WorldWideScience

Sample records for dimensional conducting collinear

  1. Highly conducting one-dimensional solids

    CERN Document Server

    Evrard, Roger; Doren, Victor

    1979-01-01

    Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high­ temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc­ tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...

  2. Soft-collinear supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Elor, Gilly [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Larkoski, Andrew J. [Physics Department, Reed College,Portland, OR 97202 (United States); Center for Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2017-03-03

    Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is constructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in “collinear superspace', a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.

  3. Hall conductivity for two dimensional magnetic systems

    International Nuclear Information System (INIS)

    Desbois, J.; Ouvry, S.; Texier, C.

    1996-01-01

    A Kubo inspired formalism is proposed to compute the longitudinal and transverse dynamical conductivities of an electron in a plane (or a gas of electrons at zero temperature) coupled to the potential vector of an external local magnetic field, with the additional coupling of the spin degree of freedom of the electron to the local magnetic field (Pauli Hamiltonian). As an example, the homogeneous magnetic field Hall conductivity is rederived. The case of the vortex at the origin is worked out in detail. A perturbative analysis is proposed for the conductivity in the random magnetic impurity problem (Poissonian vortices in the plane). (author)

  4. Non-collinear upconversion of infrared light

    DEFF Research Database (Denmark)

    Pedersen, Christian; Hu, Qi; Høgstedt, Lasse

    2014-01-01

    Two dimensional mid-infrared upconversion imaging provides unique spectral and spatial information showing good potential for mid- infrared spectroscopy and hyperspectral imaging. However, to extract spectral or spatial information from the upconverted images an elaborate model is needed, which...... includes non-collinear interaction. We derive here a general theory providing the far field of the upconverted light when two arbitrary fields interact inside a non linear crystal. Theoretical predictions are experimentally verified for incoherent radiation and subsequently applied to previously published...

  5. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  6. Dimensional quantization effects in the thermodynamics of conductive filaments

    Science.gov (United States)

    Niraula, D.; Grice, C. R.; Karpov, V. G.

    2018-06-01

    We consider the physical effects of dimensional quantization in conductive filaments that underlie operations of some modern electronic devices. We show that, as a result of quantization, a sufficiently thin filament acquires a positive charge. Several applications of this finding include the host material polarization, the stability of filament constrictions, the equilibrium filament radius, polarity in device switching, and quantization of conductance.

  7. Kubo conductivity of a strongly magnetized two-dimensional plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1971-01-01

    The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.

  8. Research on the Collinear Equation Model of Visual Positioning Based on Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Wang Yuqi

    2015-01-01

    Full Text Available A positioning method based on visible light communication is proposed, which receiving visible light information by low-resolution photodiode array and receiving visual information by the front camera of mobile phone. The terminal position is determined by matching spot information provided by photodiode array with visual information and position information provided by visible light communication. A collinear equation model is derived which based on mobile phone front camera. A hardware-in-loop simulation has been conducted to verify the collinear equation. The three-dimensional positioning error is on the level of decimeter. Moreover, the main factors which affect the positioning accuracy are analyzed in order to further improve the positioning accuracy.

  9. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    Science.gov (United States)

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  10. The mechanisms of collinear integration.

    Science.gov (United States)

    Cass, John; Alais, David

    2006-08-11

    Low-contrast visual contour fragments are easier to detect when presented in the context of nearby collinear contour elements (U. Polat & D. Sagi, 1993). The spatial and temporal determinants of this collinear facilitation have been studied extensively (J. R. Cass & B. Spehar, 2005; Y. Tanaka & D. Sagi, 1998; C. B. Williams & R. F. Hess, 1998), although considerable debate surrounds the neural mechanisms underlying it. Our study examines this question using a novel stimulus, whereby the flanking "contour" elements are rotated around their own axis. By measuring contrast detection thresholds to a brief foveal target presented at various phases of flanker rotation, we find peak facilitation after flankers have rotated beyond their collinear phase. This optimal facilitative delay increases monotonically as a function of target-flanker separation, yielding estimates of cortical propagation of 0.1 m/s, a value highly consistent with the dynamics of long-range horizontal interactions observed within primary visual cortex (V1). A curious new finding is also observed: Facilitative peaks also occur when the target flash precedes flanker collinearity by 20-80 ms, a range consistent with contrast-dependent cortical onset latencies. Together, these data suggest that collinear facilitation involves two separate mechanisms, each possessing distinct dynamics: (i) slowly propagating horizontal interactions within V1 and (ii) a faster integrative mechanism, possibly driven by synchronous collinear cortical onset.

  11. Scattering and conductance quantization in three-dimensional metal nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    1997-01-01

    The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r...

  12. Tailoring thermal conductivity via three-dimensional porous alumina.

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-12-09

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m -1 ·K -1 , which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

  13. Tailoring thermal conductivity via three-dimensional porous alumina

    Science.gov (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol

    2016-01-01

    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  14. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  15. Soft-Collinear Effective Theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review the basic principles about Soft-Collinear Effective Theory. I will focus on how it can be used to understand factorization properties and how one can resum large logarithms arising from infrared physics using the renormalization group evolution.

  16. One-dimensional nonlinear inverse heat conduction technique

    International Nuclear Information System (INIS)

    Hills, R.G.; Hensel, E.C. Jr.

    1986-01-01

    The one-dimensional nonlinear problem of heat conduction is considered. A noniterative space-marching finite-difference algorithm is developed to estimate the surface temperature and heat flux from temperature measurements at subsurface locations. The trade-off between resolution and variance of the estimates of the surface conditions is discussed quantitatively. The inverse algorithm is stabilized through the use of digital filters applied recursively. The effect of the filters on the resolution and variance of the surface estimates is quantified. Results are presented which indicate that the technique is capable of handling noisy measurement data

  17. Electrical conductivity of quasi-two-dimensional foams.

    Science.gov (United States)

    Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina

    2015-04-01

    Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.

  18. Thermal conduction in classical low-dimensional lattices

    International Nuclear Information System (INIS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-01-01

    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable non-linear systems is briefly discussed. Finally, possible future research themes are outlined

  19. Estimating the hydraulic conductivity of two-dimensional fracture networks

    Science.gov (United States)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our

  20. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  1. Implicit collinearity effect in linear regression: Application to basal ...

    African Journals Online (AJOL)

    Collinearity of predictor variables is a severe problem in the least square regression analysis. It contributes to the instability of regression coefficients and leads to a wrong prediction accuracy. Despite these problems, studies are conducted with a large number of observed and derived variables linked with a response ...

  2. Redox transitions in strontium vanadates: Electrical conductivity and dimensional changes

    International Nuclear Information System (INIS)

    Macías, J.; Yaremchenko, A.A.; Frade, J.R.

    2014-01-01

    Highlights: • Electrical conductivity and thermal expansion of strontium vanadates are measured. • Conductivity of SrVO 3−δ is 10 6 –10 8 times higher compared to Sr 2 V 2 O 7 and Sr 3 V 2 O 8 . • Sr 2 V 2 O 7 transforms on reduction to SrVO 3−δ via (5Sr 3 V 2 O 8 + SrV 6 O 11 ) intermediate. • This process is kinetically stagnated due to good redox stability of Sr 3 V 2 O 8 . • Large volume changes on Sr 2 V 2 O 7 ↔ SrVO 3 transformation are confirmed by dilatometry. - Abstract: The reversibility of redox-induced phase transformations and accompanying electrical conductivity and dimensional changes in perovskite-type SrVO 3−δ , a parent material for a family of potential solid oxide fuel cell anode materials, were evaluated employing X-ray diffraction, thermal analysis, dilatometry and electrical measurements. At 873–1273 K, the electrical conductivity of SrVO 3−δ is metallic-like and 6–8 orders of magnitude higher compared to semiconducting V 5+ -based strontium pyrovanadate Sr 2 V 2 O 7 and strontium orthovanadate Sr 3 V 2 O 8 existing under oxidizing conditions. SrVO 3−δ is easily oxidized to a pyrovanadate phase at atmospheric oxygen pressure. Inverse reduction in 10%H 2 –90%N 2 atmosphere occurs in two steps through (5Sr 3 V 2 O 8 + SrV 6 O 11 ) intermediate. As Sr 3 V 2 O 8 is relatively stable even under reducing conditions, the perovskite phase and its high level of electrical conductivity cannot be recovered completely in a reasonable time span at temperatures ⩽1273 K. Dilatometric studies confirmed that SrVO 3 ↔ Sr 2 V 2 O 7 redox transformation is accompanied with significant dimensional changes. Their extent depends on the degree of phase conversion and, apparently, on microstructural features

  3. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  4. Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics

    Science.gov (United States)

    Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin

    2018-06-01

    We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.

  5. Non-collinear magnetism in multiferroic perovskites.

    Science.gov (United States)

    Bousquet, Eric; Cano, Andrés

    2016-03-31

    We present an overview of the current interest in non-collinear magnetism in multiferroic perovskite crystals. We first describe the different microscopic mechanisms giving rise to the non-collinearity of spins in this class of materials. We discuss, in particular, the interplay between non-collinear magnetism and ferroelectric and antiferrodistortive distortions of the perovskite structure, and how this can promote magnetoelectric responses. We then provide a literature survey on non-collinear multiferroic perovskites. We discuss numerous examples of spin cantings driving weak ferromagnetism in transition metal perovskites, and of spin-induced ferroelectricity as observed in the rare-earth based perovskites. These examples are chosen to best illustrate the fundamental role of non-collinear magnetism in the design of multiferroicity.

  6. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  7. Phase space and jet definitions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Cheung, William Man-Yin; Luke, Michael; Zuberi, Saba

    2009-01-01

    We discuss consistent power counting for integrating soft and collinear degrees of freedom over arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop with several jet algorithms: JADE, Sterman-Weinberg and k perpendicular . Consistently applying soft-collinear effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents double counting of final states. The resulting phase space integrals over soft and collinear regions are individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether the soft and collinear contributions are individually infrared safe depends on the jet definition. We show that while this is true at one-loop for JADE and Sterman-Weinberg, the k perpendicular algorithm does not factorize into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are infrared safe.

  8. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  9. Double collinear splitting amplitudes at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València -Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna (Valencia) (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València -Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna (Valencia) (Spain)

    2014-01-07

    We compute the next-to-leading order (NLO) QCD corrections to the 1→2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani’s formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.

  10. Three-dimensional Simulation of Gas Conductance Measurement Experiments on Alcator C-Mod

    International Nuclear Information System (INIS)

    Stotler, D.P.; LaBombard, B.

    2004-01-01

    Three-dimensional Monte Carlo neutral transport simulations of gas flow through the Alcator C-Mod subdivertor yield conductances comparable to those found in dedicated experiments. All are significantly smaller than the conductance found with the previously used axisymmetric geometry. A benchmarking exercise of the code against known conductance values for gas flow through a simple pipe provides a physical basis for interpreting the comparison of the three-dimensional and experimental C-Mod conductances

  11. Coulomb Blockade in a Two-Dimensional Conductive Polymer Monolayer.

    Science.gov (United States)

    Akai-Kasaya, M; Okuaki, Y; Nagano, S; Mitani, T; Kuwahara, Y

    2015-11-06

    Electronic transport was investigated in poly(3-hexylthiophene-2,5-diyl) monolayers. At low temperatures, nonlinear behavior was observed in the current-voltage characteristics, and a nonzero threshold voltage appeared that increased with decreasing temperature. The current-voltage characteristics could be best fitted using a power law. These results suggest that the nonlinear conductivity can be explained using a Coulomb blockade (CB) mechanism. A model is proposed in which an isotropic extended charge state exists, as predicted by quantum calculations, and percolative charge transport occurs within an array of small conductive islands. Using quantitatively evaluated capacitance values for the islands, this model was found to be capable of explaining the observed experimental data. It is, therefore, suggested that percolative charge transport based on the CB effect is a significant factor giving rise to nonlinear conductivity in organic materials.

  12. Conductance fluctuations in a macroscopic 3-dimensional Anderson insulator

    International Nuclear Information System (INIS)

    Sanquer, M.

    1990-01-01

    We report magnetoconductance experiment on a amorphous Y x -Si 1-x alloy (∼0.3). which is an Anderson insulator where spin-orbit scattering is strong. Two principal and new features emerge from the data: the first one is an halving of the localization length by the application of a magnetic field of about 2.5 Teslas. This effect is predicted by a new approach of transport in Anderson insulators where basic symetry considerations are the most important ingredient. The second one is the observation of reproducible conductance fluctuations at very low temperature in this macroscopic 3 D amorphous material

  13. Collinear light scattering using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Harris, S.E.; Sokolov, A.V.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.

    2001-01-01

    The paper describes two types of nonlinear optical processes which are based on electromagnetically induced transparency. These are: (1) Collinear generation of FM-like Raman sidebands and (2) a type of pondermotive light scattering which is inherent to the interaction of slow light with cold atoms. Connections to other areas of EIT-based nonlinear optics are also described

  14. Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    1996-01-01

    A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....

  15. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    Science.gov (United States)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  16. Hopping transport and electrical conductivity in one-dimensional systems with off-diagonal disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Li Yanfeng; Song Zhaoquan

    2007-01-01

    In this paper, we present a model to describe hopping transport and electrical conductivity of one-dimensional systems with off-diagonal disorder, in which electrons are transported via hopping between localized states. We find that off-diagonal disorder leads to delocalization and drastically enhances the electrical conductivity of systems. The model also quantitatively explains the temperature and electrical field dependence of the conductivity in one-dimensional systems with off-diagonal disorder. In addition, we also show the dependence of the conductivity on the strength of off-diagonal disorder

  17. Metallic and highly conducting two-dimensional atomic arrays of sulfur enabled by molybdenum disulfide nanotemplate

    Science.gov (United States)

    Zhu, Shuze; Geng, Xiumei; Han, Yang; Benamara, Mourad; Chen, Liao; Li, Jingxiao; Bilgin, Ismail; Zhu, Hongli

    2017-10-01

    Element sulfur in nature is an insulating solid. While it has been tested that one-dimensional sulfur chain is metallic and conducting, the investigation on two-dimensional sulfur remains elusive. We report that molybdenum disulfide layers are able to serve as the nanotemplate to facilitate the formation of two-dimensional sulfur. Density functional theory calculations suggest that confined in-between layers of molybdenum disulfide, sulfur atoms are able to form two-dimensional triangular arrays that are highly metallic. As a result, these arrays contribute to the high conductivity and metallic phase of the hybrid structures of molybdenum disulfide layers and two-dimensional sulfur arrays. The experimentally measured conductivity of such hybrid structures reaches up to 223 S/m. Multiple experimental results, including X-ray photoelectron spectroscopy (XPS), transition electron microscope (TEM), selected area electron diffraction (SAED), agree with the computational insights. Due to the excellent conductivity, the current density is linearly proportional to the scan rate until 30,000 mV s-1 without the attendance of conductive additives. Using such hybrid structures as electrode, the two-electrode supercapacitor cells yield a power density of 106 Wh kg-1 and energy density 47.5 Wh kg-1 in ionic liquid electrolytes. Our findings offer new insights into using two-dimensional materials and their Van der Waals heterostructures as nanotemplates to pattern foreign atoms for unprecedented material properties.

  18. Collinear limits beyond the leading order from the scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Dhritiman; Plefka, Jan; Wormsbecher, Wadim [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany)

    2017-02-08

    The structure of tree-level scattering amplitudes for collinear massless bosons is studied beyond their leading splitting function behavior. These near-collinear limits at sub-leading order are best studied using the Cachazo-He-Yuan (CHY) formulation of the S-matrix based on the scattering equations. We compute the collinear limits for gluons, gravitons and scalars. It is shown that the CHY integrand for an n-particle gluon scattering amplitude in the collinear limit at sub-leading order is expressed as a convolution of an (n−1)-particle gluon integrand and a collinear kernel integrand, which is universal. Our representation is shown to obey recently proposed amplitude relations in which the collinear gluons of same helicity are replaced by a single graviton. Finally, we extend our analysis to effective field theories and study the collinear limit of the non-linear sigma model, Einstein-Maxwell-Scalar and Yang-Mills-Scalar theory.

  19. Soft collinear effective theory for gravity

    Science.gov (United States)

    Okui, Takemichi; Yunesi, Arash

    2018-03-01

    We present how to construct a soft collinear effective theory (SCET) for gravity at the leading and next-to-leading powers from the ground up. The soft graviton theorem and decoupling of collinear gravitons at the leading power are manifest from the outset in the effective symmetries of the theory. At the next-to-leading power, certain simple structures of amplitudes, which are completely obscure in Feynman diagrams of the full theory, are also revealed, which greatly simplifies calculations. The effective Lagrangian is highly constrained by effectively multiple copies of diffeomorphism invariance that are inevitably present in gravity SCET due to mode separation, an essential ingredient of any SCET. Further explorations of effective theories of gravity with mode separation may shed light on Lagrangian-level understandings of some of the surprising properties of gravitational scattering amplitudes. A gravity SCET with an appropriate inclusion of Glauber modes may serve as a powerful tool for studying gravitational scattering in the Regge limit.

  20. Initial States: IR and Collinear Divergences

    International Nuclear Information System (INIS)

    Lavelle, Martin; McMullan, David

    2007-01-01

    The standard approach to the infra-red problem is to use the Bloch-Nordsieck trick to handle soft divergences and the Lee-Nauenberg (LN) theorem for collinear singularities. We show that this is inconsistent in the presence of massless initial particles. Furthermore, we show that using the LN theorem with such initial states introduces a non-convergent infinite series of diagrams at any fixed order in perturbation theory

  1. Triple collinear emissions in parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Höche, Stefan; Prestel, Stefan

    2017-10-01

    A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.

  2. Direct current hopping conductance in one-dimensional diagonal disordered systems

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Xiao Jian-Rong

    2006-01-01

    Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.

  3. Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system

    Directory of Open Access Journals (Sweden)

    Long LIU

    2017-04-01

    Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.

  4. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.

    Science.gov (United States)

    Kandemir, Ali; Ozden, Ayberk; Cagin, Tahir; Sevik, Cem

    2017-01-01

    Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, [Formula: see text]100[Formula: see text], is better than the [Formula: see text]111[Formula: see text] crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity

  5. Collinear cluster tri-partition: Kinematics constraints and stability of collinearity

    Science.gov (United States)

    Holmvall, P.; Köster, U.; Heinz, A.; Nilsson, T.

    2017-01-01

    Background: A new mode of nuclear fission has been proposed by the FOBOS Collaboration, called collinear cluster tri-partition (CCT), and suggests that three heavy fission fragments can be emitted perfectly collinearly in low-energy fission. This claim is based on indirect observations via missing-energy events using the 2 v 2 E method. This proposed CCT seems to be an extraordinary new aspect of nuclear fission. It is surprising that CCT escaped observation for so long given the relatively high reported yield of roughly 0.5 % relative to binary fission. These claims call for an independent verification with a different experimental technique. Purpose: Verification experiments based on direct observation of CCT fragments with fission-fragment spectrometers require guidance with respect to the allowed kinetic-energy range, which we present in this paper. Furthermore, we discuss corresponding model calculations which, if CCT is found in such verification experiments, could indicate how the breakups proceed. Since CCT refers to collinear emission, we also study the intrinsic stability of collinearity. Methods: Three different decay models are used that together span the timescales of three-body fission. These models are used to calculate the possible kinetic-energy ranges of CCT fragments by varying fragment mass splits, excitation energies, neutron multiplicities, and scission-point configurations. Calculations are presented for the systems 235U(nth,f ) and 252Cf(s f ) , and the fission fragments previously reported for CCT; namely, isotopes of the elements Ni, Si, Ca, and Sn. In addition, we use semiclassical trajectory calculations with a Monte Carlo method to study the intrinsic stability of collinearity. Results: CCT has a high net Q value but, in a sequential decay, the intermediate steps are energetically and geometrically unfavorable or even forbidden. Moreover, perfect collinearity is extremely unstable, and broken by the slightest perturbation. Conclusions

  6. ac conductivity of a one-dimensional site-disordered lattice

    International Nuclear Information System (INIS)

    Albers, R.C.; Gubernatis, J.E.

    1978-01-01

    We report the results of a numerical study of the ac conductivity for the Anderson model of a one-dimensional, site-disordered system of 400 atoms. For different degrees of disorder, we directly diagonalized the Anderson Hamiltonian, used the Kubo-Greenwood formula to evaluate the conductivity, and then averaged the conductivity over 12 configurations. We found that the dominant frequency dependence of the conductivity consisted of a single peak which shifted to higher frequency and decreased in overall magnitude as the disorder was increased. The joint density of states and the eigenstate localization were also computed and are discussed in connection with our results

  7. Point kinetics model with one-dimensional (radial) heat conduction formalism

    International Nuclear Information System (INIS)

    Jain, V.K.

    1989-01-01

    A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs

  8. Research of a Novel Three-dimensional Force Flexible Tactile Sensor Based on Conductive Rubber

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2010-09-01

    Full Text Available A novel three-dimensional force flexible tactile sensor using conductive rubber with "overall injection molding" technique is presented. The sensor is based on conductive rubber’s force-sensitive property. The sensor is flexible and can measure 3-D force. The rubber’s characteristics, the sensor’s structure and its principle are described. The results of simulation will be also presented.

  9. Conduction in rectangular quasi-one-dimensional and two-dimensional random resistor networks away from the percolation threshold.

    Science.gov (United States)

    Kiefer, Thomas; Villanueva, Guillermo; Brugger, Jürgen

    2009-08-01

    In this study we investigate electrical conduction in finite rectangular random resistor networks in quasione and two dimensions far away from the percolation threshold p(c) by the use of a bond percolation model. Various topologies such as parallel linear chains in one dimension, as well as square and triangular lattices in two dimensions, are compared as a function of the geometrical aspect ratio. In particular we propose a linear approximation for conduction in two-dimensional systems far from p(c), which is useful for engineering purposes. We find that the same scaling function, which can be used for finite-size scaling of percolation thresholds, also applies to describe conduction away from p(c). This is in contrast to the quasi-one-dimensional case, which is highly nonlinear. The qualitative analysis of the range within which the linear approximation is legitimate is given. A brief link to real applications is made by taking into account a statistical distribution of the resistors in the network. Our results are of potential interest in fields such as nanostructured or composite materials and sensing applications.

  10. Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections

    Science.gov (United States)

    Del Duca, Vittorio; Somogyi, Gábor; Trócsányi, Zoltán

    2013-06-01

    In the context of a subtraction method for jet cross sections at NNLO accuracy in the strong coupling, we perform the integration over the two-particle factorised phase space of the collinear-type contributions to the doubly unresolved counterterms. We present the final result as a convolution in colour space of the Born cross section and of an insertion operator, which is written in terms of master integrals that we expand in the dimensional regularisation parameter.

  11. Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections

    CERN Document Server

    Del Duca, Vittorio; Trocsanyi, Zoltan

    2013-01-01

    In the context of a subtraction method for jet cross sections at NNLO accuracy in the strong coupling, we perform the integration over the two-particle factorised phase space of the collinear-type contributions to the doubly unresolved counterterms. We present the final result as a convolution in colour space of the Born cross section and of an insertion operator, which is written in terms of master integrals that we expand in the dimensional regularisation parameter.

  12. Non-collinear configuration for dichromatic squeezing

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, A.; Bondani, M. [Como Univ. (Italy). Dipt. di Scienze Chimiche Fisiche e Matematiche; Mauro D' Ariano, G.; Paris, M.G.A. [Como Univ. (Italy). Dipt. di Scienze Chimiche Fisiche e Matematiche; Quantum Optics Group, Unita INFM and Dipt. di Fisica ' Alessandro Volta' , Univ. di Pavia (Italy)

    2001-02-01

    We propose a non-collinear experimental scheme for the joint generation of two amplitude-squeezed beams at the frequencies {omega}{sub 1} and {omega}{sub 2}, fundamental and second harmonics of a Nd:YAG laser pulse. The scheme consists of two successive steps, both involving second-order non-linear interactions in {beta}-BaB{sub 2}O{sub 4} non-linear crystals. One of the output beams show subPoissonian photon statistics, and this allows to use photodetection instead of homodyne detection for diagnostics. (orig.)

  13. Non-collinear configuration for dichromatic squeezing

    International Nuclear Information System (INIS)

    Andreoni, A.; Bondani, M.

    2001-01-01

    We propose a non-collinear experimental scheme for the joint generation of two amplitude-squeezed beams at the frequencies ω 1 and ω 2 , fundamental and second harmonics of a Nd:YAG laser pulse. The scheme consists of two successive steps, both involving second-order non-linear interactions in β-BaB 2 O 4 non-linear crystals. One of the output beams show subPoissonian photon statistics, and this allows to use photodetection instead of homodyne detection for diagnostics. (orig.)

  14. Longitudinal and spin Hall conductance of a one-dimensional Aharonov-Bohm ring

    International Nuclear Information System (INIS)

    Moca, Catalin Pascu; Marinescu, D C

    2006-01-01

    The longitudinal and spin Hall conductances of an electron gas with Rashba-Dresselhaus spin-orbit interaction, confined to a quasi-one-dimensional Aharonov-Bohm ring, are studied as functions of disorder and magnetic flux. The system is mapped onto a one-dimensional virtual lattice and is described, in a tight binding approximation, by a Hamiltonian that depends parametrically on the nearest neighbour hopping integral t, the Rashba spin-orbit coupling V R , the Dresselhaus spin-orbit coupling V D and an Anderson-like, on-site disorder energy strength W. Numerical results are obtained within a spin dependent Landauer-Buettiker formalism

  15. On the conductivity of a one-dimensional system of interacting fermions in a random potential

    International Nuclear Information System (INIS)

    Apel, W.

    1981-01-01

    A one-dimensional system of interacting fermions in an external potential is studied. The problem was for this purpose transformed to two classical models of statistical mechanics in two dimensions in which occasionally results were found in complementary ranges of the interaction constants of the fermion system. The conductivity appeared as a simple correlation function in both classical models. It was shown that the interaction in a one-dimensional polluted fermion system can cause an isolator-metal transition. (orig./HSI) [de

  16. Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Hong; WANG Yong-Gang; LIU Mei

    2002-01-01

    By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.

  17. Conductance of two-dimensional waveguide in presence of the Rashba spin-orbit interaction

    Science.gov (United States)

    Liu, Duan-Yang; Xia, Jian-Bai

    2018-04-01

    By using the transfer matrix method, we investigated spin transport in some straight structures in presence of the Rashba spin-orbit interaction. It is proved that the interference of two spin states is the same as that in one-dimensional Datta-Das spin field-effect transistor. The conductance of these structures has been calculated. Conductance quantization is common in these waveguides when we change the Fermi energy and the width of the waveguide. Using a periodic system of quadrate stubs and changing the Fermi energy, a nearly square-wave conductance can be obtained in some regions of the Fermi energy.

  18. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  19. Collinearity, convergence and cancelling infrared divergences

    International Nuclear Information System (INIS)

    Lavelle, Martin; McMullan, David

    2006-01-01

    The Lee-Nauenberg theorem is a fundamental quantum mechanical result which provides the standard theoretical response to the problem of collinear and infrared divergences. Its argument, that the divergences due to massless charged particles can be removed by summing over degenerate states, has been successfully applied to systems with final state degeneracies such as LEP processes. If there are massless particles in both the initial and final states, as will be the case at the LHC, the theorem requires the incorporation of disconnected diagrams which produce connected interference effects at the level of the cross-section. However, this aspect of the theory has never been fully tested in the calculation of a cross-section. We show through explicit examples that in such cases the theorem introduces a divergent series of diagrams and hence fails to cancel the infrared divergences. It is also demonstrated that the widespread practice of treating soft infrared divergences by the Bloch-Nordsieck method and handling collinear divergences by the Lee-Nauenberg method is not consistent in such cases

  20. Laminar forced convection in a cylindrical collinear ohmic sterilizer

    Directory of Open Access Journals (Sweden)

    Pesso Tommaso

    2017-01-01

    Full Text Available The present work deals with a thermo-fluid analysis of a collinear cylindrical ohmic heater in laminar flow. The geometry of interest is a circular electrically insulated glass pipe with two electrodes at the pipe ends. For this application, since the electrical conductivity of a liquid food depends strongly on the temperature, the thermal analysis of an ohmic heater requires the simultaneous solution of the electric and thermal fields. In the present work the analysis involves decoupling the previous fields by means of an iterative procedure. The thermal field has been calculated using an analytical solution, which leads to fast calculations for the temperature distribution in the heater. Some considerations of practical interest for the design are also given.

  1. Enhancement of conductivity due to local disorder in a one-dimensional conductor

    International Nuclear Information System (INIS)

    Morifuji, Masato; Maeda, Yusuke

    2011-01-01

    We theoretically investigate electron transport in a one-dimensional conductor with a locally disordered potential by using the non-equilibrium Green’s function theory. It is found that, by changing the energy of a site in a one-dimensional atomic chain, the electron conductivity can be larger when the modulated site energy is smaller than that of the other sites. This contradicts the conventional picture that an electron is scattered by the disorder of the potential, because such a scattering process usually causes resistivity. We show that the enhancement of conductivity that seems contradictory to the conventional picture of electron motion is explained by the change of energy of quasi bound states in the conductor. (paper)

  2. One-dimensional classical many-body system having a normal thermal conductivity

    International Nuclear Information System (INIS)

    Casati, G.; Ford, J.; Vivaldi, F.; Visscher, W.M.

    1984-01-01

    By numerically computing orbits for a chaotic, one-dimensional, many-body system placed between two thermal reservoirs, we verify directly that its energy transport obeys the Fourier heat law and we determine its thermal conductivity K. The same value of K is independently obtained by use of the Green-Kubo formalism. These numerical studies verify that chaos is the essential ingredient of diffusive energy transport, and they validate the Green-Kubo formalism

  3. Collinear integration affects visual search at V1.

    Science.gov (United States)

    Chow, Hiu Mei; Jingling, Li; Tseng, Chia-huei

    2013-08-29

    Perceptual grouping plays an indispensable role in figure-ground segregation and attention distribution. For example, a column pops out if it contains element bars orthogonal to uniformly oriented element bars. Jingling and Tseng (2013) have reported that contextual grouping in a column matters to visual search behavior: When a column is grouped into a collinear (snakelike) structure, a target positioned on it became harder to detect than on other noncollinear (ladderlike) columns. How and where perceptual grouping interferes with selective attention is still largely unknown. This article contributes to this little-studied area by asking whether collinear contour integration interacts with visual search before or after binocular fusion. We first identified that the previously mentioned search impairment occurs with a distractor of five or nine elements but not one element in a 9 × 9 search display. To pinpoint the site of this effect, we presented the search display with a short collinear bar (one element) to one eye and the extending collinear bars to the other eye, such that when properly fused, the combined binocular collinear length (nine elements) exceeded the critical length. No collinear search impairment was observed, implying that collinear information before binocular fusion shaped participants' search behavior, although contour extension from the other eye after binocular fusion enhanced the effect of collinearity on attention. Our results suggest that attention interacts with perceptual grouping as early as V1.

  4. Optical conductivity of three and two dimensional topological nodal-line semimetals

    Science.gov (United States)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  5. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    Science.gov (United States)

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  6. Diffraction of a plane wave on two-dimensional conductive structures and a surface wave

    Science.gov (United States)

    Davidovich, Mikhael V.

    2018-04-01

    We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).

  7. The longitudinal optical conductivity in bilayer graphene and other two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.cn [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ao, Z.M., E-mail: zhimin.ao@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney ,PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Wei, X.F. [West Anhui University, Luan 237012 (China); Jiang, J.J. [Department of Physics, Sanjing College, Nanjing 210012 (China)

    2015-01-15

    The longitudinal optical conductivity in bilayer graphene is calculated using the dielectric function by defining the density operator theoretically, while the effect of the broadening width determined by the scattering sources on the optical conductivity is also investigated. Some features, such as chirality, energy dispersion and density of state (DOS) in bilayer graphene, are similar to those in monolayer graphene and a traditional two-dimensional electron gas (2DEG). Therefore, in this paper, the bilayer graphene optical conductivity is compared with the results in these two systems. The analytical and numerical results show that the optical conductivity per graphene layer is almost a constant and close to e{sup 2}/(4ℏ), which agrees with the experimental results.

  8. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3

  9. Phonon transmission and thermal conductance in one-dimensional system with on-site potential disorder

    International Nuclear Information System (INIS)

    Ma Songshan; Xu Hui; Deng Honggui; Yang Bingchu

    2011-01-01

    The role of on-site potential disorder on phonon transmission and thermal conductance of one-dimensional system is investigated. We found that the on-site potential disorder can lead to the localization of phonons, and has great effect on the phonon transmission and thermal conductance of the system. As on-site potential disorder W increases, the transmission coefficients decrease, and approach zero at the band edges. Corresponding, the thermal conductance decreases drastically, and the curves for thermal conductance exhibit a series of steps and plateaus. Meanwhile, when the on-site potential disorder W is strong enough, the thermal conductance decreases dramatically with the increase of system size N. We also found that the efficiency of reducing thermal conductance by increasing the on-site potential disorder strength is much better than that by increasing the on-site potential's amplitude. - Highlights: → We studied the effect of on-site potential disorder on thermal transport. → Increasing disorder will decrease thermal transport. → Increasing system size will also decrease its thermal conductance. → Increasing disorder is more efficient than other in reducing thermal conductance.

  10. A general one-dimensional model for conduction-controlled rewetting of a surface

    International Nuclear Information System (INIS)

    Elias, E.; Yadigaroglu, G.

    1977-01-01

    A computer-oriented analytical method for predicting the rewetting rate of a hot dry wall is proposed. The wall, which is modeled as a thin flat plate with internal heat generation, receives a variable heat flux from one side while it is cooled from the other side. The model accounts for the large variations of the heat transfer coefficient near the wet front and for the temperature dependence of the thermal and physical properties of the wall. The one-dimensional heat-conduction equation is solved by dividing the quenching zone into small segments of arbitrary temperature increment and constant properties and heat transfer coefficient. A trial-and-error method is developed to predict the velocity of the wet front, the length of the quenching zone and the temperature profile. The one-dimensional models of other authors can be obtained as particular cases of the present model. (Auth.)

  11. A simple analytical model for electronic conductance in a one dimensional atomic chain across a defect

    International Nuclear Information System (INIS)

    Khater, Antoine; Szczesniak, Dominik

    2011-01-01

    An analytical model is presented for the electronic conductance in a one dimensional atomic chain across an isolated defect. The model system consists of two semi infinite lead atomic chains with the defect atom making the junction between the two leads. The calculation is based on a linear combination of atomic orbitals in the tight-binding approximation, with a single atomic one s-like orbital chosen in the present case. The matching method is used to derive analytical expressions for the scattering cross sections for the reflection and transmission processes across the defect, in the Landauer-Buttiker representation. These analytical results verify the known limits for an infinite atomic chain with no defects. The model can be applied numerically for one dimensional atomic systems supported by appropriate templates. It is also of interest since it would help establish efficient procedures for ensemble averages over a field of impurity configurations in real physical systems.

  12. Tunneling conductance of a two-dimensional electron gas with Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    Srisongmuang, B.; Ka-oey, A.

    2012-01-01

    We theoretically studied the spin-dependent charge transport in a two-dimensional electron gas with Dresselhaus spin-orbit coupling (DSOC) and metal junctions. It is shown that the DSOC energy can be directly measured from the tunneling conductance spectrum. We found that spin polarization of the conductance in the propagation direction can be obtained by injecting from the DSOC system. We also considered the effect of the interfacial scattering barrier (both spin-flip and non-spin-flip scattering) on the overall conductance and the spin polarization of the conductance. It is found that the increase of spin-flip scattering can enhance the conductance under certain conditions. Moreover, both types of scattering can increase the spin polarization below the branches crossing of the energy band. - Highlights: → DSOC energy can be directly measured from tunneling conductance spectrum. → Spin polarization of conductance in the propagation direction can be obtained by injecting from DSOC system. → Both types of scattering can increase spin polarization.

  13. Phonon dispersion and thermal conductivity of nanocrystal superlattices using three-dimensional atomistic models

    International Nuclear Information System (INIS)

    Zanjani, Mehdi B.; Lukes, Jennifer R.

    2014-01-01

    A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.1–1 W/m K that are consistent with reported experimental results

  14. ORINC: a one-dimensional implicit approach to the inverse heat conduction problem. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.J.; Hedrick, R.A.

    1977-10-18

    The report develops an implicit solution technique to determine both the transient surface temperature and the transient surface heat flux of electrically heated rods given the power input and an ''indicated'' internal temperature during a simulated loss-of-coolant accident. A digital computer program ORINC (ORNL Inverse Code) is developed which solves a one-dimensional, transient, lumped parameter, implicit formulation of the conduction equation at each bundle thermocouple position in the Thermal-Hydraulic Test Facility (THTF).

  15. Magneto-spin Hall conductivity of a two-dimensional electron gas

    OpenAIRE

    Milletari', M.; Raimondi, R.; Schwab, P.

    2008-01-01

    It is shown that the interplay of long-range disorder and in-plane magnetic field gives rise to an out-of-plane spin polarization and a finite spin Hall conductivity of the two-dimensional electron gas in the presence of Rashba spin-orbit coupling. A key aspect is provided by the electric-field induced in-plane spin polarization. Our results are obtained first in the \\textit{clean} limit where the spin-orbit splitting is much larger than the disorder broadening of the energy levels via the di...

  16. Tunneling Conductance in Two-Dimensional Junctions between a Normal Metal and a Ferromagnetic Rashba Metal

    Science.gov (United States)

    Oshima, Daisuke; Taguchi, Katsuhisa; Tanaka, Yukio

    2018-03-01

    We have studied charge transport in a ferromagnetic Rashba metal (FRM), where both Rashba type spin-orbit coupling (RSOC) and exchange coupling coexist. It has nontrivial metallic states, i.e., a normal Rashba metal (NRM), anomalous Rashba metal (ARM), and Rashba ring metal (RRM), and they are manipulated by tuning the Fermi level with an applied gate voltage. We theoretically studied the tunneling conductance (G) in a normal metal/FRM junction by changing the Fermi level via an applied gate voltage (Vg) on the FRM. We found a wide variation in the Vg dependence of G, which depends on the metallic states. In an NRM, the Vg dependence of G is the same as that in a conventional two-dimensional system. However, in an ARM, the Vg dependence of G is similar to that in a conventional one- (two-)dimensional system for a large (small) RSOC. Furthermore, in an RRM, which is generated by a large RSOC, the Vg dependence of G is similar to that in the one-dimensional system. In addition, these anomalous properties stem from the density of states in the ARM and RRM caused by the large RSOC and exchange coupling rather than the spin-momentum locking of RSOC.

  17. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Huang, Xiaopeng; Zeng, Xiao Cheng

    2015-11-28

    A recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this work, thermal conductivity (κ) of monolayer phosphorene is calculated using large-scale classical non-equilibrium molecular dynamics (NEMD) simulations. The predicted thermal conductivities for infinite length armchair and zigzag phosphorene sheets are 63.6 and 110.7 W m(-1) K(-1) respectively. The strong anisotropic thermal transport is attributed to the distinct atomic structures at altered chiral directions and direction-dependent group velocities. Thermal conductivities of 2D graphene sheets with the same dimensions are also computed for comparison. The extrapolated κ of the 2D graphene sheet are 1008.5(+37.6)(-37.6) and 1086.9(+59.1)(-59.1) W m(-1) K(-1) in the armchair and zigzag directions, respectively, which are an order of magnitude higher than those of phosphorene. The overall and decomposed phonon density of states (PDOS) are calculated in both structures to elucidate their thermal conductivity differences. In comparison with graphene, the vibrational frequencies that can be excited in phosphorene are severely limited. The temperature effect on the thermal conductivity of phosphorene and graphene sheets is investigated, which reveals a monotonic decreasing trend for both structures.

  18. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    Science.gov (United States)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  19. Thermal and Electrical Conductivities of a Three-Dimensional Ideal Anyon Gas with Fractional Exclusion Statistics

    International Nuclear Information System (INIS)

    Qin Fang; Wen Wen; Chen Ji-Sheng

    2014-01-01

    The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann—Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann—Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes.

    Science.gov (United States)

    Lee, Kilbock; Song, Seok Ho; Ahn, Jinho

    2014-03-24

    We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

  1. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch

    2009-06-10

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  2. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    International Nuclear Information System (INIS)

    Vindigni, Alessandro; Pini, Maria Gloria

    2009-01-01

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  3. Measuring three-dimensional flow structures in the conductive airways using 3D-PTV

    Science.gov (United States)

    Janke, Thomas; Schwarze, Rüdiger; Bauer, Katrin

    2017-10-01

    Detailed information about flow patterns and mass transport in the conductive airways is of crucial interest to improve ventilation strategies as well as targeted drug delivery. Despite a vast number of flow studies in this field, there is still a dearth in experimental data of three-dimensional flow patterns, in particular for the validation of numerical results. Therefore, oscillating flow within a realistic model of the upper human conductive airways is studied here experimentally. The investigated range of Reynolds numbers is Re = 250-2000 and the Womersley number is varied between α = 1.9-5.1, whereby physiological flow at rest conditions is included. In employing the three-dimensional particle tracking velocimetry measurement technique, we can directly visualize airway specific flow structures as well as examine Lagrangian trajectory statistics, which has not been covered to date. The systematic variation of characteristic flow parameters in combination with the advanced visualization technique sheds new light on the mechanisms of evolving flow patterns. By determining Lagrangian properties such as pathline curvature and torsion, we find that both strongly depend on the Reynolds number. Moreover, the probability density function of the curvature reveals a unique shape for certain flow regions and resembles a turbulent like behavior at the small scales.

  4. Examination of evidence for collinear cluster tri-partition

    Science.gov (United States)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Goryainova, Z. I.; Malaza, V.; Mkaza, N.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-12-01

    Background: In a series of experiments at different time-of-flight spectrometers of heavy ions we have observed manifestations of a new at least ternary decay channel of low excited heavy nuclei. Due to specific features of the effect, it was called collinear cluster tri-partition (CCT). The obtained experimental results have initiated a number of theoretical articles dedicated to different aspects of the CCT. Special attention was paid to kinematics constraints and stability of collinearity. Purpose: To compare theoretical predictions with our experimental data, only partially published so far. To develop the model of one of the most populated CCT modes that gives rise to the so-called "Ni-bump." Method: The fission events under analysis form regular two-dimensional linear structures in the mass correlation distributions of the fission fragments. The structures were revealed both at a highly statistically reliable level but on the background substrate, and at the low statistics in almost noiseless distribution. The structures are bounded by the known magic fragments and were reproduced at different spectrometers. All this provides high reliability of our experimental findings. The model of the CCT proposed here is based on theoretical results, published recently, and the detailed analysis of all available experimental data. Results: Under our model, the CCT mode giving rise to the Ni bump occurs as a two-stage breakup of the initial three body chain like the nuclear configuration with an elongated central cluster. After the first scission at the touching point with one of the side clusters, the predominantly heavier one, the deformation energy of the central cluster allows the emission of up to four neutrons flying apart isotropically. The heavy side cluster and a dinuclear system, consisting of the light side cluster and the central one, relaxed to a less elongated shape, are accelerated in the mutual Coulomb field. The "tip" of the dinuclear system at the moment

  5. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  6. Introduction to soft-collinear effective theory

    CERN Document Server

    Becher, Thomas; Ferroglia, Andrea

    2015-01-01

    Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC.  This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-spe...

  7. Collinear resonance ionization spectroscopy of radium ions

    CERN Multimedia

    We propose to study the neutron-deficient radium isotopes with high-resolution collinear resonance ionization spectroscopy. Probing the hyperfine structure of the $7{s}\\,^2\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{1/2}$ and $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transitions in Ra II will provide atomic-structure measurements that have not been achieved for $^{{A}<208}$Ra. Measurement of the $7{s}\\,^{2}\\!{S}\\!_{1/2}\\,\\rightarrow\\,7{p}\\,^{2}\\!{P}\\!_{3/2}$ transition in $^{{A}<214}$Ra will allow the spectroscopic quadrupole moments to be directly measured for the first time. In addition, the technique will allow tentative spin assignments to be confirmed and the magnetic dipole moments measured for $^{\\textit{A}<208}$Ra. Measurement of the hyperfine structure (in particular the isotope shifts) of the neutron-deficient radium will provide information to further constrain the nuclear models away from the N=126 shell closure.

  8. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors.

    Science.gov (United States)

    Xu, Xingtao; Tang, Jing; Qian, Huayu; Hou, Shujin; Bando, Yoshio; Hossain, Md Shahriar A; Pan, Likun; Yamauchi, Yusuke

    2017-11-08

    Metal-organic frameworks (MOFs) with high porosity and a regular porous structure have emerged as a promising electrode material for supercapacitors, but their poor electrical conductivity limits their utilization efficiency and capacitive performance. To increase the overall electrical conductivity as well as the efficiency of MOF particles, three-dimensional networked MOFs are developed via using preprepared conductive polypyrrole (PPy) tubes as the support for in situ growth of MOF particles. As a result, the highly conductive PPy tubes that run through the MOF particles not only increase the electron transfer between MOF particles and maintain the high effective porosity of the MOFs but also endow the MOFs with flexibility. Promoted by such elaborately designed MOF-PPy networks, the specific capacitance of MOF particles has been increased from 99.2 F g -1 for pristine zeolitic imidazolate framework (ZIF)-67 to 597.6 F g -1 for ZIF-PPy networks, indicating the importance of the design of the ZIF-PPy continuous microstructure. Furthermore, a flexible supercapacitor device based on ZIF-PPy networks shows an outstanding areal capacitance of 225.8 mF cm -2 , which is far above other MOFs-based supercapacitors reported up to date, confirming the significance of in situ synthetic chemistry as well as the importance of hybrid materials on the nanoscale.

  9. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals

    Science.gov (United States)

    Li, Shuai; Wang, Chen; Zheng, Shi-Han; Wang, Rui-Qiang; Li, Jun; Yang, Mou

    2018-04-01

    The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

  10. One-loop triple collinear splitting amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon; Buciuni, Francesco; Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2015-09-28

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  11. Novel highly sensitive and wearable pressure sensors from conductive three-dimensional fabric structures

    International Nuclear Information System (INIS)

    Li, Jianfeng; Xu, Bingang

    2015-01-01

    Pressure sensors based on three-dimensional fabrics have all the excellent properties of the textile substrate: excellent compressibility, good air permeability and moisture transmission ability, which will find applications ranging from the healthcare industry to daily usage. In this paper, novel pressure sensors based on 3D spacer fabrics have been developed by a proposed multi-coating method. By this coating method, carbon black can be coated uniformly on the silicon elastomer which is attached and slightly cured on the 3D fabric surface beforehand. The as-made pressure sensors have good conductivity and can measure external pressure up to 283 kPa with an electrical conductivity range of 9.8 kΩ. The sensitivity of 3D fabric pressure sensors can be as high as 50.31×10 −3 kPa −1 , which is better than other textile based pressure sensors. When the as-made sensors are pressed, their electrical resistance will decrease because of more conductive connections and bending of fibers in the spacer layer. The sensing mechanism related to fiber bending has been explored by using an equivalent resistance model. The newly developed 3D sensor devices can be designed to exhibit different sensing performances by simply changing the structures of fabric substrate, which endows this kind of device more flexibility in related applications. (paper)

  12. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  13. Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, HX; Zhang, LL; Pettes, MT; Li, HF; Chen, SS; Shi, L; Piner, R; Ruoff, RS

    2012-05-01

    We report the use of free-standing, lightweight, and highly conductive ultrathin graphite foam (UGF), loaded with lithium iron phosphate (LFP), as a cathode in a lithium ion battery. At a high charge/discharge current density of 1280 mA g(-1), the specific capacity of the LFP loaded on UGF was 70 mAh g(-1), while LFP loaded on Al foil failed. Accounting for the total mass of the electrode, the maximum specific capacity of the UGF/LFP cathode was 23% higher than that of the Al/LFP cathode and 170% higher than that of the Ni-foam/LFP cathode. Using UGF, both a higher rate capability and specific capacity can be achieved simultaneously, owing to its conductive (similar to 1.3 x 10(5) S m(-1) at room temperature) and three-dimensional lightweight (similar to 9.5 mg cm(-3)) graphitic structure. Meanwhile, UGF presents excellent electrochemical stability comparing to that of Al and Ni foils, which are generally used as conductive substrates in lithium ion batteries. Moreover, preparation of the UGF electrode was facile, cost-effective, and compatible with various electrochemically active materials.

  14. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; He, Weidong; Mao, Yiwu; Wang, Wei

    2016-01-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  15. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solitons and polarons in quasi-one dimensional conducting polymers and related materials

    International Nuclear Information System (INIS)

    Campbell, D.K.

    1983-01-01

    In recent years it has become increasingly appreciated that fundamentally nonlinear excitations - solitons - play an essential role in an incredible variety of natural systems. These solitons, which frequently exhibit remarkable stability under interactions and perturbations, often dominate the transport, response, or structural properties of the systems in which they occur. In this article, we present an introduction to the solitons that occur in quasi-one-dimensional conducting polymers (synmetals) and related systems. The relevance of this subject to molecular electronic devices is twofold. First, many of these materials have molecular structures similar to possible prototype molecular switches. Second, to understand in detail how a molecular electronic device could work, it is essential to have a broad perspective on the nature of possible excitations in a variety of natural and synthetic molecular materials. 51 references

  17. Polarized triple-collinear splitting functions at NLO for processes with photons

    International Nuclear Information System (INIS)

    Sborlini, Germán F.R.; Florian, Daniel de; Rodrigo, Germán

    2015-01-01

    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α_S, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

  18. Polarized triple-collinear splitting functions at NLO for processes with photons

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València,Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna, Valencia (Spain)

    2015-03-04

    We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling α{sub S}, for the splitting processes γ→qq-barγ, γ→qq-barg and g→qq-barγ. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani’s formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).

  19. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  20. Conductivity of a spin-polarized two-dimensional hole gas at very low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dlimi, S., E-mail: kaaouachi21@yahoo.fr; Kaaouachi, A. El, E-mail: kaaouachi21@yahoo.fr; Limouny, L., E-mail: kaaouachi21@yahoo.fr; Sybous, A.; Narjis, A.; Errai, M.; Daoudi, E. [Research Group ESNPS , Physics department, University Ibn Zohr, Faculty of Sciences, B.P 8106, Hay Dakhla, 80000 Agadir (Morocco); Idrissi, H. El [Faculté des Sciences et Techniques de Mohammedia, Département de physique. BP 146 Quartier Yasmina Mohammedia (Morocco); Zatni, A. [Laboratoire MSTI. Ecole de technologied' Agadir, B.P33/S Agadir (Morocco)

    2014-01-27

    In the ballistic regime where k{sub B}Tτ / ħ ≥1, the temperature dependence of the metallic conductivity in a two-dimensional hole system of gallium arsenide, is found to change non-monotonically with the degree of spin polarization. In particular, it fades away just before the onset of complete spin polarization, but reappears again in the fully spin-polarized state, being, however, suppressed relative to the zero magnetic field case. The analysis of the degree of suppression can distinguish between screening and interaction-based theories. We show that in a fully polarized spin state, the effects of disorder are dominant and approach a strong localization regime, which is contrary to the behavior of 2D electron systems in a weakly disordered unpolarized state. It was found that the elastic relaxation time correction, depending on the temperature, changed significantly with the degree of spin polarization, to reach a minimum just below the start of the spin-polarized integer, where the conductivity is practically independent of temperature.

  1. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... hybridization, and on this basis we are able to analyze the microscopic reasons behind the occurrence of non-collinear magnetism in the elemental itinerant magnets....... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  2. Soft-collinear factorization and zero-bin subtractions

    International Nuclear Information System (INIS)

    Chiu Juiyu; Fuhrer, Andreas; Kelley, Randall; Manohar, Aneesh V.; Hoang, Andre H.

    2009-01-01

    We study the Sudakov form factor for a spontaneously broken gauge theory using a (new) Δ-regulator. To be well defined, the effective theory requires zero-bin subtractions for the collinear sectors. The zero-bin subtractions depend on the gauge boson mass M and are not scaleless. They have both finite and 1/ε contributions and are needed to give the correct anomalous dimension and low-scale matching contributions. We also demonstrate the necessity of zero-bin subtractions for soft-collinear factorization. We find that after zero-bin subtractions the form factor is the sum of the collinear contributions minus a soft mass-mode contribution, in agreement with a previous result of Idilbi and Mehen in QCD. This appears to conflict with the method-of-regions approach, where one gets the sum of contributions from different regions.

  3. Soft-collinear factorization in effective field theory

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.

    2002-01-01

    The factorization of soft and ultrasoft gluons from collinear particles is shown at the level of operators in an effective field theory. Exclusive hadronic factorization and inclusive partonic factorization follow as special cases. The leading-order Lagrangian is derived using power counting and gauge invariance in the effective theory. Several species of gluons are required, and softer gluons appear as background fields to gluons with harder momenta. Two examples are given: the factorization of soft gluons in B→Dπ and the soft-collinear convolution for the B→X s γ spectrum

  4. Cancellation of soft and collinear divergences in noncommutative QED

    International Nuclear Information System (INIS)

    Mirza, B.; Zarei, M.

    2006-01-01

    In this paper, we investigate the behavior of noncommutative IR divergences and will also discuss their cancellation in the physical cross sections. The commutative IR (soft) divergences existing in the nonplanar diagrams will be examined in order to prove an all-order cancellation of these divergences using the Weinberg's method. In noncommutative QED, collinear divergences due to triple photon splitting vertex, were encountered, which are shown to be canceled out by the noncommutative version of KLN theorem. This guarantees that there is no mixing between the Collinear, soft divergences and noncommutative IR divergences

  5. Structural Failure Sites in Anterior Vaginal Wall Prolapse: Identification of a Collinear Triad.

    Science.gov (United States)

    Chen, Luyun; Lisse, Sean; Larson, Kindra; Berger, Mitchell B; Ashton-Miller, James A; DeLancey, John O L

    2016-10-01

    To test the null hypothesis that six factors representing potential fascial and muscular failure sites contribute equally to the presence and size of a cystocele: two vaginal attachment factors (apical support and paravaginal defects), two vaginal wall factors (vaginal length and width), and two levator ani factors (hiatus size and levator ani defects). Thirty women with anterior-predominant prolapse (women in a case group) and 30 women in a control group underwent three-dimensional stress magnetic resonance imaging. The location of the anterior vaginal wall at maximal Valsalva was identified with the modified Pelvic Inclination Coordinate System and the six factors measured. Analysis included repeated-measure analysis of variance, logistic regression, and stepwise linear regression. We identified a collinear triad consisting of apical location, paravaginal location, and hiatus size that were not only the strongest predictors of cystocele size, but were also highly correlated with one another (r=0.84-0.89, P<.001) for the presence and size of the prolapse. Together they explain up to 83% of the variation in cystocele size. Among the less significant vaginal factors, vaginal length explained 19% of the variation in cystocele size, but no significant difference in vaginal width existed. Women in the case group were more likely to have abnormalities in collinear triad factors (up to 80%) than vaginal wall factors (up to 23.3%). Combining the strongest collinear triad with the vaginal factors, the model explained 92.5% of the variation in cystocele size. Apical location, paravaginal location, and hiatus size are highly correlated and are strong predictors of cystocele presence and size.

  6. Schmidt decomposition for non-collinear biphoton angular wave functions

    International Nuclear Information System (INIS)

    Fedorov, M V

    2015-01-01

    Schmidt modes of non-collinear biphoton angular wave functions are found analytically. The experimentally realizable procedure for their separation is described. Parameters of the Schmidt decomposition are used to evaluate the degree of the biphoton's angular entanglement. (paper)

  7. Remarks on the global existence in the dynamics of a viscous, heat-conducting, one-dimensional gas

    International Nuclear Information System (INIS)

    Song Jiang

    1994-01-01

    We consider initial boundary value problems for the equations of the motion of a viscous, heat-conducting, one-dimensional gas which is confined to a fixed tube with impermeable ends and whose viscosity varies with density, and prove the global existence of smooth (large) solutions. (author). 17 refs

  8. Numerical Simulation of the Dynamical Conductivity of One-Dimensional Disordered Systems by MacKinnon’s Method

    Science.gov (United States)

    Saso, Tetsuro; Kim, C. I.; Kasuya, Tadao

    1983-06-01

    Report is given on a computer simulation of the dynamical conductivity σ(ω) of one-dimensional disordered systems with up to 106 sites by MacKinnon’s method. A comparison is made with the asymptotically exact solution valid for weak disorder by Berezinskii.

  9. Collinear laser spectroscopy on radioactive praseodymium ions and cadmium ions

    International Nuclear Information System (INIS)

    Froemmgen, Nadja

    2013-01-01

    Collinear laser spectroscopy is a tool for the model independent determination of spins, charge radii and electromagnetic moments of nuclei in ground and long-lived isomeric states. In the context of this thesis a new offline ion source for high evaporating temperatures and an ion beam analysis system were implemented at the TRIGA-LASER Experiment at the Institute for Nuclear Chemistry at the University of Mainz. The main part of the thesis deals with the determination of the properties of radioactive praseodymium and cadmium isotopes by collinear laser spectroscopy at ISOLDE/CERN. The necessary test measurements for the spectroscopy of praseodymium ions have been conducted with the aforementioned offline ion source at the TRIGA-LASER experiment. The spectroscopy of the praseodymium ions was motivated by the observation of a modulation of the electron capture decay rates of hydrogen-like 140 Pr 58+ . The nuclear magnetic moment of the nucleus is, among others, required for the explanation of the so-called GSI Oscillations and has not been studied experimentally before. Additionally, the determined electron capture decay constant of hydrogen-like 140 Pr 58+ is lower than the one of helium-like 140 Pr 57+ . The explanation of this phenomenon requires a positive magnetic moment. During the experiment at the COLLAPS apparatus the magnetic moments of the neutron-deficient isotopes 135 Pr, 136 Pr and 137 Pr could be determined for the first time. Unfortunately, due to a too low production yield the desired isotope 140 Pr could not be studied.The systematic study of cadmium isotopes was motivated by nuclear physics in the tin region. With Z=48 two protons are missing for the shell closure and the isotopes extend from the magic neutron number N=50 to the magic neutron number N=82. The extracted nuclear properties allow tests of different nuclear models in this region. In this thesis the obtained results of the spectroscopy of the cadmium isotopes 106-124,126 Cd and their

  10. Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

    Science.gov (United States)

    Bischoff, Jan-Moritz; Jeckelmann, Eric

    2017-11-01

    We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems. The dynamical DMRG is used to compute the linear response of a finite system to an applied ac source-drain voltage; then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the dc conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in a homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.

  11. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-10-07

    We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  12. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Directory of Open Access Journals (Sweden)

    Jian-hua Gao

    2015-10-01

    Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  13. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Gordiichuk, Pavlo; Wu, Zhong-Shuai; Liu, Zhaoyang; Wei, Wei; Wagner, Manfred; Mohamed-Noriega, Nasser; Wu, Dongqing; Mai, Yiyong; Herrmann, Andreas; Müllen, Klaus; Feng, Xinliang

    2015-01-01

    The ability to pattern functional moieties with well-defined architectures is highly important in material science, nanotechnology and bioengineering. Although two-dimensional surfaces can serve as attractive platforms, direct patterning them in solution with regular arrays remains a major

  14. Collinear order in the frustrated spin-(1)/(2) antiferromagnet Li{sub 2}CuW{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Tsirlin, Alexander A. [NICPB, Tallinn (Estonia); Nath, Ramesh; Ranjith, Kumar [Indian Institute of Science Education and Research, Trivandrum (India); Kasinathan, Deepa [MPI CPfS, Dresden (Germany); Skoulatos, Markos [Laboratory of Neutron Scattering, PSI, Villigen (Switzerland)

    2015-07-01

    Li{sub 2}CuW{sub 2}O{sub 8} is a three-dimensional spin-(1)/(2) antiferromagnet that features collinear spin order despite abundant magnetic frustration that would normally trigger a non-collinear incommensurate order, at least on the classical level. Using density-functional calculations, we establish the spin lattice comprising two non-coplanar triangular networks that introduce frustration along all three crystallographic directions. Magnetic susceptibility and heat capacity reveal a 1D-like magnetic response, which is, however, inconsistent with the naive spin-chain model. Moreover, the high saturation field of 29 T compared to the susceptibility maximum at as low as 8.5 K give strong evidence for the importance of interchain couplings and the magnetic frustration. Below T{sub N} ≅ 3.9 K, Li{sub 2}CuW{sub 2}O{sub 8} develops collinear magnetic order with parallel spins along a and c and antiparallel spins along b. The ordered moment is about 0.7 μ{sub B} according to neutron powder diffraction. This qualifies Li{sub 2}CuW{sub 2}O{sub 8} as a unique three-dimensional spin-(1)/(2) antiferromagnet, where collinear magnetic order is stabilized by quantum fluctuations.

  15. A Study of Effects of MultiCollinearity in the Multivariable Analysis.

    Science.gov (United States)

    Yoo, Wonsuk; Mayberry, Robert; Bae, Sejong; Singh, Karan; Peter He, Qinghua; Lillard, James W

    2014-10-01

    A multivariable analysis is the most popular approach when investigating associations between risk factors and disease. However, efficiency of multivariable analysis highly depends on correlation structure among predictive variables. When the covariates in the model are not independent one another, collinearity/multicollinearity problems arise in the analysis, which leads to biased estimation. This work aims to perform a simulation study with various scenarios of different collinearity structures to investigate the effects of collinearity under various correlation structures amongst predictive and explanatory variables and to compare these results with existing guidelines to decide harmful collinearity. Three correlation scenarios among predictor variables are considered: (1) bivariate collinear structure as the most simple collinearity case, (2) multivariate collinear structure where an explanatory variable is correlated with two other covariates, (3) a more realistic scenario when an independent variable can be expressed by various functions including the other variables.

  16. Spectator interactions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Hill, Richard J.; Neubert, Matthias

    2003-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  17. Spectator Interactions in Soft-Collinear Effective Theory

    International Nuclear Information System (INIS)

    Hill, Richard J

    2002-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  18. Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

  19. QCD collinear factorization, its extensions and the partonic distributions

    OpenAIRE

    Szymanowski, Lech

    2012-01-01

    I review the basics of the collinear factorization theorem applied primarily to deep inelastic scattering (DIS) involving forward parton distributions (PDFs) and the extensions of this theorem for exclusive processes probing non-forward parton distributions (GPDs), the generalized distribution amplitudes (GDAs) and the transition distribution amplitudes (TDAs). These QCD factorization theorem is an important tool in the description of hard processes in QCD. Whenever valid, it permits to repre...

  20. On the collinear singularity problem of hot QCD

    International Nuclear Information System (INIS)

    Candelpergher, B.; Grandou, T.

    2002-01-01

    The collinear singularity problem of hot QCD is revisited within a perturbative resummation scheme (PR) of the leading thermal fluctuations. On the basis of actual calculations, new aspects are discovered concerning the origin of the singularity plaguing the soft real photon emission rate out of a quark-gluon plasma at thermal equilibrium, when the latter is calculated by means of the Resummation Program (RP)

  1. Three-dimensionally embedded indium tin oxide (ITO) films in photosensitive glass: a transparent and conductive platform for microdevices

    International Nuclear Information System (INIS)

    Beke, S.; Sugioka, K.; Midorikawa, K.; Koroesi, L.; Dekany, I.

    2011-01-01

    A new method for embedding transparent and conductive two- and three-dimensional microstructures in glass is presented. We show that the internal surface of hollow structures fabricated by femtosecond-laser direct writing inside the photosensitive glass can be coated by indium tin oxide (Sn-doped In 2 O 3 , ITO) using a sol-gel process. The idea of combining two transparent materials with different electrical properties, i.e., insulating and conductive, is very promising and hence it opens new prospects in manufacturing cutting edge microdevices, such as lab-on-a-chips (LOCs) and microelectromechanical systems (MEMS). (orig.)

  2. Conductivity in one-dimensional disordered Cs2TCNQ3 salts

    International Nuclear Information System (INIS)

    Messaoudi, M.; Duran, J.

    1984-01-01

    Room temperature, low frequency conductivity measurements of two isomers (I and II) of the Cs 2 TCNQ 3 compounds are made. The conductivity-voltage characteristic display informative data concerning the interaction between disorder and conductivity in these materials. The isomer I clearly exhibits a disorder-dominated conductivity as can be seen from deviations to the Ohmic law. The isomer II, on the contrary, shows up various features connected with the existence of stopping barriers. In particular, it is shown that the interdimensional crossover which takes place at low frequency plays a significant role in these experiments. Moreover the conductivity-voltage characteristic measured along the a axis (perpendicular to the stacking axis) displays a very interesting behavior whereby the disorder properties interplay in an unusual manner. (author)

  3. Effect of two dimensional heat conduction within the wall on heat transfer of a tube partially heated on its circumference

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1987-01-01

    This paper dealt with the numerical calculations of the heat transfer of a tube partially heated on its circumference, considering two-dimensional heat conduction within the wall. The contribution of the unheated region of the tube wall to heat tranfer of the heated region was explained by the term of 'fin efficiency of psuedo-fin', it was clarified that the fin efficiency of the unheated region was little affected by the temperature difference between the inner and outer surfaces of the wall, and could be approximated by the fin efficency of a rectangular fin. Both the circumferential and radial heat conductions within the wall affected the temperature difference between the inner and outer surfaces of the heated region; however, the effect of the temperature difference on the circumferentially average Nusselt number could be obtained by using the analytical solution of radially one-dimensional heat conduction. Using these results, a diagram showing the effect of wall conduction on heat transfer, which is useful for designing the circumferentially nonuniformly heated coolant passages, was obtained. (author)

  4. Proton conductivity in quasi-one dimensional hydrogen-bonded systems: A nonlinear approach

    International Nuclear Information System (INIS)

    Tsironis, G.; Phevmatikos, S.

    1988-01-01

    Defect formation and transport in a hydrogen-bonded system is studied via a two-sublattice soliton-bearing one-dimensional model. Ionic and orientational defects are associated with distinct nonlinear topological excitations in the present model. The dynamics of these excitations is studied both analytically and with the use of numerical simulations. It is shown that the two types of defects are soliton solutions of a double Sine--Gordon equation which describes the motion of the protons in the long-wavelength limit. With each defect there is an associated deformation in the ionic lattice that, for small speeds, follows the defect dynamically albeit resisting its motion. Free propagation as well as collision properties of the proton solitons are presented. 33 refs., 10 figs

  5. Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides

    Science.gov (United States)

    Tojo, Tomohiro; Shinohara, Masaki; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Ahm Kim, Yoong; Endo, Morinobu

    2012-10-01

    Through coating with graphene oxides, we have developed a chemical route to the bulk production of long, thin manganese oxide (MnO2) nanowires that have high electrical conductivity. The average diameter of these hybrid nanowires is about 25 nm, and their average length is about 800 nm. The high electrical conductivity of these nanowires (ca. 189.51+/-4.51 µS) is ascribed to the homogeneous coating with conductive graphene oxides as well as the presence of non-bonding manganese atoms. The growth mechanism of the nanowires is theoretically supported by the initiation of morphological conversion from graphene oxide to wrapped structures through the formation of covalent bonds between manganese and oxygen atoms at the graphene oxide edge.

  6. An analysis of heat conduction in polar bear hairs using one-dimensional fractional model

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2016-01-01

    Full Text Available Hairs of a polar bear are of superior properties such as the excellent thermal protection. The polar bears can perennially live in an extremely cold environment and can maintain body temperature at around 37 °C. Why do polar bears can resist such cold environment? Its membrane-pore structure plays an important role. In the previous work, we established a 1-D fractional heat conduction equation to reveal the hidden mechanism for the hairs. In this paper, we further discuss solutions and parameters of the equation established and analyze heat conduction in polar bear hairs.

  7. One-Dimensional Problem of a Conducting Viscous Fluid with One Relaxation Time

    Directory of Open Access Journals (Sweden)

    Angail A. Samaan

    2011-01-01

    Full Text Available We introduce a magnetohydrodynamic model of boundary-layer equations for conducting viscous fluids. This model is applied to study the effects of free convection currents with thermal relaxation time on the flow of a viscous conducting fluid. The method of the matrix exponential formulation for these equations is introduced. The resulting formulation together with the Laplace transform technique is applied to a variety problems. The effects of a plane distribution of heat sources on the whole and semispace are studied. Numerical results are given and illustrated graphically for the problem.

  8. A comparison of two efficient nonlinear heat conduction methodologies using a two-dimensional time-dependent benchmark problem

    International Nuclear Information System (INIS)

    Wilson, G.L.; Rydin, R.A.; Orivuori, S.

    1988-01-01

    Two highly efficient nonlinear time-dependent heat conduction methodologies, the nonlinear time-dependent nodal integral technique (NTDNT) and IVOHEAT are compared using one- and two-dimensional time-dependent benchmark problems. The NTDNT is completely based on newly developed time-dependent nodal integral methods, whereas IVOHEAT is based on finite elements in space and Crank-Nicholson finite differences in time. IVOHEAT contains the geometric flexibility of the finite element approach, whereas the nodal integral method is constrained at present to Cartesian geometry. For test problems where both methods are equally applicable, the nodal integral method is approximately six times more efficient per dimension than IVOHEAT when a comparable overall accuracy is chosen. This translates to a factor of 200 for a three-dimensional problem having relatively homogeneous regions, and to a smaller advantage as the degree of heterogeneity increases

  9. Invert 1.0: A program for solving the nonlinear inverse heat conduction problem for one-dimensional solids

    International Nuclear Information System (INIS)

    Snider, D.M.

    1981-02-01

    INVERT 1.0 is a digital computer program written in FORTRAN IV which calculates the surface heat flux of a one-dimensional solid using an interior-measured temperature and a physical description of the solid. By using two interior-measured temperatures, INVERT 1.0 can provide a solution for the heat flux at two surfaces, the heat flux at a boundary and the time dependent power, or the heat flux at a boundary and the time varying thermal conductivity of a material composing the solid. The analytical solution to inversion problem is described for the one-dimensional cylinder, sphere, or rectangular slab. The program structure, input instructions, and sample problems demonstrating the accuracy of the solution technique are included

  10. Numerical solution to a multi-dimensional linear inverse heat conduction problem by a splitting-based conjugate gradient method

    International Nuclear Information System (INIS)

    Dinh Nho Hao; Nguyen Trung Thanh; Sahli, Hichem

    2008-01-01

    In this paper we consider a multi-dimensional inverse heat conduction problem with time-dependent coefficients in a box, which is well-known to be severely ill-posed, by a variational method. The gradient of the functional to be minimized is obtained by aids of an adjoint problem and the conjugate gradient method with a stopping rule is then applied to this ill-posed optimization problem. To enhance the stability and the accuracy of the numerical solution to the problem we apply this scheme to the discretized inverse problem rather than to the continuous one. The difficulties with large dimensions of discretized problems are overcome by a splitting method which only requires the solution of easy-to-solve one-dimensional problems. The numerical results provided by our method are very good and the techniques seem to be very promising.

  11. One-dimensional heat conduction equation of the polar bear hair

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Hong

    2015-01-01

    Full Text Available Hairs of a polar bear (Ursus maritimus possess special membrane-pore structure. The structure enables the polar bear to survive in the harsh Arctic regions. In this paper, the membrane-pore structure be approximately considered as fractal space, 1-D heat conduction equation of the polar bear hair is established and the solution of the equation is obtained.

  12. Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum

    International Nuclear Information System (INIS)

    Posch, H.A.; Hoover, W.G.

    1998-01-01

    We define and study the heat conductivity κ and the Lyapunov spectrum for a modified 'ding-a-ling' chain undergoing steady heat flow. Free and bound particles alternate along a chain. In the present work, we use a linear gravitational potential to bind all the even-numbered particles to their lattice sites. The chain is bounded by two stochastic heat reservoirs, one hot and one cold. The Fourier conductivity of the chain decreases smoothly to a finite large-system limit. Special treatment of satellite collisions with the stochastic boundaries is required to obtain Lyapunov spectra. The summed spectra are negative, and correspond to a relatively small contraction in phase space, with the formation of a multifractal strange attractor. The largest of the Lyapunov exponents for the ding-a-ling chain appears to converge to a limiting value with increasing chain length, so that the large-system Lyapunov spectrum has a finite limit. copyright 1998 The American Physical Society

  13. Effect of static charge fluctuations on the conduction along the edge of two-dimensional topological insulator

    Science.gov (United States)

    Vayrynen, Jukka; Goldstein, Moshe; Glazman, Leonid

    2013-03-01

    Static charge disorder may create electron puddles in the bulk of a material which nominally is in the insulating state. A single puddle - quantum dot - coupled to the helical edge of a two-dimensional topological insulator enhances the electron backscattering within the edge. The backscattering rate increases with the electron dwelling time in the dot. While remaining inelastic, the backscattering off a dot may be far more effective than the proposed earlier inelastic processes involving a local scatterer with no internal structure. We find the temperature dependence of the dot-induced correction to the universal conductance of the edge. In addition to the single-dot effect, we calculate the classical temperature-independent conductance correction caused by a weakly conducting bulk. We use our theory to assess the effect of static charge fluctuations in a heterostructure on the edge electron transport in a two-dimensional topological insulator. The work at Yale University is supported by NSF DMR Grant No. 1206612 and the Simons Foundation.

  14. Benzothienobenzothiophene-Based Molecular Conductors: High Conductivity, Large Thermoelectric Power Factor, and One-Dimensional Instability.

    Science.gov (United States)

    Kiyota, Yasuhiro; Kadoya, Tomofumi; Yamamoto, Kaoru; Iijima, Kodai; Higashino, Toshiki; Kawamoto, Tadashi; Takimiya, Kazuo; Mori, Takehiko

    2016-03-23

    On the basis of an excellent transistor material, [1]benzothieno[3,2-b][1]benzothiophene (BTBT), a series of highly conductive organic metals with the composition of (BTBT)2XF6 (X = P, As, Sb, and Ta) are prepared and the structural and physical properties are investigated. The room-temperature conductivity amounts to 4100 S cm(-1) in the AsF6 salt, corresponding to the drift mobility of 16 cm(2) V(-1) s(-1). Owing to the high conductivity, this salt shows a thermoelectric power factor of 55-88 μW K(-2) m(-1), which is a large value when this compound is regarded as an organic thermoelectric material. The thermoelectric power and the reflectance spectrum indicate a large bandwidth of 1.4 eV. These salts exhibit an abrupt resistivity jump under 200 K, which turns to an insulating state below 60 K. The paramagnetic spin susceptibility, and the Raman and the IR spectra suggest 4kF charge-density waves as an origin of the low-temperature insulating state.

  15. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors.

    Science.gov (United States)

    Feng, Jun; Sun, Xu; Wu, Changzheng; Peng, Lele; Lin, Chenwen; Hu, Shuanglin; Yang, Jinlong; Xie, Yi

    2011-11-09

    With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.

  16. Human fear conditioning conducted in full immersion 3-dimensional virtual reality.

    Science.gov (United States)

    Huff, Nicole C; Zeilinski, David J; Fecteau, Matthew E; Brady, Rachael; LaBar, Kevin S

    2010-08-09

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear

  17. One-dimensional conduction through supporting electrolytes: two-scale cathodic Debye layer.

    Science.gov (United States)

    Almog, Yaniv; Yariv, Ehud

    2011-10-01

    Supporting-electrolyte solutions comprise chemically inert cations and anions, produced by salt dissolution, together with a reactive ionic species that may be consumed and generated on bounding ion-selective surfaces (e.g., electrodes or membranes). Upon application of an external voltage, a Faraday current is thereby established. It is natural to analyze this ternary-system process through a one-dimensional transport problem, employing the thin Debye-layer limit. Using a simple model of ideal ion-selective membranes, we have recently addressed this problem for moderate voltages [Yariv and Almog, Phys. Rev. Lett. 105, 176101 (2010)], predicting currents that scale as a fractional power of Debye thickness. We address herein the complementary problem of moderate currents. We employ matched asymptotic expansions, separately analyzing the two inner thin Debye layers adjacent to the ion-selective surfaces and the outer electroneutral region outside them. A straightforward calculation following comparable singular-perturbation analyses of binary systems is frustrated by the prediction of negative ionic concentrations near the cathode. Accompanying numerical simulations, performed for small values of Debye thickness, indicate a number unconventional features occurring at that region, such as inert-cation concentration amplification and electric-field intensification. The current-voltage correlation data of the electrochemical cell, obtained from compilation of these simulations, does not approach a limit as the Debye thickness vanishes. Resolution of these puzzles reveals a transformation of the asymptotic structure of the cathodic Debye layer. This reflects the emergence of an internal boundary layer, adjacent to the cathode, wherein field and concentration scaling differs from those of the Gouy-Chapman theory. The two-scale feature of the cathodic Debye layer is manifested through a logarithmic voltage scaling with Debye thickness. Accounting for this scaling, the

  18. Numerical methods to solve the two-dimensional heat conduction equation

    International Nuclear Information System (INIS)

    Santos, R.S. dos.

    1981-09-01

    A class of numerical methods, called 'Hopscotch Algorithms', was used to solve the heat conduction equation in cylindrical geometry. Using a time dependent heat source, the temperature versus time behaviour of cylindric rod was analysed. Numerical simulation was used to study the stability and the convergence of each different method. Another test had the temperature specified on the outer surface as boundary condition. The various Hopscotch methods analysed exhibit differing degrees of accuracy, few of them being so accurate as the ADE method, but requiring more computational operations than the later, were observed. Finally, compared with the so called ODD-EVEN method, two other Hopscotch methods, are more time consuming. (Author) [pt

  19. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Nichele, F; Suominen, Henri Juhani

    2016-01-01

    topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al......, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e(2)/h...

  20. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

    CERN Document Server

    Flanagan, K T; Ruiz, R F Garcia; Budincevic, I; Procter, T J; Fedosseev, V N; Lynch, K M; Cocolios, T E; Marsh, B A; Neyens, G; Strashnov, I; Stroke, H H; Rossel, R E; Heylen, H; Billowes, J; Rothe, S; Bissell, M L; Wendt, K D A; de Groote, R P; De Schepper, S

    2013-01-01

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1\\% was measured for Fr-202. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr-205, with a departure observed in Fr-203 (N = 116).

  1. Power suppressed operators and gauge invariance in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.

    2003-01-01

    The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory (SCET) is discussed. Using a field redefinition we show that it is possible to make any power suppressed ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipulations avoid gauge fixing. The Lagrangians to O(λ 2 ) are given in terms of these new fields. We then give a simple procedure for constructing power suppressed soft-collinear operators in SCET II by using an intermediate theory SCET I

  2. Negative differential conductance in two-dimensional C-functionalized boronitrene

    KAUST Repository

    Obodo, J T; Obodo, K O; Schwingenschlö gl, Udo

    2015-01-01

    It recently has been demonstrated that the large band gap of boronitrene can be significantly reduced by C functionalization. We show that specific defect configurations even can result in metallicity, raising interest in the material for electronic applications. We thus study the transport properties of C-functionalized boronitrene using the non-equilibrium Green's function formalism. We investigate various zigzag and armchair defect configurations, spanning wide band gap semiconducting to metallic states. Unusual I–V characteristics are found and explained in terms of the energy and bias-dependent transmission coefficient and wavefunction. In particular, we demonstrate negative differential conductance with high peak-to-valley ratios, depending on the details of the substitutional doping, and identify the finite bias effects that are responsible for this behavior.

  3. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    Science.gov (United States)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  4. Negative differential conductance in two-dimensional C-functionalized boronitrene

    KAUST Repository

    Obodo, J T

    2015-09-10

    It recently has been demonstrated that the large band gap of boronitrene can be significantly reduced by C functionalization. We show that specific defect configurations even can result in metallicity, raising interest in the material for electronic applications. We thus study the transport properties of C-functionalized boronitrene using the non-equilibrium Green\\'s function formalism. We investigate various zigzag and armchair defect configurations, spanning wide band gap semiconducting to metallic states. Unusual I–V characteristics are found and explained in terms of the energy and bias-dependent transmission coefficient and wavefunction. In particular, we demonstrate negative differential conductance with high peak-to-valley ratios, depending on the details of the substitutional doping, and identify the finite bias effects that are responsible for this behavior.

  5. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-04-12

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). How baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (> 69 %, PET = 90 %), and good stability when subjected to cyclic loading (> 1000 cycles, better than indium tin oxide film) during processing. Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5×5 sensing pixels).

  6. Transverse velocity modulator and generator schemes based on non-collinear radiation and electron beams

    CERN Document Server

    Varfolomeev, A A

    2000-01-01

    New non-collinear schemes are suggested for transverse velocity modulation of electron beams and for the generation of coherent spontaneous radiation by these transversely modulated beams. It is shown that due to the non-collinearity some orders of magnitude enhancement can be achieved for the coherent spontaneous radiation (CSR) power at both the fundamental and harmonic frequencies.

  7. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

    Directory of Open Access Journals (Sweden)

    Robert S Stephenson

    Full Text Available The general anatomy of the cardiac conduction system (CCS has been known for 100 years, but its complex and irregular three-dimensional (3D geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I(2KI, we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.

  8. On the Performance of the Measure for Diagnosing Multiple High Leverage Collinearity-Reducing Observations

    Directory of Open Access Journals (Sweden)

    Arezoo Bagheri

    2012-01-01

    Full Text Available There is strong evidence indicating that the existing measures which are designed to detect a single high leverage collinearity-reducing observation are not effective in the presence of multiple high leverage collinearity-reducing observations. In this paper, we propose a cutoff point for a newly developed high leverage collinearity-influential measure and two existing measures ( and to identify high leverage collinearity-reducing observations, the high leverage points which hide multicollinearity in a data set. It is important to detect these observations as they are responsible for the misleading inferences about the fitting of the regression model. The merit of our proposed measure and cutoff point in detecting high leverage collinearity-reducing observations is investigated by using engineering data and Monte Carlo simulations.

  9. Low temperature resistivity studies of SmB6: Observation of two-dimensional variable-range hopping conductivity

    Science.gov (United States)

    Batkova, Marianna; Batko, Ivan; Gabáni, Slavomír; Gažo, Emil; Konovalova, Elena; Filippov, Vladimir

    2018-05-01

    We studied electrical resistance of a single-crystalline SmB6 sample with a focus on the region of the "low-temperature resistivity plateau". Our observations did not show any true saturation of the electrical resistance at temperatures below 3 K down to 70 mK. According to our findings, temperature dependence of the electrical conduction in a certain temperature interval above 70 mK can be decomposed into a temperature-independent term and a temperature-activated term that can be described by variable-range hopping formula for two-dimensional systems, exp [ -(T0 / T) 1 / 3 ]. Thus, our results indicate importance of hopping type of electrical transport in the near-surface region of SmB6.

  10. Dimensional Reduction and Hadronic Processes

    International Nuclear Information System (INIS)

    Signer, Adrian; Stoeckinger, Dominik

    2008-01-01

    We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.

  11. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  12. Collinear resonance ionization spectroscopy of exotic francium and radium isotopes

    CERN Document Server

    AUTHOR|(CDS)2094150

    Two experimental campaigns were performed at the Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE radioactive-beam facility. The spectroscopic quadrupole moment of $^{203}$Fr was measured. Its magnitude with respect to the other even-$N$ francium isotopes below $N = 126$ suggests an onset of static deformation. However, calculations of the static and total deformation parameters reveal that it cannot be considered as purely statically deformed. The neutron-rich radium isotopes were investigated. The spectroscopic quadrupole moment of $^{231}$Ra was measured and the continuation of increasing quadrupole deformation with neutron number in neutron-rich radium isotopes was further established. Measurements of the changes in mean-square charge radii of $^{231,233}$Ra allowed the odd-even staggering parameter to be calculated for $^{230-232}$Ra. A normal odd-even staggering which increases in magnitude with neutron number was observed in these isotopes.

  13. A preliminary design of the collinear dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J.G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I. [ANL, Argonne, IL 60439 (United States); Jing, C.; Kanareykin, A.; Li, Y. [Euclid Techlabs LLC, Solon, OH 44139 (United States); Gao, Q. [Tsinghua University, Beijing (China); Shchegolkov, D.Y.; Simakov, E.I. [LANL, Los Alamos, NM 87545 (United States)

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  14. Ultrafast collinear scattering and carrier multiplication in graphene.

    Science.gov (United States)

    Brida, D; Tomadin, A; Manzoni, C; Kim, Y J; Lombardo, A; Milana, S; Nair, R R; Novoselov, K S; Ferrari, A C; Cerullo, G; Polini, M

    2013-01-01

    Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.

  15. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  16. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia

    2002-01-01

    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  17. Spatial resolution and maximum compensation factor of two-dimensional selective excitation pulses for MRI of objects containing conductive implants

    Directory of Open Access Journals (Sweden)

    Taeseong Woo

    2017-05-01

    Full Text Available A quantitative diagnosis using magnetic resonance imaging (MRI can be disturbed by radiofrequency (RF field inhomogeneity induced by the conductive implants. This inhomogeneity causes a local decrease of the signal intensity around the conductor, resulting in a deterioration of the accurate quantification. In a previous study, we developed an MRI imaging method using a two-dimensional selective excitation pulse (2D pulse to mitigate signal inhomogeneity induced by metallic implants. In this paper, the effect of 2D pulse was evaluated quantitatively by numerical simulation and MRI experiments. We introduced two factors for evaluation, spatial resolution and maximum compensation factor. Numerical simulations were performed with two groups. One group was composed of four models with different signal loss width, to evaluate the spatial resolution of the 2D pulse. The other group is also composed of four models with different amounts of signal loss for evaluating maximum compensation factor. In MRI experiments, we prepared phantoms containing conductors, which have different electrical conductivities related with the amounts of signal intensity decrease. The recovery of signal intensity was observed by 2D pulses, in both numerical simulations and experiments.

  18. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  19. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    Science.gov (United States)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  20. Investigation of non-collinear spin states with scanning tunneling microscopy.

    Science.gov (United States)

    Wulfhekel, W; Gao, C L

    2010-03-05

    Most ferromagnetic and antiferromagnetic substances show a simple collinear arrangement of the local spins. Under certain circumstances, however, the spin configuration is non-collinear. Scanning tunneling microscopy with its potential atomic resolution is an ideal tool for investigating these complex spin structures. Non-collinearity can be due to topological frustration of the exchange interaction, due to relativistic spin-orbit coupling or can be found in excited states. Examples for all three cases are given, illustrating the capabilities of spin-polarized scanning tunneling microscopy.

  1. Regional two-dimensional magnetotelluric profile in West Bohemia/Vogtland reveals deep conductive channel into the earthquake swarm region

    Science.gov (United States)

    Muñoz, Gerard; Weckmann, Ute; Pek, Josef; Kováčiková, Světlana; Klanica, Radek

    2018-03-01

    The West Bohemia/Vogtland region, characterized by the intersection of the Eger (Ohře) Rift and the Mariánské Lázně fault, is a geodynamically active area exhibiting repeated occurrence of earthquake swarms, massive CO2 emanations and mid Pleistocene volcanism. The Eger Rift is the only known intra-continental region in Europe where such deep seated, active lithospheric processes currently take place. We present an image of electrical resistivity obtained from two-dimensional inversion of magnetotelluric (MT) data acquired along a regional profile crossing the Eger Rift. At the near surface, the Cheb basin and the aquifer feeding the mofette fields of Bublák and Hartoušov have been imaged as part of a region of very low resistivity. The most striking resistivity feature, however, is a deep reaching conductive channel which extends from the surface into the lower crust spatially correlated with the hypocentres of the seismic events of the Nový Kostel Focal Zone. This channel has been interpreted as imaging a pathway from a possible mid-crustal fluid reservoir to the surface. The resistivity model reinforces the relation between the fluid circulation along deep-reaching faults and the generation of the earthquakes. Additionally, a further conductive channel has been revealed to the south of the profile. This other feature could be associated to fossil hydrothermal alteration related to Mýtina and/or Neualbenreuth Maar structures or alternatively could be the signature of a structure associated to the suture between the Saxo-Thuringian and Teplá-Barrandian zones, whose surface expression is located only a few kilometres away.

  2. ERATO - a computer program for the calculation of induced eddy-currents in three-dimensional conductive structures

    International Nuclear Information System (INIS)

    Benner, J.

    1985-10-01

    The computer code ERATO is used for the calculation of eddy-currents in three-dimensional conductive structures and their secondary magnetic field. ERATO is a revised version of the code FEDIFF, developed at IPP Garching. For the calculation the Finite-Element-Network (FEN) method is used, where the structure is simulated by an equivalent electric network. In the ERATO-code, the calculation of the finite-element discretization, the eddy-current analysis, and the final evaluation of the results are done in separate programs. So the eddy-current analysis as the central step is perfectly independent of a special geometry. For the finite-element discretization there are two so called preprocessors, which treat a torus-segment and a rectangular, flat plate. For the final evaluation postprocessors are used, by which the current-distributions can be printed and plotted. In the report, the theoretical foundation of the FEN-Method is discussed, the structure and the application of the programs (preprocessors, analysis-program, postprocessors, supporting programs) are shown, and two examples for calculations are presented. (orig.) [de

  3. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode.

    Science.gov (United States)

    Tao, Yifei; Liu, Qiongzhen; Chen, Jiahui; Wang, Bo; Wang, Yuedan; Liu, Ke; Li, Mufang; Jiang, Haiqing; Lu, Zhentan; Wang, Dong

    2016-07-19

    Microbial fuel cells (MFCs) encompass complex bioelectrocatalytic reactions that converting chemical energy of organic compounds to electrical energy. Improving the anode configuration is thought to be a critical step for enhancing MFCs performance. In present study, a hierarchically structured textile polypyrrole/poly(vinyl alcohol-co-polyethylene) nanofibers/poly(ethylene terephthalate) (referred to PPy/NFs/PET) is shown to be excellent anode for MFCs. This hierarchical PPy/NFs/PET anode affords an open porous and three-dimensional interconnecting conductive scaffold with larger surface roughness, facilitating microbial colonization and electron transfer from exoelectrogens to the anode. The mediator-less MFC equipped with PPy/NFs/PET anode achieves a remarkable maximum power density of 2420 mW m(-2) with Escherichia coli as the microbial catalyst at the current density of 5500 mA m(-2), which is approximately 17 times higher compared to a reference anode PPy/PET (144 mW m(-2)). Considering the low cost, low weight, facile fabrication, and good winding, this PPy/NFs/PET textile anode promises a great potential for high-performance and cost-effective MFCs in a large scale.

  4. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Harilal, Midhun; Vidyadharan, Baiju; Misnon, Izan Izwan; Anilkumar, Gopinathan M; Lowe, Adrian; Ismail, Jamil; Yusoff, Mashitah M; Jose, Rajan

    2017-03-29

    A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co 3 O 4 ), is developed by electrospinning technique. The CuO-Co 3 O 4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co 3 O 4 , and CuO-Co 3 O 4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg -1 at a power density of 14 kW kg -1 is achieved in CuO-Co 3 O 4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.

  5. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  6. Observation of spatial splitting of a polarized neutron beam as it is refracted on the interface of two magnetically non-collinear media

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Fredrikze, H.; Rekveldt, M.Th.; Schreiber, J.

    1998-01-01

    In the conducted experimental investigation of neutron refraction on the interface of two magnetically non-collinear media spatial splitting of a polarized neutron beam was observed. The beam of neutrons initially in the spin state '+' or '-' splits into two beams of neutrons in the states '+' and '-'. All four split beams have different spatial positions. The reported phenomenon has been observed for the first time

  7. Collinear resonant ionization laser spectroscopy of rare francium isotopes

    CERN Multimedia

    Neyens, G; Flanagan, K; Rajabali, M M; Le blanc, F M; Ware, T; Procter, T J

    2008-01-01

    We propose a programme of collinear resonant ionization spectroscopy (CRIS) of the francium isotopes up to and including $^{201}$Fr and $^{218,219}$Fr. This work aims at answering questions on the ordering of quantum states, and effect of the ($\\pi s_{1/2}^{-1}$)1/2$^{+}$ intruder state, which is currently believed to be the ground state of $^{199}$Fr. This work will also study the edge of the region of reflection asymmetry through measurement of the moments and radii of $^{218,219}$Fr. This proposal forms the first part of a series of experiments that will study nuclei in this region of the nuclear chart. Based on the success of this initial proposal it is the intention of the collaboration to perform high resolution measurements on the isotopes of radium and radon that surround $^{201}$Fr and $^{218}$Fr and thus providing a comprehensive description of the ground state properties of this region of the nuclear chart. Recent in-source spectroscopy measurements of lead, bismuth and polonium have demonstrated a...

  8. Magnon detection using a ferroic collinear multilayer spin valve.

    Science.gov (United States)

    Cramer, Joel; Fuhrmann, Felix; Ritzmann, Ulrike; Gall, Vanessa; Niizeki, Tomohiko; Ramos, Rafael; Qiu, Zhiyong; Hou, Dazhi; Kikkawa, Takashi; Sinova, Jairo; Nowak, Ulrich; Saitoh, Eiji; Kläui, Mathias

    2018-03-14

    Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y 3 Fe 5 O 12 |CoO|Co, we find that the detection amplitude of spin currents emitted by ferromagnetic resonance spin pumping depends on the relative alignment of the Y 3 Fe 5 O 12 and Co magnetization. This yields a spin valve-like behavior with an amplitude change of 120% in our systems. We demonstrate the reliability of the effect and identify its origin by both temperature-dependent and power-dependent measurements.

  9. Magnon spintronics in non-collinear magnetic insulator/metal heterostructures

    NARCIS (Netherlands)

    Aqeel, Aisha

    2017-01-01

    The research presented in this thesis focuses on the growth of complex magnetic materials with unique magnetic properties and experimental investigation of fundamental spintronics phenomena in these magnetic insulators with magnetic orders varying from collinear to noncollinear chiral spin

  10. Massive Boson Production at Small qT in Soft-Collinear Effective Theory

    Science.gov (United States)

    Becher, Thomas; Neubert, Matthias; Wilhelm, Daniel

    2013-01-01

    We study the differential cross sections for electroweak gauge-boson and Higgs production at small and very small transverse-momentum qT. Large logarithms are resummed using soft-collinear effective theory. The collinear anomaly generates a non-perturbative scale q*, which protects the processes from receiving large long-distance hadronic contributions. A numerical comparison of our predictions with data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC is given.

  11. The proton-induced collinear deuteron breakup at 7.5 MeV

    International Nuclear Information System (INIS)

    Lekkas, P.

    1985-01-01

    The aim of the present thesis was to study the proton-induced deuteron breakup at an incident energy of 7.5 MeV in collinear geometry. In kinematically complete experiments in which two of the three particles of the exit channel are detected in coincidence we determined in equal kinematics the breakup cross section of the three-particle reactions 2 H(p,pp)n and 2 H(p,np)p. In both cases we observed in the region of the collinearity point an - indeed only weak - increasement of the cross section. The collinearity occurs in the neighbourhood of the QFS. Faddeev calculations with two different nucleon-nucleon interactions describe in the collinearity point the shape of the spectra well. Also the absolute quantity of the measured data in this point is well confirmed for the reaction 2 H(p,pp)n, less well however for the reaction 2 H(p,np)p. If in the theory three-nucleon forces are implemented their influence in the collinearity point is proved to be quantitatively weak. The collinear region is from the results of the present thesis especially because of the closely adjacent QFS little significant for three-body forces. (orig./HSI) [de

  12. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe2 (bda = 1,4-butanediamine)

    International Nuclear Information System (INIS)

    Du, Ke-Zhao; Hu, Wan-Biao; Hu, Bing; Guan, Xiang-Feng; Huang, Xiao-Ying

    2011-01-01

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe 2 , which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: → The title compound is the first example of organic-containing one-dimensional indium selenide. → The anomalous dielectric peak is attributed to water molecules in crystal boundary. → The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe 2 (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe 2 ] n n- with monoprotonated [bdaH] + as charge compensating cation. The organic [bdaH] + cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 o C, which could be attributed to water molecules in the crystal boundary.

  13. Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures.

    Science.gov (United States)

    Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2017-12-26

    The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.

  14. Development of a collinear laser spectrometer facility at VECC: First test result

    Science.gov (United States)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  15. A self-consistent transport model for molecular conduction based on extended Huckel theory with full three-dimensional electrostatics

    DEFF Research Database (Denmark)

    Zahid, F.; Paulsson, Magnus; Polizzi, E.

    2005-01-01

    overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode...

  16. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  17. Does Anxiety Modify the Risk for, or Severity of, Conduct Problems Among Children With Co-Occurring ADHD: Categorical and Dimensional and Analyses.

    Science.gov (United States)

    Danforth, Jeffrey S; Doerfler, Leonard A; Connor, Daniel F

    2017-08-01

    The goal was to examine whether anxiety modifies the risk for, or severity of, conduct problems in children with ADHD. Assessment included both categorical and dimensional measures of ADHD, anxiety, and conduct problems. Analyses compared conduct problems between children with ADHD features alone versus children with co-occurring ADHD and anxiety features. When assessed by dimensional rating scales, results showed that compared with children with ADHD alone, those children with ADHD co-occurring with anxiety are at risk for more intense conduct problems. When assessment included a Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) diagnosis via the Schedule for Affective Disorders and Schizophrenia for School Age Children-Epidemiologic Version (K-SADS), results showed that compared with children with ADHD alone, those children with ADHD co-occurring with anxiety neither had more intense conduct problems nor were they more likely to be diagnosed with oppositional defiant disorder or conduct disorder. Different methodological measures of ADHD, anxiety, and conduct problem features influenced the outcome of the analyses.

  18. Subleading terms in the collinear limit of Yang–Mills amplitudes

    Directory of Open Access Journals (Sweden)

    Stephan Stieberger

    2015-11-01

    Full Text Available For two massless particles i and j, the collinear limit is a special kinematic configuration in which the particles propagate with parallel four-momentum vectors, with the total momentum P distributed as pi=xP and pj=(1−xP, so that sij≡(pi+pj2=P2=0. In Yang–Mills theory, if i and j are among N gauge bosons participating in a scattering process, it is well known that the partial amplitudes associated to the (single trace group factors with adjacent i and j are singular in the collinear limit and factorize at the leading order into (N−1-particle amplitudes times the universal, x-dependent Altarelli–Parisi factors. We give a precise definition of the collinear limit and show that at the tree level, the subleading, non-singular terms are related to the amplitudes with a single graviton inserted instead of two collinear gauge bosons. To that end, we argue that in one-graviton Einstein–Yang–Mills amplitudes, the graviton with momentum P can be replaced by a pair of collinear gauge bosons carrying arbitrary momentum fractions xP and (1−xP.

  19. Factorization of heavy-to-light form factors in soft-collinear effective theory

    CERN Document Server

    Beneke, Martin; Feldmann, Th.

    2004-01-01

    Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections. In this paper we extend our previous investigation of heavy-to-light currents in soft-collinear effective theory to final states with invariant mass Lambda^2 as is appropriate to exclusive B meson decays. The effective theory contains soft modes and two collinear modes with virtualities of order m_b*Lambda (`hard-collinear') and Lambda^2. Integrating out the hard-collinear modes results in the hard spectator-scattering contributions to exclusive B decays. We discuss the representation of heavy-to-light currents in the effective theory after integrating out the hard-collinear scale, and show that the previously conjectured factorization formula is valid to all orders in perturbation theory. The naive factorization of matrix elements in the effective theory ...

  20. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe{sub 2} (bda = 1,4-butanediamine)

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-Zhao; Hu, Wan-Biao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Hu, Bing; Guan, Xiang-Feng [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Xiao-Ying, E-mail: xyhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2011-11-15

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe{sub 2}, which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: {yields} The title compound is the first example of organic-containing one-dimensional indium selenide. {yields} The anomalous dielectric peak is attributed to water molecules in crystal boundary. {yields} The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe{sub 2} (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe{sub 2}]{sub n}{sup n-} with monoprotonated [bdaH]{sup +} as charge compensating cation. The organic [bdaH]{sup +} cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 {sup o}C, which could be attributed to water molecules in the crystal boundary.

  1. Multiple collinear magnetic arrangements in thin Mn films supported on Fe(001). Antiferromagnetic versus ferromagnetic behavior

    International Nuclear Information System (INIS)

    Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.

    2005-01-01

    We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported

  2. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  3. Deep inelastic scattering near the endpoint in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2007-01-01

    We apply the soft-collinear effective theory to deep inelastic scattering near the endpoint region. The forward scattering amplitude and the structure functions are shown to factorize as a convolution of the Wilson coefficients, the jet functions, and the parton distribution functions. The behavior of the parton distribution functions near the endpoint region is considered. It turns out that it evolves with the Altarelli-Parisi kernel even in the endpoint region, and the parton distribution function can be factorized further into a collinear part and the soft Wilson line. The factorized form for the structure functions is obtained by the two-step matching, and the radiative corrections or the evolution for each factorized part can be computed in perturbation theory. We present the radiative corrections of each factorized part to leading order in α s , including the zero-bin subtraction for the collinear part

  4. Electroweak radiative corrections to Higgs production via vector boson fusion using soft-collinear effective theory

    International Nuclear Information System (INIS)

    Fuhrer, Andreas; Manohar, Aneesh V.; Waalewijn, Wouter J.

    2011-01-01

    Soft-collinear effective theory (SCET) is applied to compute electroweak radiative corrections to Higgs production via gauge boson fusion, qq→qqH. There are several novel features which make this process an interesting application of SCET: The amplitude is proportional to the Higgs vacuum expectation value, and so is not a gauge singlet amplitude. Standard resummation methods require a gauge singlet operator and do not apply here. The SCET analysis requires operators with both collinear and soft external fields, with the Higgs vacuum expectation value being described by an external soft φ field. There is a scalar soft-collinear transition operator in the SCET Lagrangian which contributes to the scattering amplitude, and is derived here.

  5. All-order results for infrared and collinear singularities in massless gauge theories

    CERN Document Server

    Dixon, Lance J; Magnea, Lorenzo

    2010-01-01

    We review recent results concerning the all-order structure of infrared and collinear divergences in massless gauge theory amplitudes. While the exponentiation of these divergences for nonabelian gauge theories has been understood for a long time, in the past couple of years we have begun to unravel the all-order structure of the anomalous dimensions that build up the perturbative exponent. In the large-Nc limit, all infrared and collinear divergences are determined by just three functions; one of them, the cusp anomalous dimension, plays a key role also for non-planar contributions. Indeed, all infrared and collinear divergences of massless gauge theory amplitudes with any number of hard partons may be captured by a surprisingly simple expression constructed as a sum over color dipoles. Potential corrections to this expression, correlating four or more hard partons at three loops or beyond, are tightly constrained and are currently under study.

  6. Optical Conductivity in a Two-Dimensional Extended Hubbard Model for an Organic Dirac Electron System α-(BEDT-TTF2I3

    Directory of Open Access Journals (Sweden)

    Daigo Ohki

    2018-03-01

    Full Text Available The optical conductivity in the charge order phase is calculated in the two-dimensional extended Hubbard model describing an organic Dirac electron system α -(BEDT-TTF 2 I 3 using the mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.

  7. Anti-resonance scattering at defect levels in the quantum conductance of a one-dimensional system

    Science.gov (United States)

    Sun, Z. Z.; Wang, Y. P.; Wang, X. R.

    2002-03-01

    For the ballistic quantum transport, the conductance of one channel is quantized to a value of 2e^2/h described by the Landauer formula. In the presence of defects, electrons will be scattered by these defects. Thus the conductance will deviate from the values of the quantized conductance. We show that an anti-resonance scattering can occur when an extra defect level is introduced into a conduction band. At the anti-resonance scattering, exact one quantum conductance is destroyed. The conductance takes a non-zero value when the Fermi energy is away from the anti-resonance scattering. The result is consistent with recent numerical calculations given by H. J. Choi et al. (Phys. Rev. Lett. 84, 2917(2000)) and P. L. McEuen et al. (Phys. Rev. Lett. 83, 5098(1999)).

  8. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers.

    Science.gov (United States)

    Shamim, Saquib; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, Arindam

    2017-05-04

    We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 18 m -2 ) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.

  9. The interaction of two collinear cracks in a rectangular superconductor slab under an electromagnetic force

    International Nuclear Information System (INIS)

    Gao Zhiwen; Zhou Youhe; Lee, Kang Yong

    2010-01-01

    The interaction of two collinear cracks is obtained for a type-II superconducting under electromagnetic force. Fracture analysis is performed by means of finite element method and the magnetic behavior of superconductor is described by the critical-state Bean model. The stress intensity factors at the crack tips can be obtained and discussed for decreasing field after zero-field cooling. It is revealed that the stress intensity factor decreases as applied field increases. The crack-tip stress intensity factors decrease when the distance between the two collinear cracks increases and the superconductors with smaller crack has more remarkable shielding effect than those with larger cracks.

  10. Regional two-dimensional magnetotelluric profile in West Bohemia/Vogtland reveals deep conductive channel into the earthquake swarm region

    Czech Academy of Sciences Publication Activity Database

    Muňoz, G.; Weckmann, U.; Pek, Josef; Kováčiková, Světlana; Klanica, Radek

    2018-01-01

    Roč. 727, March (2018), s. 1-11 Institutional support: RVO:67985530 Keywords : magnetotellurics * West Bohemia * Fogtland * earthquake swarm * conductive channel * fluids Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology

  11. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    Science.gov (United States)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  12. Numerical studies of heat transfer by simultaneous radiative-conduction and radiative-convection in a two dimensional semi-transparent medium

    International Nuclear Information System (INIS)

    Draoui, Abdeslam

    1989-01-01

    The works we present here are on numerical approaches of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium. The first part deals with a review of equations of radiative transfer and introduces three numerical methods (Pl, P3, Hottel's zones) which enable one to solve this problem in a two-dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve this problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the Pl approximation is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem. (author) [fr

  13. Prediction equations of forced oscillation technique: the insidious role of collinearity.

    Science.gov (United States)

    Narchi, Hassib; AlBlooshi, Afaf

    2018-03-27

    Many studies have reported reference data for forced oscillation technique (FOT) in healthy children. The prediction equation of FOT parameters were derived from a multivariable regression model examining the effect of age, gender, weight and height on each parameter. As many of these variables are likely to be correlated, collinearity might have affected the accuracy of the model, potentially resulting in misleading, erroneous or difficult to interpret conclusions.The aim of this work was: To review all FOT publications in children since 2005 to analyze whether collinearity was considered in the construction of the published prediction equations. Then to compare these prediction equations with our own study. And to analyse, in our study, how collinearity between the explanatory variables might affect the predicted equations if it was not considered in the model. The results showed that none of the ten reviewed studies had stated whether collinearity was checked for. Half of the reports had also included in their equations variables which are physiologically correlated, such as age, weight and height. The predicted resistance varied by up to 28% amongst these studies. And in our study, multicollinearity was identified between the explanatory variables initially considered for the regression model (age, weight and height). Ignoring it would have resulted in inaccuracies in the coefficients of the equation, their signs (positive or negative), their 95% confidence intervals, their significance level and the model goodness of fit. In Conclusion with inaccurately constructed and improperly reported models, understanding the results and reproducing the models for future research might be compromised.

  14. Collinear Latent Variables in Multilevel Confirmatory Factor Analysis : A Comparison of Maximum Likelihood and Bayesian Estimation

    NARCIS (Netherlands)

    Can, Seda; van de Schoot, Rens|info:eu-repo/dai/nl/304833207; Hox, Joop|info:eu-repo/dai/nl/073351431

    2015-01-01

    Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the

  15. Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian

    2014-01-01

    for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development...

  16. Collinear laser spectroscopy on In isotopes from heavy ion fusion reactions

    International Nuclear Information System (INIS)

    Ulm, G.

    1984-07-01

    Indium isotopes 107-111 were produced by 16 O-fusion reactions and investigated in a collinear laser geometry. The hyperfine structure and isotopic shifts are measured and the deduced magnetic dipole moments are in agreement with shell model calculations. The nuclear charge radii are determined from the isotopic shifts. (WL)

  17. Cancellation of infrared and collinear singularities in relativistic thermal field theories. Pt. 2

    International Nuclear Information System (INIS)

    Le Bellac, M.; Reynaud, P.

    1992-01-01

    We study the infrared and collinear divergences of a renormalizable scalar field theory at finite temperature. We give the final results of an investigation undertaken in a previous work by showing the complete cancellation of all divergences at two-loop order in a physical process. This result makes the validity of the Kinoshita-Lee-Nauenberg theorem at finite temperature extremely plausible. (orig.)

  18. Coalescence model of two collinear cracks existing in steam generator tubes

    International Nuclear Information System (INIS)

    Moon, S.-I.; Chang, Y.-S.; Kim, Y.-J.; Park, Y.-W.; Song, M.-H.; Choi, Y.-H.; Lee, J.-H.

    2005-01-01

    The 40% of wall thickness criterion has been used as a plugging rule of steam generator tubes but it can be applicable just to a single-cracked tubes. In the previous studies preformed by the authors, a total of 10 local failure prediction models were introduced to estimate the coalescence load of two adjacent collinear through-wall cracks existing in thin plates, and the reaction force model and plastic zone contact model were selected as optimum models among them. The objective of this study is to verify the applicability of the proposed optimum local failure prediction models to the tubes with two collinear through-wall cracks. For this, a series of plastic collapse tests and finite element analyses were carried out using the tubes containing two collinear through-wall cracks. It has been shown that the proposed optimum failure models can predict the local failure behavior of two collinear through-wall cracks existing in tubes well. And a coalescence evaluation diagram was developed which can be used to determine whether the adjacent cracks detected by NED coalsece or not. (authors)

  19. Effects of Perturbations on the Location of Collinear Points In The ...

    African Journals Online (AJOL)

    In this paper, the effect of small perturbations in the coriolis and the centrifugal forces on the location of collinear points in the restricted three-body problem has been examined when both primaries are triaxial rigid bodies with one of the axes as the axis of symmetry and its equatorial plane coinciding with the plane of ...

  20. Frequency-dependent hopping conductivity in a static electric field in a random one-dimensional lattice

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1986-01-01

    The frequency-dependent electrical conductivity is studied in a nearest-neighbor-hopping linear lattice with disordered site energies and barrier heights in the presence of a uniform static electric field, allowing for detailed balance between random rates. Exact expressions are obtained for the conductivity for both high and low frequencies. The results reduce to those obtained by previous authors in the absence of site-energy disorder. However, the latter is found to alter the character of the frequency dependence of the conductivity significantly at low frequencies. In this case the conductivity is expanded as sigma(ω) = sigma 0 +isigma 1 ω-sigma 2 ω 2 -isigma 3 ω 3 +.... We find that sigma 1 is nonvanishing only if both site energies and barrier heights are disordered and that sigma 2 is positive when the fluctuations in site energies are small compared with the thermal energy but becomes negative in the opposite regime. The ac response is found to vanish [i.e., sigma(ω) = 0 for ωnot =0] in the absence of disorder in barrier heights

  1. Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mawrie, Alestin; Ghosh, Tarun Kanti [Department of Physics, Indian Institute of Technology-Kanpur, Kanpur 208 016 (India)

    2016-01-28

    We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strength of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.

  2. Large-time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2012-01-01

    Roč. 191, č. 2 (2012), s. 219-260 ISSN 0373-3114 R&D Projects: GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible * viscous * heat-conducting Subject RIV: BA - General Mathematics Impact factor: 0.680, year: 2012 http://www.springerlink.com/content/0gw2j0311w430012/

  3. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.

    Science.gov (United States)

    Tsai, Mei-Hui; Tseng, I-Hsiang; Chiang, Jen-Chi; Li, Jheng-Jia

    2014-06-11

    Coupling agent-functionalized boron nitride (f-BN) and glycidyl methacrylate-grafted graphene (g-TrG) are simultaneously blended with polyimide (PI) to fabricate a flexible, electrically insulating and thermally conductive PI composite film. The silk-like g-TrG successfully fills in the gap between PI and f-BN to complete the thermal conduction network. In addition, the strong interaction between surface functional groups on f-BN and g-TrG contributes to the effective phonon transfer in the PI matrix. The thermal conductivity (TC) of the PI/f-BN composite films containing additional 1 wt % of g-TrG is at least doubled to the value of PI/f-BN and as high as 16 times to that of the pure PI. The hybrid film PI/f-BN-50/g-TrG-1 exhibits excellent flexibility, sufficient insulating property, the highest TC of 2.11 W/mK, and ultralow coefficient of thermal expansion of 11 ppm/K, which are perfect conditions for future flexible substrate materials requiring efficient heat dissipation.

  4. On interaction of P-waves with one-dimensional photonic crystal consisting of weak conducting matter and transparent dielectric layers

    Science.gov (United States)

    Yushkanov, A. A.; Zverev, N. V.

    2018-03-01

    An influence of quantum and spatial dispersion properties of the non-degenerate electron plasma on the interaction of electromagnetic P-waves with one-dimensional photonic crystal consisting of conductor with low carrier electron density and transparent dielectric matter, is studied numerically. It is shown that at the frequencies of order of the plasma frequency and at small widths of the conducting and dielectric layers of the photonic crystal, optical coefficients in the quantum non-degenerate plasma approach differ from the coefficients in the classical electron gas approach. And also, at these frequencies one observes a temperature dependence of the optical coefficients.

  5. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    Science.gov (United States)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency

  6. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1965-12-01

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given

  7. Methods for the Determination of Currents and Fields in Steady Two-Dimensional MHD Flow With Tensor Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-12-15

    Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given.

  8. Developmental efforts of RF collinear load for 10 MeV, 6 kW travelling wave Linac

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Harish; Soni, R.K.; Dwivedi, Jishnu; Thakurta, A.C.; Wanmode, Y.D.; Pareek, Prashant; Senthil Kumar, S; Shinde, R.S.

    2015-01-01

    RRCAT is developing a 10 MeV, 6 kW Travelling Wave Electron Linac for radiation processing applications. The remnant RF power from the Linac structure is taken out by output RF coupler and absorbed by the waveguide load. RF collinear load is an improved technique for absorption of the remnant RF power. It replaces the output RF coupler, RF window and waveguide load leading to reduction in size of magnetic elements and less transverse beam instabilities. In addition, it uses the remnant RF power to increase the electron beam energy. The collinear load consists of a number of copper cavities coated with microwave absorbing material at inner surfaces and brazed to the Linac structure at the end. Development of the collinear load has been started at RRCAT and a prototype low power collinear load using Kanthal (FeCrAl alloy) coating has been developed. Further works are going on the development of high power collinear load using FeSiAl alloy. The paper describes the development of the Kanthal based prototype low power collinear load as well as the works for the development of FeSiAl alloy based high power collinear load. (author)

  9. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature.

    Science.gov (United States)

    Dong, Bo-Wen; Cramer, Joel; Ganzhorn, Kathrin; Yuan, H Y; Guo, Er-Jia; Goennenwein, Sebastian T B; Kläui, Mathias

    2018-01-24

    We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usual [Formula: see text] relation well established in the collinear magnet yttrium iron garnet, with [Formula: see text] the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.

  10. A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties

    Directory of Open Access Journals (Sweden)

    Jin-Dong Su

    2016-01-01

    Full Text Available An ultralight conducting polyaniline/SiC/polyacrylonitrile (PANI/SiC/PAN composite was fabricated by in situ polymerization of aniline monomer on the surface of fibers in SiC/PAN aerogel. The SiC/PAN aerogel was obtained by electrospinning, freeze-drying, and heat treatment. The ingredient, morphology, structure, and electrical properties of the aerogel before and after in situ polymerization were investigated by X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, scanning electron microscope (SEM, and voltage-current characteristic measurement. The thermostability of PANI/SiC/PAN composite was investigated by thermogravimetric analysis (TGA and electrical resistance measured at different temperatures. The density of the PANI/SiC/PAN composite was approximately 0.211 g cm−3, the porosity was 76.44%, and the conductivity was 0.013 S m−1. The pressure sensing properties were evaluated at room temperature. The electrical resistance of as-prepared sample decreased gradually with the increase of pressure. Furthermore, the pressure sensing process was reversible and the response time was short (about 1 s. This composite may have application in pressure sensor field.

  11. A Three-Dimensional Porous Conducting Polymer Composite with Ultralow Density and Highly Sensitive Pressure Sensing Properties

    International Nuclear Information System (INIS)

    Su, J. D.; Sun, J.L.; Chen, J.H.; Jia, X.Sh.; Li, J.T.; Yan, X.; Long, Y.Z.; Lou, T.; Yan, X.; Long, Y.Z.

    2016-01-01

    An ultra light conducting poly aniline/Si C/polyacrylonitrile (PANI/Si C/PAN) composite was fabricated by in situ polymerization of aniline monomer on the surface of fibers in Si C/PAN aerogel. The Si C/PAN aerogel was obtained by electro spinning, freeze-drying, and heat treatment. The ingredient, morphology, structure, and electrical properties of the aerogel before and after in situ polymerization were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and voltage-current characteristic measurement. The thermostability of PANI/Si C/PAN composite was investigated by thermogravimetric analysis (TGA) and electrical resistance measured at different temperatures. The density of the PANI/SiC/PAN composite was approximately 0.211gcm - 3, the porosity was 76.44%, and the conductivity was 0.013Sm - 1. The pressure sensing properties were evaluated at room temperature. The electrical resistance of as-prepared sample decreased gradually with the increase of pressure. Furthermore, the pressure sensing process was reversible and the response time was short (about 1s). This composite may have application in pressure sensor field

  12. Continuous Nondestructive Monitoring Method Using the Reconstructed Three-Dimensional Conductivity Images via GREIT for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sujin Ahn

    2014-01-01

    Full Text Available A continuous Nondestructive monitoring method is required to apply proper feedback controls during tissue regeneration. Conductivity is one of valuable information to assess the physiological function and structural formation of regenerated tissues or cultured cells. However, conductivity imaging methods suffered from inherited ill-posed characteristics in image reconstruction, unknown boundary geometry, uncertainty in electrode position, and systematic artifacts. In order to overcome the limitation of microscopic electrical impedance tomography (micro-EIT, we applied a 3D-specific container with a fixed boundary geometry and electrode configuration to maximize the performance of Graz consensus reconstruction algorithm for EIT (GREIT. The separation of driving and sensing electrodes allows us to simplify the hardware complexity and obtain higher measurement accuracy from a large number of small sensing electrodes. We investigated the applicability of the GREIT to 3D micro-EIT images via numerical simulations and large-scale phantom experiments. We could reconstruct multiple objects regardless of the location. The resolution was 5 mm3 with 30 dB SNR and the position error was less than 2.54 mm. This shows that the new micro-EIT system integrated with GREIT is robust with the intended resolution. With further refinement and scaling down to a microscale container, it may be a continuous nondestructive monitoring tool for tissue engineering applications.

  13. Time-lapse three-dimensional inversion of complex conductivity data using an active time constrained (ATC) approach

    Science.gov (United States)

    Karaoulis, M.; Revil, A.; Werkema, D.D.; Minsley, B.J.; Woodruff, W.F.; Kemna, A.

    2011-01-01

    Induced polarization (more precisely the magnitude and phase of impedance of the subsurface) is measured using a network of electrodes located at the ground surface or in boreholes. This method yields important information related to the distribution of permeability and contaminants in the shallow subsurface. We propose a new time-lapse 3-D modelling and inversion algorithm to image the evolution of complex conductivity over time. We discretize the subsurface using hexahedron cells. Each cell is assigned a complex resistivity or conductivity value. Using the finite-element approach, we model the in-phase and out-of-phase (quadrature) electrical potentials on the 3-D grid, which are then transformed into apparent complex resistivity. Inhomogeneous Dirichlet boundary conditions are used at the boundary of the domain. The calculation of the Jacobian matrix is based on the principles of reciprocity. The goal of time-lapse inversion is to determine the change in the complex resistivity of each cell of the spatial grid as a function of time. Each model along the time axis is called a 'reference space model'. This approach can be simplified into an inverse problem looking for the optimum of several reference space models using the approximation that the material properties vary linearly in time between two subsequent reference models. Regularizations in both space domain and time domain reduce inversion artefacts and improve the stability of the inversion problem. In addition, the use of the time-lapse equations allows the simultaneous inversion of data obtained at different times in just one inversion step (4-D inversion). The advantages of this new inversion algorithm are demonstrated on synthetic time-lapse data resulting from the simulation of a salt tracer test in a heterogeneous random material described by an anisotropic semi-variogram. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  14. Collinear and Regge behavior of 2{yields}4 MHV amplitude in N=4 super Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation)

    2011-04-15

    We investigate the collinear and Regge behavior of the 2{yields}4 MHV amplitude in N=4 super Yang-Mills theory in the BFKL approach. The expression for the remainder function in the collinear kinematics proposed by Alday, Gaiotto, Maldacena, Sever and Vieira is analytically continued to the Mandelstam region. The result of the continuation in the Regge kinematics shows an agreement with the BFKL approach up to to five-loop level. We present the Regge theory interpretation of the obtained results and discuss some issues related to a possible nonmultiplicative renormalization of the remainder function in the collinear limit. (orig.)

  15. Collinear Order in Frustrated Quantum Antiferromagnet on Square Lattice (CuBr)LaNb2O7

    Science.gov (United States)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro; Yasuda, Jun; Baba, Yoichi; Nishi, Masakazu; Hirota, Kazuma; Narumi, Yasuo; Hagiwara, Masayuki; Kindo, Koichi; Saito, Takashi; Ajiro, Yoshitami; Yoshimura, Kazuyoshi

    2006-11-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional S = 1/2 square-lattice system (CuBr)LaNb2O7, prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb2O7. (CuBr)LaNb2O7 exhibits a second-order magnetic transition at 32 K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb2O7, despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q = (π, 0, π) with a reduced moment of 0.6μB. Mixed ferromagnetic nearest-neighbor (J1) and antiferromagnetic second-nearest-neighbor (J2) interactions are of comparable strength (J1/kB = -35.6 K and J2/kB = 41.3 K), placing the system in a more frustrated region of the CAF phase than ever reported.

  16. Collinear order in frustrated quantum antiferromagnet on square lattice (CuBr)LaNb2O7

    International Nuclear Information System (INIS)

    Oba, Noriaki; Kageyama, Hiroshi; Kitano, Taro

    2006-01-01

    Magnetic susceptibility, heat capacity, high-field magnetization and neutron diffraction measurements have been performed on a two-dimensional s=1/2 square-lattice system (CuBr)LaNb 2 O 7 , prepared by a topotactic ion-exchange reaction of a nonmagnetic double-layered perovskite RbLaNb 2 O 7 . (CuBr)LaNb 2 O 7 exhibits a second-order magnetic transition at 32K, in marked contrast to a spin-singlet nature for its Cl-based counterpart (CuCl)LaNb 2 O 7 , despite nearly identical structural parameters. The magnetic structure is a novel collinear antiferromagnetic (CAF) ordering characterized by a modulation vector q=(π, 0, π) with a reduced moment of 0.6μ B . Mixed ferromagnetic nearest-neighbor (J 1 ) and antiferromagnetic second-nearest-neighbor (J 2 ) interactions are of comparable strength (J 1 /k B =-35.6K and J 2 /k B =41.3K), placing the system in a more frustrated region of the CAF phase than ever reported. (author)

  17. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes.

    Science.gov (United States)

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10-60Am(-2) and Cl(-) concentrations up to 600gm(-3). The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl2, of about 0.7gCl2m(-3) were measured; the maximum values were obtained at Re=10 and i=25Am(-2), with values strongly dependent on the concentration of Cl(-). The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully used to simulate the performances of the reactor in the single-stack configuration used for the experiments and in multi-stack configurations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential.

    Science.gov (United States)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  19. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential

    Science.gov (United States)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  20. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes

    International Nuclear Information System (INIS)

    Mascia, Michele; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-01-01

    Highlights: • Inactivation of M. aeruginosa was achieved by electrolysis with BDD anodes. • A fixed bed reactor with 3-D electrodes was tested in batch and continuous mode. • The kinetics of the process was determined from batch experiments. • A mathematical model of the process was implemented and validated. • The model was used to predict the system behaviour under different conditions. - Abstract: An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10–60 A m −2 and Cl − concentrations up to 600 g m −3 . The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl 2 , of about 0.7 g Cl 2 m −3 were measured; the maximum values were obtained at Re = 10 and i = 25 A m −2 , with values strongly dependent on the concentration of Cl − . The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the system; the model was successfully

  1. Electrochemical treatment of water containing Microcystis aeruginosa in a fixed bed reactor with three-dimensional conductive diamond anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mascia, Michele, E-mail: michele.mascia@unica.it; Monasterio, Sara; Vacca, Annalisa; Palmas, Simonetta

    2016-12-05

    Highlights: • Inactivation of M. aeruginosa was achieved by electrolysis with BDD anodes. • A fixed bed reactor with 3-D electrodes was tested in batch and continuous mode. • The kinetics of the process was determined from batch experiments. • A mathematical model of the process was implemented and validated. • The model was used to predict the system behaviour under different conditions. - Abstract: An electrochemical treatment was investigated to remove Microcystis aeruginosa from water. A fixed bed reactor in flow was tested, which was equipped with electrodes constituted by stacks of grids electrically connected in parallel, with the electric field parallel to the fluid flow. Conductive diamond were used as anodes, platinised Ti as cathode. Electrolyses were performed in continuous and in batch recirculated mode with flow rates corresponding to Re from 10 to 160, current densities in the range 10–60 A m{sup −2} and Cl{sup −} concentrations up to 600 g m{sup −3}. The absorbance of chlorophyll-a pigment and the concentration of products and by-products of electrolysis were measured. In continuous experiments without algae in the inlet stream, total oxidants concentrations as equivalent Cl{sub 2}, of about 0.7 g Cl{sub 2} m{sup −3} were measured; the maximum values were obtained at Re = 10 and i = 25 A m{sup −2}, with values strongly dependent on the concentration of Cl{sup −}. The highest algae inactivation was obtained under the operative conditions of maximum generation of oxidants; in the presence of microalgae the oxidants concentrations were generally below the detection limit. Results indicated that most of the bulk oxidants electrogenerated is constituted by active chlorine. The prevailing mechanism of M. aeruginosa inactivation is the disinfection by bulk oxidants. The experimental data were quantitatively interpreted through a simple plug flow model, in which the axial dispersion accounts for the non-ideal flow behaviour of the

  2. Collinear laser spectroscopy of manganese isotopes using optical pumping in ISCOOL

    CERN Multimedia

    Marsh, B A; Neyens, G; Flanagan, K; Rajabali, M M; Reponen, M; Campbell, P; Procter, T J

    Recently, optical pumping of ions has been achieved inside an ion beam cooler-buncher. By illuminating the central axis of the cooler with laser light, subsequent decay populates selected ionic metastable states. This population enhancement is retained as the ion beam is delivered to an experimental station. In the case of collinear laser spectroscopy, transitions can then be excited from a preferred metastable level, rather than the ground-state. This proposal seeks to establish and develop the technique for ISCOOL. As a test of efficiency, this will be applied to the study of $^{55-66}$Mn isotopes using collinear laser spectroscopy-expanding an earlier study where the benefit of the technique was demonstrated. This will provide nuclear spins, magnetic-dipole and electric-quadrupole moments and changes in mean-square charge radii across N = 40 shell closure candidate and into a region where an onset of deformation, and a new "island of inversion" is predicted.

  3. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  4. Renormalization of dijet operators at order 1 /Q 2 in soft-collinear effective theory

    Science.gov (United States)

    Goerke, Raymond; Inglis-Whalen, Matthew

    2018-05-01

    We make progress towards resummation of power-suppressed logarithms in dijet event shapes such as thrust, which have the potential to improve high-precision fits for the value of the strong coupling constant. Using a newly developed formalism for Soft-Collinear Effective Theory (SCET), we identify and compute the anomalous dimensions of all the operators that contribute to event shapes at order 1 /Q 2. These anomalous dimensions are necessary to resum power-suppressed logarithms in dijet event shape distributions, although an additional matching step and running of observable-dependent soft functions will be necessary to complete the resummation. In contrast to standard SCET, the new formalism does not make reference to modes or λ-scaling. Since the formalism does not distinguish between collinear and ultrasoft degrees of freedom at the matching scale, fewer subleading operators are required when compared to recent similar work. We demonstrate how the overlap subtraction prescription extends to these subleading operators.

  5. Magnetic response of magnetic molecules with non-collinear local d-tensors

    Directory of Open Access Journals (Sweden)

    J. Schnack

    2009-01-01

    Full Text Available Investigations of molecular magnets are driven both by prospective applications in future storage technology or quantum computing as well as by fundamental questions. Nowadays numerical simulation techniques and computer capabilities make it possible to investigate spin Hamiltonians with realistic arrangements of local anisotropy tensors. In this contribution I will discuss the magnetic response of a small spin system with special emphasis on non-collinear alignments of the local anisotropy axes.

  6. Shell structure and level migrations in zinc studied using collinear laser spectroscopy

    CERN Multimedia

    Tungate, G; De rydt, M A E; Flanagan, K; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Kowalska, M; Campbell, P; Neugart, R; Kreim, K D; Stroke, H H; Krieger, A R; Procter, T J

    We propose to perform collinear laser spectroscopy of zinc isotopes to measure the nuclear spin, magnetic dipole moment, electric quadrupole moment and mean-square charge radius. The yield database indicates that measurements of the isotopes $^{60-81}$Zn will be feasible. These measurements will cross the N = 50 shell closure and provide nuclear moments in a region where an inversion of ground-state spin has been identified in neighbouring chains.

  7. Separation of soft and collinear infrared limits of QCD squared matrix elements

    CERN Document Server

    Nagy, Zoltan; Trócsányi, Z L; Trocsanyi, Zoltan; Somogyi, Gabor; Trocsanyi, Zoltan

    2007-01-01

    We present a simple way of separating the overlap between the soft and collinear factorization formulae of QCD squared matrix elements. We check its validity explicitly for single and double unresolved emissions of tree-level processes. The new method makes possible the definition of helicity-dependent subtraction terms for regularizing the real contributions in computing radiative corrections to QCD jet cross sections. This implies application of Monte Carlo helicity summation in computing higher order corrections.

  8. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, A., E-mail: kriegea@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Geppert, Ch. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Catherall, R. [CERN, CH-1211 Geneve 23 (Switzerland); Hochschulz, F. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Kraemer, J.; Neugart, R. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Rosendahl, S. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Schipper, J.; Siesling, E. [CERN, CH-1211 Geneve 23 (Switzerland); Weinheimer, Ch. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Yordanov, D.T. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany)

    2011-03-11

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the high-voltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequency-comb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  9. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  10. Collinear facilitation and contour integration in autism: evidence for atypical visual integration.

    Science.gov (United States)

    Jachim, Stephen; Warren, Paul A; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger's Syndrome) using two psychophysical tasks thought to rely on integrative processing-collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.

  11. Collinear facilitation and contour integration in autism: evidence for atypical visual integration

    Directory of Open Access Journals (Sweden)

    Stephen eJachim

    2015-03-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger’s Syndrome using two psychophysical tasks thought to rely on integrative processing - collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i reduced collinear facilitation, despite equivalent performance without flankers and (ii less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.

  12. Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order

    Directory of Open Access Journals (Sweden)

    Ian Bancroft

    2015-06-01

    Full Text Available This data article includes SNP scoring across lines of the Brassica napus TNDH population based on Illumina sequencing of mRNA, expanded to 75 lines. The 21, 323 mapped markers defined 887 recombination bins, representing an updated genetic linkage map for the species. Based on this new map, 5 genome sequence scaffolds were split and the order and orientation of scaffolds updated to establish a new pseudomolecule specification. The order of unigenes and SNP array probes within these pseudomolecules was determined. Unigenes were assessed for sequence similarity to the A and C genomes. The 57, 246 that mapped to both enabled the collinearity of the A and C genomes to be illustrated graphically. Although the great majority was in collinear positions, some were not. Analyses of 60 such instances are presented, suggesting that the breakdown in collinearity was largely due to either the absence of the homoeologue on one genome (resulting in sequence match to a paralogue or multiple similar sequences being present. The mRNAseq datasets for the TNDH lines are available from the SRA repository (ERA283648; the remaining datasets are supplied with this article.

  13. Collinear masking effect in visual search is independent of perceptual salience.

    Science.gov (United States)

    Jingling, Li; Lu, Yi-Hui; Cheng, Miao; Tseng, Chia-Huei

    2017-07-01

    Searching for a target in a salient region should be easier than looking for one in a nonsalient region. However, we previously discovered a contradictory phenomenon in which a local target in a salient structure was more difficult to find than one in the background. The salient structure was constructed of orientation singletons aligned to each other to form a collinear structure. In the present study, we undertake to determine whether such a masking effect was a result of salience competition between a global structure and the local target. In the first 3 experiments, we increased the salience value of the local target with the hope of adding to its competitive advantage and eventually eliminating the masking effect; nevertheless, the masking effect persisted. In an additional 2 experiments, we reduced salience of the global collinear structure by altering the orientation of the background bars and the masking effect still emerged. Our salience manipulations were validated by a controlled condition in which the global structure was grouped noncollinearly. In this case, local target salience increase (e.g., onset) or global distractor salience reduction (e.g., randomized flanking orientations) effectively removed the facilitation effect of the noncollinear structure. Our data suggest that salience competition is unlikely to explain the collinear masking effect, and other mechanisms such as contour integration, border formation, or the crowding effect may be prospective candidates for further investigation.

  14. A simulation study on Bayesian Ridge regression models for several collinearity levels

    Science.gov (United States)

    Efendi, Achmad; Effrihan

    2017-12-01

    When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.

  15. Three-Dimensional Heterostructures of MoS 2 Nanosheets on Conducting MoO 2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

    KAUST Repository

    Nikam, Revannath Dnyandeo

    2015-10-05

    Molybdenum disulfide (MoS) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS in HER. In this work, we synthesized MoS nanosheets on three-dimensional (3D) conductive MoO via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO structure can create structural disorders in MoS nanosheets (referred to as 3D MoS/MoO), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S2 (in MoS) as well as the backbone conductive oxide layer (of MoO) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS nanosheets could protect the inner MoO core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS/MoO hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm, a low Tafel slope of 35.6 mV dec, and robust electrochemical durability.

  16. Development of label-free impedimetric platform based on new conductive polyaniline polymer and three-dimensional interdigitated electrode array for biosensor applications

    International Nuclear Information System (INIS)

    Voitechovič, E.; Bratov, A.; Abramova, N.; Razumienė, J.; Kirsanov, D.; Legin, A.; Lakshmi, D.; Piletsky, S.; Whitcombe, M.; Ivanova-Mitseva, P.K.

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: Novel label-free impedimetric platform based on a three-dimensional interdigitated electrode array (3D-IDEA) sensor and new conductive polymer as a transducer for oxidoreductases is introduced. This platform is cost-effective, simple to construct and miniaturize. Monomer of conductive polymer N-(N’,N’-diethyldithiocarbamoylethylamidoethyl) aniline (AnD) was deposited onto 3D-IDEA by chemical polymerisation. It was found that the polymer film resistance depends on the redox-potential of the solution. For the first time polyAnD was used as enzyme immobilisation matrix. Pyrroloquinolinequinone (PQQ) dependent alcohol and glucose dehydrogenases were immobilized on 3D-IDEA covered with polyAnD by two different methods. 3D-IDEA sensors with enzymes, which were immobilised by physisorption on polyAnD layer, showed specific response in the presence of 1 μM of the corresponding substrates. Obtained results revealed that PQQ dependent dehydrogenases can re-oxidize on polyAnD via direct electron transfer (DET) from enzyme active site to the polymer surface. This process can be monitored by methods of electrochemical impedance spectroscopy (EIS) and chronoamperometry. Presented study shows that EIS method gives a useful tool for research of re-oxidation process and interaction of electroactive enzymes with conducting materials giving information required to construct and develop analytical devices

  17. Three-Dimensional Heterostructures of MoS 2 Nanosheets on Conducting MoO 2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

    KAUST Repository

    Nikam, Revannath Dnyandeo; Lu, Ang-Yu; Sonawane, Poonam Ashok; Kumar, U. Rajesh; Yadav, Kanchan; Li, Lain-Jong; Chen, Yit Tsong

    2015-01-01

    Molybdenum disulfide (MoS) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS in HER. In this work, we synthesized MoS nanosheets on three-dimensional (3D) conductive MoO via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO structure can create structural disorders in MoS nanosheets (referred to as 3D MoS/MoO), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S2 (in MoS) as well as the backbone conductive oxide layer (of MoO) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS nanosheets could protect the inner MoO core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS/MoO hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm, a low Tafel slope of 35.6 mV dec, and robust electrochemical durability.

  18. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    Science.gov (United States)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  19. Quantum corrections to conductivity observed at intermediate magnetic fields in a high mobility GaAs/AlGaAs 2-dimensional electron gas

    International Nuclear Information System (INIS)

    Taboryski, R.; Veje, E.; Lindelof, P.E.

    1990-01-01

    Magnetoresistance with the field perpendicular to the 2-dimensional electron gas in a high mobility GaAs/AlGaAs heterostructure at low temperatures is studied. At the lowest magnetic field we observe the weak localization. At magnetic fields, where the product of the mobility and the magnetic field is of the order of unity, the quantum correction to conductivity due to the electron-electron interaction is as a source of magnetoresistance. A consistent analysis of experiments in this regime is for the first time performed. In addition to the well known electron-electron term with the expected temperature dependence, we find a new type of temperature independent quantum correction, which varies logarithmically with mobility. (orig.)

  20. Covalently Bonded Polyaniline and para-phenylenediamine Functionalized Graphene Oxide: How the Conductive Two-dimensional Nanostructure Influences the Electrochromic Behaviors of Polyaniline

    International Nuclear Information System (INIS)

    Xiong, Shanxin; Li, Zhufeng; Gong, Ming; Wang, Xiaoqin; Fu, Jialun; Shi, Yujing; Wu, Bohua; Chu, Jia

    2014-01-01

    Graphical abstract: - Abstract: Polyaniline (PANI) was attached onto the reduced graphene oxide (rGO) sheets through copolymerization of aniline with a para-phenylenediamine (PPD) functionalized graphene oxide (GO-PPD) using the poly(styrene sulfonate) (PSS) as the macromolecular dopant agent to produce a water-dispersible electrochromic material. The structures and the morphologies analysis confirm that the final electrochromic materials (rGO-PANI) are the mixture of PANI/PSS and the covalently bonded rGO-PANI (rGO-PANI hybrid). The rGO-PANI hybrid can be found to form a parallel arrangement to the substrate in the spin-coated film. This parallel arrangement of the layered two-dimensional nanostructure of rGO-PANI hybrid may narrow the ion transportation pathways of the exchanged ions, which will result in a high charge transfer resistance and slow switching speed. Meanwhile, with the conductive rGO added, the electrical conductivity of the electrochromic layer will be increased, which will benefit to low charge transfer resistance and high optical contrast. So the conductive two-dimensional nanostructure has a double-face influence on the electrochromic performances of PANI, which include a positive influence on the electrical conductivity and a negative influence on the ion diffusion. The overall influences depend on the loading amount of GO-PPD. With 4 wt.% GO-PPD feeding, the optical contrast was enhanced by 36% from 0.38 for PANI/PSS to 0.52 for rGO-PANI-3, while the coloration time was almost same as that of PANI/PSS and the bleaching time was decreased by ∼20% from 9.1s for PANI/PSS to 7.4s for rGO-PANI-3. The electrochemical tests showed that with the increasing of GO-PPD loading, the peak currents of cyclic voltammetry (CV) curves were increased, and the peak locations shifted to the positive potential for oxidation peak and the negative potential for reduction peak, respectively, which confirmed that the double-face influences of rGO-PANI on the

  1. Origin of n-type conductivity in two-dimensional InSe: In atoms from surface adsorption and van der Waals gap

    Science.gov (United States)

    Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun

    2018-04-01

    Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.

  2. Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Gvozdikov, V M; Taut, M

    2009-01-01

    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.

  3. All-electric spin modulator based on a two-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xianbo; Ai, Guoping [School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004 (China); Liu, Ying; Yang, Shengyuan A., E-mail: shengyuan-yang@sutd.edu.sg [Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372 (Singapore); Liu, Zhengfang [School of Science, East China Jiaotong University, Nanchang 330013 (China); Zhou, Guanghui, E-mail: ghzhou@hunnu.edu.cn [Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081 (China)

    2016-01-18

    We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarization rotator by replacing the drain electrode with a non-magnetic material.

  4. Two-dimensional simulations of the superconducting proximity in superconductor-semiconductor junctions

    Science.gov (United States)

    Chua, Victor; Vissers, Michael; Law, Stephanie A.; Vishveshwara, Smitha; Eckstein, James N.

    2015-03-01

    We simulate the consequences of the superconducting proximity effect on the DC current response of a semiconductor-superconductor proximity device within the quasiclassical formalism in the diffusively disordered limit. The device is modeled on in-situ fabricated NS junctions of superconducting Nb films on metallic doped InAs films, with electrical terminals placed in an N-S-N T-junction configuration. Due to the non-collinear configuration of this three terminal device, a theoretical model based on coupled two dimensional spectral and distributional Usadel equations was constructed and numerically solved using Finite-Elements methods. In the regime of high junction conductance, our numerical results demonstrate strong temperature and spatial dependencies of the proximity induced modifications to spectral and transport properties. Such characteristics deviate strongly from usual tunnel junction behavior and aspects of this have been observed in prior experiments[arXiv:1402.6055].

  5. On the libration collinear points in the restricted three – body problem

    Directory of Open Access Journals (Sweden)

    Alzahrani F.

    2017-03-01

    Full Text Available In the restricted problem of three bodies when the primaries are triaxial rigid bodies, the necessary and sufficient conditions to find the locations of the three libration collinear points are stated. In addition, the Linear stability of these points is studied for the case of the Euler angles of rotational motion being θi = 0, ψi + φi = π/2, i = 1, 2 accordingly. We underline that the model studied in this paper has special importance in space dynamics when the third body moves in gravitational fields of planetary systems and particularly in a Jupiter model or a problem including an irregular asteroid.

  6. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  7. Four-loop collinear anomalous dimension in N=4 Yang-Mills theory

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Spradlin, Marcus; Volovich, Anastasia

    2007-01-01

    We report a calculation in N=4 Yang-Mills of the four-loop term g (4) in the collinear anomalous dimension g(λ) which governs the universal subleading infrared structure of gluon scattering amplitudes. Using the method of obstructions to extract this quantity from the 1/ε singularity in the four-gluon iterative relation at four loops, we find g (4) =-1240.9 with an estimated numerical uncertainty of 0.02%. We also analyze the implication of our result for the strong coupling behavior of g(λ), finding support for the string theory prediction computed recently by Alday and Maldacena using AdS/CFT

  8. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  9. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    Science.gov (United States)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  10. A report on the study of algorithms to enhance Vector computer performance for the discretized one-dimensional time-dependent heat conduction equation: EPIC research, Phase 1

    International Nuclear Information System (INIS)

    Majumdar, A.; Makowitz, H.

    1987-10-01

    With the development of modern vector/parallel supercomputers and their lower performance clones it has become possible to increase computational performance by several orders of magnitude when comparing to the previous generation of scalar computers. These performance gains are not observed when production versions of current thermal-hydraulic codes are implemented on modern supercomputers. It is our belief that this is due in part to the inappropriateness of using old thermal-hydraulic algorithms with these new computer architectures. We believe that a new generation of algorithms needs to be developed for thermal-hydraulics simulation that is optimized for vector/parallel architectures, and not the scalar computers of the previous generation. We have begun a study that will investigate several approaches for designing such optimal algorithms. These approaches are based on the following concepts: minimize recursion; utilize predictor-corrector iterative methods; maximize the convergence rate of iterative methods used; use physical approximations as well as numerical means to accelerate convergence; utilize explicit methods (i.e., marching) where stability will permit. We call this approach the ''EPIC'' methodology (i.e., Explicit Predictor Iterative Corrector methods). Utilizing the above ideas, we have begun our work by investigating the one-dimensional transient heat conduction equation. We have developed several algorithms based on variations of the Hopscotch concept, which we discuss in the body of this report. 14 refs

  11. Central configurations of the collinear three-body problem and singular surfaces in the mass space

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhifu, E-mail: zxie@vsu.edu [Department of Mathematics and Computer Science, Virginia State University, Petersburg, VA 23806 (United States)

    2011-09-12

    This Letter is to provide a new approach to study the phenomena of degeneracy of the number of the collinear central configurations under geometric equivalence. A direct and simple explicit parametric expression of the singular surface H{sub 3} is constructed in the mass space (m{sub 1},m{sub 2},m{sub 3}) element of (R{sup +}){sup 3}. The construction of H{sub 3} is from an inverse respective, that is, by specifying positions for the bodies and then determining the masses that are possible to yield a central configuration. It reveals the relationship between the phenomena of degeneracy and the inverse problem of central configurations. We prove that the number of central configurations is decreased to 3!/2-1=2, m{sub 1}, m{sub 2}, and m{sub 3} are mutually distinct if m element of H{sub 3}. Moreover, we know not only the number of central configurations but also what the nonequivalent central configurations are. -- Highlights: → Provide a new method to study the degeneracy of number of CC. → Results advanced the understanding of number of central configurations. → Singular mass surface H{sub 3} is given by a direct and simple parametric expression. → The proof only requires some basic knowledge of linear algebra. → The method can be applied to some other collinear n-body problem.

  12. Closed-form solution for piezoelectric layer with two collinear cracks parallel to the boundaries

    Directory of Open Access Journals (Sweden)

    B. M. Singh

    2006-01-01

    Full Text Available We consider the problem of determining the stress distribution in an infinitely long piezoelectric layer of finite width, with two collinear cracks of equal length and parallel to the layer boundaries. Within the framework of reigning piezoelectric theory under mode III, the cracked piezoelectric layer subjected to combined electromechanical loading is analyzed. The faces of the layers are subjected to electromechanical loading. The collinear cracks are located at the middle plane of the layer parallel to its face. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with cosine kernel and a weight function. The triple integral equations are solved exactly. Closed form analytical expressions for stress intensity factors, electric displacement intensity factors, and shape of crack and energy release rate are derived. As the limiting case, the solution of the problem with one crack in the layer is derived. Some numerical results for the physical quantities are obtained and displayed graphically.

  13. Trace determination of 90Sr and 89Sr in environmental samples by collinear resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Lantzsch, J.; Bushaw, B. A.; Bystrow, V. A.; Herrmann, G.; Kluge, H.-J.; Niess, S.; Otten, E. W.; Passler, G.; Schwalbach, R.; Schwarz, M.; Stenner, J.; Trautmann, N.; Wendt, K.; Yushkevich, Y. V.; Zimmer, K.

    1995-01-01

    Collinear resonance ionization spectroscopy has been developed as a sensitive technique for fast trace detection of 90 Sr and 89 Sr in the environment. A detection limit for 90 Sr of 10 7 atoms in the presence of 10 17 atoms in the presence of 10 17 atoms of stable Strontium has been achieved, while the applicability of the method has been demonstrated on real world samples. After collection and chemical separation, strontium is surface ionized, accelerated to 33keV and mass separated. The ions are neutralized and the emerging fast atoms interact with an argon ion laser beam (γ=364 nm) in a quasi-collinear geometry. Optical excitation starts from the long-lived 5s4d 3 D2 state of strontium, which is populated in the charge exchange process, and the fast atoms are selectively excited into the high-lying 5s23f 3 F3 Rydberg state. The Rydberg-atoms are subsequently field-ionized and detected by a channeltron detector after energy selection. The described method was successfully used to determine the 90 Sr-content in air samples collected near Munich during the Chernobyl reactor accident in April 1986

  14. Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Mantry, Sonny; Petriello, Frank

    2010-01-01

    We derive a factorization theorem for the Higgs boson transverse momentum (p T ) and rapidity (Y) distributions at hadron colliders, using the soft-collinear effective theory (SCET), for m h >>p T >>Λ QCD , where m h denotes the Higgs mass. In addition to the factorization of the various scales involved, the perturbative physics at the p T scale is further factorized into two collinear impact-parameter beam functions (IBFs) and an inverse soft function (ISF). These newly defined functions are of a universal nature for the study of differential distributions at hadron colliders. The additional factorization of the p T -scale physics simplifies the implementation of higher order radiative corrections in α s (p T ). We derive formulas for factorization in both momentum and impact parameter space and discuss the relationship between them. Large logarithms of the relevant scales in the problem are summed using the renormalization group equations of the effective theories. Power corrections to the factorization theorem in p T /m h and Λ QCD /p T can be systematically derived. We perform multiple consistency checks on our factorization theorem including a comparison with known fixed-order QCD results. We compare the SCET factorization theorem with the Collins-Soper-Sterman approach to low-p T resummation.

  15. Field-induced non-collinear magnetic structures in amorphous Co80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Roky, K.; Lassri, H.; Elmoussaoui, A.; Driouch, L.; Ayadi, M.; Omri, M.; Krishnan, R.

    2005-01-01

    Amorphous Co 80-x Dy x B 20 alloys have been prepared by melt spinning technique and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. High-field magnetization studies performed at 4.2 K in magnetic fields up to 38 T have revealed, for samples with stoichiometry close to that of a compensated ferrimagnet, a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Co sublattices. From the non-collinear regime the exchange interactions between the Co and Dy magnetic sublattices and the magnetic anisotropy constants have been evaluated

  16. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538

    Science.gov (United States)

    Fatima, Syeda Akash; Yang, Jiezhi; Chen, Wanquan; Liu, Taiguo; Hu, Yuting; Li, Qing; Guo, Jingwei; Zhang, Min; Lei, Li; Li, Xin; Tang, Shengwen; Luo, Peigao

    2016-01-01

    The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs. PMID:27755575

  17. Solar radiation pressure application for orbital motion stabilization near the Sun-Earth collinear libration point

    Science.gov (United States)

    Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily

    2018-05-01

    Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.

  18. Determination of 90Sr in environmental samples with resonance ionization spectroscopy in collinear geometry

    International Nuclear Information System (INIS)

    Zimmer, K.; Stenner, J.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Otten, E.W.; Passler, G.; Schwalbach, R.; Schwarz, M.; Stevens, H.; Wendt, K.; Herrmann, G.; Niess, S.; Trautmann, N.; Walter, K.; Bushaw, B.A.

    1994-01-01

    A new, fast technique for trace analysis of the radioactive isotopes 89 Sr and 90 Sr in environmental samples has been developed. Conventional mass separation is combined with resonance ionization spectroscopy in collinear geometry, which provides high selectivity and sensitivity. In addition, a chemical separation procedure for sample preparation has been developed. The described technique was used to determine the 90 Sr content in ∼ 870 m 3 air samples collected near Munich during and shortly after the Chernobyl reactor accident in April 1986. The content of 90 Sr was measured to be 1.4 mBq per m 3 , corresponding to 1.6 x 10 9 atoms of 90 Sr per sample. This value is in good agreement with the results of radiochemical measurements. (orig.)

  19. Determination of [sup 90]Sr in environmental samples with resonance ionization spectroscopy in collinear geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, K. (Inst. fuer Physik, Univ. Mainz (Germany)); Stenner, J. (Inst. fuer Physik, Univ. Mainz (Germany)); Kluge, H.J. (Inst. fuer Physik, Univ. Mainz (Germany)); Lantzsch, J. (Inst. fuer Physik, Univ. Mainz (Germany)); Monz, L. (Inst. fuer Physik, Univ. Mainz (Germany)); Otten, E.W. (Inst. fuer Physik, Univ. Mainz (Germany)); Passler, G. (Inst. fuer Physik, Univ. Mainz (Germany)); Schwalbach, R. (Inst. fuer Physik, Univ. Mainz (Germany)); Schwarz, M. (Inst. fuer Physik, Univ. Mainz (Germany)); Stevens, H. (Inst. fuer Physik, Univ. Mainz (Germany)); Wendt, K. (Inst. fuer Physik, Univ. Mainz (Germany)); Herrmann, G. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Niess, S. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Trautmann, N. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Walter, K. (Inst. fuer Kernchemie, Univ. Mainz (Germany)); Bushaw, B.A. (Pacific Northwest Lab., Richland, WA (United States))

    1994-08-01

    A new, fast technique for trace analysis of the radioactive isotopes [sup 89]Sr and [sup 90]Sr in environmental samples has been developed. Conventional mass separation is combined with resonance ionization spectroscopy in collinear geometry, which provides high selectivity and sensitivity. In addition, a chemical separation procedure for sample preparation has been developed. The described technique was used to determine the [sup 90]Sr content in [approx] 870 m[sup 3] air samples collected near Munich during and shortly after the Chernobyl reactor accident in April 1986. The content of [sup 90]Sr was measured to be 1.4 mBq per m[sup 3], corresponding to 1.6 x 10[sup 9] atoms of [sup 90]Sr per sample. This value is in good agreement with the results of radiochemical measurements. (orig.)

  20. Polarization Observables for the Collinear dp → 3 Heπ0 Reaction

    International Nuclear Information System (INIS)

    Ladygin, V.P.; Ladygina, N.B.

    1994-01-01

    Effects due to polarizations of both colliding particles have been analyzed in terms of two independent amplitudes which in the general case define the spin structure of the amplitude of the dp → 3 Heπ 0 reaction in collinear geometry. The energy dependence of spin-correlation C L , L , O , O due to longitudinal polarization of colliding particles is predicted using the moduli of amplitudes extracted from experimental data. The limit of possible deviations is obtained for spin-correlation C N , N , O , O due to transverse polarization of both particles. The value of these polarization observables at threshold are predicted. The behaviour of these polarization observables for the dp → 3 Heη 0 reaction, having the same spin structure, is discussed. 22 refs., 5 figs., 2 tabs

  1. High resolution collinear resonance ionization spectroscopy of neutron-rich $^{76,77,78}$Cu isotopes

    CERN Document Server

    AUTHOR|(CDS)2083035

    In this work, nuclear magnetic dipole moments, electric quadrupole moments, nuclear spins and changes in the mean-squared charge radii of radioactive copper isotopes are presented. Reaching up to $^{78}$Cu ($Z=29$, $N=49$), produced at rates of only 10 particles per second, these measurements represent the most exotic laser spectroscopic investigations near the doubly-magic and very exotic $^{78}$Ni ($Z=28$,$N=50$) to date. This thesis outlines the technical developments and investigations of laser-atom interactions that were performed during this thesis. These developments were crucial for establishing a high-resolution, high sensitivity collinear resonance ionization spectroscopy experiment at ISOLDE, CERN. This thesis furthermore provides a detailed description of the analysis tools that were implemented and applied to extract the nuclear observables from the experimental data. The results were compared to several large-scale shell model calculations, and provide deep insight into the structure of $^{78}$N...

  2. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-08-15

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  3. Collinear factorization for deep inelastic scattering structure functions at large Bjorken xB

    International Nuclear Information System (INIS)

    Accardi, Alberto; Qiu, Jian-Wei

    2008-01-01

    http://dx.doi.org/10.1088/1126-6708/2008/07/090 We examine the uncertainty of perturbative QCD factorization for hadron structure functions in deep inelastic scattering at a large value of the Bjorken variable xB. We analyze the target mass correction to the structure functions by using the collinear factorization approach in the momentum space. We express the long distance physics of structure functions and the leading target mass corrections in terms of parton distribution functions with the standard operator definition. We compare our result with existing work on the target mass correction. We also discuss the impact of a final-state jet function on the extraction of parton distributions at large fractional momentum x.

  4. The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

    CERN Document Server

    Cocolios, T E; Procter, T J; Rothe, S; Garcia Ruiz, R F; Stroke, H H; Rossel, R E; Heylen, H; Franchoo, S; Marsh, B A; Verney, D; Papuga, J; Strashnov, I; Billowes, J; de Groote, R P; Le Blanc, F; Simpson, G S; Fedosseev, V N; Lynch, K M; Wood, R T; Budincevic, I; Mason, P J R; Wendt, K D A; Flanagan, K T; De Schepper, S; Rajabali, M M; Al Suradi, H H; Walker, P M; Smith, A J

    2013-01-01

    The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1\\% experimental efficiency, and as low as a 0.001\\% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Science.gov (United States)

    Chen, Qushan; Hu, Tongning; Qin, Bin; Xiong, Yongqian; Fan, Kuanjun; Pei, Yuanji

    2018-04-01

    Huazhong University of Science and Technology (HUST) has built a compact linac-based terahertz free electron laser (THz-FEL) prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  6. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  7. Absorption spectra for collinear (nonreactive) H3: Comparison between quantal and classical calculations

    International Nuclear Information System (INIS)

    Engel, V.; Bacic, Z.; Schinke, R.; Shapiro, M.

    1985-01-01

    Absorption spectra for the collinear (nonreactive) H+H 2 →H/sup number-sign/ 3 →H+H 2 are calculated quantum mechanically, using the Siegbahn--Liu--Truhlar--Horowitz (SLTH) ab initio potential and a model H( 3 surface as the ground and excited H 3 surface, respectively. They are compared to classical spectra previously computed by Mayne, Poirier, and Polanyi using the same potential energy surfaces [J. Chem. Phys. 80, 4025 (1984)]. The spectra are calculated at several collision energies and for both H+H 2 (v = 0) and H+H 2 (v = 1). The quantal and classical spectra are shown to agree with respect to basic features and trends. Nevertheless, the two sets of spectra differ considerably in their overall appearance because of some purely quantum aspects of the H+H 2 system

  8. Commissioning of the collinear laser spectroscopy system in the BECOLA facility at NSCL

    International Nuclear Information System (INIS)

    Minamisono, K.; Mantica, P.F.; Klose, A.; Vinnikova, S.; Schneider, A.; Johnson, B.; Barquest, B.R.

    2013-01-01

    A collinear laser-spectroscopy (CLS) system in the BEam COoler and LAser spectroscopy (BECOLA) facility was constructed at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The BECOLA facility will be used to advance measurements of nuclear properties of low-energy rare isotope beams generated via in-flight reactions and subsequent beam thermalization in a buffer gas. The CLS studies at BECOLA will complement laser spectroscopy studies of charge radii and nuclear moments mostly obtained so far at Isotope SeOn Line (ISOL) facilities. Commissioning tests of the CLS system have been performed using an offline ion source to produce stable-ion beams. The tests set the ground work for experiments at the future Facility for Rare Isotope Beams (FRIB) as well as experiments at the current Coupled Cyclotron Facility at NSCL

  9. rf conditioning and breakdown analysis of a traveling wave linac with collinear load cells

    Directory of Open Access Journals (Sweden)

    Qushan Chen

    2018-04-01

    Full Text Available Huazhong University of Science and Technology (HUST has built a compact linac-based terahertz free electron laser (THz-FEL prototype. In order to achieve compact structure, the linac uses collinear load cells instead of conventional output coupler to absorb remanent power at the end of linac. The new designed structure is confronted with rf breakdown problem after a long time conditioning process, so we tried to figure out the breakdown site in the linac. Without transmitted signal, we propose two methods to analyze the breakdown site mainly based on the forward and the reflected power signals. One method focuses on the time relationship of the two signals while the other focuses on the amplitude. Both the two methods indicate the breakdown events happened at the end of the linac and more likely in the first or the second load cell.

  10. Soft and Collinear Radiation and Factorization in Perturbation Theory and Beyond

    CERN Document Server

    Gardi, Einan

    2002-01-01

    Power corrections to differential cross sections near a kinematic threshold are analysed by Dressed Gluon Exponentiation. Exploiting the factorization property of soft and collinear radiation, the dominant radiative corrections in the threshold region are resummed, yielding a renormalization-scale-invariant expression for the Sudakov exponent. The interplay between Sudakov logs and renormalons is clarified, and the necessity to resum the latter whenever power corrections are non-negligible is emphasized. The presence of power-suppressed ambiguities in the exponentiation kernel suggests that power corrections exponentiate as well. This leads to a non-perturbative factorization formula with non-trivial predictions on the structure of power corrections, which can be contrasted with the OPE. Two examples are discussed. The first is event-shape distributions in the two-jet region, where a wealth of precise data provides a strong motivation for the improved perturbative technique and an ideal situation to study had...

  11. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  13. Peaks and troughs of three-dimensional vestibulo-ocular reflex in humans

    NARCIS (Netherlands)

    Goumans, J.; Houben, M.M.J.; Dits, J.; Steen, J. van der

    2010-01-01

    The three-dimensional vestibulo-ocular reflex (3D VOR) ideally generates compensatory ocular rotations not only with a magnitude equal and opposite to the head rotation but also about an axis that is collinear with the head rotation axis. Vestibulo-ocular responses only partially fulfill this ideal

  14. Collinear laser spectroscopy on radioactive praseodymium ions and cadmium ions; Kollineare Laserspektroskopie an radioaktiven Praseodymionen und Cadmiumatomen

    Energy Technology Data Exchange (ETDEWEB)

    Froemmgen, Nadja

    2013-11-21

    Collinear laser spectroscopy is a tool for the model independent determination of spins, charge radii and electromagnetic moments of nuclei in ground and long-lived isomeric states. In the context of this thesis a new offline ion source for high evaporating temperatures and an ion beam analysis system were implemented at the TRIGA-LASER Experiment at the Institute for Nuclear Chemistry at the University of Mainz. The main part of the thesis deals with the determination of the properties of radioactive praseodymium and cadmium isotopes by collinear laser spectroscopy at ISOLDE/CERN. The necessary test measurements for the spectroscopy of praseodymium ions have been conducted with the aforementioned offline ion source at the TRIGA-LASER experiment. The spectroscopy of the praseodymium ions was motivated by the observation of a modulation of the electron capture decay rates of hydrogen-like {sup 140}Pr{sup 58+}. The nuclear magnetic moment of the nucleus is, among others, required for the explanation of the so-called GSI Oscillations and has not been studied experimentally before. Additionally, the determined electron capture decay constant of hydrogen-like {sup 140}Pr{sup 58+} is lower than the one of helium-like {sup 140}Pr{sup 57+}. The explanation of this phenomenon requires a positive magnetic moment. During the experiment at the COLLAPS apparatus the magnetic moments of the neutron-deficient isotopes {sup 135}Pr, {sup 136}Pr and {sup 137}Pr could be determined for the first time. Unfortunately, due to a too low production yield the desired isotope {sup 140}Pr could not be studied.The systematic study of cadmium isotopes was motivated by nuclear physics in the tin region. With Z=48 two protons are missing for the shell closure and the isotopes extend from the magic neutron number N=50 to the magic neutron number N=82. The extracted nuclear properties allow tests of different nuclear models in this region. In this thesis the obtained results of the spectroscopy of

  15. Multi-Collinearity Based Model Selection for Landslide Susceptibility Mapping: A Case Study from Ulus District of Karabuk, Turkey

    Science.gov (United States)

    Sahin, E. K.; Colkesen, I., , Dr; Kavzoglu, T.

    2017-12-01

    Identification of localities prone to landslide areas plays an important role for emergency planning, disaster management and recovery planning. Due to its great importance for disaster management, producing accurate and up-to-date landslide susceptibility maps is essential for hazard mitigation purpose and regional planning. The main objective of the present study was to apply multi-collinearity based model selection approach for the production of a landslide susceptibility map of Ulus district of Karabuk, Turkey. It is a fact that data do not contain enough information to describe the problem under consideration when the factors are highly correlated with each other. In such cases, choosing a subset of the original features will often lead to better performance. This paper presents multi-collinearity based model selection approach to deal with the high correlation within the dataset. Two collinearity diagnostic factors (Tolerance (TOL) and the Variance Inflation Factor (VIF)) are commonly used to identify multi-collinearity. Values of VIF that exceed 10.0 and TOL values less than 1.0 are often regarded as indicating multi-collinearity. Five causative factors (slope length, curvature, plan curvature, profile curvature and topographical roughness index) were found highly correlated with each other among 15 factors available for the study area. As a result, the five correlated factors were removed from the model estimation, and performances of the models including the remaining 10 factors (aspect, drainage density, elevation, lithology, land use/land cover, NDVI, slope, sediment transport index, topographical position index and topographical wetness index) were evaluated using logistic regression. The performance of prediction model constructed with 10 factors was compared to that of 15-factor model. The prediction performance of two susceptibility maps was evaluated by overall accuracy and the area under the ROC curve (AUC) values. Results showed that overall

  16. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  17. Laser systems for collinear spectroscopy and the charge radius of 12Be

    International Nuclear Information System (INIS)

    Krieger, Andreas

    2012-01-01

    Collinear laser spectroscopy has been used to investigate the nuclear charge radii of shortlived medium- and heavy-Z nuclei for more than three decades. But it became only recently be applicable to low-Z nuclei. This region of the nuclear chart attracts attention because so-called ab-initio nuclear models, based on realistic nucleon-nucleon potentials, can only be applied to the lightest elements due to the rapidly increasing calculational demands with the number of nucleons. Furthermore, strong clusterization of atomic nuclei occurs and the encountered halo nuclei are presently subject of intense research. The isotopic chain of beryllium exhibits the prime example of a one-neutron halo nucleus, 11 Be, and the two- or four-neutron halo nucleus 14 Be. 12 Be is a key isotope between these two exotic nuclei and particularly interesting because the nuclear shell model predicts a shell closure for the magic neutron number N = 8. In the course of this thesis, several frequency-stabilized laser systems for collinear laser spectroscopy have been developed. At TRIGA-SPEC a frequency-doubled diode laser system with a tapered amplifier and a frequency comb-stabilized titanium-sapphire laser with a frequency doubling stage are now available for the spectroscopy of refractory metals above molybdenum. They have already been used for test-experiments and commissioning of the TRIGA-LASER beamline. Furthermore, frequency-quadrupling of the Ti:Sa laser was demonstrated to expand the emitted wavelengths into the 200 nm region. At ISOLDE/CERN a frequency comb-stabilized and an iodine-stabilized dye laser were installed and applied for laser spectroscopy of 9,10,11,12 Be + . The improved laser system and the development of a delayed photon-ion coincidence detection improved the sensitivity of the beryllium spectroscopy by more than two orders of magnitude and, thus, the previous measurements of 7-11 Be could be extended for the first time to the short-lived isotope 12 Be. In addition

  18. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins-Soper-Sterman formalism

    Science.gov (United States)

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2018-06-01

    We extend the improved Collins-Soper-Sterman (iCSS) W + Y construction recently presented in [1] to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) qT-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu-Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarized spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.

  19. Phase matching of high order harmonic generation using dynamic phase modulation caused by a non-collinear modulation pulse

    Science.gov (United States)

    Cohen, Oren; Kapteyn, Henry C.; Mumane, Margaret M.

    2010-02-16

    Phase matching high harmonic generation (HHG) uses a single, long duration non-collinear modulating pulse intersecting the driving pulse. A femtosecond driving pulse is focused into an HHG medium (such as a noble gas) to cause high-harmonic generation (HHG), for example in the X-ray region of the spectrum, via electrons separating from and recombining with gas atoms. A non-collinear pulse intersects the driving pulse within the gas, and modulates the field seen by the electrons while separated from their atoms. The modulating pulse is low power and long duration, and its frequency and amplitude is chosen to improve HHG phase matching by increasing the areas of constructive interference between the driving pulse and the HHG, relative to the areas of destructive interference.

  20. Electroweak gauge-boson production at small q T : Infrared safety from the collinear anomaly

    Science.gov (United States)

    Becher, Thomas; Neubert, Matthias; Wilhelm, Daniel

    2012-02-01

    Using methods from effective field theory, we develop a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio M V /q T are resummed to all orders. These cross sections receive logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale {q_* } ˜ {M_V}{e^{ - {text{const}}/{α_s}left( {{M_V}} right)}} , which protects the processes from receiving large long-distance hadronic contributions. Expanding the cross sections in either α s or q T generates strongly divergent series, which must be resummed. As a by-product, we obtain an explicit non-perturbative expression for the intercept of the cross sections at q T = 0, including the normalization and first-order α s ( q ∗ ) correction. We perform a detailed numerical comparison of our predictions with the available data on the transverse-momentum distribution in Z-boson production at the Tevatron and LHC.

  1. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  2. Collinear Laser Spectroscopy of Potassium Nuclear Charge Radii beyond N = 28

    CERN Document Server

    AUTHOR|(CDS)2078903; Jochim, Selim

    Nuclear ground-state properties, such as spin, charge radius, and magnetic dipole and electric quadrupole moments are important quantities to describe the nucleus. The comparison of experimental data to shell-model calculations gives insight in the underlying nuclear structure and composition of ground-state wave functions. Spins and charge radii can also be used to test the predictions of state-of-the-art microscopic models. This work contributes to these studies providing new measurements in the region of the nuclear chart around the magic proton number Z = 20. The data have been obtained at the collinear laser spectroscopy setup COLLAPS located at the radioactive-ion-beam facility ISOLDE at CERN. Using bunched-beam laser spectroscopy hyperne structure spectra of the potassium isotopes with mass number A = 48 51 could be recorded for the first time. Ground-state spins and isotope shifts could be deduced for 4851K contributing to the evolution of the d3=2 orbital beyond the shell closure at the magi...

  3. Better target detection in the presence of collinear flankers under high working memory load

    Directory of Open Access Journals (Sweden)

    Jan W. De Fockert

    2014-10-01

    Full Text Available There are multiple ways in which working memory can influence selective attention. Aside from the content-specific effects of working memory on selective attention, whereby attention is more likely to be directed towards information that matches the contents of working memory, the mere level of load on working memory has also been shown to have an effect on selective attention. Specifically, high load on working memory is associated with increased processing of irrelevant information. In most demonstrations of the effect to-date, this has led to impaired target performance, leaving open the possibility that the effect partly reflects an increase in general task difficulty under high load. Here we show that working memory load can result in a performance gain when processing of distracting information aids target performance. The facilitation in the detection of a low-contrast Gabor stimulus in the presence of collinear flanking Gabors was greater when load on a concurrent working memory task was high, compared to low. This finding suggests that working memory can interact with selective attention at an early stage in visual processing.

  4. TILDA. Fast experiment control and data acquisition in collinear laser spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Simon [Inst. fuer Kernphysik, TU Darmstadt (Germany); Inst. fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: TRIGA-SPEC-Collaboration

    2016-07-01

    The TRIGA-Laser Data Acqusition (TILDA) is a custom development for the collinear laser spectroscopy (CLS) experiment TRIGA-Laser. Situated at the research reactor TRIGA Mainz, the TRIGA-Laser experiment benefits from the possibility to create short-lived nuclides by neutron-induced fission of a heavy actinide target, e.g. {sup 249}Cf. The beam-line is equipped with a radio-frequency cooler and buncher emitting bunches with lengths in the order of 500 ns to 10 μs, which allows a drastical reduction of the background in CLS. In order to benefit from this bunched beam structure a time resolved data acquisition system is essential. The real time computing in TILDA is realized by field programmable gate arrays (FPGAs), which are synchronized via the backplane of a PXI-crate. This gives the user a great flexibility in adapting to different measurement schemes. This flexibility in hardware must therefore be given in equivalent way to the user in software. Due to that, high level programming languages were chosen (Labview and Python) and TILDA will provide the user with a solid framework around it. TILDAs main features, specifications, programming schematics and status will be presented.

  5. Collinear Laser Spectroscopy of Manganese Isotopes using the Radio Frequency Quadrupole Cooler and Buncher at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2083426

    The hyperfine structure of the odd-even $^{51−63}$Mn isotopes (N = 26 − 38) were measured using bunched beam collinear laser spectroscopy with the COLLAPS experimental setup at ISOLDE, CERN. The properties of these nuclei were investigated over the course of two experiments. During the first experiment, nuclear spins and magnetic dipole moments were extracted from spectroscopy on manganese atoms. These nuclear properties were then compared to the predictions of two large-scale shell model effective interactions (GXPF1A [1, 2] and LNPS [3]) which use different model spaces. In the case of $^{61,63}$Mn, these results show the increasing importance of neutron excitations across the proposed N = 40 subshell closure, and of proton excitations across the Z = 28 shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. The electric quadrupole moment provides c...

  6. Explaining behavior change after genetic testing: the problem of collinearity between test results and risk estimates.

    Science.gov (United States)

    Fanshawe, Thomas R; Prevost, A Toby; Roberts, J Scott; Green, Robert C; Armstrong, David; Marteau, Theresa M

    2008-09-01

    This paper explores whether and how the behavioral impact of genotype disclosure can be disentangled from the impact of numerical risk estimates generated by genetic tests. Secondary data analyses are presented from a randomized controlled trial of 162 first-degree relatives of Alzheimer's disease (AD) patients. Each participant received a lifetime risk estimate of AD. Control group estimates were based on age, gender, family history, and assumed epsilon4-negative apolipoprotein E (APOE) genotype; intervention group estimates were based upon the first three variables plus true APOE genotype, which was also disclosed. AD-specific self-reported behavior change (diet, exercise, and medication use) was assessed at 12 months. Behavior change was significantly more likely with increasing risk estimates, and also more likely, but not significantly so, in epsilon4-positive intervention group participants (53% changed behavior) than in control group participants (31%). Intervention group participants receiving epsilon4-negative genotype feedback (24% changed behavior) and control group participants had similar rates of behavior change and risk estimates, the latter allowing assessment of the independent effects of genotype disclosure. However, collinearity between risk estimates and epsilon4-positive genotypes, which engender high-risk estimates, prevented assessment of the independent effect of the disclosure of an epsilon4 genotype. Novel study designs are proposed to determine whether genotype disclosure has an impact upon behavior beyond that of numerical risk estimates.

  7. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

    Science.gov (United States)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.

    2017-07-01

    Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.

  8. Spectral distribution of the efficiency of terahertz difference frequency generation upon collinear propagation of interacting waves in semiconductor crystals

    International Nuclear Information System (INIS)

    Orlov, Sergei N; Polivanov, Yurii N

    2007-01-01

    Dispersion phase matching curves and spectral distributions of the efficiency of difference frequency generation in the terahertz range are calculated for collinear propagation of interacting waves in zinc blende semiconductor crystals (ZnTe, CdTe, GaP, GaAs). The effect of the pump wavelength, the nonlinear crystal length and absorption in the terahertz range on the spectral distribution of the efficiency of difference frequency generation is analysed. (nonlinear optical phenomena)

  9. Complete direct method for electron-hydrogen scattering: Application to the collinear and Temkin-Poet models

    International Nuclear Information System (INIS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2004-01-01

    We present an efficient generalization of the exterior complex scaling (ECS) method to extract discrete inelastic and ionization amplitudes for electron-impact scattering of atomic hydrogen. This fully quantal method is demonstrated over a range of energies for the collinear and Temkin-Poet models and near-threshold ionization is examined in detail for singlet and triplet scattering. Our numerical calculations for total ionization cross sections near threshold strongly support the classical threshold law of Wannier [Phys. Rev. 90, 817 (1953)] (σ∝E 1.128±0.004 ) for the L=0 singlet collinear model and the semiclassical threshold law of Peterkop [J. Phys. B 16, L587 (1983)] (σ∝E 3.37±0.02 ) for the L=0 triplet collinear model, and are consistent with the semiclassical threshold law of Macek and Ihra [Phys. Rev. A 55, 2024 (1997)] (σ∝exp[(-6.87±0.01)E -1/6 ]) for the singlet Temkin-Poet model

  10. Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K M; Juang, C H; Hsu, S Y [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Umansky, V, E-mail: syhsu@mail.nctu.edu.t [Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2010-10-06

    We have studied the linear conductance and source-drain bias spectroscopies of clean and disordered quantum wires (QWs) against thermal cycling and lateral shifting, which change the impurity configuration. Conductance quantization and the zero bias anomaly (ZBA) are robust in clean QWs. In contrast, disordered QWs show complexities in the ways of conductance resonance, peak splitting and trace crossing in source-drain bias spectroscopies. The experimental results and theoretical predictions are in congruence. Moreover, the resonant state arising from the impurities results in either a single peak or double-splitting peaks in the spectroscopies from the detailed impurity configurations. The resonant splitting peaks are found to influence the ZBA, indicating that a clean QW is crucial for investigating the intrinsic characteristics of the ZBA of QWs.

  11. Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement

    International Nuclear Information System (INIS)

    Liu, K M; Juang, C H; Hsu, S Y; Umansky, V

    2010-01-01

    We have studied the linear conductance and source-drain bias spectroscopies of clean and disordered quantum wires (QWs) against thermal cycling and lateral shifting, which change the impurity configuration. Conductance quantization and the zero bias anomaly (ZBA) are robust in clean QWs. In contrast, disordered QWs show complexities in the ways of conductance resonance, peak splitting and trace crossing in source-drain bias spectroscopies. The experimental results and theoretical predictions are in congruence. Moreover, the resonant state arising from the impurities results in either a single peak or double-splitting peaks in the spectroscopies from the detailed impurity configurations. The resonant splitting peaks are found to influence the ZBA, indicating that a clean QW is crucial for investigating the intrinsic characteristics of the ZBA of QWs.

  12. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  13. Laser systems for collinear spectroscopy and the charge radius of {sup 12}Be

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, Andreas

    2012-03-30

    Collinear laser spectroscopy has been used to investigate the nuclear charge radii of shortlived medium- and heavy-Z nuclei for more than three decades. But it became only recently be applicable to low-Z nuclei. This region of the nuclear chart attracts attention because so-called ab-initio nuclear models, based on realistic nucleon-nucleon potentials, can only be applied to the lightest elements due to the rapidly increasing calculational demands with the number of nucleons. Furthermore, strong clusterization of atomic nuclei occurs and the encountered halo nuclei are presently subject of intense research. The isotopic chain of beryllium exhibits the prime example of a one-neutron halo nucleus, {sup 11}Be, and the two- or four-neutron halo nucleus {sup 14}Be. {sup 12}Be is a key isotope between these two exotic nuclei and particularly interesting because the nuclear shell model predicts a shell closure for the magic neutron number N = 8. In the course of this thesis, several frequency-stabilized laser systems for collinear laser spectroscopy have been developed. At TRIGA-SPEC a frequency-doubled diode laser system with a tapered amplifier and a frequency comb-stabilized titanium-sapphire laser with a frequency doubling stage are now available for the spectroscopy of refractory metals above molybdenum. They have already been used for test-experiments and commissioning of the TRIGA-LASER beamline. Furthermore, frequency-quadrupling of the Ti:Sa laser was demonstrated to expand the emitted wavelengths into the 200 nm region. At ISOLDE/CERN a frequency comb-stabilized and an iodine-stabilized dye laser were installed and applied for laser spectroscopy of {sup 9,10,11,12}Be{sup +}. The improved laser system and the development of a delayed photon-ion coincidence detection improved the sensitivity of the beryllium spectroscopy by more than two orders of magnitude and, thus, the previous measurements of {sup 7-11}Be could be extended for the first time to the short

  14. Phase space bottlenecks: A comparison of quantum and classical intramolecular dynamics for collinear OCS

    International Nuclear Information System (INIS)

    Gibson, L.L.; Schatz, G.C.; Ratner, M.A.; Davis, M.J.

    1987-01-01

    We compare quantum and classical mechanics for a collinear model of OCS at an energy (20 000 cm -1 ) where Davis [J. Chem. Phys. 83, 1016 (1985)] had previously found that phase space bottlenecks associated with golden mean tori inhibit classical flow between different chaotic regions in phase space. Accurate quantum eigenfunctions for this two mode system are found by diagonalizing a large basis of complex Gaussian functions, and these are then used to study the evolution of wave packets which have 20 000 cm -1 average energies. By examining phase space (Husimi) distributions associated with the wave functions, we conclude that these golden mean tori do indeed act as bottlenecks which constrain the wave packets to evolve within one (or a combination of) regions. The golden mean tori do not completely determine the boundaries between regions, however. Bottlenecks associated with resonance trapping and with separatrix formation are also involved. The analysis of the Husimi distributions also indicates that each exact eigenstate is nearly always associated with just one region, and because of this, superpositions of eigenstates that are localized within a region remain localized in that region at all times. This last result differs from the classical picture at this energy where flow across the bottlenecks occurs with a 2--4 ps lifetime. Since the classical phase space area through which flux must pass to cross the bottlenecks is small compared to h for OCS, the observed difference between quantum and classical dynamics is not surprising. Examination of the time development of normal mode energies indicates little or no energy flow quantum mechanically for wave packet initial conditions

  15. [Quantitative analysis of Cu in water by collinear DP-LIBS].

    Science.gov (United States)

    Zheng, Mei-Lan; Yao, Ming-Yin; Chen, Tian-Bing; Lin, Yong-Zeng; Li, Wen-Bing; Liu, Mu-Hua

    2014-07-01

    The purpose of this research is to study the influence of double pulse laser induced breakdown spectroscopy (DP-LIBS) on the sensitivity of Cu in water. The water solution of Cu was tested by collinear DP-LIBS in this article. The results show that spectral intensity of Cu can be enhanced obviously by DP-LIBS, compared with single pulse laser induced breakdown spectroscopy (SP-LIBS). Besides, the experimental results were significantly impacted by delay time between laser pulse and spectrometer acquisition, delay time of double laser pulse and energy of laser pulse and so on. The paper determined the best conditions for DP-LIBS detecting Cu in water. The optimal acquisition delay time was 1 380 ns. The best laser pulse delay time was 25 ns. The most appropriate energy of double laser pulse was 100 mJ. Characteristic analysis of spectra of Cu at 324.7 and 327.4 nm was done for quantitative analysis. The detection limit was 3.5 microg x mL(-1) at 324.7 nm, and the detection limit was 4.84 microg x mL(-1) at 327.4 nm. The relative standard deviation of the two characteristic spectral lines was within 10%. The calibration curve of characteristic spectral line, established by 327.4 nm, was verified with 500 microg x mL(-1) sample. Concentration of the sample was 446 microg x mL(-1) calculated by the calibration curve. This research shows that the detection sensitivity of Cu in water can be improved by DP-LIBS. At the same time, it had high stability.

  16. Charmless two-body B(s)→VP decays in soft collinear effective theory

    International Nuclear Information System (INIS)

    Wang Wei; Wang Yuming; Yang Deshan; Lue Caidian

    2008-01-01

    We provide the analysis of charmless two-body B→VP decays under the framework of the soft collinear effective theory (SCET), where V(P) denotes a light vector (pseudoscalar) meson. Besides the leading power contributions, some power corrections (chiraly enhanced penguins) are also taken into account. Using the current available B→PP and B→VP experimental data on branching fractions and CP asymmetry variables, we find two kinds of solutions in χ 2 fit for the 16 nonperturbative inputs which are essential in the 87 B→PP and B→VP decay channels. Chiraly enhanced penguins can change several charming penguins sizably, since they share the same topology. However, most of the other nonperturbative inputs and predictions on branching ratios and CP asymmetries are not changed too much. With the two sets of inputs, we predict the branching fractions and CP asymmetries of other modes especially B s →VP decays. The agreements and differences with results in QCD factorization and perturbative QCD approach are analyzed. We also study the time-dependent CP asymmetries in channels with CP eigenstates in the final states and some other channels such as B 0 /B 0 →π ± ρ ± and B s 0 /B s 0 →K ± K* ± . In the perturbative QCD approach, the (S-P)(S+P) penguins in annihilation diagrams play an important role. Although they have the same topology with charming penguins in SCET, there are many differences between the two objects in weak phases, magnitudes, strong phases, and factorization properties.

  17. Classical generalized transition-state theory. Application to a collinear reaction with two saddle points

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.; Grev, R.S.

    1981-01-01

    Accurate classical dynamical fixed-energy reaction probabilities and fixed-temperature rate constants are calculated for the collinear reaction H + FH on a low-barrier model potential energy surface. The calculations cover energies from 0.1 to 100 kcal/mol above threshold and temperatures of 100 to 10,000 K. The accurate results are used to test five approximate theories: conventional transition-state theory (TST), canonical variational theory (CVT), improved canonical variational theory (ICVT), microcanonical variational theory (μVT), and the unified statistical model (US). The first four of these theories involve a single dividing surface in phase space, and the US theory involves three dividing surfaces. The tests are particularly interesting because the potential energy surface has two identical saddle points. At temperatures from 100 to 2000 K, the μVt is the most accurate theory, with errors in the range 11 to 14%; for temperatures from 2000 to 10,000 K, the US theory is the most successful, with errors in the range 3 to 14%. Over the whole range, a factor of 100 in temperature, both theories have errors of 35% or less. Even TST has errors of 47% or less over the whole factor-of-100 temperature range. Although the US model should become exact at threshold for this system, it already underestimates the reaction probability by a factor of 0.64 at 0.1 kcal/mol above threshold. TST and μVT agree with each other within 12% up to an energy 13 kcal/mol above the saddle point energy. 3 figures, 2 tables

  18. Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell

    Energy Technology Data Exchange (ETDEWEB)

    Koliner, J. J.; Boguski, J., E-mail: boguski@wisc.edu; Anderson, J. K.; Chapman, B. E.; Den Hartog, D. J.; Duff, J. R.; Goetz, J. A.; McGarry, M.; Morton, L. A.; Parke, E. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States)

    2016-03-15

    In order to characterize the Madison Symmetric Torus (MST) reversed-field pinch (RFP) plasmas that bifurcate to a helical equilibrium, the V3FIT equilibrium reconstruction code was modified to include a conducting boundary. RFP plasmas become helical at a high plasma current, which induces large eddy currents in MST's thick aluminum shell. The V3FIT conducting boundary accounts for the contribution from these eddy currents to external magnetic diagnostic coil signals. This implementation of V3FIT was benchmarked against MSTFit, a 2D Grad-Shafranov solver, for axisymmetric plasmas. The two codes both fit B{sub θ} measurement loops around the plasma minor diameter with qualitative agreement between each other and the measured field. Fits in the 3D case converge well, with q-profile and plasma shape agreement between two distinct toroidal locking phases. Greater than 60% of the measured n = 5 component of B{sub θ} at r = a is due to eddy currents in the shell, as calculated by the conducting boundary model.

  19. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  20. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  1. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements.

    Science.gov (United States)

    Ferferieva, V; Van den Bergh, A; Claus, P; Jasaityte, R; La Gerche, A; Rademakers, F; Herijgers, P; D'hooge, J

    2013-08-01

    This study was designed in order to compare the strain and strain rate deformation parameters assessed by speckle tracking imaging (STI) with those of tissue Doppler imaging (TDI) and conductance catheter measurements in chronic murine models of left ventricular (LV) dysfunction. Twenty-four male C57BL/6J mice were assigned to wild-type (n = 8), myocardial infarction (n = 8) and transaortic constriction (n = 8) groups. Echocardiographic and conductance measurements were simultaneously performed at rest and during dobutamine infusion (5 µg/kg/min) in all animals 10 weeks post-surgery. The LV circumferential strain (Scirc) and the strain rate (SRcirc) were derived from grey scale and tissue Doppler data at frame rates of 224 and 375 Hz, respectively. Scirc and SRcirc by TDI/STI correlated well with the preload recruitable stroke work (PRSW) (r = -0.64 and -0.71 for TDI; r = -0.46 and -0.50 for STI, P < 0.05). Both modalities showed a good agreement with respect to Scirc and SRcirc (r = 0.60 and r = 0.63, P < 0.05). During stress, however, TDI-estimated Scirc and SRcirc values were predominantly higher than those measured by STI (P < 0.05). The similarity of Scirc and SRcirc measurements with respect to the STI/TDI data was examined by the Bland-Altman analysis. In mice, the STI- and TDI-derived strain and strain rate deformation parameters relate closely to intrinsic myocardial function. At low heart rate-to-frame rate ratios (HR/FR), both STI and TDI are equally acceptable for assessing the LV function non-invasively in these animals. At HR/FR (e.g. dobutamine challenge), however, these methods cannot be used interchangeably as STI underestimates S and SR at high values.

  2. Methods for Computing Accurate Atomic Spin Moments for Collinear and Noncollinear Magnetism in Periodic and Nonperiodic Materials.

    Science.gov (United States)

    Manz, Thomas A; Sholl, David S

    2011-12-13

    The partitioning of electron spin density among atoms in a material gives atomic spin moments (ASMs), which are important for understanding magnetic properties. We compare ASMs computed using different population analysis methods and introduce a method for computing density derived electrostatic and chemical (DDEC) ASMs. Bader and DDEC ASMs can be computed for periodic and nonperiodic materials with either collinear or noncollinear magnetism, while natural population analysis (NPA) ASMs can be computed for nonperiodic materials with collinear magnetism. Our results show Bader, DDEC, and (where applicable) NPA methods give similar ASMs, but different net atomic charges. Because they are optimized to reproduce both the magnetic field and the chemical states of atoms in a material, DDEC ASMs are especially suitable for constructing interaction potentials for atomistic simulations. We describe the computation of accurate ASMs for (a) a variety of systems using collinear and noncollinear spin DFT, (b) highly correlated materials (e.g., magnetite) using DFT+U, and (c) various spin states of ozone using coupled cluster expansions. The computed ASMs are in good agreement with available experimental results for a variety of periodic and nonperiodic materials. Examples considered include the antiferromagnetic metal organic framework Cu3(BTC)2, several ozone spin states, mono- and binuclear transition metal complexes, ferri- and ferro-magnetic solids (e.g., Fe3O4, Fe3Si), and simple molecular systems. We briefly discuss the theory of exchange-correlation functionals for studying noncollinear magnetism. A method for finding the ground state of systems with highly noncollinear magnetism is introduced. We use these methods to study the spin-orbit coupling potential energy surface of the single molecule magnet Fe4C40H52N4O12, which has highly noncollinear magnetism, and find that it contains unusual features that give a new interpretation to experimental data.

  3. Linear diffraction of light waves on periodically poled domain structures in lithium niobate crystals: collinear, isotropic, and anisotropic geometries

    International Nuclear Information System (INIS)

    Shandarov, S M; Mandel, A E; Akylbaev, T M; Borodin, M V; Savchenkov, E N; Smirnov, S V; Akhmatkhanov, A R; Shur, V Ya

    2017-01-01

    The possible variants of experimental observation of light diffraction on periodically poled domain structures (PPDS) in the lithium niobate crystal with 180-degree domain Y-walls are considered. We experimentally investigated isotropic and anisotropic diffraction of coherent light (λ = 655nm) on the PPDS with spatial period Λ = 8.79 μm produced by poling method in a LiNbO 3 : 5% MgO crystal. The central wavelength of irradiation experiencing a collinear diffraction on these PPDS is estimated as λ c = 455 nm. (paper)

  4. High-precision hyperfine structure measurement in slow atomic ion beams by collinear laser-rf double resonance

    International Nuclear Information System (INIS)

    Amarjit Sen; Childs, W.J.; Goodman, L.S.

    1987-01-01

    A new collinear laser-ion beam apparatus for slow ions (1 to 1.5 keV) has been built for measuring the hyperfine structure of metastable levels of ions with laser-rf double resonance technique. Narrow linewidths of ∼60 kHz (FWHM) have been observed for the first time in such systems. As a first application the hyperfine structure of the 4f 7 ( 8 S 0 )5d 9 D/sub J/ 0 metastable levels of /sup 151,153/Eu + has been measured with high precision. 10 refs., 8 figs

  5. Two-dimensional nonlinear heat conduction wave in a layer-inhomogeneous medium and the characteristics of heat transfer in laser thermonuclear fusion targets

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Doskach, I Ya

    1999-01-01

    An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)

  6. Spins, charge radii and magnetic moments of neutron-rich Mn isotopes measured with bunched beam Collinear Laser Spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2085887; Heylen, Hanne

    In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...

  7. Magnetization reversal and domain correlation for a non-collinear and out-of-plane exchange-coupled system

    International Nuclear Information System (INIS)

    Paul, Amitesh; Paul, N; Mattauch, Stefan

    2011-01-01

    We have investigated the impact of out-of-plane ferromagnetic (FM) anisotropy (which can be coincident with the direction of unidirectional anisotropy), where antiferromagnetic (AF) anisotropy is along the film plane. This provides a platform for non-collinear exchange coupling in an archetypal exchange coupled system in an unconventional way. We probe the in-plane magnetization by the depth-sensitive vector magnetometry technique. The experimental findings reveal a magnetization reversal (i) that is symmetric for both the branches of the hysteresis loop, (ii) that is characterized by vertically correlated domains associated with a strong transverse component of magnetization and (iii) that remains untrained (suppression of trained state) with field cycling. This scenario has been compared with in-plane magnetization reversal for a conventional in-plane unidirectional anisotropic case in the same system that shows usual asymmetric reversal and training for vertically uncorrelated domains. We explain the above observations for the out-of-plane case in terms of inhomogeneous magnetic states due to competing perpendicular anisotropies that result in non-collinear FM-AF coupling. This study provides direct evidence for the vertical correlation of domains mediated by out-of-plane exchange coupling.

  8. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    Science.gov (United States)

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  9. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  10. Optical and Hall conductivities of a thermally disordered two-dimensional spin-density wave: two-particle response in the pseudogap regime of electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Lin, J.; Millis, A.J.

    2011-01-01

    We calculate the frequency-dependent longitudinal (σ xx ) and Hall (σ xy ) conductivities for two-dimensional metals with thermally disordered antiferromagnetism using a generalization of a theoretical model, involving a one-loop quasistatic fluctuation approximation, which was previously used to calculate the electron self-energy. The conductivities are calculated from the Kubo formula, with current vertex function treated in a conserving approximation satisfying the Ward identity. In order to obtain a finite dc limit, we introduce phenomenologically impurity scattering, characterized by a relaxation time τ. σ xx ((Omega)) satisfies the f-sum rule. For the infinitely peaked spin-correlation function, χ(q)∝(delta)(q-Q), we recover the expressions for the conductivities in the mean-field theory of the ordered state. When the spin-correlation length ζ is large but finite, both σ xx and σ xy show behaviors characteristic of the state with long-range order. The calculation runs into difficulty for (Omega) ∼ xx ((Omega)) and σ xy ((Omega)) are qualitatively consistent with data on electron-doped cuprates when (Omega) > 1/τ.

  11. Fully-converged three-dimensional collision-induced dissociation calculations with Faddeev-AGS theory

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1981-09-01

    The first fully-converged quantum-mechanical calculation of the collision-induced dissociation cross section in a three-dimensional-model system of three helium-like atoms is reported. Faddeev-AGS theory is used. It yields as a bonus the elastic atom-diatom cross section. The obtained results resemble those from some collinear models but indicate clearly the futility of multiple-scattering approximations except at hyperthermal energies. (orig.)

  12. Breaking Symmetry in Time-Dependent Electronic Structure Theory to Describe Spectroscopic Properties of Non-Collinear and Chiral Molecules

    Science.gov (United States)

    Goings, Joshua James

    Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra

  13. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound......Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  14. A facile self-template strategy to fabricate three-dimensional nitrogen-doped hierarchical porous carbon/graphene for conductive agent-free supercapacitors with excellent electrochemical performance

    International Nuclear Information System (INIS)

    Yuanyuan, Yin; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2014-01-01

    Graphical abstract: - Highlights: • The paper reported a facile template-free strategy to fabricate three-dimensional nitrogen-doped hierarchical porous carbon/graphene (3D-NHPC/G). • Such a new concept of strategy creates 3D carbon framework, hierarchical pore distribution, moderate graphitization and appropriate nitrogen doping. • The 3D-NHPC/G offers high electric conductivity, mass transfer and specific surface area. • The 3D-NHPC/G electrode displays an largely enhanced electrochemical performance. - Abstract: Carbon materials with large surface area, high conductivity and suitable pore distribution are highly desirable for high-performance supercapacitors. The paper reported a self-template strategy for the fabrication of three-dimensional nitrogen-doped hierarchical porous carbon/graphene (3D-NHPC/G). The mixture of beer yeast cells, graphite oxide, urea, potassium hydroxide and phytic acid was dispersed in water by ultrasonication to form homogeneous slurry, which was then dried by spray drying and finally heated at 850°C in Ar/H 2 environment. The study shows that such a new strategy creates a 3D carbon framework, hierarchical pore distribution, moderate graphitization and appropriate nitrogen doping. The as-prepared 3D-NHPC/G offers excellent dispersion, specific surface area of 3108.7 m 2 g −1 and electronic conductivity of 3096 S m −1 , which is more than six-fold that of 3D-NHPC (494 S m −1 ). Owing to the greatly enchanced electron transfer and mass transport, the 3D-NHPC/G electrode displays the largely enhanced electrochemical performance. In 6 mol l −1 potassium hydroxide aqueous electrolyte, its specific capacitance is 318 F g −1 at the current density of 1 A g −1 , 277 F g −1 at the current density of 10 A g −1 , and 155 F g −1 at the current density of 100 A g −1 that can remain at least 96.5% after 10000 cycles. In 1 mol l −1 tetraethylammonium tetrafluoroborate organic electrolyte, the specific capacitance is 138

  15. Measurement of Moments and Radii of Light Nuclei by Collinear Fast-Beam Laser Spectroscopy and $\\beta$-NMR Spectroscopy

    CERN Multimedia

    Marinova, K P

    2002-01-01

    Nuclear Moments and radii of light unstable isotopes are investigated by applying different high-sensitivity and high-resolution techniques based on collinear fast-beam laser spectroscopy. A study of nuclear structure in the sd shell is performed on neon isotopes in the extended chain of $^{17-28}$Ne, in particular on the proton-halo candidate $^{17}$Ne. Measurements of hyperfine structure and isotope shift have become possible by introducing an ultra-sensitive non-optical detection method which is based on optical pumping, state-selective collisional ionization and $\\beta$-activity counting. The small effect of nuclear radii on the optical isotope shifts of light elements requires very accurate measurements. The errors are dominated by uncertainties of the Doppler shifts which are conventionally determined from precisely measured acceleration voltages. These uncertainties are removed by measuring the beam energy with simultaneous excitation of two optical lines in parallel / antiparallel beam configuration. ...

  16. Thermal rate coefficients in collinear versus bent transition state reactions: the N+N{sub 2} case study

    Energy Technology Data Exchange (ETDEWEB)

    Lagana, Antonio; Faginas Lago, Noelia; Rampino, Sergio [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy); Huarte-Larranaga, FermIn [Computer Simulation and Modeling Lab (CoSMoLab), Parc CientIfic de Barcelona, 08028 Barcelona (Spain); GarcIa, Ernesto [Departamento de Quimica Fisica, Universidad del PaIs Vasco, 01006 Vitoria (Spain)], E-mail: lagana05@gmail.com, E-mail: fhuarte@pcb.ub.es, E-mail: e.garcia@ehu.es

    2008-10-15

    Zero total angular momentum exact quantum calculations of the probabilities of the N+N{sub 2} reaction have been performed on the L3 potential energy surface having a bent transition state. This has allowed us to work out J-shifting estimates of the thermal rate coefficient based on the calculation of either detailed (state-to-state) or cumulative (multiconfiguration) probabilities. The results obtained are used to compare the numerical outcomes and the concurrent computational machineries of both quantum and semiclassical approaches as well as to exploit the potentialities of the J-shifting model. The implications of moving the barrier to reaction from the previously proposed collinear geometry of the LEPS to the bent one of L3 are also investigated by comparing the related detailed reactive probabilities.

  17. Adaptive non-collinear autocorrelation of few-cycle pulses with an angular tunable bi-mirror

    Energy Technology Data Exchange (ETDEWEB)

    Treffer, A., E-mail: treffer@mbi-berlin.de; Bock, M.; König, S.; Grunwald, R. [Max Born Institute for Nonlinear Optics and Short-Pulse Spectroscopy, Max Born Strasse 2A, D-12489 Berlin (Germany); Brunne, J.; Wallrabe, U. [Laboratory for Microactuators, Department of Microsystems Engineering, IMTEK, University of Freiburg, Georges-Koehler-Allee 102, Freiburg 79110 (Germany)

    2016-02-01

    Adaptive autocorrelation with an angular tunable micro-electro-mechanical system is reported. A piezo-actuated Fresnel bi-mirror structure was applied to measure the second order autocorrelation of near-infrared few-cycle laser pulses in a non-collinear setup at tunable superposition angles. Because of enabling measurements with variable scaling and minimizing the influence of distortions by adaptive self-reconstruction, the approach extends the capability of autocorrelators. Flexible scaling and robustness against localized amplitude obscurations are demonstrated. The adaptive reconstruction of temporal frequency information by the Fourier analysis of autocorrelation data is shown. Experimental results and numerical simulations of the beam propagation and interference are compared for variable angles.

  18. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules

    International Nuclear Information System (INIS)

    Garrett, B.C.; Truhlar, D.G.

    1979-01-01

    Canonical variational transition state theory, microcanonical variational transition state theory, and Miller's unified statistical theory were used in an attempt to correct two major deficiencies of the conventional transition state theory. These are: (1) the necessity of extra assumptions to include quantum mechanical tunneling effects and (2) the fundamental assumption that trajectories crossing a dividing surface in phase space proceed directly to products. The accuracy of these approximate methods were tested by performing calculations for several collinear reactions of hydrogen, deuterium, chlorine, or iodine, with five isotopes of hydrogen molecules and comparison of these results with those from accurate quantitative calculations of the reaction probabilities as functions of energy and of the thermal rate constants as functions of temperature. 49 references, 28 figures, 17 tables

  19. Colliding pulse injection experiments in non-collinear geometry for controlled laser plasma wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler, D.; Cary, J.R.

    2007-01-01

    An optical injection scheme for a laser-plasma based accelerator which employs a non-collinear counter-propagating laser beam to push background electrons in the focusing and acceleration phase via ponderomotive beat with the trailing part of the wakefield driver pulse is discussed. Preliminary experiments were performed using a drive beam of a 0 = 2.6 and colliding beam of a 1 = 0.8 both focused on the middle of a 200 mu m slit jet backed with 20 bar, which provided ∼ 260 mu m long gas plume. The enhancement in the total charge by the colliding pulse was observed with sharp dependence on the delay time of the colliding beam. Enhancement of the neutron yield was also measured, which suggests a generation of electrons above 10 MeV

  20. Quantitative, simultaneous, and collinear eye-tracked, high dynamic range optical coherence tomography at 850 and 1060 nm

    Science.gov (United States)

    Mooser, Matthias; Burri, Christian; Stoller, Markus; Luggen, David; Peyer, Michael; Arnold, Patrik; Meier, Christoph; Považay, Boris

    2017-07-01

    Ocular optical coherence tomography at the wavelengths ranges of 850 and 1060 nm have been integrated with a confocal scanning laser ophthalmoscope eye-tracker as a clinical commercial-class system. Collinear optics enables an exact overlap of the different channels to produce precisely overlapping depth-scans for evaluating the similarities and differences between the wavelengths to extract additional physiologic information. A reliable segmentation algorithm utilizing Graphcuts has been implemented and applied to automatically extract retinal and choroidal shape in cross-sections and volumes. The device has been tested in normals and pathologies including a cross-sectional and longitudinal study of myopia progress and control with a duplicate instrument in Asian children.

  1. Measurement of the spectral shift of the 3d→4p transitions in Ar+, Cl+ and S+ by means of collinear fast-beam laser spectroscopy

    International Nuclear Information System (INIS)

    Eichhorn, A.

    1981-01-01

    The spectral shift of the 3d→4p transitions in Ar + ( 36 Ar + and 40 Ar + ) Cl + ( 35 Cl + and 37 Cl + ) and S + ( 32 S + + 34 S + ) were measured by means of collinear fast-beam laser spectroscopy. Since the volume effect is neglectible only the normal and specific mass effect give contributions to the spectral shift. (BEF)

  2. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

    2014-01-01

    We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

  3. Pressure dependence of conductivity

    International Nuclear Information System (INIS)

    Bracewell, B.L.; Hochheimer, H.D.

    1993-01-01

    The overall objectives of this work were to attempt the following: (1) Measure the pressure dependence of the electrical conductivity of several quasi-one-dimensional, charge-density-wave solids, including measurements along various crystal directions. (2) Measure photocurrents in selected MX solids at ambient and elevated pressures. (3) Measure the resonance Raman spectra for selected MX solids as a function of pressure

  4. Structural studies of precursor and partially oxidized conducting complexes. 19. Synthesis and crystal structure of Cs2[Pt(CN)4]Cl/sub 0.30, the first anhydrous one-dimensional tetracyanoplatinate chloride complex

    International Nuclear Information System (INIS)

    Brown, R.K.; Williams, J.M.

    1978-01-01

    The preparation and single-crystal x-ray structural characterization of a new, partially oxidized tetracyanoplatinate (POTCP), Cs 2 [Pt(CN) 4 ]Cl/sub 0.30/, CsCP(Cl), has been carried out. This one-dimensional conducting salt crystallizes with four formula units in the tetragonal unit cell I4/mcm, with cell constants a = 13.176 (2) A, c = 5.718 (1) A, and V = 992.7 A 3 . A total of 3112 observed data were averaged to yield 427 independent reflections. The structure was solved by standard heavy-atom methods and was refined by full-matrix least squares to a final R(F 0 2 ) = 0.045 and R/sub w/(F 0 2 ) = 0.059. Pertinent structural features include perfectly linear chains of Pt atoms with Pt-Pt separations crystallographically constrained to a value of (c/2) = 2.859 (2) A and interchain Pt-Pt distances of 9.317 A. Separations between the Cs + and Cl - ions are significantly shorter than the sum of the ionic radii. A discussion of these unusually short interionic distances and the absence of hydration as determined from the structural study and themogravimetric analyses is given. 2 figures, 2 tables

  5. Effect of cubic Dresselhaus interaction on the longitudinal optical conductivity of a spin-orbit coupled system

    Science.gov (United States)

    Cruz, Elmer; López-Bastidas, Catalina; Maytorena, Jesús A.

    2018-03-01

    We investigate the effect of the oft-neglected cubic terms of the Dresselhaus spin-orbit coupling on the longitudinal current response of a two-dimensional electron gas with both Rashba and linear Dresselhaus interactions. For a quantum well grown in the [001] direction, the changes caused by these nonlinear-in-momentum terms on the absorption spectrum become more notable under SU(2) symmetry conditions, when the Rashba and linear Dresselhaus coupling strengths are tuned to be equal. The longitudinal optical response no longer vanishes then and shows a strong dependence on the direction of the externally applied electric field, giving a signature of the relative size of several spin-orbit contributions. This anisotropic response arises from the nonisotropic splitting of the spin states induced by the interplay of Rashba and Dresselhaus couplings. However, the presence of cubic terms introduces characteristic spectral features and can modify the overall shape of the spectra for some values of the relative sizes of the spin-orbit parameters. We compare this behavior to the case of a sample with [110] crystal orientation which, under conditions of spin-preserving symmetry, has a collinear spin-orbit vector field that leads to vanishing conductivity, even in the presence of cubic terms. In addition to the control through the driven frequency or electrical gating, such a directional aspect of the current response suggests new ways of manipulation and supports the use of interband optics as a sensitive probe of spin-orbit mechanisms in semiconductor spintronics.

  6. Conducting Polymers

    Indian Academy of Sciences (India)

    would exhibit electronic conductivity, their conductivities (of compressed pellets) were indeed measured by others, and were found to be .... Polyaniline. Polyphenylene. Polypheny lene- vinylene. Table 1. G!NeRAl I ARTICl! structure. Maximum conductivity Stem Stability. Processability. ~. 1.5 x 105. Reacts with Film not n air.

  7. Semiclassical calculation for collision induced dissociation. III. Restricted two dimensional Morse oscillator model

    International Nuclear Information System (INIS)

    Rusinek, I.

    1980-01-01

    A semiclassical procedure previously used for collinear CID calculations is applied to the perpendicular collisions (2D, no rotation, zero impact parameter) of a Morse homonuclear diatomic molecule and an atom, interacting via an exponential repulsive potential. Values of the dissociation probability (P/sup diss/) are given as a function of total energy (E/sub t/) and initial vibrational state (n 1 =0,1,3,5) for a system with three identical masses. The results are compared with the P/sup diss/ previously reported for an identical one dimensional system. We find: (a) quasiclassical P/sup diss/ that are a good approximation to the semiclassical ones, if CID is classically allowed, (b) vibrational enhancement of CID, and (c) energetic thresholds for dissociation similar to the ones found in the collinear case

  8. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    Science.gov (United States)

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  9. Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding.

    Science.gov (United States)

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Huang, Yong; Tan, Xiaodi

    2018-02-19

    A novel phase modulation method for holographic data storage with phase-retrieval reference beam locking is proposed and incorporated into an amplitude-encoding collinear holographic storage system. Unlike the conventional phase retrieval method, the proposed method locks the data page and the corresponding phase-retrieval interference beam together at the same location with a sequential recording process, which eliminates piezoelectric elements, phase shift arrays and extra interference beams, making the system more compact and phase retrieval easier. To evaluate our proposed phase modulation method, we recorded and then recovered data pages with multilevel phase modulation using two spatial light modulators experimentally. For 4-level, 8-level, and 16-level phase modulation, we achieved the bit error rate (BER) of 0.3%, 1.5% and 6.6% respectively. To further improve data storage density, an orthogonal reference encoding multiplexing method at the same position of medium is also proposed and validated experimentally. We increased the code rate of pure 3/16 amplitude encoding method from 0.5 up to 1.0 and 1.5 using 4-level and 8-level phase modulation respectively.

  10. Suitable configurations for triangular formation flying about collinear libration points under the circular and elliptic restricted three-body problems

    Science.gov (United States)

    Ferrari, Fabio; Lavagna, Michèle

    2018-06-01

    The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.

  11. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  12. High-voltage measurements on the 5 ppm relative uncertainty level with collinear laser spectroscopy

    Science.gov (United States)

    Krämer, J.; König, K.; Geppert, Ch; Imgram, P.; Maaß, B.; Meisner, J.; Otten, E. W.; Passon, S.; Ratajczyk, T.; Ullmann, J.; Nörtershäuser, W.

    2018-04-01

    We present the results of high-voltage collinear laser spectroscopy measurements on the 5 ppm relative uncertainty level using a pump and probe scheme at the 4s ^2S1/2 → 4p ^2P3/2 transition of {\\hspace{0pt}}40Ca+ involving the 3d ^2D5/2 metastable state. With two-stage laser interaction and a reference measurement we can eliminate systematic effects such as differences in the contact potentials due to different electrode materials and thermoelectric voltages, and the unknown starting potential of the ions in the ion source. Voltage measurements were performed between  -5 kV and  -19 kV and parallel measurements with stable high-voltage dividers calibrated to 5 ppm relative uncertainty were used as a reference. Our measurements are compatible with the uncertainty limits of the high-voltage dividers and demonstrate an unprecedented (factor of 20) increase in the precision of direct laser-based high-voltage measurements.

  13. Frequency-comb based collinear laser spectroscopy of Be for nuclear structure investigations and many-body QED tests

    CERN Document Server

    Krieger, A

    2017-01-01

    Absolute transition frequencies of the $2s\\,^2{\\rm{S}}_{1/2}$ $\\rightarrow$ $2p\\,^2{\\rm{P}}_{1/2,3/2}$ transitions in Be$^+$ were measured with a frequency comb in stable and short-lived isotopes at ISOLDE (CERN) using collinear laser spectroscopy. Quasi-simultaneous measurements in copropagating and counterpropagating geometry were performed to become independent from acceleration voltage determinations for Doppler-shift corrections of the fast ion beam. Isotope shifts and fine structure splittings were obtained from the absolute transition frequencies with accuracies better than 1\\,MHz and led to a precise determination of the nuclear charge radii of $^{7,10-12}$Be relative to the stable isotope $^9$Be. Moreover, an accurate determination of the $2p$ fine structure splitting allowed a test of high-precision bound-state QED calculations in the three-electron system. Here, we describe the laser spectroscopic method in detail, including several tests that were carried out to determine or estimate systematic un...

  14. Conductivities from attractors

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Fernández, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Goulart, Prieslei [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, São Paulo 01140-070, SP (Brazil); Witkowski, Piotr [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany)

    2017-03-28

    In the context of applications of the AdS/CFT correspondence to condensed matter physics, we compute conductivities for field theory duals of dyonic planar black holes in 3+1-dimensional Einstein-Maxwell-dilaton theories at zero temperature. We combine the near-horizon data obtained via Sen’s entropy function formalism with known expressions for conductivities. In this way we express the conductivities in terms of the extremal black hole charges. We apply our approach to three different examples for dilaton theories for which the background geometry is not known explicitly. For a constant scalar potential, the thermoelectric conductivity explicitly scales as α{sub xy}∼N{sup 3/2}, as expected. For the same model, our approach yields a finite result for the heat conductivity κ/T∝N{sup 3/2} even for T→0.

  15. Associated production of Z bosons and b-jets at the LHC in the combined k{sub T} + collinear QCD factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, S.P. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Jung, H. [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Lipatov, A.V. [Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Joint Institute for Nuclear Research, Dubna (Russian Federation); Malyshev, M.A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)

    2017-11-15

    We consider the production of Z bosons associated with beauty quarks at the LHC using a combined k{sub T} + collinear QCD factorization approach, which interpolates between small x and large x physics. Our consideration is based on the off-shell gluon-gluon fusion subprocess g*g* → ZQ anti Q at the leading order O(αα{sub s}{sup 2}) (where the Z boson further decays into a lepton pair), calculated in the k{sub T}-factorization approach, and several subleading O(αα{sub s}{sup 2}) and O(αα{sub s}{sup 3}) subprocesses involving quark-antiquark and quark-gluon interactions, taken into account in conventional (collinear) QCD factorization. The contributions from double parton scattering are discussed as well. The transverse momentum dependent (or unintegrated) gluon densities in a proton are derived from Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation. We achieve reasonably good agreement with the latest data taken by CMS and ATLAS Collaborations. The comparison of our results with next-to-leading-order pQCD predictions, obtained in the collinear QCD factorization, is presented. We discuss the uncertainties of our calculations and demonstrate the importance of subleading quark-involving contributions in describing the LHC data in the whole kinematic region. (orig.)

  16. Associated production of Z bosons and b-jets at the LHC in the combined k{sub T}+collinear QCD factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, S.P. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lipatov, A.V. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Joint Institute for Nuclear Research, Dubna (Russian Federation); Malyshev, M.A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2017-08-15

    We consider the production of Z bosons associated with beauty quarks at the LHC using a combined k{sub T}+collinear QCD factorization approach, that interpolates between small x and large x physics. Our consideration is based on the off-shell gluon-gluon fusion subprocess g{sup *}g{sup *}→ZQ anti Q at the leading order O(αα{sup 2}{sub s}) (where the Z boson further decays into a lepton pair), calculated in the k{sub T}-factorization approach, and several subleading O(αα{sup 2}{sub s}) and O(αα{sup 3}{sub s}) subprocesses involving quark-antiquark and quark-gluon interactions, taken into account in conventional (collinear) QCD factorization. The contributions from double parton scattering are discussed as well. The transverse momentum dependent (or unintegrated) gluon densities in a proton are derived from Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation. We achieve reasonably good agreement with the latest data taken by CMS and ATLAS Collaborations. The comparison of our results with next-to-leading-order pQCD predictions, obtained in the collinear QCD factorization, is presented. We discuss the uncertainties of our calculations and demonstrate the importance of subleading quark involving contributions in describing the LHC data in the whole kinematic region.

  17. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]{sub 6}/Pt/Co/Pt multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Kalaycı, Taner, E-mail: taner.kalayci@marmara.edu.tr [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Deger, Caner [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Akbulut, Salih [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey); Yildiz, Fikret, E-mail: fyildiz@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2017-08-15

    Highlights: • Effects of Pt spacer and reference layers thickness are investigated by MOKE and FMR. • Controlling of non-collinear states in multilayered thin film systems is studied. • Micromagnetic approach is used for modeling of magnetic multilayered structure. • Magnetic parameters are determined by a simulation based on metropolis algorithm. - Abstract: In this study, effects of Pt spacer and Co reference layers thickness in [Co/Pt]{sub 6}/Pt/Co multilayer have been revealed to tailor magnetization directions in non-collinear configuration. Magneto-optic Kerr effect and ferromagnetic resonance techniques were employed to investigate magnetic properties. Bilinear coupling between [Co/Pt]{sub 6} and Co layers and anisotropy constants were determined by a micromagnetic simulation based on metropolis algorithm. 3 nm spacer causes ferromagnetic coupling while the samples have 4 and 5 nm spacer are coupled anti-ferromagneticaly. Also, tuning magnetic anisotropy of [Co/Pt]{sub 6} layer was accomplished by Co reference layer. It is revealed that controlling of non-collinear states in such systems is possible by variation of thickness of spacer and reference layers and [Co/Pt]{sub 6}/t{sub Pt}/t{sub Co} trilayer system can be used in multilayered magnetic systems.

  18. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  19. Conduct Disorder

    Science.gov (United States)

    ... objections runs away from home often truant from school Children who exhibit these behaviors should receive a comprehensive evaluation by an experience mental health professional. Many children with a conduct disorder may ...

  20. Krypton separation from ambient air for application in collinear fast beam laser spectroscopy.

    Science.gov (United States)

    Mohamed, Tarek; Strohaber, James; Nava, Ricardo; Kolomenskii, Alexandre; Thonnard, Norbert; Schuessler, Hans A

    2012-07-01

    A portable apparatus for the separation of krypton from environmental air samples was tested. The apparatus is based on the cryogenic trapping of gases at liquid nitrogen temperature followed by controlled releases at higher temperatures. The setup consists of a liquid nitrogen trap for the removal of H(2)O and CO(2), followed by charcoal-filled coils that sequentially collect and release krypton and other gases providing four stages of gas chromatography to achieve separation and purification of krypton from mainly N(2), O(2), and Ar. Residual reactive gases remaining after the final stage of chromatography are removed with a hot Ti sponge getter. A thermal conductivity detector is used to monitor the characteristic elution times of the various components of condensed gases in the traps during step-wise warming of the traps from liquid nitrogen temperatures to 0 °C, and then to 100 °C. This allows optimizing the switching times of the valves between the stages of gas chromatography so that mainly krypton is selected and loaded to the next stage while exhausting the other gases using a He carrier. A krypton separation efficiency of ~80 % was determined using a quadrupole mass spectrometer.

  1. Excited-level lifetimes and hyperfine-structure measurements on ions using collinear laser--ion-beam spectroscopy

    International Nuclear Information System (INIS)

    Jin, J.; Church, D.A.

    1994-01-01

    The mean lifetimes τ of the Ca II 4p 2 P 1/2 and 4p 2 P 3/2 levels, and the 35 Cl II 4p' 1 F 3 level, have been measured by a variant of the collinear laser--ion-beam lifetime technique applied previously to the Ar II 4p' 2 F 7/2 o level [Jian Jin and D. A. Church, Phys. Rev. A 47, 132 (1993)]. The present results are τ(Ca II, 4p 2 P 1/2 )=7.098(0.020) ns, τ(Ca II, 4p 2 P 3/2 )=6.924(0.019) ns, and τ(Cl II, 4p' 1 F 3 ) =11.17(0.06) ns. The experimental lifetimes of these, plus the Ar II 4p' 2 F 7/2 level, are compared with available recent many-electron calculations. Typically 1%--3% differences between measurement and ab initio theory are found, while certain semiempirical calculations are in better agreement with experiment. Data for other precise lifetime measurements on alkali-metal systems are compared with recent ab initio and semiempirical calculations to provide perspective on the Ca II results. The hyperfine structure of the 35 Cl II 3d' 1 G 4 --4p' 1 F 3 transition was also measured and analyzed in the course of the measurements, with the resulting hyperfine-structure constants: A( 1 F 3 )=301.9(0.5) MHz, B( 1 F 3 )=-6.7(0.8) MHz, A( 1 G 4 )=205.1(0.5) MHz, and B( 1 G 4 )=-3.9(2.4) MHz

  2. The influence of photon depth of interaction and non-collinear spread of annihilation photons on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.

    2006-01-01

    The quality of PET imaging is impaired by parallax errors. These errors produce misalignment between the projected location of the true origin of the annihilation event and the line of response determined by the coincidence detection system. Parallax errors are due to the varying depths of photon interaction (DOI) within the scintillator and the non-collinear (NC) emission of the annihilation photons. The aim of this work was to address the problems associated with the DOI and the NC spread of annihilation photons and to develop a quantitative model to assess their impact on image spatial resolution losses for various commonly used scintillators and PET geometries. A theoretical model based on Monte Carlo simulations was developed to assess the relative influence of DOI and the NC spread of annihilation photons on PET spatial resolution for various scintillator materials (BGO, LSO, LuAP, GSO, NaI) and PET geometries. The results demonstrate good agreement between simulated, experimental and published overall spatial resolution for some commercial systems, with maximum differences around 1 mm in both 2D and 3D mode. The DOI introduces an impairment of non-stationary spatial resolution along the radial direction, which can be very severe at peripheral positions. As an example, the radial spatial resolution loss due to DOI increased from 1.3 mm at the centre to 6.7 mm at 20 cm from the centre of a BGO camera with a 412-mm radius in 2D mode. Including the NC, the corresponding losses were 3.0 mm at the centre and 7.3 mm 20 cm from the centre. Without a DOI detection technique, it seems difficult to improve PET spatial resolution and increase sensitivity by reducing the detector ring radius or by extending the detector in the axial direction. Much effort is expended on the design and configuration of smaller detector elements but more effort should be devoted to the DOI complexity. (orig.)

  3. Conduct disorders

    NARCIS (Netherlands)

    Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.

    2013-01-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic

  4. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. CTBC. A program to solve the collinear three-body Coulomb problem. Bound states and scattering below the three-body disintegration threshold

    International Nuclear Information System (INIS)

    Tolstikhin, Oleg I.; Namba, Chusei

    2003-08-01

    A program to solve the quantum-mechanical collinear three-body Coulomb problem is described and illustrated by calculations for a number of representative systems and processes. In the internal region, the Schroedinger equation is solved in hyperspherical coordinates using the slow/smooth variable discretization method. In asymptotic regions, the solution is obtained in Jacobi coordinates using the asymptotic package GAILIT from the CPC library. Only bound states and scattering processes below the three-body disintegration threshold are considered here; resonances and fragmentation processes will be discussed in subsequent parts of this series. (author)

  6. Magnetic ordering in arrays of one-dimensional nanoparticle chains

    International Nuclear Information System (INIS)

    Serantes, D; Baldomir, D; Pereiro, M; Hernando, B; Prida, V M; Sanchez Llamazares, J L; Zhukov, A; Ilyn, M; Gonzalez, J

    2009-01-01

    The magnetic order in parallel-aligned one-dimensional (1D) chains of magnetic nanoparticles is studied using a Monte Carlo technique. If the easy anisotropy axes are collinear along the chains a macroscopic mean-field approach indicates antiferromagnetic (AFM) order even when no interparticle interactions are taken into account, which evidences that a mean-field treatment is inadequate for the study of the magnetic order in these highly anisotropic systems. From the direct microscopic analysis of the evolution of the magnetic moments, we observe spontaneous intra-chain ferromagnetic (FM)-type and inter-chain AFM-type ordering at low temperatures (although not completely regular) for the easy-axes collinear case, whereas a random distribution of the anisotropy axes leads to a sort of intra-chain AFM arrangement with no inter-chain regular order. When the magnetic anisotropy is neglected a perfectly regular intra-chain FM-like order is attained. Therefore it is shown that the magnetic anisotropy, and particularly the spatial distribution of the easy axes, is a key parameter governing the magnetic ordering type of 1D-nanoparticle chains.

  7. Conduct disorders.

    Science.gov (United States)

    Buitelaar, Jan K; Smeets, Kirsten C; Herpers, Pierre; Scheepers, Floor; Glennon, Jeffrey; Rommelse, Nanda N J

    2013-02-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic and therapeutic approaches to CD in the light of the forthcoming DSM-5 definition. The diagnostic criteria for CD will remain unchanged in DSM-5, but the introduction of a specifier of CD with a callous-unemotional (CU) presentation is new. Linked to this, we discuss the pros and cons of various other ways to subtype aggression/CD symptoms. Existing guidelines for CD are, with few exceptions, already of a relatively older date and emphasize that clinical assessment should be systematic and comprehensive and based on a multi-informant approach. Non-medical psychosocial interventions are recommended as the first option for the treatment of CD. There is a role for medication in the treatment of comorbid syndromes and/or in case of insufficient response to psychosocial interventions and severe and dangerous aggressive and violent behaviours.

  8. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  9. Comparison between measurements of hyperfine structures of Pr II - lines investigated by collinear laser ion beam spectroscopy (CLIBS) ans saturation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Nadeem; Anjum, Naveed [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Optics Labs, Nilore, Islamabad (Pakistan); Huehnermann, Harry [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Fachbereich Physik, Univ. Marburg/Lahn (Germany); Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    Investigation of narrow hyperfine structures needs a reduction of the Doppler broadening of the investigated lines. Here we have used two methods: collinear laser spectroscopy (CLIBS) and laser saturation spectroscopy. In the first method, the Doppler width is reduced by accelerating Pr ions to a high velocity and excitation with a collinear laser beam, while in the second method ions with velocity group zero are selected by nonlinear saturation. In this work the hyperfine spectra of several Pr II lines were investigated using CLIBS. A line width of ca. 60 MHz was measured. The same lines were then investigated in a hollow cathode discharge lamp using intermodulated laser-induced fluorescence spectroscopy. Using this technique a spectral line width of about 200 MHz was achieved. In both methods, the excitation source is a ring dye laser operated with R6G. Using a fit program, magnetic dipole interaction constants A and the electric-quadrupole interaction constants B of the involved levels have been determined in both cases. We discuss advantages and disadvantages of both methods.

  10. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    Science.gov (United States)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  11. Two methods for nuclear spin determination in collinear laser spectroscopy: classical r.f. magnetic resonance and observation of the Larmor precession

    International Nuclear Information System (INIS)

    Bendali, N.; Duong, H.T.; Saint-Jalm, J.M.; Vialle, J.L.

    1984-01-01

    Measurement of nuclear spin in the collinear laser spectroscopy method has been investigated using a fast sodium atomic beam excited collinearly by a C.W. single mode dye laser beam. The atomic magnetic moments are first aligned by optical pumping process, then they interact with a static magnetic field H 0 . The magnetic alignment of the atomic system just at the exit of the magnetic field is monitored by the laser induced fluorescence. Upon varying the amplitude of H 0 , the fluorescence signal presents a fringed structure. This structure is due to the Larmor precession of the aligned magnetic moments around H 0 , and therefore it is a signature of the spin involved. The modulation patterns corresponding to different relative orientations of H 0 and light polarization direction, are fitted by an analytical formula. In a second step, a classical magnetic resonance experiment with a static magnetic field and a radiofrequency field has been performed. The monocinetic character of our fast atomic beam allowed us to observe, even at high r.f. power, resonances line shapes in agreement with the Majorana formula

  12. Design of the stabilizing control of the orbital motion in the vicinity of the collinear libration point L1 using the analytical representation of the invariant manifold

    Science.gov (United States)

    Maliavkin, G. P.; Shmyrov, A. S.; Shmyrov, V. A.

    2018-05-01

    Vicinities of collinear libration points of the Sun-Earth system are currently quite attractive for the space navigation. Today, various projects on placing of spacecrafts observing the Sun in the L1 libration point and telescopes in L2 have been implemented (e.g. spacecrafts "WIND", "SOHO", "Herschel", "Planck"). Collinear libration points being unstable leads to the problem of stabilization of a spacecraft's motion. Laws of stabilizing motion control in vicinity of L1 point can be constructed using the analytical representation of a stable invariant manifold. Efficiency of these control laws depends on the precision of the representation. Within the model of Hill's approximation of the circular restricted three-body problem in the rotating geocentric coordinate system one can obtain the analytical representation of an invariant manifold filled with bounded trajectories in a form of series in terms of powers of the phase variables. Approximate representations of the orders from the first to the fourth inclusive can be used to construct four laws of stabilizing feedback motion control under which trajectories approach the manifold. By virtue of numerical simulation the comparison can be made: how the precision of the representation of the invariant manifold influences the efficiency of the control, expressed by energy consumptions (characteristic velocity). It shows that using approximations of higher orders in constructing the control laws can significantly reduce the energy consumptions on implementing the control compared to the linear approximation.

  13. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  14. Surface-sensitive conductivity measurement using a micro multi-point probe approach

    DEFF Research Database (Denmark)

    Perkins, Edward; Barreto, Lucas; Wells, Justin

    2013-01-01

    An instrument for microscale electrical transport measurements in ultra-high vacuum is presented. The setup is constructed around collinear lithographically-created multi-point probes with a contact spacing down to 500 nm. Most commonly, twelve-point probes are used. These probes are approached...... measurements with an equidistant four-point probe for a wide range of contact spacings. In this way, it is possible to distinguish between bulk-like and surface-like conduction. The paper describes the design of the instrument and the approach to data and error analysis. Application examples are given...

  15. Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system.

    Science.gov (United States)

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi

    2017-06-01

    The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.

  16. A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Jahan B.; Zolfonoun, Ehsan [Toosi University of Technology, Tehran (Korea, Republic of)

    2012-05-15

    Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms.

  17. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  18. A New Variable Selection Method Based on Mutual Information Maximization by Replacing Collinear Variables for Nonlinear Quantitative Structure-Property Relationship Models

    International Nuclear Information System (INIS)

    Ghasemi, Jahan B.; Zolfonoun, Ehsan

    2012-01-01

    Selection of the most informative molecular descriptors from the original data set is a key step for development of quantitative structure activity/property relationship models. Recently, mutual information (MI) has gained increasing attention in feature selection problems. This paper presents an effective mutual information-based feature selection approach, named mutual information maximization by replacing collinear variables (MIMRCV), for nonlinear quantitative structure-property relationship models. The proposed variable selection method was applied to three different QSPR datasets, soil degradation half-life of 47 organophosphorus pesticides, GC-MS retention times of 85 volatile organic compounds, and water-to-micellar cetyltrimethylammonium bromide partition coefficients of 62 organic compounds.The obtained results revealed that using MIMRCV as feature selection method improves the predictive quality of the developed models compared to conventional MI based variable selection algorithms

  19. Dimensional Analysis

    Indian Academy of Sciences (India)

    Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.

  20. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  1. Collinear laser spectroscopy of calcium and tin at TRIGA-LASER and ISOLDE; Kollineare Laserspektroskopie an Calcium und Zinn an TRIGA-LASER und ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Gorges, Christian

    2017-05-10

    From the optical spectra of the ions and atoms we can extract the spin, the change in mean square charge radius, the magnetic dipole moments, and the electric quadrupole moments. To investigate these properties, collinear laser spectroscopy is a particular appropriate method because it is universally applicable, very efficient and allows to investigate short-lived particles with lifetimes in the range of milliseconds and production rates of a few hundred particles per second. Within the scope of this work, a control system (TRITON) was developed for the collinear laser spectroscopy experiment LASPEC at FAIR, which allows distributed access to the various control elements and is therefore very flexible. It was developed and tested on the LASPEC prototype, the TRIGA-LASER experiment at the research reactor TRIGA Mainz. Using TRITON, the isotope shifts of the stable calcium isotopes {sup 40,42,44,48}Ca have been measured in the 4s{sub 1/2}→4p{sub 3/2} transition with an accuracy, which exceeded the previous literature values by about one order of magnitude. These data were the basis for the precise determination of the nuclear charge radii of the calcium isotopes {sup 49-52}Ca from collinear laser spectroscopy installation COLLAPS at ISOLDE/CERN. Furthermore, developments for spectroscopy on {sup 53,54}Ca at COLLAPS have been carried out, where TRITON was also used. The production rates for {sup 54}Ca are about one ion per second and optical detection is no longer possible. Instead, the technique of optical pumping with state selective charge exchange and β-detection of single ions was implemented at COLLAPS and successfully demonstrated at {sup 52}Ca. With these applications, the performance and operational readiness of the LASPEC control system for FAIR was successfully demonstrated. In the second part of the work, spectroscopy on the tin isotopes {sup 109,112-134}Sn has been performed at the COLLAPS experiment. Several electromagnetic moments close to the N=82

  2. Documentation of the heat conduction code TRANCO

    International Nuclear Information System (INIS)

    Callahan, G.D.

    1975-01-01

    A transient heat conduction code used for thermal, thermoelastic, thermoelastic/plastic, and thermo/viscoelastic analyses is presented. The code can solve two-dimensional X-Y and axially symmetric R-theta-z thermal problems with the following conditions: constant temperature, constant flux, convective, or adiabatic boundary conditions; time-dependent or constant internal heat generation; and anisotropic thermal conductivities

  3. Conductivity bound from dirty black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bitaghsir Fadafan, Kazem, E-mail: bitaghsir@shahroodut.ac.ir

    2016-11-10

    We propose a lower bound of the dc electrical conductivity in strongly disordered, strongly interacting quantum field theories using holography. We study linear response of black holes with broken translational symmetry in Einstein–Maxwell-dilaton theories of gravity. Using the generalized Stokes equations at the horizon, we derive the lower bound of the electrical conductivity for the dual two dimensional disordered field theory.

  4. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet.

    Directory of Open Access Journals (Sweden)

    Sirjan Sapkota

    Full Text Available Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae. The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass is the apospory-specific genomic region (ASGR. Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  5. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet.

    Science.gov (United States)

    Sapkota, Sirjan; Conner, Joann A; Hanna, Wayne W; Simon, Bindu; Fengler, Kevin; Deschamps, Stéphane; Cigan, Mark; Ozias-Akins, Peggy

    2016-01-01

    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  6. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions.

    Science.gov (United States)

    Chang, Audrey S; Noor, Mohamed A F

    2007-05-01

    F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.

  7. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    Science.gov (United States)

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  8. Direct current hopping conductance along DNA chain

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Li Ming-Jun

    2007-01-01

    This paper proposes a model of direct current(DC) electron hopping transport in DNA,in which DNA is considered as a binary one-dimensional disordered system.To quantitatively study the DC conductivity in DNA,it numerically calculates the DC conductivity of DNA chains with difierent parameter values.The result shows that the DC conductivity of DNA chain increases with the increase of temperature.And the conductivity of DNA chain is depended on the probability P.which represents the degree of compositional disorder in a DNA sequence to some extent.For P<0.5,the conductivity of DNA chain decreases with the increase of P,while for P≥0.5,the conductivity increases with the increase of p.The DC conductivity in DNA chain also varies with the change of the electric field,it presents non-Ohm's law conductivity characteristics.

  9. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  10. Electromagnetic Sources in a Moving Conducting Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1971-01-01

    The problem of an arbitrary source distribution in a uniformly moving, homogeneous, isotropic, nondispersive, conducting medium is solved. The technique used is to solve the problem in the rest system of the medium and then write the result in an appropriate four-dimensional, covariant form which...

  11. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  12. Conducting compositions of matter

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  13. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  14. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  15. The dimensionality of professional commitment

    OpenAIRE

    Jeffrey J. Bagraim

    2003-01-01

    This paper examines the dimensionality of professional commitment amongst a sample of 240 South African actuaries. Data were obtained, via a mailed questionnaire, from members of the South African Actuarial Society employed in the financial services industry. Statistical analysis conducted on the data showed that the 3-component model first proposed by Meyer, Allen and Smith (1993) is appropriate for understanding professional commitment amongst South African professionals. The analysis also ...

  16. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  17. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  18. Multivariate statistical analysis a high-dimensional approach

    CERN Document Server

    Serdobolskii, V

    2000-01-01

    In the last few decades the accumulation of large amounts of in­ formation in numerous applications. has stimtllated an increased in­ terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de­ ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat­ ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari­ ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen­ ...

  19. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  20. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  1. Hyperfine Structure of Spectral Lines of 143Nd+, 145Nd+, 139La+, 141Pr+ and 137Ba+ Investigated by Collinear Laser Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Anjum, N.

    2012-01-01

    In this research work the hyperfine structures of spectral lines of barium (Ba) and three lanthanides elements; praseodymium (Pr), lanthanum (La) and neodymium (Nd) have been investigated. The hyperfine splitting factors A and B of the involved levels have been determined with high accuracy and the data are compared with other published results. This research work is divided in four parts. In the 1st part, the hyperfine structures of the spectral lines of the singly ionized praseodymium (Pr II) are investigated by three different laser spectroscopic techniques; laser induced fluorescence (LIF) spectroscopy, inter-modulated saturation spectroscopy and collinear laser ion beam spectroscopy (CLIBS). The 2nd part is concerned with the a control-check of the Marburg mass separator (MARS-II), as it was shifted from the University of Marburg, Germany, to Graz University of Technology in 2002. The check is performed using a well known spectral line 5853.67 Å of the odd isotope of singly ionized barium (137Ba II). In the 3rd part of this work the hyperfine structure of spectral lines of lanthanum-139 ions (139La II) is investigated. The 4th part is devoted to the investigation of the hyperfine structure of spectral lines of two odd isotopes of singly ionized neodymium (143Nd II and 145Nd II) and the determination of the coupling constants A and B of the involved levels. To determine the hyperfine anomaly the ratios of the magnetic dipole constants, i.e A143/A145, and the electric quadrupole constants B143/B145 of the corresponding levels are also calculated. The last three parts of this research project are executed using the high resolution, Doppler reduced method of CLIBS. In CLIBS technique the ions are accelerated by applying a high potential difference (∼ 20 kV). Due to the accelerating cooling (kinematic compression) the spread in velocities in the direction of the flight is reduced several times, hence the Doppler width is reduced. The accelerated ion beam is mass

  2. Heat conduction using Green’s functions

    CERN Document Server

    Cole, Kevin D; Haji-Sheikh, A; Litkouhi, Bahman

    2010-01-01

    Introduction to Green's FunctionsHeat Flux and TemperatureDifferential Energy EquationBoundary and Initial ConditionsIntegral Energy EquationDirac Delta FunctionSteady Heat Conduction in One DimensionGF in the Infinite One-Dimensional BodyTemperature in an Infinite One-Dimensional BodyTwo Interpretations of Green's FunctionsTemperature in Semi-Infinite BodiesFlat PlatesProperties Common to Transient Green's FunctionsHeterogeneous BodiesAnisotropic BodiesTransformationsNon-Fourier Heat ConductionNumbering System in Heat ConductionGeometry and Boundary Condition Numbering SystemBoundary Condition ModifiersInitial Temperature DistributionInterface DescriptorsNumbering System for g(x, t)Examples of Numbering SystemAdvantages of Numbering SystemDerivation of the Green's Function Solution EquationDerivation of the One-Dimensional Green's Function Solution EquationGeneral Form of the Green's Function Solution EquationAlternative Green's Function Solution EquationFin Term m2TSteady Heat ConductionMoving SolidsMethods...

  3. Graphene Conductance Uniformity Mapping

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  4. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  5. Dimensional cosmological principles

    International Nuclear Information System (INIS)

    Chi, L.K.

    1985-01-01

    The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle

  6. Conductance quantization suppression in the quantum Hall regime

    DEFF Research Database (Denmark)

    Caridad, José M.; Power, Stephen R.; Lotz, Mikkel R.

    2018-01-01

    Conductance quantization is the quintessential feature of electronic transport in non-interacting mesoscopic systems. This phenomenon is observed in quasi one-dimensional conductors at zero magnetic field B, and the formation of edge states at finite magnetic fields results in wider conductance...... conduction channels. Despite being a universal effect, this regime has proven experimentally elusive because of difficulties in realizing one-dimensional systems with sufficiently hard-walled, disorder-free confinement. Here, we experimentally demonstrate the suppression of conductance quantization within...

  7. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  8. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2017-01-01

    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  9. Thermal conductivity of technetium

    International Nuclear Information System (INIS)

    Minato, K.; Serizawa, H.; Fukuda, K.

    1998-01-01

    The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)

  10. Physics of low-dimensional systems

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The physics of low-dimensional systems has developed in a remarkable way over the last decade and has accelerated over the last few years, in particular because of the discovery of the new high temperature superconductors. The new developments started more than fifteen years ago with the discovery of the unexpected quasi-one-dimensional character of the TTF-TCNQ. Since then the field of conducting quasi-one-dimensional organic system have been rapidly growing. Parallel to the experimental work there has been an important theoretical development of great conceptual importance, such as charge density waves, soliton-like excitations, fractional charges, new symmetry properties etc. A new field of fundamental importance was the discovery of the Quantum Hall Effect in 1980. This field is still expanding with new experimental and theoretical discoveries. In 1986, then, came the totally unexpected discovery of high temperature superconductivity which started an explosive development. The three areas just mentioned formed the main themes of the Symposium. They do not in any way exhaust the progress in low-dimensional physics. We should mention the recent important development with both two-dimensional and one-dimensional and even zero-dimensional structures (quantum dots). The physics of mesoscopic systems is another important area where the low dimensionality is a key feature. Because of the small format of this Symposium we could unfortunately not cover these areas

  11. Measurement of thermal conductance

    International Nuclear Information System (INIS)

    Kuchnir, M.

    1977-01-01

    The 6-m long, 45-kG, warm-iron superconducting magnets envisioned for the Energy Doubler stage of the Fermilab accelerator require stiff supports with minimized thermal conductances in order to keep the refrigeration power reasonable. The large number of supports involved in the system required a careful study of their heat conduction from the room temperature wall to the intercepting refrigeration at 20 0 K and to the liquid helium. For this purpose the thermal conductance of this support was measured by comparing it with the thermal conductance of a copper strap of known geometry. An association of steady-state thermal analysis and experimental thermal conductivity techniques forms the basis of this method. An important advantage is the automatic simulation of the 20 0 K refrigeration intercept by the copper strap, which simplifies the apparatus considerably. This relative resistance technique, which uses electrical analogy as a guideline, is applicable with no restrictions for materials with temperature-independent thermal conductivity. For other materials the results obtained are functions of the specific temperature interval involved in the measurements. A comprehensive review of the literature on thermal conductivity indicates that this approach has not been used before. A demonstration of its self-consistency is stressed here rather than results obtained for different supports

  12. Homotopy arguments for quantized Hall conductivity

    CERN Document Server

    Richter, T

    2002-01-01

    Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.

  13. Thermally Conductive Structural 2D Composite Materials

    Science.gov (United States)

    2012-08-14

    Dimensional Pitch Polyimide Composite Micrographs ........ 27 Figure 23. 4-Ply Silver Polyimide Laminate ...through-thickness thermal conductivity of up to 20 W/m.K. This novel structural prepreg material will be developed through engineering of an optimal fiber...with an EPON 862/Epikure W epoxy resin system to form unidirectional prepreg tapes. Each prepreg was then cut to 6 inch by 6 inch plies and

  14. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  15. Conducting everyday life

    DEFF Research Database (Denmark)

    Juhl, Pernille

    , they are involved in preventive interventions. I conducted participatory observations with the children in their everyday life. Overall, the study stresses that even small children must be perceived as active participants who act upon and struggle with different conditions and meaning making processes across......In the paper I discuss how small children (0-4 year) develop through ‘conducting everyday life’ across contexts (Holzkamp 2013). I discuss how this process of conducting everyday life is essential when discussing the ‘good life for children’ from a child perspective. These issues are addressed...... contexts (home, day care, part-time foster family) and in relation to other co-participants....

  16. Effective thermal conductivity of nanofluids: the effects of microstructure

    International Nuclear Information System (INIS)

    Fan Jing; Wang Liqiu

    2010-01-01

    We examine numerically the effects of particle-fluid thermal conductivity ratio, particle volume fraction, particle size distribution and particle aggregation on macroscale thermal properties for seven kinds of two-dimensional nanofluids. The results show that the radius of gyration and the non-dimensional particle-fluid interfacial area are two important parameters in characterizing the geometrical structure of nanoparticles. A non-uniform particle size is found to be unfavourable for the conductivity enhancement, while particle-aggregation benefits the enhancement especially when the radius of gyration of aggregates is large. Without considering the interfacial thermal resistance, a larger non-dimensional particle-fluid interfacial area between the base fluid and the nanoparticles is also desirable for enhancing thermal conductivity. The nanofluids with nanoparticles of connected cross-shape show a much higher (lower) effective thermal conductivity when the particle-fluid conductivity ratio is larger (smaller) than 1.

  17. Electrical-field-induced magnetic Skyrmion ground state in a two-dimensional chromium tri-iodide ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Mo, Pinghui; Lu, Jiwu

    2018-05-01

    Using fully first-principles non-collinear self-consistent field density functional theory (DFT) calculations with relativistic spin-orbital coupling effects, we show that, by applying an out-of-plane electrical field on a free-standing two-dimensional chromium tri-iodide (CrI3) ferromagnetic monolayer, the Néel-type magnetic Skyrmion spin configurations become more energetically-favorable than the ferromagnetic spin configurations. It is revealed that the topologically-protected Skyrmion ground state is caused by the breaking of inversion symmetry, which induces the non-trivial Dzyaloshinskii-Moriya interaction (DMI) and the energetically-favorable spin-canting configuration. Combining the ferromagnetic and the magnetic Skyrmion ground states, it is shown that 4-level data can be stored in a single monolayer-based spintronic device, which is of practical interests to realize the next-generation energy-efficient quaternary logic devices and multilevel memory devices.

  18. Electrically conductive material

    Science.gov (United States)

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  19. Conductive open frameworks

    Science.gov (United States)

    Yaghi, Omar M.; Wan, Shun; Doonan, Christian J.; Wang, Bo; Deng, Hexiang

    2018-05-22

    The disclosure relates generally to materials that comprise conductive covalent organic frameworks. The disclosure also relates to materials that are useful to store and separate gas molecules and sensors.

  20. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  1. Conductive polypropylene composites

    International Nuclear Information System (INIS)

    Koszkul, J.

    1997-01-01

    The results of studies on polypropylene composites with three sorts of Polish-made carbon blacks were presented. It was found that composite of 20% black content had properties of an electrically conducting material

  2. Complex conductivity of soils

    DEFF Research Database (Denmark)

    Revil, A.; Coperey, A.; Shao, Z.

    2017-01-01

    The complex conductivity of soil remains poorly known despite the growing importance of this method in hyrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including 4 peat samples) and one clean sand in the frequency range 0.1 Hertz...... to 45 kHz. The soil samples are saturated with 6 different NaCl brines with conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1, NaCl, 25°C) in order to determine their intrinsic formation factor and surface conductivity. This dataset is used to test the predictions of the dynamic Stern...

  3. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  4. Fluid conductivity sensor

    International Nuclear Information System (INIS)

    Miller, F. M.

    1985-01-01

    Apparatus for sensing the electrical conductivity of fluid which can be used to detonate an electro explosive device for operating a release mechanism for uncoupling a parachute canopy from its load upon landing in water. An operating network connected to an ignition capacitor and to a conductivity sensing circuit and connected in controlling relation to a semiconductor switch has a voltage independent portion which controls the time at which the semiconductor switch is closed to define a discharge path to detonate the electro explosive device independent of the rate of voltage rise on the ignition capacitor. The operating network also has a voltage dependent portion which when a voltage of predetermined magnitude is developed on the conductivity sensing circuit in response to fluid not having the predetermined condition of conductivity, the voltage dependent portion closes the semiconductor switch to define the discharge path when the energy level is insufficient to detonate the electro explosive device. A regulated current source is connected in relation to the conductivity sensing circuit and to the electrodes thereof in a manner placing the circuit voltage across the electrodes when the conductivity of the fluid is below a predetermined magnitude so that the sensing circuit does not respond thereto and placing the circuit voltage across the sensing circuit when the conductivity of the fluid is greater than a predetermined magnitude. The apparatus is operated from a battery, and the electrodes are of dissimilar metals so selected and connected relative to the polarity portions of the circuit to maximize utilization of the battery output voltage

  5. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  6. Low thermal conductivity skutterudites

    Energy Technology Data Exchange (ETDEWEB)

    Fleurial, J P; Caillat, T; Borshchevsky, A

    1997-07-01

    Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

  7. Responsible conduct of research

    CERN Document Server

    Shamoo, Adil E

    2015-01-01

    Since the early 2000s, the field of Responsible Conduct of Research has become widely recognized as essential to scientific education, investigation, and training. At present, research institutions with public funding are expected to have some minimal training and education in RCR for their graduate students, fellows and trainees. These institutions also are expected to have a system in place for investigating and reporting misconduct in research or violations of regulations in research with human subjects, or in their applications to federal agencies for funding. Public scrutiny of the conduct of scientific researchers remains high. Media reports of misconduct scandals, biased research, violations of human research ethics rules, and moral controversies in research occur on a weekly basis. Since the 2009 publication of the 2nd edition of Shamoo and Resnik's Responsible Conduct of Research, there has been a vast expansion in the information, knowledge, methods, and diagnosis of problems related to RCR and the ...

  8. Quantized Majorana conductance

    Science.gov (United States)

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D. S.; de Moor, Michiel W. A.; Car, Diana; Op Het Veld, Roy L. M.; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-04-01

    Majorana zero-modes—a type of localized quasiparticle—hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e2/h, with a recent observation of a peak height close to 2e2/h. Here we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

  9. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  10. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  11. Three-dimensional tori and Arnold tongues

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)

    2014-03-15

    This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

  12. Conducting Educational Design Research

    Science.gov (United States)

    McKenney, Susan; Reeves, Thomas

    2012-01-01

    Educational design research blends scientific investigation with systematic development and implementation of solutions to educational problems. Empirical investigation is conducted in real learning settings--not laboratories--to craft usable and effective solutions. At the same time, the research is carefully structured to produce theoretical…

  13. Conductance eigenchannels in nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel

    1997-01-01

    The electronic conductance of metal nanocontacts is analyzed in terms of eigenchannels for the transmission. The transmission through individual eigenchannels is calculated numerically for realistic models of gold point contacts based on molecular-dynamics simulation of the elongation of a contac...

  14. Conduct Disorder and Comorbidity.

    Science.gov (United States)

    Stahl, Nicole D.; Clarizio, Harvey F.

    1999-01-01

    Provides critical examination of research published during past ten years addressing Conduct Disorder (CD), Attention Deficit Hyperactivity Disorder, Oppositional Defiant Disorder (ODD), and internalizing disorders. Concludes comorbidity varies with age, gender, informant, diagnostic criteria, and nature of the sample. Implications of comorbidity…

  15. CERN Code of Conduct

    CERN Document Server

    Department, HR

    2010-01-01

    The Code is intended as a guide in helping us, as CERN contributors, to understand how to conduct ourselves, treat others and expect to be treated. It is based around the five core values of the Organization. We should all become familiar with it and try to incorporate it into our daily life at CERN.

  16. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  17. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  18. New code of conduct

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project.   Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...

  19. Quantized Majorana conductance

    NARCIS (Netherlands)

    Zhang, Hao; Liu, Chun Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A.; Wang, Guanzhong; Van Loo, Nick; Bommer, Jouri D.S.; De Moor, Michiel W.A.; Car, Diana; Op Het Veld, Roy L.M.; Van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Pendharkar, Mihir; Pennachio, Daniel J.; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J.; Bakkers, Erik P.A.M.; Sarma, S. Das; Kouwenhoven, Leo P.

    2018-01-01

    Majorana zero-modes - a type of localized quasiparticle - hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The

  20. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  1. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  2. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  3. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...

  4. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  5. Transparent Conductive Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-22

    The objectives of this program between UT-Battelle, LLC (the ''Contractor'') and (Battelle Memorial Institute) (the "Participant") were directed towards achieving significant improvement: in the electrical conductivity and optical/infrared transmission of single-wall carbon nanotube (SWNT)-based composite materials. These materials will be used in coating applications that range from aircraft canopies to display applications. The goal of the project was to obtain supported mats of SWNTs with sheet conductivities approaching 10 ohms/square combined with high optical transmission (>85% transmission at 550 nm), thereby permitting their application as a replacement for indium tin oxide (ITO) in a variety of applications such as flexible displays.

  6. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  7. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  8. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  9. Conducting interactive experiments online.

    Science.gov (United States)

    Arechar, Antonio A; Gächter, Simon; Molleman, Lucas

    2018-01-01

    Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.

  10. Dimensional comparison theory.

    Science.gov (United States)

    Möller, Jens; Marsh, Herb W

    2013-07-01

    Although social comparison (Festinger, 1954) and temporal comparison (Albert, 1977) theories are well established, dimensional comparison is a largely neglected yet influential process in self-evaluation. Dimensional comparison entails a single individual comparing his or her ability in a (target) domain with his or her ability in a standard domain (e.g., "How good am I in math compared with English?"). This article reviews empirical findings from introspective, path-analytic, and experimental studies on dimensional comparisons, categorized into 3 groups according to whether they address the "why," "with what," or "with what effect" question. As the corresponding research shows, dimensional comparisons are made in everyday life situations. They impact on domain-specific self-evaluations of abilities in both domains: Dimensional comparisons reduce self-concept in the worse off domain and increase self-concept in the better off domain. The motivational basis for dimensional comparisons, their integration with recent social cognitive approaches, and the interdependence of dimensional, temporal, and social comparisons are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Scanning nanoscale multiprobes for conductivity measurements

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Kuhn, Oliver

    2000-01-01

    We report fabrication and measurements with two- and four-point probes with nanoscale dimensions, for high spatial resolution conductivity measurements on surfaces and thin films. By combination of conventional microfabrication and additive three-dimensional nanolithography, we have obtained...... electrode spacings down to 200 nm. At the tips of four silicon oxide microcantilevers, narrow carbon tips are grown in converging directions and subsequently coated with a conducting layer. The probe is placed in contact with a conducting surface, whereby the electrode resistance can be determined....... The nanoelectrodes withstand considerable contact force before breaking. The probe offers a unique possibility to position the voltage sensors, as well as the source and drain electrodes in areas of nanoscale dimensions. ©2000 American Institute of Physics....

  12. Three dimensional canonical transformations

    International Nuclear Information System (INIS)

    Tegmen, A.

    2010-01-01

    A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.

  13. Impurities and conductivity in a D-wave superconductor

    International Nuclear Information System (INIS)

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  14. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  15. Hysteresis in conducting ferromagnets

    International Nuclear Information System (INIS)

    Schneider, Carl S.; Winchell, Stephen D.

    2006-01-01

    Maxwell's magnetic diffusion equation is solved for conducting ferromagnetic cylinders to predict a magnetic wave velocity, a time delay for flux penetration and an eddy current field, one of five fields in the linear unified field model of hysteresis. Measured Faraday voltages for a thin steel toroid are shown to be proportional to magnetic field step amplitude and decrease exponentially in time due to maximum rather than average permeability. Dynamic permeabilities are a field convolution of quasistatic permeability and the delay function from which we derive and observe square root dependence of coercivity on rate of field change

  16. Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range

    Directory of Open Access Journals (Sweden)

    Oleg Kiprijanovič

    2015-09-01

    Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.

  17. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.

    1980-01-01

    There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed

  18. Conducting carbonized polyaniline nanotubes

    International Nuclear Information System (INIS)

    Mentus, Slavko; Ciric-Marjanovic, Gordana; Trchova, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min -1 up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 μm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 μm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm -1 , increased to 0.7 S cm -1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  19. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  20. Radiative thermal conduction fronts

    International Nuclear Information System (INIS)

    Borkowski, K.J.; Balbus, S.A.; Fristrom, C.C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence

  1. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  2. Conducting polyamine nanocomposites development

    International Nuclear Information System (INIS)

    Nascimento, R.C.; Maciel, T.C.G.L.; Guimaraes, M.J.O.C.; Garcia, M.E.F.

    2010-01-01

    Polymeric nanocomposites are hybrid materials formed by the combination of inorganic nanoparticles dispersed in a polymeric matrix with, at least, one dimension in the nanometer range. It was used as nanoparticles layered and tubular clay minerals, and its insertion and dispersion were conducted through the in situ polymerization technique. As the polymer matrix, it was utilized a polyamine, which, later, will be inserted in a polyacrylamide gel for the development of a compound that aggregates both main characteristics. The nanocomposites were prepared in different polymerization conditions (temperature, concentration and nanoparticle type) and characterized by XRD and FTIR. It was observed that regarding the polymerization conditions, the temperature had influence on the kind of material obtained and on the reaction speed; the type of nanoparticle affected its interaction with the polymer matrix, predominantly providing the formation of nanocomposites by the intercalation mechanism in the layered clay. (author)

  3. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  4. Universal mesoscopic conductance fluctuations

    International Nuclear Information System (INIS)

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  5. Solving hyperbolic heat conduction using electrical simulation

    International Nuclear Information System (INIS)

    Gheitaghy, A. M.; Talaee, M. R.

    2013-01-01

    In the present study, the electrical network simulation method is proposed to solve the hyperbolic and parabolic heat conduction problem considering Cattaneo-Vernoute (C.V) constitutive relation. Using this new proposed numerical model and the electrical circuit simulation program HSPICE, transient temperature and heat flux profiles at slab can be obtained easily and quickly. To verify the proposed method, the obtained numerical results for cases of one dimensional two-layer slab under periodic boundary temperature with perfect and imperfect thermal contact are compared with the published results. Comparisons show the proposed technique might be considered as a useful tool in the analysis of parabolic and hyperbolic thermal problems.

  6. Electron conductance in curved quantum structures

    DEFF Research Database (Denmark)

    Willatzen, Morten; Gravesen, Jens

    2010-01-01

    is computationally fast and provides direct (geometrical) parameter insight as regards the determination of the electron transmission coefficient. We present, as a case study, calculations of the electron conductivity of a helically shaped quantum-wire structure and discuss the influence of the quantum......A differential-geometry analysis is employed to investigate the transmission of electrons through a curved quantum-wire structure. Although the problem is a three-dimensional spatial problem, the Schrodinger equation can be separated into three general coordinates. Hence, the proposed method...

  7. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Jensen, Hans Jørgen Aagaard

    2012-01-01

    A theoretical characterization of the phosphorescence decay traces of a prototypical platinum (II) organic chromophore has been conducted. The phosphorescence wavelength and radiative lifetime are predicted to equal 544 nm and 160 μs, respectively. The third triplet state is assigned as participa...

  8. CONDUCTIVITY OF DONKEY MILK

    Directory of Open Access Journals (Sweden)

    F. Conte

    2009-06-01

    Full Text Available The electrical conductivity (EC of milk is considered as one of the most important parameters which supports the diagnosis of mastitis in cows.Milk ions have a considerable influence on EC and their concentrations vary depending on animal species, season, lactation stage, etc. Some components of milk can change the EC, e.g. lactose. A negative correlation between EC values and the concentration of lactose is noticed, as a consequence of the inverse relation between this disaccharide and the chlorine content in milk. Fat and casein contents exert some influence on the EC, too. This study provides preliminary results on the physiological EC values in donkey milk and aims to highlight any correlation with some of its chemical-physical parameters and Somatic Cell Count (SCC. Mean EC value in donkey milk was found to be 3.57 mS. Statistically significant correlations were found between EC and SCC (r = 0.57 , p < 0.01 and between EC and (r = 0.30 , p < 0.05. The EC and lactose were not correlated although a reduction of EC was often observed when the lactose content increased, as reported in the literature for bovine milk. According to the EC can be considered as a reliable parameter to identify any breast disorder, taking into account the physiological factors that influence EC.

  9. Analyses of magnetic structures and nuclear-density distribution by the structure-refinement and three-dimensional visualization systems RIETAN-FP-VENUS

    International Nuclear Information System (INIS)

    Izumi, Fujio; Momma, Koichi

    2010-01-01

    We have been developing a multi-purpose pattern-fitting system RIETAN-FP and a three-dimensional visualization system VENUS, which have been extensively used for structure refinements of various metal and inorganic materials from neutron powder diffraction data. At first, their outlines and the history of their developments are shortly looked back. The second part describes procedures for analyzing collinear magnetic structures with the combination of VESTA in the VENUS system and RIETAN-FP by taking BiCoO 3 for instance. Finally, a new C++ program, Dysnomia, for the maximum entropy method is introduced with emphasis on its new features. Dysnomia excels its predecessor, PRIMA, in computation speed, memory efficiency, scalability, and reliability. In particular, addition of a normal-distribution constraint is effective in obtaining nuclear-density distribution that is physically and chemically reasonable. (author)

  10. Effective thermal conductivity in thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Snyder, GJ; Toberer, ES

    2013-05-28

    Thermoelectric generators (TEGs) are solid state heat engines that generate electricity from a temperature gradient. Optimizing these devices for maximum power production can be difficult due to the many heat transport mechanisms occurring simultaneously within the TEG. In this paper, we develop a model for heat transport in thermoelectric materials in which an "effective thermal conductivity" (kappa(eff)) encompasses both the one dimensional steady-state Fourier conduction and the heat generation/consumption due to secondary thermoelectric effects. This model is especially powerful in that the value of kappa(eff) does not depend upon the operating conditions of the TEG but rather on the transport properties of the TE materials themselves. We analyze a variety of thermoelectric materials and generator designs using this concept and demonstrate that kappa(eff) predicts the heat fluxes within these devices to 5% of the exact value. (C) 2013 AIP Publishing LLC.

  11. Transport stochastic multi-dimensional media

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.

    1996-01-01

    Many physical phenomena evolve according to known deterministic rules, but in a stochastic media in which the composition changes in space and time. Examples to such phenomena are heat transfer in turbulent atmosphere with non uniform diffraction coefficients, neutron transfer in boiling coolant of a nuclear reactor and radiation transfer through concrete shields. The results of measurements conducted upon such a media are stochastic by nature, and depend on the specific realization of the media. In the last decade there has been a considerable efforts to describe linear particle transport in one dimensional stochastic media composed of several immiscible materials. However, transport in two or three dimensional stochastic media has been rarely addressed. The important effect in multi-dimensional transport that does not appear in one dimension is the ability to bypass obstacles. The current work is an attempt to quantify this effect. (authors)

  12. Transport stochastic multi-dimensional media

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shvarts, D [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Thiberger, R [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    Many physical phenomena evolve according to known deterministic rules, but in a stochastic media in which the composition changes in space and time. Examples to such phenomena are heat transfer in turbulent atmosphere with non uniform diffraction coefficients, neutron transfer in boiling coolant of a nuclear reactor and radiation transfer through concrete shields. The results of measurements conducted upon such a media are stochastic by nature, and depend on the specific realization of the media. In the last decade there has been a considerable efforts to describe linear particle transport in one dimensional stochastic media composed of several immiscible materials. However, transport in two or three dimensional stochastic media has been rarely addressed. The important effect in multi-dimensional transport that does not appear in one dimension is the ability to bypass obstacles. The current work is an attempt to quantify this effect. (authors).

  13. Dimensional transition of the universe

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1989-08-01

    In the extended n-dimensional Einstein theory of gravitation, where the spacetime dimension can be taken as a 'dynamical variable' which is determined by the 'Hamilton principle' of minimizing the extended Einstein-Hilbert action, it is suggested that our Universe of four-dimensional spacetime may encounter an astonishing dimensional transition into a new universe of three-dimensional or higher-than-four-dimensional spacetime. (author)

  14. THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON

    Energy Technology Data Exchange (ETDEWEB)

    J.E. BEAN

    2004-09-27

    The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.

  15. Computational analysis of electrical conduction in hybrid nanomaterials with embedded non-penetrating conductive particles

    Science.gov (United States)

    Cai, Jizhe; Naraghi, Mohammad

    2016-08-01

    In this work, a comprehensive multi-resolution two-dimensional (2D) resistor network model is proposed to analyze the electrical conductivity of hybrid nanomaterials made of insulating matrix with conductive particles such as CNT reinforced nanocomposites and thick film resistors. Unlike existing approaches, our model takes into account the impenetrability of the particles and their random placement within the matrix. Moreover, our model presents a detailed description of intra-particle conductivity via finite element analysis, which to the authors’ best knowledge has not been addressed before. The inter-particle conductivity is assumed to be primarily due to electron tunneling. The model is then used to predict the electrical conductivity of electrospun carbon nanofibers as a function of microstructural parameters such as turbostratic domain alignment and aspect ratio. To simulate the microstructure of single CNF, randomly positioned nucleation sites were seeded and grown as turbostratic particles with anisotropic growth rates. Particle growth was in steps and growth of each particle in each direction was stopped upon contact with other particles. The study points to the significant contribution of both intra-particle and inter-particle conductivity to the overall conductivity of hybrid composites. Influence of particle alignment and anisotropic growth rate ratio on electrical conductivity is also discussed. The results show that partial alignment in contrast to complete alignment can result in maximum electrical conductivity of whole CNF. High degrees of alignment can adversely affect conductivity by lowering the probability of the formation of a conductive path. The results demonstrate approaches to enhance electrical conductivity of hybrid materials through controlling their microstructure which is applicable not only to carbon nanofibers, but also many other types of hybrid composites such as thick film resistors.

  16. Features of the non-collinear one-phonon anomalous light scattering controlled by elastic waves with elevated linear losses: potentials for multi-frequency parallel spectrum analysis of radio-wave signals.

    Science.gov (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-12-01

    During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.

  17. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  18. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  19. De fire dimensioner

    DEFF Research Database (Denmark)

    Larsen, Mihail

    De fire dimensioner er en humanistisk håndbog beregnet især på studerende og vejledere inden for humaniora, men kan også læses af andre med interesse for, hvad humanistisk forskning er og kan. Den er blevet til over et langt livs engageret forskning, uddannelse og formidling på Roskilde Universitet...... og udgør på den måde også et bidrag til universitetets historie, som jeg var med til at grundlægge. De fire dimensioner sætter mennesket i centrum. Men det er et centrum, der peger ud over sig selv; et centrum, hvorfra verden anskues, erfares og forstås. Alle mennesker har en forhistorie og en...... fremtid, og udstrakt mellem disse punkter i tiden tænker og handler de i rummet. Den menneskelige tilværelse omfatter alle fire dimensioner. De fire dimensioner udgør derfor også et forsvar for en almen dannelse, der gennemtrænger og kommer kulturelt til udtryk i vores historie, viden, praksis og kunst....

  20. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  1. Three-Dimensional Printing Surgical Applications.

    Science.gov (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E

    2015-01-01

    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  2. The inverse conductivity problem with limited data and applications

    International Nuclear Information System (INIS)

    Isakov, Victor

    2007-01-01

    This paper describes recent uniqueness results in inverse problems for semiconductor devices and in the inverse conductivity problem. We remind basic inverse probelsm in semiconductor theory and outline use of an adjoint equation and a proof of uniqueness of piecewise constant doping profile. For the inverse conductivity problem we give a first uniqueness proof when the Dirichlet-to-Neumann map is given at an arbitrarily small part of the boundary of a three-dimensional domain

  3. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  4. Variations in thermoelectric power of thin monocrystalline films with conductivity

    Science.gov (United States)

    Tellier, C. R.; Tosser, A. J.; Hafid, L.

    1980-12-01

    Starting from the bi-dimensional model for grain boundaries in monocrystalline thin films, the difference in thermoelectric power is expressed in terms of conductivity and energy dependence of the bulk electronic mean free path U. A new procedure is suggested for measuring U.

  5. Conductance in double quantum well systems

    International Nuclear Information System (INIS)

    Hasbun, J E

    2003-01-01

    The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)

  6. Disorder and conductivity of organic metal

    International Nuclear Information System (INIS)

    Bouffard, Serge

    1982-02-01

    At high temperature, quasi-one-dimensional organic conductors are metallic; at low temperature, the electron gas instabilities drive either a metal to insulator transition or a metal to superconductor transition. Precursors of these 3-D ordering could be appear at higher temperature. A study of the effects of irradiation induced defects on a few organic complexes has shown that defects are produced by radiolitic process. Their concentration can be easily deduced from resistivity measurement at room temperature. In the metallic state, the defects act as strong potentials which break the conducting chains and force the electron to jump to the neighbourg stack. The defects produce a mixing between longitudinal and transverse conductivities. While, it is the 3-D effect of the defects which pins the charge density waves and thus the 3-D ordering can not be acheived: the metal to insulator transition is destroyed, the metallic state is stabilized. In the same time, the fluctuative conductivity is suppress. The superconducting regime has been found to be extremely sensitive to irradiation induced defects. Thus we can demonstrate that the 1-D superconducting fluctuations contribute to the conductivity and that the transition temperature is correlated to the 3-D superconducting fluctuations. [fr

  7. Altimetric signal and three-dimensional structure of the sea in the Channel of Sicily

    Science.gov (United States)

    Nardelli, Bruno Buongiorno; Santoleri, Rosalia; Iudicone, Daniele; Zoffoli, Simona; Marullo, Salvatore

    1999-09-01

    The 1996 Altimeter/Synoptic Mesoscale Plancton Experiment (ALT/SYMPLEX) was specifically designed to perform in situ measurements simultaneous with the passage of TOPEX/POSEIDON (T/P) and ERS 2 over selected tracks in the central and eastern Sicily Channel. This experiment made it possible to have, for the first time, a validation of altimetry with in situ data over the Mediterranean, where weak dynamics results in a modest sea elevation, rarely exceeding 10 cm. Historical infrared and altimetric satellite data were first analyzed in order to study the variability of the circulation in the area. The comparative and integrative analysis of simultaneous satellite data and in situ measurements permitted investigation of the relation between the altimeter-derived surface topography and the three-dimensional structure of the sea. The Pearson correlation coefficients between altimeter data and dynamic heights along track resulted to be 0.72-0.89 (T/P) and 0.88 (ERS 2) when using conventional repeat track analysis. For T/P, a correlation value of 0.87 was found for time differences computed basing on a collinear analysis technique. This analysis also led to the identification of a strong barotropic component of the velocity field located near the Sicilian continental shelf, where it is responsible for approximately 60% of the signal.

  8. Camera Calibration of Stereo Photogrammetric System with One-Dimensional Optical Reference Bar

    International Nuclear Information System (INIS)

    Xu, Q Y; Ye, D; Che, R S; Qi, X; Huang, Y

    2006-01-01

    To carry out the precise measurement of large-scale complex workpieces, accurately calibration of the stereo photogrammetric system has becoming more and more important. This paper proposed a flexible and reliable camera calibration of stereo photogrammetric system based on quaternion with one-dimensional optical reference bar, which has three small collinear infrared LED marks and the lengths between these marks have been precisely calibration. By moving the optical reference bar at a number of locations/orientations over the measurement volume, we calibrate the stereo photogrammetric systems with the geometric constraint of the optical reference bar. The extrinsic parameters calibration process consists of linear parameters estimation based on quaternion and nonlinear refinement based on the maximum likelihood criterion. Firstly, we linear estimate the extrinsic parameters of the stereo photogrameetric systems based on quaternion. Then with the quaternion results as the initial values, we refine the extrinsic parameters through maximum likelihood criterion with the Levenberg-Marquardt Algorithm. In the calibration process, we can automatically control the light intensity and optimize the exposure time to get uniform intensity profile of the image points at different distance and obtain higher S/N ratio. The experiment result proves that the calibration method proposed is flexible, valid and obtains good results in the application

  9. Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Widom, Julia R; Marcus, Andrew H; Johnson, Neil P; Von Hippel, Peter H

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analogue of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS)—a fluorescence-detected variation of 2D electronic spectroscopy—to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point–dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R 12 = 3.5 ± 0.5 Å , twist angle θ 12 = 5° ± 5° ), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV–2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein–nucleic acid complexes. (paper)

  10. Finite-dimensional calculus

    International Nuclear Information System (INIS)

    Feinsilver, Philip; Schott, Rene

    2009-01-01

    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

  11. Dimensional analysis for engineers

    CERN Document Server

    Simon, Volker; Gomaa, Hassan

    2017-01-01

    This monograph provides the fundamentals of dimensional analysis and illustrates the method by numerous examples for a wide spectrum of applications in engineering. The book covers thoroughly the fundamental definitions and the Buckingham theorem, as well as the choice of the system of basic units. The authors also include a presentation of model theory and similarity solutions. The target audience primarily comprises researchers and practitioners but the book may also be suitable as a textbook at university level.

  12. Three Dimensional Dirac Semimetals

    Science.gov (United States)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  13. hdm: High-dimensional metrics

    OpenAIRE

    Chernozhukov, Victor; Hansen, Christian; Spindler, Martin

    2016-01-01

    In this article the package High-dimensional Metrics (\\texttt{hdm}) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for (possibly many) low-dimensional subcomponents of the high-dimensional parameter vector. Efficient estimators and uniformly valid confidence intervals for regression coefficients on target variables (e...

  14. An alternative dimensional reduction prescription

    International Nuclear Information System (INIS)

    Edelstein, J.D.; Giambiagi, J.J.; Nunez, C.; Schaposnik, F.A.

    1995-08-01

    We propose an alternative dimensional reduction prescription which in respect with Green functions corresponds to drop the extra spatial coordinate. From this, we construct the dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization and supersymmetry in the particular 2-dimensional case. We argue that our proposal is in some situations more physical in the sense that it maintains the form of the interactions between particles thus preserving the dynamics corresponding to the higher dimensional space. (author). 12 refs

  15. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  16. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  17. Dimensional control of die castings

    Science.gov (United States)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of

  18. One-Dimensionality and Whiteness

    Science.gov (United States)

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  19. Nonlinear dynamics in cardiac conduction

    Science.gov (United States)

    Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.

    1988-01-01

    Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.

  20. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  1. Coupled heat conduction and thermal stress formulation using explicit integration

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kulak, R.F.

    1982-06-01

    The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data

  2. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    circuited. The present invention further provides a method of producing the above membrane structure, comprising the steps of : providing a ionically conducting layer; applying at least one layer of electronically conducting material on each side of said ionically conducting layer; sintering the multilayer...

  3. Optical conductivity of metal nanoshells

    International Nuclear Information System (INIS)

    Tomchuk, P.M.; Kulish, V.V.

    2004-01-01

    The expression for optical conductivity of spherical metal nanoshell as a function of internal and external radii of nanoshell and photon energy - Fermi energy ratio is obtained. Quantization of electron energy in nanoshells is shown to lead to the appearance of an oscillating dependence of optical conductivity on the light frequency. An explicit expression of oscillating addends for optical conductivity is obtained

  4. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  5. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  6. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM

    DEFF Research Database (Denmark)

    Knudsen, Kim; Lassas, Matti; Mueller, Jennifer

    2009-01-01

    A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...... the convergence of the reconstructed conductivity to the true conductivity as the noise level tends to zero. The results provide a link between two traditions of inverse problems research: theory of regularization and inversion methods based on complex geometrical optics. Also, the procedure is a novel...

  7. Hall conductance and topological invariant for open systems.

    Science.gov (United States)

    Shen, H Z; Wang, W; Yi, X X

    2014-09-24

    The Hall conductivity given by the Kubo formula is a linear response of quantum transverse transport to a weak electric field. It has been intensively studied for quantum systems without decoherence, but it is barely explored for systems subject to decoherence. In this paper, we develop a formulism to deal with this issue for topological insulators. The Hall conductance of a topological insulator coupled to an environment is derived, the derivation is based on a linear response theory developed for open systems in this paper. As an application, the Hall conductance of a two-band topological insulator and a two-dimensional lattice is presented and discussed.

  8. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  9. Mining High-Dimensional Data

    Science.gov (United States)

    Wang, Wei; Yang, Jiong

    With the rapid growth of computational biology and e-commerce applications, high-dimensional data becomes very common. Thus, mining high-dimensional data is an urgent problem of great practical importance. However, there are some unique challenges for mining data of high dimensions, including (1) the curse of dimensionality and more crucial (2) the meaningfulness of the similarity measure in the high dimension space. In this chapter, we present several state-of-art techniques for analyzing high-dimensional data, e.g., frequent pattern mining, clustering, and classification. We will discuss how these methods deal with the challenges of high dimensionality.

  10. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments

    Science.gov (United States)

    Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.

    2018-04-01

    We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.

  11. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  12. Conductivity in insulators due to implantation of conducting species

    International Nuclear Information System (INIS)

    Prawer, S.; Kalish, R.

    1993-01-01

    Control of the surface conductivity of insulators can be accomplished by high dose ion implantation of conductive species. The use of C + as the implant species is particularly interesting because C can either form electrically insulating sp 3 bonds or electrically conducting sp 2 bonds. In the present work, fused quartz plates have been irradiated with 100 keV C + ions to doses up to 1 x 10 17 ions/cm 2 at room temperature and at 200 deg C. The ion beam induced conductivity was monitored in-situ and was found to increase by up to 8 orders to magnitude for the ion dose range studied. Xe implantations over a similar range did not induce any changes in the conductivity showing that the increase in conductivity is caused by the presence of the C in the fused quartz matrix and not by damage. The dependence of the conductivity on implantation temperature and on post implantation annealing sheds light on the clustering of the C implants. The temperature dependence of the conductivity for the highest doses employed (1 x 10 17 C + /cm 2 ) can be described very well by lnσ α T. This is considered to be a peculiar dependence which does not comply with any of the standard models for conduction. 9 refs., 1 tab., 6 figs

  13. Simultaneous measurements of thermal conductivity and electrical conductivity of micro-machined Silicon films

    International Nuclear Information System (INIS)

    Hagino, H; Kawahara, Y; Goto, A; Miyazaki, K

    2012-01-01

    The in-plane effective thermal conductivity of free-standing Si thin films with periodic micropores was measured at -100 to 0 °C. The Si thin films with micropores were prepared from silicon-on-insulator (SOI) wafers by standard microfabrication processes. The dimensions of the free-standing Si thin films were 200μm×150μm×2 μm, with staggered 4 μm pores having an average pitch of 4 mm. The Si thin film serves both as a heater and thermometer. The average temperature rise of the thin film is a function of its in-plane thermal conductivity. The effective thermal conductivity was calculated using a simple one-dimensional heat conduction model. The measured thermal conductivity was much lower than that expected based on classical model evaluations. A significant phonon size effect was observed even in the microsized structures, and the mean free path for phonons is very long even at the room temperature.

  14. Functionalization of silicon nanowires by conductive and non-conductive polymers

    Science.gov (United States)

    Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.

    2017-11-01

    The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.

  15. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  16. Dimensional analysis made simple

    International Nuclear Information System (INIS)

    Lira, Ignacio

    2013-01-01

    An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)

  17. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  18. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  19. Two dimensional simplicial paths

    International Nuclear Information System (INIS)

    Piso, M.I.

    1994-07-01

    Paths on the R 3 real Euclidean manifold are defined as 2-dimensional simplicial strips which are orbits of the action of a discrete one-parameter group. It is proven that there exists at least one embedding of R 3 in the free Z-module generated by S 2 (x 0 ). The speed is defined as the simplicial derivative of the path. If mass is attached to the simplex, the free Lagrangian is proportional to the width of the path. In the continuum limit, the relativistic form of the Lagrangian is recovered. (author). 7 refs

  20. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi