all *sub(γ) products are equivalent as well as the Vey Lie algebras. In the general case the formal Lie algebras are characterized which are generated by a *sub(γ) product and it proved that the existance of a *sub(γ)-product is equivalent to the existance of a formal Lie algebra infinitesimally equivalent to a Vey Lie algebra at the first order. (Auth.)
Symplectic maps and chromatic optics in particle accelerators
Energy Technology Data Exchange (ETDEWEB)
Cai, Yunhai
2015-10-11
We have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles and derive analytically their settings for the local chromatic compensation. As a result, the cell becomes nearly perfect up to the third-order of the momentum deviation.
An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Peer Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul
2015-01-01
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals.
Frejlich, Pedro; Mărcuț, Ioan
2018-01-01
Poisson transversals are submanifolds in a Poisson manifold which intersect all symplectic leaves transversally and symplectically. In this communication, we prove a normal form theorem for Poisson maps around Poisson transversals. A Poisson map pulls a Poisson transversal back to a Poisson transversal, and our first main result states that simultaneous normal forms exist around such transversals, for which the Poisson map becomes transversally linear, and intertwines the normal form data of the transversals. Our second result concerns symplectic integrations. We prove that a neighborhood of a Poisson transversal is integrable exactly when the Poisson transversal itself is integrable, and in that case we prove a normal form theorem for the symplectic groupoid around its restriction to the Poisson transversal, which puts all structure maps in normal form. We conclude by illustrating our results with examples arising from Lie algebras.
Two new solutions to the third-order symplectic integration method
International Nuclear Information System (INIS)
Iwatsu, Reima
2009-01-01
Two new solutions are obtained for the symplecticity conditions of explicit third-order partitioned Runge-Kutta time integration method. One of them has larger stability limit and better dispersion property than the Ruth's method.
Variational and symplectic integrators for satellite relative orbit propagation including drag
Palacios, Leonel; Gurfil, Pini
2018-04-01
Orbit propagation algorithms for satellite relative motion relying on Runge-Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge-Kutta-based integrators, even in the presence of atmospheric drag.
Exact symplectic structures and a classical model for the Dirac electron
International Nuclear Information System (INIS)
Rawnsley, J.
1992-01-01
We show how the classical model for the Dirac electron of Barut and coworkers can be obtained as a Hamiltonian theory by constructing an exact symplectic form on the total space of the spin bundle over spacetime. (orig.)
Meraviglia, Viviana; Zanon, Alessandra; Lavdas, Alexandros A; Schwienbacher, Christine; Silipigni, Rosamaria; Di Segni, Marina; Chen, Huei-Sheng Vincent; Pramstaller, Peter P; Hicks, Andrew A; Rossini, Alessandra
2015-06-05
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by forcing the expression of four transcription factors (Oct-4, Sox-2, Klf-4, and c-Myc), typically expressed by human embryonic stem cells (hESCs). Due to their similarity with hESCs, iPSCs have become an important tool for potential patient-specific regenerative medicine, avoiding ethical issues associated with hESCs. In order to obtain cells suitable for clinical application, transgene-free iPSCs need to be generated to avoid transgene reactivation, altered gene expression and misguided differentiation. Moreover, a highly efficient and inexpensive reprogramming method is necessary to derive sufficient iPSCs for therapeutic purposes. Given this need, an efficient non-integrating episomal plasmid approach is the preferable choice for iPSC derivation. Currently the most common cell type used for reprogramming purposes are fibroblasts, the isolation of which requires tissue biopsy, an invasive surgical procedure for the patient. Therefore, human peripheral blood represents the most accessible and least invasive tissue for iPSC generation. In this study, a cost-effective and viral-free protocol using non-integrating episomal plasmids is reported for the generation of iPSCs from human peripheral blood mononuclear cells (PBMNCs) obtained from frozen buffy coats after whole blood centrifugation and without density gradient separation.
Joint-operation in water resources project in Indonesia: Integrated or non-integrated
Ophiyandri, Taufika; Istijono, Bambang; Hidayat, Benny
2017-11-01
The construction of large water resources infrastructure project often involved a joint-operation (JO) project between two or more construction companies. The form of JO can be grouped into two categories - an integrated type and a non-integrated type. This paper investigates the reason of forming a JO project made by companies. The specific advantages and problems of JO project is also analysed in this paper. In order to achieve the objectives, three water resources infrastructure projects were selected as case studies. Data was gathered by conducting 11 semi-structured interviews to project owners, contractor managers, and project staffs. Data was analysed by means of content analysis. It was found that the most fundamental factor to form a JO is to win a competition or tender. An integrated model is in favour because it can reduce overhead costs and has a simple management system, while a non-integrated model is selected because it can avoid a sleeping partner and make contractor more responsible for their own job.
Real-time dynamics of typical and untypical states in nonintegrable systems
Richter, Jonas; Jin, Fengping; De Raedt, Hans; Michielsen, Kristel; Gemmer, Jochen; Steinigeweg, Robin
2018-05-01
Understanding (i) the emergence of diffusion from truly microscopic principles continues to be a major challenge in experimental and theoretical physics. At the same time, isolated quantum many-body systems have experienced an upsurge of interest in recent years. Since in such systems the realization of a proper initial state is the only possibility to induce a nonequilibrium process, understanding (ii) the largely unexplored role of the specific realization is vitally important. Our work reports a substantial step forward and tackles the two issues (i) and (ii) in the context of typicality, entanglement as well as integrability and nonintegrability. Specifically, we consider the spin-1/2 XXZ chain, where integrability can be broken due to an additional next-nearest neighbor interaction, and study the real-time and real-space dynamics of nonequilibrium magnetization profiles for a class of pure states. Summarizing our main results, we show that signatures of diffusion for strong interactions are equally pronounced for the integrable and nonintegrable case. In both cases, we further find a clear difference between the dynamics of states with and without internal randomness. We provide an explanation of this difference by a detailed analysis of the local density of states.
Directory of Open Access Journals (Sweden)
Shong Lau
2014-12-01
Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.
On the Inverse Mapping of the Formal Symplectic Groupoid of a Deformation Quantization
Karabegov, Alexander V.
2004-10-01
To each natural star product on a Poisson manifold $M$ we associate an antisymplectic involutive automorphism of the formal neighborhood of the zero section of the cotangent bundle of $M$. If $M$ is symplectic, this mapping is shown to be the inverse mapping of the formal symplectic groupoid of the star product. The construction of the inverse mapping involves modular automorphisms of the star product.
Symplectic matrix, gauge invariance and Dirac brackets for super-QED
Energy Technology Data Exchange (ETDEWEB)
Alves, D.T. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Cheb-Terrab, E.S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mathematics
1999-08-01
The calculation of Dirac brackets (DB) using a symplectic matrix approach but in a Hamiltonian framework is discussed, and the calculation of the DB for the supersymmetric extension of QED (super-QED) is shown. The relation between the zero-mode of the pre-symplectic matrix and the gauge transformations admitted by the model is verified. A general description to construct Lagrangians linear in the velocities is also presented. (author)
Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem
International Nuclear Information System (INIS)
Wei-Tao, Lu; Hua, Zhang; Shun-Jin, Wang
2008-01-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge–Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP. (general)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong
2018-03-01
We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
Lin, Cheng-Ju; Motrunich, Olexei
Eigenstate Thermalization Hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Banuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2011)] of a nonintegrable quantum Ising model with longitudinal field under such quench setting found different behaviors under different initial quantum states. One particular case termed ``weak thermalization'' regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We use perturbation theory near the ground state of the model, and identify the oscillation frequency as the quasiparticle mass. With this quasiparticle picture, we can then address the long-time behavior of the oscillations.
Highly accurate symplectic element based on two variational principles
Qing, Guanghui; Tian, Jia
2018-02-01
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.
The complex Laguerre symplectic ensemble of non-Hermitian matrices
International Nuclear Information System (INIS)
Akemann, G.
2005-01-01
We solve the complex extension of the chiral Gaussian symplectic ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correlation functions of complex eigenvalues are given in terms of the corresponding skew orthogonal polynomials in the complex plane for finite-N, where N is the matrix size or number of eigenvalues, respectively. We also allow for an arbitrary number of complex conjugate pairs of characteristic polynomials in the weight function, corresponding to massive quark flavours in applications to field theory. Explicit expressions are given in the large-N limit at both weak and strong non-Hermiticity for the weight of the Gaussian two-matrix model. This model can be mapped to the complex Dirac operator spectrum with non-vanishing chemical potential. It belongs to the symmetry class of either the adjoint representation or two colours in the fundamental representation using staggered lattice fermions
Submaximal Riemann-Roch expected curves and symplectic packing.
Directory of Open Access Journals (Sweden)
Wioletta Syzdek
2007-06-01
Full Text Available We study Riemann-Roch expected curves on $mathbb{P}^1 imes mathbb{P}^1$ in the context of the Nagata-Biran conjecture. This conjecture predicts that for sufficiently large number of points multiple points Seshadri constants of an ample line bundle on algebraic surface are maximal. Biran gives an effective lower bound $N_0$. We construct examples verifying to the effect that the assertions of the Nagata-Biran conjecture can not hold for small number of points. We discuss cases where our construction fails. We observe also that there exists a strong relation between Riemann-Roch expected curves on $mathbb{P}^1 imes mathbb{P}^1$ and the symplectic packing problem. Biran relates the packing problem to the existence of solutions of certain Diophantine equations. We construct such solutions for any ample line bundle on $mathbb{P}^1 imes mathbb{P}^1$ and a relatively smallnumber of points. The solutions geometrically correspond to Riemann-Roch expected curves. Finally we discuss in how far the Biran number $N_0$ is optimal in the case of mathbb{P}^1 imes mathbb{P}^1. In fact we conjecture that it can be replaced by a lower number and we provide evidence justifying this conjecture.
The symplectic fermion ribbon quasi-Hopf algebra and the SL(2,Z)-action on its centre
Energy Technology Data Exchange (ETDEWEB)
Farsad, Vanda
2017-06-14
This thesis is concerned with ''N pairs of symplectic fermions'' which are examples of logarithmic conformal field theories in two dimensions. The mathematical language of two-dimensional conformal field theories (on Riemannian surfaces of genus zero) are vertex operator algebras. The representation category of the even part of the symplectic fermion vertex operator super-algebra Rep V{sub ev} is conjecturally a factorisable finite ribbon tensor category. This determines an isomorphism of projective representations between two SL(2,Z)-actions associated to V{sub ev}. The first action is obtained by modular transformations on the space of so-called pseudo-trace functions of a vertex operator algebra. For V{sub ev} this was developed by A.M.Gaberdiel and I. Runkel. For the action one uses that Rep V{sub ev} is conjecturally a factorisable finite ribbon tensor category and thus carries a projective SL(2,Z)-action on a certain Hom-space [Ly1,Ly2,KL]. To do so we calculate the SL(2,Z)-action on the representation category of a general factorisable quasi-Hopf algebras. Then we show that Rep V{sub ev} is conjecturally ribbon equivalent to Rep Q, for Q a factorisable quasi-Hopf algebra, and calculate the SL(2,Z)-action explicitly on Rep Q. The result is that the two SL(2,Z)-action indeed agree. This poses the first example of such comparison for logarithmic conformal field theories.
Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method
Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang
2017-06-01
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.
EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTATIONS FOR SPINNING COMPACT BINARIES
Energy Technology Data Exchange (ETDEWEB)
Luo, Junjie; Wu, Xin; Huang, Guoqing [Department of Physics and Institute of Astronomy, Nanchang University, Nanchang 330031 (China); Liu, Fuyao, E-mail: xwu@ncu.edu.cn [School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China)
2017-01-01
We refine the recently developed fourth-order extended phase space explicit symplectic-like methods for inseparable Hamiltonians using Yoshida’s triple product combined with a midpoint permuted map. The midpoint between the original variables and their corresponding extended variables at every integration step is readjusted as the initial values of the original variables and their corresponding extended ones at the next step integration. The triple-product construction is apparently superior to the composition of two triple products in computational efficiency. Above all, the new midpoint permutations are more effective in restraining the equality of the original variables and their corresponding extended ones at each integration step than the existing sequent permutations of momenta and coordinates. As a result, our new construction shares the benefit of implicit symplectic integrators in the conservation of the second post-Newtonian Hamiltonian of spinning compact binaries. Especially for the chaotic case, it can work well, but the existing sequent permuted algorithm cannot. When dissipative effects from the gravitational radiation reaction are included, the new symplectic-like method has a secular drift in the energy error of the dissipative system for the orbits that are regular in the absence of radiation, as an implicit symplectic integrator does. In spite of this, it is superior to the same-order implicit symplectic integrator in accuracy and efficiency. The new method is particularly useful in discussing the long-term evolution of inseparable Hamiltonian problems.
Integrated versus non-integrated orbital implants for treating anophthalmic sockets.
Schellini, Silvana; El Dib, Regina; Silva, Leandro Re; Farat, Joyce G; Zhang, Yuqing; Jorge, Eliane C
2016-11-07
Anophthalmia is the absence of one or both eyes, and it can be congenital (i.e. a birth defect) or acquired later in life. There are two main types of orbital implant: integrated, whereby the implant receives a blood supply from the body that allows for the integration of the prosthesis within the tissue; and non-integrated, where the implant remains separate. Despite the remarkable progress in anophthalmic socket reconstruction and in the development of various types of implants, there are still uncertainties about the real roles of integrated (hydroxyapatite (HA), porous polyethylene (PP), composites) and non-integrated (polymethylmethacrylate (PMMA)/acrylic and silicone) orbital implants in anophthalmic socket treatment. To assess the effects of integrated versus non-integrated orbital implants for treating anophthalmic sockets. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 7), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2016), Embase (January 1980 to August 2016), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to August 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 8 August 2016. Randomised controlled trials (RCTs) and quasi-RCTs of integrated and non-integrated orbital implants for treating anophthalmic sockets. Two authors independently selected relevant trials, assessed methodological quality and extracted data. We included three studies with a total of 284 participants (250 included in analysis). The studies were conducted in India, Iran and the Netherlands. The three
Directory of Open Access Journals (Sweden)
You-Wei Zhang
Full Text Available A general symplectic method for the random response analysis of infinitely periodic structures subjected to stationary/non-stationary random excitations is developed using symplectic mathematics in conjunction with variable separation and the pseudo-excitation method (PEM. Starting from the equation of motion for a single loaded substructure, symplectic analysis is firstly used to eliminate the dependent degrees of the freedom through condensation. A Fourier expansion of the condensed equation of motion is then applied to separate the variables of time and wave number, thus enabling the necessary recurrence scheme to be developed. The random response is finally determined by implementing PEM. The proposed method is justified by comparison with results available in the literature and is then applied to a more complicated time-dependent coupled system.
Symplectic geometry of field theories and covariant quantization of superstrings and superparticles
International Nuclear Information System (INIS)
Crnkovic, C.
1987-01-01
A detailed development of the symplectic geometry formalism for a general Lagrangian field theory is presented. Special attention is paid to the theories with constraints and/or gauge degrees of freedom. Special cases of Yang-Mills theory, general relativity and Witten's string field theory are studied and the generators of (super-) Poincare transformations are derived using their respective symplectic forms. The formalism extends naturally to theories formulated in the superspace. The second part of the thesis deals with issues in covariant quantization. By studying the symplectic geometry of the Green-Schwarz covariant superstring action, we elucidate some aspects of its covariant quantization. We derive the on-shell gauge-fixed action and the equations of motion for all the fields. Finally, turning to Siegel's version of the superparticle action, we perform its BRST quantization
Full-turn symplectic map from a generator in a Fourier-spline basis
International Nuclear Information System (INIS)
Berg, J.S.; Warnock, R.L.; Ruth, R.D.; Forest, E.
1993-04-01
Given an arbitrary symplectic tracking code, one can construct a full-turn symplectic map that approximates the result of the code to high accuracy. The map is defined implicitly by a mixed-variable generating function. The implicit definition is no great drawback in practice, thanks to an efficient use of Newton's method to solve for the explicit map at each iteration. The generator is represented by a Fourier series in angle variables, with coefficients given as B-spline functions of action variables. It is constructed by using results of single-turn tracking from many initial conditions. The method has been appliedto a realistic model of the SSC in three degrees of freedom. Orbits can be mapped symplectically for 10 7 turns on an IBM RS6000 model 320 workstation, in a run of about one day
Rodríguez-Tzompantzi, Omar
2018-05-01
The Faddeev-Jackiw symplectic formalism for constrained systems is applied to analyze the dynamical content of a model describing two massive relativistic particles with interaction, which can also be interpreted as a bigravity model in one dimension. We systematically investigate the nature of the physical constraints, for which we also determine the zero-modes structure of the corresponding symplectic matrix. After identifying the whole set of constraints, we find out the transformation laws for all the set of dynamical variables corresponding to gauge symmetries, encoded in the remaining zero modes. In addition, we use an appropriate gauge-fixing procedure, the conformal gauge, to compute the quantization brackets (Faddeev-Jackiw brackets) and also obtain the number of physical degree of freedom. Finally, we argue that this symplectic approach can be helpful for assessing physical constraints and understanding the gauge structure of theories of interacting spin-2 fields.
International Nuclear Information System (INIS)
Liao Cui-Cui; Cui Jin-Chao; Liang Jiu-Zhen; Ding Xiao-Hua
2016-01-01
In this paper, we propose a variational integrator for nonlinear Schrödinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrödinger equations with variable coefficients, cubic nonlinear Schrödinger equations and Gross–Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space. (paper)
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
International Nuclear Information System (INIS)
Gray, S.K.; Noid, D.W.; Sumpter, B.G.
1994-01-01
We test the suitability of a variety of explicit symplectic integrators for molecular dynamics calculations on Hamiltonian systems. These integrators are extremely simple algorithms with low memory requirements, and appear to be well suited for large scale simulations. We first apply all the methods to a simple test case using the ideas of Berendsen and van Gunsteren. We then use the integrators to generate long time trajectories of a 1000 unit polyethylene chain. Calculations are also performed with two popular but nonsymplectic integrators. The most efficient integrators of the set investigated are deduced. We also discuss certain variations on the basic symplectic integration technique
Lin, Cheng-Ju; Motrunich, Olexei I.
2017-12-01
We numerically construct translationally invariant quasiconserved operators with maximum range M , which best commute with a nonintegrable quantum spin chain Hamiltonian, up to M =12 . In the large coupling limit, we find that the residual norm of the commutator of the quasiconserved operator decays exponentially with its maximum range M at small M , and turns into a slower decay at larger M . This quasiconserved operator can be understood as a dressed total "spin-z " operator, by comparing with the perturbative Schrieffer-Wolff construction developed to high order reaching essentially the same maximum range. We also examine the operator inverse participation ratio of the operator, which suggests its localization in the operator Hilbert space. The operator also shows an almost exponentially decaying profile at short distance, while the long-distance behavior is not clear due to limitations of our numerical calculation. Further dynamical simulation confirms that the prethermalization-equilibrated values are described by a generalized Gibbs ensemble that includes such quasiconserved operator.
Cellular Decision Making by Non-Integrative Processing of TLR Inputs
Directory of Open Access Journals (Sweden)
Ryan A. Kellogg
2017-04-01
Full Text Available Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs that converge on the nuclear factor κB (NF-κB pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term “non-integrative” processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback.
Periodic orbits and non-integrability of Henon-Heiles systems
International Nuclear Information System (INIS)
Llibre, Jaume; Jimenez-Lara, Lidia
2011-01-01
We apply the averaging theory of second order to study the periodic orbits for a generalized Henon-Heiles system with two parameters, which contains the classical Henon-Heiles system. Two main results are shown. The first result provides sufficient conditions on the two parameters of these generalized systems, which guarantee that at any positive energy level, the Hamiltonian system has periodic orbits. These periodic orbits form in the whole phase space a continuous family of periodic orbits parameterized by the energy. The second result shows that for the non-integrable Henon-Heiles systems in the sense of Liouville-Arnol'd, which have the periodic orbits analytically found with averaging theory, cannot exist any second first integral of class C 1 . In particular, for any second first integral of class C 1 , we prove that the classical Henon-Heiles system and many generalizations of it are not integrable in the sense of Liouville-Arnol'd. Moreover, the tools we use for studying the periodic orbits and the non-Liouville-Arnol'd integrability can be applied to Hamiltonian systems with an arbitrary number of degrees of freedom.
Exact smooth classification of Hamiltonian vector fields on symplectic 2-manifolds
International Nuclear Information System (INIS)
Krouglikov, B.S.
1994-10-01
Complete exact classification of Hamiltonian systems with one degree of freedom and Morse Hamiltonian is carried out. As it is a main part of trajectory classification of integrable Hamiltonian systems with two degrees of freedom, the corresponding generalization is considered. The dual problem of classification of symplectic form together with Morse foliation is carried out as well. (author). 10 refs, 16 figs
Directory of Open Access Journals (Sweden)
You Gao
2011-01-01
Full Text Available A new construction of authentication codes with arbitration and multireceiver from singular symplectic geometry over finite fields is given. The parameters are computed. Assuming that the encoding rules are chosen according to a uniform probability distribution, the probabilities of success for different types of deception are also computed.
Symplectic homoclinic tangles of the ideal separatrix of the DIII-D from type I ELMs
Punjabi, Alkesh; Ali, Halima
2012-10-01
The ideal separatrix of the divertor tokamaks is a degenerate manifold where both the stable and unstable manifolds coincide. Non-axisymmetric magnetic perturbations remove the degeneracy; and split the separatrix manifold. This creates an extremely complex topological structure, called homoclinic tangles. The unstable manifold intersects the stable manifold and creates alternating inner and outer lobes at successive homoclinic points. The Hamiltonian system must preserve the symplectic topological invariance, and this controls the size and radial extent of the lobes. Very recently, lobes near the X-point have been experimentally observed in MAST [A. Kirk et al, PRL 108, 255003 (2012)]. We have used the DIII-D map [A. Punjabi, NF 49, 115020 (2009)] to calculate symplectic homoclinic tangles of the ideal separatrix of the DIII-D from the type I ELMs represented by the peeling-ballooning modes (m,n)=(30,10)+(40,10). The DIII-D map is symplectic, accurate, and is in natural canonical coordinates which are invertible to physical coordinates [A. Punjabi and H. Ali, POP 15, 122502 (2008)]. To our knowledge, we are the first to symplectically calculate these tangles in physical space. Homoclinic tangles of separatrix can cause radial displacement of mobile passing electrons and create sheared radial electric fields and currents, resulting in radial flows, drifts, differential spinning, and reduction in turbulence, and other effects. This work is supported by the grants DE-FG02-01ER54624 and DE-FG02-04ER54793.
International Nuclear Information System (INIS)
Struckmeier, Juergen
2005-01-01
We will present a consistent description of Hamiltonian dynamics on the 'symplectic extended phase space' that is analogous to that of a time-independent Hamiltonian system on the conventional symplectic phase space. The extended Hamiltonian H 1 and the pertaining extended symplectic structure that establish the proper canonical extension of a conventional Hamiltonian H will be derived from a generalized formulation of Hamilton's variational principle. The extended canonical transformation theory then naturally permits transformations that also map the time scales of the original and destination system, while preserving the extended Hamiltonian H 1 , and hence the form of the canonical equations derived from H 1 . The Lorentz transformation, as well as time scaling transformations in celestial mechanics, will be shown to represent particular canonical transformations in the symplectic extended phase space. Furthermore, the generalized canonical transformation approach allows us to directly map explicitly time-dependent Hamiltonians into time-independent ones. An 'extended' generating function that defines transformations of this kind will be presented for the time-dependent damped harmonic oscillator and for a general class of explicitly time-dependent potentials. In the appendix, we will re-establish the proper form of the extended Hamiltonian H 1 by means of a Legendre transformation of the extended Lagrangian L 1
Principal and nonprincipal solutions of symplectic dynamic systems on time scales
Directory of Open Access Journals (Sweden)
Ondrej Dosly
2000-01-01
Full Text Available We establish the concept of the principal and nonprincipal solution for the so-called symplectic dynamic systems on time scales. We also present a brief survey of the history of these concept for differential and difference equations.
Classification of the linear canonical transformation and its associated real symplectic matrix
Bastiaans, M.J.; Alieva, T.
2007-01-01
Based on the eigenvalues of the real symplectic ABCD-matrix that characterizes the linear canonical integral transformation, a classification of this transformation and the associated ABCD-system is proposed and some nuclei (i.e. elementary members) in each class are described. In the
The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies
Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.
2004-01-01
Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its
An optimized formulation for Deprit-type Lie transformations of Taylor maps for symplectic systems
International Nuclear Information System (INIS)
Shi, Jicong
1993-01-01
An optimized iterative formulation is presented for directly transforming a Taylor map of a symplectic system into a Deprit-type Lie transformation, which is a composition of a linear transfer matrix and a single Lie transformation, to an arbitrary order
International Nuclear Information System (INIS)
Warnock, R.L.; Ellison, J.A.; Univ. of New Mexico, Albuquerque, NM
1997-08-01
Data from orbits of a symplectic integrator can be interpolated so as to construct an approximation to the generating function of a Poincare map. The time required to compute an orbit of the symplectic map induced by the generator can be much less than the time to follow the same orbit by symplectic integration. The construction has been carried out previously for full-turn maps of large particle accelerators, and a big saving in time (for instance a factor of 60) has been demonstrated. A shortcoming of the work to date arose from the use of canonical polar coordinates, which precluded map construction in small regions of phase space near coordinate singularities. This paper shows that Cartesian coordinates can also be used, thus avoiding singularities. The generator is represented in a basis of tensor product B-splines. Under weak conditions the spline expansion converges uniformly as the mesh is refined, approaching the exact generator of the Poincare map as defined by the symplectic integrator, in some parallelepiped of phase space centered at the origin
International Nuclear Information System (INIS)
Zhang, Ruili; Tang, Yifa; Zhu, Beibei; Liu, Jian; Xiao, Jianyuan; Qin, Hong
2014-01-01
The gyrocenter dynamics of charged particles in time-independent magnetic fields is a non-canonical Hamiltonian system. The canonical description of the gyrocenter has both theoretical and practical importance. We provide a general procedure of the gyrocenter canonicalization, which is expressed by the series of a small variable ϵ depending only on the parallel velocity u and can be expressed in a recursive manner. We prove that the truncation of the series to any given order generates a set of exact canonical coordinates for a system, whose Lagrangian approximates to that of the original gyrocenter system in the same order. If flux surfaces exist for the magnetic field, the series stops simply at the second order and an exact canonical form of the gyrocenter system is obtained. With the canonicalization schemes, the canonical symplectic simulation of gyrocenter dynamics is realized for the first time. The canonical symplectic algorithm has the advantage of good conservation properties and long-term numerical accuracy, while avoiding numerical instability. It is worth mentioning that explicitly expressing the canonical Hamiltonian in new coordinates is usually difficult and impractical. We give an iteration procedure that is easy to implement in the original coordinates associated with the coordinate transformation. This is crucial for modern large-scale simulation studies in plasma physics. The dynamics of gyrocenters in the dipole magnetic field and in the toroidal geometry are simulated using the canonical symplectic algorithm by comparison with the higher-order non symplectic Runge-Kutta scheme. The overwhelming superiorities of the symplectic method for the gyrocenter system are evidently exhibited
Why irreversibility? The formulation of classical and quantum mechanics for nonintegrable systems
International Nuclear Information System (INIS)
Prigogine, I.
1995-01-01
Nonintegrable Poincare systems with a continuous spectrum lead to the appearance of diffusive terms in the frame of classical or quantum dynamics. These terms break time symmetry. They lead, therefore, to limitations to classical trajectory theory and of wave-function formalism. These diffusive terms correspond to well-defined classes of dynamical processes. The diffusive effects are amplified in situations corresponding to persistent interactions. As a result, we have to include, already, in the fundamental dynamical description the two basic aspects, probability and irreversibility, which are so conspicuous on the macroscopic level. We have to formulate both classical and quantum mechanics on the Liouville level of probability distributions. For integrable systems, we recover the usual formulation of classical or quantum mechanics. Instead of being primitive concepts, which cannot be further analyzed, trajectories and wave functions appear as special solutions of the Liouville-von Neumann equations. This extension of classical and quantum dynamics permits us to unify the two concepts of nature that we inherited from the nineteenth century, based, on the one hand, on dynamical time-reversible laws and, on the other, on an evolutionary view associated to entropy. It leads also to a unified formulation of quantum theory, avoiding the conventional dual structure based on Schroedinger's equation, on the one hand, and on the open-quotes collapseclose quotes of the wave function, on the other. A dynamical interpretation is given to processes such as decoherence or approach to equilibrium without any appeal to extra dynamic considerations. There is a striking parallelism between classical and quantum theory. For large Poincare systems (LPS), we have, in general, both a open-quotes collapseclose quotes of trajectories and of wave functions. In both cases, we need a generalized formulation of dynamics in terms of probability distributions or density matrices
Lin, Cheng-Ju; Motrunich, Olexei I.
2017-02-01
The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007), 10.1103/PhysRevLett.106.050405] of a nonintegrable quantum Ising model with longitudinal field under such a quench setting found different behaviors for different initial quantum states. One particular case called the "weak-thermalization" regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a t-3 /2 decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.
Directory of Open Access Journals (Sweden)
Frédéric Coutant
Full Text Available Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5 of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice. The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042. Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia. However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.
Integrable and nonintegrable non-KAM Hamiltonians and magnetic field topology
International Nuclear Information System (INIS)
Salat, A.
1986-01-01
The integrability of Hamiltonians H(P 1 , P 2 , Q 1 , Q 2 )=P 1 G 1 (Q 1 ,Q 2 )+P 2 G 2 (Q 1 ,Q 2 ), with arbitrary analytic G 1 and G 2 , 2π-periodic in Q 1 and Q 2 , is analytically investigated. Such H cannot be separated into two parts, H=H 0 +H 21 , such that the KAM theorem would apply for vertical strokeH 1 vertical stroke 0 vertical stroke. For G 2 =const such Hamiltonians correspond to toroidal magnetic fields with constant rotational transform. Integrability is then equivalent to the existence of closed magnetic surfaces. The winding number w of the Q 1 , Q 2 flow (i.e. the rotational transform) is rational in 'tongue'-like domains in (ω 2 /ω 1 ,A) diagrams. Here ω i = i > is the average over both Q 1 and Q 2 , G i =ω i +F i , i=1, 2, and A is an amplitude parameter of F i (F i =0 for A=0). Integrability is proved almost everywhere in the complementary domains, namely where w is sufficiently irrational. In the generic case ('conditional') nonintegrability is proved for the class dG 1 /dQ 1 +dG 2 /dQ 2 =0 in the tongues, which in this case shrink to lines with w=ω 1 /ω 2 . It is shown that if the number of dimensions in the Hamiltonian were larger than two, qualitatively different results would be expected. (orig.)
Near-Integrability of Low-Dimensional Periodic Klein-Gordon Lattices
Directory of Open Access Journals (Sweden)
Ognyan Christov
2018-01-01
Full Text Available The low-dimensional periodic Klein-Gordon lattices are studied for integrability. We prove that the periodic lattice with two particles and certain nonlinear potential is nonintegrable. However, in the cases of up to six particles, we prove that their Birkhoff-Gustavson normal forms are integrable, which allows us to apply KAM theory in most cases.
Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa
2018-02-01
Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.
International Nuclear Information System (INIS)
Sarlos, G.; Helbling, W.; Zollinger, E.; Gregory, N.; Luchsinger, H.
1982-04-01
In connection with the HHT-project, the Swiss Federal Institute for Reactor Research has performed a study of a 1640-MWth HTR-plant incorporating a non-integrated indirect cycle gas turbine with two-stage intercooling, as a possibility of simplifying and reducing the cost of the HHT-demonstration plant. In this paper, the plant design is described and compared with the HHT-demonstration plant (a CCGT integrated plant with single stage intercooling). Also included is an evaluation of the various advantages and disadvantages of this design together with the presentation of some of the sensitivity results. (Auth.)
Orthogonal and symplectic Yangians and Yang–Baxter R-operators
International Nuclear Information System (INIS)
Isaev, A.P.; Karakhanyan, D.; Kirschner, R.
2016-01-01
Yang–Baxter R operators symmetric with respect to the orthogonal and symplectic algebras are considered in an uniform way. Explicit forms for the spinorial and metaplectic R operators are obtained. L operators, obeying the RLL relation with the orthogonal or symplectic fundamental R matrix, are considered in the interesting cases, where their expansion in inverse powers of the spectral parameter is truncated. Unlike the case of special linear algebra symmetry the truncation results in additional conditions on the Lie algebra generators of which the L operators is built and which can be fulfilled in distinguished representations only. Further, generalized L operators, obeying the modified RLL relation with the fundamental R matrix replaced by the spinorial or metaplectic one, are considered in the particular case of linear dependence on the spectral parameter. It is shown how by fusion with respect to the spinorial or metaplectic representation these first order spinorial L operators reproduce the ordinary L operators with second order truncation.
Orthogonal and symplectic Yangians and Yang–Baxter R-operators
Energy Technology Data Exchange (ETDEWEB)
Isaev, A.P., E-mail: isaevap@theor.jinr.ru [Bogoliubov Lab., Joint Institute of Nuclear Research, Dubna (Russian Federation); Karakhanyan, D., E-mail: karakhan@yerphi.am [Yerevan Physics Institute, 2 Alikhanyan br., 0036 Yerevan (Armenia); Kirschner, R., E-mail: Roland.Kirschner@itp.uni-leipzig.de [Institut für Theoretische Physik, Universität Leipzig, PF 100 920, D-04009 Leipzig (Germany)
2016-03-15
Yang–Baxter R operators symmetric with respect to the orthogonal and symplectic algebras are considered in an uniform way. Explicit forms for the spinorial and metaplectic R operators are obtained. L operators, obeying the RLL relation with the orthogonal or symplectic fundamental R matrix, are considered in the interesting cases, where their expansion in inverse powers of the spectral parameter is truncated. Unlike the case of special linear algebra symmetry the truncation results in additional conditions on the Lie algebra generators of which the L operators is built and which can be fulfilled in distinguished representations only. Further, generalized L operators, obeying the modified RLL relation with the fundamental R matrix replaced by the spinorial or metaplectic one, are considered in the particular case of linear dependence on the spectral parameter. It is shown how by fusion with respect to the spinorial or metaplectic representation these first order spinorial L operators reproduce the ordinary L operators with second order truncation.
On the Faddeev-Jackiw symplectic framework for topologically massive gravity
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto [Benemerita Universidad Autonoma de Puebla, Instituto de Fisica, Puebla (Mexico); Rodriguez-Tzompantzi, Omar [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Puebla (Mexico)
2016-10-15
The dynamical structure of topologically massive gravity in the context of the Faddeev-Jackiw symplectic approach is studied. It is shown that this method allows us to avoid some ambiguities arising in the study of the gauge structure via the Dirac formalism. In particular, the complete set of constraints and the generators of the gauge symmetry of the theory are obtained straightforwardly via the zero modes of the symplectic matrix. In order to obtain the generalized Faddeev-Jackiw brackets and calculate the local physical degrees of freedom of this model, an appropriate gauge-fixing procedure is introduced. Finally, the similarities and relative advantages between the Faddeev-Jackiw method and Dirac's formalism are briefly discussed. (orig.)
Wavelet approach to accelerator problems. 3: Melnikov functions and symplectic topology
International Nuclear Information System (INIS)
Fedorova, A.; Zeitlin, M.; Parsa, Z.
1997-05-01
This is the third part of a series of talks in which the authors present applications of methods of wavelet analysis to polynomial approximations for a number of accelerator physics problems. They consider the generalization of the variational wavelet approach to nonlinear polynomial problems to the case of Hamiltonian systems for which they need to preserve underlying symplectic or Poissonian or quasicomplex structures in any type of calculations. They use the approach for the problem of explicit calculations of Arnold-Weinstein curves via Floer variational approach from symplectic topology. The loop solutions are parameterized by the solutions of reduced algebraical problem--matrix Quadratic Mirror Filters equations. Also they consider wavelet approach to the calculations of Melnikov functions in the theory of homoclinic chaos in perturbed Hamiltonian systems
Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack
Hermes, Pascal; De Maria, Riccardo
2016-01-01
The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.
An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Peer Jesper
2015-01-07
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations.
An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems
Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul
2015-01-01
This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.
Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
International Nuclear Information System (INIS)
Hong Jialin; Li Chun
2006-01-01
In this paper, we consider the multi-symplectic Runge-Kutta (MSRK) methods applied to the nonlinear Dirac equation in relativistic quantum physics, based on a discovery of the multi-symplecticity of the equation. In particular, the conservation of energy, momentum and charge under MSRK discretizations is investigated by means of numerical experiments and numerical comparisons with non-MSRK methods. Numerical experiments presented reveal that MSRK methods applied to the nonlinear Dirac equation preserve exactly conservation laws of charge and momentum, and conserve the energy conservation in the corresponding numerical accuracy to the method utilized. It is verified numerically that MSRK methods are stable and convergent with respect to the conservation laws of energy, momentum and charge, and MSRK methods preserve not only the inner geometric structure of the equation, but also some crucial conservative properties in quantum physics. A remarkable advantage of MSRK methods applied to the nonlinear Dirac equation is the precise preservation of charge conservation law
Symplectic geometry on moduli spaces of holomorphic bundles over complex surfaces
Khesin, Boris; Rosly, Alexei
2000-01-01
We give a comparative description of the Poisson structures on the moduli spaces of flat connections on real surfaces and holomorphic Poisson structures on the moduli spaces of holomorphic bundles on complex surfaces. The symplectic leaves of the latter are classified by restrictions of the bundles to certain divisors. This can be regarded as fixing a "complex analogue of the holonomy" of a connection along a "complex analogue of the boundary" in analogy with the real case.
Path integral quantization of the Symplectic Leaves of the SU(2)*Poisson-Lie Group
International Nuclear Information System (INIS)
Morariu, B.
1997-01-01
The Feynman path integral is used to quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of Uq(su(2)). This is achieved by finding explicit Darboux coordinates and then using a phase space path integral. I discuss the *-structure of SU(2)* and give a detailed description of its leaves using various parameterizations and also compare the results with the path integral quantization of spin
Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space
International Nuclear Information System (INIS)
Binz, Ernst; Honegger, Reinhard; Rieckers, Alfred
2004-01-01
A systematic approach to the C*-Weyl algebra W(E,σ) over a possibly degenerate pre-symplectic form σ on a real vector space E of possibly infinite dimension is elaborated in an almost self-contained manner. The construction is based on the theory of Kolmogorov decompositions for σ-positive-definite functions on involutive semigroups and their associated projective unitary group representations. The σ-positive-definite functions provide also the C*-norm of W(E,σ), the latter being shown to be *-isomorphic to the twisted group C*-algebra of the discrete vector group E. The connections to related constructions are indicated. The treatment of the fundamental symmetries is outlined for arbitrary pre-symplectic σ. The construction method is especially applied to the trivial symplectic form σ=0, leading to the commutative Weyl algebra over E, which is shown to be isomorphic to the C*-algebra of the almost periodic continuous function on the topological dual E τ ' of E with respect to an arbitrary locally convex Hausdorff topology τ on E. It is demonstrated that the almost periodic compactification aE τ ' of E τ ' is independent of the chosen locally convex τ on E, and that aE τ ' is continuously group isomorphic to the character group E of E. Applications of the results to the procedures of strict and continuous deformation quantizations are mentioned in the outlook
Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation
Su, Bo; Tuo, Xianguo; Xu, Ling
2017-08-01
Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.
Symplectic tracking using point magnets in the presence of a longitudinal magnetic field
International Nuclear Information System (INIS)
Parzen, G.
1993-09-01
In the absence of a longitudinal magnetic field, symplectic tracking can be achieved by replacing the magnets by a series of point magnets and drift spaces. To treat the case when a longitudinal magnetic field is also present, this procedure is modified in this paper by replacing the drift space by a solenoidal drift, which is defined as the motion of a particle in a uniform longitudinal magnetic field. A symplectic integrator can be obtained by subdividing each magnet into pieces and replacing each magnet piece by point magnets, with only transverse fields, and solenoidal drift spaces. The reference orbit used here is made up of arcs of circles and straight lines which join smoothly with each other. For this choice of reference orbit, the required results are obtained to track particles, which are the transfer functions, and the transfer time for the different elements. It is shown that these results provide a symplectic integrator, and they are exact in the sense that as the number of magnet pieces is increased, the particle motion will converge to the particle motion of the exact equations of motion
Galilean Duffin-Kemmer-Petiau algebra and symplectic structure
Fernandes, M C B; Vianna, J D M
2003-01-01
We develop the Duffin-Kemmer-Petiau (DKP) approach in the phase-space picture of quantum mechanics by considering DKP algebras in a Galilean covariant context. Specifically, we develop an algebraic calculus based on a tensor algebra defined on a five-dimensional space which plays the role of spacetime background of the non-relativistic DKP equation. The Liouville operator is determined and the Liouville-von Neumann equation is written in two situations: the free particle and a particle in an external electromagnetic field. A comparison between the non-relativistic and the relativistic cases is commented.
International Nuclear Information System (INIS)
Le Van Hop.
1989-12-01
The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.; Prykarpatsky, A.K.; Taneri, U.; Prykarpatsky, Y.A.
2009-01-01
Based on analysis of reduced geometric structures on fibered manifolds, invariant under action of a certain symmetry group, we construct the symplectic structures associated with connection forms on suitable principal fiber bundles. The application to the non-standard Hamiltonian analysis of the Maxwell and Yang-Mills type dynamical systems is presented. A symplectic reduction theory of the classical Maxwell electromagnetic field equations is formulated, the important Lorentz condition, ensuring the existence of electromagnetic waves, is naturally included into the Hamiltonian picture, thereby solving the well known Dirac, Fock and Podolsky problem. The symplectically reduced Poissonian structures and the related classical minimal interaction principle, concerning the Yang-Mills type equations, are considered. (author)
Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods
Directory of Open Access Journals (Sweden)
Tetsuya Misawa
2010-01-01
Full Text Available “Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through “composition methods (or operator splitting methods” proposed by Misawa (2001. In the proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian vector fields. The global error orders of the numerical schemes derived from the stochastic composition methods are provided. To examine the superiority of the new schemes, some illustrative numerical simulations on the basis of the proposed schemes are carried out for a stochastic harmonic oscillator system.
From Stein to Weinstein and back symplectic geometry of affine complex manifolds
Cieliebak, Kai
2013-01-01
A beautiful and comprehensive introduction to this important field. -Dusa McDuff, Barnard College, Columbia University This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a superb introduction to this area and also contains the authors' new results. -Tomasz Mrowka, MIT This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine co
Symplectic Group Representation of the Two-Mode Squeezing Operator in the Coherent State Basis
Fan, Hong-Yi; Chen, Jun-Hua
2003-11-01
We find that the coherent state projection operator representation of the two-mode squeezing operator constitutes a loyal group representation of symplectic group, which is a remarkable property of the coherent state. As a consequence, the resultant effect of successively applying two-mode squeezing operators are equivalent to a single squeezing in the two-mode Fock space. Generalization of this property to the 2n-mode case is also discussed. The project supported by National Natural Science Foundation of China under Grant No. 10575057
Fast symplectic mapping and quasi-invariants for the Large Hadron Collider
International Nuclear Information System (INIS)
Warnock, R.L.; Berg, J.S.; Forest, E.
1995-05-01
Beginning with a tracking code for the LHC, we construct the canonical generator of the full-turn map in polar coordinates. For very fast mapping we adopt a model in which the momentum is modulated sinusoidally with a period of 130 turns (very close to the synchrotron period). We achieve symplectic mapping of 10 7 turns in 3.6 hours on a workstation. Quasi-invariant tori are constructed on the Poincare section corresponding to multiples of the synchrotron period. The possible use of quasi-invariants in derivin, long-term bounds on the motion is discussed
A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation
Jones, Brandon A.; Anderson, Rodney L.
2012-01-01
Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation methods to astrodynamics. Both of these methods benefit from relatively recent theoretical developments, which improve their applicability to artificial satellite orbit propagation. This paper also details their implementation, with several tests demonstrating their advantages and disadvantages.
Symplectic no-core shell-model approach to intermediate-mass nuclei
Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.
2014-03-01
We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.
Quantization of a symplectic manifold associated to a manifold with projective structure
International Nuclear Information System (INIS)
Biswas, Indranil
2009-01-01
Let X be a complex manifold equipped with a projective structure P. There is a holomorphic principal C*-bundle L P ' over X associated with P. We show that the holomorphic cotangent bundle of the total space of L P ' equipped with the Liouville symplectic form has a canonical deformation quantization. This generalizes the construction in the work of and Ben-Zvi and Biswas [''A quantization on Riemann surfaces with projective structure,'' Lett. Math. Phys. 54, 73 (2000)] done under the assumption that dim C X=1.
Orthogonal and symplectic Yangians and Yang–Baxter R-operators
Directory of Open Access Journals (Sweden)
A.P. Isaev
2016-03-01
Full Text Available Yang–Baxter R operators symmetric with respect to the orthogonal and symplectic algebras are considered in an uniform way. Explicit forms for the spinorial and metaplectic R operators are obtained. L operators, obeying the RLL relation with the orthogonal or symplectic fundamental R matrix, are considered in the interesting cases, where their expansion in inverse powers of the spectral parameter is truncated. Unlike the case of special linear algebra symmetry the truncation results in additional conditions on the Lie algebra generators of which the L operators is built and which can be fulfilled in distinguished representations only. Further, generalized L operators, obeying the modified RLL relation with the fundamental R matrix replaced by the spinorial or metaplectic one, are considered in the particular case of linear dependence on the spectral parameter. It is shown how by fusion with respect to the spinorial or metaplectic representation these first order spinorial L operators reproduce the ordinary L operators with second order truncation.
Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere
International Nuclear Information System (INIS)
Li Jinxing; Pu Zuyin; Xie Lun; Fu Suiyan; Qin Hong
2011-01-01
Charged particle dynamics in magnetosphere has temporal and spatial multiscale; therefore, numerical accuracy over a long integration time is required. A variational symplectic integrator (VSI) [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008) and H. Qin, X. Guan, and W. M. Tang, Phys. Plasmas 16, 042510 (2009)] for the guiding-center motion of charged particles in general magnetic field is applied to study the dynamics of charged particles in magnetosphere. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The VSI conserves exactly a discrete Lagrangian symplectic structure and has better numerical properties over a long integration time, compared with standard integrators, such as the standard and adaptive fourth order Runge-Kutta (RK4) methods. Applying the VSI method to guiding-center dynamics in the inner magnetosphere, we can accurately calculate the particles'orbits for an arbitrary long simulating time with good conservation property. When a time-independent convection and corotation electric field is considered, the VSI method can give the accurate single particle orbit, while the RK4 method gives an incorrect orbit due to its intrinsic error accumulation over a long integrating time.
International Nuclear Information System (INIS)
Marrero, Juan Carlos; Padrón, Edith; Rodríguez-Olmos, Miguel
2012-01-01
This paper addresses the problem of developing an extension of the Marsden–Weinstein reduction process to symplectic-like Lie algebroids, and in particular to the case of the canonical cover of a fiberwise linear Poisson structure, whose reduction process is the analog to cotangent bundle reduction in the context of Lie algebroids. Dedicated to the memory of Jerrold E Marsden (paper)
International Nuclear Information System (INIS)
Qin Hong; Guan Xiaoyin
2008-01-01
A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods
International Nuclear Information System (INIS)
Qin, H.; Guan, X.
2008-01-01
A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.
Punjabi, Alkesh; Ali, Halima
2008-12-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
International Nuclear Information System (INIS)
Punjabi, Alkesh; Ali, Halima
2008-01-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
Sano, Masayuki; Ohtaka, Manami; Iijima, Minoru; Nakasu, Asako; Kato, Yoshio; Nakanishi, Mahito
2017-10-04
MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the post-transcriptional level. Different types of cells express unique sets of miRNAs that can be exploited as potential molecular markers to identify specific cell types. Among the variety of miRNA detection methods, a fluorescence-based imaging system that utilises a fluorescent-reporter gene regulated by a target miRNA offers a major advantage for long-term tracking of the miRNA in living cells. In this study, we developed a novel fluorescence-based miRNA-monitoring system using a non-integrating cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because SeVdp vectors robustly and stably express transgenes, this system enabled sensitive monitoring of miRNAs by fluorescence microscopy. By applying this system for cellular reprogramming, we found that miR-124, but not miR-9, was significantly upregulated during direct neuronal conversion. Additionally, we were able to isolate integration-free human induced pluripotent stem cells by long-term tracking of let-7 expression. Notably, this system was easily expandable to allow detection of multiple miRNAs separately and simultaneously. Our findings provide insight into a powerful tool for evaluating miRNA expression during the cellular reprogramming process and for isolating reprogrammed cells potentially useful for medical applications.
Explicit higher order symplectic integrator for s-dependent magnetic field
International Nuclear Information System (INIS)
Wu, Y.; Forest, E.; Robin, D.S.
2001-01-01
We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings
Construction of symplectic full-turn maps by application of an arbitrary tracking code
International Nuclear Information System (INIS)
Warnock, R.L.
1989-03-01
A map to describe propagation of particles through any section of a nonlinear lattice may be represented as a Taylor expansion about the origin in phase space. Although the technique to compute the Taylor coefficients has been improved recently, the expansion may fail to provide adequate accuracy in regions where nonlinear effects are substantial. A representation of the map in angle-action coordinates, with the angle dependence given by a Fourier series, and the action dependence by polynomials in I/sup 1/2/, may be more successful. Maps of this form are easily constructed by taking Fourier transforms of results from an arbitrary symplectic tracking code. Examples are given of one-turn and two turn maps for the SLC North Damping Ring in a strongly nonlinear region. Results for accuracy and speed of evaluation of the maps are quite encouraging. It seems feasible to make accurate maps for the SSC by this method. 9 refs., 1 tab
Okumura, Hisashi; Itoh, Satoru G; Okamoto, Yuko
2007-02-28
The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than typical values of 0.5-2 fs which are used by the conventional nonsymplectic algorithms.
Four-dimensional gravity as an almost-Poisson system
Ita, Eyo Eyo
2015-04-01
In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.
International Nuclear Information System (INIS)
Arkad'ev, V.A.; Pogrebkov, A.K.; Polivanov, M.K.
1988-01-01
The concept of tangent vector is made more precise to meet the specific nature of the Sturm-Liouville problem, and on this basis a Poisson bracket that is modified compared with the Gardner form by special boundary terms is derived from the Zakharov-Faddeev symplectic form. This bracket is nondegenerate, and in it the variables of the discrete and continuous spectra are separated
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
International Nuclear Information System (INIS)
Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan
2015-01-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China
2015-11-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.
Park, Tea Soon; Huo, Jeffrey S.; Peters, Ann; Talbot, C. Conover; Verma, Karan; Zimmerlin, Ludovic; Kaplan, Ian M.; Zambidis, Elias T.
2012-01-01
Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC) occurs in only rare fractions (∼0.001%–0.5%) of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB) myeloid progenitors with bulk efficiencies of ∼50% in purified episome-expressing cells. Lineage-committed CD33+CD45+CD34− myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG+TRA-1-81+ hiPSC was mediated by synergies between hematopoietic growth factor (GF), stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC). Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly regulates self
Super integrable four-dimensional autonomous mappings
International Nuclear Information System (INIS)
Capel, H W; Sahadevan, R; Rajakumar, S
2007-01-01
A systematic investigation of the complete integrability of a fourth-order autonomous difference equation of the type w(n + 4) = w(n)F(w(n + 1), w(n + 2), w(n + 3)) is presented. We identify seven distinct families of four-dimensional mappings which are super integrable and have three (independent) integrals via a duality relation as introduced in a recent paper by Quispel, Capel and Roberts (2005 J. Phys. A: Math. Gen. 38 3965-80). It is observed that these seven families can be related to the four-dimensional symplectic mappings with two integrals including all the four-dimensional periodic reductions of the integrable double-discrete modified Korteweg-deVries and sine-Gordon equations treated in an earlier paper by two of us (Capel and Sahadevan 2001 Physica A 289 86-106)
Directory of Open Access Journals (Sweden)
Özgür Gürsu
2013-01-01
Full Text Available Background. Innovative cardiopulmonary bypass (CPB settings have been developed in order to integrate the concepts of “surface-coating,” “blood-filtration,” and “miniaturization.” Objectives. To compare integrated and nonintegrated arterial line filters in terms of peri- and postoperative clinical variables, inflammatory response, and transfusion needs. Material and Methods. Thirty-six patients who underwent coronary bypass surgery were randomized into integrated (Group In and nonintegrated arterial line filter (Group NIn groups. Arterial blood samples for the assessments of complete hemogram, biochemical screening, interleukin-6, interleukin-2R, and C-reactive protein were analyzed before and after surgery. Need for postoperative dialysis, inotropic therapy and transfusion, in addition to extubation time, total amount of drainage (mL, length of intensive care unit, and hospital stay, and mortality rates was also recorded for each patient. Results. Prime volume was significantly higher and mean intraoperative hematocrit value was lower in Group NIn, but need for erythrocyte transfusion was significantly higher in Group NIn. C-reactive protein values did not differ significantly except for postoperative second day's results, which were found significantly lower in Group In than in Group NIn. Conclusion. Intraoperative hematocrit levels were higher and need for postoperative erythrocyte transfusion was decreased in Group In.
International Nuclear Information System (INIS)
Punjabi, Alkesh; Ali, Halima; Evans, Todd; Boozer, Allen
2008-01-01
A highly accurate calculation of the magnetic field line Hamiltonian in DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] is made from piecewise analytic equilibrium fit data for shot 115467 3000 ms. The safety factor calculated from this Hamiltonian has a logarithmic singularity at an ideal separatrix. The logarithmic region inside the ideal separatrix contains 2.5% of toroidal flux inside the separatrix. The logarithmic region is symmetric about the separatrix. An area-preserving map for the field line trajectories is obtained in magnetic coordinates from the Hamiltonian equations of motion for the lines and a canonical transformation. This map is used to calculate trajectories of magnetic field lines in DIII-D. The field line Hamiltonian in DIII-D is used as the generating function for the map and to calculate stochastic broadening from field-errors and spatial noise near the separatrix. A very negligible amount (0.03%) of magnetic flux is lost from inside the separatrix due to these nonaxisymmetric fields. It is quite easy to add magnetic perturbations to generating functions and calculate trajectories for maps in magnetic coordinates. However, it is not possible to integrate across the separatrix. It is also difficult to find the physical position corresponding to magnetic coordinates. For open field lines, periodicity in the poloidal angle is assumed, which is not satisfactory. The goal of this paper is to demonstrate the efficacy of the symplectic mapping approach rather than using realistic DIII-D parameters or modeling specific experimental results
Energy Technology Data Exchange (ETDEWEB)
Skokos, Ch., E-mail: haris.skokos@uct.ac.za [Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Gerlach, E. [Lohrmann Observatory, Technical University Dresden, D-01062 Dresden (Germany); Bodyfelt, J.D., E-mail: J.Bodyfelt@massey.ac.nz [Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University, Albany, Private Bag 102904, North Shore City, Auckland 0745 (New Zealand); Papamikos, G. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Eggl, S. [IMCCE, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris (France)
2014-05-01
While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.
International Nuclear Information System (INIS)
Skokos, Ch.; Gerlach, E.; Bodyfelt, J.D.; Papamikos, G.; Eggl, S.
2014-01-01
While symplectic integration methods based on operator splitting are well established in many branches of science, high order methods for Hamiltonian systems that split in more than two parts have not been studied in great detail. Here, we present several high order symplectic integrators for Hamiltonian systems that can be split in exactly three integrable parts. We apply these techniques, as a practical case, for the integration of the disordered, discrete nonlinear Schrödinger equation (DDNLS) and compare their efficiencies. Three part split algorithms provide effective means to numerically study the asymptotic behavior of wave packet spreading in the DDNLS – a hotly debated subject in current scientific literature.
Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt
2016-01-01
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.
Kaneko, Yuta; Yoshida, Zensho
2014-01-01
Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term -{\\Delta}Q, just representing the current density (Q is a Clebsch variable, and {\\Delta} is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensi...
Energy Technology Data Exchange (ETDEWEB)
Heller, Marc Andre [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan); Ikeda, Noriaki [Department of Mathematical Sciences, Ritsumeikan University,Kusatsu, Shiga 525-8577 (Japan); Watamura, Satoshi [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan)
2017-02-15
We give a systematic derivation of the local expressions of the NS H-flux, geometric F- as well as non-geometric Q- and R-fluxes in terms of bivector β- and two-form B-potentials including vielbeins. They are obtained using a supergeometric method on QP-manifolds by twist of the standard Courant algebroid on the generalized tangent space without flux. Bianchi identities of the fluxes are easily deduced. We extend the discussion to the case of the double space and present a formulation of T-duality in terms of canonical transformations between graded symplectic manifolds. Thus, we find a unified description of geometric as well as non-geometric fluxes and T-duality transformations in double field theory. Finally, the construction is compared to the formerly introduced Poisson Courant algebroid, a Courant algebroid on a Poisson manifold, as a model for R-flux.
Prykarpatsky, Yarema A.; Artemovych, Orest D.; Pavlov, Maxim V.; Prykarpatski, Anatolij K.
2013-06-01
A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.
A Lie based 4-dimensional higher Chern-Simons theory
Zucchini, Roberto
2016-05-01
We present and study a model of 4-dimensional higher Chern-Simons theory, special Chern-Simons (SCS) theory, instances of which have appeared in the string literature, whose symmetry is encoded in a skeletal semistrict Lie 2-algebra constructed from a compact Lie group with non discrete center. The field content of SCS theory consists of a Lie valued 2-connection coupled to a background closed 3-form. SCS theory enjoys a large gauge and gauge for gauge symmetry organized in an infinite dimensional strict Lie 2-group. The partition function of SCS theory is simply related to that of a topological gauge theory localizing on flat connections with degree 3 second characteristic class determined by the background 3-form. Finally, SCS theory is related to a 3-dimensional special gauge theory whose 2-connection space has a natural symplectic structure with respect to which the 1-gauge transformation action is Hamiltonian, the 2-curvature map acting as moment map.
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.
2018-05-01
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.
Exact solution of the one-dimensional fermionic model with correlated hopping
International Nuclear Information System (INIS)
Schadschneider, A.; Su Gang; Zittartz, J.
1997-01-01
We extend the Bethe Ansatz solution of a one-dimensional integrable fermionic model with correlated hopping to the parameter regime Δt > 1. It is found that the model is equivalent to one with interaction 2 - Δt, but with twisted boundary conditions. Apart from the ground state energy we investigate the low-lying excitations and the asymptotic behaviour of the correlation functions. As in the case of Δt < 1 we find dominating superconducting correlations for small doping. The behaviour in this regime therefore differs from that of the non-integrable model with symmetric bond-charge interaction (Hirsch model). (orig.)
Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail; Polkovnikov, Anatoli
2007-11-16
We study the problem of rapid change of the interaction parameter (quench) in a many-body low-dimensional system. It is shown that, measuring the correlation functions after the quench, the information about a spectrum of collective excitations in a system can be obtained. This observation is supported by analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our conclusions are supplemented by performing exact numerical simulations on finite systems. We propose that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled condensates can be used as an experimental test of our predictions.
Fu, Shangfeng; Ding, Jianwu; Liu, Dewu; Huang, Heping; Li, Min; Liu, Yang; Tu, Longxiang; Liu, Deming
2018-01-01
Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.
International Nuclear Information System (INIS)
Dhar, S.
1989-01-01
In electronic-structure calculations for finite systems using the local-spin-density (LSD) approximation, it is assumed that the eigenvalues of the Kohn-Sham equation should obey Fermi-Dirac (FD) statistics. In order to comply with this assumption for some of the transition-metal atoms, a nonintegral occupation number is used which also minimizes the total energy. It is shown here that for finite systems it is not necessary that the eigenvalues of the Kohn-Sham equation obey FD statistics. It is also shown that the Kohn-Sham exchange potential used in all LSD models is correct only for integer occupation number. With a noninteger occupation number the LSD exchange potential will be smaller than that given by the Kohn-Sham potential. Ab initio self-consistent spin-polarized calculations have been performed numerically for the total energy of an iron atom. It is found that the ground state belongs to the 3d 6 4s 2 configuration. The ionization potentials of all the Fe/sup n/ + ions are reported and are in agreement with experiment
Energy Technology Data Exchange (ETDEWEB)
Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao
2015-12-14
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.
Xie, Hong-Bo; Dokos, Socrates
2013-06-01
We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.
International Nuclear Information System (INIS)
Fradkin, E.S.; Linetsky, V.Ya.
1990-06-01
With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs
International Nuclear Information System (INIS)
Yan, Y.T.
1991-01-01
The transverse motion of charged particles in a circular accelerator can be well represented by a one-turn high-order Taylor map. For particles without energy deviation, the one-turn Taylor map is a 4-dimensional polynomials of four variables. The four variables are the transverse canonical coordinates and their conjugate momenta. To include the energy deviation (off-momentum) effects, the map has to be parameterized with a smallness factor representing the off-momentum and so the Taylor map becomes a 4-dimensional polynomials of five variables. It is for this type of parameterized Taylor map that a mehtod is presented for converting it into a parameterized Dragt-Finn factorization map. Parameterized nonlinear normal form and parameterized kick factorization can thus be obtained with suitable modification of the existing technique
Energy Technology Data Exchange (ETDEWEB)
Hernandez-Bermejo, Benito, E-mail: benito.hernandez@urjc.e [Departamento de Fisica, Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 Mostoles, Madrid (Spain)
2011-05-09
A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. - Highlights: A new family of Poisson structures is globally characterized and analyzed. Such family is globally defined for arbitrary values of the dimension and the rank. Global construction of Casimir invariants and Darboux canonical form is provided. Very diverse and previously known solutions of physical interest are generalized.
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito
2011-01-01
A new n-dimensional family of Poisson structures is globally characterized and analyzed, including the construction of its main features: the symplectic structure and the reduction to the Darboux canonical form. Examples are given that include the generalization of previously known solution families such as the separable Poisson structures. - Highlights: → A new family of Poisson structures is globally characterized and analyzed. → Such family is globally defined for arbitrary values of the dimension and the rank. → Global construction of Casimir invariants and Darboux canonical form is provided. → Very diverse and previously known solutions of physical interest are generalized.
Classical r-matrices and Poisson bracket structures on infinite-dimensional groups
International Nuclear Information System (INIS)
Aratyn, H.; Nissimov, E.; Pacheva, S.
1992-01-01
Starting with a canonical symplectic structure defined on the contangent bundle T * G we derive, via Dirac hamiltonian reduction, Poisson brackets (PBs) on an arbitrary infinite-dimensional group G (admitting central extension). The PB structures are given in terms of an r-operator kernel related to the two-cocycle of the underlying Lie algebra and satisfying a differential classical Yang-Baxter equation. The explicit expressions of the PBs among the group variables for the (N, 0) for N=0, 1, ..., 4 (super-) Virasoro groups and the group of area-preserving diffeomorphisms on the torus are presented. (orig.)
U-duality and symplectic formulation of dilaton-axion gravity
International Nuclear Information System (INIS)
Gal'tsov, D.V.; Kechkin, O.V.
1995-07-01
We study a bosonic four-dimensional effective action corresponding to the heterotic string compactified on a 6-torus (dilaton-axion gravity with one vector field) on a curved space-time manifold possessing a time-like Killing vector field. Previously an existence of the SO(2,3) ∼ Sp(4,R) global symmetry (U-duality) as well as the symmetric space property of the corresponding σ-model have been established following Neugebauer and Kramer approach. Here we present an explicit form of the Sp(4,R) generators in terms of coset variables and construct a representation of the coset in terms of the physical target space coordinates. Complex symmetric 2 x 2 matrix Z (''matrix dilaton - axion'') is then introduced for which U-duality takes the matrix valued SL(2,R) form. In terms of this matrix the theory is further presented as a Kaehler σ-model. This leads to a more concise 2 x 2 formulation which opens new ways to construct exact classical solution. New solution (corresponding to constant ImZ) is obtained which describes the system of point massless magnetic monopoles endowed with axion charges equal to minus monopole charges. In such a system mutual magnetic repulsion is exactly balanced by axion attraction so that the resulting space-time is locally flat but possess multiple Taub-NUT singularities. (author). 35 refs
International Nuclear Information System (INIS)
Deenen, J.; Quesne, C.
1985-01-01
Both non-Hermitian Dyson and Hermitian Holstein--Primakoff representations of the Sp(2d,R) algebra are obtained when the latter is restricted to a positive discrete series irreducible representation 1 +n/2>. For such purposes, some results for boson representations, recently deduced from a study of the Sp(2d,R) partially coherent states, are combined with some standard techniques of boson expansion theories. The introduction of Usui operators enables the establishment of useful relations between the various boson representations. Two Dyson representations of the Sp(2d,R) algebra are obtained in compact form in terms of ν = d(d+1)/2 pairs of boson creation and annihilation operators, and of an extra U(d) spin, characterized by the irreducible representation [lambda 1 xxxlambda/sub d/]. In contrast to what happens when lambda 1 = xxx = lambda/sub d/ = lambda, it is shown that the Holstein--Primakoff representation of the Sp(2d,R) algebra cannot be written in such a compact form for a generic irreducible representation. Explicit expansions are, however, obtained by extending the Marumori, Yamamura, and Tokunaga method of boson expansion theories. The Holstein--Primakoff representation is then used to prove that, when restricted to the Sp(2d,R) irreducible representation 1 +n/2>, the dn-dimensional harmonic oscillator Hamiltonian has a U(ν) x SU(d) symmetry group
Integrable and nonintegrable Hamiltonian systems
International Nuclear Information System (INIS)
Percival, I.
1986-01-01
Traditionally Hamiltonian systems with a finite number of degrees of freedom have been divided into those with few degrees of freedom which were supposed to exhibit some kind of regular ordered motions and those with large numbers of degrees of freedom for which the methods of statistical mechanics should be used. The last few decades have seen a complete change of view. The change of view affects almost all the practical applications, particularly in mathematical physics, which has been dominated for many decades by linear mathematics, coming from quantum theory. The authors consider how this change of view affects some specific applications of dynamics and also the relation between dynamical theory and applications
Curvature properties of four-dimensional Walker metrics
International Nuclear Information System (INIS)
Chaichi, M; Garcia-Rio, E; Matsushita, Y
2005-01-01
A Walker n-manifold is a semi-Riemannian manifold, which admits a field of parallel null r-planes, r ≤ n/2. In the present paper we study curvature properties of a Walker 4-manifold (M, g) which admits a field of parallel null 2-planes. The metric g is necessarily of neutral signature (+ + - -). Such a Walker 4-manifold is the lowest dimensional example not of Lorentz type. There are three functions of coordinates which define a Walker metric. Some recent work shows that a Walker 4-manifold of restricted type whose metric is characterized by two functions exhibits a large variety of symplectic structures, Hermitian structures, Kaehler structures, etc. For such a restricted Walker 4-manifold, we shall study mainly curvature properties, e.g., conditions for a Walker metric to be Einstein, Osserman, or locally conformally flat, etc. One of our main results is the exact solutions to the Einstein equations for a restricted Walker 4-manifold
Canonical sectors of five-dimensional Chern-Simons theories
International Nuclear Information System (INIS)
Miskovic, Olivera; Troncoso, Ricardo; Zanelli, Jorge
2005-01-01
The dynamics of five-dimensional Chern-Simons theories is analyzed. These theories are characterized by intricate self couplings which give rise to dynamical features not present in standard theories. As a consequence, Dirac's canonical formalism cannot be directly applied due to the presence of degeneracies of the symplectic form and irregularities of the constraints on some surfaces of phase space, obscuring the dynamical content of these theories. Here we identify conditions that define sectors where the canonical formalism can be applied for a class of non-Abelian Chern-Simons theories, including supergravity. A family of solutions satisfying the canonical requirements is explicitly found. The splitting between first and second class constraints is performed around these backgrounds, allowing the construction of the charge algebra, including its central extension
Orso, Giuliano
2017-03-01
We investigate the metal-insulator transition occurring in two-dimensional (2D) systems of noninteracting atoms in the presence of artificial spin-orbit interactions and a spatially correlated disorder generated by laser speckles. Based on a high order discretization scheme, we calculate the precise position of the mobility edge and verify that the transition belongs to the symplectic universality class. We show that the mobility edge depends strongly on the mixing angle between Rashba and Dresselhaus spin-orbit couplings. For equal couplings a non-power-law divergence is found, signaling the crossing to the orthogonal class, where such a 2D transition is forbidden.
International Nuclear Information System (INIS)
Kersten, P; Krasil'shchik, I; Verbovetsky, A
2004-01-01
Using methods of Kersten et al (2004 J. Geom. Phys. 50 273-302) and Krasil'shchik and Kersten (2000 Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Dordrecht: Kluwer)), we accomplish an extensive study of the N = 1 supersymmetric Korteweg-de Vries (KdV) equation. The results include a description of local and nonlocal Hamiltonian and symplectic structures, five hierarchies of symmetries, the corresponding hierarchies of conservation laws, recursion operators for symmetries and generating functions of conservation laws. We stress that the main point of the paper is not just the results on super-KdV equation itself, but merely exposition of the efficiency of the geometrical approach and of the computational algorithms based on it
The Lagrangian and Hamiltonian Analysis of Integrable Infinite-Dimensional Dynamical Systems
International Nuclear Information System (INIS)
Bogolubov, Nikolai N. Jr.; Prykarpatsky, Yarema A.; Blackmorte, Denis; Prykarpatsky, Anatoliy K.
2010-12-01
The analytical description of Lagrangian and Hamiltonian formalisms naturally arising from the invariance structure of given nonlinear dynamical systems on the infinite- dimensional functional manifold is presented. The basic ideas used to formulate the canonical symplectic structure are borrowed from the Cartan's theory of differential systems on associated jet-manifolds. The symmetry structure reduced on the invariant submanifolds of critical points of some nonlocal Euler-Lagrange functional is described thoroughly for both differential and differential-discrete dynamical systems. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integral-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Backlund transformation. The connection of this hierarchy with integrable by Lax spatially two-dimensional systems is studied. (author)
Stable de Sitter vacua in four-dimensional supergravity originating from five dimensions
International Nuclear Information System (INIS)
Oegetbil, O.
2008-01-01
The five-dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular, a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R s of the R-symmetry group descend to four-dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semidirect product of SO(1,1) with R (1,1) together with a simultaneous R s is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with the SO(2,1)xR s gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R s =U(1) R , (ii) R s =SU(2) R , and (iii) N=2 Yang-Mills/Einstein supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.
International Nuclear Information System (INIS)
Barber, D.P.; Heinemann, K.; Ripken, G.
1991-05-01
In the following report we begin to reformulate work by Derbenev on the behaviour of coupled quantized spin-orbit motion. To this end we present a classical symplectic treatment of linear and non-linear spin-orbit motion for storage rings using a fully coupled eight-dimensional formalism which generalizes earlier investigations of coupled synchro-betatron oscillations by introducing two additional canonical spin variables which behave, in a small-angle limit, like those already used in linearised spin theory. Thus in addition to the usual x-z-s couplings, both the spin to orbit and orbit to spin coupling are described canonically. Since the spin Hamiltonian can be expanded in a Taylor series in canonical variables, the formalism is convenient for use in 8-dimensional symplectic tracking calculations with the help, for example, of Lie algebra or differential algebra for the study of chaotic spin motion, for construction of spin normal forms and for the study of the effect of Stern-Gerlach forces. (orig.)
Impenetrable Mass-Imbalanced Particles in One-Dimensional Harmonic Traps
DEFF Research Database (Denmark)
Salami Dehkharghani, Amin; Volosniev, A. G.; Zinner, N. T.
2016-01-01
Strongly interacting particles in one dimension subject to external confinement have become a topic of considerable interest due to recent experimental advances and the development of new theoretical methods to attack such systems. In the case of equal mass fermions or bosons with two or more...... internal degrees of freedom, one can map the problem onto the well-known Heisenberg spin models. However, many interesting physical systems contain mixtures of particles with different masses. Therefore, a generalization of the recent strong-coupling techniques would be highly desirable....... This is particularly important since such problems are generally considered non-integrable and thus the hugely successful Bethe ansatz approach cannot be applied. Here we discuss some initial steps towards this goal by investigating small ensembles of one-dimensional harmonically trapped particles where pairwise...
Racial-ethnic self-schemas: Multi-dimensional identity-based motivation
Oyserman, Daphna
2008-01-01
Prior self-schema research focuses on benefits of being schematic vs. aschematic in stereotyped domains. The current studies build on this work, examining racial-ethnic self-schemas as multi-dimensional, containing multiple, conflicting, and non-integrated images. A multidimensional perspective captures complexity; examining net effects of dimensions predicts within-group differences in academic engagement and well-being. When racial-ethnicity self-schemas focus attention on membership in both in-group and broader society, engagement with school should increase since school is not seen as out-group defining. When racial-ethnicity self-schemas focus attention on inclusion (not obstacles to inclusion) in broader society, risk of depressive symptoms should decrease. Support for these hypotheses was found in two separate samples (8th graders, n = 213, 9th graders followed to 12th grade n = 141). PMID:19122837
Regular and chaotic motion of two dimensional electrons in a strong magnetic field
International Nuclear Information System (INIS)
Bar-Lev, Oded; Levit, Shimon.
1992-05-01
For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)
International Nuclear Information System (INIS)
Dikande, Alain M; Njumbe, E Epie
2010-01-01
A class of discrete conservative Hamiltonians with completely integrable two-dimensional (2D) mappings is constructed whose generic models are three families of non-integrable discrete Hamiltonians with on-site potentials whose double-well shapes vary. Unlike the discrete 2D mappings associated with the generic models, which all display pitchfork bifurcations towards randomly pinned states with chaotic features, for the derived models the pitchfork bifurcation leads to fixed points always surrounded by periodic trajectories. A nonlinear stability analysis reveals a finite crossover on the bifurcation line at which the pitchfork transition takes the maps from regular real periodic trajectories towards a regime dominated by a cluster of periodic point trajectories representing the allowed real solutions. The rich variety of structures displayed by the new class of discrete maps, combined with their complete integrability, offer rich perspectives for theoretical modelling of a wide class of systems undergoing structural instabilities without noticeable chaotic precursors.
International Nuclear Information System (INIS)
Kaneko, Yuta; Yoshida, Zensho
2014-01-01
Introducing a Clebsch-like parameterization, we have formulated a canonical Hamiltonian system on a symplectic leaf of reduced magnetohydrodynamics. An interesting structure of the equations is in that the Lorentz-force, which is a quadratic nonlinear term in the conventional formulation, appears as a linear term −ΔQ, just representing the current density (Q is a Clebsch variable, and Δ is the two-dimensional Laplacian); omitting this term reduces the system into the two-dimensional Euler vorticity equation of a neutral fluid. A heuristic estimate shows that current sheets grow exponentially (even in a fully nonlinear regime) together with the action variable P that is conjugate to Q. By numerical simulation, the predicted behavior of the canonical variables, yielding exponential growth of current sheets, has been demonstrated
An integrable (2+1)-dimensional Toda equation with two discrete variables
International Nuclear Information System (INIS)
Cao Cewen; Cao Jianli
2007-01-01
An integrable (2+1)-dimensional Toda equation with two discrete variables is presented from the compatible condition of a Lax triad composed of the ZS-AKNS (Zakharov, Shabat; Ablowitz, Kaup, Newell, Segur) eigenvalue problem and two discrete spectral problems. Through the nonlinearization technique, the Lax triad is transformed into a Hamiltonian system and two symplectic maps, respectively, which are integrable in the Liouville sense, sharing the same set of integrals, functionally independent and involutive with each other. In the Jacobi variety of the associated algebraic curve, both the continuous and the discrete flows are straightened out by the Abel-Jacobi coordinates, and are integrated by quadratures. An explicit algebraic-geometric solution in the original variable is obtained by the Riemann-Jacobi inversion
Indian Academy of Sciences (India)
Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.
Algebraic non-integrability of magnetic billiards
International Nuclear Information System (INIS)
Bialy, Misha; Mironov, Andrey E
2016-01-01
We consider billiard ball motion in a convex domain of the Euclidean plane bounded by a piece-wise smooth curve under the action of a constant magnetic field. We show that if there exists a first integral polynomial in the velocities of the magnetic billiard flow, then every smooth piece γ of the boundary must be algebraic, and either is a circle or satisfies very strong restrictions. In particular, it follows that any non-circular magnetic Birkhoff billiard is not algebraically integrable for all but finitely many values of the magnitude of the magnetic field. Moreover, a magnetic billiard in ellipse is not algebraically integrable for all values of the magnitude of the magnetic field. We conjecture that the circle is the only integrable magnetic billiard, not only in the algebraic sense, but also for a broader meaning of integrability. We also introduce what we call outer magnetic billiards. As an application of our method, we prove analogous results on algebraically integrable outer magnetic billiards. (paper)
Test of quantum thermalization in the two-dimensional transverse-field Ising model.
Blaß, Benjamin; Rieger, Heiko
2016-12-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.
International Nuclear Information System (INIS)
Reiman, A.; Monticello, D.; Pomphrey, N.
1993-01-01
The three-dimensional MHD equilibrium equation is a mixed elliptic-hyperbolic partial differential equation. Unlike more familiar equations of this sort, the source term in the elliptic part of the equation is dependent on the time-asymptotic solution of the hyperbolic part, because the pressure and the force-free part of the current are constant along magnetic field lines. The equations for the field line trajectories can be put in the form of Hamilton's equations for a one-dimensional time-dependent system. The authors require an accurate solution for the KAM surfaces of this nonintegrable Hamiltonian. They describe a new algorithm they have developed for this purpose, and discuss its relationship to previously developed algorithms for computing KAM surfaces. They also discuss the numerical issues that arise in self-consistently coupling the output of this algorithm to the elliptic piece of the equation to calculate the magnetic field driven by the current. For nominally axisymmetric devices, they describe how the code is used to directly calculate the saturated state of nonaxisymmetric instabilities by following the equilibrium solution through a bifurcation. They argue that this should be the method of choice for evaluating stability to tearing modes in toroidal magnetic confinement devices
Test of quantum thermalization in the two-dimensional transverse-field Ising model
Blaß, Benjamin; Rieger, Heiko
2016-01-01
We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Dimensional cosmological principles
International Nuclear Information System (INIS)
Chi, L.K.
1985-01-01
The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle
Chiral zero energy modes in two-dimensional disordered Dirac semimetals
Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen
2018-04-01
The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.
International Nuclear Information System (INIS)
Brown, J.D.
1988-01-01
This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant
Three dimensional strained semiconductors
Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui
2016-11-08
In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.
Clustering high dimensional data
DEFF Research Database (Denmark)
Assent, Ira
2012-01-01
High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...
Dimensional comparison theory.
Möller, Jens; Marsh, Herb W
2013-07-01
Although social comparison (Festinger, 1954) and temporal comparison (Albert, 1977) theories are well established, dimensional comparison is a largely neglected yet influential process in self-evaluation. Dimensional comparison entails a single individual comparing his or her ability in a (target) domain with his or her ability in a standard domain (e.g., "How good am I in math compared with English?"). This article reviews empirical findings from introspective, path-analytic, and experimental studies on dimensional comparisons, categorized into 3 groups according to whether they address the "why," "with what," or "with what effect" question. As the corresponding research shows, dimensional comparisons are made in everyday life situations. They impact on domain-specific self-evaluations of abilities in both domains: Dimensional comparisons reduce self-concept in the worse off domain and increase self-concept in the better off domain. The motivational basis for dimensional comparisons, their integration with recent social cognitive approaches, and the interdependence of dimensional, temporal, and social comparisons are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Three dimensional canonical transformations
International Nuclear Information System (INIS)
Tegmen, A.
2010-01-01
A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
International Nuclear Information System (INIS)
Meusburger, C.; Schroers, B. J.
2008-01-01
Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson-Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson-Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description
Dimensional transition of the universe
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1989-08-01
In the extended n-dimensional Einstein theory of gravitation, where the spacetime dimension can be taken as a 'dynamical variable' which is determined by the 'Hamilton principle' of minimizing the extended Einstein-Hilbert action, it is suggested that our Universe of four-dimensional spacetime may encounter an astonishing dimensional transition into a new universe of three-dimensional or higher-than-four-dimensional spacetime. (author)
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Three-dimensional neuroimaging
International Nuclear Information System (INIS)
Toga, A.W.
1990-01-01
This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function
DEFF Research Database (Denmark)
Larsen, Mihail
De fire dimensioner er en humanistisk håndbog beregnet især på studerende og vejledere inden for humaniora, men kan også læses af andre med interesse for, hvad humanistisk forskning er og kan. Den er blevet til over et langt livs engageret forskning, uddannelse og formidling på Roskilde Universitet...... og udgør på den måde også et bidrag til universitetets historie, som jeg var med til at grundlægge. De fire dimensioner sætter mennesket i centrum. Men det er et centrum, der peger ud over sig selv; et centrum, hvorfra verden anskues, erfares og forstås. Alle mennesker har en forhistorie og en...... fremtid, og udstrakt mellem disse punkter i tiden tænker og handler de i rummet. Den menneskelige tilværelse omfatter alle fire dimensioner. De fire dimensioner udgør derfor også et forsvar for en almen dannelse, der gennemtrænger og kommer kulturelt til udtryk i vores historie, viden, praksis og kunst....
dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.
International Nuclear Information System (INIS)
Feinsilver, Philip; Schott, Rene
2009-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
Dimensional analysis for engineers
Simon, Volker; Gomaa, Hassan
2017-01-01
This monograph provides the fundamentals of dimensional analysis and illustrates the method by numerous examples for a wide spectrum of applications in engineering. The book covers thoroughly the fundamental definitions and the Buckingham theorem, as well as the choice of the system of basic units. The authors also include a presentation of model theory and similarity solutions. The target audience primarily comprises researchers and practitioners but the book may also be suitable as a textbook at university level.
Three Dimensional Dirac Semimetals
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Chernozhukov, Victor; Hansen, Christian; Spindler, Martin
2016-01-01
In this article the package High-dimensional Metrics (\\texttt{hdm}) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e...
An alternative dimensional reduction prescription
International Nuclear Information System (INIS)
Edelstein, J.D.; Giambiagi, J.J.; Nunez, C.; Schaposnik, F.A.
1995-08-01
We propose an alternative dimensional reduction prescription which in respect with Green functions corresponds to drop the extra spatial coordinate. From this, we construct the dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization and supersymmetry in the particular 2-dimensional case. We argue that our proposal is in some situations more physical in the sense that it maintains the form of the interactions between particles thus preserving the dynamics corresponding to the higher dimensional space. (author). 12 refs
Three-dimensional ICT reconstruction
International Nuclear Information System (INIS)
Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia
2005-01-01
The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)
Three-dimensional ICT reconstruction
International Nuclear Information System (INIS)
Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia
2004-01-01
The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)
Dimensional control of die castings
Karve, Aniruddha Ajit
The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of
One-Dimensionality and Whiteness
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
Invariant metric for nonlinear symplectic maps
Indian Academy of Sciences (India)
One popular method of treating Hamiltonian systems perturbatively is the Lie ... to be a symmetric, positive definite, bilinear form that is invariant under the action of ... we apply the above procedure to a FODO lattice (a common component of a.
Symplectic Structure of Intrinsic Time Gravity
Directory of Open Access Journals (Sweden)
Eyo Eyo Ita
2016-08-01
Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.
Composite particles and symplectic (Semi-) groups
International Nuclear Information System (INIS)
Kramer, P.
1978-01-01
Nuclear composits particle dynamics is intimately related to the fermion character of nucleons. This property is implemented via the permutational structure of nuclear states, leading to the concept of exchange and to the quantum number of the orbital partition. We review Weyl operators and representations of linear canonical transformations in Bargmann Hilbert space. In section 4 we use canonical transformations to describe the general n-body dynamics. In section 5 we derive the composite particle dynamics and discuss an algorithm to obtain the interaction of composite particles whose constituents are assumed to be in harmonic oscillator states. As a first example we treat in section 6 composite particles with unexcited internal oscillator states. In section 7 we deal with composite particles of internal oscillator shell configurations. (orig.) [de
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Wang, Wei; Yang, Jiong
With the rapid growth of computational biology and e-commerce applications, high-dimensional data becomes very common. Thus, mining high-dimensional data is an urgent problem of great practical importance. However, there are some unique challenges for mining data of high dimensions, including (1) the curse of dimensionality and more crucial (2) the meaningfulness of the similarity measure in the high dimension space. In this chapter, we present several state-of-art techniques for analyzing high-dimensional data, e.g., frequent pattern mining, clustering, and classification. We will discuss how these methods deal with the challenges of high dimensionality.
A comparison of non-integrating reprogramming methods
Schlaeger, Thorsten M; Daheron, Laurence; Brickler, Thomas R; Entwisle, Samuel; Chan, Karrie; Cianci, Amelia; DeVine, Alexander; Ettenger, Andrew; Fitzgerald, Kelly; Godfrey, Michelle; Gupta, Dipti; McPherson, Jade; Malwadkar, Prerana; Gupta, Manav; Bell, Blair; Doi, Akiko; Jung, Namyoung; Li, Xin; Lynes, Maureen S; Brookes, Emily; Cherry, Anne B C; Demirbas, Didem; Tsankov, Alexander M; Zon, Leonard I; Rubin, Lee L; Feinberg, Andrew P; Meissner, Alexander; Cowan, Chad A; Daley, George Q
2015-01-01
Human induced pluripotent stem cells (hiPSCs1–3) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV)4, episomal (Epi)5 and mRNA transfection mRNA6 methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation. PMID:25437882
Center manifold for nonintegrable nonlinear Schroedinger equations on the line
International Nuclear Information System (INIS)
Weder, R.
2000-01-01
In this paper we study the following nonlinear Schroedinger equation on the line, where f is real-valued, and it satisfies suitable conditions on regularity, on growth as a function of u and on decay as x → ± ∞. The generic potential, V, is real-valued and it is chosen so that the spectrum of H:= -d 2 /dx 2 +V consists of one simple negative eigenvalue and absolutely-continuous spectrum filling (0,∞). The solutions to this equation have, in general, a localized and a dispersive component. The nonlinear bound states, that bifurcate from the zero solution at the energy of the eigenvalue of H, define an invariant center manifold that consists of the orbits of time-periodic localized solutions. We prove that all small solutions approach a particular periodic orbit in the center manifold as t→ ± ∞. In general, the periodic orbits are different for t→ ± ∞. Our result implies also that the nonlinear bound states are asymptotically stable, in the sense that each solution with initial data near a nonlinear bound state is asymptotic as t→ ± ∞ to the periodic orbits of nearby nonlinear bound states that are, in general, different for t→ ± ∞. (orig.)
Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2017-07-01
Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Javidi, Bahram; Andres, Pedro
2014-01-01
Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and
Dimensional analysis made simple
International Nuclear Information System (INIS)
Lira, Ignacio
2013-01-01
An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Araujo, Vitor; Viana, Marcelo
2010-01-01
In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated
Two dimensional simplicial paths
International Nuclear Information System (INIS)
Piso, M.I.
1994-07-01
Paths on the R 3 real Euclidean manifold are defined as 2-dimensional simplicial strips which are orbits of the action of a discrete one-parameter group. It is proven that there exists at least one embedding of R 3 in the free Z-module generated by S 2 (x 0 ). The speed is defined as the simplicial derivative of the path. If mass is attached to the simplex, the free Lagrangian is proportional to the width of the path. In the continuum limit, the relativistic form of the Lagrangian is recovered. (author). 7 refs
Three dimensional system integration
Papanikolaou, Antonis; Radojcic, Riko
2010-01-01
Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi
CSIR Research Space (South Africa)
Mc
2012-07-01
Full Text Available stream_source_info McLaren_2012.pdf.txt stream_content_type text/plain stream_size 2190 Content-Encoding ISO-8859-1 stream_name McLaren_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 High dimensional... entanglement M. McLAREN1,2, F.S. ROUX1 & A. FORBES1,2,3 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of the Stellenbosch, Private Bag X1, 7602, Matieland 3. School of Physics, University of Kwazulu...
Dimensiones de la sostenibilidad
Usón Guardiola, Ezequiel
2004-01-01
Recientemente, las palabras sostenibilidad y desarrollo sostenible se han incorporado plenamente al vocabulario de muchos arquitectos, pero sólo en algunos casos se han convertido en una preocupación fundamental de su discurso arquitectónico. Es más, entre los arquitectos, tampoco se entiende muy bien la conexión que puede establecerse entre esta nueva sensibilidad y el proyecto arquitectónico, es decir, cómo pueden formalizarse y cuáles son las dimensiones de la sostenibilidad. Por ello y co...
Dimensional crossover in fragmentation
Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.
2000-11-01
Experiments in which thick clay plates and glass rods are fractured have revealed different behavior of fragment mass distribution function in the small and large fragment regions. In this paper we explain this behavior using non-extensive Tsallis statistics and show how the crossover between the two regions is caused by the change in the fragments’ dimensionality during the fracture process. We obtain a physical criterion for the position of this crossover and an expression for the change in the power-law exponent between the small and large fragment regions. These predictions are in good agreement with the experiments on thick clay plates.
Mapping Earth's electromagnetic dimensionality
Love, J. J.; Kelbert, A.; Bedrosian, P.
2017-12-01
The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
The dimensional reduction in a multi-dimensional cosmology
International Nuclear Information System (INIS)
Demianski, M.; Golda, Z.A.; Heller, M.; Szydlowski, M.
1986-01-01
Einstein's field equations are solved for the case of the eleven-dimensional vacuum spacetime which is the product R x Bianchi V x T 7 , where T 7 is a seven-dimensional torus. Among all possible solutions, the authors identify those in which the macroscopic space expands and the microscopic space contracts to a finite size. The solutions with this property are 'typical' within the considered class. They implement the idea of a purely dynamical dimensional reduction. (author)
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
IIB backgrounds with five-form flux
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.
2008-01-01
We investigate all N=2 supersymmetric IIB supergravity backgrounds with non-vanishing five-form flux. The Killing spinors have stability subgroups Spin(7) x R 8 , SU(4) x R 8 and G 2 . In the SU(4) x R 8 case, two different types of geometry arise depending on whether the Killing spinors are generic or pure. In both cases, the backgrounds admit a null Killing vector field which leaves invariant the SU(4) x R 8 structure, and an almost complex structure in the directions transverse to the lightcone. In the generic case, the twist of the vector field is trivial but the almost complex structure is non-integrable, while in the pure case the twist is non-trivial but the almost complex structure is integrable and associated with a relatively balanced Hermitian structure. The G 2 backgrounds admit a time-like Killing vector field and two spacelike closed one-forms, and the seven directions transverse to these admit a co-symplectic G 2 structure. The Spin(7) x R 8 backgrounds are pp-waves propagating in an eight-dimensional manifold with holonomy Spin(7). In addition we show that all the supersymmetric solutions of simple five-dimensional supergravity with a time-like Killing vector field, which include the AdS 5 black holes, lift to SU(4) x R 8 pure Killing spinor IIB backgrounds. We also show that the LLM solution is associated with a co-symplectic co-homogeneity one G 2 manifold which has principal orbit S 3 xS 3
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
On four dimensional mirror symmetry
International Nuclear Information System (INIS)
Losev, A.; Nekrasov, N.; Shatashvili, S.
2000-01-01
A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)
Low-dimensional molecular metals
Toyota, Naoki; Muller, Jens
2007-01-01
Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
Three dimensional energy profile:
International Nuclear Information System (INIS)
Kowsari, Reza; Zerriffi, Hisham
2011-01-01
The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.
Three-dimensional echocardiography
International Nuclear Information System (INIS)
Buck, Thomas
2011-01-01
Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.
dimensional Jaulent–Miodek equations
Indian Academy of Sciences (India)
(2+1)-dimensional Jaulent–Miodek equation; the first integral method; kinks; ... and effective method for solving nonlinear partial differential equations which can ... of the method employed and exact kink and soliton solutions are constructed ...
Weakly infinite-dimensional spaces
International Nuclear Information System (INIS)
Fedorchuk, Vitalii V
2007-01-01
In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.
Physical model of dimensional regularization
Energy Technology Data Exchange (ETDEWEB)
Schonfeld, Jonathan F.
2016-12-15
We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)
Three-dimensional biomedical imaging
International Nuclear Information System (INIS)
Robb, R.A.
1985-01-01
Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications
Fermion masses from dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)
Fermion masses from dimensional reduction
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).
Directory of Open Access Journals (Sweden)
William Hansen
2017-12-01
Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.
African Journals Online (AJOL)
... of East Asian Students in English-speaking Countries: A Four-Dimensional ... country's language greatly shapes all aspects of the student's international education ... Taking this ecological approach will help clearly define the role that home ...
Radiation Damage and Dimensional Changes
International Nuclear Information System (INIS)
El-Barbary, A.A.; Lebda, H.I.; Kamel, M.A.
2009-01-01
The dimensional changes have been modeled in order to be accommodated in the reactor design. This study has major implications for the interpretation of damage in carbon based nuclear fission and fusion plant materials. Radiation damage of graphite leads to self-interstitials and vacancies defects. The aggregation of these defects causes dimensional changes. Vacancies aggregate into lines and disks which heal and contract the basal planes. Interstitials aggregate into interlayer disks which expand the dimension
Three dimensional MEMS supercapacitors
Energy Technology Data Exchange (ETDEWEB)
Sun, Wei
2011-10-15
The overall objective of this research is to achieve compact supercapacitors with high capacitance, large power density, and long cycle life for using as micro power sources to drive low power devices and sensors. The main shortcoming of supercapacitors as a power source is that its energy density typically is about 1/10 of that of batteries. To achieve compact supercapacitors of large energy density, supercapacitors must be developed with high capacitance and power density which are mainly depended on the effective surface area of the electrodes of the supercapacitors. Many studies have been done to increase the effective surface area by modifying the electrode materials, however, much less investigations are focus on machining the electrodes. In my thesis work, micro- and nano-technologies are applied as technology approaches for machining the electrodes with three dimensional (3D) microstructures. More specific, Micro-electro-mechanical system (MEMS) fabrication process flow, which integrates the key process such as LIGA-like (German acronym for Lithographie, Galvanoformung, Abformung, which mean Lithography, Electroplating and Molding) technology or DRIE (deep reactive ion etching), has been developed to enable innovative designs of 3D MEMS supercapacitors which own the electrodes of significantly increased geometric area. Two types of 3D MEMS supercapcitors, based on LIGA-like and DRIE technology respectively, were designed and successfully created. The LIGA-like based 3D MEMS supercapacitor is with an interdigital 3D structure, and consists of silicon substrate, two electroplated nickel current collectors, two PPy (poly pyrrole) electrodes, and solid state electrolyte. The fabrication process flow developed includes the flowing key processes, SU-8 lithography, nickel electroplating, PPy polymerization and solid state electrolyte coating. Electrochemical tests showed that the single electrode of the supercapacitor has the specific capacitance of 0.058 F cm-2
Two-dimensional beam profiles and one-dimensional projections
Findlay, D. J. S.; Jones, B.; Adams, D. J.
2018-05-01
One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.
General dimensional reduction of ten-dimensional supergravity and superstring
International Nuclear Information System (INIS)
Ferrara, S.; Porrati, M.
1986-01-01
Dimensional reductions of supergravity theories are shown to yield to specific glasses of four-dimensional no-scale models with N=4, 2 or 1 residual supersymmetry. N=1 ''maximal'' supergravity lagrangian, corresponding to the ''untwisted'' sector of orbifold compactification of superstrings, contains nine families and has a no-scale structure based on the Kaehler manifold [SU(3, 3+3n)/SU(3)xSU(3+3n)]x[SU(1, 1)/U(1)]. The quantum consistency of the resulting theories give information on the non Kaluza-Klein (string) ''twisted'' sector. (orig.)
(Weakly) three-dimensional caseology
International Nuclear Information System (INIS)
Pomraning, G.C.
1996-01-01
The singular eigenfunction technique of Case for solving one-dimensional planar symmetry linear transport problems is extended to a restricted class of three-dimensional problems. This class involves planar geometry, but with forcing terms (either boundary conditions or internal sources) which are weakly dependent upon the transverse spatial variables. Our analysis involves a singular perturbation about the classic planar analysis, and leads to the usual Case discrete and continuum modes, but modulated by weakly dependent three-dimensional spatial functions. These functions satisfy parabolic differential equations, with a different diffusion coefficient for each mode. Representative one-speed time-independent transport problems are solved in terms of these generalised Case eigenfunctions. Our treatment is very heuristic, but may provide an impetus for more rigorous analysis. (author)
Dimensional micro and nano metrology
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han
2006-01-01
The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...
Dimensional reduction in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Hooft, G [Rijksuniversiteit Utrecht (Netherlands). Inst. voor Theoretische Fysica
1994-12-31
The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two- dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. (author). 13 refs, 2 figs.
Curvature perturbations from dimensional decoupling
Giovannini, Massimo
2005-01-01
The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.
Multi-Dimensional Path Queries
DEFF Research Database (Denmark)
Bækgaard, Lars
1998-01-01
to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...
Reduction of infinite dimensional equations
Directory of Open Access Journals (Sweden)
Zhongding Li
2006-02-01
Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.
Instabilities of higher dimensional compactifications
International Nuclear Information System (INIS)
Accetta, F.S.
1987-02-01
Various schemes for cosmological compactification of higher dimensional theories are considered. Possible instabilities which drive the ground state with static internal space to de Sitter-like expansion of all dimensions are discussed. These instabilities are due to semiclassical barrier penetration and classical thermal fluctuations. For the case of the ten dimensional Chapline-Manton action, it is possible to avoid such difficulties by balancing one-loop Casimir corrections against monopole contributions from the field strength H/sub MNP/ and fermionic condensates. 10 refs
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
A general theory of quantum relativity
International Nuclear Information System (INIS)
Minic, Djordje; Tze, C.-H.
2004-01-01
The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics
Lagrangian structures, integrability and chaos for 3D dynamical equations
International Nuclear Information System (INIS)
Bustamante, Miguel D; Hojman, Sergio A
2003-01-01
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion
Negative dimensional integrals. Pt. 1
International Nuclear Information System (INIS)
Halliday, I.G.; Ricotta, R.M.
1987-01-01
We propose a new method of evaluating integrals based on negative dimensional integration. We compute Feynman graphs by considering analytic extensions. Propagators are raised to negative integer powers and integrated over negative integer dimensions. We are left with the problem of computing polynomial integrals and summing finite series. (orig.)
Dimensional Reduction and Hadronic Processes
International Nuclear Information System (INIS)
Signer, Adrian; Stoeckinger, Dominik
2008-01-01
We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.
Analysis of infinite dimensional diffusions
Maas, J.
2009-01-01
Stochastic processes in infinite dimensional state spaces provide a mathematical description of various phenomena in physics, population biology, finance, and other fields of science. Several aspects of these processes have been studied in this thesis by means of new analytic methods. Firstly,
3-dimensional Charge Collection Efficiency
Kodak, Umut
2013-01-01
In this project, we designed a simulation program to create the efficiency map of a 3 dimensional rectangular detector. Efficiency is calculated by observing the collected charge at the output. Using this simulation program, one can observe the inefficient regions at not only on the surface of detector but at the depths of detector.
Quadratic divergences and dimensional regularisation
International Nuclear Information System (INIS)
Jack, I.; Jones, D.R.T.
1990-01-01
We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)
Higher dimensional discrete Cheeger inequalities
Directory of Open Access Journals (Sweden)
Anna Gundert
2015-01-01
Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Nikola Stefanović
2007-01-01
In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...
High-dimensional covariance estimation with high-dimensional data
Pourahmadi, Mohsen
2013-01-01
Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and mac
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Dimensionality of the human electroencephalogram
Energy Technology Data Exchange (ETDEWEB)
Mayer-Kress, G.; Layne, S.P.
1986-01-01
The goal was to evaluate anesthetic depth in patients by dimensional analysis. Although it was difficult to obtain clean EEG records from the operating room due to noise of electrocautery and movement of the patient's head by operating room personnel. The results are presented on one case of our calculations, followed by a discussion of problems associated with dimensional analysis of the EEG. We consider only two states: aware but quiet, and medium anesthesia. The EEG data we use comes from Hanley and Walts. It was selected because anesthesia was induced by a single agent, and because of its uninterrupted length and lack of artifacts. 26 refs., 27 figs., 1 tab.
Las cinco grandes dimensiones de la personalidad
Directory of Open Access Journals (Sweden)
Jan ter Laak
1996-12-01
Full Text Available Este artículo revisa las distintas posiciones teóricas sobre las cinco grandes dimensiones de la personalidad, mostrando las semejanzas y diferencias entre las posturas teóricas. Esta contribución presenta lo siguiente: (a la génesis del contenido y la estructura de las cinco dimensiones; (b la fortaleza de las cinco dimensiones; (e la relación de las cinco grandes dimensiones con otros constructos de personalidad; (d discute el valor predictivo de las puntuaciones del perfil de las cinco dimensiones para criterios pertinentes; (e analiza el estatus teórico de las cinco dimensiones; (f discute críticas históricas sobre las cinco grandes dimensiones y se formulan respuestas a estas críticas; (g hace conjeturas para el futuro de las cinco grandes dimensiones; y (h concluye con algunas conclusiones y comentarios.
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Solitons in four dimensional gravity
International Nuclear Information System (INIS)
Matos, T.
1990-01-01
An alternative method to solve the Chiral equations with SL (2,R) symmetry is developed. One gets the N-soliton solution using the Neugebauer Ansatz. For N = 1 one obtains the Backlund transformation of the Chiral equations. From the application of this transformation for the flat seed solution one finds the Kerr-NUT solution. This method can be applied to generate solutions of the n-dimensional Einstein equations (Author)
One dimensional reactor core model
International Nuclear Information System (INIS)
Kostadinov, V.; Stritar, A.; Radovo, M.; Mavko, B.
1984-01-01
The one dimensional model of neutron dynamic in reactor core was developed. The core was divided in several axial nodes. The one group neutron diffusion equation for each node is solved. Feedback affects of fuel and water temperatures is calculated. The influence of xenon, boron and control rods is included in cross section calculations for each node. The system of equations is solved implicitly. The model is used in basic principle Training Simulator of NPP Krsko. (author)
Dimensional crossover in directed percolation
International Nuclear Information System (INIS)
Chame, A.M.N.; Queiroz, S.L.A. de; Santos, Raimundo R. dos.
1984-04-01
We study the dimensional crossover in directed percolation in three dimensions. Bonds are allowed to have different concentrations along the three cartesian axes of the lattice. Through a Position Space Renormalization Group we obtain the phase-diagrama where non-percolating, 1-D, 2-D and 3-D percolating phases are present. We find that the isotropic fixed points are unstable with respect to anisotropy, thus driving the system into a different universality class. (author) [pt
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Dimensional reduction in anomaly mediation
International Nuclear Information System (INIS)
Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron
2002-01-01
We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking. Evanescent operators proportional to ε arise in the bare Lagrangian when it is reduced from d=4 to d=4-2ε dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity
The dimensionality of professional commitment
Jeffrey J. Bagraim
2003-01-01
This paper examines the dimensionality of professional commitment amongst a sample of 240 South African actuaries. Data were obtained, via a mailed questionnaire, from members of the South African Actuarial Society employed in the financial services industry. Statistical analysis conducted on the data showed that the 3-component model first proposed by Meyer, Allen and Smith (1993) is appropriate for understanding professional commitment amongst South African professionals. The analysis also ...
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
Dimensional stability of natural fibers
Energy Technology Data Exchange (ETDEWEB)
Driscoll, Mark S. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 (United States); Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 and Sustainable Construction Management and Engineering, SUNY-ESF (United States); Larsen, L. Scott [New York State Energy Research and Development Authority (NYSERDA), 17 Columbia Circle, Albany, NY 12203 (United States)
2013-04-19
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.
Equilibrium: three-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6
Dimensional stability of natural fibers
International Nuclear Information System (INIS)
Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott
2013-01-01
One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.
Chernozhukov, Victor; Hansen, Chris; Spindler, Martin
2016-01-01
The package High-dimensional Metrics (\\Rpackage{hdm}) is an evolving collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e.g., treatment or poli...
Cosmological string solutions by dimensional reduction
International Nuclear Information System (INIS)
Behrndt, K.; Foerste, S.
1993-12-01
We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed
On the space dimensionality based on metrics
International Nuclear Information System (INIS)
Gorelik, G.E.
1978-01-01
A new approach to space time dimensionality is suggested, which permits to take into account the possibility of altering dimensionality depending on the phenomenon scale. An attempt is made to give the definition of dimensionality, equivalent to a conventional definition for the Euclidean space and variety. The conventional definition of variety dimensionality is connected with the possibility of homeomorphic reflection of the Euclidean space on some region of each variety point
Orthogonality preserving infinite dimensional quadratic stochastic operators
International Nuclear Information System (INIS)
Akın, Hasan; Mukhamedov, Farrukh
2015-01-01
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators
Assessment of Dimensionality in Social Science Subtest
Ozbek Bastug, Ozlem Yesim
2012-01-01
Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…
D-dimensional moments of inertia
International Nuclear Information System (INIS)
Bender, C.M.; Mead, L.R.
1995-01-01
We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers
International Nuclear Information System (INIS)
Finn, John M.
2015-01-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012
Learning Low-Dimensional Metrics
Jain, Lalit; Mason, Blake; Nowak, Robert
2017-01-01
This paper investigates the theoretical foundations of metric learning, focused on three key questions that are not fully addressed in prior work: 1) we consider learning general low-dimensional (low-rank) metrics as well as sparse metrics; 2) we develop upper and lower (minimax)bounds on the generalization error; 3) we quantify the sample complexity of metric learning in terms of the dimension of the feature space and the dimension/rank of the underlying metric;4) we also bound the accuracy ...
One dimensional model for polytypes
International Nuclear Information System (INIS)
Rosato, A.
1979-01-01
The general expression for the dispersion relation for a polyatomic one dimensional crystal obtained by the Laplace Transform Method is applied to materials with the fcc and hcp structures, both consisting of close-packed planes of atoms with the stacking sequence of plane ABC/ABC... and AB/AB... respectively. The expression is also applied to polytypes, that is materials caracterized by a stacking sequence with longer repeat unit. The effective mass is cast in a condensed form useful for further calculations. The results from this simple model are only qualitative. (Author) [pt
Dimensional regularization in configuration space
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1995-09-01
Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Stochastic and infinite dimensional analysis
Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José
2016-01-01
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
Dimensional scaling for quasistationary states
International Nuclear Information System (INIS)
Kais, S.; Herschbach, D.R.
1993-01-01
Complex energy eigenvalues which specify the location and width of quasibound or resonant states are computed to good approximation by a simple dimensional scaling method. As applied to bound states, the method involves minimizing an effective potential function in appropriately scaled coordinates to obtain exact energies in the D→∞ limit, then computing approximate results for D=3 by a perturbation expansion in 1/D about this limit. For resonant states, the same procedure is used, with the radial coordinate now allowed to be complex. Five examples are treated: the repulsive exponential potential (e - r); a squelched harmonic oscillator (r 2 e - r); the inverted Kratzer potential (r -1 repulsion plus r -2 attraction); the Lennard-Jones potential (r -12 repulsion, r -6 attraction); and quasibound states for the rotational spectrum of the hydrogen molecule (X 1 summation g + , v=0, J=0 to 50). Comparisons with numerical integrations and other methods show that the much simpler dimensional scaling method, carried to second-order (terms in 1/D 2 ), yields good results over an extremely wide range of the ratio of level widths to spacings. Other methods have not yet evaluated the very broad H 2 rotational resonances reported here (J>39), which lie far above the centrifugal barrier
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Three-dimensional surgical simulation.
Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2010-09-01
In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine D; Savran, Mona Meral; Konge, Lars
2016-01-01
were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...
Multi-dimensional Fuzzy Euler Approximation
Directory of Open Access Journals (Sweden)
Yangyang Hao
2017-05-01
Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.
Topics in low-dimensional field theory
International Nuclear Information System (INIS)
Crescimanno, M.J.
1991-01-01
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density
Coset space dimensional reduction of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Zoupanos, G. (CERN, Geneva (Switzerland))
1992-10-01
We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.).
Discrete symmetries and coset space dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1989-01-01
We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)
Coset space dimensional reduction of gauge theories
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1992-01-01
We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.)
English Voicing in Dimensional Theory*
Iverson, Gregory K.; Ahn, Sang-Cheol
2007-01-01
Assuming a framework of privative features, this paper interprets two apparently disparate phenomena in English phonology as structurally related: the lexically specific voicing of fricatives in plural nouns like wives or thieves and the prosodically governed “flapping” of medial /t/ (and /d/) in North American varieties, which we claim is itself not a rule per se, but rather a consequence of the laryngeal weakening of fortis /t/ in interaction with speech-rate determined segmental abbreviation. Taking as our point of departure the Dimensional Theory of laryngeal representation developed by Avery & Idsardi (2001), along with their assumption that English marks voiceless obstruents but not voiced ones (Iverson & Salmons 1995), we find that an unexpected connection between fricative voicing and coronal flapping emerges from the interplay of familiar phonemic and phonetic factors in the phonological system. PMID:18496590
Three-dimensional polarization algebra.
R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto
2016-10-01
If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.
Gravastars with higher dimensional spacetimes
Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2018-07-01
We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.
Classical Dimensional Transmutation and Confinement
Dvali, Gia; Mukhanov, Slava
2011-01-01
We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of $\\lambda\\phi^{4}$ theory and unravel asymptotic freedom and triviality for negative and positives signs of $\\lambda$ respectively. We derive exact classical $\\beta$ function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Four Dimensional Trace Space Measurement
Energy Technology Data Exchange (ETDEWEB)
Hernandez, M.
2005-02-10
Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.
ANÁLISIS DIMENSIONAL GENERALIZADO
Directory of Open Access Journals (Sweden)
Gabriel Poveda Ramos
Full Text Available El artículo comienza por definir los conceptos de medición, medida, magnitud, dimensión, ilustrándolos con ejemplos. Además se mencionan magnitudes así definidas que se pueden identificar en el mundo de las Ciencias Sociales, las Ciencias Naturales, las Ciencias Humanas, además de las magnitudes que usualmente se aceptan en las Ciencias Físicas. Se corrigen conceptos equivocados sobre las dimensiones de magnitudes físicas como Fuerza, Ángulo plano, Magnetismo y Entropía, y se presentan otros conceptos que suelen ser ignorados en los libros de Física y las muchas magnitudes que son simplemente ignoradas en Ciencias Sociales y en Ciencias Naturales. Se pone de presente la naturaleza de Espacio Vectorial que tiene la clase de las magnitudes que aparecen en todas estas ciencias frente a la operación de composición interna entre magnitudes, y la de composición externa con la clase de los números racionales, y con un ejemplo tomado de la teoría de la Evaluación de Proyectos, se muestra la gran utilidad que aportan estos conceptos a la disciplina del Análisis Dimensional, como ocurre con el algoritmo de Lord Kelvin para la deducción de leyes cuantitativas para los fenómenos físicos, sociales, económicos y otros que son susceptibles de analizar con el Teorema Pi de Buckingham-Varschy y Ostrogradsky.
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Three-dimensional effects in fracture mechanics
International Nuclear Information System (INIS)
Benitez, F.G.
1991-01-01
An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)
Dimensional analysis and group theory in astrophysics
Kurth, Rudolf
2013-01-01
Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si
Ultrahigh Resolution 3-Dimensional Imaging, Phase I
National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...
Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer
Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.
1989-01-01
We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along
Teleportation schemes in infinite dimensional Hilbert spaces
International Nuclear Information System (INIS)
Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori
2005-01-01
The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Effects of phosphoramides on wood dimensional stability
Hong-Lin. Lee; George C. Chen; Roger M. Rowell
2000-01-01
To evaluate the dimensional stability of phosphoramide-reacted wood, wood was reacted with a mixture which was derived from compounding phosphorus pentoxide and each of 12 amines including alkyl, halophenyl, and phenyl amines in N,N-dimethylformamide. Dimensional stability of such reacted wood was analyzed by antishrink efficiency (ASE) using the water-soak method....
Spinor calculus on 5-dimensional spacetimes
International Nuclear Information System (INIS)
Gomez-Lobo, Alfonso Garcia-Parrado; Martin-Garcia, Jose M
2010-01-01
We explain how Penrose's spinor calculus of 4-dimensional Lorentzian geometry is implemented in a 5-dimensional Lorentzian manifold. A number of issues, such as the essential spin algebra, the spin covariant derivative and the algebro-differential properties of the curvature spinors are discussed.
Elastocapillary fabrication of three-dimensional microstructures
van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof
2010-01-01
We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since
Local duality for 2-dimensional local ring
Indian Academy of Sciences (India)
dimensional complete local ring whose residue field is an n-dimensional local field in the sense of. Kato–Parshin. Our results generalize the Saito works in the case n = 0 and are applied to study the Bloch–Ogus complex for such rings in various cases.
Basic physics of one-dimensional metals
International Nuclear Information System (INIS)
Emery, V.J.
1976-01-01
Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed
On dimensional reduction over coset spaces
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
Gauge theories defined in higher dimensions can be dimensionally reduced over coset spaces giving definite predictions for the resulting four-dimensional theory. We present the most interesting features of these theories as well as an attempt to construct a model with realistic low energy behaviour within this framework. (author)
Physics of low-dimensional systems
International Nuclear Information System (INIS)
Anon.
1989-01-01
The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Three-dimensional microbubble streaming flows
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Dimensional degression in AdSd
International Nuclear Information System (INIS)
Artsukevich, A. Yu.; Vasiliev, M. A.
2009-01-01
We analyze the pattern of fields in (d+1)-dimensional anti-de Sitter space in terms of those in d-dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS d+d ' and massless spin-one-half, spin-one, and spin-two fields in AdS d+1 . The mass spectra of the resulting towers of fields in AdS d are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev [Nucl. Phys. B, Proc. Suppl. 102, 100 (2001)] by a different method.
Three dimensional imaging of otoliths
International Nuclear Information System (INIS)
Barry, B.; Markwitz, A.; David, B.
2008-01-01
Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)
International Nuclear Information System (INIS)
Hsu, J.P.
1976-01-01
A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift
The dimensionality of professional commitment
Directory of Open Access Journals (Sweden)
Jeffrey J. Bagraim
2003-10-01
Full Text Available This paper examines the dimensionality of professional commitment amongst a sample of 240 South African actuaries. Data were obtained, via a mailed questionnaire, from members of the South African Actuarial Society employed in the financial services industry. Statistical analysis conducted on the data showed that the 3-component model first proposed by Meyer, Allen and Smith (1993 is appropriate for understanding professional commitment amongst South African professionals. The analysis also showed that South African actuaries are highly committed to their profession. Opsomming Hierdie artikel ondersoek die dimensionaliteit van professionele toewyding by ‘n steekproef van 240 Suid-Afrikaanse aktuarisse. Die data is verkry deur ‘n posvraelys aan lede van die Suid-Afrikaanse Aktuariële Vereniging wat in die finansiële dienstesektor werksaam was. Statistiese ontledings wat uitgevoer is op die data dui aan dat die driekomponentmodel, aanvanklik voorgestel deur Meyer, Allen en Smith (1993, geskik is om professionele toewyding by Suid-Afrikaanse beroepslui te verstaan. Die ontleding dui verder aan dat Suid-Afrikaanse aktuarisse hoogs toegewyd is aan hulle professie.
Three-Dimensional Rebar Graphene.
Sha, Junwei; Salvatierra, Rodrigo V; Dong, Pei; Li, Yilun; Lee, Seoung-Ki; Wang, Tuo; Zhang, Chenhao; Zhang, Jibo; Ji, Yongsung; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M
2017-03-01
Free-standing robust three-dimensional (3D) rebar graphene foams (GFs) were developed by a powder metallurgy template method with multiwalled carbon nanotubes (MWCNTs) as a reinforcing bar, sintered Ni skeletons as a template and catalyst, and sucrose as a solid carbon source. As a reinforcement and bridge between different graphene sheets and carbon shells, MWCNTs improved the thermostability, storage modulus (290.1 kPa) and conductivity (21.82 S cm -1 ) of 3D GF resulting in a high porosity and structurally stable 3D rebar GF. The 3D rebar GF can support >3150× the foam's weight with no irreversible height change, and shows only a ∼25% irreversible height change after loading >8500× the foam's weight. The 3D rebar GF also shows stable performance as a highly porous electrode in lithium ion capacitors (LICs) with an energy density of 32 Wh kg -1 . After 500 cycles of testing at a high current density of 6.50 mA cm -2 , the LIC shows 78% energy density retention. These properties indicate promising applications with 3D rebar GFs in devices requiring stable mechanical and electrochemical properties.
Anomaly-specified virtual dimensionality
Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.
2013-09-01
Virtual dimensionality (VD) has received considerable interest where VD is used to estimate the number of spectral distinct signatures, denoted by p. Unfortunately, no specific definition is provided by VD for what a spectrally distinct signature is. As a result, various types of spectral distinct signatures determine different values of VD. There is no one value-fit-all for VD. In order to address this issue this paper presents a new concept, referred to as anomaly-specified VD (AS-VD) which determines the number of anomalies of interest present in the data. Specifically, two types of anomaly detection algorithms are of particular interest, sample covariance matrix K-based anomaly detector developed by Reed and Yu, referred to as K-RXD and sample correlation matrix R-based RXD, referred to as R-RXD. Since K-RXD is only determined by 2nd order statistics compared to R-RXD which is specified by statistics of the first two orders including sample mean as the first order statistics, the values determined by K-RXD and R-RXD will be different. Experiments are conducted in comparison with widely used eigen-based approaches.
4+ Dimensional nuclear systems engineering
International Nuclear Information System (INIS)
Suh, Kune Y.
2009-01-01
Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in
Computational Dimensionalities of Global Supercomputing
Directory of Open Access Journals (Sweden)
Richard S. Segall
2013-12-01
Full Text Available This Invited Paper pertains to subject of my Plenary Keynote Speech at the 17th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2013 held in Orlando, Florida on July 9-12, 2013. The title of my Plenary Keynote Speech was: "Dimensionalities of Computation: from Global Supercomputing to Data, Text and Web Mining" but this Invited Paper will focus only on the "Computational Dimensionalities of Global Supercomputing" and is based upon a summary of the contents of several individual articles that have been previously written with myself as lead author and published in [75], [76], [77], [78], [79], [80] and [11]. The topics of these of the Plenary Speech included Overview of Current Research in Global Supercomputing [75], Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing [76], Data Mining Supercomputing with SAS™ JMP® Genomics ([77], [79], [80], and Visualization by Supercomputing Data Mining [81]. ______________________ [11.] Committee on the Future of Supercomputing, National Research Council (2003, The Future of Supercomputing: An Interim Report, ISBN-13: 978-0-309-09016- 2, http://www.nap.edu/catalog/10784.html [75.] Segall, Richard S.; Zhang, Qingyu and Cook, Jeffrey S.(2013, "Overview of Current Research in Global Supercomputing", Proceedings of Forty- Fourth Meeting of Southwest Decision Sciences Institute (SWDSI, Albuquerque, NM, March 12-16, 2013. [76.] Segall, Richard S. and Zhang, Qingyu (2010, "Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing", Proceedings of 5th INFORMS Workshop on Data Mining and Health Informatics, Austin, TX, November 6, 2010. [77.] Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2010, "Data Mining Supercomputing with SAS™ JMP®; Genomics: Research-in-Progress, Proceedings of 2010 Conference on Applied Research in Information Technology, sponsored by
Dimensional analysis, scaling and fractals
International Nuclear Information System (INIS)
Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.
2004-01-01
Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a
CLASSIFICATION OF 4-DIMENSIONAL GRADED ALGEBRAS
Armour, Aaron; Chen, Hui-Xiang; ZHANG, Yinhuo
2009-01-01
Let k be an algebraically closed field. The algebraic and geometric classification of finite dimensional algebras over k with ch(k) not equal 2 was initiated by Gabriel in [6], where a complete list of nonisomorphic 4-dimensional k-algebras was given and the number of irreducible components of the variety Alg(4) was discovered to be 5. The classification of 5-dimensional k-algebras was done by Mazzola in [10]. The number of irreducible components of the variety Alg(5) is 10. With the dimensio...
Lyapunov exponents for infinite dimensional dynamical systems
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
Study on three dimensional seismic isolation system
International Nuclear Information System (INIS)
Morishita, Masaki; Kitamura, Seiji
2003-01-01
Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic
Alternative dimensional models of personality disorder
DEFF Research Database (Denmark)
Widiger, Thomas A; Simonsen, Erik
2005-01-01
The recognition of the many limitations of the categorical model of personality disorder classification has led to the development of quite a number of alternative proposals for a dimensional classification. The purpose of this article is to suggest that future research work toward the integration...... of these alternative proposals within a common hierarchical structure. An illustration of a potential integration is provided using the constructs assessed within existing dimensional models. Suggestions for future research that will help lead toward a common, integrative dimensional model of personality disorder...
Optical properties of low-dimensional materials
Ogawa, T
1998-01-01
This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis
Perspective of Dimensional Analysis in Medical Science
Directory of Open Access Journals (Sweden)
Kowalewski Wojciech
2017-09-01
Full Text Available This paper presents several applications of the dimensional analysis method to problems investigated in medical sciences. The method is used to analyze various complex processes without using formal laws governing the same. It is particularly suitable for a general analysis of fluid transfer (liquids and gases in the human body. This paper mainly serves as an overview of selected applications, mostly those emerging in the recent years, and includes a discussion of the mathematical fundamentals of dimensional analysis together followed by its critical analysis. Containing detailed calculations of two examples, the paper also serves as training material in the area of the computational method of the dimensional analysis algorithm.
Multi-dimensional Laplace transforms and applications
International Nuclear Information System (INIS)
Mughrabi, T.A.
1988-01-01
In this dissertation we establish new theorems for computing certain types of multidimensional Laplace transform pairs from known one-dimensional Laplace transforms. The theorems are applied to the most commonly used special functions and so we obtain many two and three dimensional Laplace transform pairs. As applications, some boundary value problems involving linear partial differential equations are solved by the use of multi-dimensional Laplace transformation. Also we establish some relations between the Laplace transformation and other integral transformation in two variables
Even and odd symplectic and Kaehlerian structures on projective superspaces
International Nuclear Information System (INIS)
Khudaverdyan, O.M.; Nersessyan, A.P.
1992-01-01
Supergeneralization of CP(N) provided by even and odd Kaehlerian structures from Hamiltonian reduction are construct. Operator Δ which used in Batalin - Vilkovsky quantization formalism and mechanics which are bi-Hamiltonian under corresponding even and odd Poisson brackets are considered. 21 refs
Fast symplectic map tracking for the CERN Large Hadron Collider
Directory of Open Access Journals (Sweden)
Dan T. Abell
2003-06-01
Full Text Available Tracking simulations remain the essential tool for evaluating how multipolar imperfections in ring magnets restrict the domain of stable phase-space motion. In the Large Hadron Collider (LHC at CERN, particles circulate at the injection energy, when multipole errors are most significant, for more than 10^{7} turns, but systematic tracking studies are limited to a small fraction of this total time—even on modern computers. A considerable speedup is expected by replacing element-by-element tracking with the use of a symplectified one-turn map. We have applied this method to the realistic LHC lattice, version 6, and report here our results for various map orders, with special emphasis on precision and speed.
Symplectic evolution of Wigner functions in Markovian open systems.
Brodier, O; Almeida, A M Ozorio de
2004-01-01
The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.
The real symplectic groups quantum mechanics and optics
International Nuclear Information System (INIS)
Arvind; Mukunda, N.
1995-01-01
We present a utilitarian review of the family of matrix groups Sp(2n,R), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n,R). Global decomposition theorems, interesting subgroups and their generators are described. Turning to n-mode quantum systems, we define and study their variance matrices in general states, the implications of the Heisenberg uncertainty principles, and developed a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n,R) action are delineated. (author). 22 refs
Symplectic symmetry of the neutrino mass for many neutrino flavors
International Nuclear Information System (INIS)
Oeztuerk, N.; Ankara Univ.
2001-01-01
The algebraic structure of the neutrino mass Hamiltonian is presented for two neutrino flavors considering both Dirac and Majorana mass terms. It is shown that the algebra is Sp(8) and also discussed how the algebraic structure generalizes for the case of more than two neutrino flavors. (orig.)
Statistical equilibrium and symplectic geometry in general relativity
International Nuclear Information System (INIS)
Iglesias, P.
1981-09-01
A geometrical construction is given of the statistical equilibrium states of a system of particles in the gravitational field in general relativity. By a method of localization variables, the expression of thermodynamic values is given and the compatibility of this description is shown with a macroscopic model of a relativistic continuous medium for a given value of the free-energy function [fr
Internal deformation of Lie algebroids and symplectic realizations
Energy Technology Data Exchange (ETDEWEB)
Carinena, Jose F [Departamento de Fisica Teorica, Universidad de Zara-goza, 50009 Zaragoza (Spain); Costa, Joana M Nunes da [Departamento de Matematica, Universidade de Coimbra, 3001-454 Coimbra (Portugal); Santos, PatrIcia [Departamento de Fisica e Matematica, Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra (Portugal)
2006-06-02
Given a Lie algebroid and a bundle over its base which is endowed with a localizable Poisson structure and a flat connection, we construct an extended bundle whose dual is endowed with an almost-Poisson structure that is a quadratic Poisson structure when a certain compatibility property is satisfied. This new formalism on Lie algebroids describes systems with internal degrees of freedom.
Nondeterministic noiseless amplification via non-symplectic phase space transformations
International Nuclear Information System (INIS)
Walk, Nathan; Lund, Austin P; Ralph, Timothy C
2013-01-01
We analyse the action of an ideal noiseless linear amplifier operator, g a-hat † a-hat, using the Wigner function phase space representation. In this setting we are able to clarify the gain g for which a physical output is produced when this operator is acted upon inputs other than coherent states. We derive compact closed form expressions for the action of N local amplifiers, with potentially different gains, on arbitrary N-mode Gaussian states and provide several examples of the utility of this formalism for determining important quantities including amplification and the strength and purity of the distilled entanglement, and for optimizing the use of the amplification in quantum information protocols. (paper)
Internal deformation of Lie algebroids and symplectic realizations
International Nuclear Information System (INIS)
Carinena, Jose F; Costa, Joana M Nunes da; Santos, PatrIcia
2006-01-01
Given a Lie algebroid and a bundle over its base which is endowed with a localizable Poisson structure and a flat connection, we construct an extended bundle whose dual is endowed with an almost-Poisson structure that is a quadratic Poisson structure when a certain compatibility property is satisfied. This new formalism on Lie algebroids describes systems with internal degrees of freedom
A Multi-layer Hybrid Framework for Dimensional Emotion Classification
Nicolaou, Mihalis A.; Gunes, Hatice; Pantic, Maja
2011-01-01
This paper investigates dimensional emotion prediction and classification from naturalistic facial expressions. Similarly to many pattern recognition problems, dimensional emotion classification requires generating multi-dimensional outputs. To date, classification for valence and arousal dimensions
A student's guide to dimensional analysis
Lemons, Don S
2017-01-01
This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals.
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)