WorldWideScience

Sample records for dimensional cfd model

  1. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.

    Science.gov (United States)

    Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy

    2015-10-15

    The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii

  2. Development of a three-dimensional CFD model for rotary lime kilns

    Energy Technology Data Exchange (ETDEWEB)

    Lixin Tao; Blom, Roger (FS Dynamics Sweden AB, Goeteborg (Sweden)); Nordgren, Daniel (Innventia, Stockholm (Sweden))

    2010-11-15

    In the calcium loop of the recovery cycle in a Kraft process of pulp and paper production, rotary lime kilns are used to convert the lime mud, mainly CaCO3, back to quick lime, CaO, for re-use in the causticizing process. The lime kilns are one of the major energy consumption devices for paper and pulp industry. Because of the rising oil price and new emission limits, the pulp mills have been forced to look for alternative fuels for their lime kilns. One interesting alternative to oil, often easily available at pulp mills, is biofuels such as sawdust and bark. However the practical kiln operation often encounters some difficulties because of the uncertainties around the biofuel impact on the lime kiln performance. A deeper understanding of the flame characteristics is required when shifting from oil to biofuels. Fortunately recent advances in modern Computational Fluid Dynamics, CFD, have provided the possibility to study and predict the detailed flame characteristics regarding the lime kiln performance. In this project a three-dimensional CFD model for rotary lime kilns has been developed. To simulate a rotary lime kiln the developed CFD model integrates the three essential sub-models, i.e. the freeboard hot flow model, the lime bed model and the rotating refractory wall model and it is developed based on the modern CFD package: FLUENT which is commercially available on the market. The numerical simulations using the developed CFD model have been performed for three selected kiln operations fired with three different fuel mixtures. The predicted results from the CFD modelling are presented and discussed in order to compare the impacts on the kiln performance due to the different firing conditions. During the development, the lime kiln at the Soedra Cell Moensteraas mill has been used as reference kiln. To validate the CFD model, in-plant measurements were carried out in the Moensteraas lime kiln during an experiment campaign. The results obtained from the

  3. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    Science.gov (United States)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended

  4. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-12-01

    Full Text Available hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD solver that has previously been validated for zero-dimensional test cases. It aims at (1 giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2 providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes the different models implemented. In conjunction with employing the coupled vibration-dissociation-vibration (CVDV chemistry–vibration model, novel use is made of the quantum-kinetic (QK rates in a CFD solver. hy2Foam has been shown to produce results in good agreement with previously published data for a Mach 11 nitrogen flow over a blunted cone and with the dsmcFoam code for a Mach 20 cylinder flow for a binary reacting mixture. This latter case scenario provides a useful basis for other codes to compare against.

  5. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Vincent Casseau

    2016-10-01

    Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.

  6. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Directory of Open Access Journals (Sweden)

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  7. Investigation of piston bowl geometry and speed effects in a motored HSDI diesel engine using a CFD against a quasi-dimensional model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Kosmadakis, G.M.; Pariotis, E.G.

    2010-01-01

    The present work investigates the effect of varying the combustion chamber geometry and engine rotational speed on the gas flow and temperature field, using a new quasi-dimensional engine simulation model in conjunction with an in-house developed computational fluid dynamics (CFD) code served to validate the predicted in-cylinder flow field and gas temperature distribution calculated by the quasi-dimensional model, for three alternative piston bowl geometries and three rotational speeds. This CFD code can simulate three-dimensional curvilinear domains using the finite volume method in a collocated grid; it solves the generalized transport equation for the conservation of mass, momentum and energy, and incorporates the standard k-ε turbulence model with some slight modifications to introduce the compressibility of a fluid in generalized coordinates. On the other hand, the quasi-dimensional model solves the general transport equation for the conservation of mass and energy by a finite volume method throughout the entire in-cylinder volume, while for the estimation of the flow field a new simplified three dimensional air motion model is used. To compare these two models the in-cylinder spatial and temporal temperature distribution, the mean cylinder pressure diagram, as well as the mean in-cylinder radial and axial velocity are examined, for the three piston bowl geometries and the three speeds, for a high speed direct injection (HSDI) diesel engine operating under motoring conditions. From the comparison of calculated results, it becomes apparent that the two models predict similar in-cylinder temperature distributions and mean air velocity fields at each crank angle, for all cases examined. Thus, it is shown that the quasi-dimensional model with the proposed simplified air motion model is capable of capturing the physical effect of combustion chamber geometry and speed on the in-cylinder velocity and temperature field, while needing significantly lower computing

  8. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    OpenAIRE

    Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...

  9. MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud

    1999-01-01

    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  10. CFD Modeling in Development of Renewable Energy Applications

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Chapter 1: A Multi-fluid Model to Simulate Heat and Mass Transfer in a PEM Fuel Cell. Torsten Berning, Madeleine Odgaard, Søren K. Kær Chapter 2: CFD Modeling of a Planar Solid Oxide Fuel Cell (SOFC) for Clean Power Generation. Meng Ni Chapter 3: Hydrodynamics and Hydropower in the New Paradigm for a Sustainable Engineering. Helena M. Ramos, Petra A. López-Jiménez Chapter 4: Opportunities for CFD in Ejector Solar Cooling. M. Dennis Chapter 5: Three Dimensional Modelling of Flow Field Around a...

  11. CFD three dimensional wake analysis in complex terrain

    Science.gov (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  12. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report

    International Nuclear Information System (INIS)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-01

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case simulating a pump trip

  13. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report; Entwicklung und Validierung dreidimensionaler CFD Verfahren fuer Anwendungen in der Reaktorsicherheit. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-15

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case

  14. Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Bachant, Peter; Ferrara, Giovanni; Ferrari, Lorenzo

    2017-01-01

    Highlights: • 2D CFD simulations compared to experimental tow-tank data on the RVAT test model. • The use of CFD with open-field-like boundaries is suggested. • A reliable estimation of the turbine performance and the wake structure is obtained. • The transitional turbulence model is recommended for low TSRs and/or small rotors. • The wake analysis identified the main vortical structures generated by the blades. - Abstract: Thanks to the continuous improvement of calculation resources, computational fluid dynamics (CFD) is expected to provide in the next few years a cost-effective and accurate tool to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines. This rotor type is in fact increasingly welcome by the wind energy community, especially in case of small size applications and/or non-conventional installation sites. In the present study, unique tow tank experimental data on the performance curve and the near-wake structure of a Darrieus rotor were used as a benchmark to validate the effectiveness of different CFD approaches. In particular, a dedicated analysis is provided to assess the suitability, the effectiveness and the future prospects of simplified two-dimensional (2D) simulations. The correct definition of the computational domain, the selection of the turbulence models and the correction of simulated data for the parasitic torque components are discussed in this study. Results clearly show that, (only) if properly set, two-dimensional CFD simulations are able to provide - with a reasonable computational cost - an accurate estimation of the turbine performance and also quite reliably describe the attended flow-field around the rotor and its wake.

  15. Isothermal coarse mixing: experimental and CFD modelling

    International Nuclear Information System (INIS)

    Gilbertson, M.A.; Kenning, D.B.R.; Hall, R.W.

    1992-01-01

    A plane, two-dimensional flow apparatus has been built which uses a jet of solid 6mm diameter balls to model a jet of molten drops falling into a tank of water to study premixing prior to a vapour explosion. Preliminary experiments with unheated stainless steel balls are here compared with computational fluid dynamics (CFD) calculations by the code CHYMES. (6 figures) (Author)

  16. CFD analysis and flow model reduction for surfactant production in helix reactor

    Directory of Open Access Journals (Sweden)

    Nikačević N.M.

    2015-01-01

    Full Text Available Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD model with spatially variable dispersion coefficient. Dimensionless dispersion coefficient (Pe is estimated under different conditions and results are analyzed. Finally, correlation which relates Pe number with Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.

  17. Lime Kiln Modeling. CFD and One-dimensional simulations

    Energy Technology Data Exchange (ETDEWEB)

    Svedin, Kristoffer; Ivarsson, Christofer; Lundborg, Rickard

    2009-03-15

    The incentives for burning alternative fuels in lime kilns are growing. An increasing demand on thorough investigations of alternative fuel impact on lime kiln performance have been recognized, and the purpose of this project has been to develop a lime kiln CFD model with the possibility to fire fuel oil and lignin. The second part of the project consists of three technical studies. Simulated data from a one-dimensional steady state program has been used to support theories on the impact of biofuels and lime mud dryness. The CFD simulations was carried out in the commercial code FLUENT. Due to difficulties with the convergence of the model the calcination reaction is not included. The model shows essential differences between the two fuels. Lignin gives a different flame shape and a longer flame length compared to fuel oil. Mainly this depends on how the fuel is fed into the combustion chamber and how much combustion air that is added as primary and secondary air. In the case of lignin combustion the required amount of air is more than in the fuel oil case. This generates more combustion gas and a different flow pattern is created. Based on the values from turbulent reaction rate for the different fuels an estimated flame length can be obtained. For fuel oil the combustion is very intense with a sharp peak in the beginning and a rapid decrease. For lignin the combustion starts not as intense as for the fuel oil case and has a smoother shape. The flame length appears to be approximately 2-3 meter longer for lignin than for fuel oil based on turbulent reaction rate in the computational simulations. The first technical study showed that there are many benefits of increasing dry solids content in the lime mud going into a kiln such as increased energy efficiency, reduced TRS, and reduced sodium in the kiln. However, data from operating kilns indicates that these benefits can be offset by increasing exit gas temperature that can limit kiln production capacity. Simulated

  18. Recent results of three-dimensional CFD simulations of coolant mixing in VVER-440/213 reactor pressure vessel

    International Nuclear Information System (INIS)

    Kiss, B.; Boros, I.; Aszodi, A.

    2008-01-01

    The Budapest University of Technology and Economics, Institute of Nuclear Techniques has been working since 2001 on the three-dimensional CFD model of the reactor pressure vessel of the VVER-440 type reactor. During this time period - due to the development of the available computational capacity - a very complex and detailed model of the RPV has been developed. The aim of the construction of the new model is to describe further internal structures of the RPV (e.g. correct modeling of brake tubes, or internals in the upper mixing chamber) and to perform an extensive sensitivity analysis on the different modeling and calculation parameters (e.g. porous region models vs. detailed modeling, or n different turbulence models). The new model can be applied for steady state calculation during normal operational condition and for different transient analyses as well. One interesting application is the participation in a planned benchmark exercise on the start-up of the sixth main coolant pump, which is aimed to compare the capabilities of mixing models of one-dimensional system codes with the results of CFD simulation. (authors)

  19. Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines

    International Nuclear Information System (INIS)

    Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng

    2016-01-01

    Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.

  20. Modelling of the spent fuel heat-up in the spent fuel pools using one-dimensional system codes and CFD codes

    Energy Technology Data Exchange (ETDEWEB)

    Grazevicius, Audrius; Kaliatka, Algirdas [Lithuanian Energy Institute, Kaunas (Lithuania). Lab. of Nuclear Installation Safety

    2017-07-15

    The main functions of spent fuel pools are to remove the residual heat from spent fuel assemblies and to perform the function of biological shielding. In the case of loss of heat removal from spent fuel pool, the fuel rods and pool water temperatures would increase continuously. After the saturated temperature is reached, due to evaporation of water the pool water level would drop, eventually causing the uncover of spent fuel assemblies, fuel overheating and fuel rods failure. This paper presents an analysis of loss of heat removal accident in spent fuel pool of BWR 4 and a comparison of two different modelling approaches. The one-dimensional system thermal-hydraulic computer code RELAP5 and CFD tool ANSYS Fluent were used for the analysis. The results are similar, but the local effects cannot be simulated using a one-dimensional code. The ANSYS Fluent calculation demonstrated that this three-dimensional treatment allows to avoid the need for many one-dimensional modelling assumptions in the pool modelling and enables to reduce the uncertainties associated with natural circulation flow calculation.

  1. Implementation into a CFD code of neutron kinetics and fuel pin models for nuclear reactor transient analyses

    International Nuclear Information System (INIS)

    Chen Zhao; Chen, Xue-Nong; Rineiski, Andrei; Zhao Pengcheng; Chen Hongli

    2014-01-01

    Safety analysis is an important tool for justifying the safety of nuclear reactors. The traditional method for nuclear reactor safety analysis is performed by means of system codes, which use one-dimensional lumped-parameter method to model real reactor systems. However, there are many multi-dimensional thermal-hydraulic phenomena cannot be predicated using traditional one-dimensional system codes. This problem is extremely important for pool-type nuclear systems. Computational fluid dynamics (CFD) codes are powerful numerical simulation tools to solve multi-dimensional thermal-hydraulics problems, which are widely used in industrial applications for single phase flows. In order to use general CFD codes to solve nuclear reactor transient problems, some additional models beyond general ones are required. Neutron kinetics model for power calculation and fuel pin model for fuel pin temperature calculation are two important models of these additional models. The motivation of this work is to develop an advance numerical simulation method for nuclear reactor safety analysis by implementing neutron kinetics model and fuel pin model into general CFD codes. In this paper, the Point Kinetics Model (PKM) and Fuel Pin Model (FPM) are implemented into a general CFD code FLUENT. The improved FLUENT was called as FLUENT/PK. The mathematical models and implementary method of FLUENT/PK are descripted and two demonstration application cases, e.g. the unprotected transient overpower (UTOP) accident of a Liquid Metal cooled Fast Reactor (LMFR) and the unprotected beam overpower (UBOP) accident of an Accelerator Driven System (ADS), are presented. (author)

  2. A CFD model for pollutant dispersion in rivers

    Directory of Open Access Journals (Sweden)

    Modenesi K.

    2004-01-01

    Full Text Available Studies have shown that humankind will experience a water shortage in the coming decades. It is therefore paramount to develop new techniques and models with a view to minimizing the impact of pollution. It is important to predict the environmental impact of new emissions in rivers, especially during periods of drought. Computational fluid dynamics (CFD has proved to be an invaluable tool to develop models able to analyze in detail particle dispersion in rivers. However, since these models generate grids with thousands (even millions of points to evaluate velocities and concentrations, they still require powerful machines. In this context, this work contributes by presenting a new three-dimensional model based on CFD techniques specifically developed to be fast, providing a significant improvement in performance. It is able to generate predictions in a couple of hours for a one-thousand-meter long section of river using Pentium IV computers. Commercial CFD packages would require weeks to solve the same problem. Another innovation inb this work is that a half channel with a constant elliptical cross section represents the river, so the Navier Stokes equations were derived for the elliptical system. Experimental data were obtained from REPLAN (PETROBRAS refining unit on the Atibaia River in São Paulo, Brazil. The results show good agreement with experimental data.

  3. The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.

  4. Modeling of annular two-phase flow using a unified CFD approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se

    2016-07-15

    Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.

  5. Modeling of annular two-phase flow using a unified CFD approach

    International Nuclear Information System (INIS)

    Li, Haipeng; Anglart, Henryk

    2016-01-01

    Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.

  6. A new improvement on a chemical kinetic model of primary reference fuel for multi-dimensional CFD simulation

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang; Liu, Daming

    2016-01-01

    Highlights: • A new optimized chemical kinetic mechanism for PRF is developed. • New mechanism optimization is performed based on the CHEMKIN simulations. • More reactions of C_0–C_1 oxidation are added in the present mechanism. • Good performance is achieved of mechanism by validating various reactors and operating conditions. - Abstract: In the present study, for the multi-dimensional CFD (computational fluid dynamics) combustion simulations of internal combustion engines, a new optimized chemical kinetic reaction mechanism for the oxidation of PRF (primary reference fuel) instead of gasoline has been developed. In order to carry out the in-depth research for combustion phenomenon of internal combustion engines, an optimized reduced PRF mechanism including more intermediate species and radicals was developed. The developed mechanism contains of iso-octane (C_8H_1_8) and n-heptane (C_7H_1_6) surrogates, which contains of 51-species and 193 reactions. Compared with many other mechanisms of PRF, more reactions of C_0–C_1 oxidation (100 reactions) are added in the present mechanism. In order to improve the performances of the model, the developed mechanism focused on the improvement through the prediction of the ignition delay time. The developed mechanism has been validated against various experimental and simulation data including shock tube data, laminar flame speed data and HCCI (homogeneous charge compression ignition) engine data. The results showed that the developed PRF mechanism was agreements with the experimental data and other approved reduced mechanisms, and it could be applied to the multi-dimensional CFD simulations for internal combustion engines.

  7. The IEA Annex 20 Two-Dimensional Benchmark Test for CFD Predictions

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Rong, Li; Cortes, Ines Olmedo

    2010-01-01

    predictions both for isothermal flow and for nonisothermal flow. The benchmark is defined on a web page, which also shows about 50 different benchmark tests with studies of e.g. grid dependence, numerical schemes, different source codes, different turbulence models, RANS or LES, different turbulence levels...... in a supply opening, study of local emission and study of airborne chemical reactions. Therefore the web page is also a collection of information which describes the importance of the different elements of a CFD procedure. The benchmark is originally developed for test of two-dimensional flow, but the paper...

  8. CFD modeling of pool swell during large break LOCA

    International Nuclear Information System (INIS)

    Yan, Jin; Bolger, Francis; Li, Guangjun; Mintz, Saul; Pappone, Daniel

    2009-01-01

    GE had conducted a series of one-third scale three-vent air tests in support the horizontal vent pressure suppression system used in Mark III containment design for General Electric BWR plants. During the test, the air-water interface has been tracked by conductivity probes. There are many pressure monitors inside the test rig. The purpose of the test was to provide a basis for the pool swell load definition for the Mark III containment. In this paper, a transient 3-Dimensional CFD model of the one-third scale Mark III suppression pool swell process is constructed. The Volume of Fluid (VOF) multiphase model is used to explicitly track the interface between the water liquid and the air. The CFD results such as flow velocity, pressure, interface locations are compared to those from the test. Through the comparisons, a technical approach to numerically model the pool swell phenomenon is established and benchmarked. (author)

  9. CFD Modeling of Free-Piston Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir B.; Zhang, Zhi-Guo; Tew, Roy C., Jr.; Gedeon, David; Simon, Terrence W.

    2001-01-01

    NASA Glenn Research Center (GRC) is funding Cleveland State University (CSU) to develop a reliable Computational Fluid Dynamics (CFD) code that can predict engine performance with the goal of significant improvements in accuracy when compared to one-dimensional (1-D) design code predictions. The funding also includes conducting code validation experiments at both the University of Minnesota (UMN) and CSU. In this paper a brief description of the work-in-progress is provided in the two areas (CFD and Experiments). Also, previous test results are compared with computational data obtained using (1) a 2-D CFD code obtained from Dr. Georg Scheuerer and further developed at CSU and (2) a multidimensional commercial code CFD-ACE+. The test data and computational results are for (1) a gas spring and (2) a single piston/cylinder with attached annular heat exchanger. The comparisons among the codes are discussed. The paper also discusses plans for conducting code validation experiments at CSU and UMN.

  10. Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries

    Science.gov (United States)

    Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus

    2012-01-01

    In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428

  11. Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries

    Directory of Open Access Journals (Sweden)

    Lars Yde

    2012-11-01

    Full Text Available In forward osmosis (FO, an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.

  12. Modeling and verification of hemispherical solar still using ANSYS CFD

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Hitesh N. [KSV University, Gujarat Power Engineering and Research Institute, Mehsana (India); Shah, P.K. [Silver Oak College of Engineering and Technology, Ahmedabad, Gujarat (India)

    2013-07-01

    In every efficient solar still design, water temperature, vapor temperature and distillate output, and difference between water temperature and inner glass cover temperatures are very important. Here, two dimensional three phase model of hemispherical solar still is made for evaporation as well as condensation process in ANSYS CFD. Simulation results like water temperature, vapor temperature, distillate output compared with actual experimental results of climate conditions of Mehsana (latitude of 23° 59’ and longitude of 72° 38) of hemispherical solar still. Water temperature and distillate output were good agreement with actual experimental results. Study shows that ANSYS-CFD is very powerful as well as efficient tool for design, comparison purpose of hemispherical solar still.

  13. CFD Model Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data associated with the development of the CFD model for spore deposition in respiratory systems of rabbits and humans. This dataset is associated with the...

  14. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Science.gov (United States)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  15. Present state and future of CFD based on three-dimensional RANS analysis

    International Nuclear Information System (INIS)

    Kim, Kwang Yong

    2004-01-01

    Computational Fluid Dynamics (CFD) based on Navier-Stokes equations has been developed rapidly for several decades with the developments of high speed computers and numerical algorithms, and presently is regarded as an essential analysis tool in the engineering applications containing fluid flow and convective heat transfer. It is known that for turbulent flow the Navier-Stokes equations can be calculated precisely by Direct Numerical Simulation (DNS). However, DNS needs huge computing time even for simple low-Reynolds number flows, and thus is not practical. Large Eddy Simulation (LES) can be an alternative. But, LES also needs considerable computing time for the analysis of engineering flows, and have some problem in the methods. Therefore, the analysis methods using Reynolds-averaged Navier-stokes equations (RANS) and turbulence closure models are still regarded as the major techniques for the analysis of turbulent flows in spite of the inaccuracy of the prediction. In this presentation, the present state and the prospect of CFD based on three-dimensional RANS analysis are introduced for physical models and numerical algorithms with the engineering examples. Especially, for the analysis of two-phase flows in nuclear reactor, the recently developed techniques are also introduced. And, the presentation includes the methods of design optimization using RANS analysis and numerical optimization techniques with variety of the applications

  16. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  17. CFD Modelling in Screw Compressors With Complex Multi Rotor Configurations

    OpenAIRE

    Rane, Sham Ramchandra; Kovacevic, Ahmed; Kethidi, Madhulika

    2012-01-01

    Computational Fluid Dynamics (CFD) of screw compressors is challenging due to the positive displacement nature of the process, existence of very fine fluid leakage paths, coexistence of working fluid and lubricant or coolant, fluid injection and most importantly the lack of methodologies available to generate meshes required for the full three dimensional transient simulations. In this paper, currently available technology of grid remeshing has been used to demonstrate the CFD simulations of ...

  18. CFD modeling of the IRIS pressurizer dynamic

    International Nuclear Information System (INIS)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R.; Bezerra, Jair L.; Lira, Carlos A.B. Oliveira

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  19. CFD modeling of the IRIS pressurizer dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2015-07-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  20. Validation of CFD modeling for VGM loss-of-forced-cooling accidents

    International Nuclear Information System (INIS)

    Wysocki, Aaron; Ahmed, Bobby; Charmeau, Anne; Anghaie, Samim

    2009-01-01

    Heat transfer and fluid flow in the VGM reactor cavity cooling system (RCCS) was modeled using Computational Fluid Dynamics (CFD). The VGM is a Russian modular-type high temperature helium-cooled reactor. In the reactor cavity, heat is removed from the pressure vessel wall through natural convection and radiative heat transfer to water-cooled vertical pipes lining the outer cavity concrete. The RCCS heat removal capability under normal operation and accident scenarios needs to be assessed. The purpose of the present study is to validate the use of CFD to model heat transfer in the VGM RCCS. Calculations were based on a benchmark problem which defines a two-dimensional temperature distribution on the pressure vessel outer wall for both Depressurized and Pressurized Loss-of-Forced Cooling events. A two-dimensional axisymmetric model was developed to determine the best numerical modeling approach. A grid sensitivity study for the air region showed that a 20 mm mesh size with a boundary layer giving a maximum y+ of 2.0 was optimal. Sensitivity analyses determined that the discrete ordinates radiative model, the k-omega turbulence model, and the ideal gas law gave the best combination for capturing radiation and natural circulation in the air cavity. A maximum RCCS pipe wall temperature of 62degC located 6 m from the top of the cavity was predicted. The model showed good agreement with previous results for both Pressurized and Depressurized Loss-of-Forced-Cooling accidents based on RCCS coolant outlet temperature, relative contributions of radiative and convective heat transfer, and RCCS heat load profiles. (author)

  1. CFD aided analysis of a scaled down model of the Brazilian Multipurpose Reactor (RMB) pool

    International Nuclear Information System (INIS)

    Schweizer, Fernando L.A.; Lima, Claubia P.B.; Costa, Antonella L.; Veloso, Maria A.F.

    2013-01-01

    Research reactors are commonly built inside deep pools that provide radiological and thermal protection and easy access to its core. Reactors with thermal power in the order of MW usually use an auxiliary thermal-hydraulic circuit at the top of its pool to create a purified hot water layer (HWL). Thermal-hydraulic analysis of the flow configuration in the pool and HWL is paramount to insure radiological protection. A useful tool for these analyses is the application of CFD (Computational Fluid Dynamics). To obtain satisfactory results using CFD it is necessary the verification and validation of the CFD numerical model. Verification is divided in code and solution verifications. In the first one establishes the correctness of the CFD code implementation and in the former estimates the numerical accuracy of a particular calculation. Validation is performed through comparison of numerical and experimental results. This paper presents a dimensional analysis of the RMB (Brazilian Multipurpose Reactor) pool to determine a scaled down experimental installation able to aid in the HWL numerical investigation. Two CFD models were created one with the same dimensions and boundary conditions of the reactor prototype and the other with 1/10 proportion size and boundary conditions set to achieve the same inertial and buoyant forces proportions represented by Froude Number between the two models. Results comparing the HWL thickness show consistence between the prototype and the scaled down model behavior. (author)

  2. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  3. CFD analyses of steam and hydrogen distribution in a nuclear power plant

    International Nuclear Information System (INIS)

    Siccama, N.B.; Houkema, M.; Komen, E.M.J.

    2003-01-01

    A detailed three-dimensional Computational Fluid Dynamics (CFD) model of the containment of the nuclear power plant has been prepared in order to assess possible multidimensional phenomena. In a first code-to-code comparison step, the CFD model has been used to compute a reference accident scenario which has been analysed earlier with the lumped parameter code SPECTRA. The CFD results compare qualitatively well with the SPECTRA results. Subsequently, the actual steam jet from the primary system has been modelled in the CFD code in order to determine the hydrogen distribution for this realistically modelled source term. Based on the computed hydrogen distributions, it has been determined when use of lumped parameter codes is allowed and when use of CFD codes is required. (author)

  4. Three-dimensional all-speed CFD code for safety analysis of nuclear reactor containment: Status of GASFLOW parallelization, model development, validation and application

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianjun, E-mail: jianjun.xiao@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, John R., E-mail: jack_travis@comcast.com [Engineering and Scientific Software Inc., 3010 Old Pecos Trail, Santa Fe, NM 87505 (United States); Royl, Peter, E-mail: peter.royl@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Necker, Gottfried, E-mail: gottfried.necker@partner.kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Svishchev, Anatoly, E-mail: anatoly.svishchev@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Jordan, Thomas, E-mail: thomas.jordan@kit.edu [Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-05-15

    Highlights: • 3-D scalable semi-implicit pressure-based CFD code for containment safety analysis. • Robust solution algorithm valid for all-speed flows. • Well validated and widely used CFD code for hydrogen safety analysis. • Code applied in various types of nuclear reactor containments. • Parallelization enables high-fidelity models in large scale containment simulations. - Abstract: GASFLOW is a three dimensional semi-implicit all-speed CFD code which can be used to predict fluid dynamics, chemical kinetics, heat and mass transfer, aerosol transportation and other related phenomena involved in postulated accidents in nuclear reactor containments. The main purpose of the paper is to give a brief review on recent GASFLOW code development, validations and applications in the field of nuclear safety. GASFLOW code has been well validated by international experimental benchmarks, and has been widely applied to hydrogen safety analysis in various types of nuclear power plants in European and Asian countries, which have been summarized in this paper. Furthermore, four benchmark tests of a lid-driven cavity flow, low Mach number jet flow, 1-D shock tube and supersonic flow over a forward-facing step are presented in order to demonstrate the accuracy and wide-ranging capability of ICE’d ALE solution algorithm for all-speed flows. GASFLOW has been successfully parallelized using the paradigms of Message Passing Interface (MPI) and domain decomposition. The parallel version, GASFLOW-MPI, adds great value to large scale containment simulations by enabling high-fidelity models, including more geometric details and more complex physics. It will be helpful for the nuclear safety engineers to better understand the hydrogen safety related physical phenomena during the severe accident, to optimize the design of the hydrogen risk mitigation systems and to fulfill the licensing requirements by the nuclear regulatory authorities. GASFLOW-MPI is targeting a high

  5. Modeling the defrost process in complex geometries – Part 1: Development of a one-dimensional defrost model

    Directory of Open Access Journals (Sweden)

    van Buren Simon

    2017-01-01

    Full Text Available Frost formation is a common, often undesired phenomenon in heat exchanges such as air coolers. Thus, air coolers have to be defrosted periodically, causing significant energy consumption. For the design and optimization, prediction of defrosting by a CFD tool is desired. This paper presents a one-dimensional transient model approach suitable to be used as a zero-dimensional wall-function in CFD for modeling the defrost process at the fin and tube interfaces. In accordance to previous work a multi stage defrost model is introduced (e.g. [1, 2]. In the first instance the multi stage model is implemented and validated using MATLAB. The defrost process of a one-dimensional frost segment is investigated. Fixed boundary conditions are provided at the frost interfaces. The simulation results verify the plausibility of the designed model. The evaluation of the simulated defrost process shows the expected convergent behavior of the three-stage sequence.

  6. Tip studies using CFD and comparison with tip loss models

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Johansen, J.

    2004-01-01

    The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD......The flow past a rotating LM8.2 blade equipped with two different tips are computed using CFD. The different tip flows are analysed and a comparison with two different tip loss models is made. Keywords: tip flow, aerodynamics, CFD...

  7. CFD-model of the mass transfer in the vertical settler

    Directory of Open Access Journals (Sweden)

    E. K. Nagornaya

    2013-02-01

    Full Text Available Purpose. Nowadays the mathematical models of the secondary settlers are intensively developed. As a rule the engineers use the 0-D models or 1-D models to design settlers. But these models do not take into account the hydrodynamics process inside the settler and its geometrical form. That is why the CFD-models based on Navier - Stokes equations are not widely used in practice now. The use of CFD-models based on Navier - Stokes equations needs to incorporate very refine grid. It is very actually now to develop the CFD-models which permit to take into account the geometrical form of the settler, the most important physical processes and needs small computer time for calculation. That is why the development of the 2-D numerical model for the investigation of the waste waters transfer in the vertical settlers which permits to take into account the geometrical form and the constructive features of the settler is essential. Methodology. The finite - difference schemes are applied. Findings. The new 2-D-CFD-model was developed, which permits to perform the CFD investigation of the vertical settler. This model takes into account the geometrical form of the settler, the central pipe inside it and others peculiarities. The method of «porosity technique» is used to create the geometrical form of the settler in the numerical model. This technique permits to build any geometrical form of the settler for CFD investigation. Originality. Making of CFD-model which permits on the one hand to take into account the geometrical form of the settler, basic physical processes of mass transfer in construction and on the other hand requiring the low time cost in order to obtain results. Practical value. CFD-model is designed and code which is constructed on its basis allows at low cost of computer time and about the same as in the calculation of the 1-D model to solve complex multiparameter problems that arise during the design of vertical settlers with their shape and

  8. A comprehensive CFD model of anode-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Jeon, Dong Hyup

    2009-01-01

    The two-dimensional comprehensive CFD model of anode-supported SOFCs operating at intermediate temperature has been presented. This model provides transport phenomena of gas species with electrochemical characteristics and micro-structural properties, and predicts SOFC performance. The mathematical model solves conservation of electrons and ions, continuity equation, conservation of momentum, conservation of mass, and conservation of energy. A continuum micro-scale model based on statistical properties together with a mole-based conservation model was employed. CFD technique was used to solve the set of governing equations. The cell performance was decomposed with contributions of each overpotential and was presented at several operating temperatures with analysis of effective diffusivity. It was found that the contribution of potential gain due to temperature rising was considerably high. However it became non-significant at high operating temperature due to decreasing of effective diffusivity in AFL. These results showed that the performance and the distributions of current density, overpotentials, and mole fractions of gas species have a strong dependence upon temperature. From these results, it was concluded that the conservation of energy should be accommodated in comprehensive SOFC model. Also the useful information for the effect of parameters on cell performance and transport phenomena was provided

  9. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  10. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.; Babic, M.

    2005-01-01

    Full text of publication follows: The modelling and simulation of atmosphere mixing and stratification in nuclear power plant containments is a topic, which is currently being intensely investigated. With the increase of computer power, it has now become possible to model these phenomena with a local instantaneous description, using so-called Computational Fluid Dynamics (CFD) codes. However, calculations with these codes still take relatively long times. An alternative faster approach, which is also being applied, is to model nonhomogeneous atmosphere with lumped-parameter codes by dividing larger control volumes into smaller volumes, in which conditions are modelled as homogeneous. The flow between smaller volumes is modelled using one-dimensional approaches, which includes the prescription of flow loss coefficients. However, some authors have questioned this approach, as it appears that atmosphere stratification may sometimes be well simulated only by adjusting flow loss coefficients to adequate 'artificial' values that are case-dependent. To start the resolution of this issue, a modelling of nonhomogeneous atmosphere with a lumped-parameter code is proposed, where the subdivision of a large volume into smaller volumes is based on results of CFD simulations. The basic idea is to use the results of a CFD simulation to define regions, in which the flow velocities have roughly the same direction. These regions are then modelled as control volumes in a lumped-parameter model. In the proposed work, this procedure was applied to a simulation of an experiment of atmosphere mixing and stratification, which was performed in the TOSQAN facility. The facility is located at the Institut de Radioprotection et de Surete Nucleaire (IRSN) in Saclay (France) and consists of a cylindrical vessel (volume: 7 m3), in which gases are injected. In the experiment, which was also proposed for the OECD/NEA International Standard Problem No.47, air was initially present in the vessel, and

  11. CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow

    OpenAIRE

    Davarnejad, Reza; Jamshidzadeh, Maryam

    2015-01-01

    In this paper, Computational fluid dynamics (CFD) modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF) and mixture were used. T...

  12. CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT

    Directory of Open Access Journals (Sweden)

    Eduardo Soudah

    2013-01-01

    Full Text Available The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA geometric parameters, wall stress shear (WSS, abdominal flow patterns, intraluminal thrombus (ILT, and AAA arterial wall rupture using computational fluid dynamics (CFD. Real AAA 3D models were created by three-dimensional (3D reconstruction of in vivo acquired computed tomography (CT images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m3 and a kinematic viscosity of 4×10-3 Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index (β, saccular index (γ, deformation diameter ratio (χ, and tortuosity index (ε and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.

  13. Validation of NEPTUNE-CFD two-phase flow models using experimental data

    International Nuclear Information System (INIS)

    Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent

    2014-01-01

    This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)

  14. Multi-d CFD Modeling of a Free-piston Stirling Convertor at NASA Glenn

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Ibrahim, Mounir B.

    2004-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multidimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. Simulations of the Stirling convertors for the SRG will help characterize the thermodynamic losses resulting from fluid flow and heat transfer between the working gas and solid walls. The current CFD simulation represents approximated 2-dimensional convertor geometry. The simulation solves the Navier Stokes equations for an ideal helium gas oscillating at low speeds. The current simulation results are discussed.

  15. CFD Modeling and Simulation in Materials Processing 2018

    OpenAIRE

    Nastac, Laurentiu; Pericleous, Koulis; Sabau, Adrian S.; Zhang, Lifeng; Thomas, Brian G.

    2018-01-01

    This book contains the proceedings of the symposium “CFD Modeling and Simulation in Materials Processing” held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona, USA, March 11–15, 2018. This symposium dealt with computational fluid dynamics (CFD) modeling and simulation of engineering processes. The papers published in this book were requested from researchers and engineers involved in the modeling of multiscale and multiphase phenomena in material processing systems. The sympos...

  16. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  17. User Interface Developed for Controls/CFD Interdisciplinary Research

    Science.gov (United States)

    1996-01-01

    The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.

  18. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-Dimensional Analysis

    OpenAIRE

    Vincent Casseau; Rodrigo C. Palharini; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    A two-temperature CFD (computational fluid dynamics) solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrat...

  19. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...

  20. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  1. Aeroelastic Stability of Suspension Bridges using CFD

    DEFF Research Database (Denmark)

    Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.

    2007-01-01

    using CFD models and the aeroelastic stability boundary has been successfully determined when comparing two-dimensional flow situations using wind tunnel test data and CFD methods for the flow solution and two-degrees-of-freedom structural models in translation perpendicular to the flow direction......In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...... of aeroelastic stability also named flutter stability is mostly based on semi-empirical engineering models, where model specific parameters, the so-called flutter derivatives, need calibration from wind tunnel tests or numerical methods. Several papers have been written about calibration of flutter derivatives...

  2. CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach

    International Nuclear Information System (INIS)

    Li, Haipeng; Anglart, Henryk

    2015-01-01

    Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate

  3. A systems CFD model of a packed bed high temperature gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Du Toit, C.G.; Rousseau, P.G.; Greyvenstein, G.P.; Landman, W.A.

    2006-01-01

    The theoretical basis and conceptual formulation of a comprehensive reactor model to simulate the thermal-fluid phenomena of the PBMR reactor core and core structures is given. Through a rigorous analysis the fundamental equations are recast in a form that is suitable for incorporation in a systems CFD code. The formulation of the equations results in a collection of one-dimensional elements (models) that can be used to construct a comprehensive multi-dimensional network model of the reactor. The elements account for the pressure drop through the reactor; the convective heat transport by the gas; the convection heat transfer between the gas and the solids; the radiative, contact and convection heat transfer between the pebbles and the heat conduction in the pebbles. Results from the numerical model are compared with that of experiments conducted on the SANA facility covering a range of temperatures as well as two different fluids and different heating configurations. The good comparison obtained between the simulated and measured results show that the systems CFD approach sufficiently accounts for all of the important phenomena encountered in the quasi-steady natural convection driven flows that will prevail after critical events in a reactor. The fact that the computer simulation time for all of the simulations was less than three seconds on a standard notebook computer also indicates that the new model indeed achieves a fine balance between accuracy and simplicity. The new model can therefore be used with confidence and still allow quick integrated plant simulations. (authors)

  4. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  5. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  6. Assessment of RANS CFD modelling for pressurised thermal shock analysis

    International Nuclear Information System (INIS)

    Sander M Willemsen; Ed MJ Komen; Sander Willemsen

    2005-01-01

    Full text of publication follows: The most severe Pressurised Thermal Shock (PTS) scenario is a cold water Emergency Core Coolant (ECC) injection into the cold leg during a LOCA. The injected ECC water mixes with the hot fluid present in the cold leg and flows towards the downcomer where further mixing takes place. When the cold mixture comes into contact with the Reactor Pressure Vessel (RPV) wall, it may lead to large temperature gradients and consequently to high stresses in the RPV wall. Knowledge of these thermal loads is important for RPV remnant life assessments. The existing thermal-hydraulic system codes currently applied for this purpose are based on one-dimensional approximations and can, therefore, not predict the complex three-dimensional flows occurring during ECC injection. Computational Fluid Dynamics (CFD) can be applied to predict these phenomena, with the ultimate benefit of improved remnant RPV life assessment. The present paper presents an assessment of various Reynolds Averaged Navier Stokes (RANS) CFD approaches for modeling the complex mixing phenomena occurring during ECC injection. This assessment has been performed by comparing the numerical results obtained using advanced turbulence models available in the CFX 5.6 CFD code in combination with a hybrid meshing strategy with experimental results of the Upper Plenum Test Facility (UPTF). The UPTF was a full-scale 'simulation' of the primary system of the four loop 1300 MWe Siemens/KWU Pressurised Water Reactor at Grafenrheinfeld. The test vessel upper plenum internals, downcomer and primary coolant piping were replicas of the reference plant, while other components, such as core, coolant pump and steam generators were replaced by simulators. From the extensive test programme, a single-phase fluid-fluid mixing experiment in the cold leg and downcomer was selected. Prediction of the mixing and stratification is assessed by comparison with the measured temperature profiles at several locations

  7. Partitioned Fluid-Structure Interaction for Full Rotor Computations Using CFD

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian

    ) based aerodynamic model which is computationally cheap but includes several limitations and corrections in order to account for three-dimensional and unsteady eects. The present work discusses the development of an aero-elastic simulation tool where high-fidelity computational fluid dynamics (CFD......) is used to model the aerodynamics of the flexible wind turbine rotor. Respective CFD computations are computationally expensive but do not show the limitations of the BEM-based models. It is one of the first times that high-fidelity fluid-structure interaction (FSI) simulations are used to model the aero......-elastic response of an entire wind turbine rotor. The work employs a partitioned FSI coupling between the multi-body-based structural model of the aero-elastic solver HAWC2 and the finite volume CFD solver EllipSys3D. In order to establish an FSI coupling of sufficient time accuracy and sufficient numerical...

  8. Prediction of leakage and rotordynamic coefficients for the circumferential-groove pump seal using CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ha, Tae Woong [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    The circumferential-groove seal is commonly used in various turbopumps to reduce leakage. The main goal of this paper is to develop the method of three-dimensional CFD analysis for determining leakage and rotordynamic coefficients of the circumferential-groovepump seal. A relative coordinate system was defined for steady-state simulation to calculate the velocity and pressure distributions of the seal clearance at each rotor whirl speed. Instead of setting the inlet and outlet pressures as the boundary conditions in the three dimensional CFD analysis, as it is more commonly done, we used the inlet velocity and outlet pressure obtained from a preliminary two dimensional CFD analysis. For prediction leakage, the presented analysis shows improvement from the bulk-flow model analysis. For the prediction of rotordynamic coefficients of K, k and C, the presented analysis provides results in closer agreement with the experimental values than those of the bulk-flow model analysis at several rotor speeds.

  9. CFD analysis and flow model reduction for surfactant production in helix reactor

    NARCIS (Netherlands)

    Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den

    2014-01-01

    Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is

  10. Effect of Water-Air Clearing on Thermal Mixing in IRWST Using Three-Dimensional CFD Analysis

    International Nuclear Information System (INIS)

    Ha, Jeong Hee; Lee, Doo Yong; Hong, Soon Joon; Jeong, Jae Sik; Park, Man Heung; Moon, Young Tae

    2013-01-01

    In this paper, the water-air clearing effects on thermal mixing in the IRWST were investigated with the CFD simulation. The boundary conditions for each discharge phase were obtained from the RELAP5 simulation. The flow distribution in the IRWST for the water clearing phase was reflected as the initial condition for the air clearing simulation. The flow distribution for the air clearing phase was applied as the initial condition for the steam condensation phase. The result of the steam condensation phase with the SCRM showed that the thermal mixing in the IRWST might be enhanced by the mixing effects of the water-air clearing before the steam discharge. IRWST (in-containment refueling water storage tank) is one of the advanced design features of APR1400 (Advanced Power Reactor . 1400). Connected to the Safety Depressurization and Vent System (SDVS), IRWST is designed to absorb the high energy flow from Pilot Operated Safety and Relief Valves (POSRVs) to protect the over-pressurization of the Reactor Coolant System. Due to thermal hydraulic loads induced by discharged fluids, it is crucial to understand the phenomena occur in the IRWST and thermal mixing is one of them. It has been known that the unstable steam condensation which results in oscillations and acts as the loads on the IRWST wall and structures can occur if there is a large local temperature difference. Thus, there is a regulation related to IRWST temperature distribution (difference) to be satisfied. To understand the phenomena and design the IRWST with sufficient safety margin, many experimental and numerical researches have been performed. The results of these researches showed that the CFD analysis predicts well the temperature distribution in the pool globally and can be a proper evaluation methodology to analyze the complex thermal mixing phenomena in the IRWST with a sufficiently fine mesh distribution and proper numerical models. But the previous studies have tended to focus the phenomenological

  11. Computational fluid dynamics (CFD) study on the fetal aortic coarctation

    Science.gov (United States)

    Zhou, Yue; Zhang, Yutao; Wang, Jingying

    2018-03-01

    Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.

  12. Application of Simple CFD Models in Smoke Ventilation Design

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm; la Cour-Harbo, Hans

    2004-01-01

    The paper examines the possibilities of using simple CFD models in practical smoke ventilation design. The aim is to assess if it is possible with a reasonable accuracy to predict the behaviour of smoke transport in case of a fire. A CFD code mainly applicable for “ordinary” ventilation design...

  13. Computational Fluid Dynamics for Nuclear Reactor Safety-5 (CFD4NRS-5). Workshop Proceedings, 9-11 September 2014, Zurich, Switzerland

    International Nuclear Information System (INIS)

    Smith, Brian L.; Andreani, Michele; Badillo, Arnoldo; Dehbi, Abdel; Sato, Yohei; Smith, Brian L.; Dreier, Joerg; Kapulla, Ralf; Niceno, Bojan; Sharabi, Medhat; Bestion, Dominique; Bieder, Ulrich; Coste, Pierre; Martinez, Jean Marc; Zigh, Ghani; Boyd, Chris; Prasser, Horst-Michael; Kerenyi, Nora; Adams, Robert; Bolesch, Christian; D'Aleo, Paolo; Eismann, Ralph; Kickhofel, John; Lafferty, Nathan; Saxena, Abhishek; Kissane, Martin; ); Ulses, Anthony; ); Bartosiewicz, Yann; Seynhaeve, Jean-Marie; Caraghiaur, Diana; Munoz Cobo, Jose Luis; Glaeser, Horst; Buchholz, Sebastian; Scheuerer, Martina; Hassan, Yassin; In, Wang-Kee; Song, Chul-Hwa; Yoon, Han-Young; Kim, J.W.; Koncar, Bostjan; Tiselj, Iztoc; Lakehal, Djamel; Yadigaroglu, George; Lo, Simon; Manera, Annalisa; Petrov, Victor; Mimouni, Stephane; Benhamadouche, Sofiane; Morii, Tadashi; Suikkanen, Heikki; Toppila, Timo; Angele, Kristian; Baglietto, Emilio; Cheng, Xu; Graffard, Estelle; Ko, Jordan; Hoehne, Thomas; Lucas, Dirk; Krepper, Eckhard; Laurien, Eckart; Moretti, Fabio; Piro, Markus; Roelofs, Ferry; Veber, Pascal; Watanabe, Tadashi; Yan, Jin; Yeoh, Guan

    2016-01-01

    This present workshop, the 5. Computational Fluid Dynamics for Nuclear-Reactor Safety (CFD4NRS-5), in the biennial series of such Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) sponsored events, a tradition which began in Garching in 2006, follows the format and objectives of its predecessors in creating a forum whereby numerical analysts and experimentalists can exchange information in the application of computational fluid dynamics (CFD) to nuclear power plant (NPP) safety and future design issues. The emphasis, as always, was, in a congenial atmosphere, to offer exposure to state-of-the-art (single-phase and multi-phase) CFD applications reflecting topical issues arising in NPP design and safety, but in particular to promote the release of high-resolution experimental data to continue the CFD validation process in this application area. The reason for the increased use of multi-dimensional CFD methods is that a number of important thermal-hydraulic phenomena occurring in NPPs cannot be adequately predicted using traditional one-dimensional system hydraulics codes with the required accuracy and spatial resolution when strong three-dimensional motions prevail. Established CFD codes already contain empirical models for simulating turbulence, heat transfer, multi-phase interaction and chemical reactions. Nonetheless, such models must be validated against test data before they can be used with confidence. The necessary validation procedure is performed by comparing model predictions against trustworthy experimental data. However, reliable model assessment requires CFD simulations to be undertaken with full control over numerical errors and input uncertainties. The writing groups originally set up by the NEA have been consistently promoting the use of best practice guidelines (BPGs) in the application of CFD for just this purpose, and BPGs remain a central pillar of the simulation material accepted at this current workshop, as it was at its

  14. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models.

    Science.gov (United States)

    Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H

    2009-05-01

    The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.

  15. Advanced Wall Boiling Model with Wide Range Applicability for the Subcooled Boiling Flow and its Application into the CFD Code

    International Nuclear Information System (INIS)

    Yun, B. J.; Song, C. H.; Splawski, A.; Lo, S.

    2010-01-01

    Subcooled boiling is one of the crucial phenomena for the design, operation and safety analysis of a nuclear power plant. It occurs due to the thermally nonequilibrium state in the two-phase heat transfer system. Many complicated phenomena such as a bubble generation, a bubble departure, a bubble growth, and a bubble condensation are created by this thermally nonequilibrium condition in the subcooled boiling flow. However, it has been revealed that most of the existing best estimate safety analysis codes have a weakness in the prediction of the subcooled boiling phenomena in which multi-dimensional flow behavior is dominant. In recent years, many investigators are trying to apply CFD (Computational Fluid Dynamics) codes for an accurate prediction of the subcooled boiling flow. In the CFD codes, evaporation heat flux from heated wall is one of the key parameters to be modeled for an accurate prediction of the subcooled boiling flow. The evaporate heat flux for the CFD codes is expressed typically as follows, q' e = πD 3 d /6 ρ g h fg fN' where, D d , f ,N' are bubble departure size, bubble departure frequency and active nucleation site density, respectively. In the most of the commercial CFD codes, Tolubinsky bubble departure size model, Kurul and Podowski active nucleation site density model and Ceumem-Lindenstjerna bubble departure frequency model are adopted as a basic wall boiling model. However, these models do not consider their dependency on the flow, pressure and fluid type. In this paper, an advanced wall boiling model was proposed in order to improve subcooled boiling model for the CFD codes

  16. SDI CFD MODELING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.

    2011-05-05

    The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and

  17. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    Science.gov (United States)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  18. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor; Simulacion CFD de los venteos rigidos de la contencion de un reactor BWR-5 Mark-II

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L. [Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Tijerina S, F.; Tapia M, R., E-mail: francisco.tijerina@cfe.gob.mx [CFE, Central Nucleoelectrica Laguna Verde, Carretera Federal Cardel-Nautla Km 42.5, 91476 Municipio Alto Lucero, Veracruz (Mexico)

    2016-09-15

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  19. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    Science.gov (United States)

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  20. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Al-Waked, Rafat; Nasif, Mohammad Shakir; Morrison, Graham; Behnia, Masud

    2013-01-01

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H 2 O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  1. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  2. Three Dimensional Thermal Modeling of Li-Ion Battery Pack Based on Multiphysics and Calorimetric Measurement

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    A three-dimensional multiphysics-based thermal model of a battery pack is presented. The model is intended to demonstrate the cooling mechanism inside the battery pack. Heat transfer (HT) and computational fluid dynamics (CFD) physics are coupled for both time-dependent and steady-state simulatio...

  3. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  4. Modelling of Air Flow trough a Slatted Floor by CFD

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Bjerg, Bjarne; Morsing, Svend

    In this paper two different CFD-approaches are investigated to model the airflow through a slatted floor. Experiments are carried out in a full-scale test room. The computer simulations are carried out with the CFD-code FLOVENT, which solves the time-averaged Navier-Stokes equations by use of the k...

  5. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  6. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  7. An interfacial shear term evaluation study for adiabatic dispersed air–water two-phase flow with the two-fluid model using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)

    2017-02-15

    Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two

  8. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Joshi, Jyeshtharaj B.; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2015-01-01

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  9. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  10. Multi-fluid CFD analysis in Process Engineering

    Science.gov (United States)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  11. CFD Wake Modelling with a BEM Wind Turbine Sub-Model

    Directory of Open Access Journals (Sweden)

    Anders Hallanger

    2013-01-01

    Full Text Available Modelling of wind farms using computational fluid dynamics (CFD resolving the flow field around each wind turbine's blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accurately enough to handle interaction of wakes in wind farms. A wind turbine sub-model, based on the Blade Momentum Theory, see Hansen (2008, has been implemented in an in-house CFD code, see Hallanger et al. (2002. The tangential and normal reaction forces from the wind turbine blades are distributed on the control volumes (CVs at the wind turbine rotor location as sources in the conservation equations of momentum. The classical k-epsilon turbulence model of Launder and Spalding (1972 is implemented with sub-grid turbulence (SGT model, see Sha and Launder (1979 and Sand and Salvesen (1994. Steady state CFD simulations were compared with flow and turbulence measurements in the wake of a model scale wind turbine, see Krogstad and Eriksen (2011. The simulated results compared best with experiments when stalling (boundary layer separation on the wind turbine blades did not occur. The SGT model did improve turbulence level in the wake but seems to smear the wake flow structure. It should be noted that the simulations are carried out steady state not including flow oscillations caused by vortex shedding from tower and blades as they were in the experiments. Further improvement of the simulated velocity defect and turbulence level seems to rely on better parameter estimation to the SGT model, improvements to the SGT model, and possibly transient- instead of steady state simulations.

  12. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.

    2016-12-15

    Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions

  13. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.

    2016-11-15

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  14. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D.

    2016-01-01

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m"2 s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  15. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L.; Tijerina S, F.; Tapia M, R.

    2016-09-01

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  16. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  17. Hydraulics and heat transfer in the IFMIF liquid lithium target: CFD calculations

    OpenAIRE

    Peña, A.; Esteban, G.A.; Sancho, J.; Kolesnik, V.; Abánades Velasco, Alberto

    2009-01-01

    CFD (Computational fluid dynamics) calculation turns out to be a good approximation to the real behavior of the lithium (Li) flow of the target of the international fusion materials irradiation facility (IFMIF). A three-dimensional (3D) modelling of the IFMIF design Li target assembly, made with the CFD commercial code ANSYS-FLUENT has been carried out. The simulation by a structural mesh is focused on the thermal-hydraulic analysis inside the Li jet flow. For, this purpose, the two deuteron ...

  18. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    Science.gov (United States)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  19. CFD modeling and experience of waste-to-energy plant burning waste wood

    DEFF Research Database (Denmark)

    Rajh, B.; Yin, Chungen; Samec, N.

    2013-01-01

    Computational Fluid Dynamics (CFD) is being increasingly used in industry for in-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion processes and for design and optimization of Waste-to-Energy (WtE) plants. In this paper, CFD modeling...... the conversion of the waste wood in the fuel bed on the grate, which provides the appropriate inlet boundary condition for the freeboard 3D CFD simulation. The CFD analysis reveals the detailed mixing and combustion characteristics in the waste wood-fired furnace, pinpointing how to improve the design...

  20. Numerical modelling in building thermo-aeraulics: from CFD modelling to an hybrid finite volume / zonal approach; Modelisation numerique de la thermoaeraulique du batiment: des modeles CFD a une approche hybride volumes finis / zonale

    Energy Technology Data Exchange (ETDEWEB)

    Bellivier, A.

    2004-05-15

    For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)

  1. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  2. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    Science.gov (United States)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  3. CFD analysis of a diaphragm free-piston Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  4. CFD Simulation of Dimethyl Ether Synthesis from Methanol in an Adiabatic Fixed-bed Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Golshadi

    2013-04-01

    Full Text Available A computational fluid dynamic (CFD study of methanol (MeOH to dimethyl ether (DME process in an adiabatic fixed-bed reactor is presented. One of the methods of industrial DME production is the catalytic dehydration of MeOH. Kinetic model was derived based on Bercic rate. The parameters of this equation for a specific catalyst were tuned by solving a one-dimensional homogenous model using MATLAB optimization module. A two-dimensional CFD simulation of the reaction is demonstrated and considered as numerical experiments. A sensitivity analysis was run in order to find the effect of temperature, pressure, and WHSV on the reactor performance. Good agreement was achieved between bench experimental data and the model. The results show that the maximum conversion of reaction (about 85.03% is obtained at WHSV=10 h-1 and T=563.15 K, whereas the inlet temperature has a greater effect on methanol conversion. Moreover, the effect of water in inlet feed on methanol conversion is quantitatively studied. It was concluded that the results obtained from CFD analysis give precise guidelines for further studies on the optimization of reactor performance.

  5. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  6. CFD Modeling of a Multiphase Gravity Separator Vessel

    KAUST Repository

    Narayan, Gautham

    2017-05-23

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  7. CFD Modeling of a Multiphase Gravity Separator Vessel

    KAUST Repository

    Narayan, Gautham; Khurram, Rooh Ul Amin; Elsaadawy, Ehab

    2017-01-01

    The poster highlights a CFD study that incorporates a combined Eulerian multi-fluid multiphase and a Population Balance Model (PBM) to study the flow inside a typical multiphase gravity separator vessel (GSV) found in oil and gas industry. The simulations were performed using Ansys Fluent CFD package running on KAUST supercomputer, Shaheen. Also, a highlight of a scalability study is presented. The effect of I/O bottlenecks and using Hierarchical Data Format (HDF5) for collective and independent parallel reading of case file is presented. This work is an outcome of a research collaboration on an Aramco project on Shaheen.

  8. A CFD model for particle dispersion in turbulent boundary layer flows

    International Nuclear Information System (INIS)

    Dehbi, A.

    2008-01-01

    In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle-turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90 o bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth-throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes

  9. Calibration of the k- ɛ model constants for use in CFD applications

    Science.gov (United States)

    Glover, Nina; Guillias, Serge; Malki-Epshtein, Liora

    2011-11-01

    The k- ɛ turbulence model is a popular choice in CFD modelling due to its robust nature and the fact that it has been well validated. However it has been noted in previous research that the k- ɛ model has problems predicting flow separation as well as unconfined and transient flows. The model contains five empirical model constants whose values were found through data fitting for a wide range of flows (Launder 1972) but ad-hoc adjustments are often made to these values depending on the situation being modeled. Here we use the example of flow within a regular street canyon to perform a Bayesian calibration of the model constants against wind tunnel data. This allows us to assess the sensitivity of the CFD model to changes in these constants, find the most suitable values for the constants as well as quantifying the uncertainty related to the constants and the CFD model as a whole.

  10. CFD modelling of condensers for freeze-drying processes

    Indian Academy of Sciences (India)

    Freeze-drying; condenser; CFD simulation; mathematical modelling; ... it is used for the stabilization and storage of delicate, heat-sensitive materials .... The effect of the surface mass transfer has been included in the continuity equation and.

  11. CFD simulation on reactor flow mixing phenomena

    International Nuclear Information System (INIS)

    Kwon, T.S.; Kim, K.H.

    2016-01-01

    A pre-test calculation for multi-dimensional flow mixing in a reactor core and downcomer has been studied using a CFD code. To study the effects of Reactor Coolant Pump (RCP) and core zone on the boron mixing behaviors in a lower downcomer and core inlet, a 1/5-scale CFD model of flow mixing test facility for the APR+ reference plant was simulated. The flow paths of the 1/5-scale model were scaled down by the linear scaling method. The aspect ratio (L/D) of all flow paths was preserved to 1. To preserve a dynamic similarity, the ratio of Euler number was also preserved to 1. A single phase water flow at low pressure and temperature conditions was considered in this calculation. The calculation shows that the asymmetric effect driven by RCPs shifted the high velocity field to the failed pump's flow zone. The borated water flow zone at the core inlet was also shifted to the failed RCP side. (author)

  12. Computational fluid dynamics-habitat suitability index (CFD-HSI) modelling as an exploratory tool for assessing passability of riverine migratory challenge zones for fish

    Science.gov (United States)

    Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.

    2015-01-01

    We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.

  13. Sensitivity study of CFD turbulent models for natural convection analysis

    International Nuclear Information System (INIS)

    Yu sun, Park

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD (Computational Fluid Dynamics) for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT and various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of grid resolution and flow characteristics. It has been showed that: -) obtaining general flow characteristics is possible with relatively coarse grid; -) there is no significant difference between results from finer grid resolutions than grid with y + + is defined as y + = ρ*u*y/μ, u being the wall friction velocity, y being the normal distance from the center of the cell to the wall, ρ and μ being respectively the fluid density and the fluid viscosity; -) the K-ε models show a different flow characteristic from K-ω models or from the Reynolds Stress Model (RSM); and -) the y + parameter is crucial for the selection of the appropriate turbulence model to apply within the simulation

  14. 3D CFD Modeling of the LMF System: Desulfurization Kinetics

    Science.gov (United States)

    Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert

    A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.

  15. Development and assessment of multi-dimensional flow model in MARS compared with the RPI air-water experiment

    International Nuclear Information System (INIS)

    Lee, Seok Min; Lee, Un Chul; Bae, Sung Won; Chung, Bub Dong

    2004-01-01

    The Multi-Dimensional flow models in system code have been developed during the past many years. RELAP5-3D, CATHARE and TRACE has its specific multi-dimensional flow models and successfully applied it to the system safety analysis. In KAERI, also, MARS(Multi-dimensional Analysis of Reactor Safety) code was developed by integrating RELAP5/MOD3 code and COBRA-TF code. Even though COBRA-TF module can analyze three-dimensional flow models, it has a limitation to apply 3D shear stress dominant phenomena or cylindrical geometry. Therefore, Multi-dimensional analysis models are newly developed by implementing three-dimensional momentum flux and diffusion terms. The multi-dimensional model has been assessed compared with multi-dimensional conceptual problems and CFD code results. Although the assessment results were reasonable, the multi-dimensional model has not been validated to two-phase flow using experimental data. In this paper, the multi-dimensional air-water two-phase flow experiment was simulated and analyzed

  16. Optimization of pulverised coal combustion by means of CFD/CTA modeling

    Directory of Open Access Journals (Sweden)

    Filkoski Risto V.

    2006-01-01

    Full Text Available The objective of the work presented in this paper was to apply a method for handling two-phase reacting flow for prediction of pulverized coal combustion in large-scale boiler furnace and to assess the ability of the model to predict existing power plant data. The paper presents the principal steps and results of the numerical modeling of power boiler furnace with tangential disposition of the burners. The computational fluid dynamics/computational thermal analysis (CFD/CTA approach is utilized for creation of a three-dimensional model of the boiler furnace, including the platen superheater in the upper part of the furnace. Standard k-e model is employed for description of the turbulent flow. Coal combustion is modeled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the simplified P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Some distinctive results regarding the examined boiler performance in capacity range between 65 and 95% are presented graphically. Comparing the simulation predictions and available site measurements concerning temperature, heat flux and combustion efficiency, a conclusion can be drawn that the model produces realistic insight into the furnace processes. Qualitative agreement indicates reasonability of the calculations and validates the employed sub-models. After the validation and verification of the model it was used to check the combustion efficiency as a function of coal dust sieve characteristics, as well as the impact of burners modification with introduction of over fire air ports to the appearance of incomplete combustion, including CO concentration, as well as to the NOx concentration. The described case and other experiences with CFD/CTA stress the advantages of numerical modeling and

  17. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Science.gov (United States)

    Blyth, Taylor S.

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  18. Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.

  19. CFD modelling approaches against single wind turbine wake measurements using RANS

    International Nuclear Information System (INIS)

    Stergiannis, N; Lacor, C; Beeck, J V; Donnelly, R

    2016-01-01

    Numerical simulations of two wind turbine generators including the exact geometry of their blades and hub are compared against a simplified actuator disk model (ADM). The wake expansion of the upstream rotor is investigated and compared with measurements. Computational Fluid Dynamics (CFD) simulations have been performed using the open-source platform OpenFOAM [1]. The multiple reference frame (MRF) approach was used to model the inner rotating reference frames in a stationary computational mesh and outer reference frame for the full wind turbine rotor simulations. The standard k — ε and k — ω turbulence closure schemes have been used to solve the steady state, three dimensional Reynolds Averaged Navier- Stokes (RANS) equations. Results of near and far wake regions are compared with wind tunnel measurements along three horizontal lines downstream. The ADM under-predicted the velocity deficit at the wake for both turbulence models. Full wind turbine rotor simulations showed good agreement against the experimental data at the near wake, amplifying the differences between the simplified models. (paper)

  20. Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction

    Science.gov (United States)

    DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger

    2011-01-01

    A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

  1. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.

    Science.gov (United States)

    Ford, Matthew D; Nikolov, Hristo N; Milner, Jaques S; Lownie, Stephen P; Demont, Edwin M; Kalata, Wojciech; Loth, Francis; Holdsworth, David W; Steinman, David A

    2008-04-01

    Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement

  2. CFD modelling of convective heat transfer from a window with adjacent venetian blinds

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, L. [Belgrade Univ., Belgrade (Yugoslavia). Faculty of Mechanical Engineering]|[DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development; Cook, M; Hanby, V.; Rees, S. [DeMontfort Univ. (United Kingdom). Inst. of Energy and Sustainable Development

    2005-07-01

    There is a limited amount of 3-dimensional modeling information on the performance of glazing systems with blinds. Two-dimensional flow modeling has indicated that 1-dimensional heat transfer can lead to invalid results where 2- and 3-dimensional effects are present. In this study, a 3-dimensional numerical solution was obtained on the effect of a venetian blind on the conjugate heat transfer from an indoor window glazing system. The solution was obtained for the coupled laminar free convection and radiation heat transfer problem, including conduction along the blind slats. Continuity, momentum and energy equations for buoyant flow were solved using Computational Fluid Dynamics (CFD) software. Grey diffuse radiation exchange between the window, blind and air were considered using the Monte Carlo method. All thermophysical properties of air were assumed to be constant with the exception of density, which was modeled using the Bousinesq approximation. Both winter and summer conditions were considered. In the computational domain, the window represented an isothermal type boundary condition with no slip. The height of the domain was extended beyond the blinds to allow for inflow and outflow regions. Fluid was allowed to entrain into the domain at an ambient temperature in a direction perpendicular to the window. The results indicated that heat transfer between window and indoor air is influenced both quantitatively and qualitatively by the presence of an aluminium venetian blind, and that the cellular flow between the blind slats can have a significant effect on the convective heat transfer from the window surface that is more fully recognized and analyzed in 3 dimensions. refs., 2 tabs., 13 figs.

  3. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, Peter Vilhelm; Bjerg, Bjarne Schmidt

    2016-01-01

    scale pig barns was simulated to show the procedures of validating a CFD simulation in livestock buildings. After summarizing the guideline and/or best practice for CFD modeling, the authors addressed the issues related to numerical methods and the governing equations, which were limited to RANS models....... Although it is not necessary to maintain the same format of reporting the CFD modeling as presented in this paper, the authors would suggest including all the information related to the selection of turbulence models, difference schemes, convergence criteria, boundary conditions, geometry simplification......, simulating domain etc. This information is particularly important for the readers to evaluate the quality of the CFD simulation results....

  4. Steady-state CFD modelling and experimental analysis of the local microclimate in Dubai (UAE

    Directory of Open Access Journals (Sweden)

    Fatima Syeda Firdaus

    2017-01-01

    Full Text Available Rapid urban growth and development over the past few years in Dubai has increased the rate at which the mean maximum temperatures are rising. Progressive soaring temperatures have greater effect of heat islands that add on to the high cooling demands. This work numerically explicated the effect of HIs in a tropical desert climate by adopting Heriot-Watt University Dubai Campus (HWUDC as a case study. The study analysed thermal flow behaviour around the campus by using Computational Fluid Dynamics (CFD as a numerical tool. The three dimensional Reynolds-Averaged Navier–Stokes (RANS equations were solved under FLUENT commercial code to simulate temperature and wind flow parameters at each discretised locations. Field measurements were carried out to validate the results produced by CFD for closer approximation in the representation of the actual phenomenon. Results established that the air temperature is inversely proportional to wind velocity. Hotspots were formed in the zone 1 and 3 region with a temperature rise of 9.1% that caused a temperature increase of 2.7 °C. Observations illustrated that the building configuration altered the wind flow pattern where the wind velocity was higher in the zone 2 region. Findings determined increase in the sensible cooling load by 19.61% due to 1.22 °C temperature rise. This paper highlighted the application of CFD in modelling an urban micro-climate and also shed light into future research development to quantify the HIs.

  5. Proceedings of the workshop on Benchmarking of CFD Codes for Application to Nuclear Reactor Safety (CFD4NRS)

    International Nuclear Information System (INIS)

    2007-01-01

    Computational Fluid Dynamics (CFD) is to an increasing extent being adopted in nuclear reactor safety analyses as a tool that enables specific safety relevant phenomena occurring in the reactor coolant system to be better described. The Committee on the Safety of Nuclear Installations (CSNI), which is responsible for the activities of the Nuclear Energy Agency that support advancing the technical base of the safety of nuclear installations, has in recent years conducted an important activity in the CFD area. This activity has been carried out within the scope of the CSNI working group on the analysis and management of accidents (GAMA), and has mainly focused on the formulation of user guidelines and on the assessment and verification of CFD codes. It is in this GAMA framework that the present workshop was organized and carried out. The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to GAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. Numerical simulations with a strong emphasis on validation were welcomed in such areas as heat transfer, buoyancy, stratification, natural circulation, free-surface modelling, turbulent mixing and multi-phase flow. These would relate to such NRS-relevant issues as: pressurized thermal shocks, boron dilution, hydrogen distribution, induced breaks, thermal striping, etc. The use of systematic error quantification and Best Practice Guidelines was encouraged. Papers reporting experiments providing high-quality data suitable for CFD validation, specifically in the area of NRS, were given high priority. Here, emphasis was placed on the availability of local measurements, especially multi-dimensional velocity measurements obtained using such techniques as laser-doppler velocimetry, hot

  6. Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT.

    Science.gov (United States)

    Wang, Y Jason; Zhang, K Max

    2009-10-15

    It is well recognized that dilution is an important mechanism governing the near-road air pollutant concentrations. In this paper, we aim to advance our understanding of turbulent mixing mechanisms on and near roadways using computation fluid dynamics. Turbulent mixing mechanisms can be classified into three categories according to their origins: vehicle-induced turbulence (VIT), road-induced turbulence (RIT), and atmospheric boundary layer turbulence. RIT includes the turbulence generated by road embankment, road surface thermal effects, and roadside structures. Both VIT and RIT are affected by the roadway designs. We incorporate the detailed treatment of VIT and RIT into the CFD (namely CFD-VIT-RIT) and apply the model in simulating the spatial gradients of carbon monoxide near two major highways with different traffic mix and roadway configurations. The modeling results are compared to the field measurements and those from CALINE4 and CFD without considering VIT and RIT. We demonstrate that the incorporation of VIT and RIT considerably improves the modeling predictions, especially on vertical gradients and seasonal variations of carbon monoxide. Our study implies that roadway design can significantly influence the near-road air pollution. Thus we recommend that mitigating near-road air pollution through roadway designs be considered in the air quality and transportation management In addition, thanks to the rigorous representation of turbulent mixing mechanisms, CFD-VIT-RIT can become valuable tools in the roadway designs process.

  7. THREE DIMENSIONAL CFD MODELLING OF FLOW STRUCTURE IN COMPOUND CHANNELS

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2010-10-01

    Full Text Available The computational modeling of three dimensional flows in a meandering compound channel has been performed in this research work. The flow calculations are performed by solving 3D steady state continuity and Reynolds averaged Navier-Stokes equations. The turbulence closure is approximated with standard - turbulence model. The model equations are solved numerically with a general purpose software package. A comprehensive validation of the simulated results against the experimental data and a demonstration that the software used in this study has matured enough for investigating practical engineering problems are the major contributions of this paper. The model was initially validated. This was achieved by computing streamwise point velocities at different depths of various sections and depth averaged velocities at three cross sections along the main channel and comparing these results with experimental data. After the validation of the model, predictions were made for different flow parameters including velocity contours at the surface, pressure distribution, turbulence intensity etc. The results gave an overall understanding of these flow variables in meandering channels. The simulation also established the good prediction capability of the standard - turbulence model for flows in compound channels.

  8. CFD analysis of ejector in a combined ejector cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Rusly, E.; Aye, Lu [International Technologies Centre (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Melbourne, Vic. 3010 (Australia); Charters, W.W.S.; Ooi, A. [Department of Mechanical and Manufacturing Engineering, The University of Melbourne, Melbourne, Vic. 3010 (Australia)

    2005-11-01

    One-dimensional ejector analyses often use coefficients derived from experimental data for a set of operating conditions with limited functionality. In this study, several ejector designs were modelled using finite volume CFD techniques to resolve the flow dynamics in the ejectors. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance outside the experimental range were also carried out. During validation, data from CFD predicted the entrainment ratios with greater accuracy on definite area ratios, although no shock was recorded in the ejector. Predictions outside the experimental range-at operating conditions in a combined ejector-vapour compression system-and flow conditions resulting from ejector geometry variations are discussed. It is found that the maximum entrainment ratio happens in the ejector just before a shock occurs and that the position of the nozzle is an important ejector design parameter. (author)

  9. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)

  10. Multiphase CFD simulation of a solid bowl centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Romani Fernandez, X.; Nirschl, H. [Universitaet Karlsruhe, Institut fuer MVM, Karlsruhe (Germany)

    2009-05-15

    This study presents some results from the numerical simulation of the flow in an industrial solid bowl centrifuge used for particle separation in industrial fluid processing. The computational fluid dynamics (CFD) software Fluent was used to simulate this multiphase flow. Simplified two-dimensional and three-dimensional geometries were built and meshed from the real centrifuge geometry. The CFD results show a boundary layer of axially fast moving fluid at the gas-liquid interface. Below this layer there is a thin recirculation. The obtained tangential velocity values are lower than the ones for the rigid-body motion. Also, the trajectories of the solid particles are evaluated. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Development of a compartment model based on CFD simulations for description of mixing in bioreactors

    Directory of Open Access Journals (Sweden)

    Crine, M.

    2010-01-01

    Full Text Available Understanding and modeling the complex interactions between biological reaction and hydrodynamics are a key problem when dealing with bioprocesses. It is fundamental to be able to accurately predict the hydrodynamics behavior of bioreactors of different size and its interaction with the biological reaction. CFD can provide detailed modeling about hydrodynamics and mixing. However, it is computationally intensive, especially when reactions are taken into account. Another way to predict hydrodynamics is the use of "Compartment" or "Multi-zone" models which are much less demanding in computation time than CFD. However, compartments and fluxes between them are often defined by considering global quantities not representative of the flow. To overcome the limitations of these two methods, a solution is to combine compartment modeling and CFD simulations. Therefore, the aim of this study is to develop a methodology in order to propose a compartment model based on CFD simulations of a bioreactor. The flow rate between two compartments can be easily computed from the velocity fields obtained by CFD. The difficulty lies in the definition of the zones in such a way they can be considered as perfectly mixed. The creation of the model compartments from CFD cells can be achieved manually or automatically. The manual zoning consists in aggregating CFD cells according to the user's wish. The automatic zoning defines compartments as regions within which the value of one or several properties are uniform with respect to a given tolerance. Both manual and automatic zoning methods have been developed and compared by simulating the mixing of an inert scalar. For the automatic zoning, several algorithms and different flow properties have been tested as criteria for the compartment creation.

  12. Numerical modelling of pressure suppression pools with CFD and FEM codes

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-06-15

    Experiments on large-break loss-of-coolant accident for BWR is modeled with computational fluid (CFD) dynamics and finite element calculations. In the CFD calculations, the direct-contact condensation in the pressure suppression pool is studied. The heat transfer in the liquid phase is modeled with the Hughes-Duffey correlation based on the surface renewal model. The heat transfer is proportional to the square root of the turbulence kinetic energy. The condensation models are implemented with user-defined functions in the Euler-Euler two-phase model of the Fluent 12.1 CFD code. The rapid collapse of a large steam bubble and the resulting pressure source is studied analytically and numerically. Pressure source obtained from simplified calculations is used for studying the structural effects and FSI in a realistic BWR containment. The collapse results in volume acceleration, which induces pressure loads on the pool walls. In the case of a spherical bubble, the velocity term of the volume acceleration is responsible of the largest pressure load. As the amount of air in the bubble is decreased, the peak pressure increases. However, when the water compressibility is accounted for, the finite speed of sound becomes a limiting factor. (Author)

  13. Comparison of a semi-analytic and a CFD model uranium combustion to experimental data

    International Nuclear Information System (INIS)

    Clarksean, R.

    1998-01-01

    Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome

  14. Aeroelastic simulation using CFD based reduced order models

    International Nuclear Information System (INIS)

    Zhang, W.; Ye, Z.; Li, H.; Yang, Q.

    2005-01-01

    This paper aims at providing an accurate and efficient method for aeroelastic simulation. System identification is used to get the reduced order models of unsteady aerodynamics. Unsteady Euler codes are used to compute the output signals while 3211 multistep input signals are utilized. LS(Least Squares) method is used to estimate the coefficients of the input-output difference model. The reduced order models are then used in place of the unsteady CFD code for aeroelastic simulation. The aeroelastic equations are marched by an improved 4th order Runge-Kutta method that only needs to compute the aerodynamic loads one time at every time step. The computed results agree well with that of the direct coupling CFD/CSD methods. The computational efficiency is improved 1∼2 orders while still retaining the high accuracy. A standard aeroelastic computing example (isogai wing) with S type flutter boundary is computed and analyzed. It is due to the system has more than one neutral points at the Mach range of 0.875∼0.9. (author)

  15. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    Science.gov (United States)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  16. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  17. Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model

    International Nuclear Information System (INIS)

    Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.

    2011-01-01

    Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al.; Sharpe and Humrickhouse). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome 'Tor Vergata' Quantum Electronics and Plasmas lab.

  18. CFD modeling of a boiler's tubes rupture

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi

    2006-01-01

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320 MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-ε turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9 MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8 MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections

  19. Comparing different CFD wind turbine modelling approaches with wind tunnel measurements

    International Nuclear Information System (INIS)

    Kalvig, Siri; Hjertager, Bjørn; Manger, Eirik

    2014-01-01

    The performance of a model wind turbine is simulated with three different CFD methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared with each other and with measurements from a wind tunnel experiment. The actuator disk is the least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. The fully resolved rotor produces superior wake velocity results compared to the actuator models. On average it also produces better results for the force predictions, although the actuator line method had a slightly better match for the design tip speed. The open source CFD tool box, OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor approach

  20. Relating system-to-CFD coupled code analyses to theoretical framework of a multi-scale method

    International Nuclear Information System (INIS)

    Cadinu, F.; Kozlowski, T.; Dinh, T.N.

    2007-01-01

    Over past decades, analyses of transient processes and accidents in a nuclear power plant have been performed, to a significant extent and with a great success, by means of so called system codes, e.g. RELAP5, CATHARE, ATHLET codes. These computer codes, based on a multi-fluid model of two-phase flow, provide an effective, one-dimensional description of the coolant thermal-hydraulics in the reactor system. For some components in the system, wherever needed, the effect of multi-dimensional flow is accounted for through approximate models. The later are derived from scaled experiments conducted for selected accident scenarios. Increasingly, however, we have to deal with newer and ever more complex accident scenarios. In some such cases the system codes fail to serve as simulation vehicle, largely due to its deficient treatment of multi-dimensional flow (in e.g. downcomer, lower plenum). A possible way of improvement is to use the techniques of Computational Fluid Dynamics (CFD). Based on solving Navier-Stokes equations, CFD codes have been developed and used, broadly, to perform analysis of multi-dimensional flow, dominantly in non-nuclear industry and for single-phase flow applications. It is clear that CFD simulations can not substitute system codes but just complement them. Given the intrinsic multi-scale nature of this problem, we propose to relate it to the more general field of research on multi-scale simulations. Even though multi-scale methods are developed on case-by-case basis, the need for a unified framework brought to the development of the heterogeneous multi-scale method (HMM)

  1. Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

    Directory of Open Access Journals (Sweden)

    Mazda Biglari

    2016-06-01

    Full Text Available Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

  2. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.

    Science.gov (United States)

    Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad

    2018-02-15

    One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug

  3. Computational fluid dynamics (CFD) using porous media modeling predicts recurrence after coiling of cerebral aneurysms.

    Science.gov (United States)

    Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori

    2017-01-01

    This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.

  4. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  5. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    International Nuclear Information System (INIS)

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  6. RANS based CFD methodology for a real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae-Ho, E-mail: jhjeong@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of); Song, Min-Seop [Department of Nuclear Engineering, Seoul National University, 559 Gwanak-ro, Gwanak-gu, Seoul (Korea, Republic of); Lee, Kwi-Lim [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseoung-gu, Daejeon (Korea, Republic of)

    2017-03-15

    Highlights: • This paper presents a suitable way for a practical RANS based CFD methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR. • A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI function in a general-purpose commercial CFD code, CFX. • The RANS based CFD methodology is implemented with high resolution scheme and SST turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC and JNC. Furthermore, the RANS based CFD methodology can be successfully extended to the real scale 217-pin wire-wrapped fuel bundles of KAERI PGSFR. • Three-dimensional thermal-hydraulic characteristics have been also investigated briefly. - Abstract: This paper presents a suitable way for a practical RANS (Reynolds Averaged Navier-Stokes simulation) based CFD (Computational Fluid Dynamics) methodology which is applicable to real scale 217-pin wire-wrapped fuel assembly of KAERI (Korea Atomic Energy Research Institute) PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor). The main purpose of the current study is to support license issue for the KAERI PGSFR core safety and to elucidate thermal-hydraulic characteristics in a 217-pin wire-wrapped fuel assembly of KAERI PGSFR. A key point of differentiation of the RANS based CFD methodology in this study is adapting an innovative grid generation method using a fortran based in-house code with a GGI (General Grid Interface) function in a general-purpose commercial CFD code, CFX. The innovative grid generation method with GGI function can achieve to simulate a real wire shape with minimizing cell skewness. The RANS based CFD methodology is implemented with high resolution scheme in convection term and SST (Shear Stress Transport) turbulence model in the 7-pin 37-pin, and 127-pin wire-wrapped fuel assembly of PNC (Power reactor and Nuclear fuel

  7. CFD modeling of an industrial municipal solid waste combustor

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Darus, A.N.; Mustafa, A.

    2006-01-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. Due to rapid development and lack of space for new landfills, big cities in Malaysia are now switching to incineration. However, a major public concern over this technology also is the perception of the emission of pollutants of any form. Design requirements of high performance incinerators are sometimes summarized as the achievement of 3Ts (time, temperature, and turbulence). An adequate retention time in hot environment is crucial to destroy the products of incomplete combustion and organic pollutants. Also turbulent mixing enhances uniform distributions of temperature and oxygen availability. CFD modeling is now in the development phase of becoming a useful tool for 3D modeling of the complex geometry and flow conditions in incinerators. However, CFD flow simulations enable detailed parametric variations of design variables. CFD modeling of an industrial scale MSW incinerator was done using FLUENT Ver. 6.1. The 3D modeling was based on conversation equations for mass, momentum and energy. The differential equations were discretized by the Finite Volume Method and were solved by the SIMPLE algorithm. The k-e turbulence model was employed. The meshing was done using Gambit 2. 0. The cold flow simulations were performed initially to develop the flow and velocity field. Numerical simulations of the flow field inside the primary and secondary combustion chambers provided the temperature profiles and the concentration data at the nodal points of computational grids. Parametric study was also done to minimize the NOx emissions. (author)

  8. Development of 2-d cfd code

    International Nuclear Information System (INIS)

    Mirza, S.A.

    1999-01-01

    In the present study, a two-dimensional computer code has been developed in FORTRAN using CFD technique, which is basically a numerical scheme. This computer code solves the Navier Stokes equations and continuity equation to find out the velocity and pressure fields within a given domain. This analysis has been done for the developed within a square cavity driven by the upper wall which has become a bench mark for testing and comparing the newly developed numerical schemes. Before to handle this task, different one-dimensional cases have been studied by CFD technique and their FORTRAN programs written. The cases studied are Couette flow, Poiseuille flow with and without using symmetric boundary condition. Finally a comparison between CFD results and analytical results has also been made. For the cavity flow the results from the developed code have been obtained for different Reynolds numbers which are finally presented in the form of velocity vectors. The comparison of the developed code results have been made with the results obtained from the share ware version of a commercially available code for Reynolds number of 10.0. The disagreement in the results quantitatively and qualitatively at some grid points of the calculation domain have been discussed and future recommendations in this regard have also been made. (author)

  9. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...... in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...

  10. Integration of plume and puff diffusion models/application of CFD

    Science.gov (United States)

    Mori, Akira

    The clinical symptoms of patients and other evidences of a gas poisoning accident inside an industrial building strongly suggested an abrupt influx of engine exhaust from a construction vehicle which was operating outside in the open air. But the obviously high level of gas concentration could not be well explained by any conventional steady-state gas diffusion models. The author used an unsteady-state continuous Puff Model to simulate the time-wise changes in air stream with the pollutant gas being continuously emitted, and successfully reproduced the observed phenomena. The author demonstrates that this diffusion formula can be solved analytically by the use of error function as long as the change in wind velocity is stepwise, and clarifies the accurate differences between the unsteady- and steady-states and their convergence profiles. Also, the relationship between the Puff and Plume Models is discussed. The case study included a computational fluid dynamics (CFD) analysis to estimate the steady-state air stream and the gas concentration pattern in the affected area. It is well known that clear definition of the boundary conditions is key to successful CFD analysis. The author describes a two-step use of CFD: the first step to define the boundary conditions and the second to determine the steady-state air stream and the gas concentration pattern.

  11. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  12. Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts

    International Nuclear Information System (INIS)

    Hadgu, T.; Webb, S.; Itamura, M.

    2004-01-01

    Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation

  13. Integrating CFD and building simulation

    DEFF Research Database (Denmark)

    Bartak, M.; Beausoleil-Morrison, I.; Clarke, J.A.

    2002-01-01

    Commission, which furthered the CFD modelling aspects of the ESP-r system. The paper summarises the form of the CFD model, describes the method used to integrate the thermal and 3ow domains and reports the outcome from an empirical validation exercise. © 2002 Published by Elsevier Science Ltd....

  14. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  15. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  16. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake in the i...

  17. CFD modelling of sampling locations for early detection of spontaneous combustion in long-wall gob areas.

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C

    In this study, computational fluid dynamics (CFD) modeling was conducted to optimize gas sampling locations for the early detection of spontaneous heating in longwall gob areas. Initial simulations were carried out to predict carbon monoxide (CO) concentrations at various regulators in the gob using a bleeder ventilation system. Measured CO concentration values at these regulators were then used to calibrate the CFD model. The calibrated CFD model was used to simulate CO concentrations at eight sampling locations in the gob using a bleederless ventilation system to determine the optimal sampling locations for early detection of spontaneous combustion.

  18. Dynamic analysis of the pump system based on MOC–CFD coupled method

    International Nuclear Information System (INIS)

    Yang, Shuai; Chen, Xin; Wu, Dazhuan; Yan, Peng

    2015-01-01

    Highlights: • MOC–CFD coupled method was proposed to get the pump internal and external characteristics. • The coupled strategy and procedure were explained. • Some typical simulation cases were made for different factors. • The pump head deviation grows with the severity of the transient. • Valve closure law in linear and longer pipeline will cause higher pump head deviation. - Abstract: The dynamic characteristics of pump response to transient events were investigated by combining the Method of Characteristic (MOC) and Computational Fluid Dynamics (CFD) together. In a typical pump–pipeline–valve system, similar to the reactor system, the pump is treated as three-dimensional CFD model using Fluent code, whereas the rest is represented by one-dimensional components using MOC. A description of the coupling theory and procedure ensuring proper communication within the two codes is given. Several transient flow operations have been carried out. In the initial steady-state simulation, the coupled method could accurately find the operating condition of the pump when the valve is fully open. When the valve is closed rapidly, preliminary comparative calculations demonstrate that the coupled method is efficient in simulating the dynamic behavior of the pump and capable of getting detailed fluid field evolutions inside the pump. Deviation between the dynamic pump head and the value given by the steady-state curve at the same instantaneous flow-rate was established, and the cause of the deviation was further explained by the comparison of pump internal and external characteristics. Furthermore, it was found that the deviation grows with the severity of the transient. In addition, the effects of valve closure laws and pipe length on the pump dynamic performances were evaluated. All the results showed that MOC–CFD is an efficient and promising way for simulating the interaction between pump model and piping system

  19. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    Science.gov (United States)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  20. Data resulting from the CFD analysis of ten window frames according to the UNI EN ISO 10077-2

    Directory of Open Access Journals (Sweden)

    Cristina Baglivo

    2016-09-01

    Full Text Available Data are related to the numerical simulation performed in the study entitled “CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077” (Malvoni et al., 2016 [1].The paper focuses on the results from a two-dimensional numerical analysis for ten frame sections suggested by the ISO 10077-2 and performed using GAMBIT 2.2 and ANSYS FLUENT 14.5 CFD code.The dataset specifically includes information about the CFD setup and boundary conditions considered as the input values of the simulations.The trend of the isotherms points out the different impacts on the thermal behaviour of all sections with air solid material or ideal gas into the cavities. Keywords: CFD, Thermal break, Window, Frame, 10077, EPBD

  1. CFD modeling of airflow for indoor comfort in the tropics

    International Nuclear Information System (INIS)

    Aynsley, R.; Su, B.

    2006-01-01

    In humid tropical environments air movement is a common means to achieving indoor thermal comfort. In many locations closer to the equator, breezes are weaker and less reliable. Whatever the source of air movement it is important to quantity its potential in terms of the percentage of time the air movement will be available and the likely speed of the air movement in occupied zone of a building. It is also important to establish appropriate thermal comfort criteria with respect to air temperature, humidity and air movement. There are a number of techniques for modeling air movement inside naturally ventilated buildings. Boundary layer wind tunnels provide an opportunity to both measure and visually observe such airflow through model building. It is important to model adjacent buildings and any significant landscaping features that will influence outdoor airflow patterns. Such studies are relatively expensive. The recent availability of computational fluid dynamics (CFD) software for personal computers offers an alternative method for modeling air movement inside naturally ventilated buildings. Very expensive versions of this software have been available for large computers and work stations for many years but they have only recently become available for smaller computers. There are some features of such software that should be compared before purchasing a copy or a license. This paper discusses such features in detail. It is important in the case of natural ventilation that adjacent buildings and any significant landscaping features that will influence outdoor airflow patterns are included in the modeling. This paper also stresses the importance of calibrating the CFD software output against some physical measurements or wind tunnel modeling to ensure that the CFD results are realistic

  2. Three-dimensional flow analysis and improvement of slip factor model for forward-curved blades centrifugal fan

    International Nuclear Information System (INIS)

    Guo, En Min; Kim, Kwang Yong

    2004-01-01

    This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient

  3. Integration of CFD codes and advanced combustion models for quantitative burnout determination

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)

    2007-10-15

    CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.

  4. Aeroelastic Calculations Using CFD for a Typical Business Jet Model

    Science.gov (United States)

    Gibbons, Michael D.

    1996-01-01

    Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.

  5. The role of CFD combustion modeling in hydrogen safety management-II: Validation based on homogeneous hydrogen-air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: sathiah@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Haren, Steven van, E-mail: vanharen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Department of Multi-Scale Physics, Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A CFD based method is proposed for the simulation of hydrogen deflagration. Black-Right-Pointing-Pointer A dynamic grid adaptation method is proposed to resolve turbulent flame brush thickness. Black-Right-Pointing-Pointer The predictions obtained using this method is in good agreement with the static grid method. Black-Right-Pointing-Pointer TFC model results are in good agreement with large-scale homogeneous hydrogen-air experiments. - Abstract: During a severe accident in a PWR, large quantities of hydrogen can be generated and released into the containment. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In a previous article, we presented a CFD based method to determine these pressure loads. This CFD method is based on the application of a turbulent flame speed closure combustion model. The validation analyses in our previous paper demonstrated that it is of utmost importance to apply successive mesh and time step refinement in order to get reliable results. In this article, we first determined to what extent the required computational effort required for our CFD approach can be reduced by the application of adaptive mesh refinement, while maintaining the accuracy requirements. Experiments performed within a small fan stirred explosion bomb were used for this purpose. It could be concluded that adaptive grid adaptation is a reliable and efficient method for usage in hydrogen deflagration analyses. For the two-dimensional validation analyses, the application of dynamic grid adaptation resulted in a reduction of the required computational effort by about one order of magnitude. In a second step, the considered CFD approach including adaptive

  6. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Ivo, Kljenak; Miroslav, Babic; Borut, Mavko

    2007-01-01

    The possibility of simulating adequately the flow circulation within a nuclear power plant containment using a lumped-parameter code is considered. An experiment on atmosphere mixing and stratification, which was performed in the containment experimental facility TOSQAN at IRSN (Institute of Radioprotection and Nuclear Safety) in Saclay (France), was simulated with the CFD (Computational Fluid Dynamics) code CFX4 and the lumped-parameter code CONTAIN. During some phases of the experiment, steady states were achieved by keeping the boundary conditions constant. Two steady states during which natural convection was the dominant gas flow mechanism were simulated independently. The nodalization of the lumped-parameter model was based on the flow pattern, simulated with the CFD code. The simulation with the lumped-parameter code predicted basically the same flow circulation patterns within the experimental vessel as the simulation with the CFD code did. (authors)

  7. A novel methodology for interpreting air quality measurements from urban streets using CFD modelling

    Science.gov (United States)

    Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming

    2011-09-01

    In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population

  8. CFD for Nuclear Reactor Safety Applications (CFD4NRS-4) - Workshop Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    Following the CFD4NRS workshops held in Garching, Germany (Sept. 2006), Grenoble, France (Sep. 2008) and Washington D.C., USA (Sept. 2010), this Workshop is intended to extend the forum created for numerical analysts and experimentalists to exchange information in the application of CFD and CMFD to NRS issues and in guiding nuclear reactor design thinking. The workshop includes single-phase and multi-phase CFD applications, and offers the opportunity to present new experimental data for CFD validation. More emphasis has been given to the experiments, especially on two-phase flow, for advanced CMFD modelling for which sophisticated measurement techniques are required. Understanding of the physics has been depen before starting numerical analysis. Single-phase and multi-phase CFD simulations with a focus on validation were performed in areas such as: single-phase heat transfer, boiling flows, free-surface flows, direct contact condensation and turbulent mixing. These relate to NRS-relevant issues, such as pressurised thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution in containments, thermal striping, etc. The use of systematic error quantification and the application of BPGs were strongly encouraged. Experiments providing data suitable for CFD or CMFD validation were also presented. These included local measurements using multi-sensor probes, laser-based techniques (LDV, PIV or LIF), hot-film/wire anemometry, imaging, or other advanced measuring techniques. There were over 150 registered participants at the CFD4NRS-4 workshop. The programme consisted of 48 technical papers. Of these, 44 were presented orally and 4 as posters. An additional 8 posters related to the OECD/NEA-KAERI sponsored CFD benchmark exercise on turbulent mixing in a rod bundle with spacers (MATiS-H) were presented and a special session was allocated for 6 video presentations. In addition, five keynote lectures were given by distinguished experts. The

  9. Modelling of water sump evaporation in a CFD code for nuclear containment studies

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France); Bessiron, M., E-mail: matthieu.bessiron@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France); Perrotin, C., E-mail: christophe.perrotin@irsn.f [Institute for Radioprotection and Nuclear Safety, DSU/SERAC/LEMAC, BP68 - 91192 Gif-sur-Yvette cedex (France)

    2011-05-15

    Highlights: We model sump evaporation in the reactor containment for CFD codes. The sump is modelled by an interface temperature and an evaporation mass flow-rate. These two variables are modelled using energy and mass balance. Results are compared with specific experiments in a 7 m3 vessel (Tonus Qualification ANalytique, TOSQAN). A good agreement is observed, for pressure, temperatures, mass flow-rates. - Abstract: During the course of a hypothetical severe accident in a pressurized water reactor (PWR), water can be collected in the sump containment through steam condensation on walls and spray systems activation. This water is generally under evaporation conditions. The objective of this paper is twofold: to present a sump model developed using external user-defined functions for the TONUS-CFD code and to perform a first detailed comparison of the model results with experimental data. The sump model proposed here is based on energy and mass balance and leads to a good agreement between the numerical and the experimental results. Such a model can be rather easily added to any CFD code for which boundary conditions, such as injection temperature and mass flow-rate, can be modified by external user-defined functions, depending on the atmosphere conditions.

  10. FITTING A THREE DIMENSIONAL PEM FUEL CELL MODEL TO MEASUREMENTS BY TUNING THE POROSITY AND

    DEFF Research Database (Denmark)

    Bang, Mads; Odgaard, Madeleine; Condra, Thomas Joseph

    2004-01-01

    the distribution of current density and further how thisaffects the polarization curve.The porosity and conductivity of the catalyst layer are some ofthe most difficult parameters to measure, estimate and especiallycontrol. Yet the proposed model shows how these two parameterscan have significant influence...... on the performance of the fuel cell.The two parameters are shown to be key elements in adjusting thethree-dimensional model to fit measured polarization curves.Results from the proposed model are compared to single cellmeasurements on a test MEA from IRD Fuel Cells.......A three-dimensional, computational fluid dynamics (CFD) model of a PEM fuel cell is presented. The model consists ofstraight channels, porous gas diffusion layers, porous catalystlayers and a membrane. In this computational domain, most ofthe transport phenomena which govern the performance of the...

  11. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  12. CFD analysis of poison injection in AHWR calandria

    International Nuclear Information System (INIS)

    Kansal, A.K.; Kamble, M.T.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    The present work intends to give details of design and performance validation of SDS-2. The performance is evaluated on the basis of dispersion of poison in calandria in a given period of time. Location of injection tube and injection holes, size of jet hole and number of holes are some of the design parameters which greatly affect dispersion of poison in calandria. A Computational Fluid Dynamic (CFD) study for axial and radial injection of poison was carried out using open source CFD code OpenFOAM. CFD benchmarking was done using experiments performed by Johari (Johari et al. 1997) to identify suitable turbulence model for this problem. An experimental facility simulating poison injection in moderator in presence of calandria tubes was used to further validate the CFD model is shown in the paper. CFD analysis was carried out for axial as well as radial injection for AHWR geometry. CFD analysis using OpenFOAM has been carried out to study high pressure poison injection for single jet of Shut Down System - 2 (SDS- 2) of Advanced Heavy Water Reactor (AHWR) for various design options. CFD model used in analysis have been validated with experimental data available in literature as well as experiments performed for AHWR specific geometry. Various turbulence models are tested and their adequacy for such flow problems has been established. The CFD model is then used to simulate poison injection for two design options for AHWR and their performance is compared. (author)

  13. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    Science.gov (United States)

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.

  14. An efficient approach to transient turbulent dispersion modeling by CFD-statistical analysis of a many-puff system

    International Nuclear Information System (INIS)

    Ching, W-H; K H Leung, Michael; Leung, Dennis Y C

    2009-01-01

    Transient turbulent dispersion phenomena can be found in various practical problems, such as the accidental release of toxic chemical vapor and the airborne transmission of infectious droplets. Computational fluid dynamics (CFD) is an effective tool for analyzing such transient dispersion behaviors. However, the transient CFD analysis is often computationally expensive and time consuming. In the present study, a computationally efficient CFD-statistical hybrid modeling method has been developed for studying transient turbulent dispersion. In this method, the source emission is represented by emissions of many infinitesimal puffs. Statistical analysis is performed to obtain first the statistical properties of the puff trajectories and subsequently the most probable distribution of the puff trajectories that represent the macroscopic dispersion behaviors. In two case studies of ambient dispersion, the numerical modeling results obtained agree reasonably well with both experimental measurements and conventional k-ε modeling results published in the literature. More importantly, the proposed many-puff CFD-statistical hybrid modeling method effectively reduces the computational time by two orders of magnitude.

  15. Development of a CFD Model Including Tree's Drag Parameterizations: Application to Pedestrian's Wind Comfort in an Urban Area

    Science.gov (United States)

    Kang, G.; Kim, J.

    2017-12-01

    This study investigated the tree's effect on wind comfort at pedestrian height in an urban area using a computational fluid dynamics (CFD) model. We implemented the tree's drag parameterization scheme to the CFD model and validated the simulated results against the wind-tunnel measurement data as well as LES data via several statistical methods. The CFD model underestimated (overestimated) the concentrations on the leeward (windward) walls inside the street canyon in the presence of trees, because the CFD model can't resolve the latticed cage and can't reflect the concentration increase and decrease caused by the latticed cage in the simulations. However, the scalar pollutants' dispersion simulated by the CFD model was quite similar to that in the wind-tunnel measurement in pattern and magnitude, on the whole. The CFD model overall satisfied the statistical validation indices (root normalized mean square error, geometric mean variance, correlation coefficient, and FAC2) but failed to satisfy the fractional bias and geometric mean bias due to the underestimation on the leeward wall and overestimation on the windward wall, showing that its performance was comparable to the LES's performance. We applied the CFD model to evaluation of the trees' effect on the pedestrian's wind-comfort in an urban area. To investigate sensory levels for human activities, the wind-comfort criteria based on Beaufort wind-force scales (BWSs) were used. In the tree-free scenario, BWS 4 and 5 (unpleasant condition for sitting long and sitting short, respectively) appeared in the narrow spaces between buildings, in the upwind side of buildings, and the unobstructed areas. In the tree scenario, BWSs decreased by 1 3 grade inside the campus of Pukyong National University located in the target area, which indicated that trees planted in the campus effectively improved pedestrian's wind comfort.

  16. Coarse-grid-CFD. An advantageous alternative to subchannel analysis

    International Nuclear Information System (INIS)

    Class, A.G.; Himmel, S.R.; Viellieber, M.O.

    2011-01-01

    In the 1960 th to 80 th when current GEN II reactor technology was developed, the only possible approach was to use one-dimensional subchannel analysis to compute the flow inside a fuel bundle so that the subchannel scale could be resolved. For simulations of the whole reactor core either system codes or homogenization were employed. In system codes resolution of individual assemblies was the state of the art. Homogenization used porous media equations simulations and averaged the thermohydraulics on reactor core scale. Current potent computing power allows using Computational Fluid Dynamics (CFD) to simulate individual fuel assemblies. Yet the large number of fuel assemblies within the core forbids exploiting CFD for core wide simulation. We propose to combine ideas of subchannel analysis and CFD to develop a new methodology which takes advantage of the fast development of commercial CFD software and the efficiency of subchannel analysis. In this methodology was first applied to simulate a wire-wrap fuel bundle of the High Performance Light Water Reactor (HPLWR). Computations using an inviscid Euler solver on an extremely coarse grid were tuned to predict the true thermohydraulics by adding volumetric forces. These forces represent the non-resolved sub-grid physics. The volumetric forces cannot be measured directly. However, they can be accessed from detailed CFD simulations resolving all relevant physics. Parameterization of these subgrid forces can be realized analogous to models in subchannel codes. In the present work we extend the methodology to the open source solver OpenFOAM and a specific hexagonal fuel assembly which is studied in the framework of liquid metal cooled GEN IV reactor concepts. (orig.)

  17. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  18. Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells

    Directory of Open Access Journals (Sweden)

    Y.Q. Feng

    2010-09-01

    Full Text Available This paper presents the development of a computational fluid dynamics (CFD model for the study of bubble driven bath flow in aluminium reduction cells. For validation purposes, the model development was conducted using a full scale air -water model of part of an aluminium reduction cell as a test-bed. The bubble induced turbulence has been modelled by either modifying bubble induced turbulence viscosity directly or by modifying bubble induced turbulence kinetic energy in a standard k- ε turbulence model. The relative performance of the two modelling approaches has been examined through comparison with experimental data taken under similar conditions using Particle Image Velocimetry (PIV. Detailed comparison has been conducted by point-wise comparison of liquid velocities to quantify the level of agreement between CFD simulation and PIV measurement. Both models can capture the key flow patterns determined by PIV measurement, while the modified turbulence kinetic energy model gives better agreement with flow patterns in the gap between anode and cathode.

  19. CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow

    Directory of Open Access Journals (Sweden)

    Reza Davarnejad

    2015-12-01

    Full Text Available In this paper, Computational fluid dynamics (CFD modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF and mixture were used. The results showed that the simulated data were in good agreement with the experimental ones available in the literature. According to the experimental work (literature and simulation (this research, Nusselt number (Nu increased with increasing the volume fraction of nanofluid. However friction factor of nanofluid increased but its effect was ignorable compared with the Nu on heat transfer increment. It was concluded that two phase models were more accurate than the others for heat transfer prediction particularly in the higher volume fractions of nanoparticle. The average deviation from experimental data for single phase model was about 11% whereas it was around 2% for two phase models.

  20. An introduction to chaos theory in CFD

    Science.gov (United States)

    Pulliam, Thomas H.

    1990-01-01

    The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.

  1. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Directory of Open Access Journals (Sweden)

    Nina S Sverdlova

    Full Text Available Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  2. CFD Application and OpenFOAM on the 2-D Model for the Moderator System of Heavy-Water Reactors

    International Nuclear Information System (INIS)

    Chang, Se Myong; Park, A. Y.; Kim, Hyoung Tae

    2011-01-01

    The flow in the complex pipeline system in a calandria tank of CANDU reactor is transported through the distribution of heat sources, which also exerts the pressure drop to the coolant flow. So the phenomena should be considered as multi-physics both in the viewpoints of heat transfer and fluid dynamics. In this study, we have modeled the calandria tank system as two-dimensional simplified one preliminarily that is yet far from the real objects, but to see the essential physics and to test the possibility of the present CFD(computational fluid dynamics) methods for the thermo-hydraulic problem in the moderator system of heavy-water reactors

  3. The Dalles Dam, Columbia River: Spillway Improvement CFD Study

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.

    2006-06-01

    This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model

  4. Vortex Tube: A Comparison of Experimental and CFD Analysis Featuring Different RANS Models

    Directory of Open Access Journals (Sweden)

    Chýlek Radomír

    2018-01-01

    Full Text Available The Ranque–Hilsch vortex tube represents a device for both cooling and heating applications. It uses compressed gas as drive medium. The temperature separation is affected by fluid flow behaviour inside the tube. It has not been sufficiently examined in detail yet and has the potential for further investigation. The aim of this paper is to compare results of numerical simulations of the vortex tube with obtained experimental data. The numerical study was using computational fluid dynamics (CFD, namely computational code STAR-CCM+. For the numerical study, a three-dimensional geometry model, and various turbulence physics models were used. For the validation of carried out calculations, an experimental device of the vortex tube of identical geometrical and operating conditions was created and tested. The numerical simulation results have been obtained for five different turbulence models, namely Standard k-ε, Realizable k-ε, Standard k-ω, SST k-ω and Reynolds stress model (RSM, were compared with experimental results. The most important evaluation factor was the temperature field in the vortex tube. All named models of turbulence were able to predict the general flow behaviour in the vortex tube with satisfactory precision. Standard k-ε turbulence model predicted temperature distribution in the best accordance with the obtained experimental data.

  5. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  6. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  7. A CFD model for determining mixing and mass transfer in a high power agitated bioreactor

    DEFF Research Database (Denmark)

    Bach, Christian; Albæk, Mads O.; Stocks, Stuart M.

    performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was found to be most efficiently described by using the k-ε model with regards...... simulations, and the overall mass transfer coefficient was found to be in accordance with experimental data. This work illustrates the possibility of predicting the hydrodynamic performance of an agitated bioreactor using validated CFD models. These models can be applied in the testing of new bioreactor...

  8. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation.

    Science.gov (United States)

    Brannock, M; Wang, Y; Leslie, G

    2010-05-01

    Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).

  9. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction.

    Science.gov (United States)

    Chen, Mounter C Y; Lu, Po-Chien; Chen, James S Y; Hwang, Ned H C

    2005-01-01

    Coronary stents are supportive wire meshes that keep narrow coronary arteries patent, reducing the risk of restenosis. Despite the common use of coronary stents, approximately 20-35% of them fail due to restenosis. Flow phenomena adjacent to the stent may contribute to restenosis. Three-dimensional computational fluid dynamics (CFD) and reconstruction based on biplane cine angiography were used to assess coronary geometry and volumetric blood flows. A patient-specific left anterior descending (LAD) artery was reconstructed from single-plane x-ray imaging. With corresponding electrocardiographic signals, images from the same time phase were selected from the angiograms for dynamic three-dimensional reconstruction. The resultant three-dimensional LAD artery at end-diastole was adopted for detailed analysis. Both the geometries and flow fields, based on a computational model from CAE software (ANSYS and CATIA) and full three-dimensional Navier-Stroke equations in the CFD-ACE+ software, respectively, changed dramatically after stent placement. Flow fields showed a complex three-dimensional spiral motion due to arterial tortuosity. The corresponding wall shear stresses, pressure gradient, and flow field all varied significantly after stent placement. Combined angiography and CFD techniques allow more detailed investigation of flow patterns in various segments. The implanted stent(s) may be quantitatively studied from the proposed hemodynamic modeling approach.

  10. CFD modeling of a boiler's tubes rupture

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Masoud; Khoshhal, Abbas; Shariati, Seyed Mehdi [Chemical Engineering Department, Faculty of Engineering, Razi University, Kermanshah (Iran)

    2006-12-15

    This paper reports the results of a study on the reason for tubes damage in the superheater Platen section of the 320MW Bisotoun power plant, Iran. The boiler has three types of superheater tubes and the damage occurs in a series of elbows belongs to the long tubes. A three-dimensional modeling was performed using an in-house computational fluid dynamics (CFD) code in order to explore the reason. The code has ability of simultaneous solving of the continuity, the Reynolds-Averaged Navier-Stokes (RANS) equations and employing the turbulence, combustion and radiation models. The whole boiler including; walls, burners, air channels, three types of tubes, etc., was modeled in the real scale. The boiler was meshed into almost 2,000,000 tetrahedral control volumes and the standard k-{epsilon} turbulence model and the Rosseland radiation model were used in the model. The theoretical results showed that the inlet 18.9MPa saturated steam becomes superheated inside the tubes and exit at a pressure of 17.8MPa. The predicted results showed that the temperature of the steam and tube's wall in the long tubes is higher than the short and medium size tubes. In addition, the predicted steam mass flow rate in the long tube was lower than other ones. Therefore, it was concluded that the main reason for the rupture in the long tubes elbow is changing of the tube's metal microstructure due to working in a temperature higher than the design temperature. In addition, the structural fatigue tension makes the last elbow of the long tube more ready for rupture in comparison with the other places. The concluded result was validated by observations from the photomicrograph of the tube's metal samples taken from the damaged and undamaged sections. (author)

  11. Safety Injection Tank Performance Analysis Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Lee, Jeong Ik; Nietiadi Yohanes Setiawan [KAIST, Daejeon (Korea, Republic of); Addad Yacine [KUSTAR, Abu Dhabi (United Arab Emirates); Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    This may affect the core cooling capability and threaten the fuel integrity during LOCA situations. However, information on the nitrogen flow rate during discharge is very limited due to the associated experimental measurement difficulties, and these phenomena are hardly reflected in current 1D system codes. In the current study, a CFD analysis is presented which hopefully should allow obtaining a more realistic prediction of the SIT performance which can then be reflected on 1D system codes to simulate various accident scenarios. Current Computational Fluid Dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study aims to find a better CFD prediction and more accurate modeling to predict the system performance during accident scenarios. The safety injection tank with fluidic device was analyzed using commercial CFD. A fine resolution grid was used to capture the vortex of the fluidic device. The calculation so far has shown good consistency with the experiment. Calculation should complete by the conference date and will be thoroughly analyzed to be discussed. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be validated to give more reliable results. The data from CFD and experiments will provide a more accurate K-factor of the fluidic device which can later be applied in system code inputs.

  12. Comprehensive Approach to Verification and Validation of CFD Simulations Applied to Backward Facing Step-Application of CFD Uncertainty Analysis

    Science.gov (United States)

    Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.

    2012-01-01

    There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.

  13. A CFD numerical model for the flow distribution in a MTR fuel element

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho; Angelo, Gabriel

    2015-01-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  14. A CFD numerical model for the flow distribution in a MTR fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho, E-mail: acprado@ipen.br, E-mail: delvonei@ipen.br, E-mail: dpedro_digiovanni_s@hotmail.com, E-mail: fabio@ipen.br, E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br, E-mail: jasouza@ipen.br, E-mail: abelchior@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Edvaldo, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Angelo, Gabriel, E-mail: gangelo@fei.edu.br [Fundacao Educacional Inaciana (FEI), Sao Bernardo do Campo, SP (Brazil)

    2015-07-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  15. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    International Nuclear Information System (INIS)

    Grahn, Alexander; Kliem, Sören; Rohde, Ulrich

    2015-01-01

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  16. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  17. An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation

    International Nuclear Information System (INIS)

    Besagni, Giorgio; Mereu, Riccardo; Chiesa, Paolo; Inzoli, Fabio

    2015-01-01

    Highlights: • We validate a CFD approach for a convergent nozzle ejector using global and local measurement. • We evaluate seven RANS turbulence models for convergent nozzle ejector. • We introduce a lumped parameter model for on-design and off-design ejector performance evaluation. • We analyze the relationship between local flow behavior and lumped parameters of the model. • We discuss how to improve predicting capabilities of the model by variable parameters calibrated on CFD simulations. - Abstract: This paper presents an Integrated Lumped Parameter Model-Computational Fluid-Dynamics approach for off-design ejector performance evaluation. The purpose of this approach is to evaluate the entrainment ratio, for a fixed geometry, in both on-design and off-design operating conditions. The proposed model is based on a Lumped Parameter Model (LPM) with variable ejector component efficiencies provided by CFD simulations. The CFD results are used for developing maps for ejector component efficiencies in a broad range of operating conditions. The ejector component efficiency maps couple the CFD and the LPM techniques for building an Integrated LPM-CFD approach. The proposed approach is demonstrated for a convergent nozzle ejector and the paper is structured in four parts. At first, the CFD approach is validated by global and local data and seven Reynolds Averaged Navier Stokes (RANS) turbulence models are compared: the k–ω SST showed good performance and was selected for the rest of the analysis. At second, a Lumped Parameter Model (LPM) for subsonic ejector is developed and the ejector component efficiencies have been defined. At third, the CFD approach is used to investigate the flow field, to analyze its influence on ejector component efficiencies and to propose efficiency correlations and maps linking ejector component efficiencies and local flow quantities. In the last part, the efficiency maps are embedded into the lumped parameter model, thus creating

  18. CFD modelling of moisture interactions between air and constructions

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Woloszyn, Monika; Hohota, Raluca

    2005-01-01

    There is a strong demand for accurate moisture modelling since moisture poses a risk for both the constructions and the indoor climate. Thus, in this investigation there is special focus on moisture modelling. The paper describes a new model based on a CFD tool that is enhanced to include both...... detailed modelling of airflows in rooms and heat and moisture transfer in walls by applying them as fluid walls. In a 3D configuration the impact of different boundary conditions are investigated and the results are discussed. The changes of boundary conditions that are studied are velocity, moisture...

  19. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  20. A CFD model for analysis of performance, water and thermal distribution, and mechanical related failure in PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2016-07-01

    Full Text Available This paper presents a comprehensive three–dimensional, multi–phase, non-isothermal model of a Proton Exchange Membrane (PEM fuel cell that incorporates significant physical processes and key parameters affecting the fuel cell performance. The model construction involves equations derivation, boundary conditions setting, and solution algorithm flow chart. Equations in gas flow channels, gas diffusion layers (GDLs, catalyst layers (CLs, and membrane as well as equations governing cell potential and hygro-thermal stresses are described. The algorithm flow chart starts from input of the desired cell current density, initialization, iteration of the equations solution, and finalizations by calculating the cell potential. In order to analyze performance, water and thermal distribution, and mechanical related failure in the cell, the equations are solved using a computational fluid dynamic (CFD code. Performance analysis includes a performance curve which plots the cell potential (Volt against nominal current density (A/cm2 as well as losses. Velocity vectors of gas and liquid water, liquid water saturation, and water content profile are calculated. Thermal distribution is then calculated together with hygro-thermal stresses and deformation. The CFD model was executed under boundary conditions of 20°C room temperature, 35% relative humidity, and 1 MPA pressure on the lower surface. Parameters values of membrane electrode assembly (MEA and other base conditions are selected. A cell with dimension of 1 mm x 1 mm x 50 mm is used as the object of analysis. The nominal current density of 1.4 A/cm2 is given as the input of the CFD calculation. The results show that the model represents well the performance curve obtained through experiment. Moreover, it can be concluded that the model can help in understanding complex process in the cell which is hard to be studied experimentally, and also provides computer aided tool for design and optimization of PEM

  1. Computational fluid dynamics in three dimensional angiography: Preliminary hemodynamic results of various proximal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Youn; Park, Sung Tae; Bae, Won Kyoung; Goo, Dong Erk [Dept. of Radiology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2014-12-15

    We studied the influence of proximal geometry on the results of computational fluid dynamics (CFD). We made five models of different proximal geometry from three dimensional angiography of 63-year-old women with intracranial aneurysm. CFD results were analyzed as peak systolic velocity (PSV) at inlet and outlet as well as flow velocity profile at proximal level of internal carotid artery (ICA) aneurysm. Modified model of cavernous one with proximal tubing showed faster PSV at outlet than that at inlet. The PSV of outlets of other models were slower than that of inlets. The flow velocity profiles at immediate proximal to ICA aneurysm showed similar patterns in all models, suggesting that proximal vessel geometries could affect CFD results.

  2. CFD Modelling of Biomass Combustion in Small-Scale Boilers. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xue-Song Bai; Griselin, Niklas; Klason, Torbern; Nilsson, Johan [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-10-01

    This project deals with CFD modeling of combustion of wood in fixed bed boilers. A flamelet model for the interaction between turbulence and chemical reactions is developed and applied to study small-scale boiler. The flamelet chemistry employs 43 reactive species and 174 elementary reactions. It gives detailed distributions of important species such as CO and NO{sub x} in the flow field and flue gas. Simulation of a small-scale wood fired boiler measured at SP Boraas (50 KW) shows that the current flamelet model yields results agreeable to the available experimental data. A detailed chemical kinetic model is developed to study the bed combustion process. This model gives boundary conditions for the CFD analysis of gas phase volatile oxidation in the combustion chambers. The model combines a Functional Group submodel with a Depolymerisation, Vaporisation and Crosslinking submodel. The FG submodel simulates how functional groups decompose and form light gas species. The DVC submodell predicts depolymerisation and vaporisation of the macromolecular network and this includes bridge breaking and crosslinking processes, where the wood structure breaks down to fragments. The light fragments form tar and the heavy ones form metaplast. Two boilers firing wood log/chips are studied using the FG-DVC model, one is the SP Boraas small-scale boiler (50 KW) and the other is the Sydkraft Malmoe Vaerme AB's Flintraennan large-scale boiler (55 MW). The fix bed is assumed to be two zones, a partial equilibrium drying/devolatilisation zone and an equilibrium zone. Three typical biomass conversion modes are simulated, a lean fuel combustion mode, a near-stoichiometric combustion and a fuel rich gasification mode. Detailed chemical species and temperatures at different modes are obtained. Physical interpretation is provided. Comparison of the computational results with experimental data shows that the model can reasonably simulate the fixed bed biomass conversion process. CFD

  3. Modernization of vertical Pelton turbines with the help of CFD and model testing

    International Nuclear Information System (INIS)

    Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter

    2014-01-01

    The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the

  4. Modernization of vertical Pelton turbines with the help of CFD and model testing

    Science.gov (United States)

    Mack, Reiner; Gola, Bartlomiej; Smertnig, Martin; Wittwer, Bernhard; Meusburger, Peter

    2014-03-01

    The modernization of water turbines bears a high potential of increasing the already installed hydropower capacity. In many projects the existing waterways allow a substantial increase of the available flow capacity and with it the energy output. But also the upgrading onto a state of the art hydraulic, mechanical and electrical design will increase the available power considerably after the rehabilitation. The two phase nature of the flow in Pelton turbines requires for the hydraulic refurbishment special care in the application of the available design methods. Where the flow in the high pressure section of the turbine is mainly of one phase nature, CFD has been used as a standard tool for many years. Also the jet quality, and with it the exploration of the source of flow disturbances that cause poor free surface quality can be investigated with CFD. The interaction of the jet with the buckets of the runner is also examined by means of CFD. However, its accuracy with respect to hydraulic efficiency is, because of the two phase flow and the transient flow process, in very few cases good enough for a reliable and accurate prediction of absolute numbers. The optimization of hydraulic bucket profiles is therefore always checked with measurements in homologous scaled model turbines. A similar situation exists for the housing flow after the water is discharged from the runner. Here also CFD techniques are available to explore the general mechanisms. However, due to the two phase flow nature, where only a very small space is filled with moving water, the experimental setup in a model turbine is always the final proof for optimizations of housing inserts and modifications. The hydraulic design of a modernization project for a power station equipped with vertical Pelton turbines of two different designs is described in the proposed paper. It will be shown, how CFD is applied to determine the losses in the high pressure section and how these results are combined with the

  5. COMPARISON OF EXPERIMENTS TO CFD MODELS FOR MIXING USING DUAL OPPOSING JETS IN TANKS WITH AND WITHOUT INTERNAL OBSTRUCTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Fowley, M.

    2012-06-26

    This paper documents testing methods, statistical data analysis, and a comparison of experimental results to CFD models for blending of fluids, which were blended using a single pump designed with dual opposing nozzles in an eight foot diameter tank. Overall, this research presents new findings in the field of mixing research. Specifically, blending processes were clearly shown to have random, chaotic effects, where possible causal factors such as turbulence, pump fluctuations, and eddies required future evaluation. CFD models were shown to provide reasonable estimates for the average blending times, but large variations -- or scatter -- occurred for blending times during similar tests. Using this experimental blending time data, the chaotic nature of blending was demonstrated and the variability of blending times with respect to average blending times were shown to increase with system complexity. Prior to this research, the variation in blending times caused discrepancies between CFD models and experiments. This research addressed this discrepancy, and determined statistical correction factors that can be applied to CFD models, and thereby quantified techniques to permit the application of CFD models to complex systems, such as blending. These blending time correction factors for CFD models are comparable to safety factors used in structural design, and compensate variability that cannot be theoretically calculated. To determine these correction factors, research was performed to investigate blending, using a pump with dual opposing jets which re-circulate fluids in the tank to promote blending when fluids are added to the tank. In all, eighty-five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of vertical cooling coils below the liquid surface for a full scale, liquid radioactive waste storage tank. Also, different jet

  6. Development of CFD fire models for deterministic analyses of the cable issues in the nuclear power plant

    International Nuclear Information System (INIS)

    Lin, C.-H.; Ferng, Y.-M.; Pei, B.-S.

    2009-01-01

    Additional fire barriers of electrical cables are required for the nuclear power plants (NPPs) in Taiwan due to the separation requirements of Appendix R to 10 CFR Part 50. The risk-informed fire analysis (RIFA) may provide a viable method to resolve these fire barrier issues. However, it is necessary to perform the fire scenario analyses so that RIFA can quantitatively determine the risk related to the fire barrier wrap. The CFD fire models are then proposed in this paper to help the RIFA in resolving these issues. Three typical fire scenarios are selected to assess the present CFD models. Compared with the experimental data and other model's simulations, the present calculated results show reasonable agreements, rendering that present CFD fire models can provide the quantitative information for RIFA analyses to release the cable wrap requirements for NPPs

  7. Natural ventilation of a generic cask under a transport hood - CFD and analytical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Powell, D.; Davies, G.; Tso, C.F. [Arup, London (United Kingdom)

    2004-07-01

    In comparison with finite element simulation for structural and thermal behaviour, the use of computational fluid dynamics technique (hereafter CFD) to analyse, predict and design air and heat flow in package design is relatively novel. Arup has been using CFD techniques to investigate fluid and heat flow, and to use it as a tool to design fluid and heat flow across a broad spectrum of industries for over fifteen years. In order demonstrate the power of the technique and its benefits, the airflow and heat flow characteristics around a transport package during transit under a transport hood has been evaluated using the CFD technique. This paper presents the scenario, the model, the analysis technique and the results of this analysis. Comparison with test results is probably the best way to validate a CFD analysis. In the absence of test results, the analysis was verified by comparison with hand calculation solutions. The scenario as it stands is too complex and hand calculation solution cannot describe the scenario sufficiently. However, hand calculation solutions could be derived for simplified version of the scenario against which CFD analysis of the simplified scenario can be compared. The second half of this paper describes the verification out.

  8. Natural ventilation of a generic cask under a transport hood - CFD and analytical modelling

    International Nuclear Information System (INIS)

    Powell, D.; Davies, G.; Tso, C.F.

    2004-01-01

    In comparison with finite element simulation for structural and thermal behaviour, the use of computational fluid dynamics technique (hereafter CFD) to analyse, predict and design air and heat flow in package design is relatively novel. Arup has been using CFD techniques to investigate fluid and heat flow, and to use it as a tool to design fluid and heat flow across a broad spectrum of industries for over fifteen years. In order demonstrate the power of the technique and its benefits, the airflow and heat flow characteristics around a transport package during transit under a transport hood has been evaluated using the CFD technique. This paper presents the scenario, the model, the analysis technique and the results of this analysis. Comparison with test results is probably the best way to validate a CFD analysis. In the absence of test results, the analysis was verified by comparison with hand calculation solutions. The scenario as it stands is too complex and hand calculation solution cannot describe the scenario sufficiently. However, hand calculation solutions could be derived for simplified version of the scenario against which CFD analysis of the simplified scenario can be compared. The second half of this paper describes the verification out

  9. Aspects of Using CFD for Wind Comfort Modeling Around Tall Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Andersen, Lars

    2008-01-01

    The Light*House complex is investigated for uncomfortable wind climate and dangerous winds at pedestrian level. A CFD model is used for simulating the wind effect for 12 different directions and correlated to the wind statistics of a nearby meteorological station. Comparing to practical standards...

  10. Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature Against SPEL Experiments

    International Nuclear Information System (INIS)

    Churl Yoon; Bo Wook Rhee; Byung-Joo Min

    2002-01-01

    A validation of a 3D CFD model for predicting local subcooling of the moderator in the vicinity of calandria tubes in a CANDU-6 reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard k-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used. Buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is the buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well. (authors)

  11. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    International Nuclear Information System (INIS)

    Zhang, X X; Cheng, Y G; Xia, L S; Yang, J D

    2014-01-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories give different n 11 . The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories

  12. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    Science.gov (United States)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  13. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    Science.gov (United States)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  14. The role of CFD computer analyses in hydrogen safety management

    International Nuclear Information System (INIS)

    Komen, E.M.J; Visser, D.C; Roelofs, F.; Te Lintelo, J.G.T

    2014-01-01

    The risks of hydrogen release and combustion during a severe accident in a light water reactor have attracted considerable attention after the Fukushima accident in Japan. Reliable computer analyses are needed for the optimal design of hydrogen mitigation systems, like e.g. passive autocatalytic recombiners (PARs), and for the assessment of the associated residual risk of hydrogen combustion. Traditionally, so-called Lumped Parameter (LP) computer codes are being used for these purposes. In the last decade, significant progress has been made in the development, validation, and application of more detailed, three-dimensional Computational Fluid Dynamics (CFD) simulations for hydrogen safety analyses. The objective of the current paper is to address the following questions: - When are CFD computer analyses needed complementary to the traditional LP code analyses for hydrogen safety management? - What is the validation status of the CFD computer code for hydrogen distribution, mitigation, and combustion analyses? - Can CFD computer analyses nowadays be executed in practical and reliable way for full scale containments? The validation status and reliability of CFD code simulations will be illustrated by validation analyses performed for experiments executed in the PANDA, THAI, and ENACCEF facilities. (authors)

  15. CFD for hypersonic airbreathing aircraft

    Science.gov (United States)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  16. Results from a CFD reference study into the modelling of heat and smoke transport by different CFD-practitioners

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Lemaire, A.D.; Plas, van der M.

    2009-01-01

    The paper describes results from a reference study that focuses on the application of the Computational Fluid Dynamics (CFD-) technique for heat and smoke transport in practice. Goal of the study is to obtain insight into the amount and causes of the spread of CFD-results when applied by different

  17. Bonneville Powerhouse 2 Fish Guidance Efficiency Studies: CFD Model of the Forebay

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2012-07-01

    In ongoing work, U.S. Army Corps of Engineers, Portland District (CENWP) is seeking to better understand and improve the conditions within the Bonneville Powerhouse 2 (B2) turbine intakes to improve survival of downstream migrant salmonid smolt. In this study, the existing B2 forebay computational fluid dynamics (CFD) model was modified to include a more detailed representation of all B2 turbine intakes. The modified model was validated to existing field-measured forebay ADCP velocities. The initial CFD model scenarios tested a single project operation and the impact of adding the Behavior Guidance System (BGS) or Corner Collector. These structures had impacts on forebay flows. Most notable was that the addition of the BGS and Corner Collector reduced the lateral extent of the recirculation areas on the Washington shore and Cascade Island and reduced the flow velocity parallel to the powerhouse in front of Units 11 and 12. For these same cases, at the turbine intakes across the powerhouse, there was very little difference in the flow volume into the gatewell for the clean forebay, and the forebay with the BGS in place and/or the Corner Collector operating. The largest differences were at Units 11 to 13. The CFD model cases testing the impact of the gatewell slot fillers showed no impact to the forebay flows, but large differences within the gatewells. With the slot fillers, the flow above the standard traveling screen and into the gatewell increased (about 100 cfs at each turbine intake) and the gap flow decreased across the powerhouse for all cases. The increased flow up the gatewell was further enhanced with only half the units operating. The flow into the gatewell slot was increased about 35 cfs for each bay of each intake across the powerhouse; this change was uniform across the powerhouse. The flows in the gatewell of Unit 12, the most impacted unit for the scenarios, was evaluated. In front of the vertical barrier screen, the CFD model with slot fillers

  18. 3D CFD for chemical transport profiles in a rotating disk CVD reactor

    Science.gov (United States)

    Han, Jong-Hyun; Yoon, Do-Young

    2010-06-01

    The RDCVD (Rotating Disk Chemical Vapor Deposition) technique is an appropriate method for uniform deposition of grains, such as compound semiconductior materials. The substrate temperature and rotation speed are the major factors, which determine the thickness uniformity of the deposited films. This paper investigates 3D CFD (3 Dimensional Computational Fluid Dynamics) simulation results of flow and heat transfer in a reactor of RDCVD using Fluent. In order to establish the reducibility of buoyancy effect on deposition quality, the chemical transport profile upon the disk heated is examined successfully in 3D domain for different rotating speeds. The resulting vortex flows due the simultaneous buoyance and centrifuge are discussed qualitatively in the 3D virtual system of a RDCVD reactor. 3D CFD is even more effective to describe the internal vortex flows due to the competitive inlet, buoyancy and centrifuge flows, which cannot be realized in the general 2D (2 Dimensional) CFD.[Figure not available: see fulltext.

  19. The difficult challenge of a two-phase CFD modelling for all flow regimes

    International Nuclear Information System (INIS)

    Bestion, D.

    2014-01-01

    Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The

  20. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  1. CFD Modelling of the Effects of Operating Parameters on the Spreading of Liquids on a Spinning Disc

    Directory of Open Access Journals (Sweden)

    Y. Pan

    2014-03-01

    Full Text Available A novel dry slag granulation process based on a spinning disc is being developed by CSIRO. This process utilises centrifugal force to break up molten slag into droplets, which are then quenched into solidified granules by a flow of cold air. In this process the sensible heat of slag is recovered as hot air. In the present work, a previously developed steady-state, two-dimensional and multiphase CFD model was applied to perform parametric numerical experiments to investigate the effects of a number of parameters on the liquid film thickness at the disc edge, which included liquid mass feeding (pouring rate, disc spinning speed, disc radius, liquid viscosity, density and surface tension. The modelling results were compared with experimental data and were found to be in good agreement. To reduce the number of simulations needed, Box and Behnken's fractional factorial design of numerical experiment was adopted. Furthermore, in order for the modelling results to be applicable to atomisation of different liquids using spinning discs of different sizes, a dimensionless correlation was developed based on dimensional analysis of the numerical simulation data. The modelling results indicate that the liquid film thickness can be significantly influenced by the disc radius and spinning speed, the liquid mass feeding rate, viscosity and density, whereas the liquid surface tension has a negligible effect.

  2. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik

    2011-01-01

    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...

  3. Recent developments in CFD and their impact on fuel assembly optimization

    International Nuclear Information System (INIS)

    Lascar, Celine; Alleborn, Norbert; Leberig, Mario; Jones, J.; Martin, M.

    2010-01-01

    In the recent past, progress in computer hardware and in Computational Fluid Dynamics (CFD) codes has made CFD attractive for thermal-hydraulic applications of the nuclear industry. Available code systems have a separated treatment of 1-phase and 2-phase CFD. While 1-phase phenomena (relevant for example to determine pressure losses in fuel assembly) can be reliably predicted with today's CFD programs, 2-phase CFD is still in the process of strong development in modeling 2- phase phenomena. AREVA NP is investing major efforts and resources (i) to develop knowledge and mastery of CFD models, their associated parameters, and the ranges of applications; (ii) to ensure validation of the in-house CFD codes and methodologies by gathering a large experimental databank; and (iii) to build state-ofthe- art tools and hardware to support this CFD development. All CFD work presented in this paper was performed with the commercial code STAR-CD. (orig.)

  4. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    Science.gov (United States)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  5. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review.

    Science.gov (United States)

    Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent

    2007-09-01

    The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.

  6. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  7. Advanced CFD and radiotracer techniques - A complementary technology - for industrial multiphase applications

    International Nuclear Information System (INIS)

    Tu, J.Y.

    2004-01-01

    A CFD and RTD Education Package was developed, in which lecture notes, tutorials and computer softwares for both CFD and RTD are included. A user-friendly web-based interface has been prepared to allow lecturers more effectively conducting their training courses or workshops, and to provide students or users more easily learning the CFD and RTD knowledge and practising computer softwares. This report gives an overview of the advances in development and use of CFD models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and softwares are highlighted. Integration of advanced CFD modelling with radiotracer techniques as a complementary technology for future research and industrial applications is discussed. The features and examples of the developed CFD and RTD Education package are presented. (author)

  8. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  9. Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders

    NARCIS (Netherlands)

    Korevaar, M.W.; Padding, J.T.; Hoef, van der M.A.; Kuipers, J.A.M.

    2014-01-01

    A model is proposed that incorporates contact charging (also known as triboelectric charging) of pneumatically conveyed powders in a DEM–CFD framework, which accounts for the electrostatic interactions, both between particles and between the particles and conducting walls. The simulation results

  10. Integrated DEM–CFD modeling of the contact charging of pneumatically conveyed powders

    NARCIS (Netherlands)

    Korevaar, M.W.; Padding, J.T.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2014-01-01

    A model is proposed that incorporates contact charging (also known as triboelectric charging) of pneumatically conveyed powders in a DEM–CFD framework, which accounts for the electrostatic interactions, both between particles and between the particles and conducting walls. The simulation results

  11. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  12. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  13. Extending the capabilities of CFD codes to assess ash related problems

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, B. B.

    2004-01-01

    This paper discusses the application of FLUENT? in theanalysis of grate-fired biomass boilers. A short description of theconcept used to model fuel conversion on the grate and the couplingto the CFD code is offered. The development and implementation ofa CFD-based deposition model is presented...... in the reminder of thepaper. The growth of deposits on furnace walls and super heatertubes is treated including the impact on heat transfer rates determinedby the CFD code. Based on the commercial CFD code FLUENT?,the overall model is fully implemented through the User DefinedFunctions. The model is configured...

  14. Comparison of turbulence models and CFD solution options for a plain pipe

    Science.gov (United States)

    Canli, Eyub; Ates, Ali; Bilir, Sefik

    2018-06-01

    Present paper is partly a declaration of state of a currently ongoing PhD work about turbulent flow in a thick walled pipe in order to analyze conjugate heat transfer. An ongoing effort on CFD investigation of this problem using cylindrical coordinates and dimensionless governing equations is identified alongside a literature review. The mentioned PhD work will be conducted using an in-house developed code. However it needs preliminary evaluation by means of commercial codes available in the field. Accordingly ANSYS CFD was utilized in order to evaluate mesh structure needs and asses the turbulence models and solution options in terms of computational power versus difference signification. Present work contains a literature survey, an arrangement of governing equations of the PhD work, CFD essentials of the preliminary analysis and findings about the mesh structure and solution options. Mesh element number was changed between 5,000 and 320,000. k-ɛ, k-ω, Spalart-Allmaras and Viscous-Laminar models were compared. Reynolds number was changed between 1,000 and 50,000. As it may be expected due to the literature, k-ɛ yields more favorable results near the pipe axis and k-ωyields more convenient results near the wall. However k-ɛ is found sufficient to give turbulent structures for a conjugate heat transfer problem in a thick walled plain pipe.

  15. Modeling flow inside an anaerobic digester by CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Alexandra Martinez; Jimenez, P. Amparo Lopez [Departmento do Ingenieria Hidralica y Medio Ambiente, Universitat Politecnica de Valencia, Camino de Vera S/N 46022 (Spain); Martinez, Tatiana Montoya; Monanana, Vincente Fajardo [Grupo Aquas de Valencia. Avenida Marques del Turia 19 46005 Valencia (Spain)

    2011-07-01

    Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD) simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain) has been used in order to consider the proposed methodology.

  16. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    International Nuclear Information System (INIS)

    Terzuoli, F.; Galassi, M.C.; Mazzini, D.; D'Auria, F.

    2008-01-01

    Pressurized thermal shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV) lifetime is the cold water emergency core cooling (ECC) injection into the cold leg during a loss of coolant accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM) Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs) code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code (NEPTUNE CFD). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling

  17. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  18. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  19. CFD modeling of thermal mixing in a T-junction geometry using LES model

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Hueseyin, E-mail: huseyinayhan@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey); Soekmen, Cemal Niyazi, E-mail: cemalniyazi.sokmen@hacettepe.edu.tr [Hacettepe University, Department of Nuclear Engineering, Beytepe, Ankara 06800 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer CFD simulations of temperature and velocity fluctuations for thermal mixing cases in T-junction are performed. Black-Right-Pointing-Pointer It is found that the frequency range of 2-5 Hz contains most of the energy; therefore, may cause thermal fatigue. Black-Right-Pointing-Pointer This study shows that RANS based calculations fail to predict a realistic mixing between the fluids. Black-Right-Pointing-Pointer LES model can predict instantaneous turbulence behavior. - Abstract: Turbulent mixing of fluids at different temperatures can lead to temperature fluctuations at the pipe material. These fluctuations, or thermal striping, inducing cyclical thermal stresses and resulting thermal fatigue, may cause unexpected failure of pipe material. Therefore, an accurate characterization of temperature fluctuations is important in order to estimate the lifetime of pipe material. Thermal fatigue of the coolant circuits of nuclear power plants is one of the major issues in nuclear safety. To investigate thermal fatigue damage, the OECD/NEA has recently organized a blind benchmark study including some of results of present work for prediction of temperature and velocity fluctuations performing a thermal mixing experiment in a T-junction. This paper aims to estimate the frequency of velocity and temperature fluctuations in the mixing region using Computational Fluid Dynamics (CFD). Reynolds Averaged Navier-Stokes and Large Eddy Simulation (LES) models were used to simulate turbulence. CFD results were compared with the available experimental results. Predicted LES results, even in coarse mesh, were found to be in well-agreement with the experimental results in terms of amplitude and frequency of temperature and velocity fluctuations. Analysis of the temperature fluctuations and the power spectrum densities (PSD) at the locations having the strongest temperature fluctuations in the tee junction shows that the frequency range of 2-5 Hz

  20. An extended CFD model to predict the pumping curve in low pressure plasma etch chamber

    Science.gov (United States)

    Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu

    2014-12-01

    Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.

  1. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report; TOPFLOW-Experimente, Modellentwicklung und Validierung zur Qualifizierung von CFD-Codes fuer Zweiphasenstroemungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-15

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  2. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    Energy Technology Data Exchange (ETDEWEB)

    Anglart, H.; Nylund, O. [ABB Atom AB, Vasteras (Switzerland); Kurul, N. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  3. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  4. Pressure loss coefficient evaluation based on CFD analysis for simple geometries and PWR reactor vessel without geometry simplification

    International Nuclear Information System (INIS)

    Ko II, B.; Park, J. P.; Jeong, J. H.

    2008-01-01

    Nuclear vendors and utilities perform lots of simulations and analyses in order to ensure the safe operation of nuclear power plants (NPPs). In general, the simulations are carried out using vendor-specific design codes and best-estimate system analysis codes and most of them were developed based on 1-dimensional lumped parameter models. These thermal-hydraulic system analysis codes require user input for pressure loss coefficient, k-factor; since they numerically solve Euler-equation. In spite of its high impact on the safety analysis results, there has not been good validation method for the selection of loss coefficient. During the past decade, however; computers, parallel computation methods, and 3-dimensional computational fluid dynamics (CFD) codes have been dramatically enhanced. It is believed to be beneficial to take advantage of advanced commercial CFD codes in safety analysis and design of NPP5. The present work aims to validate pressure loss coefficient evaluation for simple geometries and k-factor calculation for PWR based on CFD. The performances of standard k-ε model, RNG k-ε model, Reynolds stress model (RSM) on the simulation of pressure drop for simple geometry such as, or sudden-expansion, and sudden-contraction are evaluated. The calculated value was compared with pressure loss coefficient in handbook of hydraulic resistance. Then the present work carried out analysis for flow distribution in downcomer and lower plenum of Korean standard nuclear power plants (KSNPs) using STAR-CD. The lower plenum geometry of a PWR is very complicated since there are so many reactor internals, which hinders in CFD analysis for real reactor geometry up to now. The present work takes advantage of 3D CAD model so that real geometry of lower plenum is used. The results give a clear figure about flow fields in the reactor vessel, which is one of major safety concerns. The calculated pressure drop across downcomer and lower plenum appears to be in good agreement

  5. Prediction of hydraulic force and momentum on pelton turbine jet deflector based on cfd simulation

    International Nuclear Information System (INIS)

    Popovski, Boro

    2015-01-01

    The numerical simulation of three-dimensional turbulent flow through the jet-distributor, free stream jet and deflector of Pelton Turbine is presented in this work. The calculations are performed using the CFD package Ansys CFX (Navie-Stokes equations and the k-omega SST turbulent model). A traditional definition for calculation of hydraulic forces and momentum on the jet deflector and a method for experimental evaluation are described. The steps for flow modelling, mesh (grid) generation, as well as the results obtained from the numerical simulation of the flow and stress deformation calculations of the jet-deflector are presented. This work corresponds with the actual approach of methods development for flow simulation and calculations of Pelton Turbines. The kinematic and dynamic parameters are calculated based on CFD simulations. The results of the calculations represents reliable tool in the procedure of development and construction of Pelton Turbines. (author)

  6. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.

    Science.gov (United States)

    Dapelo, Davide; Alberini, Federico; Bridgeman, John

    2015-11-15

    A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of CFD Approaches for Modeling Advanced Concepts of Nuclear Thermal Propulsion Test Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The current project is going to investigate, implement and begin validating the Computational Fluid Dynamics (CFD) options available for modeling multi-phase...

  8. Development of Geometry Optimization Methodology with In-house CFD code, and Challenge in Applying to Fuel Assembly

    International Nuclear Information System (INIS)

    Jeong, J. H.; Lee, K. L.

    2016-01-01

    The wire spacer has important roles to avoid collisions between adjacent rods, to mitigate a vortex induced vibration, and to enhance convective heat transfer by wire spacer induced secondary flow. Many experimental and numerical works has been conducted to understand the thermal-hydraulics of the wire-wrapped fuel bundles. There has been enormous growth in computing capability. Recently, a huge increase of computer power allows to three-dimensional simulation of thermal-hydraulics of wire-wrapped fuel bundles. In this study, the geometry optimization methodology with RANS based in-house CFD (Computational Fluid Dynamics) code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI (General Grid Interface) function is developed for in-house CFD code. Furthermore, three-dimensional flow fields calculated with in-house CFD code are compared with those calculated with general purpose commercial CFD solver, CFX. The geometry optimization methodology with RANS based in-house CFD code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI function is developed for in-house CFD code as same as CFX. Even though both analyses are conducted with same computational meshes, numerical error due to GGI function locally occurred in only CFX solver around rod surface and boundary region between inner fluid region and outer fluid region.

  9. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  10. CFD analysis of a full-scale ceramic kiln module under actual operating conditions

    Science.gov (United States)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Venturelli, Matteo

    2017-11-01

    The paper focuses on the CFD analysis of a full-scale module of an industrial ceramic kiln under actual operating conditions. The multi-dimensional analysis includes the real geometry of a ceramic kiln module employed in the preheating and firing sections and investigates the heat transfer between the tiles and the burners' flame as well as the many components that comprise the module. Particular attention is devoted to the simulation of the convective flow field in the upper and lower chambers and to the effects of radiation on the different materials is addressed. The assessment of the radiation contribution to the tiles temperature is paramount to the improvement of the performance of the kiln in terms of energy efficiency and fuel consumption. The CFD analysis is combined to a lumped and distributed parameter model of the entire kiln in order to simulate the module behaviour at the boundaries under actual operating conditions. Finally, the CFD simulation is employed to address the effects of the module operating conditions on the tiles' temperature distribution in order to improve the temperature uniformity as well as to enhance the energy efficiency of the system and thus to reduce the fuel consumption.

  11. International research progress of CFD application in analysis of nuclear power system

    International Nuclear Information System (INIS)

    Li Linsen; Wang Kan; Song Xiaoming

    2009-01-01

    This paper introduces the latest international research progress of CFD application in nuclear reactor system analysis. CFD method has been applied to a few 3-D single phase transient simulations, including flow field modeling of the reactor cores, assemblies, and vessel plenums. On the other hand, CFD method applied to reactor system still needs further validation and benchmarking, meanwhile,the application of CFD also needs to be studied, including the setup of the Best Practice Guidelines (BPG). Furthermore, CFD codes are used to couple with thermal-hydraulic system codes or neutronic codes. Eventually, in two phase field and turbulence modeling, CFD codes are still being developed. (authors)

  12. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    Science.gov (United States)

    2015-09-01

    UNCLASSIFIED UNCLASSIFIED CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM ... OpenFOAM to replace some of the Fluent simulations. The fidelity of the Fluent code has been carefully validated, but the accuracy of parts of the... OpenFOAM code have not been so extensively tested. To test the accuracy of the OpenFOAM software, CFD simulations have been performed on the DSTO

  13. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.

    Science.gov (United States)

    Tian, Geng; Hindle, Michael; Lee, Sau; Longest, P Worth

    2015-10-01

    CFD provides a powerful approach to evaluate the deposition of pharmaceutical aerosols; however, previous studies have not compared CFD results of deposition throughout the lungs with in vivo data. The in vivo datasets selected for comparison with CFD predictions included fast and slow clearance of monodisperse aerosols as well as 2D gamma scintigraphy measurements for a dry powder inhaler (DPI) and softmist inhaler (SMI). The CFD model included the inhaler, a characteristic model of the mouth-throat (MT) and upper tracheobronchial (TB) airways, stochastic individual pathways (SIPs) representing the remaining TB region, and recent CFD-based correlations to predict pharmaceutical aerosol deposition in the alveolar airways. For the monodisperse aerosol, CFD predictions of total lung deposition agreed with in vivo data providing a percent relative error of 6% averaged across aerosol sizes of 1-7 μm. With the DPI and SMI, deposition was evaluated in the MT, central airways (bifurcations B1-B7), and intermediate plus peripheral airways (B8 through alveoli). Across these regions, CFD predictions produced an average relative error <10% for each inhaler. CFD simulations with the SIP modeling approach were shown to accurately predict regional deposition throughout the lungs for multiple aerosol types and different in vivo assessment methods.

  14. Assessment of Nucleation Site Density Models for CFD Simulations of Subcooled Flow Boiling

    International Nuclear Information System (INIS)

    Hoang, N. H.; Chu, I. C.; Euh, D. J.; Song, C. H.

    2015-01-01

    The framework of a CFD simulation of subcooled flow boiling basically includes a block of wall boiling models communicating with governing equations of a two-phase flow via parameters like temperature, rate of phasic change, etc. In the block of wall boiling models, a heat flux partitioning model, which describes how the heat is taken away from a heated surface, is combined with models quantifying boiling parameters, i.e. nucleation site density, and bubble departure diameter and frequency. It is realized that the nucleation site density is an important parameter for predicting the subcooled flow boiling. The number of nucleation sites per unit area decides the influence region of each heat transfer mechanism. The variation of the nucleation site density will mutually change the dynamics of vapor bubbles formed at these sites. In addition, the nucleation site density is needed as one initial and boundary condition to solve the interfacial area transport equation. A lot of effort has been devoted to mathematically formulate the nucleation site density. As a consequence, numerous correlations of the nucleation site density are available in the literature. These correlations are commonly quite different in their mathematical form as well as application range. Some correlations of the nucleation site density have been applied successfully to CFD simulations of several specific subcooled boiling flows, but in combination with different correlations of the bubble departure diameter and frequency. In addition, the values of the nucleation site density, and bubble departure diameter and frequency obtained from simulations for a same problem are relatively different, depending on which models are used, even when global characteristics, e.g., void fraction and mean bubble diameter, agree well with experimental values. It is realized that having a good CFD simulations of the subcooled flow boiling requires a detailed validations of all the models used. Owing to the importance

  15. Evaluation of a Heating System in Poultry Houses Using a CFD Model / Evaluación de un Sistema de Calefacción en Galpones Avicolas Usando un Modelo en CFD

    Directory of Open Access Journals (Sweden)

    Flávio Alves Damasceno

    2014-06-01

    Full Text Available Abstract.. The objective of this study was to adapt and validate a computer model using the Computational Fluid Dinamics (CFD, in the prediction of temperature and air speed in a duct distribution system coupled to a heating furnace that is used in typical poultry houses in tropical and subtropical countries. The validation of the model with experimental data was satisfactory, presentingnormalized mean square error NMSE values of 0.25 and 0.02 for air temperature and air speed, respectively. The results evidenced that the proposed model is adequate for predicting the air speed and temperature for this type of system, and could be used to improve the efficiency of the distribution of heat inside and around air ducts using different air speeds, types of materials and dimensions. / Resumen. El objetivo de este estudio fue adaptar y validar un modelo computacional haciendo uso de la dinámica de fluidos computacional (CFD para predecir la temperatura y la velocidad del aire en un sistema de distribución de ductos acoplado a un sitema de calefacción que es utilizado en las instalaciones avícola en los países tropicales y subtropicales. La validación del modelo con los datos experimentales fue satisfactoria, presentando valores medios normalizados del error cuadrado NMSE de 0,25 y 0,02 para la temperatura y velocidad del aire respectivamente. Los resultados muestran que el modelo propuesto es adecuado para predecir la velocidad del aire y la temperatura alrededor de este tipo de sistema, y podría ser utilizado para mejorar la eficiencia la distribución de calor en el interior y alrededor de los conductos, usando diferentes velocidades, tipos de materiales y dimensiones

  16. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    Science.gov (United States)

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York City wastewater treatment plants.

    Science.gov (United States)

    Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2012-01-01

    New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.

  18. Application of CFD methods in research of SCWR thermo-hydraulics

    International Nuclear Information System (INIS)

    Zeng Xiaokang; Li Yongliang; Yan Xiao; Xiao Zejun; Huang Yanping

    2013-01-01

    The CFD method has been an important tool in the research of SCWR thermo- hydraulics. Currently, the CFD methods uses commonly the subcritical turbulence models, which can not accurately simulate the gravity and thermal expansion acceleration effect, and CFD numerical method is not applicable when the heat flux is large. The paper summarizes the application status of the CFD methods in the research of SCWR thermo-hydraulics in RETH. (authors)

  19. Three dimensional modeling on airflow, heat and mass transfer in partially impermeable enclosure containing agricultural produce during natural convective cooling

    International Nuclear Information System (INIS)

    Chourasia, M.K.; Goswami, T.K.

    2007-01-01

    A three dimensional model was developed to simulate the transport phenomena in heat and mass generating porous medium cooled under natural convective environment. Unlike the previous works on this aspect, the present model was aimed for bulk stored agricultural produce contained in a permeable package placed on a hard surface. This situation made the bottom of the package impermeable to fluid flow as well as moisture transfer and adiabatic to heat transfer. The velocity vectors, isotherms and contours of rate of moisture loss were presented during transient cooling as well as at steady state using the commercially available computational fluid dynamics (CFD) code based on the finite volume technique. The CFD model was validated using the experimental data on the time-temperature history as well as weight loss obtained from a bag of potatoes kept in a cold store. The simulated and experimental values on temperature and moisture loss of the product were found to be in good agreement

  20. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soria, José, E-mail: jose.soria@probien.gob.ar [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina); Gauthier, Daniel; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (PROMES-CNRS, UPR 8521), 7 Four Solaire Street, Odeillo, 66120 Font-Romeu (France); Rodriguez, Rosa [Chemical Engineering Institute, National University of San Juan, 1109 Libertador (O) Avenue, 5400 San Juan (Argentina); Mazza, Germán [Institute for Research and Development in Process Engineering, Biotechnology and Alternative Energies (PROBIEN, CONICET – UNCo), 1400 Buenos Aires St., 8300 Neuquén (Argentina)

    2015-09-15

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator.

  1. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD

    International Nuclear Information System (INIS)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-01-01

    Highlights: • A CFD two-scale model is formulated to simulate heavy metal vaporization from waste incineration in fluidized beds. • MSW particle is modelled with the macroscopic particle model. • Influence of bed dynamics on HM vaporization is included. • CFD predicted results agree well with experimental data reported in literature. • This approach may be helpful for fluidized bed reactor modelling purposes. - Abstract: Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073 K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator

  2. A coupled DEM-CFD method for impulse wave modelling

    Science.gov (United States)

    Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista

    2015-04-01

    Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been

  3. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  4. CFD study of a simple orifice pulse tube cooler

    Science.gov (United States)

    Zhang, X. B.; Qiu, L. M.; Gan, Z. H.; He, Y. L.

    2007-05-01

    Pulse tube cooler (PTC) has the advantages of long-life and low vibration over the conventional cryocoolers, such as G-M and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional axis-symmetric computational fluid dynamic (CFD) simulation of a GM-type simple orifice PTC (OPTC). The detailed modeling process and the general results such as the phase difference between velocity and pressure at cold end, the temperature profiles along the wall as well as the temperature oscillations at cold end with different heat loads are presented. Emphases are put on analyzing the complicated phenomena of multi-dimensional flow and heat transfer in the pulse tube under conditions of oscillating pressure. Swirling flow pattern in the pulse tube is observed and the mechanism of formation is analyzed in details, which is further validated by modeling a basic PTC. The swirl causes undesirable mixing in the thermally stratified fluid and is partially responsible for the poor overall performance of the cooler, such as unsteady cold-end temperature.

  5. Preliminary applications of the new Neptune two-phase CFD solver to pressurized thermal shock investigations

    International Nuclear Information System (INIS)

    Boucker, M.; Laviaville, J.; Martin, A.; Bechaud, C.; Bestion, D.; Coste, P.

    2004-01-01

    The objective of this communication is to present some preliminary applications to pressurized thermal shock (PTS) investigations of the CFD (Computational Fluid Dynamics) two-phase flow solver of the new NEPTUNE thermal-hydraulics platform. In the framework of plant life extension, the Reactor Pressure Vessel (RPV) integrity is a major concern, and an important part of RPV integrity assessment is related to PTS analysis. In the case where the cold legs are partially filled with steam, it becomes a two-phase problem and new important effects occur, such as condensation due to the Emergency Core Cooling (ECC) injections of sub-cooled water. Thus, an advanced prediction of RPV thermal loading during these transients requires sophisticated two-phase, local scale, 3-dimensional codes. In that purpose, a program has been set up to extend the capabilities of the NEPTUNE two-phase CFD solver. A simple set of turbulence and condensation model for free surface steam-water flow has been tested in simulation of an ECC high pressure injection representing facility, using a full 3-dimensional mesh and the new NEPTUNE solver. Encouraging results have been obtained but it should be noticed that several sources of error can compensate for one another. Nevertheless, the computation presented here allows to be reasonable confident in the use of two-phase CFD in order to carry out refined analysis of two-phase PTS scenarios within the next years

  6. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  7. The CFD Simulation on Thermal Comfort in a library Building in the Tropics

    International Nuclear Information System (INIS)

    Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.

    2010-01-01

    This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.

  8. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    Science.gov (United States)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-12-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  9. Wind Loads on Ships and Offshore Structures Estimated by CFD

    DEFF Research Database (Denmark)

    Aage, Christian; Hvid, S.L.; Hughes, P.H.

    1997-01-01

    Wind loads on ships and offshore structures could until recently be determined only by model tests, or by statistical methods based on model tests. By the development of Computational Fluid Dynamics or CFD there is now a realistic computational alternative available. In this paper, wind loads...... on a seagoing ferry and on a semisubmersible offshore platform have been estimated by CFD. The results have been compared with wind tunnel model tests and, for the ferry, a few full-scale measurements, and good agreement is obtained. The CFD method offers the possibility of a computational estimate of scale...... effects related to wind tunnel model testing. An example of such an estimate on the ferry is discussed. Due to the time involved in generating the computational mesh and in computing the solution, the CFD method is not at the moment economically competitive to routine wind tunnel model testing....

  10. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    Directory of Open Access Journals (Sweden)

    Naeimi Hessamedin

    2011-01-01

    Full Text Available Nowadays, computational fluid dynamics codes (CFD are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction losses from the total energy losses. The total pressure loss coefficient has been related to the extrapolated Mach number in the common branch and to the mass flow rate ratio between branches at different flow configurations, in both combining and dividing flows. The study indicate that the numerical results were generally in good agreement with those of experimental data from the literature and will be applied as a boundary condition in one-dimensional global simulation models of fluid systems in which these components are present.

  11. TOPFLOW-experiments, model development and validation for the qualification of CFD-odes for two-phase flows. Final report

    International Nuclear Information System (INIS)

    Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.

    2016-12-01

    This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.

  12. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms

    Science.gov (United States)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon

    2010-01-01

    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  13. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    Science.gov (United States)

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.

  14. Development and validation of the 3-D CFD model for CANDU-6 moderator temperature predictions

    International Nuclear Information System (INIS)

    Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo

    2003-03-01

    A computational fluid dynamics model for predicting the moderator circulation inside the CANada Deuterium Uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the Calandria tubes. The buoyancy effect induced by internal heating is accounted for by Boussinesq approximation. The standard κ-ε turbulence model associated with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the Calandria tubes in the core region is simplified to porous media, in which an-isotropic hydraulic impedance is modeled using an empirical correlation of the frictional pressure loss. The governing equations are solved by CFX-4.4, a commercial CFD code developed by AEA technology. The CFD model has been successfully verified and validated against experimental data obtained in the Stern Laboratories Inc. (SLI) in Hamilton, Ontario

  15. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    Science.gov (United States)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  16. Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.

    1997-12-31

    The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project

  17. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  18. CFD analysis on heat transfer in low Prandtl number fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)

    2011-07-01

    Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)

  19. Validation of a CFD analysis model for the calculation of CANDU6 moderator temperature distribution

    International Nuclear Information System (INIS)

    Yoon, Churl; Rhee, Bo Wook; Min, Byung Joo

    2001-01-01

    A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada is used for the validation. Also a comparison is made between previous DFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard κ-ε turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 .deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well

  20. Francis full-load surge mechanism identified by unsteady 2-phase CFD

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, P K; Keller, M; Braun, O, E-mail: peter.doerfler@andritz.co [R and D Department, Andritz Hydro Ltd., Zurich (Switzerland)

    2010-08-15

    Francis turbines may produce spontaneous pulsations of pressure and output power when operating at very high discharge. In such cases there is a cavitating central vortex in the draft tube with variable cavity volume V{sub c}. Until today, researchers agree that the main destabilizing agent is the so-called mass flow gain factor, defined as the derivative of cavity volume by the local discharge. Recent studies about 1D high-load stability analysis assumed that the mass-flow gain factor obtained from steady-state vortex data acts on the transient discharge downstream of the cavity. There are however good reasons to question this assumption. Most strikingly, the direct cause of the mass flow gain effect is the increase of swirl produced at the runner exit and hence upstream, not downstream of the cavity. To enhance the reliability of full-load stability predictions, the authors directly investigated the vortex dynamics. The development of the transient cavitating flow in the draft tube was simulated by means of unsteady 2-phase CFD. CFD work started with 1-phase calculations as presented by other authors. This was then extended to a more realistic 2-phase calculation. To contain the computing time within acceptable limits, given the very fine mesh and short time step required, the simulation domain was restricted to the draft tube and, at the same time, the problem was reduced to a basically 2-dimensional rotationally symmetric case. The response of the cavitating draft tube flow to a time-dependent inflow and time-dependent pressure at the draft tube exit was simulated. The results were input to a statistical identification procedure to check possible 1D transient models and find representative parameter values in the sense of a best fit between 1D model and CFD result. As we had suspected, the conventional vortex model with mass flow gain controlled by downstream discharge is not compatible with direct simulation and needs to be modified. The CFD results correspond

  1. EURISOL-DS Multi-MW Target: Experimental program associated to validation of CFD simulations of the mercury loop

    CERN Document Server

    Blumenfeld, Laure; Kadi, Yacine; Samec, Karel; Lindroos, Mats

    At the core of the Eurisol project facility, the neutron source produces spallation neutrons from a proton beam impacting dense liquid. The liquid circulates at high speed inside the source, a closed vessel with beam windows.This technical note summarises the needed of the hydraulic METEX 1 and METEX 2 data tests to contribute to validate CFD turbulent simulation of liquid metal with the LES model and FEM structural model as well as a-dimensional analysis of Laser Dopplet Velocimetry for cavitation measurements.

  2. From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD

    Directory of Open Access Journals (Sweden)

    Schulze S.

    2013-04-01

    Full Text Available This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2. Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003 Combust. Flame 132, 743-753. Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10% between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient

  3. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal co...

  4. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor

    Science.gov (United States)

    Belhocien, Ali; Omar, Wan Zaidi Wan

    Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  5. CFD modelling of a membrane reactor for hydrogen production from ammonia

    Science.gov (United States)

    Shwe Hla, San; Dolan, Michael D.

    2018-01-01

    Despite the growing use of hydrogen (H2) as a transport fuel, one of the major barriers still remaining is efficient and inexpensive fuel distribution and storage. Current approaches, such as compression, liquefaction or metal hydride formation, incur a significant energy penalty. Ammonia (NH3) has long been considered a prospective H2 medium, exhibiting a higher volumetric H2 density than liquid H2, through liquid-phase storage at mild pressure. Decomposition of NH3 into H2 and N2 can be achieved via use of catalytic reactors and fuel-cell-grade H2 can be produced using metal membranes at H2 distribution sites.In this study, a 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model has been developed to understand the performance of the H2 separation process in gas mixtures derived from an NH3-cracking reaction. The reactor consists of 19 tubular membrane tubes, each 470 mm long, inside a tubular shell with an inner diameter of 130 mm. Standard transport and energy equations governing a 3D, pressure-based, steady-state model were derived from the laws of conservation of mass, momentum and energy. The governing equations were solved using commercial CFD software ANSYS Fluent 18.0. Gas flow and mixing were modelled by the two-equation standard k-epsilon model for closure. Coupled solver was used for pressure-velocity coupling, enabling a pseudo-transient option with pseudo time steps of 0.01 s. To estimate H2 permeation through the metal membrane, a constant H2 permeability of 3.0E-07 mol.m-1 s-1 Pa-0.5 derived from series of experiments tested under a range of industrial conditions, was used. Model simulations were conducted for an adiabatic temperature of 300 °C, a feed-side pressure of 7.8 bara and a permeate side pressure of 0.1 bara. A parametric analysis was carried out to explore the effects of variation in total feed-gas flow and effects of changes in NH3-cracking efficiency on H2 production rates and H2 yields. The model estimated that 4.6-11.6 kg H2

  6. Retooling CFD for hypersonic aircraft

    Science.gov (United States)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  7. The Feasibility of Multidimensional CFD Applied to Calandria System in the Moderator of CANDU-6 PHWR Using Commercial and Open-Source Codes

    Directory of Open Access Journals (Sweden)

    Hyoung Tae Kim

    2016-01-01

    Full Text Available The moderator system of CANDU, a prototype of PHWR (pressurized heavy-water reactor, has been modeled in multidimension for the computation based on CFD (computational fluid dynamics technique. Three CFD codes are tested in modeled hydrothermal systems of heavy-water reactors. Commercial codes, COMSOL Multiphysics and ANSYS-CFX with OpenFOAM, an open-source code, are introduced for the various simplified and practical problems. All the implemented computational codes are tested for a benchmark problem of STERN laboratory experiment with a precise modeling of tubes, compared with each other as well as the measured data and a porous model based on the experimental correlation of pressure drop. Also the effect of turbulence model is discussed for these low Reynolds number flows. As a result, they are shown to be successful for the analysis of three-dimensional numerical models related to the calandria system of CANDU reactors.

  8. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  9. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two

  10. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Listwan, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models with implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost

  11. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  12. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion.

    Science.gov (United States)

    Amorim, J H; Rodrigues, V; Tavares, R; Valente, J; Borrego, C

    2013-09-01

    The current work evaluates the impact of urban trees over the dispersion of carbon monoxide (CO) emitted by road traffic, due to the induced modification of the wind flow characteristics. With this purpose, the standard flow equations with a kε closure for turbulence were extended with the capability to account for the aerodynamic effect of trees over the wind field. Two CFD models were used for testing this numerical approach. Air quality simulations were conducted for two periods of 31h in selected areas of Lisbon and Aveiro, in Portugal, for distinct relative wind directions: approximately 45° and nearly parallel to the main avenue, respectively. The statistical evaluation of modelling performance and uncertainty revealed a significant improvement of results with trees, as shown by the reduction of the NMSE from 0.14 to 0.10 in Lisbon, and from 0.14 to 0.04 in Aveiro, which is independent from the CFD model applied. The consideration of the plant canopy allowed to fulfil the data quality objectives for ambient air quality modelling established by the Directive 2008/50/EC, with an important decrease of the maximum deviation between site measurements and CFD results. In the non-aligned wind situation an average 12% increase of the CO concentrations in the domain was observed as a response to the aerodynamic action of trees over the vertical exchange rates of polluted air with the above roof-level atmosphere; while for the aligned configuration an average 16% decrease was registered due to the enhanced ventilation of the street canyon. These results show that urban air quality can be optimised based on knowledge-based planning of green spaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Comparison of CFD Predictions with Shuttle Global Flight Thermal Imagery and Discrete Surface Measurements

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.

    2010-01-01

    Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.

  14. CFD modeling of a vertical-axis wind turbine for efficiency improvement and climate change mitigation

    International Nuclear Information System (INIS)

    Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.

    2009-01-01

    Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)

  15. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  16. Development of CFD analysis method based on droplet tracking model for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Onishi, Yoichi; Minato, Akihiko; Ichikawa, Ryoko; Mashara, Yasuhiro

    2011-01-01

    It is well known that the minimum critical power ratio (MCPR) of the boiling water reactor (BWR) fuel assembly depends on the spacer grid type. Recently, improvement of the critical power is being studied by using a spacer grid with mixing devices attaching various types of flow deflectors. In order to predict the critical power of the improved BWR fuel assembly, we have developed an analysis method based on the consideration of detailed thermal-hydraulic mechanism of annular mist flow regime in the subchannels for an arbitrary spacer type. The proposed method is based on a computational fluid dynamics (CFD) model with a droplet tracking model for analyzing the vapor-phase turbulent flow in which droplets are transported in the subchannels of the BWR fuel assembly. We adopted the general-purpose CFD software Advance/FrontFlow/red (AFFr) as the base code, which is a commercial software package created as a part of Japanese national project. AFFr employs a three-dimensional (3D) unstructured grid system for application to complex geometries. First, AFFr was applied to single-phase flows of gas in the present paper. The calculated results were compared with experiments using a round cellular spacer in one subchannel to investigate the influence of the choice of turbulence model. The analyses using the large eddy simulation (LES) and re-normalisation group (RNG) k-ε models were carried out. The results of both the LES and RNG k-ε models show that calculations of velocity distribution and velocity fluctuation distribution in the spacer downstream reproduce the experimental results qualitatively. However, the velocity distribution analyzed by the LES model is better than that by the RNG k-ε model. The velocity fluctuation near the fuel rod, which is important for droplet deposition to the rod, is also simulated well by the LES model. Then, to examine the effect of the spacer shape on the analytical result, the gas flow analyses with the RNG k-ε model were performed

  17. A Performance Prediction Method for Pumps as Turbines (PAT Using a Computational Fluid Dynamics (CFD Modeling Approach

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2017-01-01

    Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.

  18. CFD and FEM modeling of PPOOLEX experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-01-15

    Large-break LOCA experiment performed with the PPOOLEX experimental facility is analysed with CFD calculations. Simulation of the first 100 seconds of the experiment is performed by using the Euler-Euler two-phase model of FLUENT 6.3. In wall condensation, the condensing water forms a film layer on the wall surface, which is modelled by mass transfer from the gas phase to the liquid water phase in the near-wall grid cell. The direct-contact condensation in the wetwell is modelled with simple correlations. The wall condensation and direct-contact condensation models are implemented with user-defined functions in FLUENT. Fluid-Structure Interaction (FSI) calculations of the PPOOLEX experiments and of a realistic BWR containment are also presented. Two-way coupled FSI calculations of the experiments have been numerically unstable with explicit coupling. A linear perturbation method is therefore used for preventing the numerical instability. The method is first validated against numerical data and against the PPOOLEX experiments. Preliminary FSI calculations are then performed for a realistic BWR containment by modeling a sector of the containment and one blowdown pipe. For the BWR containment, one- and two-way coupled calculations as well as calculations with LPM are carried out. (Author)

  19. A 3D CFD Modelling Study of a Diesel Oil Evaporation Device Operating in the Stabilized Cool Flame Regime

    Directory of Open Access Journals (Sweden)

    Dionysios I. Kolaitis

    2010-12-01

    Full Text Available Diesel fuel is used in a variety of technological applications due to its high energy density and ease of distribution and storage. Motivated by the need to use novel fuel utilization techniques, such as porous burners and fuel cells, which have to be fed with a gaseous fuel, a Diesel fuel evaporation device, operating in the “Stabilized Cool Flame” (SCF regime, is numerically investigated. In this device, a thermo-chemically stable low-temperature oxidative environment is developed, which produces a well-mixed, heated air-fuel vapour gaseous mixture that can be subsequently fed either to premixed combustion systems or fuel reformer devices for fuel cell applications. In this work, the ANSYS CFX 11.0 CFD code is used to simulate the three-dimensional, turbulent, two-phase, multi-component and reacting flow-field, developed in a SCF evaporation device. An innovative modelling approach, based on the fitting parameter concept, has been developed in order to simulate cool flame reactions. The model, based on physico-chemical reasoning coupled with information from available experimental data, is implemented in the CFD code and is validated by comparing numerical predictions to experimental data obtained from an atmospheric pressure, recirculating flow SCF device. Numerical predictions are compared with temperature measurements, achieving satisfactory levels of agreement. The developed numerical tool can effectively support the theoretical study of the physical and chemical phenomena emerging in practical devices of liquid fuel spray evaporation in a SCF environment, as well as the design optimisation process of such innovative devices.

  20. CFD modeling of turbulent mixing through vertical pressure tube type boiling water reactor fuel rod bundles with spacer-grids

    Science.gov (United States)

    Verma, Shashi Kant; Sinha, S. L.; Chandraker, D. K.

    2018-05-01

    Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to describe the development of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. In this investigation, post benchmark evaluation of the inter-subchannel mixing was initiated to test the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to numerically predict the important turbulence parameters downstream of a ring type spacer grid in a rod-bundle. A three-dimensional Computational Fluid Dynamics (CFD) tool (STAR-CCM+) was used to model the single phase flow through a 30° segment or 1/12th of the cross segment of a 54-rod bundle with a ring shaped spacer grid. Polyhedrons were used to discretize the computational domain, along with prismatic cells near the walls, with an overall mesh count of 5.2 M cell volumes. The Reynolds Stress Models (RSM) was tested because of RSM accounts for the turbulence anisotropy, to assess their capability in predicting the velocities as well as mass fraction of potassium nitrate measured in the experiment. In this way, the line probes are located in the different position of subchannels which could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighbouring sub-channels. The predicted dimensionless mixing scalar along the length, however, was in good agreement with the measurements downstream of spacers.

  1. Development of multi-component diesel surrogate fuel models – Part II:Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Pang, Kar Mun; Ng, Hoon Kiat

    2016-01-01

    ), cyclohexane(CHX) and toluene developed in Part I are applied in this work. They are combined to produce two different versions of multi-component diesel surrogate models in the form of MCDS1 (HXN + HMN)and MCDS2 (HXN + HMN + toluene + CHX). The integrated mechanisms are then comprehensively validated in zero......-dimensional chemical kinetic simulations under a wide range of shock tube and jetstirred reactor conditions. Subsequently, the fidelity of the surrogate models is further evaluated in two-dimensional CFD spray combustion simulations. Simulation results show that ignition delay (ID) prediction corresponds well...... an increase of maximum local soot volume fraction by a factor of2.1 when the ambient temperature increases from 900 K to 1000 K, while the prediction by MCDS1 is lower at 1.6. This trend qualitatively agrees with the experimental observation. This work demonstrates that MCDS1 serves as a potential surrogate...

  2. CFD simulation on condensation inside a Hybrid SIT

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Ryu, Sung Uk; Kim, Seok; Euh, Dong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of Hybrid Safety Injection Tank system (Hybrid SIT) was proposed by Korea Atomic Energy Research Institute (KAERI) aiming at Advanced Power Reactor Plus. The main advantage of the system is the ready injection of coolant into the reactor coolant system at high pressure. In this paper, a CFD simulation is conducted as a preliminary study. In Hybrid SITs, condensation inside the tank affects its pressure rise and injection time. In an attempt to explore the condensation in detail, we manufactured a dedicated experimental facility for visualization of condensation-induced thermal mixing and conducted a preliminary CFD simulation. Its condensation models were validated first and then computational domain was constructed. The water region was modeled as a solid for stable calculation. The CFD results gave less condensation and excessive pressurization because of lack of steam penetration into the water. In the future, the water region will be modeled as liquid using a VOF model.

  3. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  4. A turbulence model for large interfaces in high Reynolds two-phase CFD

    International Nuclear Information System (INIS)

    Coste, P.; Laviéville, J.

    2015-01-01

    Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer

  5. Flask fluid flow simulation using CFD

    International Nuclear Information System (INIS)

    Swindlehurst, W.E.; Livesey, E.; Worthington, D.

    1989-01-01

    BNFL and its subsidiary Company, PNTL, design and operate waterfilled LWR fuel transport flasks for the international transport of irradiated fuel. Although some 150 flasks are currently in operation, new flask designs are being developed. As part of the supporting R and D program, Computational Fluid Dynamics (CFD) codes are being investigated as a means of predicting fluid movements and temperatures within the complex internal geometry of flasks. The ability to simulate fluid flow is particularly important when convection heat transfer is significant. Although obviously relevant to water filled flasks, the technique is applicable to dry flask thermal assessments (where experience shows that convection heat transfer is often underestimated). Computational Fluid Dynamics has emerged in recent years as an important technique in engineering design and safety assessments. Cheaper computing and the development of general CFD codes allows complex engineering structures to be analyzed. However, because of this complexity, it is essential that the application and associated modeling assumptions are critically reviewed. To assess the ability of a CFD code to model flask internals, the code PHOENICS has been used to model the fluid movements in a BNFL Excellox-type flask and the results compared with test data

  6. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    International Nuclear Information System (INIS)

    Gopala, Vinay Ramohalli; Lycklama a Nijeholt, Jan-Aiso; Bakker, Paul; Haverkate, Benno

    2011-01-01

    Research highlights: → This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. → The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. → The model is verified against an analytical solution and validated against the flowability tests for concrete. → Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. → The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid

  7. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. CFD modelling of polydispersed bubbly two-phase flow around an obstacle

    International Nuclear Information System (INIS)

    Krepper, Eckhard; Beyer, Matthias; Frank, Thomas; Lucas, Dirk; Prasser, Horst-Michael

    2009-01-01

    A population balance model (the Inhomogeneous MUSIG model) has recently been developed in close cooperation between ANSYS-CFX and Forschungszentrum Dresden-Rossendorf and implemented into the CFD-Code CFX [Krepper, E., Lucas, D., Prasser, H.-M, 2005. On the modelling of bubbly flow in vertical pipes. Nucl. Eng. Des. 235, 597-611; Frank, T., Zwart, P.J., Shi, J.-M., Krepper, E., Rohde, U., 2005. Inhomogeneous MUSIG Model-a population balance approach for polydispersed bubbly flows, International Conference 'Nuclear Energy for New Europe 2005', Bled, Slovenia, September 5-8, 2005; Krepper, E., Beyer, M., Frank, Th., Lucas, D., Prasser, H.-M., 2007. Application of a population balance approach for polydispersed bubbly flows, 6th Int. Conf. on Multiphase Flow Leipzig 2007, (paper 378)]. The current paper presents a brief description of the model principles. The capabilities of this model are discussed via the example of a bubbly flow around a half-moon shaped obstacle arranged in a 200 mm pipe. In applying the Inhomogeneous MUSIG approach, a deeper understanding of the flow structures is possible and the model allows effects of polydispersion to be investigated. For the complex flow around the obstacle, the general structure of the flow was well reproduced in the simulations. This test case demonstrates the complicated interplay between size dependent bubble migration and the effects of bubble coalescence and breakup on real flows. The closure models that characterize the bubble forces responsible for the simulation of bubble migration show agreement with the experimental observations. However, clear deviations occur for bubble coalescence and fragmentation. The models applied here, which describe bubble fragmentation and coalescence could be proved as a weakness in the validity of numerous CFD analyses of vertical upward two-phase pipe flow. Further work on this topic is under way.

  9. A simplified treatment of the boundary conditions of the k- ε model in coarse-mesh CFD-type codes

    International Nuclear Information System (INIS)

    Analytis, G.Th.; Andreani, M.

    1999-01-01

    In coarse-mesh, CFD-type codes such as the containment analysis code GOTHIC, one of the options that can be used for modelling of turbulence is the k - ε model. However, in contrast to most other CFD codes which are designed to perform detailed CFD calculations with a large number of spatial meshes, codes such as GOTHIC are primarily aimed at simplified calculation of transients in large spaces (e.g., reactor containments), and generally use coarse meshes. The solution of the two parabolic equations for the k - ε model requires the definition of boundary conditions at physical boundaries and this, in turn, requires very small spatial meshes near these boundaries. Hence, while in codes like CFX this is done in a rigorous and consistent manner, codes like GOTHIC adopt an indirect and heuristic approach, due to the fact that the spatial meshes are usually large. This can have adverse consequences during the calculation of a transient and in this work, we shall give some examples of this and outline a method by which this problem can be avoided. (author)

  10. URBAN EFFICIENT ENERGY EVALUATION IN HIGH RESOLUTION URBAN AREAS BY USING ADAPTED WRF-UCM AND MICROSYS CFD MODELS

    Science.gov (United States)

    San Jose, R.; Perez, J. L.; Gonzalez, R. M.

    2009-12-01

    Urban metabolism modeling has advanced substantially during the last years due to the increased detail in mesoscale urban parameterization in meteorological mesoscale models and CFD numerical tools. Recently the implementation of the “urban canopy model” (UCM) into the WRF mesoscale meteorological model has produced a substantial advance on the understanding of the urban atmospheric heat flux exchanges in the urban canopy. The need to optimize the use of heat energy in urban environment has produced a substantial increase in the detailed investigation of the urban heat flux exchanges. In this contribution we will show the performance of using a tool called MICROSYS (MICRO scale CFD modelling SYStem) which is an adaptation of the classical urban canopy model but on a high resolution environment by using a classical CFD approach. The energy balance in the urban system can be determined in a micrometeorologicl sense by considering the energy flows in and out of a control volume. For such a control volume reaching from ground to a certain height above buildings, the energy balance equation includes the net radiation, the anthropogenic heat flux, the turbulent sensible heat flux, the turbulent latent heat flux, the net storage change within the control volume, the net advected flux and other sources and sinks. We have applied the MICROSYS model to an area of 5 km x 5 km with 200 m spatial resolution by using the WRF-UCM (adapted and the MICROSYS CFD model. The anthropogenic heat flux has been estimated by using the Flanner M.G. (2009) database and detailed GIS information (50 m resolution) of Madrid city. The Storage energy has been estimated by calculating the energy balance according to the UCM procedure and implementing it into the MICROSYS tool. Results show that MICROSYS can be used as an energy efficient tool to estimate the energy balance of different urban areas and buildings.

  11. Dicty_cDB: CFD492 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CF (Link to library) CFD492 (Link to dictyBase) - - - Contig-U10808-1 CFD492P (Link to Original site) CFD492...F 583 CFD492Z 527 CFD492P 1110 - - Show CFD492 Library CF (Link to library) Clone ID CFD492...e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/CF/CFD4-D/CFD492Q.Seq.d/ Representative seq. ID CFD492...P (Link to Original site) Representative DNA sequence >CFD492 (CFD492Q) /CSM/CF/CFD4-D/CFD492...omology vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value CFD492 (CFD492

  12. Examples of using CFD for wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.O.L.; Soerensen, J.N. [Technical Univ. of Denmark, Dept. of Energy Engineering (Denmark); Soerensen, N.N. [Risoe National Lab., Test Station for Wind Turbines (Denmark)

    1997-12-31

    Overall it is concluded that in order to improve the results from CFD (Computational Fluid Dynamics) for wind turbine aerodynamics characterized by: high angles of attack; thick airfoils; 3-D effects; instationary effects. Extreme care must be put on turbulence and transition models, and fine grids are necessary especially at the suction peak. If these precautions are taken CFD can be used as a tool for obtaining lift and drag coefficients for the BEM (Blade Element Momentum) model. (au)

  13. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference of a Subsonic Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2003-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store on a subsonic fighter aircraft. Generally most modern fighter aircrafts are designed with an external store installation. In this study, a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the aerodynamic interference of the external store on the flow around the aircraft wing. A computational fluid dynamic (CFD simulation was also carried out on the same configuration. Both the CFD and the wind tunnel testing were carried out at a Reynolds number 1.86×105 to ensure that the aerodynamic characteristic can certify that the aircraft will not be face any difficulties in its stability and controllability. Both the experiments and the simulation were carried out at the same Reynolds number in order to verify each other. In the CFD simulation, a commercial CFD code was used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with a test section sized 0.45 m×0.45 m. Measured and computed results for the two-dimensional pressure distribution were satisfactorily comparable. There is only a 19% deviation between pressure distribution measured in wind tunnel testing and the result predicted by the CFD. The result shows that the effect of the external storage is only significant on the lower surface of the wing and almost negligible on the upper surface of the wing. Aerodynamic interference due to the external store was most evident on the lower surface of the wing and almost negligible on the upper surface at a low angle of attack. In addition, the area of influence on the wing surface by the store interference increased as the airspeed increased.

  14. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  15. Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System

    Science.gov (United States)

    The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...

  16. A Study on the Role of Reaction Modeling in Multi-phase CFD-based Simulations of Chemical Looping Combustion; Impact du modele de reaction sur les simulations CFD de la combustion en boucle chimique

    Energy Technology Data Exchange (ETDEWEB)

    Kruggel-Emden, H.; Stepanek, F. [Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ, London (United Kingdom); Kruggel-Emden, H.; Munjiza, A. [Department of Engineering, Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom)

    2011-03-15

    Chemical Looping Combustion is an energy efficient combustion technology for the inherent separation of carbon dioxide for both gaseous and solid fuels. For scale up and further development of this process multi-phase CFD-based simulations have a strong potential which rely on kinetic models for the solid/gaseous reactions. Reaction models are usually simple in structure in order to keep the computational cost low. They are commonly derived from thermogravimetric experiments. With only few CFD-based simulations performed on chemical looping combustion, there is a lack in understanding of the role and of the sensitivity of the applied chemical reaction model on the outcome of a simulation. The aim of this investigation is therefore the study of three different carrier materials CaSO{sub 4}, Mn{sub 3}O{sub 4} and NiO with the gaseous fuels H{sub 2} and CH{sub 4} in a batch type reaction vessel. Four reaction models namely the linear shrinking core, the spherical shrinking core, the Avrami-Erofeev and a recently proposed multi parameter model are applied and compared on a case by case basis. (authors)

  17. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results

    Directory of Open Access Journals (Sweden)

    Yogang Singh

    2017-06-01

    Full Text Available Underwater gliders are buoyancy propelled vehicle which make use of buoyancy for vertical movement and wings to propel the glider in forward direction. Autonomous underwater gliders are a patented technology and are manufactured and marketed by corporations. In this study, we validate the experimental lift and drag characteristics of a glider from the literature using Computational fluid dynamics (CFD approach. This approach is then used for the assessment of the steady state characteristics of a laboratory glider designed at Indian Institute of Technology (IIT Madras. Flow behaviour and lift and drag force distribution at different angles of attack are studied for Reynolds numbers varying from 105 to 106 for NACA0012 wing configurations. The state variables of the glider are the velocity, gliding angle and angle of attack which are simulated by making use of the hydrodynamic drag and lift coefficients obtained from CFD. The effect of the variable buoyancy is examined in terms of the gliding angle, velocity and angle of attack. Laboratory model of glider is developed from the final design asserted by CFD. This model is used for determination of static and dynamic properties of an underwater glider which were validated against an equivalent CAD model and simulation results obtained from equations of motion of glider in vertical plane respectively. In the literature, only empirical approach has been adopted to estimate the hydrodynamic coefficients of the AUG that are required for its trajectory simulation. In this work, a CFD approach has been proposed to estimate the hydrodynamic coefficients and validated with experimental data. A two-mass variable buoyancy engine has been designed and implemented. The equations of motion for this two-mass engine have been obtained by modifying the single mass version of the equations described in the literature. The objectives of the present study are to understand the glider dynamics adopting a CFD approach

  18. Theoretical Study of Palladium Membrane Reactor Performance During Propane Dehydrogenation Using CFD Method

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemzadeh

    2017-04-01

    Full Text Available This study presents a 2D-axisymmetric computational fluid dynamic (CFD model to investigate the performance Pd membrane reactor (MR during propane dehydrogenation process for hydrogen production. The proposed CFD model provided the local information of temperature and component concentration for the driving force analysis. After investigation of mesh independency of CFD model, the validation of CFD model results was carried out by other modeling data and a good agreement between CFD model results and theoretical data was achieved. Indeed, in the present model, a tubular reactor with length of 150 mm was considered, in which the Pt-Sn-K/Al2O3 as catalyst were filled in reaction zone. Hence, the effects of the important operating parameter (reaction temperature on the performances of membrane reactor (MR were studied in terms of propane conversion and hydrogen yield. The CFD results showed that the suggested MR system during propane dehydrogenation reaction presents higher performance with respect to once obtained in the conventional reactor (CR. In particular, by applying Pd membrane, was found that propane conversion can be increased from 41% to 49%. Moreover, the highest value of propane conversion (X = 91% was reached in case of Pd-Ag MR. It was also established that the feed flow rate of the MR is to be the one of the most important factors defining efficiency of the propane dehydrogenation process.

  19. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    International Nuclear Information System (INIS)

    Pradeep, Chaminda; Yan, Ru; Mylvaganam, Saba; Vestøl, Sondre; Melaaen, Morten C

    2014-01-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

  20. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  1. Eleventh annual conference of the CFD Society of Canada (CFD 2003). Proceedings

    International Nuclear Information System (INIS)

    Ollivier-Gooch, C.

    2003-01-01

    The Eleventh Annual Conference of the CFD Society of Canada, CFD 2003, was held in Vancouver, British Columbia from May 28-30, 2003. The conference was attended by 125 delegates from twelve countries. In addition to traditional CFD applications in vehicle aerodynamics and turbulent flow, the conference also showcased a number of less traditional application areas, including fuel cells, biofluids, multi-phase flows, and flows in porous media

  2. Testing the role of bedforms as controls on the morphodynamics of sandy braided rivers with CFD

    Science.gov (United States)

    Unsworth, C. A.; Nicholas, A. P.; Ashworth, P. J.; Best, J.; Lane, S. N.; Parsons, D. R.; Sambrook Smith, G.; Simpson, C.; Strick, R. J. P.

    2017-12-01

    Sand-bed rivers are characterised by multiple scales of topography (e.g., channels, bars and bedforms). Small scale topographic features (e.g., dunes) exert a significant influence on coherent flow structures and sediment transport processes, over distances that scale with channel depth. However, the extent to which such dune-scale effects control larger, channel and bar-scale morphology and morphodynamics remains unknown. Moreover, such bedform effects are typically neglected in two-dimensional (depth-averaged) morphodynamic models that are used to simulate river evolution. To evaluate the significance of these issues, we report results from a combined numerical modelling and field monitoring study, undertaken in the South Saskatchewan River, Canada. Numerical simulations were carried out, using the OpenFOAM CFD code, to quantify the mean three-dimensional flow structure within a 90 x 350 m section of channel. To isolate the role of bedforms as a control on flow and sediment transport, two simulations were undertaken. The first used a high-resolution ( 3 cm) bedform-resolving DEM. The second used a filtered DEM in which dunes were removed and only large scale topographic features (e.g., bars, scour pools etc) were resolved. The results of these simulations are compared here, in order to quantify the degree to which topographic steering by bedforms influences flow and sediment transport directions at bar and channel scales. Analysis of the CFD simulation results within a 2D morphodynamic modelling framework demonstrates that dunes exert a significant influence on sediment transport, and hence morphodynamics, and highlights important shortcomings in existing 2D model parameterisations of topographic steering.

  3. Design of 500kW grate fired test facility using CFD

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.

    2005-01-01

    A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design...

  4. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  5. The 3D CFD study of gliding swimmer on passive hydrodynamics drag

    Directory of Open Access Journals (Sweden)

    Vishveshwar Rajendra Mantha

    2014-04-01

    Full Text Available The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

  6. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  7. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    Science.gov (United States)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  8. Development of a 1 D hybrid HTC model using CFD simulations for the analysis of direct contact condensation as the driving force for water hammers

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Christian Sabin; Macian-Juan, Rafael [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Nukleartechnik

    2013-03-15

    A Hybrid Heat Transfer Coefficient module has been developed based on two Surface Renewal Theory models using CFD simulations. The validation of the model has been done on a meso-scale computational grid for CFD simulations and on a macro-scale computational grid for System Code analysis. The CFD simulation was performed for a stratified co-current two phase flow between saturated steam and sub-cooled water while the System Code analysis was performed for a Condensation Induced Water Hammer experiment. (orig.)

  9. Multi-dimensional modeling of CO poisoning effects on proton exchange membrane fuel cells (PEMFCs)

    International Nuclear Information System (INIS)

    Ju, Hyun Chul; Lee, Kwan Soo; Um, Suk Kee

    2008-01-01

    Carbon monoxide (CO), which is preferentially absorbed on the platinum catalyst layer of a proton exchange membrane fuel cell (PEMFC), is extremely detrimental to cell performance. Essentially, the carbon monoxide absorption diminishes the cell's performance by blocking and reducing the number of catalyst sites available for the hydrogen oxidation reaction. In order to obtain a full understanding of CO poisoning characteristics and remediate CO-poisoned PEMFCs, a CO poisoning numerical model is developed and incorporated into a fully three-dimensional electrochemical and transport coupled PEMFC model. By performing CFD numerical simulations, this paper clearly demonstrates the CO poisoning mechanisms and characteristics of PEMFCs. The predictive capability for CO poisoning effects enables us to find major contributors to CO tolerance in a PEMFC and thus successfully integrate CO-resistant fuel cell systems

  10. OpenFOAM: Open source CFD in research and industry

    Science.gov (United States)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  11. Mixed-Dimensionality VLSI-Type Configurable Tools for Virtual Prototyping of Biomicrofluidic Devices and Integrated Systems

    Science.gov (United States)

    Makhijani, Vinod B.; Przekwas, Andrzej J.

    2002-10-01

    This report presents results of a DARPA/MTO Composite CAD Project aimed to develop a comprehensive microsystem CAD environment, CFD-ACE+ Multiphysics, for bio and microfluidic devices and complete microsystems. The project began in July 1998, and was a three-year team effort between CFD Research Corporation, California Institute of Technology (CalTech), University of California, Berkeley (UCB), and Tanner Research, with Mr. Don Verlee from Abbott Labs participating as a consultant on the project. The overall objective of this project was to develop, validate and demonstrate several applications of a user-configurable VLSI-type mixed-dimensionality software tool for design of biomicrofluidics devices and integrated systems. The developed tool would provide high fidelity 3-D multiphysics modeling capability, l-D fluidic circuits modeling, and SPICE interface for system level simulations, and mixed-dimensionality design. It would combine tools for layouts and process fabrication, geometric modeling, and automated grid generation, and interfaces to EDA tools (e.g. Cadence) and MCAD tools (e.g. ProE).

  12. Improvement of AEP Predictions Using Diurnal CFD Modelling with Site-Specific Stability Weightings Provided from Mesoscale Simulation

    International Nuclear Information System (INIS)

    Hristov, Y; Oxley, G; Žagar, M

    2014-01-01

    The Bolund measurement campaign, performed by Danish Technical University (DTU) Wind Energy Department (also known as RISØ), provided significant insight into wind flow modeling over complex terrain. In the blind comparison study several modelling solutions were submitted with the vast majority being steady-state Computational Fluid Dynamics (CFD) approaches with two equation k-ε turbulence closure. This approach yielded the most accurate results, and was identified as the state-of-the-art tool for wind turbine generator (WTG) micro-siting. Based on the findings from Bolund, further comparison between CFD and field measurement data has been deemed essential in order to improve simulation accuracy for turbine load and long-term Annual Energy Production (AEP) estimations. Vestas Wind Systems A/S is a major WTG original equipment manufacturer (OEM) with an installed base of over 60GW in over 70 countries accounting for 19% of the global installed base. The Vestas Performance and Diagnostic Centre (VPDC) provides online live data to more than 47GW of these turbines allowing a comprehensive comparison between modelled and real-world energy production data. In previous studies, multiple sites have been simulated with a steady neutral CFD formulation for the atmospheric surface layer (ASL), and wind resource (RSF) files have been generated as a base for long-term AEP predictions showing significant improvement over predictions performed with the industry standard linear WAsP tool. In this study, further improvements to the wind resource file generation with CFD are examined using an unsteady diurnal cycle approach with a full atmospheric boundary layer (ABL) formulation, with the unique stratifications throughout the cycle weighted according to mesoscale simulated sectorwise stability frequencies

  13. Development and validation of a CFD-based steam reformer model

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Dahlqvist, Mathis; Saksager, Anders

    2006-01-01

    Steam reforming of liquid biofuels (ethanol, bio-diesel etc.) represents a sustainable source of hydrogen for micro Combined Heat and Power (CHP) production as well as Auxiliary Power Units (APUs). In relation to the design of the steam reforming reactor several parameter are important including...... for expensive prototypes. This paper presents an advanced Computational Fluid Dynamics based model of a steam reformer. The model was implemented in the commercial CFD code Fluent through the User Defined Functions interface. The model accounts for the flue gas flow as well as the reformate flow including...... a detailed mechanism for the reforming reactions. Heat exchange between the flue gas and reformate streams through the reformer reactor walls was also included as a conjugate heat transfer process.  From a review of published models for the catalytic steam reforming of ethanol and preliminary predictions...

  14. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor

    International Nuclear Information System (INIS)

    Wang, Zimeng; Liu, Jing; Dai, Yuancan; Dong, Weiyang; Zhang, Shicheng; Chen, Jianmin

    2012-01-01

    Highlights: ► A CFD model is developed for a UV-LED based photocatalytic deodorization reactor. ► Radiation field model and Langmuir–Hinshelwood kinetics are integrated in the model. ► The model can predict the pollutant concentration profile and the reactor performance. ► LED distance is predicted to be a critical parameter in photocatalytic reactor design. - Abstract: This paper presents a model study of a UV light-emitting-diode (UV-LED) based photocatalytic odor abatement process. It integrated computational fluid dynamics (CFD) modeling of the gas flow in the reactor with LED-array radiation field calculation and Langmuir–Hinshelwood reaction kinetics. It was applied to simulate the photocatalytic degradation of dimethyl sulfide (DMS) in a UV-LED reactor based on experimentally determined chemical kinetic parameters. A non-linear power law relating reaction rate to irradiation intensity was adopted. The model could predict the steady state DMS concentration profiles by calculating the advection, diffusion and Langmuir–Hinshelwood reaction kinetics. By affecting the radiation intensity and uniformity, the position of the LED array relative to the catalyst appeared to be a critical parameter determining DMS removal efficiency. Too small distances might yield low quantum efficiency and consequently poor abatement performance. This study provided an example of LED-based photocatalytic process modeling and gave insights into the optimization of light source design for photocatalytic applications.

  15. Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    Science.gov (United States)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2005-01-01

    New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in

  16. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Skifton, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stoots, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Eung Soo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Conder, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart of any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.

  17. CFD SIMULATION OF THE HEAT TRANSFER PROCESS IN A CHEVRON PLATE HEAT EXCHANGER USING THE SST TURBULENCE MODEL

    Directory of Open Access Journals (Sweden)

    Jan Skočilas

    2015-08-01

    Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.

  18. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...

  19. CFD computations of the second round of MEXICO rotor measurements

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Zahle, Frederik; Boorsma, K.

    2016-01-01

    A comparison, between selected wind tunnel data from the NEW MEXICO measuring campaign and CFD computations are shown. The present work, documents that a state of the art CFD code, including a laminar turbulent transition model, can provide good agreement with experimental data. Good agreement...

  20. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aly, A. [North Carolina State Univ., Raleigh, NC (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States); Ivanov, Kostadin [Pennsylvania State Univ., University Park, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Lacroix, E. [Pennsylvania State Univ., University Park, PA (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Walter, D. [Univ. of Michigan, Ann Arbor, MI (United States); Williamson, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-10-29

    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed by data from hydrogen experiments and PIE data.

  1. CFD and system analysis code investigations of the multidimensional flow mixing phenomena in the reactor pressure vessel

    International Nuclear Information System (INIS)

    Ceuca, S.C.; Herb, J.; Schoeffel, P.J.; Hollands, T.; Austregesilo, H.; Hristov, H.V.

    2017-01-01

    The realistic numerical prediction of transient fluid-dynamic scenarios including the complex, three-dimensional flow mixing phenomena occurring in the reactor pressure vessel (RPV) both in normal or abnormal operation are an important issue in today's reactor safety assessment studies. Both Computational Fluid Dynamics (CFD) tools as well as fluid-dynamic system analysis codes, each with its advantages and drawbacks, are commonly used to model such transients. Simulation results obtained with the open-source CFD tool-box OpenFOAM and the German thermal-hydraulic system code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients), the later developed by Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) for the analysis of the whole spectrum of operational transients, design-basis accidents and beyond design basis accidents anticipated for nuclear energy facilities, are compared against experimental data from the ROssendorf Coolant Mixing (ROCOM) test facility. In the case of the OpenFOAM CFD simulations the influence of various turbulence models and numerical schemes has been assessed while in the case of the system analysis code ATHLET a multidimensional nodalization recommended for real power plant applications has been employed. The simulation results show a good agreement with the experimental data, indicating that both OpenFOAM and ATHLET can capture the key flow features of the mixing processes in the Reactor Pressure Vessel (RPV). (author)

  2. OpenFOAM: Open source CFD in research and industry

    Directory of Open Access Journals (Sweden)

    Hrvoje Jasak

    2009-12-01

    Full Text Available The current focus of development in industrial Computational Fluid Dynamics (CFD is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries of practical engineering use in “non-traditional” areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form of partial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  3. A CFD study of Screw Compressor Motor Cooling Analysis

    Science.gov (United States)

    Branch, S.

    2017-08-01

    Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.

  4. CFD analysis for spacer grid mixing vane design

    International Nuclear Information System (INIS)

    Park, Sung-Kew; Kim, Kang-Hoon; Park, Eung-Jun; Jung, Yil-Sup; Suh, Jung-Min; Jeong, Ji-Hun

    2008-01-01

    A computational fluid dynamics (CFD) analysis for a rod bundle with the larger scale model (6x6 array model) has been performed to develop the base shape of mixing vane in accordance with the hydraulic and thermal performance. Explanatory parameters are span pressure drop and span average heat transfer coefficient. The concern related to hot spot is also considered as a subsidiary criterion. Of the several candidates, the final candidate was determined by using the CFD analysis code, STAR-CD. And then, the optimization for it was performed using the response surface method (RSM) that the proper tolerance was considered under the two acceptance criteria such as lower span pressure drop while maintaining the span average heat transfer coefficient with respect to the current shape. The optimized mixing vane shape was verified by the CFD analysis including the effects of allowable tolerance. (author)

  5. The difference between traditional experiments and CFD validation benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton L., E-mail: barton.smith@usu.edu

    2017-02-15

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  6. The difference between traditional experiments and CFD validation benchmark experiments

    International Nuclear Information System (INIS)

    Smith, Barton L.

    2017-01-01

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  7. The extensive international use of commercial computational fluid dynamics (CFD) codes

    International Nuclear Information System (INIS)

    Hartmut Wider

    2005-01-01

    What are the main reasons for the extensive international success of commercial CFD codes? This is due to their ability to calculate the fine structures of the investigated processes due to their versatility, their numerical stability and that they can guarantee the proper solution in most cases. This was made possible by the constantly increasing computer power at an ever more affordable prize. Furthermore it is much more efficient to have researchers use a CFD code rather than to develop a similar code system due to the time consuming nature of this activity and the high probability of hidden coding errors. The centralized development and upgrading makes these reliable CFD codes possible and affordable. However, the CFD companies' developments are naturally concentrated on the most profitable areas, and thus, if one works in a 'non-priority' field one cannot use them. Moreover, the prize of renting CFD codes, applications to complex systems such as whole nuclear reactors and the need to teach students gives the development of self-made codes still plenty of room. But CFD codes can model detailed aspects of large systems and subroutines generated by users can be added. Since there are only a few heavily used CFD codes such as FLUENT, STAR-CD, ANSYS CFX, these are used in many countries. Also international training courses are given and the news bulletins of these codes help to spread the news on further developments. A larger number of international codes would increase the competition but would at the same time make it harder to select the most appropriate CFD code for a given problem. Examples will be presented of uses of CFD codes as more detailed system codes for the decay heat removal from reactors, the application to aerosol physics and the application to heavy metal fluids using different turbulence models. (author)

  8. Electrical capacitance tomography (ECT) and gamma radiation meter for comparison with and validation and tuning of computational fluid dynamics (CFD) modeling of multiphase flow

    Science.gov (United States)

    Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba

    2014-07-01

    The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries

  9. CFD model of an aerating hydrofoil

    International Nuclear Information System (INIS)

    Scott, D; Sabourin, M; Beaulieu, S; Papillon, B; Ellis, C

    2014-01-01

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used

  10. Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles

    Science.gov (United States)

    Moffitt, Nicholas J.

    This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate

  11. Tenth annual conference of the CFD Society of Canada (CFD 2002). Proceedings

    International Nuclear Information System (INIS)

    Barron, R.M.

    2002-01-01

    The Tenth Annual Conference of the CFD Society of Canada, CFD 2002, was held in Windsor, Ontario from June 9-11, 2002. Contributions and participation were from many countries including Canada, United States, United Kingdom, France, Belgium, Germany, Iran, India, Pakistan, China, Japan, Singapore, Kuwait and Russia. The proceedings are a collection of the papers received covering the spectrum of computational fluid dynamics (CFD) from fundamental advances to improved algorithms to traditional and innovative applications. There is also a special session on automotive applications

  12. CFD Simulations of Soap Separation; CFD-simulering av avsaapning

    Energy Technology Data Exchange (ETDEWEB)

    Birkestad, Per

    2010-07-01

    A part of Vaermeforsk, the 'Skogsindustriella programmet', has identified the possibility to increase the production of tall oil, and hence the competitiveness, in Swedish pulp mills through an increase in the efficiency of the soap separation tanks. Currently, soap is extracted from the black liquor through a sedimentation process where the less dense soap rise to the top of the liquor tank where it is removed through a over-flow ducting at the top of the tank. Vaermeforsk seeks a better understanding of the detailed flow and the separation mechanisms within the liquor tanks and has initiated a study of computational fluid dynamics (CFD) of the tanks. The aim of the study has been threefold; To develop CFD-methods for use in the study of soap separation processes, to investigate the detailed flow within two Swedish liquor tanks and one North American soap skimmer and lastly to develop new design rules for use in future designs of soap separation tanks. The project shows that CFD is a useful tool for the investigation of black liquor and soap flow within a soap separation tank. The CFD simulations of three existing liquor tanks show that the previously used design-rules based on surface loads are inadequate as the actual flow velocities within the tanks are two orders of magnitude larger than those previously used as reference (the surface load). The CFD simulations also show that the black liquor flow, and hence the soap separation, is very sensitive to density variations on the black liquor inlet and temperature variations as small as 1 deg C can significantly affect the liquor flow.

  13. Possible User-Dependent CFD Predictions of Transitional Flow in Building Ventilation

    DEFF Research Database (Denmark)

    Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue

    2016-01-01

    A modified backward-facing step flow with a large expansion ratio of five (5) was modelled by 19 teams without benchmark solutions or experimental data for validation in an ISHVAC-COBEE July 2015 Tianjin Workshop, entitled as “to predict low turbulent flow”. Different computational fluid dynamics...... (CFD) codes/software, turbulence models, boundary conditions, numerical schemes and convergent criteria were adopted based on the own CFD experience of each participating team. The largest coefficient of variation is larger than 50% and the largest relative maximum difference of penetration length......, is shown to be still a very challenging task. This calls for a solid approach of validation and uncertainty assessment in CFD “experiments”. The users are recommended to follow an existing guideline of uncertainty assessment of CFD predictions to minimize the errors and uncertainties in the future....

  14. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Science.gov (United States)

    Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  15. CFD and thermal analysis applications at General Motors

    International Nuclear Information System (INIS)

    Johnson, J.P.

    2002-01-01

    The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)

  16. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  17. CFD flowfield simulation of Delta Launch Vehicles in a power-on configuration

    Science.gov (United States)

    Pavish, D. L.; Gielda, T. P.; Soni, B. K.; Deese, J. E.; Agarwal, R. K.

    1993-01-01

    This paper summarizes recent work at McDonnell Douglas Aerospace (MDA) to develop and validate computational fluid dynamic (CFD) simulations of under expanded rocket plume external flowfields for multibody expendable launch vehicles (ELVs). Multi engine reacting gas flowfield predictions of ELV base pressures are needed to define vehicle base drag and base heating rates for sizing external nozzle and base region insulation thicknesses. Previous ELV design programs used expensive multibody power-on wind tunnel tests that employed chamber/nozzle injected high pressure cold or hot-air. Base heating and pressure measurements were belatedly made during the first flights of past ELV's to correct estimates from semi-empirical engineering models or scale model tests. Presently, CFD methods for use in ELV design are being jointly developed at the Space Transportation Division (MDA-STD) and New Aircraft Missiles Division (MDA-NAMD). An explicit three dimensional, zonal, finite-volume, full Navier-Stokes (FNS) solver with finite rate hydrocarbon/air and aluminum combustion kinetics was developed to accurately compute ELV power-on flowfields. Mississippi State University's GENIE++ general purpose interactive grid generation code was chosen to create zonal, finite volume viscous grids. Axisymmetric, time dependent, turbulent CFD simulations of a Delta DSV-2A vehicle with a MB-3 liquid main engine burning RJ-1/LOX were first completed. Hydrocarbon chemical kinetics and a k-epsilon turbulence model were employed and predictions were validated with flight measurements of base pressure and temperature. Zonal internal/external grids were created for a Delta DSV-2C vehicle with a MB-3 and three Castor-1 solid motors burning and a Delta-2 with an RS-27 main engine (LOX/RP-1) and 9 GEM's attached/6 burning. Cold air, time dependent FNS calculations were performed for DSV-2C during 1992. Single phase simulations that employ finite rate hydrocarbon and aluminum (solid fuel) combustion

  18. CFD model of air movement in ventilated facade: comparison between natural and forced air flow

    Energy Technology Data Exchange (ETDEWEB)

    Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politècnica de Valencia (Spain)

    2013-07-01

    This study describes computational fluid dynamics (CFD) modeling of ventilated facade. Ventilated facades are normal facade but it has an extra channel between the concrete wall and the (double skin) facade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin facades systems. These studies conclude that the presence of the air gap in the ventilated facade affects the temperature in the building skin, causing a cooling effect, at least in low-rise buildings. One of the most important factors affecting the thermal effects of ventilated facades is the wind velocity. In this contribution, a CFD analysis applied on two different velocity assumptions for air movement in the air gap of a ventilated facade is presented. A comparison is proposed considering natural wind induced velocity with forced fan induced velocity in the gap. Finally, comparing temperatures in the building skin, the differences between both solutions are described determining that, related to the considered boundary conditions, there is a maximum height in which the thermal effect of the induced flow is significantly observed.

  19. Actuator forces in CFD: RANS and LES modeling in OpenFOAM

    International Nuclear Information System (INIS)

    Schito, P; Zasso, A

    2014-01-01

    Wind turbine wakes are a very challenging topic for scientific computations, but modern CFD frameworks and latest HPC centers allow setting up numerical computations on the wake induced by the wind turbine. The main issues is that the correct modeling of the wake is related to the correct modeling of the interaction between the blade and the incoming flow. The aim of the proposed work is to estimate the aerodynamic forces acting on the blades in order to correctly generate the rotor wake applying equivalent aerodynamic force source on the flow. The definition of a blade forces is done developing a model able to correctly estimate this aerodynamic forces as a function of the local flow seen by the blade during its revolution

  20. Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design

    Science.gov (United States)

    Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.

    1993-01-01

    Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.

  1. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  2. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    International Nuclear Information System (INIS)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C.

    2011-01-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  3. A CFD model for the IEA-R1 reactor neat exchanger inlet nozzle flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei A.; Angelo, Gabriel; Gainer, Gerson; Angelo, Edvaldo; Umbehaun, Pedro E.; Torres, Walmir M.; Sabundjian, Gaiane; Macedo, Luiz A.; Belchior Junior, Antonio; Conti, Thadeu N.; Watanabe, Bruno C.; Sakai, Caio C., E-mail: delvonei@ipen.b, E-mail: gfainer@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A previous preliminary model of the IEA-R1 heat exchanger inlet nozzle flow was developed and published in the International Nuclear Atlantic Conference-INAC-2009. A new model was created based on the preliminary one. It was improved concerning the actual heat exchanger tube bundle geometry. This became a very special issue. Difficulties with the size of the numerical mesh came out pointing to our computational system limits. New CFD calculations with this improved model were performed using ANSYS-CFX. In this paper, we present this model and discuss the results. (author)

  4. Combining a 2-D multiphase CFD model with a Response Surface Methodology to optimize the gasification of Portuguese biomasses

    International Nuclear Information System (INIS)

    Silva, Valter; Rouboa, Abel

    2015-01-01

    Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H 2 generation, the H 2 /CO ratio, the CH 4 /H 2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition

  5. ADDRESSING HUMAN EXPOSURE TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

    Science.gov (United States)

    Computational Fluid Dynamics (CFD) simulations provide a number of unique opportunities for expanding and improving capabilities for modeling exposures to environmental pollutants. The US Environmental Protection Agency's National Exposure Research Laboratory (NERL) has been c...

  6. CFD Analysis of Scale Effects on Conventional and Tip-Modified Propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2017-01-01

    Full-scale propeller performance is traditionally predictedby scaling model-scale test results, but the traditionalscaling methods do not take into account hydrodynamicdistinctions of tip-modified propellers in full-scaleperformance. An open-water CFD analysis is made onscale effects of tip...... the transition model shows that laminar and transitionalflow modeling is crucial in model-scale computations.Grid-independent solutions at model and full scale areachieved by grid verification studies. The CFD analysis of scale effects shows that theefficiency gain of the tip-modified propeller is increasedat...

  7. Moisture content evaluation of biomass using CFD approach

    Directory of Open Access Journals (Sweden)

    Thomas Bartzanas

    2012-10-01

    Full Text Available In grass conservation systems, drying in the field is an essential process upon which the quality and quantity of the material to be conserved is dependent on. In this study a Computational Fluid Dynamics (CFD model, previously validated, was used to assess qualitatively and quantitatively the field drying process of cut grass under different weather conditions and structural specifications of the grass. The use of the CFD model depicts the climate heterogeneity in the grass area with a special focus on moisture distribution, influence of the weather conditions, in order to create the possibility of applying the model as a decision support tool for an enhanced treatment of the grass after cutting.

  8. Development of CFD model for augmented core tripropellant rocket engine

    Science.gov (United States)

    Jones, Kenneth M.

    1994-10-01

    The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.

  9. A gas radiation property model applicable to general combustion CFD and its demonstration in oxy-fuel combustion simulation

    DEFF Research Database (Denmark)

    Yin, Chungen; Singh, Shashank; Romero, Sergio Sanchez

    2017-01-01

    As a good compromise between computational efficiency and accuracy, the weighted-sum-of-gray-gases model (WSGGM) is often used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gas radiative properties. However, the WSGGMs still have practical limitations (e...

  10. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model.

    Science.gov (United States)

    Voelker, C; Alsaad, H

    2018-05-01

    This study aims to develop an approach to couple a computational fluid dynamics (CFD) solver to the University of California, Berkeley (UCB) thermal comfort model to accurately evaluate thermal comfort. The coupling was made using an iterative JavaScript to automatically transfer data for each individual segment of the human body back and forth between the CFD solver and the UCB model until reaching convergence defined by a stopping criterion. The location from which data are transferred to the UCB model was determined using a new approach based on the temperature difference between subsequent points on the temperature profile curve in the vicinity of the body surface. This approach was used because the microclimate surrounding the human body differs in thickness depending on the body segment and the surrounding environment. To accurately simulate the thermal environment, the numerical model was validated beforehand using experimental data collected in a climate chamber equipped with a thermal manikin. Furthermore, an example of the practical implementations of this coupling is reported in this paper through radiant floor cooling simulation cases, in which overall and local thermal sensation and comfort were investigated using the coupled UCB model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. CFD modeling of combustion processes using KIVA3V Code with partially stirred reactor model for turbulence-combustion interactions

    International Nuclear Information System (INIS)

    Jarnicki, R.; Sobiesiak, A.

    2002-01-01

    In order to solve the averaged conservation equations for turbulent reacting flow one is faced with a task of specifying the averaged chemical reaction rate. This is due to turbulence influence on the mean reaction rates that appear in the species concentration Reynolds-averaged equation. In order to investigate the Partially Stirred Reactor (PaSR) combustion model capabilities, a CFD modeling using KIVA3V Code with the PaSR model of two very different combustion processes, was performed. Experimental results were compared with modeling

  12. CFD Simulations of Contaminant Transport between two Breathing Persons

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    Experiments have shown that exhalation from one person is able to penetrate the breathing zone of another person at a distance. Computational Fluid Dynamics (CFD) is used to investigate the dependency of the personal exposure on some physical parameters, namely: Pulmonary ventilation rate......, convective heat output, exhalation temperature, and crosssectional exhalation area. Full-scale experimental results are used to calibrate/validate the CFD model....

  13. The Need to introduce CFD Methodology in Analyze Hydrogen Distribution for Postulated Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hanbee; Park, Sukyung; Kim, Kyuntae [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jongkwang [Hanbat National University, Daejeon (Korea, Republic of); Kwon, Sejin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    The regulatory requirements for combustible gas control systems in Korea is that mean hydrogen mole fraction shall be lower than 10 %, containment integrity shall be kept from combustion of hydrogen, and detonation and global fast turbulent combustion shall be avoided. KHNP provided some analysis which show hydrogen mole fraction is less than 10 % and detonation and global fast turbulence combustion are avoided for postulated severe accident events which covered over 90 % of CDF (core damage frequency) for each NPP. The results were from MAAP code that can simulate from the initiation of the accidents to hydrogen distribution inside containments. It is a Lumped-Parameter codes in which the transport of energy and mass is possible in only predetermined one direction. Therefore, there has been a long-history dispute whether one-dimensional LP codes could simulate the transportation of hydrogen accurately. For example, KHNP made a MAAP model to simulate hydrogen distribution in KSNP (Korean Standard Nuclear Plants), and the containment free volume is divided into 27 nodes in which it is assumed all the properties like each molecule mole fraction and temperate are uniform in each node. In addition, the maximum volume size of them is over 22,000 m{sup 3}, and it is not quite confident that the mole fraction of each molecules and temperature are uniform in the big size space. As for the stress test results of the Wolsong 1, civil experts asked KHNP to conduct hydrogen distribution analysis using Computational Fluid Dynamics (CFD) methodology, and if needed to install hydrogen ignitors in Wolsong 1 NPP. As a reviewer for KHNP's post actions to the Stress Test, the author also asked KHNP to do CFD analysis of hydrogen distribution, and KHNP finally agreed to analyze it using CFD by 2017. KHNP submitted a Shin-hanul 1 and 2 Operation License application in 2015, and the author also asked it to do CFD analysis to simulate hydrogen distribution for Shin-hanul 1 and 2

  14. CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoonhan; Lee, Jekyoung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa Univ. of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2013-05-15

    The research team is conducting a S-CO{sub 2} pump experiment to obtain fundamental data for the advanced pump design and measure the overall performance of the pump near the critical point. The S-CO{sub 2} pump testing loop configuration is similar to SNL and JAEA testing loop while the operating conditions and focus of experiment are different from other test facilities. This paper presents the methodology of a 3-dimensional flow analysis for the S-CO{sub 2} pump by using the commercial CFD code. In Figure 2, the results at the 1.5kg/s mass flow rate seems to be close agreement between the CFD efficiency and S-CO{sub 2} test results. In the low mass flow rate of 1.0kg/s, CFD predicted 17∼25% higher efficiency than the test result. In the real test facility, the steel structure of pump is not an adiabatic wall and also the mechanical losses such as suction, blade loading and leakage exist in the pump. The reason why CFD analysis showed higher pump efficiency at the low mass flow is the above mentioned losses were excluded from the model. However, as the mass flow rate increases these have less effect on the efficiency. If the heat transfer through the structure and pump losses are applied in the analysis, other losses can be estimated. From the S-CO{sub 2} pump experiment, more data will be obtained and compared to the CFD analyses under the methodology presented in this paper. After the fluid behavior in the pump are well understood, these analysis results will be used for optimizing impeller for advanced S-CO{sub 2} compressor design in the future. However, it is very encouraging that even at very small mass flow rate the efficiency of S-CO{sub 2} pump near the critical point operation is very high compared to the manufacturer water test. The reason behind such phenomenon will be more carefully studied in the future.

  15. 3D CFD Quantification of the Performance of a Multi-Megawatt Wind Turbine

    Science.gov (United States)

    Laursen, J.; Enevoldsen, P.; Hjort, S.

    2007-07-01

    This paper presents the results of 3D CFD rotor computations of a Siemens SWT-2.3-93 variable speed wind turbine with 45m blades. In the paper CFD is applied to a rotor at stationary wind conditions without wind shear, using the commercial multi-purpose CFD-solvers ANSYS CFX 10.0 and 11.0. When comparing modelled mechanical effects with findings from other models and measurements, good agreement is obtained. Similarly the computed force distributions compare very well, whereas some discrepancies are found when comparing with an in-house BEM model. By applying the reduced axial velocity method the local angle of attack has been derived from the CFD solutions, and from this knowledge and the computed force distributions, local airfoil profile coefficients have been computed and compared to BEM airfoil coefficients. Finally, the transition model of Langtry and Menter is tested on the rotor, and the results are compared with the results from the fully turbulent setup.

  16. 3D CFD Quantification of the Performance of a Multi-Megawatt Wind Turbine

    International Nuclear Information System (INIS)

    Laursen, J; Enevoldsen, P; Hjort, S

    2007-01-01

    This paper presents the results of 3D CFD rotor computations of a Siemens SWT-2.3-93 variable speed wind turbine with 45m blades. In the paper CFD is applied to a rotor at stationary wind conditions without wind shear, using the commercial multi-purpose CFD-solvers ANSYS CFX 10.0 and 11.0. When comparing modelled mechanical effects with findings from other models and measurements, good agreement is obtained. Similarly the computed force distributions compare very well, whereas some discrepancies are found when comparing with an in-house BEM model. By applying the reduced axial velocity method the local angle of attack has been derived from the CFD solutions, and from this knowledge and the computed force distributions, local airfoil profile coefficients have been computed and compared to BEM airfoil coefficients. Finally, the transition model of Langtry and Menter is tested on the rotor, and the results are compared with the results from the fully turbulent setup

  17. A CFD analysis of blade row interactions within a high-speed axial compressor

    Science.gov (United States)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  18. A coupled CFD and wake model simulation of helicopter rotor in hover

    Science.gov (United States)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  19. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.

    Science.gov (United States)

    Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé

    2012-10-01

    In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.

  20. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  1. Development of a Reduced-Order Three-Dimensional Flow Model for Thermal Mixing and Stratification Simulation during Reactor Transients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui

    2017-09-03

    Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developed at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.

  2. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus

    2013-01-01

    Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...... simulations for a propeller with a hull model have showed acceptable agreement with a model test result in the thrust and torque (Larsson et al. 2010). In the current work, a measured hull wake is applied to the simulation instead of modelling a hull, because the hull geometry is mostly not available...... for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers...

  3. CFD simulations for engine intake manifolds

    International Nuclear Information System (INIS)

    Witry, A.; Zhao, A.

    2002-01-01

    This paper attempts to explain a procedure for using Computational Fluid Dynamics (CFD) for product development of engine intake manifolds. The paper uses the development of an intake manifold as an example of such a process. Using the commercial FLUENT solver, its standard wall functions and k-ε model, a four runner intake manifold with an average mesh size of 300, 000 hexa elements created in ICEM-CFD with a maximum skewness of 0.85 produces rapid results for quick product turn-around times. The setup used allows for compressibility and viscous heating effects to be modeled whilst ignoring wall heat transfer due to the high speeds of the air/foil mixture and low residence times. Eight consecutive models were modeled here whilst carrying out continuous enhancements. For every iteration, four different so called 'static' runs with only one runner open at any one time using a steady state assumption were calculated further assuming that only one intake valve is open at any one time. Even flow distributions between the runner are deemed to be 'dynamically' obtained once the pressure drops between the manifold's inlet and runner outlets are equalized. Furthermore, different modifications were attempted to ensure that the fluid's particle tracks show very little particle return tendencies along with excellent nonuniformity indexes at the runners outlets. Confirmation of these results were obtained from test data showing CFD pressure drop predictions to be within 4% error with 67% of any runner's pressure losses being caused in the runner itself due to the small cross sectional area(s). (author)

  4. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  5. A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores

    International Nuclear Information System (INIS)

    Chen, Gary; Anghaie, Samim

    1999-01-01

    A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)

  6. Considering value of information when using CFD in design

    Energy Technology Data Exchange (ETDEWEB)

    Misra, John Satprim [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    This thesis presents an approach to find lower resolution CFD models that can accurately lead a designer to a correct decision at a lower computational cost. High-fidelity CFD models often contain too much information and come at a higher computational cost, limiting the designs a designer can test and how much optimization can be performed on the design. Lower model resolution is commonly used to reduce computational time. However there are no clear guidelines on how much model accuracy is required. Instead experience and intuition are used to select an appropriate lower resolution model. This thesis presents an alternative to this ad hoc method by considering the added value of the addition information provided by increasing accurate and more computationally expensive models.

  7. Development of CFD software for the simulation of thermal hydraulics in advanced nuclear reactors. Final report

    International Nuclear Information System (INIS)

    Bachar, Abdelaziz; Haslinger, Wolfgang; Scheuerer, Georg; Theodoridis, Georgios

    2015-01-01

    The objectives of the project were: Improvement of the simulation accuracy for nuclear reactor thermo-hydraulics by coupling system codes with three-dimensional CFD software; Extension of CFD software to predict thermo-hydraulics in advanced reactor concepts; Validation of the CFD software by simulation different UPTF TRAM-C test cases and development of best practice guidelines. The CFD module was based on the ANSYS CFD software and the system code ATHLET of GRS. All three objectives were met: The coupled ATHLET-ANSYS CFD software is in use at GRS and TU Muenchen. Besides the test cases described in the report, it has been used for other applications, for instance the TALL-3D experiment of KTH Stockholm. The CFD software was extended with material properties for liquid metals, and validated using existing data. Several new concepts were tested when applying the CFD software to the UPTF test cases: Simulations with Conjugate Heat Transfer (CHT) were performed for the first time. This led to better agreement between predictions and data and reduced uncertainties when applying temperature boundary conditions. The meshes for the CHT simulation were also used for a coupled fluid-structure-thermal analysis which was another novelty. The results of the multi-physics analysis showed plausible results for the mechanical and thermal stresses. The workflow developed as part of the current project can be directly used for industrial nuclear reactor simulations. Finally, simulations for two-phase flows with and without interfacial mass transfer were performed. These showed good agreement with data. However, a persisting problem for the simulation of multi-phase flows are the long simulation times which make use for industrial applications difficult.

  8. Effect of accessory ostia on maxillary sinus ventilation: a computational fluid dynamics (CFD) study.

    Science.gov (United States)

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Gordon, Bruce R; Wang, De Yun

    2012-08-15

    We evaluated, by CFD simulation, effects of accessory ostium (AO) on maxillary sinus ventilation. A three-dimensional nasal model was constructed from an adult CT scan with two left maxillary AOs (sinus I) and one right AO (sinus II), then compared to an identical control model with all AOs sealed (sinuses III and IV). Transient simulations of quiet inspiration and expiration at 15 L/min, and nasal blow at 48 L/min, were calculated for both models using low-Reynolds-number turbulent analysis. At low flows, ventilation rates in sinuses with AOs (I ≈ 0.46 L/min, II ≈ 0.54 L/min), were both more than a magnitude higher than sinuses without AOs (II I ≈ 0.019 L/min, IV ≈ 0.020 L/min). Absence of AO almost completely prevented sinus ventilation. Increased ventilation of sinuses with AOs is complex. Under high flow conditions mimicking nose blowing, in sinuses II, III, and IV, the sinus flow rate increased. In contrast, the airflow direction through sinus I reversed between inspiration and expiration, while it remained almost constant throughout the respiration cycle in sinus II. CFD simulation demonstrated that AOs markedly increase maxillary sinus airflow rates and alter sinus air circulation patterns. Whether these airflow changes impact maxillary sinus physiology or pathophysiology is unknown. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. CFD analysis for offshore systems: validation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniel Fonseca de Carvalho e; Pagot, Paulo Roberto [Centro de Pesquisas da PETROBRAS (CENPES), Rio de janeiro, RJ (Brazil). Gerencia de Tecnologia de Engenharia Oceanica], E-mails: danielfc@petrobras.com.br, pagot@petrobras.com.br

    2011-04-15

    The Ocean Engineering group in the PETROBRAS Research Center develops and applies multidisciplinary simulation tools for several engineering problems mainly related to offshore systems. Recently, there have been many different cases where Computational Fluid Dynamics (CFD) has been successfully employed. This study presents a collection of cases where CFD simulations were validated against experimental data and directly used to facilitate solutions for practical problems. Case 01 calculated the maritime current loads on an FPSO and investigated the influence of appendices such as bilge keels and rudders on the near flow field. Similarly, Case 02 extends this procedure to the identification of wind loads. Case 03 calculates the hydrodynamic forces on a torpedo anchor during its installation. The simulation results coupled with a simplified dynamic model facilitates the directional stability of different torpedo models to be evaluated. A whole FPSO topside geometry is modeled in Case 04, which investigates the flow pattern near the FPSO Helideck. The simulation velocity and turbulence profiles were compared to wind tunnel measurements. These summarized cases show how CFD tools can be advantageously applied to solve many practical problems. All these simulations were performed using ANSYS CFX. (author)

  10. CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm

    Directory of Open Access Journals (Sweden)

    Nak Joon Choi

    2014-11-01

    Full Text Available This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD. The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.

  11. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  12. A simplified model of Passive Containment Cooling System in a CFD code

    International Nuclear Information System (INIS)

    Jiang, X.W.; Studer, E.; Kudriakov, S.

    2013-01-01

    Highlights: ► We have built a condensing model using Navier–Stokes equations in CAST3M code. ► We have done a benchmark work on the condensing model using the COPAIN tests data. ► We have built an evaporating model according to Aiello's model in CAST3M code. ► We used Kang and Park's film evaporation tests data to validate the model. ► An integrated model was derived by coupling two individual models with a steel plate. -- Abstract: In this paper, we built up a simplified model of the Passive Containment Cooling System in a CFD code, including a steel plate, a condensing channel and an evaporating channel. In the inner side of the plate, the condensing channel is supposed to be the source of heat transfer into the steel plate. Along the outer side, an evaporating falling film is used to extract the heat from the steel plate. Upward flow of air is also considered along the evaporating film. In the condensing channel, a flow solver based on an asymptotic model of the Navier–Stokes equations at the low Mach number regime and two turbulence models (Buleev's model and Chien's k–ε model) are considered. The condensing channel model was used to model the COPAIN test, the computed heat flux and condensation rate were compared with the experimental data. In the evaporating channel, a simplified model developed by Aiello and Ciofalo (2009) was used, which considered the heat and mass balance between the falling film and the ascending air flow. The model was validated for two cases: a dry wall case and a completely wet wall case. In the former case, the results were compared with 2D predictions obtained by using the CFX-4 CFD code. In the latter case, the results were compared with experimental data obtained by Kang and Park. The comparison showed a satisfactory agreement on heat transfer rates, despite some overprediction depending on the air velocity. At the end, the condensing channel model and the evaporating channel model were coupled by the steel plate

  13. PENGARUH VARIASI BENTUK BURITAN KAPAL TERHADAP HAMBATAN TOTAL MENGGUNAKAN METODE CFD

    OpenAIRE

    Deddy Chrismianto; Berlian Arswendo Adietya

    2014-01-01

    Penelitian ini dilakukan dengan cara menganalisa dan menghitung hambatan total kapal menggunakan model 3D pada berbagai variasi bentuk buritan menggunakan CFD (Computational Fluid Dynamic).Berdasarkan hasil analisa dan perhitungan didapatkan hambatan total yang terkecil menggunakan CFD untuk berbagai variasi bentuk buritan kapal, dengan studi kasus pada type KCS (Kriso Container Ship). Hambatan total terkecil pada kondisi kecepatan fn 0.22 adalah 646.57 KN yaitu pada model 1, kemudian hambata...

  14. Pengaruh Variasi Bentuk Buritan Kapal Terhadap Hambatan Total Menggunakan Metode Cfd

    OpenAIRE

    Chrismianto, Deddy; Adietya, Berlian Arswendo

    2014-01-01

    Penelitian ini dilakukan dengan cara menganalisa dan menghitung hambatan total kapal menggunakan model 3D pada berbagai variasi bentuk buritan menggunakan CFD (Computational Fluid Dynamic).Berdasarkan hasil analisa dan perhitungan didapatkan hambatan total yang terkecil menggunakan CFD untuk berbagai variasi bentuk buritan kapal, dengan studi kasus pada type KCS (Kriso Container Ship). Hambatan total terkecil pada kondisi kecepatan fn 0.22 adalah 646.57 KN yaitu pada model 1, kemudian hambata...

  15. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  16. Issues in the validation of CFD modelling of semi-solid metal forming

    International Nuclear Information System (INIS)

    Ward, P.J.; Atkinson, H.V.; Kirkwood, D.H.; Liu, T.Y.; Chin, S.B.

    2000-01-01

    Modelling of die filling during semi-solid metal processing (thixoforming) places particular demands on the CFD package being used. Not only are the velocities of the metal slurry in the die very high, the viscosity is too. Furthermore, the viscosity changes with shear rate (i.e. with changes in cross sectional area of the region the slurry travels through) and with time, as the injected material is thixotropic. The CFD software therefore requires good free surface tracking, accurate implicit solutions of the flow equations (as the CPU times for explicit solutions at high viscosities are impractical) and a model that adequately describes the slurry thixotropy. Finally, reliable, experimentally determined viscosity data are required. This paper describes the experiments on tin-lead and aluminium alloy slurries using compressive tests and rotating cylinder viscometry, followed by modelling using FLOW-3D. This package is known for its ability to track free surfaces accurately. Compressive tests allow rapid changes in shear rate to be imparted to the slurry, without wall slip, while the simple geometry of the viscometer makes it possible to compare analytical and numerical solutions. It is shown that the implicit viscous solver in its original form can reproduce the general trends found in the compressive and viscometry tests. However, sharp changes in shear rate lead to overestimation of pressure gradients in the slurry, making it difficult to separate these effects from those due to thixotropic breakdown. In order to achieve this separation, it is necessary to implement a more accurate implicit solver, which is currently under development. (author)

  17. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    Science.gov (United States)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  18. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD.

    Science.gov (United States)

    Soria, José; Gauthier, Daniel; Flamant, Gilles; Rodriguez, Rosa; Mazza, Germán

    2015-09-01

    Municipal Solid Waste Incineration (MSWI) in fluidized bed is a very interesting technology mainly due to high combustion efficiency, great flexibility for treating several types of waste fuels and reduction in pollutants emitted with the flue gas. However, there is a great concern with respect to the fate of heavy metals (HM) contained in MSW and their environmental impact. In this study, a coupled two-scale CFD model was developed for MSWI in a bubbling fluidized bed. It presents an original scheme that combines a single particle model and a global fluidized bed model in order to represent the HM vaporization during MSW combustion. Two of the most representative HM (Cd and Pb) with bed temperatures ranging between 923 and 1073K have been considered. This new approach uses ANSYS FLUENT 14.0 as the modelling platform for the simulations along with a complete set of self-developed user-defined functions (UDFs). The simulation results are compared to the experimental data obtained previously by the research group in a lab-scale fluid bed incinerator. The comparison indicates that the proposed CFD model predicts well the evolution of the HM release for the bed temperatures analyzed. It shows that both bed temperature and bed dynamics have influence on the HM vaporization rate. It can be concluded that CFD is a rigorous tool that provides valuable information about HM vaporization and that the original two-scale simulation scheme adopted allows to better represent the actual particle behavior in a fluid bed incinerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. CFD analysis and experimental comparison of novel roof tile shapes

    Directory of Open Access Journals (Sweden)

    Michele Bottarelli

    2017-06-01

    Using an experimental rig, the air pressure difference and the volumetric flow rate between tiles have been measured for an existing Portoghese tile design over a range of pressures. Then, in order to understand the air flows under different conditions, a three-dimensional computational fluid dynamics (CFD model has been implemented to recreate the full geometry of the rig. The model was calibrated against the aforementioned experimental results, and run with boundary conditions simulating different wind directions. Even in the low velocities typical of average local wind patterns, the fluid dynamic problem remains complex because of the geometry of the gaps between the tiles. However, it has been possible to assess the coefficient of local head loss and then apply it in an analytical relationship between pressure drop and flow rate, taking into account the open area. The results have shown how the wind direction affects the air permeability and, therefore, important insights have been gathered for the design of novel tiles.

  20. Immersive visualization of dynamic CFD model results

    International Nuclear Information System (INIS)

    Comparato, J.R.; Ringel, K.L.; Heath, D.J.

    2004-01-01

    With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)

  1. Isothermal CFD-model of Peirce-Smith converting process

    Energy Technology Data Exchange (ETDEWEB)

    Vaarno, J.; Pitkaelae, J.; Ahokainen, T.; Jokilaakso, A.

    1997-12-31

    The Peirce-Smith converter has been a dominating copper and nickel matte refining process since 1905. Due to extremely difficult process conditions, very little measured data has been available for studying interactions of the gas injection and molten sulphide matte. Detailed information on fluid dynamics of the gas injection is needed in solving gas injection related problems like refractory wear, accretion growth and tuyere blockage as well as optimising the efficiency of momentum and mass transfer created by the gas jets. A commercial CFD-code PHOENICS was used to solve isothermal flow field of gas and liquid in a Peirce-Smith converter. An Euler-Euler based algorithm was chosen for modelling fluid dynamics and evaluating controlling forces of a submerged gas injection generally. Predictions were made with a {kappa}-{epsilon} turbulence model in the body fitted co-ordinate system. The model has been verified with a 1/4 scale water model, and a parametric study with the mathematical model of submerged gas injection was made for the PS-process and the ladle injection processes. Limits of the modelling technique used were recognised, but calculated results indicates that the present model predicts the general flow field with reasonable accuracy and it can be used as input for more detailed mathematical models of gas plumes. Predicted bubble distribution, pattern of the flow field and magnitude of flow velocities were also used to evaluate scaling factors of physical models and general flow conditions of an industrial PS-converter. (orig.) 28 refs.

  2. Modelling of Combustion and Pollutant Formation in a Large, Two-Stroke Marine Diesel Engine using Integrated CFD-Skeletal Chemical Mechanism

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Karvounis, Nikolas; Schramm, Jesper

    In this reported work, simulation studies of in-cylinder diesel combustion and pollutant formation processesin a two-stroke, low-speed uniflow-scavenged marine diesel engine are presented. Numerical computation is performed by integrating chemical kinetics into CFD computations. In order...... to minimize the computational runtime, an in-house skeletal n-heptane chemical mechanism is coupled with the CFD model. This surrogate fuel model comprises 89 reactions with 32 species essential to diesel ignition/combustion processes as well as the formation of soot precursors and nitrogen monoxide (NO......). Prior to the marine engine simulation,coupling of the newly developed surrogate fuel model and a revised multi-step soot model [1] is validated on the basis of optical diagnostics measurement obtained at varying ambient pressure levels [2]. It is demonstrated that the variation of ignition delay times...

  3. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    International Nuclear Information System (INIS)

    Puragliesi, R.; Zhou, L.; Zerkak, O.; Pautz, A.

    2016-01-01

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  4. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland); Zhou, L. [Science and Technology on Reactor System Design Technology Laboratory, NPIC, Chengdu (China); Zerkak, O.; Pautz, A. [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland)

    2016-04-15

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  5. Development of a system code with CFD capability for analyzing turbulent mixed convection in gas-cooled reactors

    International Nuclear Information System (INIS)

    Kim, Hyeon Il

    2010-02-01

    In order to demonstrate the accuracy of predictions in a turbulent mixed convection regime in which both inertia and buoyancy force compete with each other, we found out that assessments done using a single-dimensional system code with a recently updated heat transfer package have shown that this approach cannot give a reasonable prediction of the wall temperature in a case involving strong heating, where the regime falls into turbulent mixed convection regime. It has been known that the main reason of this deficiency comes from the degraded heat transfer in turbulent mixed convection regime, which is below that of convective heat transfer during turbulent forced convection. We investigated two mechanisms that cause this deterioration in convective heat transfer influenced by buoyancy: (1) modification of turbulence, also known as the direct (structural) effect, through the buoyancy-induced production of turbulent kinetic energy: and (2) an indirect (external) effect that occurs through modification of the mean flow. We investigated the Launder-Sharma model of turbulence whether it can appropriately represent the mechanisms causing the degraded heat transfer in Computational Fluid Dynamics (CFD). We found out that this model can capture low Re effects such that a non-equilibrium turbulent boundary layer in turbulent mixed convection regime can be resolved. The model was verified and validated extensively initially with the commercial CFD code, Fluent with a user application package known as the User Defined Function (UDF). The results from this implementation were compared to a set of data that included (1) an experimental data commonly accepted as a standardized problem to verify a turbulent flow, (2) the results from a Direct Numerical Simulation (DNS) in a turbulent forced and mixed convection regime, (3) empirical correlations regarding the friction coefficient and the non-dimensional heat transfer coefficient, the Nusselt number for a turbulent forced

  6. Simulation of a MW rotor equipped with vortex generators using CFD and an actuator shape model

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Sørensen, Niels N.

    2015-01-01

    This article presents a comparison of CFD simulations of the DTU 10 MW reference wind turbine with and without vortex generators installed on the inboard part of the blades. The vortex generators are modelled by introducing body forces determined using a modified version of the so-called BAY mode...

  7. Methodology for experimental validation of a CFD model for predicting noise generation in centrifugal compressors

    International Nuclear Information System (INIS)

    Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J.

    2014-01-01

    Highlights: • A DES of a turbocharger compressor working at peak pressure point is performed. • In-duct pressure signals are measured in a steady flow rig with 3-sensor arrays. • Pressure spectra comparison is performed as a validation for the numerical model. • A suitable comparison methodology is developed, relying on pressure decomposition. • Whoosh noise at outlet duct is detected in experimental and numerical spectra. - Abstract: Centrifugal compressors working in the surge side of the map generate a broadband noise in the range of 1–3 kHz, named as whoosh noise. This noise is perceived at strongly downsized engines operating at particular conditions (full load, tip-in and tip-out maneuvers). A 3-dimensional CFD model of a centrifugal compressor is built to analyze fluid phenomena related to whoosh noise. A detached eddy simulation is performed with the compressor operating at the peak pressure point of 160 krpm. A steady flow rig mounted on an anechoic chamber is used to obtain experimental measurements as a means of validation for the numerical model. In-duct pressure signals are obtained in addition to standard averaged global variables. The numerical simulation provides global variables showing excellent agreement with experimental measurements. Pressure spectra comparison is performed to assess noise prediction capability of numerical model. The influence of the type and position of the virtual pressure probes is evaluated. Pressure decomposition is required by the simulations to obtain meaningful spectra. Different techniques for obtaining pressure components are analyzed. At the simulated conditions, a broadband noise in 1–3 kHz frequency band is detected in the experimental measurements. This whoosh noise is also captured by the numerical model

  8. Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, G. A.; Reuter, M. A.; Matusewicz, R. W.

    2012-10-01

    A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length ( l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work ( {{l_{{P}} }/{d_{o }} = 10.7( {N^' }_{Fr} } )^{0.46} ( {ρ_{{g}} /ρl } )^{0.35} } ) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which

  9. CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment

    Energy Technology Data Exchange (ETDEWEB)

    Heitsch, Matthias, E-mail: Matthias.Heitsch@ec.europa.e [Institute for Energy, Joint Research Centre, PO Box 2, 1755 ZG Petten (Netherlands); Huhtanen, Risto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Techy, Zsolt [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Fry, Chris [Serco, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH (United Kingdom); Kostka, Pal [VEIKI Institute for Electric Power Research Co., PO Box 80, H-1251 Budapest (Hungary); Niemi, Jarto [VTT Technical Research Centre of Finland, PO Box 1000, FI-02044 VTT (Finland); Schramm, Berthold [Gesellschaft fuer Anlagen- und Reaktorsicherheit, GRS mbH, Schwertnergasse 1, 50667 Koeln (Germany)

    2010-02-15

    In the PHARE project 'Hydrogen Management for the VVER440/213' (HU2002/000-632-04-01), CFD (Computational Fluid Dynamics) calculations using GASFLOW, FLUENT and CFX were performed for the Paks NPP (Nuclear Power Plant), modelling a defined severe accident scenario which involves the release of hydrogen. The purpose of this work is to demonstrate that CFD codes can be used to model gas movement inside a containment during a severe accident. With growing experience in performing such analyses, the results encourage the use of CFD in assessing the risk of losing containment integrity as a result of hydrogen deflagrations. As an effective mitigation measure in such a situation, the implementation of catalytic recombiners is planned in the Paks NPP. In order to support these plans both unmitigated and recombiner-mitigated simulations were performed. These are described and selected results are compared. The codes CFX and FLUENT needed refinement to their models of wall and bulk steam condensation in order to be able to fully simulate the severe accident under consideration. Several CFD codes were used in parallel to model the same accident scenario in order to reduce uncertainties in the results. Previously it was considered impractical to use CFD codes to simulate a full containment subject to a severe accident extending over many hours. This was because of the expected prohibitive computing times and missing physical capabilities of the codes. This work demonstrates that, because of developments in the capabilities of CFD codes and improvements in computer power, these calculations have now become feasible.

  10. An overview of CFD modelling of small-scale fixed-bed biomass pellet boilers with preliminary results from a simplified approach

    International Nuclear Information System (INIS)

    Chaney, Joel; Liu Hao; Li Jinxing

    2012-01-01

    Highlights: ► Overview of the overall approach of modelling fixed-bed biomass boilers in CFD. ► Bed sub-models of moisture evaporation, devolatisation and char combustion reviewed. ► A method of embedding a combustion model in discrete fuel zones within the CFD is suggested. ► Includes sample of preliminary results for a 50 kW pellet boiler. ► Clear physical trends predicted. - Abstract: The increasing global energy demand and mounting pressures for CO 2 mitigation call for increased efficient utilization of biomass, particularly for heating domestic and commercial buildings. The authors of the present paper are investigating the optimization of the combustion performance and NO x emissions of a 50 kW biomass pellet boiler fabricated by a UK manufacturer. The boiler has a number of adjustable parameters including the ratio of air flow split between the primary and secondary supplies, the orientation, height, direction and number of the secondary inlets. The optimization of these parameters provides opportunities to improve both the combustion efficiency and NO x emissions. When used carefully in conjunction with experiments, Computational Fluid Dynamics (CFD) modelling is a useful tool for rapidly and at minimum cost examining the combustion performance and emissions from a boiler with multiple variable parameters. However, modelling combustion and emissions of a small-scale biomass pellet boiler is not trivial and appropriate fixed-bed models that can be coupled with the CFD code are required. This paper reviews previous approaches specifically relevant to simulating fixed-bed biomass boilers. In the first part it considers approaches to modelling the heterogeneous solid phase and coupling this with the gas phase. The essential components of the sub-models are then overviewed. Importantly, for the optimization process a model is required that has a good balance between accuracy in predicting physical trends, with low computational run time. Finally, a

  11. PIV, radiotracers and CFD for flow anomalies

    International Nuclear Information System (INIS)

    Houdek, P.; Reitspiesova, I.; Zitny, R.; Thyn, J.

    2004-01-01

    Experimental investigation of flow asymmetries in continuous direct ohmic heater by using PIV and stimulus response technique (radioisotope 99 Tc) is presented together with CFD modelling by using finite element code FEMINA. (author)

  12. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; CFD RSRM Full-Scale Analyses

    Science.gov (United States)

    2001-01-01

    This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.

  13. Experimental PIV and CFD studies of UV-peroxide advanced oxidation reactors for water treatment

    International Nuclear Information System (INIS)

    Sozzi, A.; Taghipour, F.

    2004-01-01

    An experimental and numerical study of the flow characteristics in an annular UV reactor, as used for drinking water disinfection or Advanced Oxidation Processes, was carried out using Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). The influence of different turbulence models and mesh structures on the CFD results was investigated. By qualitative and quantitative comparison of CFD and PIV experimental data, it was shown that the Realizable k-e- turbulence model is best suited for simulating the hydrodynamics of this geometry. (author)

  14. CFD thermal-hydraulic analysis of a CANDU fuel channel

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational fluid dynamics) methodology approach. Limited computer power available at Bucharest University POLITEHNICA forced the authors to analyse only segments of fuel channel namely the significant ones: fuel bundle junctions with adjacent segments, fuel bundle spacer planes with adjacent segments, regular segments of fuel bundles. The computer code used is FLUENT. Fuel bundles contained in pressure tubes forms a complex flow domain. The flow is characterized by high turbulence and in some parts of fuel channel also by multi-phase flow. The flow in the fuel channel has been simulated by solving the equations for conservation of mass and momentum. For turbulence modelling the standard k-e model is employed although other turbulence models can be used as well. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Since we consider only some relatively short segments of a CANDU fuel channel we can assume, for this starting stage, that heat transfer is not very important for these short segments of fuel channel. The boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. In this paper we present results for Standard CANDU 6 Fuel Bundles as a basis for CFD thermal-hydraulic analysis of INR proposed SEU43 and other new nuclear fuels. (authors)

  15. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  16. CFD simulation of crossflow mixing in a rod bundle with mixing blades

    International Nuclear Information System (INIS)

    In, W. K.

    1999-01-01

    A CFD model was developed in this study to simulate the crossflow mixing in a 4x4 square array rod bundle caused by ripped-open blades. The central subchannel and adjacent subchannels of one grid span were modeled using flow symmetry. The lateral velocity pattern within the central subchannel, lateral velocity and the turbulence intensity in the rod gap region were predicted by the CFD method, and the predictions were compared with the measurements. The CFD simulation shows a vortex flow around the fuel rod caused by a pair of blades, which is consistent with the experimental results. The CFD predictions of the lateral velocity on the mixing sections show a near symmetric profile, but the measurements present an asymmetric velocity profile leading to an inversion of lateral velocity. The predicted mixing rate between the central subchannel and the adjacent subchannels reasonably agrees with the measured one. The CFD prediction shows a parabolic distribution of the RMS velocity but the measured one shows a rather flat distribution near the blade that develops to a parabolic distribution far downstream (L=29De). The predicted average RMS velocity on a mixing section is also slightly lower than the measured one. This study confirmed that the CFD simulation can present the effect of the ripped-open blades on the crossflow mixing in a rod bundle well

  17. Modeling chemical reactions in the indoor environment by CFD

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft; Weschler, Charles J.

    2002-01-01

    The concentrations of ozone and a terpene that react in the gas-phase to produce a hypothetical product were investigated by computational fluid dynamics (CFD) for two different air exchange rates. Ozone entered the room with the ventilation air. The terpenes were introduced as a localized source...

  18. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.

    Science.gov (United States)

    Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2011-01-01

    To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.

  19. CFD simulation of neutral ABL flows; Atmospheric Boundary Layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong Zhang

    2009-04-15

    This work is to evaluate the CFD prediction of Atmospheric Boundary Layer flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could achieve depend on following aspects: viscous model, wall functions, agreement of CFD model with inlet wind velocity profile and top boundary condition. Fluent employ wall function roughness modifications based on data from experiments with sand grain roughened pipes and channels, describe wall adjacent zone with Roughness Height (Ks) instead of Roughness Length (z{sub 0}). In a CFD simulation of ABL flow, the mean wind velocity profile is generally described with either a logarithmic equation by the presence of aerodynamic roughness length z{sub 0} or an exponential equation by the presence of exponent. As indicated by some former researchers, the disagreement between wall function model and ABL velocity profile description will result in some undesirable gradient along flow direction. There are some methods to improve the simulation model in literatures, some of them are discussed in this report, but none of those remedial methods are perfect to eliminate the streamwise gradients in mean wind speed and turbulence, as EllipSys3D could do. In this paper, a new near wall treatment function is designed, which, in some degree, can correct the horizontal gradients problem. Based on the corrected model constants and near wall treatment function, a simulation of Askervein Hill is carried out. The wind condition is neutrally stratified ABL and the measurements are best documented until now. Comparison with measured data shows that the CFD model can well predict the velocity field and relative turbulence kinetic energy field. Furthermore, a series of artificial complex terrains are designed, and some of the main simulation results are reported. (au)

  20. CFD evaluation of turbulence model on heat transfer in 5 × 5 rod bundles

    International Nuclear Information System (INIS)

    Chao Yanmeng; Yang Lixin; Zhang Yuxiang; Pang Zhengzheng

    2014-01-01

    Different turbulence models may lead to different results when analyzing fuel assemblies using computational fluid dynamics (CFD) method. In this paper, a 5 × 5 rod bundle model was built to analyze the relationship between flow and heat transfer. The pressure drop and Nu were calculated using ANSYS CFX. Three factors evaluating swirling flow and cross-flow were used to analyze the inner relationship between flow field and heat transfer. The performances of various turbulence models, including eddy viscosity model and Reynold stress model, were evaluated. The comparison between numerical and similar experimental results indicates that Reynold stress model is more appropriate for modeling flow features and heat transfer in spacer grids discussed in this paper. (authors)

  1. Cross cutting CFD support to innovative reactor design

    International Nuclear Information System (INIS)

    Roelofs, Ferry

    2009-01-01

    Several innovative technologies are under consideration in the world for nuclear energy production. The considered reactor systems apply either gas, sodium, lead, lead-bismuth, supercritical water, or molten salt as coolant. Therefore, methods shall be developed to determine the viability of such systems, but also to support the design of these innovative reactor systems. Computational Fluid Dynamics (CFD) is becoming more and more integrated in the daily practice of thermal-hydraulics researchers and designers. Therefore, it is very important to develop modelling approaches for the application of CFD to the specific requirements for innovative reactors. As many of these innovative reactor designs under consideration are operated using other coolants than water, one has to be careful in adopting methods which are developed for water as a coolant. Cross-cutting CFD challenges, methods and applications are presented for innovative reactors. (author)

  2. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell

  3. A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants

    Directory of Open Access Journals (Sweden)

    Ehsan Gholamalizadeh

    2017-10-01

    Full Text Available A solar chimney power plant consists of four main parts, a solar collector, a chimney, an energy storage layer, and a wind turbine. So far, several investigations on the performance of the solar chimney power plant have been conducted. Among them, different approaches have been applied to model the turbine inside the system. In particular, a real wind turbine coupled to the system was simulated using computational fluid dynamics (CFD in three investigations. Gholamalizadeh et al. simulated a wind turbine with the same blade profile as the Manzanares SCPP’s turbine (FX W-151-A blade profile, while a CLARK Y blade profile was modelled by Guo et al. and Ming et al. In this study, simulations of the Manzanares prototype were carried out using the CFD model developed by Gholamalizadeh et al. Then, results obtained by modelling different turbine blade profiles at different turbine rotational speeds were compared. The results showed that a turbine with the CLARK Y blade profile significantly overestimates the value of the pressure drop across the Manzanares prototype turbine as compared to the FX W-151-A blade profile. In addition, modelling of both blade profiles led to very similar trends in changes in turbine efficiency and power output with respect to rotational speed.

  4. CFD simulations in the nuclear containment using the DES turbulence models

    International Nuclear Information System (INIS)

    Ding, Peng; Chen, Meilan; Li, Wanai; Liu, Yulan; Wang, Biao

    2015-01-01

    Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions

  5. CFD simulations in the nuclear containment using the DES turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Peng [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Chen, Meilan [China Nuclear Power Technology Research Institute, Shenzhen (China); Li, Wanai, E-mail: liwai@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China); Liu, Yulan [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Wang, Biao [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China)

    2015-06-15

    Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions.

  6. Test and validation of CFD codes for the simulation of accident-typical phenomena in the reactor containment; Erprobung und Validierung von CFD-Codes fuer die Simulation von unfalltypischen Phaenomenen im Sicherheitseinschluss

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Berthold; Stewering, Joern; Sonnenkalb, Martin

    2014-03-15

    CFD (Computational Fluid Dynamic) simulation techniques have a growing relevance for the simulation and assessment of accidents in nuclear reactor containments. Some fluid dynamic problems like the calculation of the flow resistances in a complex geometry, turbulence calculations or the calculation of deflagrations could only be solved exactly for very simple cases. These fluid dynamic problems could not be represented by lumped parameter models and must be approximated numerically. Therefore CFD techniques are discussed by a growing international community in conferences like the CFD4NRS-conference. Also the number of articles with a CFD topic is increasing in professional journals like Nuclear Engineering and Design. CFD tools like GASFLOW or GOTHIC are already in use in European nuclear site licensing processes for future nuclear power plants like EPR or AP1000 and the results of these CFD tools are accepted by the authorities. For these reasons it seems to be necessary to build up national competences in the field of CFD techniques and it is important to validate and assess the existing CFD tools. GRS continues the work for the validation and assessment of CFD codes for the simulation of accident scenarios in a nuclear reactor containment within the framework of the BMWi sponsored project RS1500. The focus of this report is on the following topics: - Further validation of condensation models from GRS, FZJ and ANSYS and development of a new condensate model. - Validation of a new turbulence model which was developed by the University of Stuttgart in cooperation with ANSYS. - The formation and dissolution of light gas stratifications are analyzed by large scale experiments. These experiments were simulated by GRS. - The AREVA correlations for hydrogen recombiners (PARs) could be improved by GRS after the analysis of experimental data. Relevant experiments were simulated with this improved recombiner correlation. - Analyses on the simulation of H{sub 2

  7. Investigation on the Use of a Multiphase Eulerian CFD solver to simulate breaking waves

    DEFF Research Database (Denmark)

    Tomaselli, Pietro D.; Christensen, Erik Damgaard

    2015-01-01

    investigation on a CFD model capable of handling this problem. The model is based on a solver, available in the open-source CFD toolkit OpenFOAM, which combines the Eulerian multi-fluid approach for dispersed flows with a numerical interface sharpening method. The solver, enhanced with additional formulations...

  8. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  9. CFD Simulations of a Single-phase Mixing Experiment

    International Nuclear Information System (INIS)

    Bertolotto, Davide; Chawla, Rakesh; Manera, Annalisa; Prasser, Horst-Michael

    2008-01-01

    The current paper reports on an investigation of the capabilities of CFD codes to model multidimensional mixing phenomena in a loop. For the purpose, a test facility consisting of two loops connected by a double T-junction has been built at the Paul Scherrer Institut (PSI). Experiments were carried out, in which a tracer was injected in one loop and the tracer distribution before and after the T-junction was measured by means of wire-mesh sensors located at the outlets of the junction. The tracer distribution after the T-junction is strongly dependent on 3D mixing phenomena, which are dominant due to the particular geometry of the set-up. For the CFD analysis, a 3D model of the double T-junction was created, and different simulations were performed with ANSYS-CFX to study the sensitivity of the results with respect to parameters such as mesh refinement, integration time step, turbulence model, profiles for inlet velocity and injected tracer concentration. Thereafter, these results were compared with the experimental data. The comparisons have clearly pointed out that 3D modelling is able to reproduce (at least qualitatively) the experimental results. Moreover, it has been found that the CFD results are strongly influenced by the velocity profile assumptions at the inlets of the double T-junction. (authors)

  10. Mixing and RTD in tanks: radiotracer experiments and CFD simulations

    International Nuclear Information System (INIS)

    Thatte, A.R.; Patwardhan, A.P.; Pant, H.J.; Sharma, V.K.; Gursharan Singh; Berne, Ph.

    2004-01-01

    The present work is directed towards exploring the possibility of developing a model for predicting the residence time distribution based on the actual flow and turbulence fields present within the reactor. In view of this, experiments have been carried out to characterize mixing processes in two different equipment: jet mixer and stirred tank reactor. CFD models have been developed to predict the mixing time and residence time distribution in these equipments. In all the case, it is observed that the CFD predictions agree well with the experimental measurements. (author)

  11. Multi-dimensional Analysis for SLB Transient in ATLAS Facility as Activity of DSP (Domestic Standard Problem)

    International Nuclear Information System (INIS)

    Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y.; Sung, H. J.; Hwang, M. J.; Kang, D. H.; Lim, S. G.; Jun, S. S.

    2015-01-01

    Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components

  12. Temperature Simulation of Greenhouse with CFD Methods and Optimal Sensor Placement

    Directory of Open Access Journals (Sweden)

    Yanzheng Liu

    2014-03-01

    Full Text Available The accuracy of information monitoring is significant to increase the effect of Greenhouse Environment Control. In this paper, by taking simulation for the temperature field in the greenhouse as an example, the CFD (Computational Fluid Dynamics simulation model for measuring the microclimate environment of greenhouse with the principle of thermal environment formation was established, and the temperature distributions under the condition of mechanical ventilation was also simulated. The results showed that the CFD model and its solution simulated for greenhouse thermal environment could describe the changing process of temperature environment within the greenhouse; the most suitable turbulent simulation model was the standard k?? model. Under the condition of mechanical ventilation, the average deviation between the simulated value and the measured value was 0.6, which was 4.5 percent of the measured value. The distribution of temperature filed had obvious layering structures, and the temperature in the greenhouse model decreased gradually from the periphery to the center. Based on these results, the sensor number and the optimal sensor placement were determined with CFD simulation method.

  13. Computational Fluid Dynamics (CFD) Analysis Of Optical Payload For Lasercomm Science (OPALS) sealed enclosure module

    Science.gov (United States)

    Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel

    2012-01-01

    Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.

  14. 3D unified CFD to modeling of bubbles phenomena

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    Full text of publication follows: During of the last ten years the developed numerical methods and algorithms for solving of heat and mass transfer problems in compressible/incompressible fluids were successfully tested at simulation of interaction of two immiscible liquids. Now these computing tools are extended on a case of two-phase flows, such as a liquids-gas system as follows: outside of bubbles the non-stationary incompressible Navier-Stokes equations in the primitive variables coupled with the heat transfer equation are used; inside of bubble a compressible medium model with low Mach limit is applied. To observe of an interface of liquid-gas system we use the modified level set method and three-dimensional advective schemes of TVD-type with small scheme diffusion with use of sub-grid simulation. These schemes with small diffusion were already applied by us under using of sub-grid simulation for interface transfer in case of two non-mixing liquids. For bubble phenomena a numerical technique based on the developed algorithms with a small scheme diffusion, for which the discrete approximations are constructed using the finite-volume methods and fully staggered grids is adapted. Testing of the developed approach is carried out on the set of test problems and a good agreement is obtained between numerical predictions and experimental data. The numerical technique was successfully utilized for numerical support of 3D experiment financed by Nuclear Energy Agency at the Organization economic cooperation and development within the framework of MASKA Project, where computational fluid dynamics of two non-mixing fluids such as corium and steel was investigated. In this paper there is application of developed approach for simulation of bubble flows, in particular, for study of coalescence of two drops. The developed technique has a high degree of efficiency and allows on a personal computer (3 GHz and 2 Gbytes RAM) to carry out CFD calculations on a grid with 10 7

  15. Scaling studies and conceptual experiment designs for NGNP CFD assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. McCreery

    2004-11-01

    The objective of this report is to document scaling studies and conceptual designs for flow and heat transfer experiments intended to assess CFD codes and their turbulence models proposed for application to prismatic NGNP concepts. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses have been applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant turbulent forced convection with slight transverse property variation. In a pressurized cooldown (LOFA) simulation, the flow quickly becomes laminar with some possible buoyancy influences. The flow in the lower plenum can locally be considered to be a situation of multiple hot jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentumdominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two types of heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary

  16. Assessment of computational fluid dynamics (CFD) for nuclear reactor safety problems

    International Nuclear Information System (INIS)

    Smith, B. L.; Andreani, M.; Bieder, U.; Bestion, D.; Ducros, F.; Graffard, E.; Heitsch, M.; Scheuerer, M.; Henriksson, M.; Hoehne, T.; Rohde, U.; Lucas, D.; Komen, E.; Houkema, M.; Mahaffy, J.; Moretti, F.; Morii, T.; Muehlbauer, P.; Song, C.H.; Zigh, G.; Menter, F.; Watanabe, T.

    2008-01-01

    The basic objective of the present work was to provide documented evidence of the need to perform CFD simulations in Nuclear Reactor Safety (NRS), concentrating on single-phase applications, and to assess the competence of the present generation of CFD codes to perform these simulations reliably. The fulfilling of this objective involves multiple tasks, summarized as: to provide a classification of NRS problems requiring CFD analysis, to identify and catalogue existing CFD assessment bases, to identify shortcomings in CFD approaches, to put into place a means for extending the CFD assessment database, with an emphasis on NRS applications. The resulting document is presented here. After some introductory remarks, chapter 3 lists twenty-two NRS issues for which it is considered that the application of CFD would bring real benefits in terms of better predictive capability. This classification is followed by a short description of the safety issue, a state-of-the-art summary of what has been attempted, and what is still needed to be done to improve reliability. Chapter 4 details the assessment bases that have already been established in both the nuclear and non-nuclear domains, and discusses the usefulness and relevance of the work to NRS applications, where appropriate. This information is augmented in Chapter 5 by descriptions of the existing CFD assessment bases that have been established around specific, NRS problems. Typical examples are experiments devoted to the boron dilution issue, pressurised thermal shock, and thermal fatigue in pipes. Chapter 6 is devoted to identifying the technology gaps which need to be closed to make CFD a more trustworthy analytical tool. Some deficiencies identified are lack of a Phenomenon Identification and Ranking Table (PIRT), limitations in the range of application of turbulence models, coupling of CFD with neutronics and system codes, and computer power limitations. Most CFD codes currently being used have their own, custom

  17. PUFoam : A novel open-source CFD solver for the simulation of polyurethane foams

    Science.gov (United States)

    Karimi, M.; Droghetti, H.; Marchisio, D. L.

    2017-08-01

    In this work a transient three-dimensional mathematical model is formulated and validated for the simulation of polyurethane (PU) foams. The model is based on computational fluid dynamics (CFD) and is coupled with a population balance equation (PBE) to describe the evolution of the gas bubbles/cells within the PU foam. The front face of the expanding foam is monitored on the basis of the volume-of-fluid (VOF) method using a compressible solver available in OpenFOAM version 3.0.1. The solver is additionally supplemented to include the PBE, solved with the quadrature method of moments (QMOM), the polymerization kinetics, an adequate rheological model and a simple model for the foam thermal conductivity. The new solver is labelled as PUFoam and is, for the first time in this work, validated for 12 different mixing-cup experiments. Comparison of the time evolution of the predicted and experimentally measured density and temperature of the PU foam shows the potentials and limitations of the approach.

  18. CFD optimisation of a stadium roof geometry: a qualitative study to improve the wind microenvironment

    Directory of Open Access Journals (Sweden)

    Sofotasiou Polytimi

    2017-01-01

    Full Text Available The complexity of the built environment requires the adoption of coupled techniques to predict the flow phenomena and provide optimum design solutions. In this study, coupled computational fluid dynamics (CFD and response surface methodology (RSM optimisation tools are employed to investigate the parameters that determine the wind comfort in a two-dimensional stadium model, by optimising the roof geometry. The roof height, width and length are evaluated against the flow homogeneity at the spectator terraces and the playing field area, the roof flow rate and the average interior pressure. Based on non-parametric regression analysis, both symmetric and asymmetric configurations are considered for optimisation. The optimum design solutions revealed that it is achievable to provide an improved wind environment in both playing field area and spectator terraces, giving a further insight on the interrelations of the parameters involved. Considering the limitations of conducting a two-dimensional study, the obtained results may beneficially be used as a basis for the optimisation of a complex three-dimensional stadium structure and thus become an important design guide for stadium structures.

  19. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    Science.gov (United States)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  20. Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Applications - Workshop Proceedings, CFD4NRS-3 - Experimental Validation and Application of CFD and CMFD Codes to Nuclear Reactor Safety Issues

    International Nuclear Information System (INIS)

    2012-01-01

    The purpose of the workshop was to provide a forum for numerical analysts and experimentalists to exchange information in the field of NRS-related activities relevant to CFD validation, with the objective of providing input to WGAMA CFD experts to create a practical, state-of-the-art, web-based assessment matrix on the use of CFD for NRS applications. The workshop included single-phase and multiphase CFD applications as well as new experimental techniques, including the following: Single-phase and two-phase CFD simulations with an emphasis on validation were sought in areas such as boiling flows, free-surface flows, direct contact condensation, and turbulent mixing. These should relate to NRS-relevant issues such as pressurized thermal shock, critical heat flux, pool heat exchangers, boron dilution, hydrogen distribution, and thermal striping. The use of systematic error quantification and Best Practice Guidelines (BPGs) was encouraged. Experiments providing data suitable for CFD validation-specifically in the area of NRS-including local measurement devices such as multi-sensor optical or electrical probes, Laser Doppler Velocimetry (LDV), hot-film/wire anemometry, Particle Image Velocimetry (PIV), Laser-Induced Fluorescence (LIF), and other innovative techniques. There were over 200 registered participants at the CFD4NRS-3 workshop. The program consisted of about 75 technical papers. Of these, 57 were oral presentations and 19 were posters. An additional 20 posters related to the OECD/NEA-sponsored CFD benchmark exercise on thermal fatigue in a T-Junction were presented. In addition, five keynote lectures were given by distinguished experts. This is about a 30 pc increase with respect to the previous XCFD4NRS workshop held in Grenoble in 2008, and a 70 pc increase compared to the first CFD4NRS workshop held in Garching in 2006. This confirms that there is a real and growing need for such workshops. The papers presented in the conference tackled different topics

  1. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    International Nuclear Information System (INIS)

    Boateng, A.A.; Mtui, P.L.

    2012-01-01

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The Eulerarian-Eulerian multiphase model system described herein is a fluidized bed of sand externally heated to a predetermined temperature prior to introduction of agricultural biomass. We predict the spontaneous emergence of pyrolysis vapors, char and non-condensable (permanent) gases and confirm the observation that the kinetics are fast and that bio-oil vapor evolution is accomplished in a few seconds, and occupying two-thirds of the spatial volume of the reactor as widely reported in the open literature. The model could be advantageous in the virtual design of fast pyrolysis reactors and their optimization to meet economic scales required for distributed or satellite units. - Highlights: ► We model the evolution of pyrolysis products in a fluidized bed via CFD. ► We predict the spontaneous emergence of pyrolysis products. ► We confirm the experimental observation that the kinetics are fast. ► And that bio-oil vapor evolution is accomplished in a few seconds. ► The model is advantageous in the virtual design of fast pyrolysis reactors.

  2. CFD analysis of cascade effects in marine propellers with trailing edge modification

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul

    2015-01-01

    investigated intensively by viscous flow solvers, although RANS CFD is prevalent in marine industry nowadays. In the current work, the cascade effect of a marine propeller is analyzed by CFD simulations on a threedimensional propeller model with varying the number of blades. The influence of trailing......-edge configurations on the cascade effect is also investigated by simulating CFD with varying trailingedge thickness and slope. The reason why the trailingedge is handled rather than other parts of bladegeometry is that it can be modified without altering overall blade thrust significantly, because the loading...

  3. Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)

  4. CFD Investigation on Long-Haul Passenger Bus

    Science.gov (United States)

    Tan, C. F.; Tee, B. T.; Law, H. C.; Lim, T. L.

    2015-09-01

    Air flow distribution is one of the important factors that will influence the bus passenger comfort during long haul travel. Poor air flow distribution not only cause discomfort to the bus passenger but also influence their travel mode as well. The main purpose of this study is to investigate the air flow performance of the bus air-conditioning system through CFD simulation approach. A 3D CAD model of air ducts was drawn and hence analysed by using CFD software, namely ANSYS Fluent, to determine the airflow rate for every outlets of the air-conditioning system. The simulated result was then validated with experimental data obtained from prototype model of air duct. Based on the findings, new design concepts is proposed with the aim to meet the industry requirement as well as to improve the bus passenger comfort during long haul travel.

  5. Numerical analysis for simulation of condensing vapor bubble using CFD-ACE+

    International Nuclear Information System (INIS)

    Goyal, P.; Dutta, Anu; Singh, R.K.

    2014-01-01

    The motion of bubbles is very complex. They may be subject to break-up or coalescence and may appear to move with a spiraling, zigzagging or rocking behavior. Recently, many studies have been carried out to numerically simulate the rising bubble in various conditions by using VOF approach. However, all the above studies were limited to adiabatic bubble where heat and mass transfer between the phases were not considered. In the present work, an attempt was made to capture the behaviour of condensing bubble flowing in a channel, by using commercial CFD code CFD-ACE+ through VOF model. A User-Defined Function was developed to simulate interfacial heat and mass transfer during condensation. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. For validation of CFD-ACE UDF of bubble condensation, a comparison was made with the literature quoted experimental data and it agreed well. Through this work an emphasis was put on VOF module along with the development of an UDF for bubble condensation in CFD-ACE+ code. This theoretical study is motivated by the future CFD application and the intent to investigate the capabilities of the CFD-ACE+ package. (author)

  6. Enhancement of CFD validation exercise along the roof profile of a low-rise building

    Science.gov (United States)

    Deraman, S. N. C.; Majid, T. A.; Zaini, S. S.; Yahya, W. N. W.; Abdullah, J.; Ismail, M. A.

    2018-04-01

    The aim of this study is to enhance the validation of CFD exercise along the roof profile of a low-rise building. An isolated gabled-roof house having 26.6° roof pitch was simulated to obtain the pressure coefficient around the house. Validation of CFD analysis with experimental data requires many input parameters. This study performed CFD simulation based on the data from a previous study. Where the input parameters were not clearly stated, new input parameters were established from the open literatures. The numerical simulations were performed in FLUENT 14.0 by applying the Computational Fluid Dynamics (CFD) approach based on steady RANS equation together with RNG k-ɛ model. Hence, the result from CFD was analysed by using quantitative test (statistical analysis) and compared with CFD results from the previous study. The statistical analysis results from ANOVA test and error measure showed that the CFD results from the current study produced good agreement and exhibited the closest error compared to the previous study. All the input data used in this study can be extended to other types of CFD simulation involving wind flow over an isolated single storey house.

  7. Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3

    International Nuclear Information System (INIS)

    Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.

    2014-11-01

    The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems

  8. Twelfth annual conference of the CFD Society of Canada (CFD 2004). Proceedings

    International Nuclear Information System (INIS)

    Khalid, M.; Chen, S.; McIlwain, S.

    2004-01-01

    The Twelfth Annual Conference of the CFD Society of Canada, CFD 2004, was held in Ottawa, Ontario from May 9-11, 2004. The proceedings consists of 24 sessions covering the following topics: fluid structure interactions; multiphase and multi-species flows; mesh methods; turbulence; DNS/LES; supersonic and hypersonic flows; heat transfer; combustion and detonation; flow physics; aerodynamics; applications; algorithms; environmental flows; magnetohydrodynamics and electrohydrodynamics; biofluids; and, combustion and smoke management

  9. Simulation of an MSLB scenario using the 3D neutron kinetic core model DYN3D coupled with the CFD software Trio-U

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Alexander, E-mail: a.grahn@hzdr.de; Gommlich, André; Kliem, Sören; Bilodid, Yurii; Kozmenkov, Yaroslav

    2017-04-15

    Highlights: • Improved thermal-hydraulic description of nuclear reactor cores. • Providing reactor dynamics code with realistic thermal-hydraulic boundary conditions. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal. • Simulation at higher spatial resolution as compared to system codes. - Abstract: In the framework of the European project NURESAFE, the reactor dynamics code DYN3D, developed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), was coupled with the Computational Fluid Dynamics (CFD) solver Trio-U, developed at CEA France, in order to replace DYN3D’s one-dimensional hydraulic part with a full three-dimensional description of the coolant flow in the reactor core at higher spatial resolution. The present document gives an introduction into the coupling method and shows results of its application to the simulation of a Main Steamline Break (MSLB) accident of a Pressurised Water Reactor (PWR).

  10. PENGARUH VARIASI BENTUK BURITAN KAPAL TERHADAP HAMBATAN TOTAL MENGGUNAKAN METODE CFD

    Directory of Open Access Journals (Sweden)

    Deddy Chrismianto

    2014-10-01

    Full Text Available Penelitian ini dilakukan dengan cara menganalisa dan menghitung hambatan total kapal menggunakan model 3D pada berbagai variasi bentuk buritan menggunakan CFD (Computational Fluid Dynamic.Berdasarkan hasil analisa dan perhitungan didapatkan hambatan total yang terkecil menggunakan CFD untuk berbagai variasi bentuk buritan kapal, dengan studi kasus pada type KCS (Kriso Container Ship. Hambatan total terkecil pada kondisi kecepatan fn 0.22 adalah 646.57 KN yaitu pada model 1, kemudian hambatan total terkecil pada kondisi kecepatan fn 0.26 adalah 2608.57 KN yaitu pada model original (asli, dan hambatan total terkecil pada kondisi kecepatan fn 0.30 adalah 4042.07 KN pada model 7.

  11. A bidirectional coupling procedure applied to multiscale respiratory modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kuprat, A.P., E-mail: andrew.kuprat@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Kabilan, S., E-mail: senthil.kabilan@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Carson, J.P., E-mail: james.carson@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Corley, R.A., E-mail: rick.corley@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Einstein, D.R., E-mail: daniel.einstein@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-07-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  12. A bidirectional coupling procedure applied to multiscale respiratory modeling

    International Nuclear Information System (INIS)

    Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.

    2013-01-01

    In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural

  13. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  14. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    Science.gov (United States)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  15. Simulation of steady-state natural convection using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Zitzmann, T.; Pfrommer, P. [Univ. of Applied Sciences, Coberg (Germany); Cook, M.; Rees, S.; Marjanovic, L. [De Montfort Univ., Leicester (United Kingdom). Inst. of Energy and Sustainable Development

    2005-07-01

    Building materials play an important role in the creation of comfortable indoor environments and can reduce dependence on high energy use mechanical systems. Correct predictions between building structure and heat transfer are needed in order to achieve optimal conditions. Heat transfer is dependent on the velocity and temperature distribution in a room, particularly in the wall boundary layer. This paper discussed the modeling of air flow and heat transfer over a heated vertical plate in a differentially-heated cavity using Computational Fluid Dynamics (CFD). Guidelines on the use of CFD with unstructured meshes to model buoyancy-driven flow in a cavity were presented. Benchmark CFD results were compared with published analytical data. The finite volume method was employed using an unstructured mesh containing tetrahedral and prism elements, so that local numerical diffusion was reduced and therefore suitable for complex flows. The code was based on a couple solver for solving the differential equations using the fully implicit discretization method. Hydrodynamic equations were treated as one single system. A false time stepping method was used to reduce the number of iterations required for convergence, which also guided the solutions to a steady-state solution. It was concluded that the methodology achieves accurate predictions, and is suitable for the modeling of heat transfer optimizations. 13 refs., 7 figs.

  16. Overview of hypersonic CFD code calibration studies

    Science.gov (United States)

    Miller, Charles G.

    1987-01-01

    The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.

  17. Study on the CFD simulation of refrigerated container

    Science.gov (United States)

    Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin

    2017-10-01

    The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.

  18. Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Hyatt, Andrew J.

    2010-01-01

    Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.

  19. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.

    Science.gov (United States)

    Passos, Ricardo Gomes; von Sperling, Marcos; Ribeiro, Thiago Bressani

    2014-01-01

    Knowledge of the hydraulic behaviour is very important in the characterization of a stabilization pond, since pond hydrodynamics plays a fundamental role in treatment efficiency. An advanced hydrodynamics characterization may be achieved by carrying out measurements with tracers, dyes and drogues or using mathematical simulation employing computational fluid dynamics (CFD). The current study involved experimental determinations and mathematical simulations of a full-scale facultative pond in Brazil. A 3D CFD model showed major flow lines, degree of dispersion, dead zones and short circuit regions in the pond. Drogue tracking, wind measurements and dye dispersion were also used in order to obtain information about the actual flow in the pond and as a means of assessing the performance of the CFD model. The drogue, designed and built as part of this research, and which included a geographical positioning system (GPS), presented very satisfactory results. The CFD modelling has proven to be very useful in the evaluation of the hydrodynamic conditions of the facultative pond. A virtual tracer test allowed an estimation of the real mean hydraulic retention time and mixing conditions in the pond. The computational model in CFD corresponded well to what was verified in the field.

  20. Towards CFD modeling of turbulent pipeline material transportation

    Science.gov (United States)

    Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph

    2013-04-01

    Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended

  1. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  2. The role of CFD combustion modeling in hydrogen safety management – III: Validation based on homogeneous hydrogen–air–diluent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Komen, Ed [Nuclear Research and Consultancy Group – NRG, P.O. Box 25, 1755 ZG Petten (Netherlands); Roekaerts, Dirk [Delft University of Technology, P.O. Box 5, 2600 AA Delft (Netherlands)

    2015-08-15

    Highlights: • A CFD based method proposed in the previous article is used for the simulation of the effect of CO{sub 2}–He dilution on hydrogen deflagration. • A theoretical study is presented to verify whether CO{sub 2}–He diluent can be used as a replacement for H{sub 2}O as diluent. • CFD model used for the validation work is described. • TFC combustion model results are in good agreement with large-scale homogeneous hydrogen–air–CO{sub 2}–He experiments. - Abstract: Large quantities of hydrogen can be generated and released into the containment during a severe accident in a PWR. The generated hydrogen, when mixed with air, can lead to hydrogen combustion. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. Therefore, accurate prediction of these pressure loads is an important safety issue. In our previous article, a CFD based method to determine these pressure loads was presented. This CFD method is based on the application of a turbulent flame speed closure combustion model. The method was validated against three uniform hydrogen–air deflagration experiments with different blockage ratio performed in the ENACCEF facility. It was concluded that the maximum pressures were predicted within 13% accuracy, while the rate of pressure rise dp/dt was predicted within about 30%. The eigen frequencies of the residual pressure wave phenomena were predicted within a few %. In the present article, we perform additional validation of the CFD based method against three uniform hydrogen–air–CO{sub 2}–He deflagration experiments with three different concentrations of the CO{sub 2}–He diluent. The trends of decrease in the flame velocity, the intermediate peak pressure, the rate of pressure rise dp/dt, and the maximum value of the mean pressure with an increase in the CO{sub 2}–He dilution are captured well in the simulations. From the

  3. Validation of a CFD model simulating charge and discharge of a small heat storage test module based on a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Dannemand, Mark; Fan, Jianhua; Furbo, Simon

    2014-01-01

    Experimental and theoretical investigations are carried out to study the heating of a 302 x 302 x 55 mm test box of steel containing a sodium acetate water mixture. A thermostatic bath has been set up to control the charging and discharging of the steel box. The charging and discharging has been...... for a Computational Fluid Dynamics (CFD) model. The CFD calculated temperatures are compared to measured temperatures internally in the box to validate the CFD model. Four cases are investigated; heating the test module with the sodium acetate water mixture in solid phase from ambient temperature to 52˚C; heating...... the module starting with the salt water mixture in liquid phase from 72˚C to 95˚C; heating up the module from ambient temperature with the salt water mixture in solid phase, going through melting, ending in liquid phase at 78˚C/82˚C; and discharging the test module from liquid phase at 82˚C, going through...

  4. A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger

    International Nuclear Information System (INIS)

    Borrajo-Pelaez, R.; Ortega-Casanova, J.; Cejudo-Lopez, J.M.

    2010-01-01

    CFD is becoming an important heat exchanger research technique. It constitutes an inexpensive prediction method, avoiding the need of testing numerous prototypes. Current work in this field is mostly based on air flow models assuming constant temperature of fin-and-tube surface. The purpose of this paper is to present an enhanced model, whose innovation lies in considering additionally the water flow in the tubes and the conduction heat transfer through the fin and tubes, to demonstrate that the neglect of these two phenomena causes a simulation result accuracy reduction. 3-D Numerical simulations were accomplished to compare both an air side and an air/water side model. The influence of Reynolds number, fin pitch, tube diameter, fin length and fin thickness was studied. The exchanger performance was evaluated through two non-dimensional parameters: the air side Nusselt number and a friction factor. It was found that the influence of the five parameters over the mechanical and thermal efficiencies can be well reported using these non-dimensional coefficients. The results from the improved model showed more real temperature contours, with regard to those of the simplified model. Therefore, a higher accuracy of the heat transfer was achieved, yielding better predictions on the exchanger performance.

  5. CFD analysis of gas explosions vented through relief pipes.

    Science.gov (United States)

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  6. CFD simulation of solids suspension in stirred tanks: Review

    Directory of Open Access Journals (Sweden)

    Ochieng Aoyi

    2010-01-01

    Full Text Available Many chemical reactions are carried out using stirred tanks, and the efficiency of such systems depends on the quality of mixing, which has been a subject of research for many years. For solid-liquid mixing, traditionally the research efforts were geared towards determining mixing features such as off-bottom solid suspension using experimental techniques. In a few studies that focused on the determination of solids concentration distribution, some methods that have been used have not been accurate enough to account for some small scale flow mal-distribution such as the existence of dead zones. The present review shows that computational fluid dynamic (CFD techniques can be used to simulate mixing features such as solids off-bottom suspension, solids concentration and particle size distribution and cloud height. Information on the effects of particle size and particle size distribution on the solids concentration distribution is still scarce. Advancement of the CFD modeling is towards coupling the physical and kinetic data to capture mixing and reaction at meso- and micro-scales. Solids residence time distribution is important for the design; however, the current CFD models do not predict this parameter. Some advances have been made in recent years to apply CFD simulation to systems that involve fermentation and anaerobic processes. In these systems, complex interaction between the biochemical process and the hydrodynamics is still not well understood. This is one of the areas that still need more attention.

  7. Comparison of particle-wall interaction boundary conditions in the prediction of cyclone collection efficiency in computational fluid dynamics (CFD) modeling

    International Nuclear Information System (INIS)

    Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.

    2009-01-01

    In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)

  8. Three dimensional computational fluid dynamic analysis of debris transport under emergency cooling water recirculation

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2010-01-01

    This paper provides a computational fluid dynamic (CFD) analysis method on the evaluation of debris transport under emergency recirculation mode after loss of coolant accident of a nuclear power plant. Three dimensional reactor building floor geometrical model is constructed including flow obstacles larger than 6 inches such as mechanical components and equipments and considering various inlet flow paths from the upper reactor building such as break and spray flow. In the modeling of the inlet flows from the upper floors, effect of gravitational force was also reflected. For the precision of the analysis, 3 millions of tetrahedral-shaped meshes were generated. Reference calculation showed physically reasonable results. Sensitivity studies for mesh type and turbulence model showed very similar results to the reference case. This study provides useful information on the application of CFD to the evaluation of debris transport fraction for the design of new emergency sump filters. (orig.)

  9. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    Science.gov (United States)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  10. Experimental and CFD investigation of gas phase freeboard combustion

    DEFF Research Database (Denmark)

    Andersen, Jimmy

    Reliable and accurate modeling capabilities for combustion systems are valuable tools for optimization of the combustion process. This work concerns primary precautions for reducing NO emissions, thereby abating the detrimental effects known as “acid rain”, and minimizing cost for flue gas...... treatment. The aim of this project is to provide validation data for Computational Fluid Dynamic (CFD) models relevant for grate firing combustion conditions. CFD modeling is a mathematical tool capable of predicting fluid flow, mixing and chemical reaction with thermal conversion and transport. Prediction......, but under well-defined conditions. Comprehensive experimental data for velocity field, temperatures, and gas composition are obtained from a 50 kW axisymmetric non-swirling natural gas fired combustion setup under two different settings. Ammonia is added to the combustion setup in order to simulate fuel...

  11. Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow

    Science.gov (United States)

    2018-02-09

    AFRL-RV-PS- TR-2018-0056 AFRL-RV-PS- TR-2018-0056 DEMONSTRATION OF HYBRID DSMC-CFD CAPABILITY FOR NONEQUILIBRIUM REACTING FLOW Thomas E...4. TITLE AND SUBTITLE Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9453-17-1...simulation codes. The models are based on new ab-intio rate data obtained using state -of-the-art potential energy surfaces for air species. A probability

  12. Fifty years of CFD for room air distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2015-01-01

    the principle behind CFD, the development in numerical schemes, turbulence models and the importance of the increased computer size since the 1970s. Special attention is given to the selection of the correct governing equations, to the understanding of low turbulent flow, to the selection of turbulence models...

  13. On application of CFD codes to problems of nuclear reactor safety

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2005-01-01

    The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)

  14. Improving the performance of industrial clarifiers using three-dimensional computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Shankhadeep Das

    2016-01-01

    Full Text Available Sedimentation is one of the most popular wastewater treatment processes, and is used to separate solid particles from carrier fluid in settling tanks known as clarifiers. The clarifier, as the last major facility in wastewater treatment plants (WWTPs, can limit or define the performance of the overall WWTP. This paper presents a novel three-dimensional unsteady computational fluid dynamics (CFD model to improve the efficiency of an industrial clarifier that had been experiencing underperformance and reduction in wastewater handling capacity. We propose a numerical technique to address the transient process of removing sludge from the floor of clarifiers by using rotating rakes. The CFD model was first applied to analyzing the ramifications of the current clarifier geometry on performance. The results show that the root causes for underperformance are related to the unconventional top side feed design of the clarifier, which leads to significant asymmetry in the flow distribution. The CFD model was next used to investigate various design modifications with the goal of improving the clarifier performance. A few geometry modification ideas such as an inward baffle, dissipating inlets, and a submerged skirt were found to create a more uniform flow distribution in the clarifier, significantly reducing the backflow into the feedwell and the velocity of the flow exiting the feedwell, which helps the solid particles to settle in the clarifier. These three designs were found to reduce the effluent total suspended solids (TSS by more than 80% and thus significantly improve clarifier performance. It is believed that the CFD model developed in this study can become a computationally efficient tool for investigating the performance of industrial clarifiers with complex geometries and rotating rakes.

  15. CFD Simulation and Experimental Study of Winglets at Low Subsonic Flow

    OpenAIRE

    Sanjay Kumar Sardiwal; Md. Abdul Sami

    2014-01-01

    A winglet is a device attached at the wingtip, used to improve aircraft efficiency by lowering the induced drag caused by wingtip vortices. It is a vertical or angled extension at the tips of each wing. Winglets work by increasing the effective aspect ratio of a wing without adding greatly to the structural stress and hence necessary weight of the wing structure. This paper describes a CFD 3-dimensional winglets analysis that was performed on a rectangular wing of NACA653218 c...

  16. Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft

    International Nuclear Information System (INIS)

    Zhang, Ye; Van Zuijlen, Alexander; Van Bussel, Gerard

    2014-01-01

    In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k – ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections

  17. Aerodynamic optimization of wind turbine rotor using CFD/AD method

    Science.gov (United States)

    Cao, Jiufa; Zhu, Weijun; Wang, Tongguang; Ke, Shitang

    2018-05-01

    The current work describes a novel technique for wind turbine rotor optimization. The aerodynamic design and optimization of wind turbine rotor can be achieved with different methods, such as the semi-empirical engineering methods and more accurate computational fluid dynamic (CFD) method. The CFD method often provides more detailed aerodynamics features during the design process. However, high computational cost limits the application, especially for rotor optimization purpose. In this paper, a CFD-based actuator disc (AD) model is used to represent turbulent flow over a wind turbine rotor. The rotor is modeled as a permeable disc of equivalent area where the forces from the blades are distributed on the circular disc. The AD model is coupled with a Reynolds Averaged Navier-Stokes (RANS) solver such that the thrust and power are simulated. The design variables are the shape parameters comprising the chord, the twist and the relative thickness of the wind turbine rotor blade. The comparative aerodynamic performance is analyzed between the original and optimized reference wind turbine rotor. The results showed that the optimization framework can be effectively and accurately utilized in enhancing the aerodynamic performance of the wind turbine rotor.

  18. Virtual maneuvering test in CFD media in presence of free surface

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-05-01

    Full Text Available Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ε and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

  19. Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations.

    Science.gov (United States)

    Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang

    2018-01-01

    For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.

  20. Atmospheric stability in CFD &NDASH; Representation of the diurnal cycle in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2012-01-01

    For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL), for exam......For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics (CFD) models that focus primarily on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer (ABL......), for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art CFD models. In order to decrease the uncertainty of wind resource assessment, especially in complex terrain, the effect of thermal stratification on the ABL should be included in such models. The present...

  1. Validation of a CFD methodology for positive displacement LVAD analysis using PIV data.

    Science.gov (United States)

    Medvitz, Richard B; Reddy, Varun; Deutsch, Steve; Manning, Keefe B; Paterson, Eric G

    2009-11-01

    Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.

  2. Application of CFD in Indonesian Research: A review

    Science.gov (United States)

    Ambarita, H.; Siregar, M. R.; Kishinami, K.; Daimaruya, M.; Kawai, H.

    2018-04-01

    Computational Fluid Dynamics (CFD) is a numerical method that solves fluid flow and related governing equations using a computational tool. The studies on CFD, its methodology and its application as a research tool, are increasing. In this study, application of CFD by Indonesian researcher is briefly reviewed. The main objective is to explore the characteristics of CFD applications in Indonesian researchers. Considering the size and reputation, this study uses Scopus publications indexed data base. All of the documents in Scopus related to CFD which is affiliated by at least one of Indonesian researcher are collected to be reviewed. Research topics, CFD method, and simulation results are reviewed in brief. The results show that there are 260 documents found in literature indexed by Scopus. These documents divided into research articles 125 titles, conference paper 135 titles, book 1 title and review 1 title. In the research articles, only limited researchers focused on the development of CFD methodology. Almost all of the articles focus on using CFD in a particular application, as a research tool, such as aircraft application, wind power and heat exchanger. The topics of the 125 research articles can be divided into 12 specific applications and 1 miscellaneous application. The most popular application is Heating Ventilating and Air Conditioning and followed by Reactor, Transportation and Heat Exchanger applications. The most popular commercial CFD code used is ANSYS Fluent and only several researchers use CFX.

  3. CFD model of thermal and velocity conditions in a particular indoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politecnica de Valencia (Spain); Guillen Guillamon, Ignacio [Applied Physics Department, Universitat Politecnica de Valencia (Spain)

    2013-07-01

    The demand for maintaining high indoor environmental quality (IEQ) with the minimum energy consumption is rapidly increasing. In the recent years, several studies have been completed to investigate the impact of indoor environment factors on human comfort, health and energy efficiency. Therefore, the design of the thermal environment in any sort of room, specially offices, has huge economic consequences. In this paper, a particular analysis on the air temperature in a multi-task room environment is modeled, in order to represent the velocities and temperatures inside the room by using Computational Fluid Dynamics (CFD) techniques. This model will help to designers to analyze the thermal comfort regions inside the studied air volume and to visualize the whole temperatures inside the room, determining the effect of the fresh external incoming air in the internal air temperature.

  4. Modeling the effect of spacers and biofouling on forward osmosis performance

    KAUST Repository

    Mosqueira Santillá n, Marí a José

    2014-01-01

    and operational conditions. For this, a two dimensional numerical model for FO systems was developed using computational fluid dynamics (CFD). This model allowed the evaluation of the impact of (i) spacers and (ii) biofilm, and (iii) the combined impact of spacers

  5. Experimental Validation of Methanol Crossover in a Three-dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Berning, Torsten; Kær, Søren Knudsen

    2012-01-01

    A fully coupled three-dimensional, steady-state, two-fluid, multi-component and non-isothermal DMFC model has been developed in the commercial CFD package CFX 13 (ANSYS inc.). It accounts for the presence of micro porous layers, non-equilibrium phase change, and methanol and water uptake...... in the ionomer phase of the catalytic layer, and detailed membrane transport of methanol and water. In order to verify the models ability to predict methanol crossover, simulation results are compared with experimental measurements under different current densities along with air and methanol stoichiometries....... Methanol crossover is indirectly measured based on the combined anode and cathode exhaust CO2 mole fraction and by accounting for the CO2 production at the anode as a function of current density. This approach is simple and assumes that all crossed over methanol is oxidized. Moreover, it takes CO2...

  6. Status and outlook of CFD technology at Mitsubishi Heavy Industries Nagoya. Mitsubishi Meiko ni okeru CFD gijutsu no genjo to tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Tanioka, T [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1990-09-01

    The present and future were reviewed of CFD (computational fluid dynamics) technology in Nagoya Works, Mitsubishi Heavy Industries, Ltd., Japan. The progress of the role of CFD in aerodynamic design and progress of CFD technology were reviewed. The followings were illustrated as examples of CFD analysis: design of a main wing for transonic private aircrafts by backward analysis, analysis of an airframe shape for the MU300 jet airplane with a panel method, Navier-stokes (NS) analysis of a transonic wing section, NS analysis of pressure distributions on the surfaces of the YXX airplane and space shuttle HOPE, and NS analysis of an aerodynamic heating distribution for spaceplanes. CFD tools were outlined for every developmental item such as a main wing, and requirements and subjects in practical use were discussed of several CFD tools for a rough check, precise performance check and parametric study. Such computer performance as a main memory capacity and processing speed required for the future practical use of advanced CFD was also discussed. 20 figs.

  7. CFD analysis of premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber

    International Nuclear Information System (INIS)

    Gera, B.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    Premixed hydrogen/air combustion in an upright, rectangular shaped combustion chamber has been performed numerically using commercial CFD code CFD-ACE+. The combustion chamber had dimensions 1 m X 0.024 m X 1 m. Simulations were carried out for 10% (v/v) hydrogen concentration for which experimental results were available. Effect of different boundary condition and ignition position on flame propagation was studied. Time dependent flame propagation in the chamber was predicted by CFD code. The computed transient flame propagation in the chamber was in good agreement with experimental results. The present work demonstrated that the available commercial CFD codes are capable of modeling hydrogen deflagration in a realistic manner. (author)

  8. Velocities in a Centrifugal PAT Operation: Experiments and CFD Analyses

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2017-12-01

    Full Text Available Velocity profiles originated by a pump as turbine (PAT were measured using an ultrasonic doppler velocimetry (UDV. PAT behavior is influenced by the velocity data. The effect of the rotational speed and the associated flow velocity variations were investigated. This research focuses, particularly, on the velocity profiles achieved for different rotational speeds and discharge values along the impeller since that is where the available hydraulic power is transformed into the mechanical power. Comparisons were made between experimental test results and computational fluid dynamics (CFD simulations. The used CFD model was calibrated and validated using the same conditions as the experimental facility. The numerical simulations showed good approximation with the velocity measurements for different cross-sections along the PAT system. The application of this CFD numerical model and experimental tests contributed to better understanding the system behavior and to reach the best efficiency operating conditions. Improvements in the knowledge about the hydrodynamic flow behavior associated with the velocity triangles contribute to improvements in the PAT concept and operation.

  9. A supportive architecture for CFD-based design optimisation

    Science.gov (United States)

    Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong

    2014-03-01

    Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture

  10. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 1. SRANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)

  11. CFD modelling of axial mixing in the intermediate and final rinses of cleaning-in-place procedures of straight pipes

    DEFF Research Database (Denmark)

    Yang, Jifeng; Jensen, Bo Boye Busk; Nordkvist, Mikkel

    2018-01-01

    The intermediate and final rinses of straight pipes, in which water replaces a cleaning agent of similar density and viscosity, are modelled using Computational Fluid Dynamic (CFD) methods. It is anticipated that the displacement process is achieved by convective and diffusive transport. The simu...

  12. Computational Fluid Dynamics Modeling Of Scaled Hanford Double Shell Tank Mixing - CFD Modeling Sensitivity Study Results

    International Nuclear Information System (INIS)

    Jackson, V.L.

    2011-01-01

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  13. Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.

    Science.gov (United States)

    Pawar, Sanjay B

    2018-01-01

    The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s -1 experiencing an average shear of 23.52-44.56 s -1 which is far below the critical limit of cell damage.

  14. CFD Analyses for Water-Air Flow With the Euler-Euler Two-Phase Model in the Fluent4 CFD Code

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Schmidt, Holger

    2002-01-01

    calculation results were adjusted for a good agreement with the experimental data. The analysis results were very valuable for designing the final water/steam facility for final CHF tests. The validation against data from the air-water experiments proved that the present CFD codes approach to the state where they can be used for simulating such two-phase experiments, where the fraction of both phases is essential and the flow is strongly affected by the density differences. It is still too early to predict, if the CFD calculation of the 1:1 scale critical heat flux experiments is successful, could the result be used for formulating a new type of a critical heat flux correlation, where the effects of CRD's on the flow patterns and gap dimensions are model parameters. (authors)

  15. CFD modelling of nocturnal low-level jet effects on wind energy related variables

    Science.gov (United States)

    Sogachev, Andrey; Mann, Jakob; Dellwik, Ebba; Ejsing Jørgensen, Hans

    2010-05-01

    The development of a wind speed maximum in the nocturnal boundary layer, referred to as a low-level jet (LLJ), is a common feature of the vertical structure of the atmospheric boundary layer (ABL). Characterizing and understanding LLJ streams is growing in importance as wind turbines are being built larger and taller to take advantage of higher wind speeds at increased heights. We used a computational fluid dynamics (CFD) model to explore LLJs effect on wind speed, wind directional and speed shear inside the surface layer 40 - 130 m, where their physical measurements are not trivial and still rare today. We used the one-dimensional version of the ABL model SCADIS (Sogachev et al. 2002: Tellus 54:784-819). The unique feature of the model, based on a two-equation closure approach, is the treatment of buoyancy effects in a universal way, which overcomes the uncertainties with model coefficients for non-shear source/sink terms (Sogachev, 2009: Boundary Layer Meteor. 130:423-435). From a variety of mechanisms suggested for formation of LLJs, such as inertial oscillations, baroclinicity over sloping terrain, and land-sea breeze effects, the one-dimensional ABL model is capable of simulating only the first one. However, that mechanism, which is caused by the diurnal oscillation of eddy viscosity, is often responsible for jet formation. Sensitivity tests carried out showed that SCADIS captures the most prominent features of the LLJ, including its vertical structure as well as its diurnal phase and amplitude. We simulated ABL pattern under conditions typical for LLJ formation (a fair day on July 1, a flat low-roughness underlying surface) at 30 and 50o latitudes. Diurnal variability of wind speed and turbulence intensity at four levels of 40, 70, 100 and 130 m above ground and of wind and directional shear between those levels were analysed. Despite of small differences in LLJ structure the properties of LLJ important for wind energy production are still common for two

  16. A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack

    Science.gov (United States)

    Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.

    2013-01-01

    This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.

  17. CFD simulation of three-dimensional motion of a vehicle with movable wings. Application to the keel of a racing yacht; 3 jigen undo suru kado yokufu shinko buttai no CFD simulation. Racing yacht keel eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Takada, N. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Sato, T. [Tokyo Univ. (Japan)

    1998-12-31

    The computational fluid dynamics (CFD) is so remarkably developed in the various kinds of science and technology fields that it is utilized in aeroplane and other machines and structures. The introduction of Navier-Stokes equation into the fixed coordinate system makes it possible to perform the CFD simulation of vigorously moving body. Combining its procedure with the moving grid scheme enables us to maneuver a moving wing. A body with complicated shape like the keel of racing yacht is expressed by the multi-block grid to develop the CFD code corresponding to it. The simulation of forced motion, which is the first step of the motion simulation system, is applied to the keel of racing yacht to prove that the viscous flow field around the complicatedly shaped body. 6 refs., 17 figs., 2 tabs.

  18. CFD analysis of heat transfer in a vertical annular gas gap

    International Nuclear Information System (INIS)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2011-01-01

    Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)

  19. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  20. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses