Dimensional analysis for engineers
Simon, Volker; Gomaa, Hassan
2017-01-01
This monograph provides the fundamentals of dimensional analysis and illustrates the method by numerous examples for a wide spectrum of applications in engineering. The book covers thoroughly the fundamental definitions and the Buckingham theorem, as well as the choice of the system of basic units. The authors also include a presentation of model theory and similarity solutions. The target audience primarily comprises researchers and practitioners but the book may also be suitable as a textbook at university level.
Dimensional analysis made simple
Lira, Ignacio
2013-11-01
An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own.
Stochastic and infinite dimensional analysis
Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José
2016-01-01
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
Dimensional analysis and group theory in astrophysics
Kurth, Rudolf
2013-01-01
Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si
A student's guide to dimensional analysis
Lemons, Don S
2017-01-01
This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Two-dimensional signal analysis
Garello, René
2010-01-01
This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.
Dimensional analysis beyond the Pi theorem
Zohuri, Bahman
2017-01-01
Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...
Bayesian Analysis of High Dimensional Classification
Mukhopadhyay, Subhadeep; Liang, Faming
2009-12-01
Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.
LINKAGE ANALYSIS BY 2-DIMENSIONAL DNA TYPING
MEERMAN, GJT; MULLAART, E; VANDERMEULEN, MA; DENDAAS, JHG; MOROLLI, B; UITTERLINDEN, AG; VIJG, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
[Dimensional modeling analysis for outpatient payments].
Guo, Yi-zhong; Guo, Yi-min
2008-09-01
This paper introduces a data warehouse model for outpatient payments, which is designed according to the requirements of the hospital financial management while dimensional modeling technique is combined with the analysis on the requirements. This data warehouse model can not only improve the accuracy of financial management requirements, but also greatly increase the efficiency and quality of the hospital management.
Introducing fluid dynamics using dimensional analysis
Jensen, Jens Højgaard
2013-01-01
Many aspects of fluid dynamics can be introduced using dimensional analysis, combined with some basic physical principles. This approach is concise and allows exploration of both the laminar and turbulent limits—including important phenomena that are not normally dealt with when fluid dynamics...
Analysis of one dimensional and two dimensional fuzzy controllers
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
Enhancing genomics information retrieval through dimensional analysis.
Hu, Qinmin; Huang, Jimmy Xiangji
2013-06-01
We propose a novel dimensional analysis approach to employing meta information in order to find the relationships within the unstructured or semi-structured document/passages for improving genomics information retrieval performance. First, we make use of the auxiliary information as three basic dimensions, namely "temporal", "journal", and "author". The reference section is treated as a commensurable quantity of the three basic dimensions. Then, the sample space and subspaces are built up and a set of events are defined to meet the basic requirement of dimensional homogeneity to be commensurable quantities. After that, the classic graph analysis algorithm in the Web environments is applied on each dimension respectively to calculate the importance of each dimension. Finally, we integrate all the dimension networks and re-rank the outputs for evaluation. Our experimental results show the proposed approach is superior and promising.
Three-dimensional (3D) analysis of the temporomandibular joint
Kitai, N.; Kreiborg, S.; Murakami, S.
Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...
Extrudate Expansion Modelling through Dimensional Analysis Method
A new model framework is proposed to correlate extrudate expansion and extrusion operation parameters for a food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. energy, water content and temperature, are suggested...... to describe the extrudates expansion. From the three dimensionless groups, an equation with three experimentally determined parameters is derived to express the extrudate expansion. The model is evaluated with whole wheat flour and aquatic feed extrusion experimental data. The average deviations...
Application of dimensional analysis in systems modeling and control design
Balaguer, Pedro
2013-01-01
Dimensional analysis is an engineering tool that is widely applied to numerous engineering problems, but has only recently been applied to control theory and problems such as identification and model reduction, robust control, adaptive control, and PID control. Application of Dimensional Analysis in Systems Modeling and Control Design provides an introduction to the fundamentals of dimensional analysis for control engineers, and shows how they can exploit the benefits of the technique to theoretical and practical control problems.
Teaching the Falling Ball Problem with Dimensional Analysis
Sznitman, Josué; Stone, Howard A.; Smits, Alexander J.; Grotberg, James B.
2013-01-01
Dimensional analysis is often a subject reserved for students of fluid mechanics. However, the principles of scaling and dimensional analysis are applicable to various physical problems, many of which can be introduced early on in a university physics curriculum. Here, we revisit one of the best-known examples from a first course in classic…
Dimensional analysis using toric ideals: primitive invariants.
Atherton, Mark A; Bates, Ronald A; Wynn, Henry P
2014-01-01
Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Dimensional analysis using toric ideals: primitive invariants.
Mark A Atherton
Full Text Available Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.
Dimensionality Assessment of Ordered Polytomous Items with Parallel Analysis
Timmerman, Marieke E.; Lorenzo-Seva, Urbano
2011-01-01
Parallel analysis (PA) is an often-recommended approach for assessment of the dimensionality of a variable set. PA is known in different variants, which may yield different dimensionality indications. In this article, the authors considered the most appropriate PA procedure to assess the number of common factors underlying ordered polytomously…
Dimensionality Assessment of Ordered Polytomous Items With Parallel Analysis
Timmerman, Marieke E.; Lorenzo-Seva, Urbano
2011-01-01
Parallel analysis (PA) is an often-recommended approach for assessment of the dimensionality of a variable set. PA is known in different variants, which may yield different dimensionality indications. In this article, the authors considered the most appropriate PA procedure to assess the number of c
The harmonic oscillator, dimensional analysis and inflationary solutions
San Costa, S
2002-01-01
In this work, focused on the production of exact inflationary solutions using dimensional analysis, it is shown how to explain inflation from a pragmatic and basic point of view, in a step-by-step process, starting from the one-dimensional harmonic oscillator.
Automated analysis of three-dimensional stress echocardiography
K.Y.E. Leung (Esther); M. van Stralen (Marijn); M.G. Danilouchkine (Mikhail); G. van Burken (Gerard); M.L. Geleijnse (Marcel); J.H.C. Reiber (Johan); N. de Jong (Nico); A.F.W. van der Steen (Ton); J.G. Bosch (Johan)
2011-01-01
textabstractReal-time three-dimensional (3D) ultrasound imaging has been proposed as an alternative for two-dimensional stress echocardiography for assessing myocardial dysfunction and underlying coronary artery disease. Analysis of 3D stress echocardiography is no simple task and requires considera
Explorative data analysis of two-dimensional electrophoresis gels
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
The Role of Dimensional Analysis in Teaching Physics
Reichelova, Michaela
2013-01-01
Dimensional analysis is a simple qualitative method for determining essential connections between physical quantities. It is applicable to a multitude of physical problems, many of which can be introduced early on in a university physics curriculum. Despite the relative simplicity of the approach, it is rarely included in physics curricula in Slovakia. Here, we apply the dimensional analysis to the problem of radiation power of an electric dipole. We show a straightforward way to derive employing dimensional analysis without need for complex mathematical treatments and physical expressions.
Nonlinear Dimensionality Reduction Methods in Climate Data Analysis
Ross, Ian
2008-01-01
Linear dimensionality reduction techniques, notably principal component analysis, are widely used in climate data analysis as a means to aid in the interpretation of datasets of high dimensionality. These linear methods may not be appropriate for the analysis of data arising from nonlinear processes occurring in the climate system. Numerous techniques for nonlinear dimensionality reduction have been developed recently that may provide a potentially useful tool for the identification of low-dimensional manifolds in climate data sets arising from nonlinear dynamics. In this thesis I apply three such techniques to the study of El Nino/Southern Oscillation variability in tropical Pacific sea surface temperatures and thermocline depth, comparing observational data with simulations from coupled atmosphere-ocean general circulation models from the CMIP3 multi-model ensemble. The three methods used here are a nonlinear principal component analysis (NLPCA) approach based on neural networks, the Isomap isometric mappin...
Dimensional analysis of heart rate variability in heart transplant recipients
Zbilut, J.P.; Mayer-Kress, G.; Geist, K.
1987-01-01
We discuss periodicities in the heart rate in normal and transplanted hearts. We then consider the possibility of dimensional analysis of these periodicities in transplanted hearts and problems associated with the record.
Three-dimensional free vibration analysis of thick laminated circular ...
Dr Oke
The dynamic response of complex engineering ... Most two – dimensional theories, if applied for the analysis of such ...... These results should be a valuable alternative for validating new computational techniques in future, due to the accuracy,.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography
Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)
1989-08-01
Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).
Three-dimensional visualization and animation for power systems analysis
Milano, Federico [Department of Electrical Engineering of the University of Castilla-La Mancha, 13071, Ciudad Real (Spain)
2009-12-15
This paper describes a novel approach for three-dimensional visualization and animation of power systems analyses. The paper demonstrates that three-dimensional visualization of power systems can be used for teaching and can help in easily understanding complex concepts. The solutions of power flow analysis, continuation power flow, optimal power flow and time domain simulations are used for illustrating the proposed technique. The paper presents a variety of examples, particularly oriented to education and practitioner training. Conclusions are duly drawn. (author)
N-Dimensional analysis of process radiotherapy; Analisis N-dimensional del proceso radioterapico
Villa gazulla, D. C.; Laliena Bielsa, V.; Calvo Carrillo, S.; Garcia Romero, A.; Ortega Pardina, P.; Canellas Anoz, M.; Millan Cebrian, E.; Hernandez Vitoria, A.
2013-07-01
The objective of the N-dimensional analysis is , on the one hand, integration and unification in a single database of all the information available in the services of physics and radiation therapy and on the other hand, the analysis of unified and interrelated data. This unified and analyzed information may facilitate identification of the most relevant variables in clinical research within the framework of the radiotherapy process. (Author)
Performance Analysis of 3-Dimensional Turbo Codes
Rosnes, Eirik
2011-01-01
In this work, we consider the minimum distance properties and convergence thresholds of 3-dimensional turbo codes (3D-TCs), recently introduced by Berrou et al.. Here, we consider binary 3D-TCs while the original work of Berrou et al. considered double-binary codes. In the first part of the paper, the minimum distance properties are analyzed from an ensemble perspective, both in the finite-length regime and in the asymptotic case of large block lengths. In particular, we analyze the asymptotic weight distribution of 3D-TCs and show numerically that their typical minimum distance dmin may, depending on the specific parameters, asymptotically grow linearly with the block length, i.e., the 3D-TC ensemble is asymptotically good for some parameters. In the second part of the paper, we derive some useful upper bounds on the dmin when using quadratic permutation polynomial (QPP) interleavers with a quadratic inverse. Furthermore, we give examples of interleaver lengths where an upper bound appears to be tight. The b...
Three-dimensional model analysis and processing
Yu, Faxin; Luo, Hao; Wang, Pinghui
2011-01-01
This book focuses on five hot research directions in 3D model analysis and processing in computer science: compression, feature extraction, content-based retrieval, irreversible watermarking and reversible watermarking.
Methodology for dimensional variation analysis of ITER integrated systems
Fuentes, F. Javier, E-mail: FranciscoJavier.Fuentes@iter.org [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France); Trouvé, Vincent [Assystem Engineering & Operation Services, rue J-M Jacquard CS 60117, 84120 Pertuis (France); Cordier, Jean-Jacques; Reich, Jens [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France)
2016-11-01
Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on
Code Coupling for Multi-Dimensional Core Transient Analysis
Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)
2015-05-15
After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.
Dimensional analysis examples of the use of symmetry
Hornung, Hans G
2006-01-01
Derived from a course in fluid mechanics, this text for advanced undergraduates and beginning graduate students employs symmetry arguments to demonstrate the principles of dimensional analysis. The examples provided illustrate the effectiveness of symmetry arguments in obtaining the mathematical form of the functions yielded by dimensional analysis. Students will find these methods applicable to a wide field of interests.After discussing several examples of method, the text examines pipe flow, material properties, gasdynamical examples, body in nonuniform flow, and turbulent flow. Additional t
Multi-Dimensional Customer Data Analysis in Online Auctions
LAO Guoling; XIONG Kuan; QIN Zheng
2007-01-01
In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction,accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example,analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.
Upscaling river biomass using dimensional analysis and hydrogeomorphic scaling
Barnes, Elizabeth A.; Power, Mary E.; Foufoula-Georgiou, Efi; Hondzo, Miki; Dietrich, William E.
2007-12-01
We propose a methodology for upscaling biomass in a river using a combination of dimensional analysis and hydro-geomorphologic scaling laws. We first demonstrate the use of dimensional analysis for determining local scaling relationships between Nostoc biomass and hydrologic and geomorphic variables. We then combine these relationships with hydraulic geometry and streamflow scaling in order to upscale biomass from point to reach-averaged quantities. The methodology is demonstrated through an illustrative example using an 18 year dataset of seasonal monitoring of biomass of a stream cyanobacterium (Nostoc parmeloides) in a northern California river.
D'Abramo, G
2003-01-01
Dimensional analysis techniques are used to describe (not only qualitatively) some interesting features of two specific physical processes: the kinematics of moving objects on the surface of a planet (e.g. the walking pace of a man on the Moon) and the run-up process of a tsunami wave approaching the shore.
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Imploding ignition waves: I. one dimensional analysis
Kushnir, Doron; Waxman, Eli
2011-01-01
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R_c. An approximate analytic expression for R_c is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R_c~0.1 mm (spherical) and R_c~1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub (but near) sonic velocities on scales >>R_c. Our suggested mechanism differs from that proposed by Zel'dovich et al. (1970), in which a fine tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and...
Data analysis in high-dimensional sparse spaces
Clemmensen, Line Katrine Harder
The present thesis considers data analysis of problems with many features in relation to the number of observations (large p, small n problems). The theoretical considerations for such problems are outlined including the curses and blessings of dimensionality, and the importance of dimension...... reduction. In this context the trade off between a rich solution which answers the questions at hand and a simple solution which generalizes to unseen data is described. For all of the given data examples labelled output exists and the analyses are therefore limited to supervised settings. Three novel...... classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...
Synthesis and analysis of three-dimensional video information
Katys, P. G.; Katys, Georgy P.
2005-02-01
The principles of design, the basis of functioning and characteristics of 3-dimensional (3D) visual information systems synthesis and analysis are analyzed. In the first part of paper the modern state of 3D video information synthesis and reproduction systems development is considered, like: stereoscopic, auto-stereoscopic, and holographic. In the second part the principles of machine-vision systems are considered, that the analysis of 3D video-information are realized.
Two-dimensional hazard estimation for longevity analysis
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Stability analysis of cracks propagating in three dimensional solids
Larralde, H.; Al-Falou, A.A.; Ball, R.C. [Cavendish Lab., Cambridge (United Kingdom)
1996-12-01
The authors present a theory for the morphology of the fracture surface left behind by slowly propagating cracks in linear, isotropic and homogeneous three dimensional solids. The results are based on first order perturbation theory of the equations of elasticity for cracks whose shape is slightly perturbed from planar. For cracks propagating under pure type 1 loading they find that all perturbation modes are linearly stable, from which they can predict the roughness of the fracture surface induced by fluctuations in the material. The authors compare their results with the classical results for cracks propagating in two dimensional systems, and discuss the effects in the three dimensional analysis which result from taking into account contributions from non-singular terms of the stress field, as well as the effects arising from finite speeds of crack propagation.
Principal Component Analysis with Contaminated Data: The High Dimensional Case
Xu, Huan; Mannor, Shie
2010-01-01
We consider the dimensionality-reduction problem (finding a subspace approximation of observed data) for contaminated data in the high dimensional regime, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some (arbitrarily) corrupted observations. We propose a High-dimensional Robust Principal Component Analysis (HR-PCA) algorithm that is tractable, robust to contaminated points, and easily kernelizable. The resulting subspace has a bounded deviation from the desired one, achieves maximal robustness -- a breakdown point of 50% while all existing algorithms have a breakdown point of zero, and unlike ordinary PCA algorithms, achieves optimality in the limit case where the proportion of corrupted points goes to zero.
Canonical and symplectic analysis for three dimensional gravity without dynamics
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)
2017-03-15
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Explorative data analysis of two-dimensional electrophoresis gels
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Mathematics Competency for Beginning Chemistry Students Through Dimensional Analysis.
Pursell, David P; Forlemu, Neville Y; Anagho, Leonard E
2017-01-01
Mathematics competency in nursing education and practice may be addressed by an instructional variation of the traditional dimensional analysis technique typically presented in beginning chemistry courses. The authors studied 73 beginning chemistry students using the typical dimensional analysis technique and the variation technique. Student quantitative problem-solving performance was evaluated. Students using the variation technique scored significantly better (18.3 of 20 points, p chemistry students were more likely to use the variation technique rather than the typical technique. The variation technique may be useful as an alternative instructional approach to enhance beginning chemistry students' mathematics competency and problem-solving ability in both education and practice. [J Nurs Educ. 2017;56(1):22-26.]. Copyright 2017, SLACK Incorporated.
Dimensional Analysis and the Time Required to Urinate
Palffy-Muhoray, Peter; Yokoyama, Hiroshi; Zheng, Xiaoyu
2014-01-01
According to the recently discovered 'Law of Urination', mammals, ranging in size from mice to elephants, take, on the average, 21s to urinate. We attempt to gain insights into the physical processes responsible for this uniformity using simple dimensional analysis. We assume that the biological apparatus for urination in mammals simply scales with linear size, and consider the scenarios where the driving force is gravity or elasticity, and where the response is dominated by inertia or viscosity. We ask how the time required for urination depends on the length scale, and find that for the time to be independent of body size, the dominant driving force must be elasticity, and the dominant response viscosity. Our note demonstrates that dimensional analysis can indeed readily give insights into complex physical and biological processes.
Sequential Analysis in High Dimensional Multiple Testing and Sparse Recovery
Malloy, Matthew; Nowak, Robert
2011-01-01
This paper studies the problem of high-dimensional multiple testing and sparse recovery from the perspective of sequential analysis. In this setting, the probability of error is a function of the dimension of the problem. A simple sequential testing procedure is proposed. We derive necessary conditions for reliable recovery in the non-sequential setting and contrast them with sufficient conditions for reliable recovery using the proposed sequential testing procedure. Applications of the main ...
Physical quantities and dimensional analysis: from mechanics to quantum gravity
Trancanelli, Diego
2015-01-01
Physical quantities and physical dimensions are among the first concepts encountered by students in their undergraduate career. In this pedagogical review, I will start from these concepts and, using the powerful tool of dimensional analysis, I will embark in a journey through various branches of physics, from basic mechanics to quantum gravity. I will also discuss a little bit about the fundamental constants of Nature, the so-called "cube of Physics", and the natural system of units.
Addition to the method of dimensional analysis in hydraulic problems
A.M. Kalyakin
2013-03-01
Full Text Available The modern engineering design, structures, and especially machines running of new technologies set to engineers the problems that require immediate solution. Therefore, the importance of the method of dimensional analysis as a tool for ordinary engineer is increasing, allows developers to get quick and quite simple solution of even very complex tasks.The method of dimensional analysis is being applied to almost any field of physics and engineering, but it is especially effective at solving problems of mechanics and applied mechanics – hydraulics, fluid mechanics, structural mechanics, etc.Until now the main obstacle to the application of the method of dimensional analysis in its classic form was a multifactorial problem (with many arguments, the solution of which was rather difficult and sometimes impossible. In order to overcome these difficulties, the authors of this study proposed a simple method – application of the combined option avoiding these difficulties.The main result of the study is a simple algorithm which application will make it possible to solve a large class of previously unsolvable problems.
Quantum discriminant analysis for dimensionality reduction and classification
Cong, Iris; Duan, Luming
2016-07-01
We present quantum algorithms to efficiently perform discriminant analysis for dimensionality reduction and classification over an exponentially large input data set. Compared with the best-known classical algorithms, the quantum algorithms show an exponential speedup in both the number of training vectors M and the feature space dimension N. We generalize the previous quantum algorithm for solving systems of linear equations (2009 Phys. Rev. Lett. 103 150502) to efficiently implement a Hermitian chain product of k trace-normalized N ×N Hermitian positive-semidefinite matrices with time complexity of O({log}(N)). Using this result, we perform linear as well as nonlinear Fisher discriminant analysis for dimensionality reduction over M vectors, each in an N-dimensional feature space, in time O(p {polylog}({MN})/{ε }3), where ɛ denotes the tolerance error, and p is the number of principal projection directions desired. We also present a quantum discriminant analysis algorithm for data classification with time complexity O({log}({MN})/{ε }3).
Discrete canonical analysis of three dimensional gravity with cosmological constant
Berra-Montiel, J
2014-01-01
We discuss the interplay between standard canonical analysis and canonical discretization in three-dimensional gravity with cosmological constant. By using the Hamiltonian analysis, we find that the continuum local symmetries of the theory are given by the on-shell space-time diffeomorphisms, which at the action level, corresponds to the Kalb-Ramond transformations. At the time of discretization, although this symmetry is explicitly broken, we prove that the theory still preserves certain gauge freedom generated by a constant curvature relation in terms of holonomies and the Gauss's law in the lattice approach.
Multi-dimensional LOCA Analysis, Status and Perspective
Lee, Sang Yong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2015-10-15
The most extensive research project for LOCA was the 2D/3D program. It involved large or full size experiments such as CCTF (Cylindrical Core Test Facility), SCTF (Slab Core Test Facility) and UPTF (Upper Plenum Test Facility) as well as the most up-to-date two-fluid analysis code, TRAC. With the background of 2D/3D study, the topic of this paper is to investigate facts concerning LOCA application of the present day up-to-date code systems such as RELAP5, TRAC, CATHARE and COBRA-TF. Especially, focus has been put on the multi-dimensional phenomena. The rigorous conservative form of COBRA-TF is strongly recommended to handle the multi-dimensional multi-phase flow phenomena in the future. It is inevitable to develop the reasonable correlation for the covariance coefficients.
Sparse meta-analysis with high-dimensional data.
He, Qianchuan; Zhang, Hao Helen; Avery, Christy L; Lin, D Y
2016-04-01
Meta-analysis plays an important role in summarizing and synthesizing scientific evidence derived from multiple studies. With high-dimensional data, the incorporation of variable selection into meta-analysis improves model interpretation and prediction. Existing variable selection methods require direct access to raw data, which may not be available in practical situations. We propose a new approach, sparse meta-analysis (SMA), in which variable selection for meta-analysis is based solely on summary statistics and the effect sizes of each covariate are allowed to vary among studies. We show that the SMA enjoys the oracle property if the estimated covariance matrix of the parameter estimators from each study is available. We also show that our approach achieves selection consistency and estimation consistency even when summary statistics include only the variance estimators or no variance/covariance information at all. Simulation studies and applications to high-throughput genomics studies demonstrate the usefulness of our approach.
Automated High-Dimensional Flow Cytometric Data Analysis
Pyne, Saumyadipta; Hu, Xinli; Wang, Kui; Rossin, Elizabeth; Lin, Tsung-I.; Maier, Lisa; Baecher-Allan, Clare; McLachlan, Geoffrey; Tamayo, Pablo; Hafler, David; de Jager, Philip; Mesirov, Jill
Flow cytometry is widely used for single cell interrogation of surface and intracellular protein expression by measuring fluorescence intensity of fluorophore-conjugated reagents. We focus on the recently developed procedure of Pyne et al. (2009, Proceedings of the National Academy of Sciences USA 106, 8519-8524) for automated high- dimensional flow cytometric analysis called FLAME (FLow analysis with Automated Multivariate Estimation). It introduced novel finite mixture models of heavy-tailed and asymmetric distributions to identify and model cell populations in a flow cytometric sample. This approach robustly addresses the complexities of flow data without the need for transformation or projection to lower dimensions. It also addresses the critical task of matching cell populations across samples that enables downstream analysis. It thus facilitates application of flow cytometry to new biological and clinical problems. To facilitate pipelining with standard bioinformatic applications such as high-dimensional visualization, subject classification or outcome prediction, FLAME has been incorporated with the GenePattern package of the Broad Institute. Thereby analysis of flow data can be approached similarly as other genomic platforms. We also consider some new work that proposes a rigorous and robust solution to the registration problem by a multi-level approach that allows us to model and register cell populations simultaneously across a cohort of high-dimensional flow samples. This new approach is called JCM (Joint Clustering and Matching). It enables direct and rigorous comparisons across different time points or phenotypes in a complex biological study as well as for classification of new patient samples in a more clinical setting.
Local bifurcation analysis of a four-dimensional hyperchaotic system
Wu Wen-Juan; Chen Zeng-Qiang; Yuan Zhu-Zhi
2008-01-01
Local bifurcation phenomena in a four-dimensional continuous hyperchaotic system, which has rich and complex dynamical behaviours, are analysed. The local bifurcations of the system are investigated by utilizing the bifurcation theory and the centre manifold theorem, and thus the conditions of the existence of pitchfork bifurcation and Hopf bifurcation are derived in detail. Numerical simulations are presented to verify the theoretical analysis, and they show some interesting dynamics, including stable periodic orbits emerging from the new fixed points generated by pitchfork bifurcation, coexistence of a stable limit cycle and a chaotic attractor, as well as chaos within quite a wide parameter region.
Kinetic analysis of two dimensional metallic grating Cerenkov maser
Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-08-15
The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.
Canonical and symplectic analysis for three dimensional gravity without dynamics
Escalante, Alberto
2016-01-01
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev-Jackiw symplectic approach is developed; we report the complete set of Faddeev-Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev-Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev-Jackiw and Dirac's formalism are briefly discussed.
Analysis and visualization of complex unsteady three-dimensional flows
Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.
1989-01-01
Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.
Determining Dimensionality of Exercise Readiness Using Exploratory Factor Analysis.
Strohacker, Kelley; Zakrajsek, Rebecca A
2016-06-01
Assessment of "exercise readiness" is a central component to the flexible non-linear periodization (FNLP) method of organizing training workloads, but the underlying factor structure of this construct has not been empirically determined. The purpose of this study was to assess construct dimensionality of exercise readiness using exploratory factor analysis. The result of which serve as initial steps of developing a brief measure of exercise readiness. Participants consisted of students recruited from undergraduate Kinesiology courses at a racially diverse, southern University. Independent, anonymous online survey data were collected across three stages: 1) generation of item pool (n = 290), 2) assessment of face validity and refinement of item pool (n = 168), and 3) exploratory factor analysis (n = 684). A principal axis factor analysis was conducted with 41 items using oblique rotation (promax). Four statistically significant factors, as determined through parallel analysis, explained 61.5% of the variance in exercise readiness. Factor 1 contained items that represented vitality (e.g., lively, revived). Factor 2 items related to physical fatigue (e.g. tired, drained). Factors 3 and 4 were descriptive of, discomfort (e.g. pain, sick) and health (i.e. healthy, fit), respectively. This inductive approach indicates that exercise readiness is comprised of four dimensions: vitality, physical fatigue, discomfort, and health. This finding supports readiness assessment techniques currently recommended for practitioners according to the FNLP model. These results serve as a theoretical foundation upon which to further develop and refine a brief survey instrument to measure exercise readiness. Key pointsAssessment of exercise readiness is a key component in implementing an exercise program based on flexible nonlinear periodization, but the dimensionality of this concept has not been empirically determined.Based on a series of surveys and a robust exploratory factor analysis
Dimensionality of the UWES-17: An item response modelling analysis
Deon P. de Bruin
2013-03-01
Full Text Available Orientation: Questionnaires, particularly the Utrecht Work Engagement Scale (UWES-17, are an almost standard method by which to measure work engagement. Conflicting evidence regarding the dimensionality of the UWES-17 has led to confusion regarding the interpretation of scores.Research purpose: The main focus of this study was to use the Rasch model to provide insight into the dimensionality of the UWES-17, and to assess whether work engagement should be interpreted as one single overall score, three separate scores, or a combination.Motivation for the study: It is unclear whether a summative score is more representative of work engagement or whether scores are more meaningful when interpreted for each dimension separately. Previous work relied on confirmatory factor analysis; the potential of item response models has not been tapped.Research design: A quantitative cross-sectional survey design approach was used. Participants, 2429 employees of a South African Information and Communication Technology (ICT company, completed the UWES-17.Main findings: Findings indicate that work engagement should be treated as a unidimensional construct: individual scores should be interpreted in a summative manner, giving a single global score.Practical/managerial implications: Users of the UWES-17 may interpret a single, summative score for work engagement. Findings of this study should also contribute towards standardising UWES-17 scores, allowing meaningful comparisons to be made.Contribution/value-add: The findings will benefit researchers, organisational consultants and managers. Clarity on dimensionality and interpretation of work engagement will assist researchers in future studies. Managers and consultants will be able to make better-informed decisions when using work engagement data.
Dimensionality of an Early Childhood Scale Using Rasch Analysis and Confirmatory Factor Analysis.
Banerji, Madhabi; Smith, Richard M.; Dedrick, Robert F.
1997-01-01
This paper explores the use of Rasch analysis and linear confirmatory factor analysis to investigate the dimensionality of an early childhood test, the Gesell School Readiness Screening Test (F. Ilg and others, 1978). Discusses empirical analyses of results from 523 kindergarten students using both methods. (SLD)
3-dimensional analysis of regenerative endodontic treatment outcome.
EzEldeen, Mostafa; Van Gorp, Gertrude; Van Dessel, Jeroen; Vandermeulen, Dirk; Jacobs, Reinhilde
2015-03-01
A growing body of evidence supports the regeneration potential of dental tissues after regenerative endodontic treatment (RET). Nevertheless, a standard method for the evaluation of RET outcome is lacking. The aim of this study was to develop a standardized quantitative method for RET outcome analysis based on cone-beam computed tomographic (CBCT) volumetric measurements. Five human teeth embedded in mandibular bone samples were scanned using both an Accuitomo 170 CBCT machine (Morita, Kyoto, Japan) and a SkyScan 1174 micro-computed tomographic (μCT) system (SkyScan, Antwerp, Belgium). For subsequent clinical application, clinical data and low-dose CBCT scans (preoperatively and follow-up) from 5 immature permanent teeth treated with RET were retrieved. In vitro and clinical 3-dimensional image data sets were imported into a dedicated software tool. Two segmentation steps were applied to extract the teeth of interest from the surrounding tissue (livewire) and to separate tooth hard tissue and root canal space (level set methods). In vitro and clinical volumetric measurements were assessed separately for differences using Wilcoxon matched pairs test. Pearson correlation analysis and Bland-Altman plots were used to evaluate the relation and agreement between the segmented CBCT and μCT volumes. The results showed no statistical differences and strong agreement between CBCT and μCT volumetric measurements. Volumetric comparison of the root hard tissue showed significant hard tissue formation. (The mean volume of newly formed hard tissue was 27.9 [±10.5] mm(3) [P < .05]). Analysis of 3-dimensional data for teeth treated with RET offers valuable insights into the treatment outcome and patterns of hard tissue formation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Stability analysis of lower dimensional gravastars in noncommutative geometry
Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2016-11-15
The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
Three-dimensional finite element analysis of platform switched implant
2017-01-01
PURPOSE The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used. PMID:28243389
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers.
Three-dimensional volume analysis of vasculature in engineered tissues
YousefHussien, Mohammed; Garvin, Kelley; Dalecki, Diane; Saber, Eli; Helguera, María.
2013-01-01
Three-dimensional textural and volumetric image analysis holds great potential in understanding the image data produced by multi-photon microscopy. In this paper, an algorithm that quantitatively analyzes the texture and the morphology of vasculature in engineered tissues is proposed. The investigated 3D artificial tissues consist of Human Umbilical Vein Endothelial Cells (HUVEC) embedded in collagen exposed to two regimes of ultrasound standing wave fields under different pressure conditions. Textural features were evaluated using the normalized Gray-Scale Cooccurrence Matrix (GLCM) combined with Gray-Level Run Length Matrix (GLRLM) analysis. To minimize error resulting from any possible volume rotation and to provide a comprehensive textural analysis, an averaged version of nine GLCM and GLRLM orientations is used. To evaluate volumetric features, an automatic threshold using the gray level mean value is utilized. Results show that our analysis is able to differentiate among the exposed samples, due to morphological changes induced by the standing wave fields. Furthermore, we demonstrate that providing more textural parameters than what is currently being reported in the literature, enhances the quantitative understanding of the heterogeneity of artificial tissues.
Determining Dimensionality of Exercise Readiness Using Exploratory Factor Analysis
Kelley Strohacker, Rebecca A. Zakrajsek
2016-06-01
Full Text Available Assessment of “exercise readiness” is a central component to the flexible non-linear periodization (FNLP method of organizing training workloads, but the underlying factor structure of this construct has not been empirically determined. The purpose of this study was to assess construct dimensionality of exercise readiness using exploratory factor analysis. The result of which serve as initial steps of developing a brief measure of exercise readiness. Participants consisted of students recruited from undergraduate Kinesiology courses at a racially diverse, southern University. Independent, anonymous online survey data were collected across three stages: 1 generation of item pool (n = 290, 2 assessment of face validity and refinement of item pool (n = 168, and 3 exploratory factor analysis (n = 684. A principal axis factor analysis was conducted with 41 items using oblique rotation (promax. Four statistically significant factors, as determined through parallel analysis, explained 61.5% of the variance in exercise readiness. Factor 1 contained items that represented vitality (e.g., lively, revived. Factor 2 items related to physical fatigue (e.g. tired, drained. Factors 3 and 4 were descriptive of, discomfort (e.g. pain, sick and health (i.e. healthy, fit, respectively. This inductive approach indicates that exercise readiness is comprised of four dimensions: vitality, physical fatigue, discomfort, and health. This finding supports readiness assessment techniques currently recommended for practitioners according to the FNLP model. These results serve as a theoretical foundation upon which to further develop and refine a brief survey instrument to measure exercise readiness.
GPU-ACCELERATED FEM SOLVER FOR THREE DIMENSIONAL ELECTROMAGNETIC ANALYSIS
Tian Jin; Gong Li; Shi Xiaowei; Le Xu
2011-01-01
A new Graphics Processing Unit (GPU) parallelization strategy is proposed to accelerate sparse finite element computation for three dimensional electromagnetic analysis.The parallelization strategy is employed based on a new compression format called sliced ELL Four (sliced ELL-F).The sliced ELL-F format-based parallelization strategy is designed for hastening many addition,dot product,and Sparse Matrix Vector Product (SMVP) operations in the Conjugate Gradient Norm (CGN) calculation of finite element equations.The new implementation of SMVP on GPUs is evaluated.The proposed strategy executed on a GPU can efficiently solve sparse finite element equations,especially when the equations are huge sparse (size of most rows in a coefficient matrix is less than 8).Numerical results show the sliced ELL-F format-based parallelization strategy can reach significant speedups compared to Compressed Sparse Row (CSR) format.
Analysis of Two-Dimensional Electrophoresis Gel Images
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...... the methods developed in the literature specifically for matching protein spot patterns, the focus is on a method based on neighbourhood relations. These methods are applied to a range of 2DGE protein spot data in a comparative study. The point pattern matching requires segmentation of the gel images...... and since the correct image segmentation can be difficult, a new alternative approach, exploiting prior knowledge from a reference gel about the protein locations to segment an incoming gel image, is proposed....
Friction laws from dimensional-analysis point of view
Hatano, Takahiro
2015-01-01
Friction laws, which are a key to the understanding of the diversity of earthquakes, are considered theoretically. Using dimensional analysis, the logarithmic dependence of the friction coefficient on the slip velocity and the state variable is derived without any knowledge of the underlying physical processes on the frictional surface. This is based on a simple assumption that the friction coefficient is expressed as the difference from a reference state. Therefore, the functional form of the rate and state dependent friction law itself does not necessarily mean that thermal activation processes dominate friction. It is also shown that, if there are two (or more) state variables having the same dimension, we need not assume the logarithmic dependence on the state variables.
Three-dimensional analysis of mandibular growth and tooth eruption
Krarup, S.; Darvann, Tron Andre; Larsen, Per
2005-01-01
, relocated laterally during growth. Furthermore, the position of tooth buds remained relatively stable inside the jaw until root formation started. Eruption paths of canines and premolars were vertical, whereas molars erupted in a lingual direction. The 3D method would seem to offer new insight into jaw......Normal and abnormal jaw growth and tooth eruption are topics of great importance for several dental and medical disciplines. Thus far, clinical studies on these topics have used two-dimensional (2D) radiographic techniques. The purpose of the present study was to analyse normal mandibular growth...... and tooth eruption in three dimensions based on computer tomography (CT) scans, extending the principles of mandibular growth analysis proposed by Bjork in 1969 from two to three dimensions. As longitudinal CT data from normal children are not available (for ethical reasons), CT data from children...
[Dimensional analysis of the concept of biosafety due to bioterrorism].
Bernard, Laurence; Shaha, Maya
2014-03-01
In recent years with the strengthening of the discourse surrounding the biological risk of bioterrorist nature, the concept of biosafety emerged gradually. A dimensional analysis was used to contextualize the concept. Initially, biosafety was essentially a technical term related to the risks of contamination in laboratories or food industry and then be used to protect biodiversity against the spread of genetically modified organisms (GMOs) into the environment. Now, it is increasingly used in reference to the prevention and infections control, even though its use remains marginal. However, biosecurity may be defined as the security of life and therefore affect the safety devices participating in the government of bodies and power over life. A more critical approach including social and political dimensions within a Foucauldian perspective is needed to expand the scope of the biosecurity concept up to biological hazards constructs.
Sequential Analysis in High Dimensional Multiple Testing and Sparse Recovery
Malloy, Matt
2011-01-01
This paper studies the problem of high-dimensional multiple testing and sparse recovery from the perspective of sequential analysis. In this setting, the probability of error is a function of the dimension of the problem. A simple sequential testing procedure for this problem is proposed. We derive necessary conditions for reliable recovery in the non-sequential setting and contrast them with sufficient conditions for reliable recovery using the proposed sequential testing procedure. Applications of the main results to several commonly encountered models show that sequential testing can be exponentially more sensitive to the difference between the null and alternative distributions (in terms of the dependence on dimension), implying that subtle cases can be much more reliably determined using sequential methods.
Dimensional Analysis on Resistance Characteristics of Labyrinth Seals
HU Dongxu; JIA Li; YANG Lixin
2014-01-01
Experimental investigation of stepped and straight-through labyrinth seals was designed to study the sealing performance of two different typical labyrinth seals.In order to facilitate dimensional analysis on the flow resistance characteristics of labyrinth seals,the variable cross-section of the flow channels are considered as constant cross-section flow.The mechanical energy loss of flow caused by throttle turbulence intensity is considered as caused by friction along the way.The friction coefficient of stepped labyrinth seals is bigger than that of straight-through labyrinth seals by more than 40％ for the same Reynolds number and the ratio of equivalent diameter and the seal length.The expression of friction coefficient f and fRe are obtained from experimental data.The verifications indicate that the expressions are highly accurate.The contribution to the total pressure drop of each tooth cavity gradually becomes less along the flow direction.
Power Spectrum Analysis of Three-Dimensional Redshift Surveys
Feldman, H A; Peacock, J A; Feldman, Hume A.; Kaiser, Nick; Peacock, John A.
1994-01-01
We develop a general method for power spectrum analysis of three dimensional redshift surveys. We present rigorous analytical estimates for the statistical uncertainty in the power and we are able to derive a rigorous optimal weighting scheme under the reasonable (and largely empirically verified) assumption that the long wavelength Fourier components are Gaussian distributed. We apply the formalism to the updated 1-in-6 QDOT IRAS redshift survey, and compare our results to data from other probes: APM angular correlations; the CfA and the Berkeley 1.2Jy IRAS redshift surveys. Our results bear out and further quantify the impression from e.g.\\ counts-in-cells analysis that there is extra power on large scales as compared to the standard CDM model with $\\Omega h\\simeq 0.5$. We apply likelihood analysis using the CDM spectrum with $\\Omega h$ as a free parameter as a phenomenological family of models; we find the best fitting parameters in redshift space and transform the results to real space. Finally, we calcul...
Three Dimensional CFD Analysis of the GTX Combustor
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.
Theme section: Multi-dimensional modelling, analysis and visualization
Guilbert, Éric; Çöltekin, Arzu; Castro, Francesc Antón; Pettit, Chris
2016-07-01
Spatial data are now collected and processed in larger amounts, and used by larger populations than ever before. While most geospatial data have traditionally been recorded as two-dimensional data, the evolution of data collection methods and user demands have led to data beyond the two dimensions describing complex multidimensional phenomena. An example of the relevance of multidimensional modelling is seen with the development of urban modelling where several dimensions have been added to the traditional 2D map representation (Sester et al., 2011). These include obviously the third spatial dimension (Biljecki et al., 2015) as well as the temporal, but also the scale dimension (Van Oosterom and Stoter, 2010) or, as mentioned by (Lu et al., 2016), multi-spectral and multi-sensor data. Such a view provides an organisation of multidimensional data around these different axes and it is time to explore each axis as the availability of unprecedented amounts of new data demands new solutions. The availability of such large amounts of data induces an acute need for developing new approaches to assist with their dissemination, visualisation, and analysis by end users. Several issues need to be considered in order to provide a meaningful representation and assist in data visualisation and mining, modelling and analysis; such as data structures allowing representation at different scales or in different contexts of thematic information.
Multivariate statistical analysis a high-dimensional approach
Serdobolskii, V
2000-01-01
In the last few decades the accumulation of large amounts of in formation in numerous applications. has stimtllated an increased in terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen ...
Quasi Maximum Likelihood Analysis of High Dimensional Constrained Factor Models
Li, Kunpeng; Li,Qi; Lu, Lina
2016-01-01
Factor models have been widely used in practice. However, an undesirable feature of a high dimensional factor model is that the model has too many parameters. An effective way to address this issue, proposed in a seminar work by Tsai and Tsay (2010), is to decompose the loadings matrix by a high-dimensional known matrix multiplying with a low-dimensional unknown matrix, which Tsai and Tsay (2010) name constrained factor models. This paper investigates the estimation and inferential theory ...
Glazoff, Michael V.; Gering, Kevin L.; Garnier, John E.; Rashkeev, Sergey N.; Pyt'ev, Yuri Petrovich
2016-05-17
Embodiments discussed herein in the form of methods, systems, and computer-readable media deal with the application of advanced "projectional" morphological algorithms for solving a broad range of problems. In a method of performing projectional morphological analysis, an N-dimensional input signal is supplied. At least one N-dimensional form indicative of at least one feature in the N-dimensional input signal is identified. The N-dimensional input signal is filtered relative to the at least one N-dimensional form and an N-dimensional output signal is generated indicating results of the filtering at least as differences in the N-dimensional input signal relative to the at least one N-dimensional form.
Analysis of the three-dimensional tongue shape using a three-index factor analysis model
Zheng, Yanli; Hasegawa-Johnson, Mark; Pizza, Shamala
2003-01-01
Three-dimensional tongue shape during vowel production is analyzed using the three-mode PARAFAC (parallel factors) model. Three-dimensional MRI images of five speakers (9 vowels) are analyzed. Sixty-five virtual fleshpoints (13 segments along the rostral-caudal dimension and 5 segments along the right-left direction) are chosen based on the interpolated tongue shape images. Methods used to adjust the alignment of MRI images, to set up the fleshpoints, and to measure the position of the fleshpoints are presented. PARAFAC analysis of this 3D coordinate data results in a stable two-factor solution that explains about 70% of the variance.
Three-dimensional gait analysis in spina bifida.
Duffy, C M; Hill, A E; Cosgrove, A P; Corry, I S; Mollan, R A; Graham, H K
1996-01-01
This study was designed to determine gait patterns in children with lumbar and sacral neurologic level spina bifida. We studied a group of 28 children: 10 had L4-level lesions and a mean age of 11 years; eight had L5-level lesions and a mean age of 8 years; and 10 had S1-level lesions with a mean age of 12 years. A group of 15 normal children, mean age 10 years, was used for comparison. Each child underwent three-dimensional gait analysis using the Vicon system. We found that there were recognisable gait patterns for each level of spina bifida and that the abnormalities accurately reflected the muscle deficiencies present. The gait patterns approximated more closely to those of the normal group as the neurological level descended. The most important findings were of increased pelvic obliquity and rotation with hip abduction in stance (reflecting the gross Trendelenburg-type gait seen in these children) and persistent knee flexion throughout stance as a result of the absence of the plantar flexion-knee extension couple. We found that gait was not improved by tendon transfers performed either at the hip (posterolateral psoas transfer) or at the ankle (tibialis anterior transfer).
Naive Dimensional Analysis for Three-Body Forces Without Pions
Griesshammer, H W
2005-01-01
For systems of three identical particles in which short-range forces produce shallow two-particle bound states, and in particular for the ``pion-less'' Effective Field Theory of Nuclear Physics, I extend and systematise the power-counting of three-body forces to all partial-waves and orders, including external currents. With low-energy observables independent of the details of short-distance dynamics, the typical strength of a three-body force is determined from the superficial degree of divergence of the three-body diagrams which contain only two-body forces. This na\\"ive dimensional analysis must be amended as the asymptotic solution to the leading-order Faddeev equation depends for large off-shell momenta crucially on the partial wave and spin-combination of the system. It is shown by analytic construction to be weaker in most channels with angular momentum smaller than 3 than expected. This demotes many three-nucleon forces to high orders. Observables like the quartet-S-scattering length are less sensitiv...
Dimensional analysis, similarity, analogy, and the simulation theory
Davis, A.A.
1978-01-01
Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theory which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others.
Stability analysis of Lower Dimensional Gravastars in noncommutative geometry
Banerjee, Ayan
2016-01-01
The Ba\\~{n}ados, Teitelboim and Zanelli \\cite{BTZ1992}, black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry \\cite{Rahaman(2013)}. In this article, we explore the exact gravastar solutions in three-dimension anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size $\\sqrt{\\alpha}$ and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, stability analysis is carried out for the dynamic case for the specific case when $\\chi < 0. 214$ under radial perturbations about static equilibrium solutions. To give theoretical support we also trying to explore...
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Singular analysis of two-dimensional bifurcation system
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
The three dimensional analysis of the Sforzesco brace correction
Sabrina Donzelli
2016-10-01
Full Text Available Abstract Background Scoliosis is a three dimensional deformity, and brace correction should be 3D too. There is a lack of knowledge of the effect of braces, particularly in the sagittal and transverse plane. The aim of this study is to analyse the Sforzesco Brace correction, through all the parameters provided by Eos 3D imaging system. Method Design: This is a cross sectional study from a prospective database started in March 2003. Participants: 16 AIS girls (mean age 14.01 in Sforzesco brace treatment, with EOS x-rays, at start, in brace after 1 month and out of brace after the first 4 months of treatment. Outcome measures: All the parameters and the Torsio-Index obtained from 3D Eos System, in and out of brace, in the three planes. Statistical analysis: the variability of the parameters and the mean differences were analyzed and compared using paired T test. ANOVA was used for multiple comparisons. Critical P value was set at 0.05. Results In the comparison of in-brace vs start of treatment, the mean Cobb angle changed significantly from 36.44 +/− 4 to 28.99 + −3.9° (p = 0.01. Significant changes in all the sagittal parameters were found (p = 0.02. In the axial plane, the Torsio Index changed significantly in-brace for thoracolumbar and lumbar curves (P < 0.05. The analysis of the single vertebral tilt demonstrated that the effect of the brace is mostly concentrated at specific segments: T4-T5, T10-T12, L1 and L5 in the axial plane and T3-T6 and T10-L1 in the frontal plane. Conclusion The Sforzesco brace mostly modifies the middle of the spine and preserves the sagittal balance. The single vertebral orientation in each plane should be considered together with the typically used values to assess brace effect.
Recurrence plot analysis of spatially extended high-dimensional dynamics
Marwan, Norbert; Foerster, Saskia; Kurths, Jürgen
2015-04-01
Recurrence plot based measures of complexity are capable tools for characterizing complex dynamics. We show the potential of selected recurrence plot measures for the investigation of spatially extended high-dimensional dynamics by applying them to data from the Lorenz96 model. The recurrence plot based measures are able to qualitatively characterize typical dynamical properties such as chaotic or periodic dynamics. Moreover, we demonstrate its power by analyzing satellite image time series of vegetation cover with contrasting dynamics as a spatially extended and potentially high-dimensional example from the real world.
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
The transfer function analysis of various schemes for the two-dimensional shallow-water equations
Neta, B.; DeVito, C.L.
1988-01-01
In this paper various finite difference and finite element approximations to the linearized two-dimensional shallow-water equations are analyzed. This analysis complements previous results for the one-dimensional case. The first author would like to thank the NPS Foundation Research program for its support of this research.
Analysis of necking based on a one-dimensional model
Audoly, Basile; Hutchinson, John W.
2016-12-01
Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).
Theme section: Multi-dimensional modelling, analysis and visualization
Guilbert, Éric; Coltekin, Arzu; Antón Castro, Francesc/François
2016-01-01
Spatial data are now collected and processed in larger amounts, and used by larger populations than ever before. While most geospatial data have traditionally been recorded as two-dimensional data, the evolution of data collection methods and user demands have led to data beyond the two dimension...
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
Shao, Zhenfeng; Zhang, Lei
2014-09-01
This paper presents a novel sparse dimensionality reduction method of hyperspectral image based on semi-supervised local Fisher discriminant analysis (SELF). The proposed method is designed to be especially effective for dealing with the out-of-sample extrapolation to realize advantageous complementarities between SELF and sparsity preserving projections (SPP). Compared to SELF and SPP, the method proposed herein offers highly discriminative ability and produces an explicit nonlinear feature mapping for the out-of-sample extrapolation. This is due to the fact that the proposed method can get an explicit feature mapping for dimensionality reduction and improve the classification performance of classifiers by performing dimensionality reduction. Experimental analysis on the sparsity and efficacy of low dimensional outputs shows that, sparse dimensionality reduction based on SELF can yield good classification results and interpretability in the field of hyperspectral remote sensing.
Three-Dimensional Heat Transfer Analysis for A Thermal Energy Storage Canister
Hou Xinbin; Xin Yuming; Yang Chunxin; Yuan Xiugan; Dong Keyong
2001-01-01
High temperature latent thermal storage is one of the critical techniques for a solar dynamic power system. This paper presents results from heat transfer analysis of a phase change salt containment canister. A three dimensional analysis program is developed to model heat transfer in a PCM canister. Analysis include effects of asymmetric circumference heat flux, conduction in canister walls, liquid PCM and solid PCM, void volume change and void location, and conduction and radiation across PCM vapor void. The PCM phase change process is modeled using the enthalpy method and the simulation results are compared with those of other two dimensional investigations. It's shown that there are large difference with two-dimensional analysis, therefore the three-dimensional model is necessary for system design of high temperature latent thermal storage.
Two-dimensional hazard estimation for longevity analysis
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Duke Workshop on High-Dimensional Data Sensing and Analysis
2015-05-06
illustrate the main ideas by focusing on high- dimensional multiple hypothesis testing and sparse recovery problems, and their applications in biology...representing single tone audio sources. This includes single pitch musical instruments as well as human voice. Dictionary learning and Non negative...To guarantee stable reconstruction of the original video frames from only a few measurements, the decoder must effectively exploit the spatial and
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A ...any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN...August 2014 4. TITLE AND SUBTITLE TWO-DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b
Design of Dimensional Model for Clinical Data Storage and Analysis
Dipankar SENGUPTA
2013-06-01
Full Text Available Current research in the field of Life and Medical Sciences is generating chunk of data on daily basis. It has thus become a necessity to find solutions for efficient storage of this data, trying to correlate and extract knowledge from it. Clinical data generated in Hospitals, Clinics & Diagnostics centers is falling under a similar paradigm. Patient’s records in various hospitals are increasing at an exponential rate, thus adding to the problem of data management and storage. Major problem being faced corresponding to storage, is the varied dimensionality of the data, ranging from images to numerical form. Therefore there is a need for development of efficient data model which can handle this multi-dimensionality data issue and store the data with historical aspect.For the stated problem lying in façade of clinical informatics we propose a clinical dimensional model design which can be used for development of a clinical data mart. The model has been designed keeping in consideration temporal storage of patient's data with respect to all possible clinical parameters which can include both textual and image based data. Availability of said data for each patient can be then used for application of data mining techniques for finding the correlation of all the parameters at the level of individual and population.
Statistical mechanical analysis of (1 + infinity) dimensional disordered systems
Skantzos, N S
2001-01-01
Valuable insight into the theory of disordered systems and spin-glasses has been offered by two classes of exactly solvable models: one-dimensional models and mean-field (infinite-range) ones, which, each carry their own specific techniques and restrictions. Both classes of models are now considered as 'exactly solvable' in the sense that in the thermodynamic limit the partition sum can been carried out analytically and the average over the disorder can be performed using methods which are well understood. In this thesis I study equilibrium properties of spin systems with a combination of one-dimensional short- and infinite-range interactions. I find that such systems, under either synchronous or asynchronous spin dynamics, and even in the absence of disorder, lead to phase diagrams with first-order transitions and regions with a multiple number of locally stable states. I then proceed to the study of recurrent neural network models with (1+infinity)-dimensional interactions, and find that the competing short...
Dimensional analysis and self-similarity methods for engineers and scientists
Zohuri, Bahman
2015-01-01
This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book's coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book's theoretical explanations and step-by-step mathematical solutions to practical impleme
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
A Bootstrap Generalization of Modified Parallel Analysis for IRT Dimensionality Assessment
Finch, Holmes; Monahan, Patrick
2008-01-01
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials
Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole;
2014-01-01
. The sensitivity analysis presents a formal definition of quasi-1D current transport, which was recently observed experimentally in chemical-vapor-deposition graphene. Our numerical model for calculating sensitivity is verified by comparing the model to analytical calculations based on conformal mapping...
Human muscle proteins: analysis by two-dimensional electrophoresis
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Field analysis of two-dimensional integrated optical gratings
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
Optimal Control of Gas Pipelines via Infinite-Dimensional Analysis
Durgut, Ismail; Leblebiciolu, Kemal
1996-05-01
A general optimal control approach employing the principles of calculus of variations has been developed to determine the best operating strategies for keeping the outlet pressure of gas transmission pipelines around a predetermined value while achieving reasonable energy consumption. The method exploits analytical tools of optimal control theory. A set of partial differential equations characterizing the dynamics of gas flow through a pipeline is directly used. The necessary conditions to minimize the specific performance index come from the infinite-dimensional model. The optimization scheme has been tested on a pipeline subject to stepwise change in demand.
Bauer, S; Röder, G; Bär, M
2007-03-01
Cardiac propagation is investigated by simulations using a realistic three-dimensional (3D) geometry including muscle fiber orientation of the ventricles of a rabbit heart and the modified Beeler-Reuter ionic model. Electrical excitation is introduced by a periodic pacing of the lower septum. Depending on the pacing frequency, qualitatively different dynamics are observed, namely, normal heart beat, T-wave alternans, and 2:1 conduction block at small, intermediate, and large pacing frequencies, respectively. In a second step, we performed a numerical stability and bifurcation analysis of a pulse propagating in a one-dimensional (1D) ring of cardiac tissue. The precise onset of the alternans instability is obtained from computer-assisted linear stability analysis of the pulse and computation of the associated spectrum. The critical frequency at the onset of alternans and the profiles of the membrane potential agree well with the ones obtained in the 3D simulations. Next, we computed changes in the wave profiles and in the onset of alternans for the Beeler-Reuter model with modifications of the sodium, calcium, and potassium channels, respectively. For this purpose, we employ the method of numerical bifurcation and stability analysis. While blocking of calcium channels has a stabilizing effect, blocked sodium or potassium channels lead to the occurrence of alternans at lower pacing frequencies. The findings regarding channel blocking are verified within three-dimensional simulations. Altogether, we have found T-wave alternans and conduction block in 3D simulations of a realistic rabbit heart geometry. The onset of alternans has been analyzed by numerical bifurcation and stability analysis of 1D wave trains. By comparing the results of the two approaches, we find that alternans is not strongly influenced by ingredients such as 3D geometry and propagation anisotropy, but depends mostly on the frequency of pacing (frequency of subsequent action potentials). In addition
Performance Analysis for Distributed Fusion with Different Dimensional Data
Xianghui Yuan
2014-01-01
Full Text Available Different sensors or estimators may have different capability to provide data. Some sensors can provide a relatively higher dimensional data, while other sensors can only provide part of them. Some estimators can estimate full dimensional quantity of interest, while others may only estimate part of it due to some constraints. How is such kind of data with different dimensions fused? How do the common part and the uncommon part affect each other during fusion? To answer these questions, a fusion algorithm based on linear minimum mean-square error (LMMSE estimation is provided in this paper. Then the fusion performance is analyzed, which is the main contribution of this work. The conclusions are as follows. First, the fused common part is not affected by the uncommon part. Second, the fused uncommon part will benefit from the common part through the cross-correlation. Finally, under certain conditions, both the more accurate common part and the stronger correlation can result in more accurate fused uncommon part. The conclusions are all supported by some tracking application examples.
3-dimensional analysis of scaphoid fracture angle morphology.
Luria, Shai; Schwarcz, Yonatan; Wollstein, Ronit; Emelife, Patrick; Zinger, Gershon; Peleg, Eran
2015-03-01
Scaphoid fractures are classified according to their 2-dimensional radiographic appearance, and transverse waist fractures are considered the most common. Our hypothesis was that most scaphoid fractures are not perpendicular to the longitudinal axis of the scaphoid (ie, not transverse). Computerized 3-dimensional analyses were performed on 124 computed tomography scans of acute scaphoid fractures. Thirty of the fractures were displaced and virtually reduced. The angle between the scaphoid's first principal axis (longitudinal axis) and the fracture plane was analyzed for location and displacement. The distal radius articular surface was used to depict the volar-dorsal vector of the wrist. There were 86 fractures of the waist, 13 of the distal third, and 25 of the proximal third. The average angle between the scaphoid longitudinal axis and the fracture plane was 53° for all fractures and 56° for waist fractures, both differing significantly from a 90°, transverse fracture. The majority of fracture planes were found to have a volar distal to dorsal proximal (horizontal oblique) inclination relative to the volar-dorsal vector. Most waist fractures were horizontal oblique and not transverse. According to these findings, fixation of all fractures along the longitudinal axis of the scaphoid may not be the optimal mode of fixation for most. A different approach may be needed in accordance with the fracture plane. Diagnostic II. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Large-N Analysis of Three Dimensional Nonlinear Sigma Models
Higashijima, K; Tsuzuki, M; Higashijima, Kiyoshi; Itou, Etsuko; Tsuzuki, Makoto
2005-01-01
Non-perturbative renormalization group approach suggests that a large class of nonlinear sigma models are renormalizable in three dimensional space-time, while they are non-renormalizable in perturbation theory. ${\\cal N}=2$ supersymmetric nonlinear sigma models whose target spaces are Einstein-K\\"{a}hler manifolds with positive scalar curvature belongs to this class. hermitian symmetric spaces, being homogeneous, are specially simple examples of these manifolds. To find an independent evidence of the nonperturbative renormalizability of these models, the large N method, another nonperturbative method, is applied to 3-dimensional ${\\cal N}=2$ supersymmetric nonlinear sigma models on the target spaces $CP^{N-1}=SU(N)/[SU(N-1)\\times U(1)]$ and $Q^{N-2}=SO(N)/[SO(N-2)\\times SO(2)]$, two typical examples of hermitian symmetric spaces. We find that $\\beta$ functions in these models agree with the results of the nonperturbative renormalization group approach in the next-to-leading order of 1/N expansion, and have n...
Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio
2015-12-01
This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.
A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence
Liang, Wenli Z.; Diamond, P. H.
1993-01-01
The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.
Li, Zheng; Chen, Kai; Guo, Meng-zhe; Tang, Dao-quan
2016-01-01
Two-dimensional liquid chromatography has become an attractive analytical tool for the separation of complex samples due to its enhanced selectivity, peak capacity, and resolution compared with one-dimensional liquid chromatography. Recently, more attention has been drawn on the application of this separation technique in studies concerning traditional Chinese medicines, metabonomes, proteomes, and other complex mixtures. In this review, we aim to examine the application of two-dimensional liquid chromatography in traditional Chinese medicine analysis and metabonomic investigation. The classification and evaluation indexes were first introduced. Then, various switching methods were summarized when used in an on-line two-dimensional liquid chromatography system. Finally, the applications of this separation technique in traditional Chinese medicine analysis and metabonomic investigation were discussed on the basis of specific studies.
Finite-key analysis of a practical decoy-state high-dimensional quantum key distribution
Bao, Haize; Bao, Wansu; Wang, Yang; Zhou, Chun; Chen, Ruike
2016-05-01
Compared with two-level quantum key distribution (QKD), high-dimensional QKD enables two distant parties to share a secret key at a higher rate. We provide a finite-key security analysis for the recently proposed practical high-dimensional decoy-state QKD protocol based on time-energy entanglement. We employ two methods to estimate the statistical fluctuation of the postselection probability and give a tighter bound on the secure-key capacity. By numerical evaluation, we show the finite-key effect on the secure-key capacity in different conditions. Moreover, our approach could be used to optimize parameters in practical implementations of high-dimensional QKD.
Three-Dimensional Effects in the Plate Element Analysis of Stitched Textile Composites
Glaessgen, E. H.; Raju, I. S.
2000-01-01
Three-dimensional effects related to the analysis of stitched textile composites are discussed. The method of calculation is based on the virtual crack closure technique (VCCT), and models that model the upper and lower surface of the delamination or debond with two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler geometric modeling. Details of the modeling of the laminated plate and the stitching are discussed.
Zhi-yue Zhang
2002-01-01
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system of three dimensional nonlinear partial differential equations with initial-boundary value problems. In this paper, according to the actual conditions of molecular and three-dimensional characteristic of the problem,we construct the characteristic finite element alternating-direction schemes which can be divided into three continuous one-dimensional problems. By making use of tensor product algorithm, and priori estimation theory and techniques, the optimal order estimates in H1 norm are derived for the error in the approximate solution.
Three-dimensional visualization and analysis in prostate cancer.
Robb, Richard A
2002-03-01
Current and emerging three- and four-dimensional medical imaging modalities, along with development of efficient 3-D computer rendering and modeling of multidimensional volume image data and image-guided navigation, are significantly advancing our capabilities for improved and minimally invasive diagnosis and treatment of prostate cancer, obviating the need for exploratory surgery, physical dissection, blind biopsies and mental reconstruction of anatomy and pathology. Currently, both diagnostic and therapeutic procedures require x-ray fluoroscopy, transrectal ultrasound, CT and/or MRI for assessing the condition of the prostate and/or the outcome of any therapeutic procedure. New imaging approaches based on three-dimensional ultrasound transducers placed on catheters for easy insertion into the urethra are demonstrating significant promise for improved diagnosis and treatment of prostate disease. Microwave thermal ablation shows promise for reduction of prostate size and tumor volume, and preliminary data from cryosurgery suggests improvements in tumor reduction and/or management while minimizing the risk of serious complications. Prostate brachytherapy is becoming a more popular and effective alternative to surgery. All of these methods, either independently or combined through image fusion, are providing an exciting and rapid evolution in capabilities for visualizing the prostate and its anatomic environment, extending from physical to functional forms and from macro to micro orders of scale. Traversing the scale distances between these imaged objects within the prostate and its environs will be made automatic and instantaneous in the near future with the expected advances in miniaturization of powerful computing and electronic sensing elements. Imaging devices will continue to improve in resolution, speed and affordability and will be deployed harmlessly within the body, as well as outside of it. Diagnosis and therapy of prostate disease will become fully
1981-09-01
other enhanced versions such as XTABS and TABS77. The computer program ETABS (15) was released in 1975. The program allows three-dimensional frame...34A Program for Three-Dimensional Static and Dynamic Analysis of Multi- story Buildings," Structural Mechanics Software Series, Vol. II, University...Conference of Building Officials "Uniform Building Code," Whittier, California, 1979. 15. Wilson, E.L., Hollings, J.P., Dovey, H.H. " ETABS , Three
Three-Dimensional Analysis of Zygomatic-Maxillary Complex Fracture Patterns
2010-01-01
Zygomatic-maxillary (ZMC) complex fractures are a common consequence of facial trauma. In this retrospective study, we present a novel method of ZMC fracture pattern analysis, utilizing three-dimensional visualization of computed tomography (CT) images to record displacement of the malar eminence in a three-dimensional coordinate plane. The pattern of fracture was then correlated with treatment outcome. Facial CT scans were obtained from 29 patients with unilateral ZMC fractures and 30 subjec...
3-Dimensional analysis for class III malocclusion patients with facial asymmetry
2013-01-01
Objectives The aim of this study is to investigate the correlation between 2-dimensional (2D) cephalometric measurement and 3-dimensional (3D) cone beam computed tomography (CBCT) measurement, and to evaluate the availability of 3D analysis for asymmetry patients. Materials and Methods A total of Twenty-seven patients were evaluated for facial asymmetry by photograph and cephalometric radiograph, and CBCT. The 14 measurements values were evaluated and those for 2D and 3D were compared. The pa...
Hsu Kimberly K; Lang John C; Butt R Hussain; Churchward Matthew A; Coorssen Jens R
2005-01-01
Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensiona...
Chu, T M; Reddy, N P; Padovan, J
1995-07-01
An asymmetric 3-dimensional finite element model (FEM) of the ankle-foot orthosis (AFO) together with the ankle-foot complex was developed using the computer aided design (CAD) program PATRAN. Static analysis of normal and pathological motions of the ankle-foot complex such as the "drop-foot" problem were conducted using the FEM program ADINA. A total of 313 three dimensional solid elements and 10 truss elements were used. Heel strike and toe-off condition were simulated. Results revealed that the peak compressive stress (1.6 MPa) in the AFO model occurred in the heel regions of the AFO and the maximum tensile stress (0.8 MPa) occurred in the neck region of the AFO during toe-off. Parametric analyses revealed that the model was sensitive to the elastic moduli of the AFO and of the soft tissue, but was relatively insensitive to the ligament stiffness. The results confirmed the hypothesis that peak stresses in the orthosis occur in the heal and neck regions of the orthosis.
Mokken scale analysis of the UPDRS : Dimensionality of the Motor Section revisited
Stochl, Jan; Boomsma, Anne; van Duijn, Marijtje; Brozova, Hana; Ruzicka, Evzen
2008-01-01
The dimensionality and reliability of the Motor Section of the Unified Parkinson Disease Rating Scale (UPDRS III) was studied with non-parametric Mokken scale analysis. UPDRS measures were obtained on 147 patients with PD (96 men, 51 women, mean age 61, range 35-80 yrs). Mokken scale analysis reveal
Modern methods of analysis for three-dimensional orientational data
Davis, Joshua R.; Titus, Sarah J.
2017-03-01
Structural geology studies commonly include data about orientations of objects in space. By ;orientation; we mean not just a single direction, such as a foliation pole or the long axis of an ellipsoid, but a complete three-dimensional orientation of a body such as a foliation-lineation pair, a fold, an ellipsoid, etc. Over the past four decades, researchers in various fields have developed theory and algorithms for dealing with such data. In this paper, we explain how to apply orientation statistics to common geologic data types. We review plotting systems, measures of location and dispersion, inference (confidence/credible regions and hypothesis tests) for population means, and regression. We pay special attention to methods that work for small sample sizes and widely dispersed data. Our original contributions include a concept of Kamb contouring for orientations, a technique for handling anisotropy in confidence/credible regions, and large-scale numerical experiments on the performance of various inference methods. We conclude with a detailed study of foliation-lineations from the western Idaho shear zone, using statistical results to argue that the data are not consistent with a published model for them.
Aeroelastic Calculations Based on Three-Dimensional Euler Analysis
Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.
1998-01-01
This paper presents representative results from an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic code (TURBO). Unsteady pressure, lift, and moment distributions are presented for a helical fan test configuration which is used to verify the code by comparison to two-dimensional linear potential (flat plate) theory. The results are for pitching and plunging motions over a range of phase angles, Good agreement with linear theory is seen for all phase angles except those near acoustic resonances. The agreement is better for pitching motions than for plunging motions. The reason for this difference is not understood at present. Numerical checks have been performed to ensure that solutions are independent of time step, converged to periodicity, and linearly dependent on amplitude of blade motion. The paper concludes with an evaluation of the current state of development of the TURBO-AE code and presents some plans for further development and validation of the TURBO-AE code.
Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis
Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.
2013-12-01
Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.
Multigroup Equivalence Analysis for High-Dimensional Expression Data
Yang, Celeste; Bartolucci, Alfred A.; Cui, Xiangqin
2015-01-01
Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression data. We adapted these tests to a well-known equivalence criterion, the difference ratio. Our simulation results showed that both tests can achieve moderate power while controlling the type I error at nominal level for typical expression microarray studies with the benefit of easy-to-interpret equivalence limits. For the range of parameters simulated in this paper, the F-test is more powerful than the range test. However, for comparing three groups, their powers are similar. Finally, the two multigroup tests were applied to a prostate cancer microarray dataset to identify genes whose expression follows a prespecified trajectory across five prostate cancer stages. PMID:26628859
Multigroup Equivalence Analysis for High-Dimensional Expression Data.
Yang, Celeste; Bartolucci, Alfred A; Cui, Xiangqin
2015-01-01
Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression data. We adapted these tests to a well-known equivalence criterion, the difference ratio. Our simulation results showed that both tests can achieve moderate power while controlling the type I error at nominal level for typical expression microarray studies with the benefit of easy-to-interpret equivalence limits. For the range of parameters simulated in this paper, the F-test is more powerful than the range test. However, for comparing three groups, their powers are similar. Finally, the two multigroup tests were applied to a prostate cancer microarray dataset to identify genes whose expression follows a prespecified trajectory across five prostate cancer stages.
Analysis of secondary coxarthrosis by three dimensional computed tomography
Hemmi, Osamu [Keio Univ., Tokyo (Japan). School of Medicine
1997-11-01
The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan`s distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)
Sharpening the shape analysis for higher-dimensional operator searches
Fichet, Sylvain; Tonero, Alberto; Teles, Patricia Rebello
2017-08-01
When the Standard Model is interpreted as the renormalizable sector of a low-energy effective theory, the effects of new physics are encoded into a set of higher-dimensional operators. These operators potentially deform the shapes of Standard Model differential distributions of final states observable at colliders. We describe a simple and systematic method to obtain optimal estimations of these deformations when using numerical tools, like Monte Carlo simulations. A crucial aspect of this method is minimization of the estimation uncertainty: We demonstrate how the operator coefficients have to be set in the simulations in order to get optimal results. The uncertainty on the interference term turns out to be the most difficult to control and grows very quickly when the interference is suppressed. We exemplify our method by computing the deformations induced by the O3 W operator in W+W- production at the LHC, and by deriving a bound on O3 W using 8 TeV CMS data.
Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.
2016-01-01
Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative
Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.
Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative
Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.
Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E
2017-02-14
Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.
A latent factor linear mixed model for high-dimensional longitudinal data analysis.
An, Xinming; Yang, Qing; Bentler, Peter M
2013-10-30
High-dimensional longitudinal data involving latent variables such as depression and anxiety that cannot be quantified directly are often encountered in biomedical and social sciences. Multiple responses are used to characterize these latent quantities, and repeated measures are collected to capture their trends over time. Furthermore, substantive research questions may concern issues such as interrelated trends among latent variables that can only be addressed by modeling them jointly. Although statistical analysis of univariate longitudinal data has been well developed, methods for modeling multivariate high-dimensional longitudinal data are still under development. In this paper, we propose a latent factor linear mixed model (LFLMM) for analyzing this type of data. This model is a combination of the factor analysis and multivariate linear mixed models. Under this modeling framework, we reduced the high-dimensional responses to low-dimensional latent factors by the factor analysis model, and then we used the multivariate linear mixed model to study the longitudinal trends of these latent factors. We developed an expectation-maximization algorithm to estimate the model. We used simulation studies to investigate the computational properties of the expectation-maximization algorithm and compare the LFLMM model with other approaches for high-dimensional longitudinal data analysis. We used a real data example to illustrate the practical usefulness of the model. Copyright © 2013 John Wiley & Sons, Ltd.
Three-dimensional facial surface analysis of patients with skeletal malocclusion.
Alves, Patrícia Valéria Milanezi; Zhao, Linping; Patel, Pravin K; Bolognese, Ana M
2009-03-01
Three-dimensional (3D) laser surface scanning analysis has taken hold in orthodontics, as well as craniomaxillofacial and plastic surgery as a new tool that can navigate away from the limitations of conventional two-dimensional methods. Various techniques for 3D reconstruction of the face have been used in diagnosis, treatment planning and simulation, and outcomes follow-up. The aim of the current prospective study was to present some technical aspects for the assessment of facial changes after orthodontic and orthognathic surgery treatment using 3D laser surface scanning. The technique proposed for facial surface shape analysis represented three-dimensionally the expected surgical changes, and the reduction of the postoperative swelling was verified. This study provides technical information from the data collection to the 3D virtual soft-tissue analysis that can be useful for diagnostic information, treatment planning, future comparisons of treatment stability or facial postoperative swelling, and soft-tissue profile assessment.
Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.
Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng
2016-09-15
In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.
Three-dimensional linear system analysis for breast tomosynthesis
Zhao, Bo; Zhao, Wei
2008-01-01
The optimization of digital breast tomosynthesis (DBT) geometry and reconstruction is crucial for the clinical translation of this exciting new imaging technique. In the present work, the authors developed a three-dimensional (3D) cascaded linear system model for DBT to investigate the effects of detector performance, imaging geometry, and image reconstruction algorithm on the reconstructed image quality. The characteristics of a prototype DBT system equipped with an amorphous selenium flat-panel detector and filtered backprojection reconstruction were used as an example in the implementation of the linear system model. The propagation of signal and noise in the frequency domain was divided into six cascaded stages incorporating the detector performance, imaging geometry, and reconstruction filters. The reconstructed tomosynthesis imaging quality was characterized by spatial frequency dependent presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in 3D. The results showed that both MTF and NPS were affected by the angular range of the tomosynthesis scan and the reconstruction filters. For image planes parallel to the detector (in-plane), MTF at low frequencies was improved with increase in angular range. The shape of the NPS was affected by the reconstruction filters. Noise aliasing in 3D could be introduced by insufficient voxel sampling, especially in the z (slice-thickness) direction where the sampling distance (slice thickness) could be more than ten times that for in-plane images. Aliasing increases the noise at high frequencies, which causes degradation in DQE. Application of a reconstruction filter that limits the frequency components beyond the Nyquist frequency in the z direction, referred to as the slice thickness filter, eliminates noise aliasing and improves 3D DQE. The focal spot blur, which arises from continuous tube travel during tomosynthesis acquisition, could degrade DQE significantly
Three-dimensional geometric analysis of felid limb bone allometry.
Michael Doube
Full Text Available BACKGROUND: Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry. METHOD/PRINCIPAL FINDINGS: Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. CONCLUSIONS/SIGNIFICANCE: Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.
Three-dimensional geometric analysis of felid limb bone allometry.
Doube, Michael; Wiktorowicz-Conroy, Alexis; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R; Shefelbine, Sandra
2009-01-01
Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.
Electrothermal Analysis of Three-Dimensional Integrated Circuits
Harris, Theodore Robert
2011-12-01
Transient electro-thermal simulation of a three dimensional integrated circuit (3DIC) is reported that uses a cell-based simulation to provide a selected transistor thermal profile while providing advantages of hierarchical simulation. Due to CPU and memory limitations, full transistor electro-thermal simulations on a useful scale are not possible. Standard cells are considered on a per-instance basis and modeled with electro-thermal macro-models developed in a multi-physics simulator. Simulations are compared favorably to measurements for a token-generating 3DIC clocking at a maximum of 1 GHz. The 3DIC, which is composed of 9 by 3 layers of repetitive frequency multipliers and dividers, was fabricated with the Massachusetts Institute of Technology Lincoln Laboratory (MITLL) 3DIC process. Measurements indicated a linear rise in temperature of the active areas over a range of applied background ambient temperatures. An average of 7.5 K change in temperature was measured across dense areas of circuitry. For thermal simulation, the physical characteristics of the 3DIC were extracted from flattened OpenAccess layout files. Material parameters, connections, and geometries were considered in order to create a more physically accurate resistive thermal mesh. Physical thermal networks extracted with resolutions of 10 mum and 5 mum connect thermal terminals of the electrothermal macromodel cell elements to active layers yielding temporal and spatial simulated dynamic thermal results in three dimensions. Coupled with model-order reduction techniques, hierarchical dynamic electrothermal simulation of large 3DICs is shown to be tractable, yielding spatial and temporal selected transistor-level thermal profiles.
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is
Two-dimensional finite-element temperature variance analysis
Heuser, J. S.
1972-01-01
The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.
[Three-Dimensional Ultrasonic Gait Analysis in Schizophrenic Patients
Putzhammer, Albert; Heindl, Bernhard; Müller, Jürgen; Broll, Karin; Pfeiff, Liane; Perfahl, Maria; Hess, Linda; Koch, Horst
2003-05-01
Schizophrenic disorders as well as neuroleptic treatment can affect locomotion. The study assessed the influence of neuroleptic treatment on human gait via ultrasonic topometric gait analysis. In a control sample the test system proved high test-retest-reliability. Spatial and temporal gait parameters were assessed in schizophrenic patients without neuroleptic treatment (n = 12) and under treatment with conventional neuroleptics (n = 14) and re-assessed after treatment change to the atypical neuroleptic olanzapine in a repeated measures design. After switch from conventional neuroleptics to olanzapine patients showed an increase of gait velocity (p step length (p gait analysis.
Xi, Caiping; Zhang, Shunning; Xiong, Gang; Zhao, Huichang
2016-07-01
Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signal. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two-dimensional multifractal detrended fluctuation analysis (2D-MFDFA) and two-dimensional multifractal detrended moving average (2D-MFDMA) algorithm, and a detailed description of the application of the two-dimensional fractal signal processing by using the two methods. By applying the 2D-MFDFA and 2D-MFDMA to the series generated from the two-dimensional multiplicative cascading process, we systematically do the comparative analysis to get the advantages, disadvantages and the applicabilities of the two algorithms for the first time from six aspects such as the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders and the calculation amount. The results provide a valuable reference on how to choose the algorithm from 2D-MFDFA and 2D-MFDMA, and how to make the schemes of the parameter settings of the two algorithms when dealing with specific signals in practical applications.
Designing Progressive and Interactive Analytics Processes for High-Dimensional Data Analysis.
Turkay, Cagatay; Kaya, Erdem; Balcisoy, Selim; Hauser, Helwig
2017-01-01
In interactive data analysis processes, the dialogue between the human and the computer is the enabling mechanism that can lead to actionable observations about the phenomena being investigated. It is of paramount importance that this dialogue is not interrupted by slow computational mechanisms that do not consider any known temporal human-computer interaction characteristics that prioritize the perceptual and cognitive capabilities of the users. In cases where the analysis involves an integrated computational method, for instance to reduce the dimensionality of the data or to perform clustering, such non-optimal processes are often likely. To remedy this, progressive computations, where results are iteratively improved, are getting increasing interest in visual analytics. In this paper, we present techniques and design considerations to incorporate progressive methods within interactive analysis processes that involve high-dimensional data. We define methodologies to facilitate processes that adhere to the perceptual characteristics of users and describe how online algorithms can be incorporated within these. A set of design recommendations and according methods to support analysts in accomplishing high-dimensional data analysis tasks are then presented. Our arguments and decisions here are informed by observations gathered over a series of analysis sessions with analysts from finance. We document observations and recommendations from this study and present evidence on how our approach contribute to the efficiency and productivity of interactive visual analysis sessions involving high-dimensional data.
3-dimensional terahertz imaging and analysis of historical art pieces
Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd
Imaging with terahertz (THz) waves offers the capability of seeing through traditionally opaque materials, with maintaining a spatial resolution comparable to that of the naked eye. The use of ultrashort THz pulses allow for depth resolved imaging by time-of-flight analysis of reflected signals...
Thermoviscoelastic Analysis of Dimensionally Stable Fiber Composite Space Structures.
1984-08-01
strains which are constant in time and the latter - the response to average stresses constant in time . For details see [3]. However, unlike the...to be nearly constant in time . Having determined the composite response to step mechanical and temperature loadings, an analysis was performed
System for three-dimensional biomechanical analysis of joints
Siebert, Markus; Englmeier, Karl-Hans; von Eisenhart-Rothe, Ruediger; Bringmann, Christoph; Eckstein, Felix; Bonel, H.; Reiser, Maximilian; Graichen, Heiko
2002-04-01
We developed 3D MR based image processing methods for biomechanical analysis of joints. These methods provide quantitative data on the morphological distribution of the joint cartilage as well as biomechanical analysis of relative translation and rotation of joints. After image data acquisition in an open MR system, the segmentation of the different joint structures was performed by a semi automatic technique based on a gray value oriented region growing algorithm. After segmentation 3D reconstructions of cartilage and bone surfaces were performed. Principal axis decomposition is used to calculate a reproducible tibia plateau based coordinate system that allows the determination of relative rotation and translation of the condyles and menisci in relation to the tibia plateau. The analysis of the femoral movement is based on a reproducible, semi automatic calculated epicondylar axis. The analysis showed a posterior translation of the meniscus and even more of the femur condyles in healthy knees and in knees with an insufficiency of the anterior cruciate ligament (ACL).
Cheng, Hongyuan; Friis, Alan
2010-01-01
A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...... and temperature, are formed to model the extrusion process from dimensional analysis. The model is evaluated with experimental data for extrusion of whole wheat flour and fish feed. The average deviations of the model correlations are 5.9% and 9% based on experimental data for the whole wheat flour and fish feed...
THREE DIMENSIONAL MULTIPHASE COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF VENTILATED SUPERCAVITATION
YANG Wugang; ZHANG Yuwen; YANG Jie; ZUO Liankai
2008-01-01
For some vehicles travelling through water, it is advantageous to cover the vehicle in a supercavity for the sake of reducing the drag acting on it. The method of artificial ventilation is most effective for generating and dominating the supercavity. This paper focuses on the numerical simulation of flow field around three dimensional body. The method is based on the multiphase computational fluid dynamics (CFD) model combined with the turbulence model and the full cavity model. The flow field of cavity is simulated by solving the compressible Navier-Stokes equations. The fundamental similarity parameters of ventilated supercavitaty flows that include cavitation number, Froude number, ventilation rate and drag coefficient are all investigated numerically in the case of steady flow and gravity field. We discuss the following simulations results in section 3: The variations of the cavitation number and the supercavity's relative diameter with ventilation rate (subtopic 3.1); The drag coefficient versus the cavitation number (subtopic 3.2); Deformation of supercavity axis caused by gravitational effect for three different fixed Froude numbers-2.8, 3.4, 4.2 (subtopic 3.3). In subtopic 3.2, we give the comparison results of the drag reduction ratio among numerical simulation and experiment conducted in hydrodynamic tunnel and towing tank respectively. In subtopic 3.3, we summarize our discussion of gravitational effect on the axis deformation of supercavity as follows: In the case of smaller Froude number, the inclination of the cavity axis increases monotonously with increasing horizontal length, and reaches its maximal value at the end of supercavity; This deformation can be almost completely negligible when the Froude number Fr>7. The comparisons with the experimental data in the hydrodynamic tunnel and the towing tank indicate that the present method is effective for predicting the flows around ventilated supercavity; that the numerical results is in good agreement
Three-dimensional Transient Analysis in the Upper Plenum of MONJU with MARS-LMR
Lee, Kwi-Lim; Jeong, Jae-Ho; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
The JAEA had provided a detailed geometrical data of the reactor vessel upper plenum, and time-dependent inlet conditions of the flow rate and temperature at the reactor core top surface for the transient analysis. The KAERI(Korea Atomic Energy Research Institute) had studied a numerical analysis of thermal stratification in an upper plenum of the MONJU using the MARS-LMR code. Three-dimensional analysis results have a good agreement with the experimental data and also show a better estimation than that of the one-dimensional analysis. Three-dimensional thermal hydraulic analyses are implemented in MARS-LMR code to validate the thermal-hydraulic models of the MARS-LMR code and identify important phenomena such as buoyancy effect and thermal stratification. The results of a 3-D analysis show a better estimation than that of a 1-D analysis. In the steady-state calculation, the total flow rate through UFHs is larger than that of the LFHs unlike a result of a 1-D calculation due to a dominant radial-flow instead of an over-flow by a geometrical interruption of an axially located fuel handling system. In the transient calculation, the sodium keeps overflowing an inner barrel during a simulation time of 3600 sec in the 3-D analysis. As a result, sodium over UFHs steadily continues to be cooled in the 3-D analysis. However, a calculated temperature at the 9th node near the top of an inner barrel is lower than an experimental data. It is considered to be caused by a modeling of an over-flow region as one dimensional volume, because the overflow region has a multi-dimensional flow.
A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows
Montgomery, Matthew D.; Verdon, Joseph M.
1997-01-01
A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.
Two-dimensional thin-layer chromatography in the analysis of secondary plant metabolites.
Cieśla, Lukasz; Waksmundzka-Hajnos, Monika
2009-02-13
Drugs, derived from medicinal plants, have been enjoying a renaissance in the last years. It is due to a great pharmacological potential of herbal drugs, as many natural compounds have been found to exhibit biological activity of wide spectrum. The introduction of whole plants, plant extracts, or isolated natural compounds has led to the need to create the analytical methods suitable for their analysis. The identification of isolated substances is relatively an easy task, but the analysis of plant extracts causes a lot of problems, as they are usually very complex mixtures. Chromatographic methods are one of the most popular techniques applied in the analysis of natural mixtures. Unfortunately the separation power of traditional, one-dimensional techniques, is usually inadequate for separation of more complex samples. In such a case the use of multidimensional chromatography is advised. Planar chromatography gives the possibility of performing two-dimensional separations with the use of one adsorbent with two different eluents or by using bilayer plates or graft thin-layer chromatography (TLC) technique; combinations of different multidimensional techniques are also possible. In this paper, multidimensional planar chromatographic methods, commonly applied in the analysis of natural compounds, were reviewed. A detailed information is given on the methodology of performing two-dimensional separations on one adsorbent, on bilayer plates, with the use of graft TLC and hyphenated methods. General aspects of multidimensionality in liquid chromatography are also described. Finally a reader will find a description of variable two-dimensional methods applied in the analysis of compounds, most commonly encountered in plant extracts. This paper is aimed to draw attention to the potential of two-dimensional planar chromatography in the field of phytochemistry. It may be useful for those who are interested in achieving successful separations of multicomponent mixtures by means
Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.
Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis
2015-01-01
Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the
Three dimensional mathematical model of tooth for finite element analysis
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Three-dimensional Multi-probe Analysis of A1689
Umetsu, Keiichi; Medezinski, Elinor; Nonino, Mario; Mroczkowski, Tony; Diego, Jose M; Ettori, Stefano; Okabe, Nobuhiro; Broadhurst, Tom; Lemze, Doron
2015-01-01
We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRi'z' Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zel'dovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of $c_{200c}^{2D}=8.9\\pm 1.1$ ($c_{vir}^{2D}\\sim 11$), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with mi...
Ellis, S.; Giometti, C. S.; Riley, D. A.
1985-01-01
Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.
Two Dimensional Spatial Independent Component Analysis and Its Application in fMRI Data Process
CHEN Hua-fu; YAO De-zhong
2005-01-01
One important application of independent component analysis (ICA) is in image processing. A two dimensional (2-D) composite ICA algorithm framework for 2-D image independent component analysis (2-D ICA) is proposed. The 2-D nature of the algorithm provides it an advantage of circumventing the roundabout transforming procedures between two dimensional (2-D) image data and one-dimensional (1-D) signal. Moreover the combination of the Newton (fixed-point algorithm) and natural gradient algorithms in this composite algorithm increases its efficiency and robustness. The convincing results of a successful example in functional magnetic resonance imaging (fMRI) show the potential application of composite 2-D ICA in the brain activity detection.
Three-dimensional Motion Analysis of the Ankle during Backward Walking.
Soda, Naoki; Ueki, Tsutomu; Aoki, Takaaki
2013-06-01
[Purpose] The purpose of this study was to perform kinematic and kinetic analyses of the ankle during both forward and backward walking using three-dimensional motion analysis. [Subjects] The subjects were 11 healthy adults. [Methods] Measurements of forward and backward walking motions were taken using a three-dimensional motion analysis device and 3 ground reaction force plates. The analysis segment was the standing phase and the items analyzed were walking time, maximum dorsal flexion of the ankle, maximum angle of plantar flexion, peak ankle power in the sagittal plane, workload of the ankle, and work rate. Statistical analysis consisted of comparisons using the t-test for each of the items measured during both forward and backward walking. [Results] The backward walking group had significantly lower ankle power, workload, and work rate. [Conclusion] The propulsive force in backward walking must come from some factor other than the ankle. The analysis of joint power is an important index for understanding the motion.
Three-dimensional surface model analysis in the gastrointestinal tract
Donghua Liao; Jens B Fr(φ)kj(ae)r; Jian Yang; Jingbo Zhao; Asbj(φ)rn M Drewes; Odd H Gilja; Hans Gregersen
2006-01-01
The biomechanical changes during functional loading and unloading of the human gastrointestinal (GI) tract are not fully understood. GI function is usually studied by introducing probes in the GI lumen. Computer modeling offers a promising alternative approach in this regard, with the additional ability to predict regional stresses and strains in inaccessible locations. The tension and stress distributions in the GI tract are related to distensibility (tension-strain relationship) and smooth muscle tone. More knowledge on the tension and stress on the GI tract are needed to improve diagnosis of patients with gastrointestinal disorders. A modeling framework that can be used to integrate the physiological,anatomical and medical knowledge of the GI system has recently been developed. The 3-D anatomical model was constructed from digital images using ultrasonography,computer tomography (CT) or magnetic resonance imaging (MRI). Different mathematical algorithms were developed for surface analysis based on thin-walled structure and the finite element method was applied for the mucosa-folded three layered esophageal model analysis.The tools may be useful for studying the geometry and biomechanical properties of these organs in health and disease. These studies will serve to test the structurefunction hypothesis of geometrically complex organs.
Three-dimensional analysis of slopes reinforced with piles
高玉峰; 叶茂; 张飞
2015-01-01
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.
Software Tools for Robust Analysis of High-Dimensional Data
Valentin Todorov
2014-06-01
Full Text Available The present work discusses robust multivariate methods specifically designed for highdimensions. Their implementation in R is presented and their application is illustratedon examples. The first group are algorithms for outlier detection, already introducedelsewhere and implemented in other packages. The value added of the new package isthat all methods follow the same design pattern and thus can use the same graphicaland diagnostic tools. The next topic covered is sparse principal components including anobject oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani(2006 and the robust one proposed by Croux, Filzmoser, and Fritz (2013. Robust partialleast squares (see Hubert and Vanden Branden 2003 as well as partial least squares fordiscriminant analysis conclude the scope of the new package.
Analysis of the high dimensional naming game with committed minorities
Pickering, William; Lim, Chjan
2015-01-01
The naming game has become an archetype for linguistic evolution and mathematical social behavioral analysis. In the model there are $N$ individuals and $K$ words, and we primarily consider arbitrary $K$. In particular, we develop a robust method that handles the case when $K=O(N)$. The initial condition plays a crucial role in the ordering of the system. We find that if the system has high Shannon entropy, then the system has a higher consensus time and a lower critical fraction of zealots compared to low entropy states. We also provide estimates which show that the critical number of committed agents decreases with the number of opinions, and grows with the community size for each word. These results reinforce the maxims "divide and conquer" and "strength in numbers" in opinion propagation.
Two-dimensional gel-based protein standardization verified by western blot analysis.
Haniu, Hisao; Watanabe, Daisuke; Kawashima, Yusuke; Matsumoto, Hiroyuki
2015-01-01
In data presentation of biochemical investigation the amount of a target protein is shown in the y-axis against the x-axis representing time, concentrations of various agents, or other parameters. Western blot is a versatile and convenient tool in such an analysis to quantify and display the amount of proteins. In western blot, so-called housekeeping gene product(s), or "housekeeping proteins," are widely used as internal standards. The rationale of using housekeeping proteins for standardization of western blot is based on the assumption that the expression of chosen housekeeping gene is always constant, which could be false under certain physiological or pathological conditions. We have devised a two-dimensional gel-based standardization method in which the protein content of each sample is determined by scanning the total protein density of two-dimensional gels and the expression of each protein is quantified as the density ratio of each protein divided by the density of the total proteins on the two-dimensional gel. The advantage of this standardization method is that it is not based on any presumed "housekeeping proteins" that are supposed to be being expressed constantly under all physiological conditions. We will show that the total density of a two-dimensional gel can render a reliable protein standardization parameter by running western blot analysis on one of the proteins analyzed by two-dimensional gels.
Nguyen, Lan K; Degasperi, Andrea; Cotter, Philip; Kholodenko, Boris N
2015-07-29
Biochemical networks are dynamic and multi-dimensional systems, consisting of tens or hundreds of molecular components. Diseases such as cancer commonly arise due to changes in the dynamics of signalling and gene regulatory networks caused by genetic alternations. Elucidating the network dynamics in health and disease is crucial to better understand the disease mechanisms and derive effective therapeutic strategies. However, current approaches to analyse and visualise systems dynamics can often provide only low-dimensional projections of the network dynamics, which often does not present the multi-dimensional picture of the system behaviour. More efficient and reliable methods for multi-dimensional systems analysis and visualisation are thus required. To address this issue, we here present an integrated analysis and visualisation framework for high-dimensional network behaviour which exploits the advantages provided by parallel coordinates graphs. We demonstrate the applicability of the framework, named "Dynamics Visualisation based on Parallel Coordinates" (DYVIPAC), to a variety of signalling networks ranging in topological wirings and dynamic properties. The framework was proved useful in acquiring an integrated understanding of systems behaviour.
Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.
Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B
2015-02-01
Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for extracting correlations between image voxels and outcome measurements are not ideal for multimodal datasets, as they do not account for interactions between the different modalities. The extremely high dimensionality of medical images necessitates dimensionality reduction, such as principal component analysis (PCA) or independent component analysis (ICA). These dimensionality reduction techniques, however, consist of contributions from every region in the brain and are therefore difficult to interpret. Recent advances in sparse dimensionality reduction have enabled construction of a set of image regions that explain the variance of the images while still maintaining anatomical interpretability. The projections of the original data on the sparse eigenvectors, however, are highly collinear and therefore difficult to incorporate into multi-modal image analysis pipelines. We propose here a method for clustering sparse eigenvectors and selecting a subset of the eigenvectors to make interpretable predictions from a multi-modal dataset. Evaluation on a publicly available dataset shows that the proposed method outperforms PCA and ICA-based regressions while still maintaining anatomical meaning. To facilitate reproducibility, the complete dataset used and all source code is publicly available. Copyright © 2014 Elsevier Inc. All rights reserved.
Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.
McDermott, Ailish
2010-10-01
Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.
High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm
Cai, Li
2010-01-01
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm
Cai, Li
2010-01-01
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen
Buntat, Z; Smith, I R
2003-01-01
This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.
Korytar, P.; Haglund, P.; Boer, de J.; Brinkman, U.A.Th.
2006-01-01
We explain the principles of comprehensive two-dimensional gas chromatography (GC × GC), and discuss key instrumental aspects - with emphasis on column combinations and mass spectrometric detection. As the main item of interest, we review the potential of GC × GC for the analysis of organohalogenate
Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics
Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.
2007-01-01
We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…
A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis
Abrahamsen, Trine Julie; Hansen, Lars Kai
2011-01-01
Small sample high-dimensional principal component analysis (PCA) suffers from variance inflation and lack of generalizability. It has earlier been pointed out that a simple leave-one-out variance renormalization scheme can cure the problem. In this paper we generalize the cure in two directions...
Dual $n_1$-Appell-like Systems in Infinite-Dimensional Analysis
Kachanovsky, N A
1997-01-01
We introduce and study dual $n_1$-Appell-like systems which are the simple generalization of generalized dual Appell systems in Infinite-Dimensional Analysis (IDA). We study connected with these systems objects of IDA: the analogues of Kondratiev spaces, $S$-transform, characterization theorems etc. The results we obtained are useful to application in the theory of probability.
Methods of numerical analysis of 1-dimensional 2-body problem in Wheeler-Feynman electrodynamics
Klimenko, S. V.; Nikitin, I. N.; Urazmetov, W. F.
2000-04-01
Numerical methods for solution of differential equations with deviating arguments describing 1-dimensional ultra-relativistic scattering of 2 identical charged particles in classical electrodynamics with half-retarded/halfadvanced interaction (Wheeler and Feynman, 1949) are developed. A bifurcation of solutions and violation of their reflectional symmetries in the region of velocities v>0.937c are found in numerical analysis.
Korytar, P.; Haglund, P.; Boer, de J.; Brinkman, U.A.Th.
2006-01-01
We explain the principles of comprehensive two-dimensional gas chromatography (GC × GC), and discuss key instrumental aspects - with emphasis on column combinations and mass spectrometric detection. As the main item of interest, we review the potential of GC × GC for the analysis of organohalogenate
Quantitative analysis of target components by comprehensive two-dimensional gas chromatography
Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van
2003-01-01
Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms. I
A note on the Painleve analysis of a (2 + 1) dimensional Camassa-Holm equation
Gordoa, P.R. [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Pickering, A. [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Senthilvelan, M. [Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024 (India)]. E-mail: senthilvelan@cnld.bdu.ac.in
2006-06-15
We investigate the Painleve analysis for a (2 + 1) dimensional Camassa-Holm equation. Our results show that it admits only weak Painleve expansions. This then confirms the limitations of the Painleve test as a test for complete integrability when applied to non-semilinear partial differential equations.
Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence
Tagawa, Y.; Martinez Mercado, J.; Nagendra Prakash, Vivek; Calzavarini, E.; Sun, Chao; Lohse, Detlef
2012-01-01
Three-dimensional Voronoï analysis is used to quantify the clustering of inertial particles in homogeneous isotropic turbulence using data sets from numerics in the point particle limit and one experimental data set. We study the clustering behaviour at different density ratios, particle response
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...
Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence
Tagawa, Y.; Martinez Mercado, J.; Nagendra Prakash, Vivek; Calzavarini, E.; Sun, Chao; Lohse, Detlef
2012-01-01
Three-dimensional Voronoï analysis is used to quantify the clustering of inertial particles in homogeneous isotropic turbulence using data sets from numerics in the point particle limit and one experimental data set. We study the clustering behaviour at different density ratios, particle response ti
Mathematical Description of Wafer-1, a Three-Dimensional Code for LWR Fuel Performance Analysis
Kjær-Pedersen, Niels
1975-01-01
This article describes in detail the mathematical formulation used in the WAFER-1 code, which is presently used for three-dimensional analysis of LWR fuel pin performance. The code aims at a prediction of the local stress-strain history in the cladding, especially with regard to the ridging pheno...
FORMULATIONS OF THE THREE-DIMENSIONAL DISCONTINUOUS DEFORMATION ANALYSIS METHOD
LIU Jun; KONG Xianjing; LIN Gao
2004-01-01
This paper extends the original 2D discontinuous deformation analysis (DDA) method proposed by Shi to 3D cases, and presents the formulations of the 3D DDA. The formulations maintain the characteristics of the original 2D DDA approach. Contacts between the blocks are detected by using Common-Plane (C-P) approach and the non-smooth contact, such as of vertex-to-vertex, vertex-to-edge and edge-to-edge types, can be handled easily based on the C-P method. The matrices of equilibrium equations have been given in detail for programming purposes. The C program codes for the 3D DDA are developed. The ability and accuracy of the formulations and the program are verified by the analytical solutions of several dynamic examples. The robustness and versatility of the algorithms presented in this paper are demonstrated with the aid of an example of scattering of densely packed cubes. Finally, implications and future extensions are discussed.
Relationship between alexithymia and dependent personality disorder: a dimensional analysis.
Loas, Gwenolé; Baelde, Olympe; Verrier, Annie
2015-02-28
The present study had two aims and used two different samples. The first aim was to determine if alexithymia and dependent personality disorder (DPD) are distinct or overlapping constructs. The second aim was to determine the specificity and the stability of the relationship between alexithymia and DPD. The first study used exploratory principal components analysis (PCA) in a sample of 477 non-clinical subjects who completed three questionnaires measuring alexithymia (Twenty item Toronto Alexithymia Scale, i.e. TAS-20), dependent personality disorder (Dependent Personality Questionnaire, i.e. DPQ) and depression (Beck Depression Inventory-II, i.e. BDI-II). The second study used a sample of 305 subjects consecutively admitted to an outpatient department of legal medicine. The subjects completed (at admission and 3 months later) the Structured Clinical Interview for DSM-IV, screen questionnaire (SCID-II-SQ), the TAS-20 and the BDI. Multiple regressions were done. For the first study, the PCA yielded a four-factor solution with no overlap of the significant factor loadings for the items from each scale and with the factors corresponding to their respective construct. For the second study, multiple regressions showed that only avoidant personality disorder was an independent predictor of the TAS-20 scores. Alexithymia is a construct that is distinct and separate from DPD and depression. Alexithymia is not a stable feature of DPD while it is a core feature of avoidant personality disorder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Imploding Ignition Waves. I. One-dimensional Analysis
Kushnir, Doron; Livne, Eli; Waxman, Eli
2012-06-01
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R crit. An approximate analytic expression for R crit is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R crit ~ 100 μm (spherical) and R crit ~ 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales GtR crit. Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R crit within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.
IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS
Kushnir, Doron; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Livne, Eli [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)
2012-06-20
We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R{sub crit}. An approximate analytic expression for R{sub crit} is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R{sub crit} {approx} 100 {mu}m (spherical) and R{sub crit} {approx} 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R{sub crit}. Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R{sub crit} within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.
Sparse linear discriminant analysis by thresholding for high dimensional data
Shao, Jun; Deng, Xinwei; Wang, Sijian; 10.1214/10-AOS870
2011-01-01
In many social, economical, biological and medical studies, one objective is to classify a subject into one of several classes based on a set of variables observed from the subject. Because the probability distribution of the variables is usually unknown, the rule of classification is constructed using a training sample. The well-known linear discriminant analysis (LDA) works well for the situation where the number of variables used for classification is much smaller than the training sample size. Because of the advance in technologies, modern statistical studies often face classification problems with the number of variables much larger than the sample size, and the LDA may perform poorly. We explore when and why the LDA has poor performance and propose a sparse LDA that is asymptotically optimal under some sparsity conditions on the unknown parameters. For illustration of application, we discuss an example of classifying human cancer into two classes of leukemia based on a set of 7,129 genes and a training ...
Probabilistic analysis on fault tolerance of 3-Dimensional mesh networks
王高才; 陈建二; 王国军; 陈松乔
2003-01-01
The probability model is used to analyze the fault tolerance of mesh. To simplify its analysis, it is as-sumed that the failure probability of each node is independent. A 3-D mesh is partitioned into smaller submeshes,and then the probability with which each submesh satisfies the defined condition is computed. If each submesh satis-fies the condition, then the whole mesh is connected. Consequently, the probability that a 3-D mesh is connected iscomputed assuming each node has a failure probability. Mathematical methods are used to derive a relationship be-tween network node failure probability and network connectivity probability. The calculated results show that the 3-D mesh networks can remain connected with very high probability in practice. It is formally proved that when thenetwork node failure probability is boutded by 0.45 %, the 3-D mesh networks of more than three hundred thousandnodes remain connected with probability larger than 99 %. The theoretical results show that the method is a power-ful technique to calculate the lower bound of the connectivity probability of mesh networks.
User’s Guide: Computer Program for Three-Dimensional Analysis of Building Systems (CTABS80).
1981-08-01
version of TABS and is intended to supercede other enhanced versions such as XTABS and TABS77. The computer program ETABS (15) was released in 1975...Static and Dynamic Analysis of Multi- story Buildings," Structural Mechanics Software Series, Vol. II, University Press of Virginia, 1978. 4. Peterson, F.E...Building Code," Whittier, California, 1979. 15. Wilson, E.L., Hollings, J.P., Dovey, H.H. " ETABS , Three Dimensional Analysis of Building Systems
Lethiec, Clotilde; Laverdant, Julien; Vallon, Henri; Javaux, Clémentine; Dubertret, Benoît; Frigerio, Jean-Marc; Schwob, Catherine; Coolen, Laurent; Maître, Agnès
2014-01-01
International audience; We demonstrate theoretically and experimentally that the three-dimensional orientation of a single fluorescent nanoemitter can be determined by polarization analysis of the emitted light (while excitation polarization analysis provides only the in-plane orientation). The determination of the emitter orientation by polarimetry requires a theoretical description, including the objective numerical aperture, the 1D or 2D nature of the emitting dipole, and the environment c...
Three-dimensional finite element analysis of critical pre-twist strain angle for torsional axis
ZHOU Guo-feng; LI Xiao-yan; SHI Yao-wu; XU Bin-shi
2005-01-01
A three-dimensional elasto-plastic finite element analysis of pre-twist process for a torsional axis made of 45GrNiMoVA steel, was carried out using a commercial finite element analysis code, MSC MARC 2001. The results show that the critical pre-twist strain angle is 0. 027 rad and the maximum elastic shear stress after pre-twist is 1 694 MPa for the torsional axis.
Analysis and case study on multi-dimensional scalability of the Internet architecture
XU Ke; XU MingWei; LI Qi; LIN Song
2008-01-01
This paper presents the definition of multi-dimensional scalability of the Internet architecture, and puts forward a mathematical method to evaluate Internet scalability based on a variety of constraints. Then, the method is employed to study the Internet scalability problem in performance, scale and service scalability. Based on the examples, theoretical analysis and experimental simulation are conducted to address the scalability issue. The results show that the proposed definition and evaluation method of multi-dimensional Internet scalability can effectively evaluate the scalability of the Internet in every aspect, thus providing rational suggestions and methods for evaluation of the next generation Internet architecture.
杨强; 杨卫
2001-01-01
The authors proposed a plausible explanation for the deviation of experimental data for sub-micron polycrystals from the Hall-Petch relation by in troducing the configuration entropy. The present paper extends the previous two dimensional analysis to the three-dimensional case. The statistical distribution of dislocation lengths within a spherical grain and the bow-out of dislocations are con sidered. According to Ashby's model, analyses are pursued for the statistically stored dislocations and geometrically necessary dislocations, respectively. It is confirmed that the configuration entropy model can predict the abnormal Hall-Petch depen dence for grain sizes in the sub-micron range.
Wijdh-den Hamer, Inez J; Bouma, Wobbe; Lai, Eric K; Levack, Melissa M; Shang, Eric K; Pouch, Alison M; Eperjesi, Thomas J; Plappert, Theodore J; Yushkevich, Paul A; Hung, Judy; Mariani, Massimo A; Khabbaz, Kamal R; Gleason, Thomas G; Mahmood, Feroze; Acker, Michael A; Woo, Y Joseph; Cheung, Albert T; Gillespie, Matthew J; Jackson, Benjamin M; Gorman, Joseph H; Gorman, Robert C
2016-09-01
Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Intraoperative transesophageal 2-dimensional echocardiography and 3-dimensional echocardiography were performed in 50 patients undergoing undersized annuloplasty for ischemic mitral regurgitation. Two-dimensional echocardiography annular diameter and tethering parameters were measured in the apical 2- and 4-chamber views. A customized protocol was used to assess 3-dimensional annular geometry and regional leaflet tethering. Recurrence (grade ≥2) was assessed with 2-dimensional transthoracic echocardiography at 6 months. Preoperative 2- and 3-dimensional annular geometry were similar in all patients with ischemic mitral regurgitation. Preoperative 2- and 3-dimensional leaflet tethering were significantly higher in patients with recurrence (n = 13) when compared with patients without recurrence (n = 37). Multivariate logistic regression revealed preoperative 2-dimensional echocardiography posterior tethering angle as an independent predictor of recurrence with an optimal cutoff value of 32.0° (area under the curve, 0.81; 95% confidence interval, 0.68-0.95; P = .002) and preoperative 3-dimensional echocardiography P3 tethering angle as an independent predictor of recurrence with an optimal cutoff value of 29.9° (area under the curve, 0.92; 95% confidence interval, 0.84-1.00; P 3-dimensional geometric multivariate model can be augmented by adding basal aneurysm/dyskinesis (area under the curve, 0.94; 95% confidence interval, 0.87-1.00; P 3-dimensional echocardiography P3 tethering angle is a stronger predictor of ischemic mitral regurgitation recurrence after annuloplasty than preoperative 2-dimensional echocardiography posterior tethering angle, which is highly influenced by viewing plane. In
Giunta, G.; Belouettar, S. [Centre de Recherche Public Henri Tudor, 29, av. John F. Kennedy, L-1855, Luxembourg-Kirchberg, Luxembourg (Belgium)
2015-03-10
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigations show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.
Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral
2002-01-01
An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.
Hsu Kimberly K
2005-06-01
Full Text Available Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine, showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyldimethylammonio]-1-propanesulfonate. Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.
Fast, multi-dimensional and simultaneous kymograph-like particle dynamics (SkyPad analysis.
Bruno Cadot
Full Text Available BACKGROUND: Kymograph analysis is a method widely used by researchers to analyze particle dynamics in one dimensional (1D trajectories. RESULTS: Here we provide a Visual Basic-coded algorithm to use as a Microsoft Excel add-in that automatically analyzes particles in 2D trajectories with all the advantages of kymograph analysis. CONCLUSIONS: This add-in, which we named SkyPad, leads to significant time saving and higher accuracy of particle analysis. Finally, SkyPad can also be used for 3D trajectories analysis.
Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014
Bühlmann, Peter; Glad, Ingrid; Langaas, Mette; Richardson, Sylvia; Vannucci, Marina
2016-01-01
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on...
divand-1.0: n-dimensional variational data analysis for ocean observations
A. Barth
2013-07-01
Full Text Available A tool for multidimensional variational analysis (divand is presented. It allows the interpolation and analysis of observations on curvilinear orthogonal grids in an arbitrary high dimensional space by minimizing a cost function. This cost function penalizes the deviation from the observations, the deviation from a first guess and abruptly varying fields based on a given correlation length (potentially varying in space and time. Additional constraints can be added to this cost function such as an advection constraint which forces the analysed field to align with the ocean current. The method decouples naturally disconnected areas based on topography and topology. This is useful in oceanography where disconnected water masses often have different physical properties. Individual elements of the a priori and a posteriori error covariance matrix can also be computed, in particular expected error variances of the analysis. A multidimensional approach (as opposed to stacking 2-dimensional analysis has the benefit of providing a smooth analysis in all dimensions, although the computational cost it increased. Primal (problem solved in the grid space and dual formulations (problem solved in the observational space are implemented using either direct solvers (based on Cholesky factorization or iterative solvers (conjugate gradient method. In most applications the primal formulation with the direct solver is the fastest, especially if an a posteriori error estimate is needed. However, for correlated observation errors the dual formulation with an iterative solver is more efficient. The method is tested by using pseudo observations from a global model. The distribution of the observations is based on the position of the ARGO floats. The benefit of the 3-dimensional analysis (longitude, latitude and time compared to 2-dimensional analysis (longitude and latitude and the role of the advection constraint are highlighted. The tool divand is free software, and
Two dimensional structural analysis of reactor fuel element claddings due to local effects
Karimi, R; Wolf, L
1978-04-01
Two dimensional thermoelastic and inelastic stresses and deformation of typical LWR (PWR) and LMFBR (CRBR) claddings are evaluated by utilizing the following codes, for (1) Thermoelastic analysis (a) STRESS Code (b) SEGPIPE Code (2) Thermoinelastic analysis (a) Modified version of the GOGO code (b) One dimensional GRO-II code. The primary objective of this study is to analyze the effect of various local perturbations in the clad temperature field, namely eccentrically mounted fuel pellet, clad ovality, power tilt across the fuel and clad-coolant heat transfer variation on the cladding stress and deformation. In view of the fact that the thermoelastic analysis is always the first logical choice entering the structural field, it was decided to start the analysis with the two dimensional codes such as STRESS and SEGPIPE. Later, in order to assess the validity and compare the thermoelastic results to those obtained for actual reactor conditions, a two dimensional code, namely a modified version of the GOGO code, was used to account for inelastic effects such as irradiation and thermal creep and swelling in the evaluation. The comparison of thermoelastic and inelastic results shows that the former can be used effectively to analyze LWR fuel pin over 350 hours of lifetime under the most adverse condition and 500 hours of lifetime for an LMFBR fuel pin. Beyond that the inelastic solution must be used. The impact of the individual thermal perturbation and combinations thereof upon the structural quantity is also shown. Finally, the effect of rod displacement on the two dimensional thermal and structural quantities of the LMFBR fuel pin cladding is analyzed.
High-Dimensional Cox Regression Analysis in Genetic Studies with Censored Survival Outcomes
Jinfeng Xu
2012-01-01
Full Text Available With the advancement of high-throughput technologies, nowadays high-dimensional genomic and proteomic data are easy to obtain and have become ever increasingly important in unveiling the complex etiology of many diseases. While relating a large number of factors to a survival outcome through the Cox relative risk model, various techniques have been proposed in the literature. We review some recently developed methods for such analysis. For high-dimensional variable selection in the Cox model with parametric relative risk, we consider the univariate shrinkage method (US using the lasso penalty and the penalized partial likelihood method using the folded penalties (PPL. The penalization methods are not restricted to the finite-dimensional case. For the high-dimensional (p→∞, p≪n or ultrahigh-dimensional case (n→∞, n≪p, both the sure independence screening (SIS method and the extended Bayesian information criterion (EBIC can be further incorporated into the penalization methods for variable selection. We also consider the penalization method for the Cox model with semiparametric relative risk, and the modified partial least squares method for the Cox model. The comparison of different methods is discussed and numerical examples are provided for the illustration. Finally, areas of further research are presented.
Kompella, Varun Raj; Schmidhuber, Juergen
2011-01-01
Slow Feature Analysis (SFA) extracts features representing the underlying causes of changes within a temporally coherent high-dimensional raw sensory input signal. Our novel incremental version of SFA (IncSFA) combines incremental Principal Components Analysis and Minor Components Analysis. Unlike standard batch-based SFA, IncSFA adapts along with non-stationary environments, is amenable to episodic training, is not corrupted by outliers, and is covariance-free. These properties make IncSFA a generally useful unsupervised preprocessor for autonomous learning agents and robots. In IncSFA, the CCIPCA and MCA updates take the form of Hebbian and anti-Hebbian updating, extending the biological plausibility of SFA. In both single node and deep network versions, IncSFA learns to encode its input streams (such as high-dimensional video) by informative slow features representing meaningful abstract environmental properties. It can handle cases where batch SFA fails.
Magnetic field assisted fluidization-Dimensional analysis addressing the physical basis
Jordan Hristov
2007-01-01
This paper originates a discussion on dimensional analysis and scaling in magnetically assisted fluidized beds. Basic examination of process variables, merging mechanical and magnetic units, allows the conversion of mixed sets of variables into unified terms representing surface forces as effects of the fields contributing to the assisted fluidization behaviour. This transformation is termed "pressure transform" since the new variables are all characteristic pressures generated by three basic fields: gravity, magnetic and fluid flow. This approach addresses the physical basis in terms of dimensionless groups rather than formal algebraic manipulations pertinent to classical dimensional analysis.Basic dimensionless group termed granular magnetic Bond number is introduced as the ratio of characteristic pressures of gravity and of magnetic field. This analysis also provides a set of named dimensionless numbers characterizing magnetic field assisted fluidization such as Filippov number,Rosensweig number, Kwauk number and Siegell number, derived as ratios of characteristic pressures.
Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics
Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T
2017-01-01
angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... tomographic pulmonary angiograms findings, dogs were divided in three groups: diseased with pulmonary thromboembolism (n = 7), diseased but without pulmonary thromboembolism (n = 21), and healthy (n = 6). An observer who was aware of group status created three-dimensional pulmonary artery vascular trees...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...
Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser
2006-01-01
Full Text Available We report a numerical study on the vaneless diffuser core flow instability in centrifugal compressors. The analysis is performed for the purpose of better understanding of the rotating stall flow mechanism in radial vaneless diffusers. Since the analysis is restricted to the two-dimensional core flow, the effect of the wall boundary layers is neglected. A commercial code with the standard incompressible viscous flow solver is applied to model the vaneless diffuser core flow in the plane parallel to the diffuser walls. At the diffuser inlet, rotating jet-wake velocity pattern is prescribed and at the diffuser outlet constant static pressure is assumed. Under these circumstances, two-dimensional rotating flow instability similar to rotating stall is found to exist. Performed parameter analysis reveals that this instability is strongly influenced by the diffuser geometry and the inlet and outlet flow conditions.
Mokken scale analysis of the UPDRS: dimensionality of the Motor Section revisited.
Stochl, Jan; Boomsma, Anne; van Duijn, Marijtje; Brozová, Hana; Růzická, Evzen
2008-02-01
The dimensionality and reliability of the Motor Section of the Unified Parkinson Disease Rating Scale (UPDRS III) was studied with non-parametric Mokken scale analysis. UPDRS measures were obtained on 147 patients with PD (96 men, 51 women, mean age 61, range 35-80 yrs). Mokken scale analysis revealed a four-dimensional structure of the UPDRS III. Left-sided bradykinesia and rigidity appeared to co-occur with axial signs, gait disturbance, and speech/hypomimia, whereas right-sided bradykinesia and rigidity formed a second scale. Two further small scales were found consisting of right- and left-sided tremor. Results from the scale analysis reveal that all four subscales are strong. The reliability of the two tremor scales is low because they only contain three and four items, respectively.
Rezaei, M. P.; Zamanian, M.
2017-01-01
In this paper, the influences of nonideal boundary conditions (due to flexibility) on the primary resonant behavior of a piezoelectrically actuated microbeam have been studied, for the first time. The structure has been assumed to treat as an Euler-Bernoulli beam, considering the effects of geometric nonlinearity. In this work, the general nonideal supports have been modeled as a the combination of horizontal, vertical and rotational springs, simultaneously. Allocating particular values to the stiffness of these springs provides the mathematical models for the majority of boundary conditions. This consideration leads to use a two-dimensional analysis of the multiple scales method instead of previous works' method (one-dimensional analysis). If one neglects the nonideal effects, then this paper would be an effort to solve the two-dimensional equations of motion without a need of a combination of these equations using the shortening or stretching effect. Letting the nonideal effects equal to zero and comparing their results with the results of previous approaches have been demonstrated the accuracy of the two-dimensional solutions. The results have been identified the unique effects of constraining and stiffening of boundaries in horizontal, vertical and rotational directions. This means that it is inaccurate to suppose the nonideality of supports only in one or two of these directions like as previous works. The findings are of vital importance as a better prediction of the frequency response for the nonideal supports. Furthermore, the main findings of this effort can help to choose appropriate boundary conditions for desired systems.
Carazo, J M; Sorzano, C O S; Otón, J; Marabini, R; Vargas, J
2015-09-01
The Transmission Electron Microscope provides two-dimensional (2D) images of the specimens under study. However, the architecture of these specimens is defined in a three-dimensional (3D) coordinate space, in volumetric terms, making the direct microscope output somehow "short" in terms of dimensionality. This situation has prompted the development of methods to quantitatively estimate 3D volumes from sets of 2D images, which are usually referred to as "three-dimensional reconstruction methods". These 3D reconstruction methods build on four considerations: (1) The relationship between the 2D images and the 3D volume must be of a particularly simple type, (2) many 2D images are needed to gain 3D volumetric information, (3) the 2D images and the 3D volume have to be in the same coordinate reference frame and (4), in practical terms, the reconstructed 3D volume will only be an approximation to the original 3D volume which gave raise to the 2D projections. In this work we will adopt a quite general view, trying to address a large community of interested readers, although some sections will be particularly devoted to the 3D analysis of isolated macromolecular complexes in the application area normally referred to as Single Particle Analysis (SPA).
Multi-Dimensional Combustion Instability Analysis of Solid Propellant Rocket Motors.
2014-09-26
RI D-R159 314 MULTI-DIMENSIONAL COMBUSTION INSTABLITY ANALYSIS OF 1/1 I SOLID PROPELLANT ROCK.. (U) ALABAMA UNIY IN HUNTSVILLE I DEPT OF MECHANICAL...STANDARDS MlICROCOPY RESOLUTION TEST CHART 0 0 0 03 V.%% f iSR.TR. 85-0567 NULTI-DIMNSIONAL COMBUSTION INSTABILITY ANALYSIS OF SOLID PROPELLANT ROCKET...analysis of solid propellant rocket motors. This research was motivated by the need for im- provement of the current practice in combustion instability
Correspondence Analysis in R, with Two- and Three-dimensional Graphics: The ca Package
Oleg Nenadic
2007-02-01
Full Text Available We describe an implementation of simple, multiple and joint correspondence analysis in R. The resulting package comprises two parts, one for simple correspondence analysis and one for multiple and joint correspondence analysis. Within each part, functions for computation, summaries and visualization in two and three dimensions are provided, including options to display supplementary points and perform subset analyses. Special emphasis has been put on the visualization functions that offer features such as different scaling options for biplots and three-dimensional maps using the rgl package. Graphical options include shading and sizing plot symbols for the points according to their contributions to the map and masses respectively.
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
Piepel, Gregory F.
2013-08-01
This article discusses the paper "Experimental Design for Engineering Dimensional Analysis" by Albrecht et al. (2013, Technometrics). That paper provides and overview of engineering dimensional analysis (DA) for use in developing DA models. The paper proposes methods for generating model-robust experimental designs to supporting fitting DA models. The specific approach is to develop a design that maximizes the efficiency of a specified empirical model (EM) in the original independent variables, subject to a minimum efficiency for a DA model expressed in terms of dimensionless groups (DGs). This discussion article raises several issues and makes recommendations regarding the proposed approach. Also, the concept of spurious correlation is raised and discussed. Spurious correlation results from the response DG being calculated using several independent variables that are also used to calculate predictor DGs in the DA model.
AstroMD. A multi-dimensional data analysis tool for astrophysical simulations
Becciani, U; Gheller, C; Calori, L; Buonomo, F; Imboden, S
2000-01-01
Over the past few years, the role of visualization for scientific purpose has grown up enormously. Astronomy makes an extended use of visualization techniques to analyze data, and scientific visualization has became a fundamental part of modern researches in Astronomy. With the evolution of high performance computers, numerical simulations have assumed a great role in the scientific investigation, allowing the user to run simulation with higher and higher resolution. Data produced in these simulations are often multi-dimensional arrays with several physical quantities. These data are very hard to manage and to analyze efficiently. Consequently the data analysis and visualization tools must follow the new requirements of the research. AstroMD is a tool for data analysis and visualization of astrophysical data and can manage different physical quantities and multi-dimensional data sets. The tool uses virtual reality techniques by which the user has the impression of travelling through a computer-based multi-dim...
Brand Jacob PL
2005-04-01
Full Text Available Abstract Background Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing. Results Results generated from data preprocessing methods, quality control analysis and hypothesis testing methods are output in the form of Excel CSV tables, graphs and an Html report summarizing data analysis. Conclusion HDBStat! is a platform-independent software that is freely available to academic institutions and non-profit organizations. It can be downloaded from our website http://www.soph.uab.edu/ssg_content.asp?id=1164.
One-dimensional analysis of piezoelectric transducers based on Thevenin theorem
Arnold, FJ
2009-01-01
In this work, a method of analysis of piezoelectric transducers is shown. This method is based on the simplification of Mason's equivalent electric circuit. An adaptation of Thevenin theorem has been employed to study the behavior of piezoelectric transducers used as transmitters (electric into mechanic energy conversion). This study was restricted to transducers with a typical configuration employed in high power applications. The transducers were one-dimensionally modeled, considering only ...
Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics
R. Padraic Springuel
2007-12-01
Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.
Painlevé Analysis and Some Solutions of(2+1)-Dimensional Generalized Burgers Equations
HONG Ke-Zhu; WU B-in; CHEN Xian-Feng
2003-01-01
Burgers equation ut = 2uux + uxx describes a lot of phenomena in physics fields, and it has attracted much attention.In this paper,the Burgers equation is generalized to (2+1) dimensions.By means of the Painlev(e') analysis,the most generalized Painlev(e') integrable(2+1)-dimensional integrable Burgers systems are obtained.Some exact solutions of the generalized Burgers system are obtained via variable separation approach.
Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics
John R. Thompson
2007-12-01
Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.
Hamiltonian closures for fluid models with four moments by dimensional analysis
Perin, M; Morrison, P J; Tassi, E
2015-01-01
Fluid reductions of the Vlasov-Amp{\\`e}re equations that preserve the Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian closures using the first four moments of the Vlasov distribution are obtained, and all closures provided by a dimensional analysis procedure for satisfying the Jacobi identity are identified. Two Hamiltonian models emerge, for which the explicit closures are given, along with their Poisson brackets and Casimir invariants.
Three-dimensional stability analysis of the dam foundation at Baise
XU Qianjun; LI Xu; CHEN Zuyu
2007-01-01
It is usually difficult to determine the actual safety factors of rock masses in an ordinary two-dimensional stability analysis if the safety factors of the different cross sections in the rock mass vary significantly. In addition to the actual slope, arch dam abutment, and the actual foundation of a high building, another example is that the different cross sections of the foundation in the monolith of a gravity dam vary significantly, just like the condition at the overflow dam in the Baise project. A three-dimensional stability analysis method based on the upper-bound theorem was employed to solve this problem. The parameters used in the analysis were obtained from geomechanics tests, as well as continuity simu- lations of the randomly distributed joints. Two failure patterns against sliding are analyzed. One pattern is the foundation slide along deep-seated planes which were determined by cal- culations. The other pattern is the foundation slide along the planes across the bottom of the high steps in the foundation pit. The results indicate that a special overflow dam monolith can be considered to be safe in case of considering the three dimensional effect. However, a key wall with a depth of 5m must be constructed at the upper side of this monolith in order to ensure the safety of the foundation.
Chung, Michael T; Levi, Benjamin; Hyun, Jeong S; Lo, David D; Montoro, Daniel T; Lisiecki, Jeffrey; Bradley, James P; Buchman, Steven R; Longaker, Michael T; Wan, Derrick C
2012-11-01
Pierre Robin sequence and Treacher Collins syndrome are both associated with mandibular hypoplasia. It has been hypothesized, however, that the mandible may be differentially affected. The purpose of this study was to therefore compare mandibular morphology in children with Pierre Robin sequence with children with Treacher Collins syndrome using three-dimensional analysis of computed tomographic scans. A retrospective analysis was performed identifying children with Pierre Robin sequence and Treacher Collins syndrome undergoing computed tomography. Three-dimensional reconstruction was performed, and ramus height, mandibular body length, and gonial angle were measured. These were then compared with those in control children with normal mandibles and with the clinical norms corrected for age and sex based on previously published measurements. Mandibular body length was found to be significantly shorter for children with Pierre Robin sequence, whereas ramus height was significantly shorter for children with Treacher Collins syndrome. This resulted in distinctly different ramus height-mandibular body length ratios. In addition, the gonial angle was more obtuse in both the Pierre Robin sequence and Treacher Collins syndrome groups compared with the controls. Three-dimensional mandibular morphometric analysis in patients with Pierre Robin sequence and Treacher Collins syndrome thus revealed distinctly different patterns of mandibular hypoplasia relative to normal controls. These findings underscore distinct considerations that must be made in surgical planning for reconstruction.
Multi-Dimensional Traffic Flow Time Series Analysis with Self-Organizing Maps
CHEN Yudong; ZHANG Yi; HU Jianming
2008-01-01
The two important features of self-organizing maps (SOM), topological preservation and easy visualization, give it great potential for analyzing multi-dimensional time series, specifically traffic flow time series in an urban traffic network. This paper investigates the application of SOM in the representation and prediction of multi-dimensional traffic time series. First, SOMs are applied to cluster the time series and to project each multi-dimensional vector onto a two-dimensional SOM plane while preserving the topological relationships of the original data. Then, the easy visualization of the SOMs is utilized and several explora-tory methods are used to investigate the physical meaning of the clusters as well as how the traffic flow vec-tors evolve with time. Finally, the k-nearest neighbor (kNN) algorithm is applied to the clustering result to perform short-term predictions of the traffic flow vectors. Analysis of real world traffic data shows the effec-tiveness of these methods for traffic flow predictions, for they can capture the nonlinear information of traffic flows data and predict traffic flows on multiple links simultaneously.
A novel four-dimensional analytical approach for analysis of complex samples.
Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J
2016-05-01
A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation.
Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.
2016-11-01
The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential.
Woolworths and Wales: A Multi-Dimensional Analysis of the Loss of a Local Brand
Robin James Smith; Jesse Heley; Ian Stafford
2011-01-01
In this paper we present a multi-dimensional analysis of the closure of Woolworths in Wales and the way in which the loss of this familiar high-street brand can be accounted for at a number of levels and within different social arenas. Primarily, the paper demonstrates how Woolworths is positioned as a symbol a previous era of consumption centred upon community and place based notions of nostalgia and community. What is striking in the analysis is the similarities in the way in which Woolwort...
Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations
Darmofal, David L.
1998-01-01
An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.
Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates
Huang, Chao-Guang
2016-01-01
The Hamiltonian analysis for a 3-dimensional $SO(1,1)\\times T_+$-connection dynamics is conducted in a Bondi-like coordinate system.A null coframe with 5 independent variables and 9 connection coefficients are treated as basic configuration variables.All constraints and their consistency conditions, as well as the equations of motion,for the system are presented.There is no physical degree of freedom in the system as expected.The Ba\\~nados-Teitelboim-Zanelli spacetime as an example is used to check the analysis.
Discrete canonical analysis of three-dimensional gravity with cosmological constant
Berra-Montiel, J.; E. Rosales-Quintero, J.
2015-05-01
We discuss the interplay between standard canonical analysis and canonical discretization in three-dimensional gravity with cosmological constant. By using the Hamiltonian analysis, we find that the continuum local symmetries of the theory are given by the on-shell space-time diffeomorphisms, which at the action level, correspond to the Kalb-Ramond transformations. At the time of discretization, although this symmetry is explicitly broken, we prove that the theory still preserves certain gauge freedom generated by a constant curvature relation in terms of holonomies and the Gauss's law in the lattice approach.
Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni
2015-01-01
Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.
Milazzo, Lorenzo
2016-01-01
A multifractal analysis (MFA) is performed on three-dimensional grayscale images associated with natural porous structures (soil samples). First, computed tomography (CT) scans are carried out on the samples to generate 3D grayscale images. Then, a preliminary analysis is conducted to evaluate key quantities associated with the porosity, such as void fraction, pore volume, connectivity, and surface area. Finally, the samples are successfully identified and separated into two different structure families by using the MFA. A new software (Munari) to carry out the MFA of 3D grayscale images is also presented.
Rübel, Oliver; Ahern, Sean; Bethel, E Wes; Biggin, Mark D; Childs, Hank; Cormier-Michel, Estelle; Depace, Angela; Eisen, Michael B; Fowlkes, Charless C; Geddes, Cameron G R; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keränen, Soile V E; Knowles, David W; Hendriks, Cris L Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H; Wu, Kesheng
2010-05-01
Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies -such as efficient data management- supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.
Rubel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G. R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keranen, Soile V. E.; Knowles, David W.; Hendriks, Chris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat,; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng
2010-06-08
Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies"such as efficient data management" supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection.
Zhang, Xin-jun; Sun, Bing-nan; Xiang, Hai-fan
2003-01-01
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection
张新军; 孙炳楠; 项海帆
2003-01-01
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection
张新军; 孙炳楠; 项海帆
2003-01-01
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting resuh obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.
Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures
Saghirzadeh Darki, Behnam; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein
2016-12-01
In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods.
Rübel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G. R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keränen, Soile V. E.; Knowles, David W.; Hendriks, Cris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng
2013-01-01
Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies —such as efficient data management— supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach. PMID:23762211
Baiz, Carlos R; Peng, Chunte Sam; Reppert, Mike E; Jones, Kevin C; Tokmakoff, Andrei
2012-04-21
We present a method to quantitatively determine the secondary structure composition of globular proteins using coherent two-dimensional infrared (2DIR) spectroscopy of backbone amide I vibrations (1550-1720 cm(-1)). Sixteen proteins with known crystal structures were used to construct a library of 2DIR spectra, and the fraction of residues in α-helix, β-sheet, and unassigned conformations was determined by singular value decomposition (SVD) of the measured two-dimensional spectra. The method was benchmarked by removing each individual protein from the set and comparing the composition extracted from 2DIR against the composition determined from the crystal structures. To highlight the increased structural content extracted from 2DIR spectra a similar analysis was also carried out using conventional infrared absorption of the proteins in the library.
Latif, A. Afiff; Ibrahim, M. Rasidi; Rahim, E. A.; Cheng, K.
2017-04-01
The conventional milling has many difficulties in the processing of hard and brittle material. Hence, ultrasonic vibration assisted milling (UVAM) was proposed to overcome this problem. The objective of this research is to study the behavior of compliance mechanism (CM) as the critical part affect the performance of the UVAM. The design of the CM was investigated and focuses on 1-Dimensional. Experimental result was obtained from a portable laser digital vibrometer. While the 1-Dimensional value such as safety factor, deformation of hinges and stress analysis are obtained from finite elements simulation. Finally, the findings help to find the best design judging from the most travelled distance of the piezoelectric actuators. In addition, this paper would provide a clear picture the behavior of the CM embedded in the UVAM, which can provide good data and to improve the machining on reducing tool wear, and lower cutting force on the workpiece surface roughness.
Two-dimensional analysis of gold nanoparticle effects on dye molecule system
Qaradaghi, Vahid [School of Electrical and Computer Engineering, Tarbiat Modares University (TMU), P.O. Box 14115-194, Tehran (Iran, Islamic Republic of); Fathi, Davood, E-mail: davfathi@modares.ac.ir [School of Electrical and Computer Engineering, Tarbiat Modares University (TMU), P.O. Box 14115-194, Tehran (Iran, Islamic Republic of)
2013-01-15
This paper presents a two-dimensional analysis of a dye molecule system in the presence of a gold nanoparticle (AuNP). This configuration has been used widely for the practical applications such as optoelectronics and also the biomedical applications such as cancer. The effects of coupling between the nanoparticle (AuNP) and dye molecules around it are simulated and studied in a two-dimensional plane. The three relative momentum polarizations of dye molecule near the AuNP (perpendicular, parallel and random) are considered. With the change of nanoparticle radius and its distances from the dye molecules, the output fluorescence signal will be changed. The obtained results show that, the perpendicular polarized dye w.r.t. the AuNP surface leads to the increase of output fluorescence signal nearly 1.5 times the input intensity.
Pastur, L R; Lusseyran, F; Basley, J
2012-01-01
Three-dimensional direct numerical simulations of an incompressible open square cavity flow are conducted. Features of the permanent (non-linear) regime together with the linear stability analysis of a two-dimensional steady base flow are discussed. Spanwise boundary conditions are periodic and control parameters set such that the shear layer is stable against Kelvin-Helmholtz modes. Three branches of destabilising modes are found. The most destabilising branch is associated with steady modes, over a finite range of spanwise wavenumbers. The two other branches provide unsteady modes. Features of each branches are recovered in the permanent regime: wavelength of the most powerful spanwise Fourier mode, swaying phenomenon, angular frequencies, indicating that modes of each branches are selected and interact in the permanent flow.
Three-dimensional coupled mode analysis of internal-wave acoustic ducts.
Shmelev, Alexey A; Lynch, James F; Lin, Ying-Tsong; Schmidt, Henrik
2014-05-01
A fully three-dimensional coupled mode approach is used in this paper to describe the physics of low frequency acoustic signals propagating through a train of internal waves at an arbitrary azimuth. A three layer model of the shallow water waveguide is employed for studying the properties of normal modes and their coupled interaction due to the presence of nonlinear internal waves. Using a robust wave number integration technique for Fourier transform computation and a direct global matrix approach, an accurate three-dimensional coupled mode full field solution is obtained for the tonal signal propagation through straight and parallel internal waves. This approach provides accurate results for arbitrary azimuth and includes the effects of backscattering. This enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd's mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.
AGR-1, AGR-2 and AGR-3/4 Dimensional Change Data Analysis
Herberger, Sarah E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-02-01
A series of Advanced Gas Reactor (AGR) experiments have been completed in the Advanced Test Reactor at Idaho National Laboratory in support of qualification and development of tristructural isotropic fuel. Each AGR test consists of multiple independently controlled and monitored capsules containing fuel compacts placed in a graphite cylinder. These capsules are instrumented with thermocouples embedded in the graphite, enabling temperature control. The fuel compacts are composed of fuel particles surrounded by a graphitic A3 matrix material. Dimensional change in AGR fuel compacts is vital because the swelling or shrinkage affects the size of the gas gaps that are used to control temperatures. Analysis of dimensional change in the AGR fuel compacts is needed to establish the variables directly relating to compact shrinkage. The variables initially identified for consideration were matrix density, compact density, fuel packing fraction, uranium loading, fuel particle diameter, cumulative fast neutron fluence, and volume average time average fuel temperature. In addition to the data available from the AGR experiments, the analysis included specimens formed from the same A3 matrix material used in Advanced Graphite Creep (AGC) experiments, which provide graphite creep data during irradiation for design and licensing purposes. The primary purpose of including the AGC specimens was to encompass dimensional behavior at zero packing fraction, zero uranium loading, and zero particle diameter. All possible combinations of first-order variable regressions were considered in the analysis. The study focused on identifying the best regression models for percent change in diameter, length, and volume. Bootstrap analysis was used to ensure the resulting regression models were robust and well-performing. The variables identified as very significant in predicting change in one or more dimensions (diameter, length, and volume) are volume average time average temperature, fast fluence
NODA, Nao-Aki; KIM, Bongkee; OTA, Kento; KAWAHARA, Hirofumi; SHINOZAKI, Takahiro
2013-01-01
.... In this study, three-dimensional FEM analysis has been applied to the crimped portion of hydraulic brake hose in order to investigate the effects of manufacturing errors upon the sealing performance...
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) adaptive analysis will be tested NASA's Gravity Recovery and Climate Experiment (GRACE) mission database in phase I in...
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) empirical mode decomposition (EMD) analysis was applied to NASA's Gravity Recovery and Climate Experiment (GRACE)...
The contribution of particle swarm optimization to three-dimensional slope stability analysis.
Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
[New progress on three-dimensional movement measurement analysis of human spine].
Qiu, Xiao-wen; He, Xi-jing; Huang, Si-hua; Liang, Bao-bao; Yu, Zi-rui
2015-05-01
Spinal biomechanics, especially the range of spine motion,has close connection with spinal surgery. The change of the range of motion (ROM) is an important indicator of diseases and injuries of spine, and the essential evaluating standards of effect of surgeries and therapies to spine. The analysis of ROM can be dated to the time of the invention of X-ray and even that before it. With the development of science and technology as well as the optimization of various types of calculation methods, diverse measuring methods have emerged, from imaging methods to non-imaging methods, from two-dimensional to three-dimensional, from measuring directly on the X-ray films to calculating automatically by computer. Analysis of ROM has made great progress, but there are some older methods cannot meet the needs of the times and disappear, some classical methods such as X-ray still have vitality. Combining different methods, three dimensions and more vivo spine research are the trend of analysis of ROM. And more and more researchers began to focus on vivo spine research. In this paper, the advantages and disadvantages of the methods utilized recently are presented through viewing recent literatures, providing reference and help for the movement analysis of spine.
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
Roohollah Kalatehjari
2014-01-01
Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
Is envy categorical or dimensional? An empirical investigation using taxometric analysis.
Falcon, Rachael G
2015-12-01
Researchers frequently disagree about the latent structure of emotions. Taxometric analysis--a method for determining whether the latent structure of a construct is best defined as categorical or purely dimensional--can be a useful tool for resolving these debates. The present study used taxometric analysis to investigate the latent structure of envy. Scholars disagree about whether envy is necessarily malicious or whether it can also be benign. Van de Ven, Zeelenberg, and Pieters (2009) claim that benign envy exists, and that it is distinct from malicious envy. Much of their evidence for this claim relies on latent class analysis, which can be biased toward creating categories with data that actually vary dimensionally (Cleland, Rothschild, & Haslam, 2000; Uebersax, 1999). Therefore, taxometric analysis provides a more conservative test for an underlying categorical structure. A daily diary procedure was used to measure participants' day-to-day experiences of envy. The results support van de Ven et al.'s claim that benign envy exists, and that is distinct from malicious envy.
Wang, Bin; Shi, Wenzhong; Miao, Zelang
2015-01-01
Standard deviational ellipse (SDE) has long served as a versatile GIS tool for delineating the geographic distribution of concerned features. This paper firstly summarizes two existing models of calculating SDE, and then proposes a novel approach to constructing the same SDE based on spectral decomposition of the sample covariance, by which the SDE concept is naturally generalized into higher dimensional Euclidean space, named standard deviational hyper-ellipsoid (SDHE). Then, rigorous recursion formulas are derived for calculating the confidence levels of scaled SDHE with arbitrary magnification ratios in any dimensional space. Besides, an inexact-newton method based iterative algorithm is also proposed for solving the corresponding magnification ratio of a scaled SDHE when the confidence probability and space dimensionality are pre-specified. These results provide an efficient manner to supersede the traditional table lookup of tabulated chi-square distribution. Finally, synthetic data is employed to generate the 1-3 multiple SDEs and SDHEs. And exploratory analysis by means of SDEs and SDHEs are also conducted for measuring the spread concentrations of Hong Kong's H1N1 in 2009.
Bin Wang
Full Text Available Standard deviational ellipse (SDE has long served as a versatile GIS tool for delineating the geographic distribution of concerned features. This paper firstly summarizes two existing models of calculating SDE, and then proposes a novel approach to constructing the same SDE based on spectral decomposition of the sample covariance, by which the SDE concept is naturally generalized into higher dimensional Euclidean space, named standard deviational hyper-ellipsoid (SDHE. Then, rigorous recursion formulas are derived for calculating the confidence levels of scaled SDHE with arbitrary magnification ratios in any dimensional space. Besides, an inexact-newton method based iterative algorithm is also proposed for solving the corresponding magnification ratio of a scaled SDHE when the confidence probability and space dimensionality are pre-specified. These results provide an efficient manner to supersede the traditional table lookup of tabulated chi-square distribution. Finally, synthetic data is employed to generate the 1-3 multiple SDEs and SDHEs. And exploratory analysis by means of SDEs and SDHEs are also conducted for measuring the spread concentrations of Hong Kong's H1N1 in 2009.
Multi-dimensional Seismic Response Analysis of Base-Isolated Frame Structure with 3D Isolator
Xiong Shishu; Huang Liting; Chen Jinfeng; Su Jingsu
2005-01-01
The three-dimensional lead-rubber dish-spring bearing (3DB) is proposed in this paper. The 3DB is composed of lead rubber bearing (LRB) and dish-spring bearing (DSB) with damper in series. The 3DB put forward in this paper is effective in the resolution of difficulties in strong vertical capacity and vertical damping of three-dimensional isolation bearings. It effectively suppresses rocking motions as well. The analytical model and motion equations of multi-dimensional seismic responses of 3D base-isolated frame structures are established. Taking a five-storey frame structure as an example, an extensive simulation analysis is carried out. The results show that the 3D base-isolated structure with the proposed 3DB is effective in 3D isolation; it can reduce seismic responses by 50 % compared to a non-isolated structure. Therefore, the 3D isolation problem in building can be solved easily and effectively with the 3DB proposed in this paper.
Image analysis and superimposition of 3-dimensional cone-beam computed tomography models
Cevidanes, Lucia H. S.; Styner, Martin A.; Proffit, William R.
2013-01-01
Three-dimensional (3D) imaging techniques can provide valuable information to clinicians and researchers. But as we move from traditional 2-dimensional (2D) cephalometric analysis to new 3D techniques, it is often necessary to compare 2D with 3D data. Cone-beam computed tomography (CBCT) provides simulation tools that can help bridge the gap between image types. CBCT acquisitions can be made to simulate panoramic, lateral, and posteroanterior cephalometric radioagraphs so that they can be compared with preexisting cephalometric databases. Applications of 3D imaging in orthodontics include initial diagnosis and superimpositions for assessing growth, treatment changes, and stability. Three-dimensional CBCT images show dental root inclination and torque, impacted and supernumerary tooth positions, thickness and morphology of bone at sites of mini-implants for anchorage, and osteotomy sites in surgical planning. Findings such as resorption, hyperplasic growth, displacement, shape anomalies of mandibular condyles, and morphological differences between the right and left sides emphasize the diagnostic value of computed tomography acquisitions. Furthermore, relationships of soft tissues and the airway can be assessed in 3 dimensions. PMID:16679201
ZHU Xue-qiong; WU Jie-li; YU Li-rong; LIN Yi; L(U) Jie-qiang; ZOU Shuang-wei; HU Yue
2008-01-01
Objective:To establish and optimize the two-dimensional gel electrophoresis(2-DE)maps of squamous carcinoma of the cervix and to study the protein difference between squamous carcinoma of the cervix(SCC)and normal cervical tissue.Methods:Using Two-dimensional gel electrophoresis followed by computer-assisted image analysis,the differential proteins between squamous carcinoma of the cervical tissue and normal cervical tissue were compared.Then using matrix-assisted laser desorption/ionization-time of flight mass spectrometry,the differential proteins were identified.Results:The well-resolved and reproducible two-dimensional gel electrophoresis patterns of squamous carcinoma of the cervix tissue and normal cervical tissue were obtained.After silver staining.the average matching ratio of squamous carcinoma of the cervix was 86.1%.There was a good reproducibility of spot position in 2-DE map,with average deviation in IEF direction of 0.95±0.13 mm,while in SDS-PAGE direction it was 1.20±0.18 mm.Ten protein spots were identified by mass spectrometry,some of which were involved in cell proliferation,cell apoptosis,intracellular enzymes,structural proteins,cycle regulation,and tumor occurrence.Conclusion:The differentially expressed proteins provide a fundamental basis for further study of human squamous carcinoma of the cervix and screening of its specific markers.
Dimensionality Analysis of the Thought Suppression Inventory: Combining EFA, MSA, and CFA.
Wismeijer, Andreas A J
2012-03-01
The Thought Suppression Inventory (TSI; Rassin, European Journal of Personality 17: 285-298, 2003) was designed to measure thought intrusion, thought suppression and successful thought suppression. Given the importance to distinguish between these three aspects of thought control, the aim of this study was to scrutinize the dimensionality of the TSI. In a sample of 333 Dutch senior citizins, we examined (1) the dimensionality of the TSI using various procedures such as PAF, Mokken scale analysis (MSA) and CFA, and (2) the scale properties of the TSI. PAF favored a two factor solution, however, MSA and CFA suggested that three dimensions most adequately capture the structure of the TSI. Although all scales obtained at least medium scalability coefficients, several items were identified that are psychometrically unsound and may benefit from rewording or replacement. The findings suggest that the TSI is a three-dimensional questionnaire as originally proposed by Rassin (European Journal of Personality 17: 285-298, 2003) measuring thought intrusion, thought suppression, and successful thought suppression.
Two-dimensional thermal analysis of a fuel rod by finite volume method
Costa, Rhayanne Y.N.; Silva, Mario A.B. da; Lira, Carlos A.B. de O., E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamaento de Energia Nuclear
2015-07-01
In a nuclear reactor, the amount of power generation is limited by thermal and physic limitations rather than by nuclear parameters. The operation of a reactor core, considering the best heat removal system, must take into account the fact that the temperatures of fuel and cladding shall not exceed safety limits anywhere in the core. If such considerations are not considered, damages in the fuel element may release huge quantities of radioactive materials in the coolant or even core meltdown. Thermal analyses for fuel rods are often accomplished by considering one-dimensional heat diffusion equation. The aim of this study is to develop the first paper to verify the temperature distribution for a two-dimensional heat transfer problem in an advanced reactor. The methodology is based on the Finite Volume Method (FVM), which considers a balance for the property of interest. The validation for such methodology is made by comparing numerical and analytical solutions. For the two-dimensional analysis, the results indicate that the temperature profile agree with expected physical considerations, providing quantitative information for the development of advanced reactors. (author)
Abundance analysis of the halo giant HD 122563 with three-dimensional model stellar atmospheres
Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.
We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.
Abundance Analysis of the Halo Giant HD122563 with Three-Dimensional Model Stellar Atmospheres
Collet, R; Asplund, M; Hayek, W; Trampedach, R
2009-01-01
We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.
Three-dimensional structural analysis of the plate-fin heat exchanger
Nakagawa, T.; Sou, T.
1984-06-01
The Brazed aluminum plate-fin heat exchanger is a complex structure consisting of a core, headers and nozzles. The core is built of many layers of flat parting sheets and corrugated fins, and is sealed by side bars. Stress patterns in this type of heat exchanger have so far not been accurately analyzed, due to the complexity of the structure. A three dimensional structural analysis of such a core-header-nozzle structure subject to internal pressure is performed herein, using the finite element method, in order to investigate the mechanical characteristics of the structure. In the analysis, the corrugated fin is modeled by an equivalent anisotropic continuum element, to save on the computational cost. The adequacy of the analysis is then verified by performing a strain measurement test on the actual plate-fin heat exchanger. On the basis of the analytical results, it becomes clear that some critical parts need special attention when designing such structures.
Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders.
Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea
2007-01-01
A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions.
Parameter estimation in heat conduction using a two-dimensional inverse analysis
Mohebbi, Farzad; Sellier, Mathieu
2016-07-01
This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.
Computer-Assisted Reconstruction and Motion Analysis of the Three-Dimensional Cell
David R. Soll
2003-01-01
Full Text Available Even though several microscopic techniques provide three-dimensional (3D information on fixed and living cells, the perception persists that cells are two-dimensional (2D. Cells are, in fact, 3D and their behavior, including the extension of pseudopods, includes an important 3D component. Although treating the cell as a 2D entity has proven effective in understanding how cells locomote, and in identifying defects in a variety of mutant and abnormal cells, there are cases in which 3D reconstruction and analysis are essential. Here, we describe advanced computer-assisted 3D reconstruction and motion analysis programs for both individual live, crawling cells and developing embryos. These systems (3D-DIAS, 3D-DIASemb can be used to reconstruct and motion analyze at short time intervals the nucleus and pseudopodia as well as the entire surface of a single migrating cell, or every cell and nucleus in a developing embryo. Because all images are converted to mathematical representations, a variety of motility and dynamic morphology parameters can be computed that have proven quite valuable in the identification of mutant behaviors. We also describe examples of mutant behaviors in Dictyostelium that were revealed through 3D analysis.
Lackey, Daniel P; Carruth, Eric D; Lasher, Richard A; Boenisch, Jan; Sachse, Frank B; Hitchcock, Robert W
2011-11-01
Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.
Olszewski, R; Zech, F; Cosnard, G; Nicolas, V; Macq, B; Reychler, H
2007-09-01
The development of three-dimensional (3D) cephalometric analysis is essential for the computer-assisted planning of orthognathic surgery. The aim of this study was to transform and adapt Delaire's two-dimensional cephalometric analysis into the third dimension; this transposition was then validated. The comparative advantage of using 3D computed tomography (CT) surface renderings over profile X-rays was analysed. Comparison was made of inter- and intra-observer reproducibility of the cephalometric measurements done on profile X-rays and on 3D CT surface renderings on the same 26 dry skulls. The accuracy was also tested of the measurements done on 3D CT surface renderings (ACRO 3D) in relation to those directly taken on dry skulls with the help of a 3D measuring instrument. Inter- and intra-observer reproducibility proved significantly superior (p3D CT method. There were no significant differences in the accuracy of measurements between the ACRO 3D software and the 3D measuring instrument. The ACRO 3D software was confirmed as being a reliable tool for developing 3D CT cephalometric analyses. Further research may entail clinical validation of the 3D CT craniofacial cephalometric method of analysis.
Hiroaki Miyagawa
2013-07-01
Full Text Available This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively.
Verification of a three-dimensional viscous flow analysis for a single stage compressor
Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro
1992-12-01
A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.
The Analysis of the Two-dimensional Diffusion Equation With a Source
Sunday Augustus REJU
2006-07-01
Full Text Available This study presents a new variant analysis and simulations of the two-dimensional energized wave equation remarkably different from the diffusion equations studied earlier studied. The objective functional and the dynamical energized wave are penalized to form a function called the Hamiltonian function. From this function, we obtained the necessary conditions for the optimal solutions using the maximum principle. By applying the Fourier solution to the first order differential equation, the analytical solutions for the state and control are obtained. The solutions are simulated to give visual physical interpretation of the waves and the numerical values.
Development of three-dimensional spherical discontinuous deformation analysis for granular materials
Zhao, Shilong
This dissertation presents a new numerical method---three-dimensional spherical discontinuous deformation analysis model (DDA). This three-dimensional model maintains the characteristics of the original two-dimensional DDA and uses spherical elements to simulate the mechanical properties of granular materials under different loading conditions. A computer program was developed to handle a combination of continuous and discontinuous large displacement problems, as well as large deformation and failure analysis, under external loads and boundary conditions. Particulate materials are ubiquitous in nature and are encountered in all spheres of engineering. The mechanical behavior of these materials is, therefore, of utmost import to a number of engineering problems, for example, deformation and damage of soils and concrete, storage of grains and food-stuffs, flow processes in handling of particulate materials, ice floes, and materials processing. Past several decades have witnessed sustained efforts aimed at understanding the behavior of particulate materials. These efforts have resulted in the development of a variety of theoretical approaches and complementary computational and experimental techniques. The theoretical approaches for particulate materials have ranged from micro mechanical methods, with the consideration of particle interactions, to conventional continuum mechanics methods. Similarly, computer simulation and experimental methods have been developed to study phenomena ranging from particle-level to bulk behavior. A brief review of DDA's concepts is presented and differences between DDA and other numerical methods are discussed. The detailed analysis of 3D spherical DDA formulations is presented. The analytical solutions for the simple physical cases are used to verify the ability and accuracy of 3D spherical DDA model. The results are satisfactory. Numerical simulations are performed to show the capabilities of this model to handle discontinuous contact
Coupled mode analysis of a periodic one-dimensional multimodal fiber bundle
Shlivinski, Amir
2016-10-01
This contribution is a mathematical analysis of the coupled mode equations of a one dimensional infinite periodic lattice of multimodal adjacent fibers that are fused together (a "fiber bundle"). As such, it provides a systematic and detailed derivation of the coupled mode equations and their eigen (modal) solutions within a matrix-based framework and using Z -transform spectral-based formulation. The resulting solution is general in the sense that it is not restricted to a particular dielectric profile of the fibers. Moreover, under a weak coupling assumption, the modal solution clearly identifies the physical building blocks of the solution.
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation...... in the laminar regime for the flow field, to a linear, time-harmonic acoustic equation in the low Mach number regime for the sound signal. B-splines are used both to represent the duct geometry and to approximate the flow and sound fields. This facilitates an exact representation of complex duct geometries...
Three-dimensional Rayleigh-Taylor instability analysis of implosion system with scientific animation
Sakagami, Hitoshi [Himeji Inst. of Tech., Hyogo (Japan)
1999-05-01
A fully three-dimensional Rayleigh-Taylor instability taking place at the pusher-fuel contact surface in spherically stagnating systems has been investigated. Scientific color animations were rendered and constructed from the simulation results. At first, the rendering algorithm for an isovalue surface is discussed, and then the construction methods for scientific color animation are summarized by comparing analog based animation systems and digital ones. It is showed that the nonlinear dynamics of the Rayleigh-Taylor instability are characterized by vortex rings that are induced in bubble-spike structures with the use of scientific animation analysis. (author)
THREE-DIMENSIONAL ANALYSIS OF FUNCTIONALLY GRADED PLATE BASED ON THE HAAR WAVELET METHOD
无
2007-01-01
A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.
Eigen, D. J.; Fromm, F. R.; Northouse, R. A.
1974-01-01
A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.
A COMPLETE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE BAR-BAR TENSILE IMPACT APPARATUS
万华培; 汪洋; 夏源明
2003-01-01
A complete three-dimensional FEM model of the Bar-Bar Tensile Impact Apparatus (BTIA) is constructed, in which the slots in the bars and the glue layers between the bars and the flat-shaped specimen are included. For elastic-plastic specimen material, Ly12cz aluminum alloy, the process of tensile impact experiments is simulated and the matching relation between the specimen geometry and the bars is investigated. Based on the FEM analysis, an iterative method is proposed to design a reasonable specimen geometry for obtaining the true dynamic stress-strain relation for a certain specimen material.
Eigen, D. J.; Fromm, F. R.; Northouse, R. A.
1974-01-01
A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.
Three-dimensional elastic analysis of a composite double cantilever beam specimen
Raju, I. S.; Shivakumar, K. N.; Crews, J. H., Jr.
1988-01-01
Attention is given to the stresses and the strain energy release rate along the delamination front in the present three-dimensional elastic analysis of a 24-ply, cocured double-cantilever beam specimen by means of 20-noded parabolic-isoparametric finite elements. At the free surface, the strain energy release rate was found to be substantially smaller than the plane strain value; this is suggested to be due to the free-surface effect that exists where the delamination meets the surface edge.
Algorithmic analysis of the maximum level length in general-block two-dimensional Markov processes
2006-01-01
Full Text Available Two-dimensional continuous-time Markov chains (CTMCs are useful tools for studying stochastic models such as queueing, inventory, and production systems. Of particular interest in this paper is the distribution of the maximal level visited in a busy period because this descriptor provides an excellent measure of the system congestion. We present an algorithmic analysis for the computation of its distribution which is valid for Markov chains with general-block structure. For a multiserver batch arrival queue with retrials and negative arrivals, we exploit the underlying internal block structure and present numerical examples that reveal some interesting facts of the system.
Dhairya A Dholakia; G K Solanki; S G Patel; M K Agarwal
2001-06-01
The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near the fundamental absorption edge at room temperature using light parallel to -axis incident normally on the basal plane. On the basis of two- and three-dimensional models it was found that both direct and indirect band transitions took place in WS2 and the indirect transition was of the allowed type. The optical energy gaps corresponding to both transitions were determined and the phonon energies associated with the indirect transitions estimated. The implications of the results have been discussed.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Kevin Till
Full Text Available Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional. Players were blindly and randomly divided into an exploratory (n = 165 and validation dataset (n = 92. The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001, although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003. Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sung, H. J. [KEPCO-NF, Daejeon (Korea, Republic of); Hwang, M. J. [E and 2T, Daejeon (Korea, Republic of); Kang, D. H. [SenTECH, Daejeon (Korea, Republic of); Lim, S. G. [KHNP CRI, Daejeon (Korea, Republic of); Jun, S. S. [FNC, Daejeon (Korea, Republic of)
2015-10-15
Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components.
Cavaignac, Etienne; Li, Ke; Faruch, Marie; Savall, Frederic; Chiron, Philippe; Huang, W; Telmon, Norbert
2017-12-01
Ethnic dimorphism in the distal femur has never been studied in a three-dimensional analysis focused on shape instead of size. Yet, this dimorphism has direct implications in orthopedic surgery and in anthropology. The goal of this study was to show that differences in distal femur shape related to ethnic dimorphism could be identified, visualized, and quantified using 3D geometric morphometric analysis. CT scans of the distal femur were taken from 482 patients who were free of any bone-related pathology: 240 patients were European (E) and 242 were Asian (A). Ten osteometric landmarks based on standard bone landmarks used in anthropometry were placed on these scans. Geometric morphometric analysis, principal component analysis (PCA), canonical variates analysis (CVA), and other discriminant analyses (Goodall's F-test and Mahalanobis distance) were performed. A cross-validation analysis was carried out to determine the percentage of cases in which the ethnicity was correctly estimated. The shape of the E and A distal femur differed significantly (Goodall's F = 94.43, P geometric morphometric analysis made it possible to demonstrate these differences. The large number of subjects studied has helped modernize the references for certain bone measurements, with direct implication for orthopedic surgery and anthropology.
Symmetry Analysis of (2+1)-Dimensional Nonlinear Klein-Gordon Equations
唐晓艳; 楼森岳
2002-01-01
We have obtained two types of two-dimensional similarity reductions for the (2 +1)-dimensional Klein-Gordon system using the standard classical Lie group approach with computer algebra. The well-known one-dimensional reductions, radial and travelling reductions are equivalent to the two special cases of our general two-dimensional reductions.
Arenas, A.; Madrid, C.N.; Herranz, A. (Universidad Politecnica de Madrid (Spain). Escuela de Ingenieria Tecnica Industrial)
1989-01-01
We solve by Dimensional Analysis the problem of heat transfer by free convection in vertical and horizontal cylinders using the amplified dimensional base proposed by us for this class of phenomena. We obtain more precise solutions than those given by the classical Dimensional Analysis and are in accord with the empirical results obtained by various authors. (Author)
Lee, Kyoung Soo; Kim, Man Won; Lee, Sung Ho [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2013-01-15
Numerous dissimilar metal welds are used to connect carbon steel and stainless steel in nuclear power plants. Recently, some cracks have occurred in the dissimilar metal welds, and welding residual stress is considered as a contributing factor to the cracks. In this study, welding residual stresses in dissimilar butt weld piping were evaluated by the 3-dimensional (3-D) finite element method. Welding residual stresses along the circumference of heat affected zones as well as weld regions were obtained through the analysis, which could not be obtainable with 2-dimensional (2-D) analysis. The differences between 2-D analysis and 3-D analysis are presented in this paper.
无
2007-01-01
In contrast to classical dimensional analysis, discriminated dimensional analysis assumes that spatial coordinates are dimensionally independent of each other and allows other types of geometrical quantity to be used in the dimensional basis, such as surfaces and angles. As a consequence, discriminated dimensional analysis leads to a lower number of dimensional groups, which makes the solution more precise. Besides, these discriminated groups have a clear physical meaning in terms of force and energy balances. The paper introduces this technique and provides dimensional equations for the main quantities and physical parameters of the heat transfer and fluid flow fields. Two applications are presented to demonstrate the efficiency of this method.
SU Jia-can; ZHANG Ben; YU Bao-qing; ZHANG Chun-cai; CHEN Xue-qiang; WANG Bao-hua; DING Zu-quan
2005-01-01
Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress. Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results :When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis a long superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum, (4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring, (3) in the acetabulum , (4)along the pubic branch ,but no stress transmitted to the ischium branch. Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.
Analysis of three-dimensional thermo-hydraulic phenomena in the reactor core of LMFBR
Hu, S.; Lee, Y. B.; Jang, W. P.; Ha, K. S.; Jung, H. Y. [KAERI, Taejon (Korea, Republic of)
2004-07-01
The mismatch between power and flow under the transient condition of LMFBR (Liquid Metal cooled Fast Breeder Reactor) core results in thermal stratification in hot pool. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response, therefore three-dimensional analysis of thermo-hydraulic phenomena is necessary. In this study, the thermo-hydraulic phenomena under normal operating condition and unprotected transient condition of LMFBR is investigated using which is the three-dimensional analysis code, COMMIX-1AR/P. The basic input data is based on the design data of KALIMER-600, which is sodium-cooled fast breeder reactor developed by KAERI. COMMIX-1AR/P code has not a reactivity model and the power and core flowrate must be supplied in the input data. In this study, results of SSC-K calculation is used. The temperature and velocity distributions are calculated and compared with those of SSC-K calculation results. The UTOF(Unprotected Loss Of Flow) accident is calculated using COMMIX-1AR/P and the temperature and velocity distributions in the total reactor core are calculated and the natural circulation mode under this transient condition is investigated.
Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang
2014-01-01
This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881
Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine
Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.
1991-01-01
The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.
Lim, Einly; Karantonis, Dean M; Reizes, John A; Cloherty, Shaun L; Mason, David G; Lovell, Nigel H
2008-08-01
Accurate noninvasive average flow and differential pressure estimation of implantable rotary blood pumps (IRBPs) is an important practical element for their physiological control. While most attempts at developing flow and differential pressure estimate models have involved purely empirical techniques, dimensional analysis utilizes theoretical principles of fluid mechanics that provides valuable insights into parameter relationships. Based on data obtained from a steady flow mock loop under a wide range of pump operating points and fluid viscosities, flow and differential pressure estimate models were thus obtained using dimensional analysis. The algorithm was then validated using data from two other VentrAssist IRBPs. Linear correlations between estimated and measured pump flow over a flow range of 0.5 to 8.0 L/min resulted in a slope of 0.98 ( R(2) = 0.9848). The average flow error was 0.20 +/- 0.14 L/min (mean +/- standard deviation) and the average percentage error was 5.79%. Similarly, linear correlations between estimated and measured pump differential pressure resulted in a slope of 1.027 ( R(2) = 0.997) over a pressure range of 60 to 180 mmHg. The average differential pressure error was 1.84 +/- 1.54 mmHg and the average percentage error was 1.51%.
Shin, Kang-Jae; Lee, Ju-Young; Kim, Jeong-Nam; Yoo, Ja-Young; Shin, Chuog; Song, Wu-Chul; Koh, Ki-Seok
2013-07-01
The aim of this study was to provide data on various dimensions of the normal cochlea using three-dimensional reconstruction based on high-resolution micro-CT images. The petrous parts of 39 temporal bones were scanned by micro-computed tomography (CT) with a slice thickness of 35 μm. The micro-CT images were used in reconstructing three-dimensional volumes of the bony labyrinth using computer software. The volumes were used to measure 12 dimensions of the cochlea, and statistical analysis was carried out. The dimensions of cochleae varied widely between different specimens. The mean height and length of the cochlea were 3.8 and 9.7 mm, respectively. The angle between the basal and middle turns was slightly larger in males than in females, while none of the other 11 dimensions differed significantly between males and females. The cochlear accessory canals were observed in about half of the cases (51.3%). Correlation analysis among measured items revealed positive correlations among several of the measured dimensions. The present study could investigate the detailed anatomy of the normal cochlea using high-resolution imaging technologies. The results of the present study could be helpful for the precise diagnosis of congenital cochlear malformations and for producing optimized cochlear implants.
Multiple Group Testing Procedures for Analysis of High-Dimensional Genomic Data
Ko, Hyoseok; Kim, Kipoong
2016-01-01
In genetic association studies with high-dimensional genomic data, multiple group testing procedures are often required in order to identify disease/trait-related genes or genetic regions, where multiple genetic sites or variants are located within the same gene or genetic region. However, statistical testing procedures based on an individual test suffer from multiple testing issues such as the control of family-wise error rate and dependent tests. Moreover, detecting only a few of genes associated with a phenotype outcome among tens of thousands of genes is of main interest in genetic association studies. In this reason regularization procedures, where a phenotype outcome regresses on all genomic markers and then regression coefficients are estimated based on a penalized likelihood, have been considered as a good alternative approach to analysis of high-dimensional genomic data. But, selection performance of regularization procedures has been rarely compared with that of statistical group testing procedures. In this article, we performed extensive simulation studies where commonly used group testing procedures such as principal component analysis, Hotelling's T2 test, and permutation test are compared with group lasso (least absolute selection and shrinkage operator) in terms of true positive selection. Also, we applied all methods considered in simulation studies to identify genes associated with ovarian cancer from over 20,000 genetic sites generated from Illumina Infinium HumanMethylation27K Beadchip. We found a big discrepancy of selected genes between multiple group testing procedures and group lasso.
Lee, S-H; Kil, T-J; Park, K-R; Kim, B C; Kim, J-G; Piao, Z; Corre, P
2014-09-01
The aim of this study was to present a systematic sequence for three-dimensional (3D) measurement and cephalometry, provide the norm data for computed tomography-based 3D architectural and structural cephalometric analysis, and validate the 3D data through comparison with Delaire's two-dimensional (2D) lateral cephalometric data for the same Korean adults. 2D and 3D cephalometric analyses were performed for 27 healthy subjects and the measurements of both analyses were then individually and comparatively analyzed. Essential diagnostic tools for 3D cephalometry with modified definitions of the points, planes, and measurements were set up based on a review of the conceptual differences between two and three dimensions. Some 2D and 3D analysis results were similar, though significant differences were found with regard to craniofacial angle (C1-F1), incisal axis angles, cranial base length (C2), and cranial height (C3). The discrepancy in C2 and C3 appeared to be directly related to the magnification of 2D cephalometric images. Considering measurement discrepancies between 2D and 3D Delaire's analyses due to differences in concept and design, 3D architectural and structural analysis needs to be conducted based on norms and a sound 3D basis for the sake of its accurate application and widespread adoption. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Vásquez, G A; Busschaert, P; Haberbeck, L U; Uyttendaele, M; Geeraerd, A H
2014-11-03
Quantitative Microbiological Risk Assessment (QMRA) is a structured methodology used to assess the risk involved by ingestion of a pathogen. It applies mathematical models combined with an accurate exploitation of data sets, represented by distributions and - in the case of two-dimensional Monte Carlo simulations - their hyperparameters. This research aims to highlight background information, assumptions and truncations of a two-dimensional QMRA and advanced sensitivity analysis. We believe that such a detailed listing is not always clearly presented in actual risk assessment studies, while it is essential to ensure reliable and realistic simulations and interpretations. As a case-study, we are considering the occurrence of listeriosis in smoked fish products in Belgium during the period 2008-2009, using two-dimensional Monte Carlo and two sensitivity analysis methods (Spearman correlation and Sobol sensitivity indices) to estimate the most relevant factors of the final risk estimate. A risk estimate of 0.018% per consumption of contaminated smoked fish by an immunocompromised person was obtained. The final estimate of listeriosis cases (23) is within the actual reported result obtained for the same period and for the same population. Variability on the final risk estimate is determined by the variability regarding (i) consumer refrigerator temperatures, (ii) the reference growth rate of L. monocytogenes, (iii) the minimum growth temperature of L. monocytogenes and (iv) consumer portion size. Variability regarding the initial contamination level of L. monocytogenes tends to appear as a determinant of risk variability only when the minimum growth temperature is not included in the sensitivity analysis; when it is included the impact regarding the variability on the initial contamination level of L. monocytogenes is disappearing. Uncertainty determinants of the final risk indicated the need of gathering more information on the reference growth rate and the minimum
International Conference on Finite or Infinite Dimensional Complex Analysis and Applications
Tutschke, W; Yang, C
2004-01-01
There is almost no field in Mathematics which does not use Mathe matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam....
Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies
Manan Singh
2016-11-01
Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.
Error analysis for satellite gravity field determination based on two-dimensional Fourier methods
Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun
2012-01-01
The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...
Application of geometric midline yield criterion to analysis of three-dimensional forging
ZHAO De-wen; WANG Gen-ji; LIU Xiang-hua; WANG Guo-dong
2008-01-01
A kinematically admissible continuous velocity field was proposed for the analysis of three-dimensional forging. The linear yield criterion expressed by geometric midline of error triangle between Tresca and Twin shear stress yield loci on the π-plane, called GM yield criterion for short, was firstly applied to analysis of the velocity field for the forging. The analytical solution of the forging force with the effects of external zone and bulging parameter is obtained by strain rate inner product. Compression tests of pure lead are performed to compare the calculated results with the measured ones. The results show that the calculated total pressures are higher than the measured ones whilst the relative error is no more than 9.5%. It is implied that the velocity field is reasonable and the geometric midline yield criterion is available. The solution is still an upper-bound one.
Bo, Z.; Chen, J. H.
2010-02-01
The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.
A pure Dirac's analysis for a four dimensional BF-like theory with a compact dimension
Escalante, Alberto
2013-01-01
In the context of extra dimensions, we perform a detailed Dirac's canonical analysis for a topological four dimensional BF-like theory. By performing the compactification process a la Kaluza-Klein, we find out the relevant symmetries of the theory, namely, the full structure of the constraints and the extended action. We show that the extended Hamiltonian is a linear combination of first class constraints, which means that the general covariance of the theory is not affected by the compactification process. Furthermore, in order to carry out the correct counting of physical degrees of freedom, we show that must be taken into account the reducibility conditions among the first class constraints associated to the excited KK modes. Finally, we perform the Hamiltonian analysis of Maxwell theory written as a $BF$-like theory, we analyze the constraints of the theory and the results obtained are compared with those found in the literature.
Calculation of losses in a HTS current lead with the help of the dimensional analysis
Douine, B.; Leveque, J.; Netter, D.; Rezzoug, A
2003-12-01
The calculation of losses is highly required to design any superconducting device. To do that the analytical approach is the best way in term of parameter analysis. Bean's model is based on the fact that the resistive transition is sudden. This assumption is more suitable for low critical temperature superconductors. For ceramics, the transition is smoother, so the variation of electric field E with current density is a function well approached by kJ{sup n}. Using this kind of function and a dimensional analysis the authors propose a new analytic formula to calculate the losses in the case of incomplete penetration of current. Calculated results are compared to measured ones and the validity limit is shown.
Crossett, Ben; Edwards, Alistair V G; White, Melanie Y; Cordwell, Stuart J
2008-01-01
Standardized methods for the solubilization of proteins prior to proteomics analyses incorporating two-dimensional gel electrophoresis (2-DE) are essential for providing reproducible data that can be subjected to rigorous statistical interrogation for comparative studies investigating disease-genesis. In this chapter, we discuss the imaging and image analysis of proteins separated by 2-DE, in the context of determining protein abundance alterations related to a change in biochemical or biophysical conditions. We then describe the principles behind 2-DE gel statistical analysis, including subtraction of background noise, spot detection, gel matching, spot quantitation for data comparison, and statistical requirements to create meaningful gel data sets. We also emphasize the need to develop reproducible and robust protocols for protein sample preparation and 2-DE itself.
A Three-Dimensional Spatiotemporal Template for Interactive Human Motion Analysis
Alexandra Branzan Albu
2007-08-01
Full Text Available This paper describes a new three-dimensional spatiotemporal template, namely the Volumetric Motion History Image (VMHI, for the purpose of human motion analysis. Irregularities in human actions typically occur either in speed or orientation; they carry information about the balance and the confidence level of the human subject performing the activity. The proposed VMHI template handles successfully shortcomings of existing spatiotemporal templates related to motion self -occlusion and speed. Therefore, VMHI allows for interactive visualization, as well as quantification of motion performance. This study focuses on the analysis of sway and speed-related abnormalities, which are among the most common motion irregularities in the studied set of human actions.
Hayama, Kazuhiro; Kotake, Kei; Takiwaki, Tomoya
2015-01-01
Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. By combining with the GW spectrogram analysis, we show that several important hydrodynamics features imprinted in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the GW spectrograms originates not only from rotating core-collapse and bounce, the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance, which we set by a SNR exceeding 8, extends up to $\\sim$ 18 kpc for the most rapidly rotating 3D model among the employed waveform libraries. Following the rotating core bounce, the domi...
To what do psychiatric diagnoses refer? A two-dimensional semantic analysis of diagnostic terms.
Maung, Hane Htut
2016-02-01
In somatic medicine, diagnostic terms often refer to the disease processes that are the causes of patients' symptoms. The language used in some clinical textbooks and health information resources suggests that this is also sometimes assumed to be the case with diagnoses in psychiatry. However, this seems to be in tension with the ways in which psychiatric diagnoses are defined in diagnostic manuals, according to which they refer solely to clusters of symptoms. This paper explores how theories of reference in the philosophy of language can help to resolve this tension. After the evaluation of descriptive and causal theories of reference, I put forward a conceptual framework based on two-dimensional semantics that allows the causal analysis of diagnostic terms in psychiatry, while taking seriously their descriptive definitions in diagnostic manuals. While the framework is presented as a solution to a problem regarding the semantics of psychiatric diagnoses, it can also accommodate the analysis of diagnostic terms in other medical disciplines.
Prediction of axial limit capacity of stone columns using dimensional analysis
Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.
2017-08-01
Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.
Three-dimensional surface analysis system using a compact nuclear microprobe
Kishimoto, T.; Mimura, R.; Sawaragi, H.; Aihara, R.; Takai, M.
1995-09-01
A nondestructive three-dimensional Rutherford backscattering spectroscopy (RBS) and medium energy ion scattering (MEIS) analysis system with a compact 200 kV focused ion beam column has been developed. A liquid metal ion source (LMIS) such as lithium and/or beryllium (from Au/Si/Be eutectic alloy) was mounted on the short column. A high-vacuum sample chamber with a six-axis goniometer stage and an electrostatic toroidal analyzer for channeling and RBS analysis was connected to the acceleration column. The beam spot size was evaluated by microprobe-induced secondary electron image and a knife edge method using a thin gold pattern on a Si wafer. The beam current of 47 pA was obtained with a beam-spot diameter of 80 × 100 nm 2 for 400 keV Be ++ microprobes.
Three-dimensional morphological analysis method for geologic bodies and its parallel implementation
Mao, Xiancheng; Zhang, Bin; Deng, Hao; Zou, Yanhong; Chen, Jin
2016-11-01
It has been found that the spatial locations and distributions of orebodies, especially for certain hydrothermal mineral deposits, are closely related to the shape of intrusive geologic bodies. For complex and large-scale geologic bodies, however, it is challenging to achieve rigorous and quantitative morphological analysis by standard geological surface reconstruction and trend-surface analysis methods. This paper presents a novel, quantitative morphological analysis method for general geologic bodies of closed 2-manifold surface based on mathematical morphology. Through the processes of morphological filtering, set operations and three-dimensional Euclidean distance transform (3D-EDT), the global trend shape, local convex and concave zones as well as degree of surface undulation of a geologic body are extracted respectively. All of the three analysis phases are speeded up via parallel algorithms implemented by using the message passing interface (MPI) standard. The proposed method is tested with a case study of the Xinwuli intrusion with complex shape in Fenghuangshan deposit of the Tongling district, China. The results demonstrate that the method is an effective and efficient way to achieve quantitative morphological analysis, thereby decreasing the time necessary to find the association between morphological parameters of geologic bodies and mineralization.
Fernandez-Gonzalez, Rodrigo; Jones, Arthur; Garcia-Rodriguez, Enrique; Yuan Chen, Ping; Idica, Adam; Lockett, Stephen J.; Barcellos-Hoff, Mary Helen; Ortiz-de-Solorzano, Carlos
2002-04-25
We present a new system for simultaneous morphological and molecular analysis of thick tissue samples. The system is composed of a computer assisted microscope and a JAVA-based image display, analysis and visualization program that allows acquisition, annotation, meaningful storage, three-dimensional reconstruction and analysis of structures of interest in thick sectioned tissue specimens. We describe the system in detail and illustrate its use by imaging, reconstructing and analyzing two complete tissue blocks which were differently processed and stained. One block was obtained from a ductal carcinoma in situ (DCIS) lumpectomy specimen and stained alternatively with Hematoxilyn and Eosin (H&E), and with a counterstain and fluorescence in situ hybridization (FISH) to the ERB-B2 gene. The second block contained a fully sectioned mammary gland of a mouse, stained for Histology with H&E. We show how the system greatly reduces the amount of interaction required for the acquisition and analysis and is therefore suitable for studies that require morphologically driven, wide scale (e.g., whole gland) analysis of complex tissue samples or cultures.
Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev
2013-05-01
The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.
MD-SeeGH: a platform for integrative analysis of multi-dimensional genomic data
Ng Raymond T
2008-05-01
Full Text Available Abstract Background Recent advances in global genomic profiling methodologies have enabled multi-dimensional characterization of biological systems. Complete analysis of these genomic profiles require an in depth look at parallel profiles of segmental DNA copy number status, DNA methylation state, single nucleotide polymorphisms, as well as gene expression profiles. Due to the differences in data types it is difficult to conduct parallel analysis of multiple datasets from diverse platforms. Results To address this issue, we have developed an integrative genomic analysis platform MD-SeeGH, a software tool that allows users to rapidly and directly analyze genomic datasets spanning multiple genomic experiments. With MD-SeeGH, users have the flexibility to easily update datasets in accordance with new genomic builds, make a quality assessment of data using the filtering features, and identify genetic alterations within single or across multiple experiments. Multiple sample analysis in MD-SeeGH allows users to compare profiles from many experiments alongside tracks containing detailed localized gene information, microRNA, CpG islands, and copy number variations. Conclusion MD-SeeGH is a new platform for the integrative analysis of diverse microarray data, facilitating multiple profile analyses and group comparisons.
Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev
2013-05-01
The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.
Manson, Steven James
The Pantex facility near Amarillo, Texas, is the only U.S. site charged with the disassembly of nuclear weapons. Concerns over the safety of weapons handling procedures are now being revisited, due to the enhanced safety requirements of the peace time disassembly effort. This research is a detailed examination of one possible nuclear weapons-related accident. In this hypothetical accident, a chemical explosion equivalent to over 50 kilos of TNT destroys unassembled nuclear weapons components, and may potentially result in some amount of plutonium reaching the environment. Previous attempts to simulate this accident have centered around the one-dimensional node and branch approach of the MELCOR code. This approach may be adequate in calculating pressure driven flow through narrow rampways and leak sites, however, its one-dimensionality does not allow it to accurately calculate the multi-dimensional aspects of heat transfer. This research effort uses an axi-symmetric stream function---vorticity formulation of the Navier-Stokes equations to model a Pantex cell building following a successfully contained chemical explosion. This allows direct calculation of the heat transfer within the cell room during the transient. The tool that was developed to perform this analysis is called PET (Post-Explosion Transient), and it simulates natural convection thermal hydraulics taking into account temperature-related fluid density differences, variable fluid transport properties, and a non-linear equation of state. Results obtained using the PET code indicate that previous analyses by other researchers using the MELCOR code have been overly conservative in estimating the effects of cell room heat transfer. An increase in the calculated heat transfer coefficient of approximately 20% is indicated. This has been demonstrated to significantly decrease the projected consequences of the hypothetical accident.
Heterocercal tail function in leopard sharks: a three-dimensional kinematic analysis of two models
Ferry; Lauder
1996-01-01
Two different models have been proposed to explain the function of the heterocercal tail in shark locomotion. The classical model proposes that, as a result of lift generated by the tail as it beats, the net force acting on the tail is directed dorsally and anteriorly. In contrast, Thomson's model suggests that the tail generates a net force directed through the shark's center of gravity, i.e. ventrally and anteriorly. In this study, we evaluate these two models by describing the three-dimensional kinematics of the heterocercal tail in the leopard shark Triakis semifasciata during swimming. Lateral and posterior views of the tail were examined from four individuals swimming in a flow tank at 1.2 L s-1 (where L is total length) using two high-speed video cameras filming simultaneously at 250 fields s-1. These two simultaneous views allowed eight landmarks on the tail to be followed in three dimensions through time. These landmarks allowed the tail to be divided into separate surfaces whose orientation over time was calculated. Points located anteriorly on the tail go through significantly smaller excursions and reach their maximum lateral excursion significantly earlier in the beat cycle than points on the trailing edge of the tail. Three-dimensional angle calculations show that the terminal lobe leads the ventral lobe through a beat, as predicted by the classical model. Dye-stream visualizations confirmed that this pattern of movement deflects water ventrally and posteriorly to the moving tail, providing strong support for the classical model. Additionally, our results show that a three-dimensional analysis is critical to understanding the function of the heterocercal tail.
Oikawa, Takaaki; Sonoda, Jun; Sato, Motoyuki; Honma, Noriyasu; Ikegawa, Yutaka
Analysis of lightning electromagnetic field using the FDTD method have been studied in recent year. However, large-scale three-dimensional analysis on real environment have not been considered, because the FDTD method has huge computational cost on large-scale analysis. So we have proposed a three-dimensional moving window FDTD (MW-FDTD) method with parallel computation. Our method use few computational cost than the conventional FDTD method and the original MW-FDTD method. In this paper, we have studied about computation performance of MW-FDTD parallel computation and large-scale three-dimensional analysis of lightning electromagnetic field on a real terrain model using our MW-FDTD with parallel computation.
Cheng, Yang; Wong, Michael T; van der Maaten, Laurens; Newell, Evan W
2016-01-15
Rapid progress in single-cell analysis methods allow for exploration of cellular diversity at unprecedented depth and throughput. Visualizing and understanding these large, high-dimensional datasets poses a major analytical challenge. Mass cytometry allows for simultaneous measurement of >40 different proteins, permitting in-depth analysis of multiple aspects of cellular diversity. In this article, we present one-dimensional soli-expression by nonlinear stochastic embedding (One-SENSE), a dimensionality reduction method based on the t-distributed stochastic neighbor embedding (t-SNE) algorithm, for categorical analysis of mass cytometry data. With One-SENSE, measured parameters are grouped into predefined categories, and cells are projected onto a space composed of one dimension for each category. In contrast with higher-dimensional t-SNE, each dimension (plot axis) in One-SENSE has biological meaning that can be easily annotated with binned heat plots. We applied One-SENSE to probe relationships between categories of human T cell phenotypes and observed previously unappreciated cellular populations within an orchestrated view of immune cell diversity. The presentation of high-dimensional cytometric data using One-SENSE showed a significant improvement in distinguished T cell diversity compared with the original t-SNE algorithm and could be useful for any high-dimensional dataset.
A new platform for serological analysis based on porous 3-dimensional polyethylene sinter bodies.
Alasel, Mohammed; Keusgen, Michael
2017-10-25
A new sensitive and selective platform, three-dimensional immunosensor, has been developed for a rapid serological diagnosis; detection of a Borrelia infection was considered as a model assay. The immunosensor is based on a 3-dimensional (3D) porous solid surface (sinter body) with dimensions of 2×2.5mm where a recombinant variable lipoprotein surface-exposed protein (VlsE; Borrelia-antigen) is immobilized by different techniques. The sinter body served as a robust and inexpensive carrier, which facilitated a successful hydrophobic adsorption as well as covalent immobilization of the antigen with sufficient amounts of on the surface. Because of sinter body's porosity, the detection could be performed in an immune affinity flow system based on a little disposable plastic column. The flow of reagents through the column is advantageous in terms of reducing the non-specific interaction and shortening the test time. Furthermore, three labels were tested for a colorimetric detection: i) a horseradish peroxidase (HRP) labeled secondary antibody, ii) nanoparticles based on Sudan IV, and iii) gold nanoparticles modified with protein A. HRP secondary labeled antibody provides the most sensitive test, 1000 fold dilution of serum sample can be clearly detected in only 20min. Gold nanoparticles modified with protein A were used as a direct label or as a catalyst for reduction of silver ions. Direct detection with gold nanoparticles provides short time of analysis (5min) while detection of metallic silver required longer time (12min) but with improved sensitivity. Nanoparticles based on Sudan IV showed high background and were less favorable. The assay is distinctive because of the rapid analysis time with all used labels, longest 20min. Compared to classical serological methods for Borrelia diagnosis, the developed method offers a simple, rapid and reliable tool of analysis with minimal cost and can be easily transferred to other infectious diseases. Copyright © 2017 Elsevier
A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements
Hindley, Neil P.; Smith, Nathan D.; Wright, Corwin J.; Rees, D. Andrew S.; Mitchell, Nicholas J.
2016-06-01
Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.
Clinical significance of three dimensional finite element analysis on humerus fracture
SU Jia-can; WAN Min; FU Qing-ge; ZHANG Chun-cai; XU Shuo-gui; REN Ke; WANG Jia-lin; XUE Zhao-jun; WU Jian-guo; DING Zu-quan; GAO Tang-cheng
2002-01-01
Objective: To treat humerus fracture with three dimensional pattern and finite element analysis,providing mechanical basis for treating humerus fracture. Methods: Humerus pattern was established based on the CT images, and calculation was done by ANSYS5.6 software. Three dimensional ten-node tetrahedron unit was selected and were divided into 2 729 nodes, 49 041 units. Distribution and amount of axial compression of humerus were analyzed when clip angle was 30°, 45°, 90° between fracture face and axial line with fixed X, Y, Z directions. Results: The distribution of stress was greatly different between fracture face and non fracture face. Stress in fracture part was fairly concentrated with incomplete symmetric distribution around the center of fracture face; Greater stressdistributed in the regions 10 mm from fracture face, which was 2-3 times that of other stress regions. Conclusion: Required load must be estimated under various conditions as to select the suitable internal fixation implants during the treatment of humerus fracture, which can provide helpful stress environment for fracture healing.
Two-dimensional Electrophoresis Analysis of Proteins Extracted from Alexandrium sp. LC3
无
2007-01-01
Two-dimensional electrophoresis(2-DE) of protein extracted and purified from Alexandrium sp. LC3 was conducted. In the SDS-PAGE study, the relative molecular weights of the proteins were mainly in the range of 14 kDa-31 kDa and 43 kDa-66 kDa, and more proteins were detected between 14 kDa and 31 kDa. With the improved protein preparation, the two-dimensional electrophoresis patterns indicated that the relative molecular weights of the proteins were between 14 kDa and 100 kDa, and most of them ranged from 14 kDa to 31 kDa. This was consistent with the result of the SDS-PAGE analysis. The isoelectric points were found to lie between 3.0 and 8.0, and most of them were in the range of 3.0-6.0. Better separation effect was acquired with pre-prepared immobilized gradient (IPG) strip (pH 3-5.6), and about 320 protein spots could be visualized on the 2-DE map by staining. Within pH 3-10 and pH 3-5.6 strips, the protein samples of Alexandriun sp. LC3 could be separated well.
Finite-key analysis for time-energy high-dimensional quantum key distribution
Niu, Murphy Yuezhen; Xu, Feihu; Shapiro, Jeffrey H.; Furrer, Fabian
2016-11-01
Time-energy high-dimensional quantum key distribution (HD-QKD) leverages the high-dimensional nature of time-energy entangled biphotons and the loss tolerance of single-photon detection to achieve long-distance key distribution with high photon information efficiency. To date, the general-attack security of HD-QKD has only been proven in the asymptotic regime, while HD-QKD's finite-key security has only been established for a limited set of attacks. Here we fill this gap by providing a rigorous HD-QKD security proof for general attacks in the finite-key regime. Our proof relies on an entropic uncertainty relation that we derive for time and conjugate-time measurements that use dispersive optics, and our analysis includes an efficient decoy-state protocol in its parameter estimation. We present numerically evaluated secret-key rates illustrating the feasibility of secure and composable HD-QKD over metropolitan-area distances when the system is subjected to the most powerful eavesdropping attack.
Three-dimensional analysis of relationship between relative orientation and motion modes
Fan Shijie a; Fan Hongqi a; Xiao Huaitie a; Fan Jianpeng b; Fu Qiang a
2014-01-01
Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of rela-tionship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.
Three-dimensional analysis of relationship between relative orientation and motion modes
Fan Shijie
2014-12-01
Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.
Wang, S. S.
1985-01-01
A three-dimensional hybrid-stress finite element analysis of composite laminates containing cutouts and cracks is presented. Fully three-dimensional, hexahedral isoparametric elements of the hybrid-stress model are formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce ply-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed.
Pierzga, M. J.; Wood, J. R.
1984-01-01
An experimental investigation of the three dimensional flow field through a low aspect ratio, transonic, axial flow fan rotor has been conducted using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of through flow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three dimensional, unsteady Euler equations using an explicit time marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial by 30 axial by 50 blade to blade) permits details of the transonic flow field such as shock location, turning distribution and blade loading levels to be investigated and compared to analytical results.
Pierzga, M. J.; Wood, J. R.
1984-01-01
An experimental investigation of the three-dimensional flow field through a low aspect ratio, transonic, axial flow fan rotor has been conducted, using an advanced laser anemometer (LA) system. Laser velocimeter measurements of the rotor flow field at the design operating speed and over a range of throughflow conditions are compared to analytical solutions. The numerical technique used herein yields the solution to the full, three-dimensional, unsteady Euler equations using an explicit time-marching, finite volume approach. The numerical analysis, when coupled with a simplified boundary layer calculation, generally yields good agreement with the experimental data. The test rotor has an aspect ratio of 1.56, a design total pressure ratio of 1.629 and a tip relative Mach number of 1.38. The high spatial resolution of the LA data matrix (9 radial x 30 axial x 50 blade-to-blade) permits details of the transonic flow field such as shock location, turning distribution, and blade loading levels to be investigated and compared to analytical results.
Three-dimensional analysis of vane sweep effects on fan interaction noise
Zhang, Weiguang; Wang, Xiaoyu; Jing, Xiaodong; Liang, An; Sun, Xiaofeng
2017-03-01
The lifting surface method is an efficient solution for fully three-dimensional aerodynamic response of an annular cascade to the unsteady disturbances. Based on this response function, a prediction model for fan tonal and broadband interaction noise has been established. Three dimensional effects, including primarily the annular geometry and the radial non-uniformity of the upwash, can be fully taken into account. In this paper, a thorough analysis of vanes sweep effects is carried out by particularly considering the great dependence of the annular cascade aerodynamic response and modal acoustic field upon the radial phase profiles of incident disturbances. For fan tonal noise, different control behaviors of the forward and backward swept vanes are observed when the radial non-uniformity in the incident gust is introduced. The argument suggests that sweep should be selected so as to increase the wake intersections per vane, until it is larger than the number of cut-on radial acoustic modes. For fan broadband noise, the backward sweep succeeds in reducing the sound power level for a wide range of frequencies. Due to the statistical average effect, the efficiency relies much on the shape of the turbulence spectrum. And the sweep angle should be large enough to guarantee a preferable reduction to the fan broadband noise.
Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis
Nguyen, Hoa T. [Univ. of Utah, Salt Lake City, UT (United States); Stone, Daithi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2016-01-01
An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different case studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.
A mono-dimensional nuclear fuel performance analysis code, PUMA, development from a coupled approach
Cheon, J. S.; Lee, B. O.; Lee, C. B. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon, 305-353 (Korea, Republic of); Yacout, A. M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)
2013-07-01
Multidimensional-multi-physical phenomena in nuclear fuels are treated as a set of mono-dimensional-coupled problems which encompass heat, displacement, fuel constituent redistribution, and fission gas release. Rather than uncoupling these coupled equations as in conventional fuel performance analysis codes, efforts are put into to obtain fully coupled solutions by relying on the recent advances of numerical analysis. Through this approach, a new SFR metal fuel performance analysis code, called PUMA (Performance of Uranium Metal fuel rod Analysis code) is under development. Although coupling between temperature and fuel constituent was made easily, the coupling between the mechanical equilibrium equation and a set of stiff kinetics equations for fission gas release is accomplished by introducing one-level Newton scheme through backward differentiation formula. Displacement equations from 1D finite element formulation of the mechanical equilibrium equation are solved simultaneously with stress equation, creep equation, swelling equation, and FGR equations. Calculations was made successfully such that the swelling and the hydrostatic pressure are interrelated each other. (authors)
Harvati, Katerina
2003-04-01
The temporal bone is the location of several traits thought to differentiate Neanderthals from modern humans, including some proposed Neanderthal-derived traits. Most of these, however, are difficult to measure and are usually described qualitatively. This study applied the techniques of geometric morphometrics to the complex morphology of the temporal bone, in order to quantify the differences observed between Neanderthal and modern human anatomy. Two hundred and seventy modern human crania were measured, representing 9 populations of 30 individuals each, and spanning the extremes of the modern human geographical range. Twelve Neanderthal specimens, as well as Reilingen, Kabwe, Skhul 5, Qafzeh 9, and 4 Late Paleolithic European specimens, were included in the fossil sample. The data were collected in the form of three-dimensional (3-D) landmark coordinates, and specimen configurations were superimposed using generalized Procrustes analysis. The fitted coordinates were then analyzed by an array of multivariate statistical methods, including principal components analysis, canonical variates analysis, and Mahalanobis D(2). The temporal bone landmark analysis was very successful in separating Neanderthals from modern humans. Neanderthals were separated from modern humans in both the principal components and canonical variates analyses. They were much further in Mahalanobis distances from all modern human populations than any two modern human groups were from each other. Most of the previously described temporal bone traits contributed to this separation. Copyright 2003 Wiley-Liss, Inc.
A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models
Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.
2016-03-01
Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
Roy S. Baty, F. Farassat, John A. Hargreaves
2007-05-25
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics
J.D. Clayton
2016-08-01
Full Text Available Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate's theory demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit (HEL only in the latter. In contrast, in the former (i.e., hypervelocity and thick target experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.
Morton, C.; Yarusevych, S.
2016-10-01
The present study presents a new technique for reconstructing the salient aspects of three-dimensional wake topology based on time-resolved, planar, two-component particle image velocimetry data collected in multiple orthogonal planes. The technique produces conditionally averaged flow field reconstructions based on a pattern recognition analysis of velocity fields. It is validated on the wake of a low-aspect ratio dual step cylinder geometry, consisting of a large diameter cylinder ( D) with small aspect ratio ( L/ D) attached to the mid-span of a small diameter cylinder ( d). For a dual step cylinders with D/ d = 2, and L/ D = 1, numerical and experimental data are considered for ReD = 150 (laminar wake) and for ReD = 2100 (turbulent wake). The results show that the proposed technique successfully reconstructs the dominant periodic wake vortex interactions and can be extended to a wide range of turbulent flows.
Three-Dimensional Analysis of Rolling by Twin Shear Stress Yield Criterion
ZHAO De-wen; XIE Ying-jie; LIU Xiang-hua; WANG Guo-dong
2006-01-01
Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.
Salvatore Brischetto
2014-01-01
equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.
The Fast Electromagnetic Analysis and RCS Reducing of Two Dimensional Complex Targets
LIU Hong-xing
2005-01-01
@@ Radar scattering characteristic of the aircraft is an important factor for its survivability. Wings are one of the important scattering sources on the aircraft. In order to reduce their RCS, the intense and powerful electromagnetic analysis is needed. For reducing the complexity, the wings can be viewed as a two dimensional large electric objects consisting of both conductors and inhomogeneous dielectrics. In this dissertation, we aim at a precision and efficiency method for numerical computing of two dimension objects. Moded wings and the RCS of the wings can be calculated in turn. The RCS results of different wing are compared and examined, and the stealth technology of wing is found out. Scattering mechanism are explained, which can give strong predictive power for stealth technology of aircraft.
SHEN Peng; FAN Xiaohui; ZENG Zhen; CHENG Yiyu
2005-01-01
In this paper, a novel method to automatically detect protein spots on a two-dimensional (2-D) electrophoresis gel image is proposed to implement proteomics analysis of complex analyte.On the basis of the identifying spots results based on color variation and spot size features, morphological feature is introduced as a new criterion to distinguish protein spots from non-protein spots.Image-sharpening, edge-detecting and morphological feature extraction methods were consequently combined to detect protein spots on a 2-D electrophoresis gel image subject to strong disturbance.The proposed method was applied to detect the protein spots of proteomic gel images from E.coli cell, human kidney tissue and human serum.The results demonstrated that this method is more accurate and reliable than previous methods such as PDQuest 7.2 and ImageMaster 5.0 software for detecting protein spots on gel images with strong interferences.
Dziubek, Andrea
2011-01-01
Experimental results for condensation in compact heat exchangers show that the heat transfer due to condensation is significantly better compared to classical heat exchangers, especially when using R134a instead of water as the refrigerant. This suggests that surface tension plays a role. Using generalized dimensional analysis we derive reduced model equations and jump conditions for condensation in a vertical tube with cylindrical cross section. Based on this model we derive a single ordinary differential equation for the thickness of the condensate film as function of the tube axis. Our model agrees well with commonly used models from existing literature. It is based on the physical dimensions of the problem and has greater geometrical flexibility.
A dimensional analysis approach to fatigue in quasi-brittle materials
Marco Paggi
2009-10-01
Full Text Available In this study, a generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth is proposed in order to highlight and explain the deviations from the classical power-law equations used to characterize the fatigue behaviour of quasi-brittle materials. According to this theoretical approach, the microstructural-size (related to the volumetric content of fibres in fibre-reinforced concrete, the crack-size, and the size-scale effects on the Paris’ law and the Wöhler equation are presented within a unified mathematical framework. Relevant experimental results taken from the literature are used to confirm the theoretical trends and to determine the values of the incomplete self-similarity exponents. All these information are expected to be useful for the design of experiments, since the role of the different dimensionless numbers governing the phenomenon of fatigue is herein elucidated.
Ignatova, Maria; Guével, Blandine; Com, Emmanuelle; Haddad, Nabila; Rossero, Albert; Bogard, Philippe; Prévost, Hervé; Guillou, Sandrine
2013-02-21
The influence of redox alteration on the growth and proteomic pattern of Listeria monocytogenes was investigated. A redox shock was induced in cultures by addition of 3mM ferricyanide (FeCN) and 6mM dithiothreitol (DTT) to increase or to decrease respectively the redox potential naturally occurring at the beginning of growth. In both conditions, the reducing and oxidizing redox shock had a strong influence, decreasing the maximum growth rate by half compared to a control culture. The proteomic analysis of L. monocytogenes performed by two-dimensional difference gel electrophoresis (2D-DIGE) exhibited twenty-three proteins differentially expressed (P<0.05), among these, many were oxidoreductases, and proteins involved in cellular metabolism (glycolysis, protein synthesis), detoxification (kat) or adhesion (Lmo1634).
Applications of Group Analysis to the Three-Dimensional Equations of Fluids with Internal Inertia
Siriwat, Piyanuch
2008-01-01
Group classification of the three-dimensional equations describing flows of fluids with internal inertia, where the potential function $W= W(\\rho,\\dot{\\rho})$, is presented. The given equations include such models as the non-linear one-velocity model of a bubbly fluid with incompressible liquid phase at small volume concentration of gas bubbles, and the dispersive shallow water model. These models are obtained for special types of the function $W(\\rho,\\dot{\\rho})$. Group classification separates out the function $W(\\rho,\\dot{\\rho})$ at 15 different cases. Another part of the manuscript is devoted to one class of partially invariant solutions. This solution is constructed on the base of all rotations. In the gas dynamics such class of solutions is called the Ovsyannikov vortex. Group classification of the system of equations for invariant functions is obtained. Complete analysis of invariant solutions for the special type of a potential function is given.
Applications of Group Analysis to the Three-Dimensional Equations of Fluids with Internal Inertia
Sergey V. Meleshko
2008-02-01
Full Text Available Group classification of the three-dimensional equations describing flows of fluids with internal inertia, where the potential function W = W(ρ,ρ·, is presented. The given equations include such models as the non-linear one-velocity model of a bubbly fluid with incompressible liquid phase at small volume concentration of gas bubbles, and the dispersive shallow water model. These models are obtained for special types of the function W(ρ,ρ·. Group classification separates out the function W(ρ,ρ· at 15 different cases. Another part of the manuscript is devoted to one class of partially invariant solutions. This solution is constructed on the base of all rotations. In the gas dynamics such class of solutions is called the Ovsyannikov vortex. Group classification of the system of equations for invariant functions is obtained. Complete analysis of invariant solutions for the special type of a potential function is given.
Mas, D; Espinosa, J; Perez, J; Illueca, C
2007-12-24
The paper presents the polychromatic analysis of two diffractive optical elements with extended depth of focus: the linear axicon and the light sword optical element. Chromatic aberration produces axial displacement of the focal segment line. Thus, we explore the possibility of extending the focal depth of these elements to permit superposition of the chromatic foci. In the case of an axicon, we achieve an achromatic zone where focusing is produced. In the case of the light sword element, we show that the focusing segment is out of axis. Therefore a superposition of colors is produced, but not on axis overlapping. Instead, three colored and separated foci are simultaneously obtained in a single plane. Three dimensional structures of the propagated beams are analyzed in order to provide better understanding of the properties and applications of such elements.
Viewpoints: A high-performance high-dimensional exploratory data analysis tool
Gazis, P R; Way, M J
2010-01-01
Scientific data sets continue to increase in both size and complexity. In the past, dedicated graphics systems at supercomputing centers were required to visualize large data sets, but as the price of commodity graphics hardware has dropped and its capability has increased, it is now in principle possible to view large complex data sets on a single workstation. To do this in practice, an investigator will need software that is written to take advantage of the relevant graphics hardware. The viewpoints visualization package described herein is an example of such software. Viewpoints is an interactive tool for exploratory visual analysis of large, high-dimensional (multivariate) data. It leverages the capabilities of modern graphics boards (GPUs) to run on a single workstation or laptop. Viewpoints is minimalist: it attempts to do a small set of useful things very well (or at least very quickly) in comparison to similar packages today. Its basic feature set includes linked scatter plots with brushing, dynamic h...
Benzekry, Sebastien
2010-01-01
Angiogenesis is a key process in the tumoral growth which allows the cancerous tissue to impact on its vasculature in order to improve the nutrient's supply and the metastatic process. In this paper, we introduce a model for the density of metastasis which takes into account for this feature. It is a two dimensional structured equation with a vanishing velocity field and a source term on the boundary. We present here the mathematical analysis of the model, namely the well-posedness of the equation and the asymptotic behavior of the solutions, whose natural regularity led us to investigate some basic properties of the space $\\Wd(\\Om)=\\{V\\in L^1;\\;\\div(GV)\\in L^1\\}$, where $G$ is the velocity field of the equation.
Reducing of phase retrieval errors in Fourier analysis of 2-dimensional digital model interferograms
Gladic, J; Vucic, Z; Gladic, Jadranko; Lovric, Davorin; Vucic, Zlatko
2006-01-01
In order to measure the radial displacements of facets on surface of a growing spherical Cu_{2-\\delta}Se crystal with sub-nanometer resolution, we have investigated the reliability and accuracy of standard method of Fourier analysis of fringes obtained applying digital laser interferometry method. Guided by the realistic experimental parameters (density and orientation of fringes), starting from 2-dimensional model interferograms and using unconventional custom designed Gaussian filtering window and unwrapping procedure of the retrieved phase, we have demonstrated that for considerable portion of parameter space the non-negligible inherent phase retrieval error is present solely due to non-integer number of fringes within the digitally recorded image (using CCD camera). Our results indicate the range of experimentally adjustable parameters for which the generated error is acceptably small. We also introduce a modification of the (last part) of the usual phase retrieval algorithm which significantly reduces th...
High-dimensional single-cell analysis reveals the immune signature of narcolepsy.
Hartmann, Felix J; Bernard-Valnet, Raphaël; Quériault, Clémence; Mrdjen, Dunja; Weber, Lukas M; Galli, Edoardo; Krieg, Carsten; Robinson, Mark D; Nguyen, Xuan-Hung; Dauvilliers, Yves; Liblau, Roland S; Becher, Burkhard
2016-11-14
Narcolepsy type 1 is a devastating neurological sleep disorder resulting from the destruction of orexin-producing neurons in the central nervous system (CNS). Despite its striking association with the HLA-DQB1*06:02 allele, the autoimmune etiology of narcolepsy has remained largely hypothetical. Here, we compared peripheral mononucleated cells from narcolepsy patients with HLA-DQB1*06:02-matched healthy controls using high-dimensional mass cytometry in combination with algorithm-guided data analysis. Narcolepsy patients displayed multifaceted immune activation in CD4(+) and CD8(+) T cells dominated by elevated levels of B cell-supporting cytokines. Additionally, T cells from narcolepsy patients showed increased production of the proinflammatory cytokines IL-2 and TNF. Although it remains to be established whether these changes are primary to an autoimmune process in narcolepsy or secondary to orexin deficiency, these findings are indicative of inflammatory processes in the pathogenesis of this enigmatic disease. © 2016 Hartmann et al.
Automated multivariate analysis of comprehensive two-dimensional gas chromatograms of petroleum
Skov, Søren Furbo
Petroleum is an economically and industrially important resource. Crude oil must be refined before use to ensure suitable properties of the product. Among the processes used in this refining is distillation and desulfurization. In order to optimize these processes, it is essential to understand...... them. Comprehensive two-dimensional gas chromatography (GCGC) is a method for analyzing the volatile parts of a sample. It can separate hundreds or thousands of compounds based on their boiling point, polarity and polarizability. This makes it ideally suited for petroleum analysis. The number...... impossible to find it. For a special class of models, multi-way models, unique solutions often exist, meaning that the underlying phenomena can be found. I have tested this class of models on GCGC data from petroleum and conclude that more work is needed before they can be automated. I demonstrate how...
Steinke, Ronald J.
1989-01-01
The Rai ROTOR1 code for two-dimensional, unsteady viscous flow analysis was applied to a supersonic throughflow fan stage design. The axial Mach number for this fan design increases from 2.0 at the inlet to 2.9 at the outlet. The Rai code uses overlapped O- and H-grids that are appropriately packed. The Rai code was run on a Cray XMP computer; then data postprocessing and graphics were performed to obtain detailed insight into the stage flow. The large rotor wakes uniformly traversed the rotor-stator interface and dispersed as they passed through the stator passage. Only weak blade shock losses were computerd, which supports the design goals. High viscous effects caused large blade wakes and a low fan efficiency. Rai code flow predictions were essentially steady for the rotor, and they compared well with Chima rotor viscous code predictions based on a C-grid of similar density.
Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures
Eke, Iris; Hehlgans, Stephanie; Zong, Yaping; Cordes, Nils
2015-01-01
Analysis of signal transduction and protein phosphorylation is fundamental to understanding physiological and pathological cell behavior and identifying novel therapeutic targets. Despite the fact that the use of physiological three-dimensional cell culture assays is increasing, 3D proteomics and phosphoproteomics remain challenging due to difficulties with easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates that does not compromise cell adhesion before cell lysis. The samples can be used for western blotting as well as phosphoproteome array technology. This technique will be of interest for researchers working in all fields of biology and drug development. PMID:26618185
Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures
Iris Eke
2015-11-01
Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.
Characterization of cryogenic Fe-6Ni steel fracture modes: A three dimensional quantitative analysis
Fior, G. O.; Morris, J. W.
1986-05-01
Quantitative three dimensional analyses of fracture surfaces of Fe-6Ni cryogenic steel were used to study the effect of temperature variations on the geometry of the characteristic features in different fracture modes. Stereo SEM techniques combined with stereo photogrametry provide the tools to perform such analysis on standard Charpy specimens tested with appropriate instrumentation over a 300 deg temperature range. The characteristic features of the ductile fracture mode were found to maintain a constant aspect ratio for these temperatures, while the brittle fracture modes exhibit an aspect ratio that is temperature dependent. This geometrical factor dependence of temperature in the nonductile case resembles that of the Charpy impact energy for the same temperature range.
Kinkhabwala, Ali
2013-01-01
The connection between network topology and stability remains unclear. General approaches that clarify this relationship and allow for more efficient stability analysis would be desirable. In this manuscript, I examine the mathematical notion of influence topology, which is fundamentally based on the network reaction stoichiometries and the first derivatives of the reactions with respect to each species at the steady state solution(s). The influence topology is naturally represented as a signed directed bipartite graph with arrows or blunt arrows connecting a species node to a reaction node (positive/negative derivative) or a reaction node to a species node (positive/negative stoichiometry). The set of all such graphs is denumerable. A significant reduction in dimensionality is possible through stoichiometric scaling, cycle compaction, and temporal scaling. All cycles in a network can be read directly from the graph of its influence topology, enabling efficient and intuitive computation of the principal minor...
Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data.
Pang, Herbert; Tong, Tiejun; Zhao, Hongyu
2009-12-01
High-dimensional data such as microarrays have brought us new statistical challenges. For example, using a large number of genes to classify samples based on a small number of microarrays remains a difficult problem. Diagonal discriminant analysis, support vector machines, and k-nearest neighbor have been suggested as among the best methods for small sample size situations, but none was found to be superior to others. In this article, we propose an improved diagonal discriminant approach through shrinkage and regularization of the variances. The performance of our new approach along with the existing methods is studied through simulations and applications to real data. These studies show that the proposed shrinkage-based and regularization diagonal discriminant methods have lower misclassification rates than existing methods in many cases.
苏佳灿; 张春才; 禹宝庆; 许硕贵; 王家林; 纪方; 张雪松; 吴建国; 王保华; 薛召军; 丁祖泉
2003-01-01
Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.
Use of three-dimensional parameters in the analysis of crystal structures under compression
Balic Zunic, Tonci
2007-01-01
Volume-related parameters of atomic coordinations are an important tool for the analysis of structural changes. Unlike usual tables of bond distances and angles they directly depict three-dimensional properties of coordination polyhedra, and in many instances give more profound structural...... information. Accurate determination of atomic coordinations is difficult in cases where a clear bond gap does not exist. In such instances the most reliable existing method is the determination of atomic domains in electron density, which can be performed even for experimental high-pressure crystal structure...... that completely describe distortions of coordinations are the eccentricity, the asphericity Calculation of volumes of coordination polyhedra of any shape and their standard deviations can be programmed using the general expression for the volume of a tetrahedron based on the orthogonal coordinates of its vertices...
Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.
2002-01-01
A three-dimensional (3-D), tissue-like model was developed for the genotoxic assessment of space environment. In previous experiments, we found that culturing mammalian cells in a NASA-designed bioreactor, using Cytodex-3 beads as a scaffold, generated 3-D multicellular spheroids. In an effort to generate scaffold-free spheroids, we developed a new 3-D tissue-like model by coculturing fibroblast and epithelial cell in a NASA bioreactor using macroporous Cultispher-S(TradeMark) microcarriers. Big Blue(Registered Trademark) Rat 2(Lambda) fibroblasts, genetically engineered to contain multiple copies (>60 copies/cell) of the Lac I target gene, were cocultured with radio-sensitive human epithelial cells, H184F5. Over an 8-day period, samples were periodically examined by microscopy and histology to confirm cell attachment, growth, and viability. Immunohistochemistry and western analysis were used to evaluate the expression of specific cytoskeletal and adhesion proteins. Key cell culture parameters (glucose, pH, and lactate concentrations) were monitored daily. Controls were two-dimensional mono layers of fibroblast or epithelial cells cultured in T-flasks. Analysis of 3-D spheroids from the bioreactor suggests fibroblast cells attached to and completely covered the bead surface and inner channels by day 3 in the bioreactor. Treatment of the 3-day spheroids with dispase II dissolved the Cultisphers(TradeMark) and produced multicellular, bead-less constructs. Immunohistochemistry confirmed the presence of vi.mentin, cytokeratin and E-cadherin in treated spheroids. Examination of the dispase II treated spheroids with transmission electron microscopy (TEM) also showed the presence of desmosomes. These results suggest that the controlled enzymatic degradation of an artificial matrix in the low shear environment of the NASA-designed bioreactor can produce 3-D tissue-like spheroids. 2
Zhang, Ying; Ng, Soon Seng; Wang, Yilei; Feng, Huixing; Chen, Wei Ning; Chan-Park, Mary B; Li, Chuan; Chan, Vincent
2014-04-06
During the past two decades, novel biomaterial scaffold for cell attachment and culture has been developed for applications in tissue engineering, biosensing and regeneration medicine. Tissue engineering of blood vessels remains a challenge owing to the complex three-layer histology involved. In order to engineer functional blood vessels, it is essential to recapitulate the characteristics of vascular smooth muscle cells (SMCs) inside the tunica media, which is known to be critical for vasoconstriction and vasodilation of the circulatory system. Until now, there has been a lack of understanding on the mechanotransduction of the SMC layer during the transformation from viable synthetic to quiescent contractile phenotypes. In this study, microfabricated arrays of discontinuous microwalls coated with fluorescence microbeads were developed to probe the mechanotransduction of the SMC layer. First, the system was exploited for stimulating the formation of a highly aligned orientation of SMCs in native tunica medium. Second, atomic force microscopy in combination with regression analysis was applied to measure the elastic modulus of a polyacrylamide gel layer coated on the discontinuous microwall arrays. Third, the conventional traction force assay for single cell measurement was extended for applications in three-dimensional cell aggregates. Then, the biophysical effects of discontinuous microwalls on the mechanotransduction of the SMC layer undergoing cell alignment were probed. Generally, the cooperative multiple cell-cell and cell-microwall interactions were accessed quantitatively by the newly developed assay with the aid of finite-element modelling. The results show that the traction forces of highly aligned cells lying in the middle region between two opposing microwalls were significantly lower than those lying adjacent to the microwalls. Moreover, the spatial distributions of Von Mises stress during the cell alignment process were dependent on the collective cell
Willmann, Lucas; Erbes, Thalia; Krieger, Sonja; Trafkowski, Jens; Rodamer, Michael; Kammerer, Bernd
2015-05-01
Modified nucleosides derived from the RNA metabolism constitute an important chemical class, which are discussed as potential biomarkers in the detection of mammalian breast cancer. Not only the variability of modifications, but also the complexity of biological matrices such as urinary samples poses challenges in the analysis of modified nucleosides. In the present work, a comprehensive two-dimensional liquid chromatography mass spectrometry (2D-LC-MS) approach for the analysis of modified nucleosides in biological samples was established. For prepurification of urinary samples and cell culture supernatants, we performed a cis-diol specific affinity chromatography using boronate-derivatized polyacrylamide gel. In order to establish a 2D-LC method, we tested numerous column combinations and chromatographic conditions. In order to determine the target compounds, we coupled the 2D-LC setup to a triple quadrupole mass spectrometer performing full scans, neutral loss scans, and multiple reaction monitoring (MRM). The combination of a Zorbax Eclipse Plus C18 column with a Zorbax Bonus-RP column was found to deliver a high degree of orthogonality and adequate separation. By application of 2D-LC-MS approaches, we were able to detect 28 target compounds from RNA metabolism and crosslinked pathways in urinary samples and 26 target compounds in cell culture supernatants, respectively. This is the first demonstration of the applicability and benefit of 2D-LC-MS for the targeted metabolome analysis of modified nucleosides and compounds from crosslinked pathways in different biological matrices.
Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor
Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Robertson, Sean [Transatomic Power Corporation, Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corporation, Cambridge, MA (United States); Massie, Mark [Transatomic Power Corporation, Cambridge, MA (United States)
2017-01-15
This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.
Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.
2015-01-01
The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.
Arnaldo Perez
2014-06-01
Full Text Available The objective of this article is to define the underlying dimensions of psychosocial barriers to obtaining and providing dental care for young children among recent immigrants. Fifteen focus groups were conducted with 99 primary caregivers from African, South Asian, and Chinese recent immigrants. A secondary analysis of identified barriers using dimensional analysis methodology was performed to determine dimensions and properties of barriers. The analysis continued until irreducible properties were found or emerging dimensions were not relevant to the study. Identified dimensions were associated with barriers and individuals. Type, number, level, objectiveness, nature, and impact were barrier-related; awareness and controllability were individual-related dimensions. Type refers to barriers themselves. Number and level indicate the amount and location of barriers, respectively. Objectiveness refers to the extent that perceived barrier reflects reality and nature indicates its intrinsic characteristic. Impact concerns behaviors, goals, and outcomes compromised by barriers. Awareness alludes to the extent that individuals are aware of the barriers and controllability explains how much control people perceive to have over barriers. Identified dimensions are useful for better understanding and addressing existing barriers to children’s optimal oral health.
Visual pathway-related horizontal reference plane for three-dimensional craniofacial analysis.
Kang, Y H; Kim, B C; Park, K R; Yon, J Y; Kim, H J; Tak, H J; Piao, Z; Kim, M K; Lee, S H
2012-11-01
To construct three-dimensional (3D) horizontal reference planes based on visual pathway and to determine their stability and reliability by analyzing the structural patterns of normal and dysmorphology for 3D craniofacial analysis. Thirty-six subjects with maxillofacial dysmorphology and malocclusion, and eight normal controls. MATERIALS AND METHODS POPULATION: On the 3D computed tomographic images of the subjects, the visual pathway-based planes, including the orbital axis plane (OAP), visual axis plane (VAP), and the optical axis plane (OpAP), were constructed and evaluated. The OAP, but not the VAP and OpAP, showed the ideal relationship between the midsagittal and posterior maxillary plane, and properly described the different patterns of maxillofacial dysmorphology with craniofacial plane 1 of Delaire's analysis and the occlusal plane. The proposed visual pathway-related horizontal reference planes, and in particular the OAP, seem to correctly express the visual axis and the position of the head in natural head position and can be used as a horizontal reference plane for the 3D analysis of craniofacial dysmorphology and anthropology. © 2012 John Wiley & Sons A/S.
A decision-theory approach to interpretable set analysis for high-dimensional data.
Boca, Simina M; Bravo, Héctor Céorrada; Caffo, Brian; Leek, Jeffrey T; Parmigiani, Giovanni
2013-09-01
A key problem in high-dimensional significance analysis is to find pre-defined sets that show enrichment for a statistical signal of interest; the classic example is the enrichment of gene sets for differentially expressed genes. Here, we propose a new decision-theory approach to the analysis of gene sets which focuses on estimating the fraction of non-null variables in a set. We introduce the idea of "atoms," non-overlapping sets based on the original pre-defined set annotations. Our approach focuses on finding the union of atoms that minimizes a weighted average of the number of false discoveries and missed discoveries. We introduce a new false discovery rate for sets, called the atomic false discovery rate (afdr), and prove that the optimal estimator in our decision-theory framework is to threshold the afdr. These results provide a coherent and interpretable framework for the analysis of sets that addresses the key issues of overlapping annotations and difficulty in interpreting p values in both competitive and self-contained tests. We illustrate our method and compare it to a popular existing method using simulated examples, as well as gene-set and brain ROI data analyses.
Pittman, C. M.
1994-01-01
This program performs a one-dimensional numerical analysis of the transient thermal response of multi-layer insulative systems. The analysis can determine the temperature distribution through a system consisting of from one to four layers, one of which can be an air gap. Concentrated heat sinks at any interface can be included. The computer program based on the analysis will determine the thickness of a specified layer that will satisfy a temperature limit criterion at any point in the insulative system. The program will also automatically calculate the thickness at several points on a system and determine the total system mass. This program was developed as a tool for designing thermal protection systems for high-speed aerospace vehicles but could be adapted to many areas of industry involved in thermal insulation systems. In this package, the equations describing the transient thermal response of a system are developed. The governing differential equation for each layer and boundary condition are put in finite-difference form using a Taylor's series expansion. These equations yield an essentially tridiagonal matrix of unknown temperatures. A procedure based on Gauss' elimination method is used to solve the matrix. This program is written in FORTRAN IV for the CDC RUN compiler and has been implemented on a CDC 6000 series machine operating under SCOPE 3.0. This program requires a minimum of 44K (octal) of 60 bit words of memory.
Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)
2001-01-01
The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved.
Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.
1988-01-01
In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S/sub N/-transport code ONEDANT, the two-dimensional finite element S/sub N/-transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceeded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed. The goal of this analysis was the determination of the uncertainties of a calculated tritium production per source neutron from lithium along the central Li/sub 2/O rod in the LBM. Considered were the contributions from /sup 1/H, /sup 6/Li, /sup 7/Li, /sup 9/Be, /sup nat/C, /sup 14/N, /sup 16/O, /sup 23/Na, /sup 27/Al, /sup nat/Si, /sup nat/Cr, /sup nat/Fe, /sup nat/Ni, and /sup nat/Pb. 22 refs., 1 fig., 3 tabs.
Park, Young Seok; Kim, Sung Tae; Oh, Seung Hee; Park, Hee Jung; Lee, Sophia; Kim, Taeil; Lee, Young Kyu; Heo, Min Suk [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)
2014-06-15
This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.
Yu, L; Batlle, F
2011-12-01
Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also
Chantal Olckers
2010-03-01
Full Text Available Orientation: Empathy is a core competency in aiding individuals to address the challenges of social living. An indicator of emotional intelligence, it is useful in a globalising and cosmopolitan world. Moreover, managing staff, stakeholders and conflict in many social settings relies on communicative skills, of which empathy forms a large part. Empathy plays a pivotal role in negotiating, persuading and influencing behaviour. The skill of being able to empathise thus enables the possessor to attune to the needs of clients and employees and provides opportunities to become responsive to these needs.Research purpose: This study attempted to determine the construct validity of the Multi-dimensional Emotional Empathy Scale within the South African context.Motivation for the study: In South Africa, a large number of psychometrical instruments have been adopted directly from abroad. Studies determining the construct validity of several of these imported instruments, however, have shown that these instruments are not suited for use in the South African context.Research design, approach and method: The study was based on a quantitative research method with a survey design. A convenience sample of 212 respondents completed the Multi-dimensional Emotional Empathy Scale. The constructs explored were Suffering, Positive Sharing, Responsive Crying, Emotional Attention, a Feel for Others and Emotional Contagion. The statistical procedure used was a confirmatory factor analysis.Main findings: The study showed that, from a South African perspective, the Multi-dimensional Emotional Empathy Scale lacks sufficient construct validity.Practical/managerial implications: Further refinement of the model would provide valuable information that would aid people to be more appreciative of individual contributions, to meet client needs and to understand the motivations of others.Contribution/value-add: From a South African perspective, the findings of this study are
Analysis of the anatomy of the maxillary sinus septum using 3-dimensional computed tomography.
Park, Young-Bum; Jeon, Hwan-Su; Shim, June-Sung; Lee, Keun-Woo; Moon, Hong-Seok
2011-04-01
Maxillary posterior teeth exhibit a high incidence of periodontal bone and tooth loss. After tooth loss, the edentulous alveolar process of the posterior maxilla is often affected by resorption, which results in loss of vertical bone volume. Moreover, progressive sinus pneumatization leads to a decrease in the alveolar process from the cranial side. The sinus elevation and augmentation surgical technique opened a new way of anchoring endosseous implants despite discernible bone reduction. However, the surgical interventions require in-depth knowledge of maxillary sinus anatomy such as sinus septum and potential variations. The purpose of this study was to investigate the prevalence, location, height, morphology, and orientation of maxillary sinus septa by use of computed tomography (CT) and 3-dimensional imaging. Two hundred patients undergoing implant treatment at the Yonsei University College of Dentistry, Seoul, South Korea, were randomly selected for analysis of maxillary sinus septa. CT and DentaScan (GE Medical Systems, Milwaukee, WI)-reformatted data from 400 sinuses were analyzed with the Preview program (Infinitt, Seoul, South Korea). Three-dimensional images were rendered for measurement by use of the Accurex program (CyberMed, Seoul, South Korea). We found 111 septa in 400 maxillary sinuses (27.7%). This corresponded to 37% of the patients. Among total septa, 25 sinus septa (22.5%) were located in the anterior, 51 (45.9%) in the middle, and 35 (31.5%) in the posterior regions. The directional orientation analyses showed that 106 septa were buccopalatal, 4 were sagittal, and 1 was transverse type. The mean septal heights were 7.78 ± 2.99 and 7.89 ± 3.09 mm in the right and left sinuses, respectively. Three-dimensional CT image analyses may provide useful information that can avoid unnecessary complications during sinus augmentation procedures by facilitating adequate, timely identification of the anatomic structures inherent to the maxillary sinus
SDAR: a practical tool for graphical analysis of two-dimensional data
Weeratunga Saroja
2012-08-01
Full Text Available Abstract Background Two-dimensional data needs to be processed and analysed in almost any experimental laboratory. Some tasks in this context may be performed with generic software such as spreadsheet programs which are available ubiquitously, others may require more specialised software that requires paid licences. Additionally, more complex software packages typically require more time by the individual user to understand and operate. Practical and convenient graphical data analysis software in Java with a user-friendly interface are rare. Results We have developed SDAR, a Java application to analyse two-dimensional data with an intuitive graphical user interface. A smart ASCII parser allows import of data into SDAR without particular format requirements. The centre piece of SDAR is the Java class GraphPanel which provides methods for generic tasks of data visualisation. Data can be manipulated and analysed with respect to the most common operations experienced in an experimental biochemical laboratory. Images of the data plots can be generated in SVG-, TIFF- or PNG-format. Data exported by SDAR is annotated with commands compatible with the Grace software. Conclusion Since SDAR is implemented in Java, it is truly cross-platform compatible. The software is easy to install, and very convenient to use judging by experience in our own laboratories. It is freely available to academic users at http://www.structuralchemistry.org/pcsb/. To download SDAR, users will be asked for their name, institution and email address. A manual, as well as the source code of the GraphPanel class can also be downloaded from this site.
He, Bin; Liu, Rong; Yang, Renjie; Xu, Kexin
2010-02-01
Adulteration of milk and dairy products has brought serious threats to human health as well as enormous economic losses to the food industry. Considering the diversity of adulterants possibly mixed in milk, such as melamine, urea, tetracycline, sugar/salt and so forth, a rapid, widely available, high-throughput, cost-effective method is needed for detecting each of the components in milk at once. In this paper, a method using Fourier Transform Infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation spectroscopy is established for the discriminative analysis of adulteration in milk. Firstly, the characteristic peaks of the raw milk are found in the 4000-400 cm-1 region by its original spectra. Secondly, the adulterant samples are respectively detected with the same method to establish a spectral database for subsequent comparison. Then, 2D correlation spectra of the samples are obtained which have high time resolution and can provide information about concentration-dependent intensity changes not readily accessible from one-dimensional spectra. And the characteristic peaks in the synchronous 2D correlation spectra of the suspected samples are compared with those of raw milk. The differences among their synchronous spectra imply that the suspected milk sample must contain some kinds of adulterants. Melamine, urea, tetracycline and glucose adulterants in milk are identified respectively. This nondestructive method can be used for a correct discrimination on whether the milk and dairy products are adulterated with deleterious substances and it provides a new simple and cost-effective alternative to test the components of milk.
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
Martín, Juan A.; Paredes, Pedro
2016-08-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
Pitoulias, Georgios A.; Aslanidou, Eleni A.; Papadimitriou, Dimitrios K. (G Gennimatas Hospital, 2nd Surgical Dept. - Division of Vascular Surgery, Aristotle Univ. of Thessaloniki, Thessaloniki (Greece)), e-mail: pitoulias@yahoo.com; pitoulias@med.auth.gr; Donas, Konstantinos P. (Dept. of Vascular Surgery, St Franziscus Hospital, Muenster (Germany)); Schulte, Stefan (Center for Vascular Medicine and Vascular Surgery, MediaPark Klinik, Cologne (Germany))
2011-03-15
Background The morphological analysis prior to endovascular abdominal aneurysm repair (EVAR) plays an important role in long-term outcomes. Post-imaging analysis of computed tomographic angiography (CTA) by three-dimensional reconstruction with central lumen line detection (CLL 3D-CTA) enables measurements to be made in orthogonal slices. This might be more precise than equal post-imaging analysis in axial slices by two-dimensional computed tomographic angiography (2D-CTA). Purpose To evaluate the intra- and interobserver variability of CLL 3D-CTA and 2D-CTA post-imaging analysis methods and the agreement between them in pre-EVAR suitability analysis of patients with abdominal aortic aneurysm (AAA). Material and Methods Anonymized CTA data-sets from 70 patients with AAA were analyzed retrospectively. Length measurements included proximal and distal aortic neck lengths and total distance from the lower renal artery to the higher iliac bifurcation. Width measurements included proximal and distal neck diameters, maximum AAA diameter and common iliac diameters just above the iliac bifurcations. The measurements were performed in random order by two vascular surgeons, twice per method with 1-month interval between readings. In the CLL 3D-CTA method we used semi-automated CLL detection by software and manual measurements on CTA slices perpendicular to CLL. The equal measurements in 2D-CTA were performed manually on axial CTA slices using a DICOM viewer workstation. The intra- and interobserver variability, as well as the agreement between the two methods were assessed by Bland-Altman test and bivariate correlation analysis. Results The intraobserver variability was significantly higher in 2D-CTA measurements for both readers. The interobserver variability was significant in 2D-CTA measurements of proximal neck dimensions while the agreement in CLL 3D-CTA analysis between the two readers was excellent in all studied parameters. The agreement between the two suitability
One-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools
Haihua Zhao; Per F. Peterson
2007-10-01
Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems such as the Sodium Fast Reactor (SFR). It is important to accurately predict the temperature and density distributions both for design optimation and accident analysis. Current major reactor system analysis codes such as RELAP5 (for LWR’s, and recently extended to analyze high temperature reactors), TRAC (for LWR’s), and SASSYS (for liquid metal fast reactors) only provide lumped-volume based models which can only give very approximate results and can only handle simple cases with one mixing source. While 2-D or 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, yet such fine grid resolution is difficult or impossible to provide for studying the reactor response to transients due to computational expense. Therefore, new methods are needed to support design optimization and safety analysis of Generation IV pool type reactor systems. Previous scaling has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was originally developed at UC Berkeley to implement such ideas. This code solves mixing and heat transfer problems in stably stratified enclosures. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical or 1-D integral models to compute substructures. By including liquid salt properties, BMIX++ code is
Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen
2016-04-01
Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular
Daniel P Riordan
Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the
Impact of four-dimensional data assimilation (FDDA) on urban climate analysis
Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory
2015-12-01
This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.
Infinite dimensional spherical analysis and harmonic analysis for groups acting on homogeneous trees
Axelgaard, Emil
of the groups, the so-called irreducible tame representations. We prove the existence of irreducible non-tame representations by constructing a compactification of the boundary of the tree - an object which until now has not played any role in the analysis of automorphism groups for trees which are not locally......In this thesis, we study groups of automorphisms for homogeneous trees of countable degree by using an inductive limit approach. The main focus is the thourough discussion of two Olshanski spherical pairs consisting of automorphism groups for a homogeneous tree and a homogeneous rooted tree...... finite. Finally, we discuss conditionally positive definite functions on the groups and use the generalized Bochner-Godement theorem for Olshanski spherical pairs to prove Levy-Khinchine formulas for both of the considered pairs....
Definition of coordinate system for three-dimensional data analysis in the foot and ankle.
Green, Connor
2012-02-01
BACKGROUND: Three-dimensional data is required to have advanced knowledge of foot and ankle kinematics and morphology. However, studies have been difficult to compare due to a lack of a common coordinate system. Therefore, we present a means to define a coordinate frame in the foot and ankle and its clinical application. MATERIALS AND METHODS: We carried out ten CT scans in anatomically normal feet and segmented them in a general purpose segmentation program for grey value images. 3D binary formatted stereolithography files were then create and imported to a shape analysis program for biomechanics which was used to define a coordinate frame and carry out morphological analysis of the forefoot. RESULTS: The coordinate frame had axes standard deviations of 2.36 which are comparable to axes variability of other joint coordinate systems. We showed a strong correlation between the lengths of the metatarsals within and between the columns of the foot and also among the lesser metatarsal lengths. CONCLUSION: We present a reproducible method for construction of a coordinate system for the foot and ankle with low axes variability. CLINICAL RELEVANCE: To conduct meaningful comparison between multiple subjects the coordinate system must be constant. This system enables such comparison and therefore will aid morphological data collection and improve preoperative planning accuracy.
Reliability analysis of supporting pressure in tunnels based on three-dimensional failure mechanism
罗卫华; 李闻韬
2016-01-01
Based on nonlinear failure criterion, a three-dimensional failure mechanism of the possible collapse of deep tunnel is presented with limit analysis theory. Support pressure is taken into consideration in the virtual work equation performed under the upper bound theorem. It is necessary to point out that the properties of surrounding rock mass plays a vital role in the shape of collapsing rock mass. The first order reliability method and Monte Carlo simulation method are then employed to analyze the stability of presented mechanism. Different rock parameters are considered random variables to value the corresponding reliability index with an increasing applied support pressure. The reliability indexes calculated by two methods are in good agreement. Sensitivity analysis was performed and the influence of coefficient variation of rock parameters was discussed. It is shown that the tensile strength plays a much more important role in reliability index than dimensionless parameter, and that small changes occurring in the coefficient of variation would make great influence of reliability index. Thus, significant attention should be paid to the properties of surrounding rock mass and the applied support pressure to maintain the stability of tunnel can be determined for a given reliability index.
Jiang-Jun Zhou
2017-01-01
Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.
Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates
Huang, Chao-Guang; Kong, Shi-Bei
2017-08-01
The Hamiltonian analysis for a 3-dimensional connection dynamics of {s}{o}(1,2), spanned by {L-+, L-2, L+2 } instead of {L01, L02, L12 }, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bañados-Teitelboim-Zanelli (BTZ) spacetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate. Supported by National Natural Science Foundation of China under Grant Nos. 11275207 and 11690022
Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.
Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G
2015-12-23
Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.
Christian Noss
Full Text Available Due to their surface characteristics, nanosized titanium dioxide particles (nTiO2 tend to adhere to biological surfaces and we thus hypothesize that they may alter the swimming performance and behavior of motile aquatic organisms. However, no suitable approaches to address these impairments in swimming behavior as a result of nanoparticle exposure are available. Water fleas Daphnia magna exposed to 5 and 20 mg/L nTiO2 (61 nm; polydispersity index: 0.157 in 17.46 mg/L stock suspension for 96 h showed a significantly (p<0.05 reduced growth rate compared to a 1-mg/L treatment and the control. Using three-dimensional video observations of swimming trajectories, we observed a treatment-dependent swarming of D. magna in the center of the test vessels during the initial phase of the exposure period. Ensemble mean swimming velocities increased with increasing body length of D. magna, but were significantly reduced in comparison to the control in all treatments after 96 h of exposure. Spectral analysis of swimming velocities revealed that high-frequency variance, which we consider as a measure of swimming activity, was significantly reduced in the 5- and 20-mg/L treatments. The results highlight the potential of detailed swimming analysis of D. magna for the evaluation of sub-lethal mechanical stress mechanisms resulting from biological surface coating and thus for evaluating the effects of nanoparticles in the aquatic environment.
WAVELET ANALYSIS OF COHERENT STRUCTURES IN A THREE-DIMENSIONAL MIXING LAYER
林建忠; 邵雪明; 倪利民
2002-01-01
Wavelet analysis is applied to the results obtained by the direct nu-merical simulation of a three-dimensional (3D) mixing layer in order to investigatecoherent structures in dimension of scale. First, 3D orthonormal wavelet bases areconstructed, and the corresponding decomposition algorithm is developed. Then theNavier-Stokes equations are transformed into the wavelet space and the architecturefor multi-scale analysis is established. From this architecture, the coarse field imagesin different scales are obtained and some local statistical quantities are calculated.The results show that, with the development of a mixing layer, the energy spectrumdensities for different wavenumbers increase and the energy is transferred from theaverage flow to vortex structures in different scales. Due to the non-linear interactionsbetween different scales, cascade processes of energy are very complex. Because vor-tices always roll and pair at special areas, for a definite scale, the energy is obtainedfrom other scales at some areas while it is transferred to other scales at other areas.In addition, energy dissipation and transfer always occur where an intense interactionbetween vortices exists.
Three-Dimensional Gait Analysis Can Shed New Light on Walking in Patients with Haemophilia
Sébastien Lobet
2013-01-01
Full Text Available In patients with haemophilia (PWH (from Greek “blood love”, the long-term consequences of repeated haemarthrosis include cartilage damage and irreversible arthropathy, resulting in severe impairments in locomotion. Quantifying the extent of joint damage is therefore important in order to prevent disease progression and compare the efficacy of treatment strategies. Musculoskeletal impairments in PWH may stem from structural and functional abnormalities, which have traditionally been evaluated radiologically or clinically. However, these examinations are performed in a supine position (i.e., non-weight-bearing condition. We therefore suggest three-dimensional gait analysis (3DGA as an innovative approach designed to focus on the functional component of the joint during the act of walking. This is of the utmost importance, as pain induced by weight-bearing activities influences the functional performance of the arthropathic joints significantly. This review endeavors to improve our knowledge of the biomechanical consequences of multiple arthropathies on gait pattern in adult patients with haemophilia using 3DGA. In PWH with arthropathy, the more the joint function was altered, the more the metabolic energy was consumed. 3DGA analysis could highlight the effect of an orthopedic disorder in PWH during walking. Indeed, mechanical and metabolic impairments were correlated to the progressive loss of active mobility into the joints.
Overjet at the anterior and posterior segments: three-dimensional analysis of arch coordination.
Kook, Yoon-Ah; Bayome, Mohamed; Park, Soo-Byung; Cha, Bong-Kuen; Lee, Young-Wuk; Baek, Seung-Hak
2009-05-01
To compare the amounts of anatomical overjet measured from facial axis (FA) points with the amounts of bracket overjet measured from bracket slot center (BSC) points. The samples consisted of 27 subjects with normal occlusion whose models were fabricated with a three-dimensional (3D) scanner and the 3Txer program (Orapix Co Ltd, Seoul, Korea). 3D virtual brackets (0.022'' Slot, MBT setup, 3M Unitek, Monrovia, Calif) constructed with a 3D-CAD program were placed on an FA point with the 3Txer program. The arch dimension and the amounts of overjet from FA and BSC points were measured. Paired t-tests and analysis of variance (ANOVA) tests were used for statistical analysis. No significant difference in arch width and depth was observed between FA and BSC points. Although the amounts of overjet measured from FA points showed homogenous distribution, a tendency to decrease from the anterior segment (2.3 mm) to the posterior one (2.0 mm) was noted. However, the amounts of overjet measured from BSC points were variable, especially in the premolar and molar areas. Significant discrepancies in the amounts of overjet in most of the areas between FA and BSC points (more than P overjet measured from BSC points was 3 mm through the whole segments and that distribution of the amounts of overjet from BSC points was the same as that from FA points were rejected.
Barbaranelli, Claudio; Lee, Christopher S; Vellone, Ercole; Riegel, Barbara
2014-12-01
The Self-Care of Heart Failure Index (SCHFI) is used widely, but issues with reliability have been evident. Cronbach alpha coefficient is usually used to assess reliability, but this approach assumes a unidimensional scale. The purpose of this article is to address the dimensionality and internal consistency reliability of the SCHFI. This was a secondary analysis of data from 629 adults with heart failure enrolled in three separate studies conducted in the northeastern and northwestern United States. Following testing for scale dimensionality using confirmatory factor analysis, reliability was tested using coefficient alpha and alternative options. Confirmatory factor analysis demonstrated that: (a) the Self-Care Maintenance Scale has a multidimensional four-factor structure; (b) the Self-Care Management Scale has a two-factor structure, but the primary factors loaded on a common higher-order factor; and (c) the Self-Care Confidence Scale is unidimensional. Reliability estimates for the three scales, obtained with methods compatible with each scale's dimensionality, were adequate or high. The results of the analysis demonstrate that issues of dimensionality and reliability cannot be separated. Appropriate estimates of reliability that are consistent with the dimensionality of the scale must be used. In the case of the SCHFI, coefficient alpha should not be used to assess reliability of the self-care maintenance and the self-care management scales, due to their multidimensionality. When performing psychometric evaluations, we recommend testing dimensionality before assessing reliability, as well using multiple indices of reliability, such as model-based internal consistency, composite reliability, and omega and maximal reliability coefficients. © 2014 Wiley Periodicals, Inc.
Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2017-03-01
In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.
Hajati, S.; Walton, J.; Tougaard, S.
2013-01-01
In a previous article, we studied the influence of spectral noise on a new method for three-dimensional X-ray photoelectron spectroscopy (3D XPS) imaging, which is based on analysis of the XPS peak shape [Hajati, S., Tougaard, S., Walton, J. & Fairley, N. (2008). Surf Sci 602, 3064-3070]. Here, w...
EUCLID: an outcome analysis tool for high-dimensional clinical studies
Gayou, Olivier [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA 15212 (United States); Parda, David S [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA 15212 (United States); Miften, Moyed [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA 15212 (United States)
2007-03-21
Treatment management decisions in three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) are usually made based on the dose distributions in the target and surrounding normal tissue. These decisions may include, for example, the choice of one treatment over another and the level of tumour dose escalation. Furthermore, biological predictors such as tumour control probability (TCP) and normal tissue complication probability (NTCP), whose parameters available in the literature are only population-based estimates, are often used to assess and compare plans. However, a number of other clinical, biological and physiological factors also affect the outcome of radiotherapy treatment and are often not considered in the treatment planning and evaluation process. A statistical outcome analysis tool, EUCLID, for direct use by radiation oncologists and medical physicists was developed. The tool builds a mathematical model to predict an outcome probability based on a large number of clinical, biological, physiological and dosimetric factors. EUCLID can first analyse a large set of patients, such as from a clinical trial, to derive regression correlation coefficients between these factors and a given outcome. It can then apply such a model to an individual patient at the time of treatment to derive the probability of that outcome, allowing the physician to individualize the treatment based on medical evidence that encompasses a wide range of factors. The software's flexibility allows the clinicians to explore several avenues to select the best predictors of a given outcome. Its link to record-and-verify systems and data spreadsheets allows for a rapid and practical data collection and manipulation. A wide range of statistical information about the study population, including demographics and correlations between different factors, is available. A large number of one- and two-dimensional plots, histograms and survival curves
EUCLID: an outcome analysis tool for high-dimensional clinical studies
Gayou, Olivier; Parda, David S.; Miften, Moyed
2007-03-01
Treatment management decisions in three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) are usually made based on the dose distributions in the target and surrounding normal tissue. These decisions may include, for example, the choice of one treatment over another and the level of tumour dose escalation. Furthermore, biological predictors such as tumour control probability (TCP) and normal tissue complication probability (NTCP), whose parameters available in the literature are only population-based estimates, are often used to assess and compare plans. However, a number of other clinical, biological and physiological factors also affect the outcome of radiotherapy treatment and are often not considered in the treatment planning and evaluation process. A statistical outcome analysis tool, EUCLID, for direct use by radiation oncologists and medical physicists was developed. The tool builds a mathematical model to predict an outcome probability based on a large number of clinical, biological, physiological and dosimetric factors. EUCLID can first analyse a large set of patients, such as from a clinical trial, to derive regression correlation coefficients between these factors and a given outcome. It can then apply such a model to an individual patient at the time of treatment to derive the probability of that outcome, allowing the physician to individualize the treatment based on medical evidence that encompasses a wide range of factors. The software's flexibility allows the clinicians to explore several avenues to select the best predictors of a given outcome. Its link to record-and-verify systems and data spreadsheets allows for a rapid and practical data collection and manipulation. A wide range of statistical information about the study population, including demographics and correlations between different factors, is available. A large number of one- and two-dimensional plots, histograms and survival curves allow
Versatile morphometric analysis and visualization of the three-dimensional structure of neurons.
Aguiar, Paulo; Sousa, Mafalda; Szucs, Peter
2013-10-01
The computational properties of a neuron are intimately related to its morphology. However, unlike electrophysiological properties, it is not straightforward to collapse the complexity of the three-dimensional (3D) structure into a small set of measurements accurately describing the structural properties. This strong limitation leads to the fact that many studies involving morphology related questions often rely solely on empirical analysis and qualitative description. It is possible however to acquire hierarchical lists of positions and diameters of points describing the spatial structure of the neuron. While there is a number of both commercially and freely available solutions to import and analyze this data, few are extendable in the sense of providing the possibility to define novel morphometric measurements in an easy to use programming environment. Fewer are capable of performing morphometric analysis where the output is defined over the topology of the neuron, which naturally requires powerful visualization tools. The computer application presented here, Py3DN, is an open-source solution providing novel tools to analyze and visualize 3D data collected with the widely used Neurolucida (MBF) system. It allows the construction of mathematical representations of neuronal topology, detailed visualization and the possibility to define non-standard morphometric analysis on the neuronal structures. Above all, it provides a flexible and extendable environment where new types of analyses can be easily set up allowing a high degree of freedom to formulate and test new hypotheses. The application was developed in Python and uses Blender (open-source software) to produce detailed 3D data representations.
Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis
Ueki Masao
2012-05-01
Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.
Three-dimensional spectral-domain optical coherence tomography data analysis for glaucoma detection.
Juan Xu
Full Text Available PURPOSE: To develop a new three-dimensional (3D spectral-domain optical coherence tomography (SD-OCT data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. METHODS: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL thickness measurements. RESULTS: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. CONCLUSIONS: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage.
Jeanneret, Fabienne; Boccard, Julien; Badoud, Flavia; Sorg, Olivier; Tonoli, David; Pelclova, Daniela; Vlckova, Stepanka; Rutledge, Douglas N; Samer, Caroline F; Hochstrasser, Denis; Saurat, Jean-Hilaire; Rudaz, Serge
2014-10-15
Untargeted metabolomic approaches offer new opportunities for a deeper understanding of the molecular events related to toxic exposure. This study proposes a metabolomic investigation of biochemical alterations occurring in urine as a result of dioxin toxicity. Urine samples were collected from Czech chemical workers submitted to severe dioxin occupational exposure in a herbicide production plant in the late 1960s. Experiments were carried out with ultra-high pressure liquid chromatography (UHPLC) coupled to high-resolution quadrupole time-of-flight (QTOF) mass spectrometry. A chemistry-driven feature selection was applied to focus on steroid-related metabolites. Supervised multivariate data analysis allowed biomarkers, mainly related to bile acids, to be highlighted. These results supported the hypothesis of liver damage and oxidative stress for long-term dioxin toxicity. As a second step of data analysis, the information gained from the urine analysis of Victor Yushchenko after his poisoning was examined. A subset of relevant urinary markers of acute dioxin toxicity from this extreme phenotype, including glucuro- and sulfo-conjugated endogenous steroid metabolites and bile acids, was assessed for its ability to detect long-term effects of exposure. The metabolomic strategy presented in this work allowed the determination of metabolic patterns related to dioxin effects in human and the discovery of highly predictive subsets of biologically meaningful and clinically relevant compounds. These results are expected to provide valuable information for a deeper understanding of the molecular events related to dioxin toxicity. Furthermore, it presents an original methodology of data dimensionality reduction by using extreme phenotype as a guide to select relevant features prior to data modeling (biologically driven data reduction).
Three-dimensional analysis of magnetic susceptibility in areas with different type of land use
Zawadzki, Jarosław; Fabijańczyk, Piotr
2015-04-01
The knowledge of the type of semivariance and its parameters such as nugget-effect, range of correlation and sill, that quantitatively characterize spatial variability of a studied environmental phenomenon, can be essential for both measurements planning and analysis of results. In particular this is the truth in the case of magnetometric measurements of soil pollution. Field magnetometry is internationally recognized as valuable, convenient and affordable tool for soil pollution screening and assessment. However, this geophysical method usually requires support of detailed statistical and geostatistical analyses. The goal of this study was to evaluate the parameters of spatial variability of soil magnetic susceptibility depending on the terrain usage. To do so, several types of study area were specially selected: forest, arable field and urban park. Some of the study areas were neighboring to each other, in order to ensure that the anthropogenic pressure was the same at each site. In order to analyze soil magnetic susceptibility in 3-dimensional space, measurements were performed on the soil surface and in soil profile, using the MS2D and MS2C Bartington instruments, respectively. MS2D measurements were performed using quasi-regular grids, and at each sample point 10 single MS2D readings were carried out in the circle with the diameter of about 2 meters. MS2C measurements were performed using soil cores collected in the field, down to the depth of about 30cm. Such approach combines the advantages of both types of measurements and allows to get deeper insight into the distribution of soil pollution. As the first step of the analysis, the semivariances of magnetic susceptibility were calculated and thoroughly modeled for all different forms of land use, on the basis of only the MS2D measurements. Then, the MS2D and MS2C measurements were jointed into one three-dimensional data set, and were used together to calculate and model the semivariances. Finally, the
Chun-hui XU; Tai-yan QIN; Li YUAN; NaoAki Noda
2009-01-01
By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite hi-material subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental den-sity functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.
Vitanis, Viton; Manka, Robert; Giese, Daniel;
2011-01-01
-t principal component analysis reconstructions. Comparison of the two methods based on rest and stress three-dimensional perfusion data acquired with 2.3 × 2.3 × 10 mm(3) during a 225 msec acquisition window in patients confirms the findings and demonstrates the potential of compartment-based k-t principal...... permits three-dimensional perfusion imaging at 10-fold nominal acceleration. Using numerical simulations, it is shown that the compartment-based method results in accurate representations of dynamic signal intensity changes with significant improvements of temporal fidelity in comparison to conventional k...
Visualizing High-Dimensional Structures by Dimension Ordering and Filtering using Subspace Analysis
Ferdosi, Bilkis J.; Roerdink, Jos B. T. M.
2011-01-01
High-dimensional data visualization is receiving increasing interest because of the growing abundance of high-dimensional datasets. To understand such datasets, visualization of the structures present in the data, such as clusters, can be an invaluable tool. Structures may be present in the full hig
Karatolios, Konstantinos; Wittek, Andreas; Nwe, Thet Htar; Bihari, Peter; Shelke, Amit; Josef, Dennis; Schmitz-Rixen, Thomas; Geks, Josef; Maisch, Bernhard; Blase, Christopher; Moosdorf, Rainer; Vogt, Sebastian
2013-11-01
Aortic wall strains are indicators of biomechanical changes of the aorta due to aging or progressing pathologies such as aortic aneurysm. We investigated the potential of time-resolved three-dimensional ultrasonography coupled with speckle-tracking algorithms and finite element analysis as a novel method for noninvasive in vivo assessment of aortic wall strain. Three-dimensional volume datasets of 6 subjects without cardiovascular risk factors and 2 abdominal aortic aneurysms were acquired with a commercial real time three-dimensional echocardiography system. Longitudinal and circumferential strains were computed offline with high spatial resolution using a customized commercial speckle-tracking software and finite element analysis. Indices for spatial heterogeneity and systolic dyssynchrony were determined for healthy abdominal aortas and abdominal aneurysms. All examined aortic wall segments exhibited considerable heterogenous in-plane strain distributions. Higher spatial resolution of strain imaging resulted in the detection of significantly higher local peak strains (p ≤ 0.01). In comparison with healthy abdominal aortas, aneurysms showed reduced mean strains and increased spatial heterogeneity and more pronounced temporal dyssynchrony as well as delayed systole. Three-dimensional ultrasound speckle tracking enables the analysis of spatially highly resolved strain fields of the aortic wall and offers the potential to detect local aortic wall motion deformations and abnormalities. These data allow the definition of new indices by which the different biomechanical properties of healthy aortas and aortic aneurysms can be characterized. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Follen, Gregory; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.
Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state
Wang, Qi'ang; Wu, Ziyan; Liu, Shukui
2012-03-01
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multispan continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.
Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li
2016-04-01
A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).
Nima Babanouri
2013-12-01
Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.
Biomarker identification and effect estimation on schizophrenia –a high dimensional data analysis
Yuanzhang eLi
2015-05-01
Full Text Available Biomarkers have been examined in schizophrenia research for decades. Medical morbidity and mortality rates, as well as personal and societal costs, are associated with schizophrenia patients. The identification of biomarkers and alleles, which often have a small effect individually, may help to develop new diagnostic tests for early identification and treatment. Currently, there is not a commonly accepted statistical approach to identify predictive biomarkers from high dimensional data. We used space Decomposition-Gradient-Regression method (DGR to select biomarkers, which are associated with the risk of schizophrenia. Then, we used the gradient scores, generated from the selected biomarkers, as the prediction factor in regression to estimate their effects. We also used an alternative approach, classification and regression tree (CART, to compare the biomarker selected by DGR and found about 70% of the selected biomarkers were the same. However, the advantage of DGR is that it can evaluate individual effects for each biomarker from their combined effect. In DGR analysis of serum specimens of US military service members with a diagnosis of schizophrenia from 1992 to 2005 and their controls, Alpha-1-Antitrypsin (AAT, Interleukin-6 receptor (IL-6r and Connective Tissue Growth Factor (CTGF were selected to identify schizophrenia for males; and Alpha-1-Antitrypsin (AAT, Apolipoprotein B (Apo B and Sortilin were selected for females. If these findings from military subjects are replicated by other studies, they suggest the possibility of a novel biomarker panel as an adjunct to earlier diagnosis and initiation of treatment.
Sheer, F J; Swarts, J D; Ghadiali, S N
2012-06-01
A primary etiological factor underlying chronic middle ear disease is an inability to open the collapsible Eustachian tube (ET). However, the structure-function relationships responsible for ET dysfunction in patient populations at risk for developing otitis media (OM) are not known. In this study, three-dimensional (3D) finite element (FE) modeling techniques were used to investigate how changes in biomechanical and anatomical properties influence opening phenomena in three populations: normal adults, young children and infants with cleft palate. Histological data was used to create anatomically accurate models and FE techniques were used to simulate tissue deformation and ET opening. Lumen dilation was quantified using a computational fluid dynamic (CFD) technique and a sensitivity analysis was performed to ascertain the relative importance of the different anatomical and tissue mechanical properties. Results for adults suggest that ET function is highly sensitive to tensor veli palatini muscle (TVPM) forces and to periluminal mucosal tissue (PMT) elasticity. Young children and cleft palate subjects exhibited reduced sensitivity to TVPM forces while changes in PMT stiffness continued to have a significant impact on ET function. These results suggest that reducing PMT stiffness might be an effective way to restore ET function in these populations. Varying TVPM force vector relationships via changes in hamulus location had no effect on ET opening in young children and cleft palate subjects but did alter force transmission to the ET lumen during conditions of elevated adhesion. These models have therefore provided important new insights into the biomechanical mechanisms responsible for ET dysfunction.
Analysis and interpretation of the Cramer-Rao lower-bound in astrometry: One dimensional case
Mendez, Rene; Lobos, Rodrigo
2013-01-01
In this paper we explore the maximum precision attainable in the location of a point source imaged by a pixel array detector in the presence of a background, as a function of the detector properties. For this we use a well-known result from parametric estimation theory, the so-called Cramer-Rao lower bound. We develop the expressions in the 1-dimensional case of a linear array detector in which the only unknown parameter is the source position. If the object is oversampled by the detector, analytical expressions can be obtained for the Cramer-Rao limit that can be readily used to estimate the limiting precision of an imaging system, and which are very useful for experimental (detector) design, observational planning, or performance estimation of data analysis software: In particular, we demonstrate that for background-dominated sources, the maximum astrometric precision goes as $B/F^2$, where $B$ is the background in one pixel, and $F$ is the total flux of the source, while when the background is negligible, ...
A Trans-dimensional Bayesian Approach to Pulsar Timing Noise Analysis
Ellis, Justin
2016-01-01
The modeling of intrinsic noise in pulsar timing residual data is of crucial importance for Gravitational Wave (GW) detection and pulsar timing (astro)physics in general. The noise budget in pulsars is a collection of several well studied effects including radiometer noise, pulse-phase jitter noise, dispersion measure (DM) variations, and low frequency spin noise. However, as pulsar timing data continues to improve, non-stationary and non-powerlaw noise terms are beginning to manifest which are not well modeled by current noise analysis techniques. In this work we use a trans-dimensional approach to model these non-stationary and non-powerlaw effects through the use of a wavelet basis and an interpolation based adaptive spectral modeling. In both cases, the number of wavelets and the number of control points in the interpolated spectrum are free parameters that are constrained by the data and then marginalized over in the final inferences, thus fully incorporating our ignorance of the noise model. We show tha...
Dimensional Analysis of Average Diameter of Bubbles for Bottom Blown Oxygen Copper Furnace
Dongxing Wang
2016-01-01
Full Text Available Average diameter of bubbles is important in copper furnace. Based on the principle of similarity, a slice water model of a furnace with bottom-blown oxygen in matte-smelting process was established. A high-speed camera was used to record images continuously and clearer pictures were selected for treatment. Finally, image processing software was used for obtaining the average diameter of the bubbles. The effects of different injection conditions and equipment factors such as the diameter of nozzle, the nozzle installing angle, and gas velocity on the average diameter of bubbles were studied with cold water model experiment, exploring the dispersion and disintegration rules of bubbles. According to experimental data and Buckingham’s theorem, by using dimensional analysis method, an empirical formula on average diameter of bubbles was established (dB=0.41666d0.29374θ-0.46572v-0.16725. It can be seen from the formula that nozzle installing angle and diameter of nozzle make the most impact on the average diameter of bubbles in bottom blown oxygen copper furnace.
Visual Basic programs for one, two or three-dimensional geostatistical analysis
Carr, James R.; Mela, Kenneth
1998-07-01
Two previously published FORTRAN-77 programs, FGAM and JCBLOK, are rewritten in Visual Basic 5.0 for 32-bit Windows 95/NT and educational applications. Each program is applicable to spatial data representing one, two or three-dimensions. Graphics are added for displaying computed variograms and color density slices of kriging results within the same windows used to launch the programs. Dynamic array allocation is automatically invoked by the programs without the need for a user to intervene, thus enabling efficient memory management independent of data set size. If analyzing one-dimensional strings of data (profiles), fractal dimensions are computed for four-lag increments of the variogram, thus enabling a scale-dependent analysis. Only the raw, spatial data need to be in a separate file because program options are set interactively using mouse click events motivated by the design of the window for each program. Simplified Geo-EAS input format is accommodated for these files, or generic files are accommodated having allowable record lengths up to 100 values per record.
Three-dimensional computed tomography analysis of non-osteoarthritic adult acetabular dysplasia
Ito, Hiroshi; Matsuno, Takeo; Hirayama, Teruhisa; Tanino, Hiromasa; Yamanaka, Yasuhiro [Asahikawa Medical College, Department of Orthopaedic Surgery, Asahikawa (Japan); Minami, Akio [Hokkaido University School of Medicine, Department of Orthopaedic Surgery, Sapporo (Japan)
2009-02-15
Little data exists on the original morphology of acetabular dysplasia obtained from patients without radiographic advanced osteoarthritic changes. The aim of this study was to investigate the distribution and degree of acetabular dysplasia in a large number of patients showing no advanced degenerative changes using three-dimensional computed tomography (3DCT). Eighty-four dysplastic hips in 55 consecutive patients were studied. All 84 hips were in pre- or early osteoarthritis without radiographic evidence of joint space narrowing, formation of osteophytes or cysts, or deformity of femoral heads. The mean age at the time of CT scan was 35 years (range 15-64 years). 3D images were reconstructed and analyzed using recent computer imaging software (INTAGE Realia and Volume Player). Deficiency types and degrees of acetabular dysplasia were precisely evaluated using these computer software. The average Harris hip score at CT scans was 82 points. Twenty-two hips (26%) were classified as anterior deficiency, 17 hips (20%) as posterior deficiency, and 45 hips (54%) as lateral deficiency. No significant difference was found in the Harris hip score among these groups. The analysis of various measurements indicated wide variations. There was a significant correlation between the Harris hip score and the acetabular coverage (p < 0.001). Our results indicated wide variety of deficiency type and degree of acetabular dysplasia. Hips with greater acetabular coverage tended to have a higher Harris hip score. (orig.)
Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars
Korte, S., E-mail: sandra.korte@cantab.net [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Ritter, M. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Jiao, C. [FEI Company, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Midgley, P.A.; Clegg, W.J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)
2011-11-15
Small-scale testing is extensively used to study the effects of size on plasticity or characterise plastic deformation of brittle materials, where cracking is suppressed on the microscale. Geometrical and experimental constraints have been shown to affect small-scale deformation and efforts are underway to understand these better. However, current analytical techniques tend to possess high resolution in only one or two dimensions, impeding a detailed analysis of the entire deformed volume. Here electron backscattered diffraction in three dimensions is presented as a way of characterising three-dimensional (3-D) deformation at high spatial resolution. It is shown that, by reconstruction of compressed and then successively sliced and indexed MgO micropillars, this 3-D technique yields information complementary to {mu}-Laue diffraction or electron microscopy, allowing a correlation of experimental artefacts and the distribution of plasticity. In addition, deformation features which are difficult to visualise by standard scanning electron microscopy are easily detected, for example where only small surface traces are produced or minimal plastic strain can be introduced before failure in brittle materials.
3-dimensional thermohydraulic analysis of KALIMER reactor pool during unprotected accidents
Lee, Yong Bum; Hahn Do Hee
2003-01-01
During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coastdown. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHXs and its contribution to the net buoyancy head. Therefore, two-dimensional hot pool thermohydraulic model named HP2D has been developed. In this report code-to-code comparison analysis between HP2D and COMMIX-1AR/P has been performed in the case of steady-state and UTOP.
Ghosh, Abhijit; Seeley, Stacy K; Nartker, Steven R; Seeley, John V
2014-09-19
A comprehensive two-dimensional gas chromatography (GC×GC) method for separating siloxanes from hydrocarbons has been developed using a systematic process. First, the retention indices of a set of siloxanes and a set of hydrocarbons were determined on 6 different stationary phases. The retention indices were then used to model GC×GC separation on 15 different stationary phase pairs. The SPB-Octyl×DB-1 pair was predicted to provide the best separation of the siloxanes from the hydrocarbons. The efficacy of this stationary phase pair was experimentally tested by performing a GC×GC analysis of gasoline spiked with siloxanes and by analyzing biogas obtained from a local wastewater treatment facility. The model predictions agreed well with the experimental results. The SPB-Octyl×DB-1 stationary phase pair constrained the hydrocarbons to a narrow range of secondary retention times and fully isolated the siloxanes from the hydrocarbon band. The resulting GC×GC method allows siloxanes to be resolved from complex mixtures of hydrocarbons without requiring the use of a selective detector.
Two-dimensional waveform analysis in MR elastography of skeletal muscles
Papazoglou, Sebastian; Braun, Jürgen; Hamhaber, Uwe; Sack, Ingolf
2005-03-01
A method for direct determination of anisotropic elastic coefficients using two-dimensional shear wave patterns is introduced. Thereby, the symmetry of the wave patterns is approximated by a squared elliptic equation yielding an explicit relation between waveform and elasticity. The method is used to analyse MR elastography wave images of the biceps acquired by a continuous harmonic excitation at the distal tendon of the muscle. Typically V-shaped wave patterns were observed in this type of tissue, which could be well reproduced by the proposed elliptic approximation of the waveform assuming incompressibility and a transverse isotropic model of elasticity. Without additional experiments, the analysis of straightness, slope and interferences of the wave fronts enabled us to deduce two Young's moduli and one shear modulus, which fully describe the anisotropy of the elasticity of muscles. The results suggest strong anisotropy of the living human biceps causing a shear wave speed parallel to the muscle fibres that is approximately four times faster than the perpendicular shear wave speed.
Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles
Che-Kai Yeh
2017-06-01
Full Text Available The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST, cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc. and some published experimental data.
Properties of original impactors estimated from three-dimensional analysis of whole Stardust tracks
Greenberg, Michael; Ebel, Denton S. (AMNH)
2012-07-25
The Stardust mission captured comet Wild 2 particles in aerogel at 6.1 km s{sup -1}. We performed high-resolution three-dimensional imaging and X-ray fluorescence mapping of whole cometary tracks in aerogel. We present the results of a survey of track structures using laser scanning confocal microscopy, including measurements of track volumes, entry hole size, and cross-sectional profiles. We compare various methods for measuring track parameters. We demonstrate a methodology for discerning hypervelocity particle ablation rates using synchrotron-based X-ray fluorescence, combined with mass and volume estimates of original impactors derived from measured track properties. Finally, we present a rough framework for reconstruction of original impactor size, and volume of volatilized material, using our measured parameters. The bulk of this work is in direct support of nondestructive analysis and identification of cometary grains in whole tracks, and its eventual application to the reconstruction of the size, shape, porosity, and chemical composition of whole Stardust impactors.
Potgieter, H; Bekker, R; Beigley, J; Rohwer, E
2017-08-04
Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media
El-Amin, Mohamed
2015-04-01
In this paper, a mathematical model and numerical simulation are developed to describe the imbibition of nanoparticles-water suspension into two-phase flow in a porous medium. The flow system may be changed from oil-wet to water-wet due to nanoparticles (which are also water-wet) deposition on surface of the pores. So, the model is extended to include the negative capillary pressure and mixed-wet relative permeability correlations to fit with the mixed-wet system. Moreover, buoyancy and capillary forces as well as Brownian diffusion and mechanical dispersion are considered in the mathematical model. An example of countercurrent imbibition in a core of small scale is considered. A dimensional analysis of the governing equations is introduced to examine contributions of each term of the model. Several important dimensionless numbers appear in the dimensionless equations, such as Darcy number Da, capillary number Ca, and Bond number Bo. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles using numerical experiments.
Tsunezuka, Hiroaki; Kato, Daishiro; Okada, Satru; Ishihara, Shunta; Shimada, Junichi
2013-01-01
Assessing cervical range of motion (CROM) is an important part of the clinical evaluation of patients with conditions such as whiplash syndrome. This study aimed to develop a convenient and accurate system involving multifaceted marker device (MMD)-based assessment of 3-dimensional (3D) dynamic coupled CROM and joint angular velocity. We used an infrared optical tracking system and our newly developed MMD that solved problems such as marker shielding and reflection angle associated with the optical tracking devices and enabled sequential and accurate analysis of the 3D dynamic movement of the polyaxial joint and other structurally complicated joints. The study included 30 asymptomatic young male volunteers (age, 22-27 years). The MMD consisted of 5 surfaces and 5 markers and was attached to the participant's forehead. We measured active CROM (axial rotation, flexion/extension, and lateral bending) and joint angular velocity by the MMD. The MMD was easy to use, safe for patients and operators, could be constructed economically, and generated accurate data such as dynamic coupled CROM and angular velocity.
A Three-Dimensional Movement Analysis of the Spike in Fistball
Andreas Bund
2016-12-01
Full Text Available Due to its relevancy to point scoring, the spike is considered as one of the most important skills in fistball. Biomechanical analyses of this sport are very rare. In the present study, we performed a three-dimensional kinematic analysis of the fistball spike, which helps to specify performance parameters on a descriptive level. Recorded by four synchronized cameras (120 Hz and linked to the motion capture software Simi Motion® 5.0, three female fistball players of the second German league (24–26 years, 1.63–1.69 m performed several spikes under standardized conditions. Results show that the segment velocities of the arm reached their maximum successively from proximal to distal, following the principle of temporal coordination of single impulses. The wrist shows maximum speed when the fist hits the ball. The elbow joint angle performs a rapid transition from a strong flexion to a (almost full extension; however, the extension is completed after the moment of ball impact. In contrast, the shoulder joint angle increases almost linearly until the fistball contact and decreases afterward. The findings can be used to optimize the training of the spike.
Xian-Qian Wu; Xi Wang; Yan-Peng Wei; Hong-Wei Song; Chen-Guang Huang
2012-01-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue,cracking,etc.Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process.In this paper,the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated.Firstly,dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method.Secondly,the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method.Furthermore,related empirical formulas were given for each dimensionless parameter based on the simulation results.Finally,comparison was made and good agreement was found between the simulation results and the empirical formula,which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan
2016-04-01
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.
Non destructive three dimensional analysis of the packing of a binary beryllium pebble bed
Scaffidi-Argentina, F.; Piazza, G. E-mail: giovanni.piazza@iket.fzk.de; Goraieb, A.; Boller, E.; Elmoutaouakkil, A.; Ferrero, C.; Baruchel, J
2001-11-01
In the Helium Cooled Pebble Bed (HCPB) Blanket, studied within the European Fusion Technology Programme, beryllium in form of pebbles is used as neutron multiplier. The thermal-mechanical behaviour of a pebble bed strongly depends on the packing factor of the bed. In a binary pebble bed, in particular, a homogeneous distribution of small pebbles between the larger ones (infiltrated bed) has to be ensured in order to obtain a behaving homogeneously bed. Thus, a detailed non-destructive control of the pebble bed configuration can provide an important help in interpreting the pebble bed thermal mechanical characterisation test results. A three-dimensional (3-D) computer aided microtomography (CMT) experimental setup developed at the European Synchrotron Radiation Facility (ESRF) allowed to reconstruct 3-D images of the attenuation coefficient of a X-ray synchrotron radiation beam within a pebble bed without physically damaging it. By post-processing the acquired data, very useful quantitative informations were obtained (local and average void fraction in the sample, impurities and micro-cracks in the pebbles). In the present work, the micrographic technique and the first results of the analysis are presented and critically discussed in view of a future application for a medium scale HCPB Blanket mock-up.
Quasi-steady-state analysis of two-dimensional random intermittent search processes
Bressloff, Paul C.
2011-06-01
We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.
Two-dimensional modeling and analysis of a nanometer transistor as a THz emitter
Rahmatallahpur, Sh.; Rostami, Ali
2016-10-01
In this paper, we report on the influences of quantum effects, electron exchange-correlation, Fermi velocity, gate to channel distance and viscosity on the plasma frequency and instability of the plasma waves in a nanometer transistor. By extending the analysis to two-dimensional case, allowing oblique wave propagation, including viscosity and departing from gradual channel approximation, we obtain a general analytical expression for dispersion relation, plasma frequency, and "increment." We found that, while the plasma frequency decreases with the electron exchange-correlation effect, it increases with quantum effects and Fermi velocity. It is shown that the spectrums of plasma waves are discrete both in longitudinal and lateral (transverse) direction. We also express the total radiated power in terms of transistor parameters especially the lateral dimension. Viscosity which is inherently presented in the structure and cannot be neglected, dramatically decrease the emitted power and set a lower limit on the length of transistor. We show that a nanometer transistor with a long width (a long lateral dimension) has advantages for the realization of practical terahertz emitters.
Two-dimensional waveform analysis in MR elastography of skeletal muscles
Papazoglou, Sebastian [Institute of Radiology, Charite-University Medicine Berlin, Humboldt University Berlin, Berlin (Germany); Braun, Juergen [Institute of Medical Informatics, Charite-University Medicine Berlin, Free University Berlin, Berlin (Germany); Hamhaber, Uwe [Institute of Medical Informatics, Charite-University Medicine Berlin, Free University Berlin, Berlin (Germany); Sack, Ingolf [Institute of Radiology, Charite-University Medicine Berlin, Humboldt University Berlin, Berlin (Germany)
2005-03-21
A method for direct determination of anisotropic elastic coefficients using two-dimensional shear wave patterns is introduced. Thereby, the symmetry of the wave patterns is approximated by a squared elliptic equation yielding an explicit relation between waveform and elasticity. The method is used to analyse MR elastography wave images of the biceps acquired by a continuous harmonic excitation at the distal tendon of the muscle. Typically V-shaped wave patterns were observed in this type of tissue, which could be well reproduced by the proposed elliptic approximation of the waveform assuming incompressibility and a transverse isotropic model of elasticity. Without additional experiments, the analysis of straightness, slope and interferences of the wave fronts enabled us to deduce two Young's moduli and one shear modulus, which fully describe the anisotropy of the elasticity of muscles. The results suggest strong anisotropy of the living human biceps causing a shear wave speed parallel to the muscle fibres that is approximately four times faster than the perpendicular shear wave speed.
A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis.
El Gowini, Mohamed M; Moussa, Walied A
2009-01-01
A major problem that often arises in modeling Micro Electro Mechanical Systems (MEMS) such as Surface Acoustic Wave (SAW) sensors using Finite Element Analysis (FEA) is the extensive computational capacity required. In this study a new approach is adopted to significantly reduce the computational capacity needed for analyzing the response of a SAW sensor using the finite element (FE) method. The approach is based on the plane wave solution where the properties of the wave vary in two dimensions and are uniform along the thickness of the device. The plane wave solution therefore allows the thickness of the SAW device model to be minimized; the model is referred to as a Reduced 3D Model (R3D). Various configurations of this novel R3D model are developed and compared with theoretical and experimental frequency data and the results show very good agreement. In addition, two-dimensional (2D) models with similar configurations to the R3D are developed for comparison since the 2D approach is widely adopted in the literature as a computationally inexpensive approach to model SAW sensors using the FE method. Results illustrate that the R3D model is capable of capturing the SAW response more accurately than the 2D model; this is demonstrated by comparison of centre frequency and insertion loss values. These results are very encouraging and indicate that the R3D model is capable of capturing the MEMS-based SAW sensor response without being computationally expensive.
A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis
Mohamed M. El Gowini
2009-12-01
Full Text Available A major problem that often arises in modeling Micro Electro Mechanical Systems (MEMS such as Surface Acoustic Wave (SAW sensors using Finite Element Analysis (FEA is the extensive computational capacity required. In this study a new approach is adopted to significantly reduce the computational capacity needed for analyzing the response of a SAW sensor using the finite element (FE method. The approach is based on the plane wave solution where the properties of the wave vary in two dimensions and are uniform along the thickness of the device. The plane wave solution therefore allows the thickness of the SAW device model to be minimized; the model is referred to as a Reduced 3D Model (R3D. Various configurations of this novel R3D model are developed and compared with theoretical and experimental frequency data and the results show very good agreement. In addition, two-dimensional (2D models with similar configurations to the R3D are developed for comparison since the 2D approach is widely adopted in the literature as a computationally inexpensive approach to model SAW sensors using the FE method. Results illustrate that the R3D model is capable of capturing the SAW response more accurately than the 2D model; this is demonstrated by comparison of centre frequency and insertion loss values. These results are very encouraging and indicate that the R3D model is capable of capturing the MEMS-based SAW sensor response without being computationally expensive.
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
Dynamic Analysis of Pig through Two and Three Dimensional Gas Pipeline
Malihe Mirshamsi
2015-01-01
Full Text Available This paper deals with the dynamic analysis and simulation of Pipeline Inspection Gage (PIG through the two and three dimensional gas pipelines. Continuity, momentum and the state equations are employed to achieve the gas flow parameters like density, velocity and pressure along the pipeline since the dynamic behavior of the pig depends on the flow field characteristics. Also, a differential equation which governs the dynamic behavior of the pig is derived. The pig is assumed to be a small rigid body with a bypass hole in its body. The variation of the diameter of the bypass port, which is controlled by a valve, is considered in this research. The path of the pig or geometry of the pipeline is assumed to be 2D and 3D curve. 2D and 3D simulations of the pig motion are performed individually using Rung- Kutta method and a case has been solved and discussed for each of them. The simulation results show that the derived equations are valid and effective for online estimating of the position, velocity and forces acting on the pig in gas pipelines at any time of the motion.
Three-dimensional linear and volumetric analysis of maxillary sinus pneumatization
Reham M. Hamdy
2014-05-01
Full Text Available Considering the anatomical variability related to the maxillary sinus, its intimate relation to the maxillary posterior teeth and because of all the implications that pneumatization may possess, three-dimensional assessment of maxillary sinus pneumatization is of most usefulness. The aim of this study is to analyze the maxillary sinus dimensions both linearly and volumetrically using cone beam computed tomography (CBCT to assess the maxillary sinus pneumatization. Retrospective analysis of 30 maxillary sinuses belonging to 15 patients’ CBCT scans was performed. Linear and volumetric measurements were conducted and statistically analyzed. The maximum craniocaudal extension of the maxillary sinus was located around the 2nd molar in 93% of the sinuses, while the maximum mediolateral and antroposterior extensions of the maxillary sinus were located at the level of root of zygomatic complex in 90% of sinuses. There was a high correlation between the linear measurements of the right and left sides, where the antroposterior extension of the sinus at level of the nasal floor had the largest correlation (0.89. There was also a high correlation between the Simplant and geometric derived maxillary sinus volumes for both right and left sides (0.98 and 0.96, respectively. The relations of the sinus floor can be accurately assessed on the different orthogonal images obtained through 3D CBCT scan. The geometric method offered a much cheaper, easier, and less sophisticated substitute; therefore, with the availability of software, 3D volumetric measurements are more facilitated.
Three-dimensional motion analysis of lumbopelvic rhythm during lateral trunk bending
Tojima, Michio; Ogata, Naoshi; Inokuchi, Haruhi; Haga, Nobuhiko
2016-01-01
[Purpose] To examine the variations in the lumbopelvic rhythm and lumbar-hip ratio in the frontal plane. [Subjects and Methods] Markers were placed on the T10 and T12 spinous processes, bilateral paravertebral muscles at the T11 level, the pelvis, and the femur. Lumbar spine and hip angles were measured during lateral trunk bending using three-dimensional motion analysis. Data from the trunk lateral bending movement were categorized into descending (start of hip movement to when the hip angle reached its maximum value) and ascending (from the maximum hip angle to the end of movement) phases. The lumbar-hip ratio was calculated as the ratio of the lumbar spine angle to the hip angle. [Results] The lumbar-hip ratio decreased from 5.9 to 3.6 in the descending phase, indicating lumbar spinal movement was less than hip movement. In the ascending phase, the lumbar-hip ratio was reversed. The lumbopelvic rhythm was better expressed by a cubic or quadratic function rather than a linear function. These functions indicate that when the hip inclines by 1° that the lumbar spine bends laterally by 2.4°. [Conclusion] The lumbopelvic rhythm and lumbar-hip ratio indicate lumbar lateral bending instead of a limitation of hip inclination. PMID:27630428
Analysis of cutoff frequency in one dimensional ternary superconducting photonic crystal
K. P., Sreejith; Maria D'souza, Nirmala; Mathew, Vincent
2017-09-01
By means of two fluid model and transfer matrix method, we have theoretically investigated the transmittance property of a one dimensional ternary photonic crystal consist of a pair of superconducting materials and a dielectric in the infrared frequency region. We mainly focus on the analysis of cutoff frequency since the calculations can be useful in the fabrication of optical devices such as reflector, high pass filter etc. The study reveals that the cutoff frequency is sensitive to thickness of superconducting materials, dielectric layer thickness, operating temperature and refractive index of intermediate dielectric. Cutoff frequency shifted to higher frequency region on increasing number of periods and superconductor layer thickness where as it reduces on increasing dielectric thickness, operating temperature and refractive index of intermediate dielectric. Furthermore, we compared the cutoff frequency of three different 1D ternary photonic crystals comprising of a dielectric and a pair of high-high, high-low and low-low temperature superconducting materials. Our comparison results shows that the cutoff frequency can be effectively modified with different combination of superconducting materials.
Stemkens, Bjorn, E-mail: b.stemkens@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Tijssen, Rob H.N. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Senneville, Baudouin D. de [Imaging Division, University Medical Center Utrecht, Utrecht (Netherlands); L' Institut de Mathématiques de Bordeaux, Unité Mixte de Recherche 5251, Centre National de la Recherche Scientifique/University of Bordeaux, Bordeaux (France); Heerkens, Hanne D.; Vulpen, Marco van; Lagendijk, Jan J.W.; Berg, Cornelis A.T. van den [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)
2015-03-01
Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.
Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)
2010-04-15
Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)
Yi Long
2015-06-01
Full Text Available This paper describes a novel strategy for the visualization of hyperspectral imagery based on the analysis of image pixel pairwise distances. The goal of this approach is to generate a final color image with excellent interpretability and high contrast at the cost of distorting a few pairwise distances. Specifically, the principle of equal variance is introduced to divide all hyperspectral bands into three subgroups and to ensure the energy is distributed uniformly between them, as in natural color images. Then, after detecting both normal and outlier pixels, these three subgroups are mapped into three color components of the output visualization using two different mapping (i.e., dimensionality reduction schemes for the two types of pixels. The widely-used multidimensional scaling (MDS is used for normal pixels and a new objective function, taking into account the weighting of pairwise distances, is presented for the outlier pixels. The pairwise distance weighting is designed such that small pairwise distances between the outliers and their respective neighbors are emphasized and large deviations are suppressed. This produces an image with high contrast and good interpretability while retaining the detailed information content. The proposed algorithm is compared with several state-of-the-art visualization techniques and evaluated on the well-known AVIRIS hyperspectral images. The effectiveness of the proposed strategy is substantiated both visually and quantitatively.
A three-dimensional finite element model for biomechanical analysis of the hip.
Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe
2013-11-01
The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.
Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles
Yeh, Che-Kai; Juang, Jia-Yang
2017-06-01
The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP) is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST), cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc.) and some published experimental data.
Sang-Wook Kang
2016-03-01
Full Text Available A new formulation for the non-dimensional dynamic influence function method, which was developed by the authors, is proposed to efficiently extract eigenvalues and mode shapes of clamped plates with arbitrary shapes. Compared with the finite element and boundary element methods, the non-dimensional dynamic influence function method yields highly accurate solutions in eigenvalue analysis problems of plates and membranes including acoustic cavities. However, the non-dimensional dynamic influence function method requires the uneconomic procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues because it produces a non-algebraic eigenvalue problem. This article describes a new approach that reduces the problem of free vibrations of clamped plates to an algebraic eigenvalue problem, the solution of which is straightforward. The validity and efficiency of the proposed method are illustrated through several numerical examples.
Amino acid analysis by using comprehensive two-dimensional gas chromatography.
Mayadunne, Renuka; Nguyen, Thuy-Tien; Marriott, Philip J
2005-06-01
The separation characteristics of alkylchloroformate-derivatised amino acids (AAs) by using comprehensive two-dimensional gas chromatography (GCxGC) is reported. The use of a low-polarity/polar column set did not provide as good a separation performance as that achieved with a polar/non-polar column set, where the latter appeared to provide less correlation over the separation space. The degree of component correlation in each column set was estimated by using the correlation coefficient (r(2); for (1)t(R) and (2)t(R) data) with the low-polarity/polar and polar/low-polarity sets returning correlation coefficients of 0.86, and 0.00 respectively, under the respective conditions employed for the experiments. The 1.5-m non-polar (2)D column (0.1-mm ID; 0.1-mum film thickness) gave peak halfwidths of the order of 50-80 ms. Linearity of detection was good, over a three order of magnitude concentration range, with typical lower detection limit of ca. 0.01 mg L(-1), compared with 0.5 mg L(-1) for normal GC operation with splitless injection. The method was demonstrated for analysis of AAs in a range of food and beverage products, including wine, beer and honey. The major AA in these samples was proline. The Heineken beer sample had a relatively more complex and more abundant AA content compared with the other beer sample. The wine and honey samples also gave a range of AA compounds. Repetition of the sample preparation/analysis procedure for the honey sample gave acceptable reproducibility for individual AAs.
A Monte Carlo Uncertainty Analysis of Ozone Trend Predictions in a Two Dimensional Model. Revision
Considine, D. B.; Stolarski, R. S.; Hollandsworth, S. M.; Jackman, C. H.; Fleming, E. L.
1998-01-01
We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation
Lu, Yuzhen; Lu, Renfu
2017-05-01
Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.
A novel system of four-dimensional motion analysis after total hip arthroplasty.
Hagio, Keisuke; Sugano, Nobuhiko; Nishii, Takashi; Miki, Hidenobu; Otake, Yoshito; Hattori, Asaki; Suzuki, Naoki; Yonenobu, Kazuo; Yoshikawa, Hideki; Ochi, Takahiro
2004-05-01
We have developed a novel system of four-dimensional motion analysis after total hip arthroplasty (THA) that can aid in preventing dislocation by assessing safe range of motion for patients in several daily activities. This system uses skeletal structure data from CT and motion capture data from an infrared position sensor. A 3-D model reconstructed from CT data is combined with the motion capture data. Using this system, we analyzed hip motion when getting up from and sitting down in a chair or picking up an object while sitting in a chair in 17 patients (26 hips) who underwent THA. To assess the accuracy of this system's measurements, open MRI was used to evaluate positions of skin markers against bones in five healthy volunteers in various postures. No impingement between bones and/or implants was found in any subjects during any activities. However, mean angle at the point of maximum hip flexion was different for each patient. The open MRI results indicated that average error in hip angle of the present system was within 5 degrees for each static posture. The functional position of the pelvis during daily activities must be taken into account when assessing the real risk of dislocation. The present system enables dynamic analysis involving not only alignment of components and bones of each patient, but also individual differences in characteristics of daily motions. Further investigation using this system can help determine safe ranges of motion for preventing hip dislocation, improving the accuracy of individualized guidance for patients regarding postoperative activities.
Two-dimensional electrophoresis for comparative proteomic analysis of human bile
Bo Chen; Jing-Qing Dong; Yong-Jun Chen; Jian-Ming Wang; Jun Tian; Chun-Ben Wang; Sheng-Quan Zou
2007-01-01
BACKGROUND:Proteomic analysis of bile lfuid holds promise as a method to identify biomarkers of bile tract diseases, especially for tumors. Two-dimensional electrophoresis (2-DE) is a popular and proven separation technique for proteome analysis, but using this strategy for bile lfuid analysis is still not fully developed. This study was undertaken to (a) establish a reliable method for general clean-up to make bile lfuid samples suitable for 2-DE;(b) obtain 2-D biliary maps with high reproducibility and resolution;and (c) identify protein patterns present in 2-D biliary maps for potential tumor biomarker discovery, with the intention of distinguishing malignant from benign causes of bile duct obstruction. METHODS: Bile lfuid samples were obtained from two patients suffering from malignant and benign bile tract obstruction (one patient with cholangiocarcinoma as the experimental case, the other with cholelithiasis as control). A variety of sample preparation options, including delipidation, desalination and nucleic acid removal, were adopted to remove contaminants that affect 2-DE results. After that, each 350 μg puriifed sample was loaded onto nonlinear IPG strips (18 cm, pH 3-10 and pH 4-7) for ifrst-dimension isoelectric focusing, and 12.5% SDS-PAGE electrophoresis for second dimension separation. Then 2-D maps were visualized after silver staining and analyzed with the Image Master 2-D software. RESULTS:A large number of protein spots were separated in 2-D maps from the experimental and control groups, with means of 250 and 216 spots on pH 3-10 IPG strips, and 182 and 176 spots on pH 4-7 strips, respectively. Approximately 16 and 23 spots were differentially expressed in matched pairs from the experimental and control cases using pH 3-10 and pH 4-7 strips. CONCLUSIONS: This study established a reliable sample preparation process suitable for 2-DE of bile lfuid. By this method, 2-D biliary maps with high reproducibility and resolution were obtained. The
Analysis on Three-dimensional Structure and Echo Characteristic Quantity of a Supercell Storm
无
2011-01-01
[Objective] The research aimed to study three-dimensional structure and echo characteristic quantity of a supercell storm in central Gansu on May 30,2005.[Method] By monitoring data of Lanzhou CINRAD/CC Doppler radar,the three-dimensional structure characteristics of a rare supercell storm which happened in central Gansu on May 30,2005 were analyzed.We tried to reveal three-dimensional structure and echo characteristic index of supercell storm in the northeast of Qinghai-Tibet Plateau,and find reason of rar...
Analysis of three-dimensional image using Tutte polynomial for polyhedral graphs
Gómez M., Alejandro
2013-05-01
All three-dimensional image, could be represented with a polyhedral graphs, where the number of edges and vertices is proportional to the quality of the image, and this image could be stored in an algebraic expression like a Tutte polynomial, allowing the reconstruction of any three-dimensional image. The Tutte polynomial is calculated using the package Graph Theory of Maple 16, which has been optimized for polyhedral graphs with a lot of edges and vertices, so this could be very useful with three-dimensional complex images or three-dimensional HD image. In this paper, I will present some examples of the useful Tutte polynomial, and for future work, I will investigate the use of Bollobás- Riordan polynomial.
Three dimensional analysis of coelacanth body structure by computer graphics and X-ray CT images
Suzuki, Naoki (Jikei Univ., Tokyo (Japan). School of Medicine); Hamada, Takashi
1990-06-01
Three dimensional imaging processes were applied for the structural and functional analyses of the modern coelacanth (Latimeria chalumnae). Visualization of the obtained images is performed with computer graphics on the basis of serial images by an X-ray CT scanning method. Reconstruction of three dimensional images of the body structure of coelacanth using the volume rendering and surface rendering methods provides us various information about external and internal shapes of this exquisite fish. (author).
Symmetry Analysis and Exact Solutions of (2+1)-Dimensional Sawada-Kotera Equation
YU Jian-Ping; ZHI Hong-Yan; SUN Yong-Li; ZHANG Hong-Qing
2008-01-01
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)-dimensional Sawada Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada Kotera and Konopelchenko Dubrovsky equations, respectively.
Andersen, H; Birkelund, Svend; Christiansen, Gunna
1987-01-01
The proteins of 14 strains of Mycoplasma hominis were compared by SDS-PAGE in gradient gels, by two-dimensional (2D) gel electrophoresis of extracts of 35S-labelled cells and by immunoblot analysis of cell proteins. The strains examined included the M. hominis type strain PG21 and 13 others...... isolated variously from genital tract, mouth, blood, upper urinary tract and a wound. These 14 strains shared 76-99% of proteins in SDS-gradient gel analysis and 41-72% in the 2D gels. As expected, the immunoblot analysis likewise revealed the existence of an extensive common protein pattern in M. hominis...
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
Carpenter, D.C.
1997-04-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions.
Improved neutron kinetics for coupled three-dimensional boiling water reactor analysis
Akdeniz, Bedirhan
The need for a more accurate method of modelling cross section variations for off-nominal core conditions is becoming an important issue with the increased use of coupled three-dimensional (3-D) thermal-hydraulics/neutronics simulations. In traditional reactor core analysis, thermal reactor core calculations are customarily performed with 3-D two-group nodal diffusion methods. Steady-state multi-group transport theory calculations on heterogeneous single assembly domains subject to reflective boundary conditions are normally used to prepare the equivalent two-group spatially homogenized nodal parameters. For steady-state applications, the equivalent nodal parameters are theoretically well-defined; but, for transient applications, the definition of the nodal kinetics parameters, in particular, delayed neutron precursor data is somewhat unclear. The fact that delayed neutrons are emitted at considerably lower energies than prompt neutrons and that this difference cannot be accounted for in a two-group representation is of particular concern. To compensate for this inherent deficiency of the two-group model a correction is applied to the nodal values of the delayed neutron fractions; however, the adequacy of this correction has never been tested thoroughly for Boiling Water Reactor (BWR) applications, especially where the instantaneous thermal-hydraulic conditions play an important role on the core neutron kinetics calculations. This thesis proposes a systematic approach to improve the 3-D neutron kinetics modelling in coupled BWR transient calculations by developing, implementing and validating methods for consistent generation of neutron kinetics and delayed neutron data for such coupled thermal-hydraulics/neutronics simulations.
Competing Risks Data Analysis with High-dimensional Covariates:An Application in Bladder Cancer
Leili Tapak; Massoud Saidijam; Majid Sadeghifar; Jalal Poorolajal; Hossein Mahjub
2015-01-01
Analysis of microarray data is associated with the methodological problems of high dimension and small sample size. Various methods have been used for variable selection in high-dimension and small sample size cases with a single survival endpoint. However, little effort has been directed toward addressing competing risks where there is more than one failure risks. This study compared three typical variable selection techniques including Lasso, elastic net, and likelihood-based boosting for high-dimensional time-to-event data with competing risks. The per-formance of these methods was evaluated via a simulation study by analyzing a real dataset related to bladder cancer patients using time-dependent receiver operator characteristic (ROC) curve and bootstrap .632+prediction error curves. The elastic net penalization method was shown to outper-form Lasso and boosting. Based on the elastic net, 33 genes out of 1381 genes related to bladder cancer were selected. By fitting to the Fine and Gray model, eight genes were highly significant (P< 0.001). Among them, expression of RTN4, SON, IGF1R, SNRPE, PTGR1, PLEK, and ETFDH was associated with a decrease in survival time, whereas SMARCAD1 expression was associated with an increase in survival time. This study indicates that the elastic net has a higher capacity than the Lasso and boosting for the prediction of survival time in bladder cancer patients. Moreover, genes selected by all methods improved the predictive power of the model based on only clinical variables, indicating the value of information contained in the microarray features.
Esmail, Enas; Hassan, Noha; Kadah, Yasser
2010-02-01
In this study, three-dimensional (3D) finite element analysis was used to model the effect of the peri-implant bone geometry and thickness on the biomechanical behavior of a dental implant/supporting bone system. The 3D finite element model of the jaw bone, cancellous and cortical, was developed based on computerized tomography (CT) scan technology while the dental implant model was created based on a commercially available implant design. Two models, cylindrical and threaded, representing the peri-implant bone region were simulated. In addition, various thicknesses (0.1 mm, 0.3 mm, 0.5 mm) of the peri-implant bone region were modeled to account for the misalingnment during the drilling process. Different biomechanical properties of the peri-implant bone region were used to simulate the progression of the osseointegration process with time. Four stages of osseointegration were modeled to mimic different phases of tissue healing of the peri- implant region starting with soft connective tissue and ending with complete bone maturation. For the realistic threaded model of the peri-implant bone region, the maximum von Mises stress and displacement in the dental implant and jaw bone were higher than those computed for the simple cylindrical peri-implant bone region model. The average von Mises stress and displacement in the dental implant and the jaw bone decreased as the oseeointegration progressed with time for all thicknesses of the peri-implant bone region. On the other hand, the maximum absolute vertical displacement of the dental implant increased as the drilled thickness of the peri-implant bone region increased.
Wen-Ching Ko, Ellen; Alazizi, Abdelmounem Issam; Lin, Cheng-Hui
2015-05-01
Displacement of the mandibular proximal segments is inevitable in surgical correction of the asymmetric mandible. The aim of the present study was to assess the outcomes of jaw motion analysis (JMA) in relation to the changes in the mandibular proximal segments after orthognathic surgery (OGS). The present retrospective cohort study investigated the surgical changes using the cone-beam computed tomography records and the mandibular function with JMA and a temporomandibular joint (TMJ) examination. The predictor variables were the 3-dimensional (3D) changes in the proximal segments on the deviated and nondeviated sides. The outcome variables were the JMA data obtained 6 months after OGS. The Pearson correlation test was performed to assess the relationship between the surgical changes and the outcome of JMA. Twenty-one adult patients with skeletal Class III malocclusion and mandibular deviation greater than 4 mm were included in the present study. The change of the ramus axis to the coronal plane on the deviated side correlated negatively with the laterotrusive movement of the mandible toward the deviated side (r = -0.452, P < .05). The changes in the distance from the condyles to the midsagittal plane and the angulation of the ramus axis to midsagittal plane on the nondeviated side correlated negatively with the condyle range of retrusion on both sides. However, the increase in the angulation of the ramus axis to the midsagittal plane on the nondeviated side correlated positively with the angle of the horizontal condylar movement in laterotrusion on the deviated side (r = 0.458, P < .05). 3D model visualization enabled us to clearly detect the changes in the proximal segments after OGS. A relationship between the condylar range of motion and skeletal changes in the proximal segments in patients with Class III malocclusion was observed, mainly on the deviated side of the mandible. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published
Rajkiran Chitumalla
2012-01-01
Full Text Available Aims: The aim of the study was to evaluate the stress distribution patterns in teeth and supporting structures of fixed prosthesis and design modifications in a fixed prosthesis with either normal or reduced bone support of an additional abutment. Study was also undertaken to disprove Ante′s law. Materials and Methods: Main models and variations of main models (modification 1, 2, 3, 4, 5, 6, 7, 8 were subjected to 200 N at angulations of 90° and 15° on functional cusps. Results for each loading were obtained as stress distribution color images and numerical values were recorded. A three-dimensional finite element analysis study of variations of normal models was performed using two finite element softwares, namely PRO-Engineer wildfire version 1.0 manufacturer: Parametric technology corporation, Needham, MA 02494 U.S.A. Results: When periodontal compromised abutment teeth was splinted with an additional abutment an increase of stress was observed in periodontally compromised abutments so an additional abutment is not required. Eventhough the pericemental area of compromised abutments with an additional abutment (canine was more than the combined pericemental area of pontics to be replaced, stress generated was more on abutments. This disproves Ante′s law. Hence, it may be a reference, but should not be the ultimate criterion in determining the number of multiple abutments. Conclusions: When periodontal compromised abutment teeth was splinted with an additional abutment an increase of stress was observed in periodontally compromised abutments so an additional abutment is not required. Even though the pericemental area of compromised abutments with an additional abutment (canine was more than combined pericemental area of pontics to be replaced, stress generated was more on abutments. This disproves Ante′s law. Hence, it may be a reference, but should not be the ultimate criterion in determining the number of multiple abutments.
Motion Analysis of Chinese Bajiquan Based on Three-dimensional Images of Biomechanics
Ming Zi
2017-06-01
Full Text Available With the development of sports biomechanics, human motion mechanical characteristics have received more and more attention from plenty of researchers. Therefore, how to analyze the biomechanics of the living body has become the principle problem at the present stage. In this study, the three-dimensional (3D image was adopted for a sport dynamics analysis of the riding style of the Chinese Bajiquan. First of all, the change rules of the temporal characteristic parameters when the research objects in the experiment group and the control group completing the riding style action were analyzed based on the characteristics of the action; in the initial stage of the action, the movement speed was relatively slow, and with the center of gravity of the right feet moving down, stable support was formed. Secondly, parameters such as hip joint angle and knee joint angle, etc., were tested from the perspective of dynamics sensors and a rigid block model was constructed to accurately calculate the joint angle. The hip joint guaranteed the stability of center of gravity during movement; the fluctuation of the ankle joint was relatively small, while the maximum fluctuation range of the trunk angle during movement was small, which could keep the upper limbs up straight as well as reduce fluctuation, and the lowering of the center of gravity was good for the stability of the lower limbs. When the riding style action was completed, the toes of the research objects in the experiment group would buckle subconsciously to control the balance of the body. Therefore, the riding style requires the interaction among different parameters, which conforms with the characteristics of the Chinese Bajiquan.
THREE-DIMENSIONAL RADIO AND X-RAY MODELING AND DATA ANALYSIS SOFTWARE: REVEALING FLARE COMPLEXITY
Nita, Gelu M.; Fleishman, Gregory D.; Gary, Dale E. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kuznetsov, Alexey A. [Institute of Solar-Terrestrial Physics, Irkutsk 664033 (Russian Federation); Kontar, Eduard P. [School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2015-02-01
Many problems in solar physics require analysis of imaging data obtained in multiple wavelength domains with differing spatial resolution in a framework supplied by advanced three-dimensional (3D) physical models. To facilitate this goal, we have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The enhanced software architecture allows the user to (1) import photospheric magnetic field maps and perform magnetic field extrapolations to generate 3D magnetic field models; (2) investigate the magnetic topology by interactively creating field lines and associated flux tubes; (3) populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; (4) investigate the spatial and spectral properties of radio and X-ray emission calculated from the model; and (5) compare the model-derived images and spectra with observational data. The package integrates shared-object libraries containing fast gyrosynchrotron emission codes, IDL-based soft and hard X-ray codes, and potential and linear force-free field extrapolation routines. The package accepts user-defined radiation and magnetic field extrapolation plug-ins. We use this tool to analyze a relatively simple single-loop flare and use the model to constrain the magnetic 3D structure and spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic flux tubes obtained from pre-flare extrapolations, and compare them with imaging data obtained by SDO, NoRH, and RHESSI. We use this event to illustrate the tool's use for the general interpretation of solar flares to address disparate problems in solar physics.
Tyobeka, Bismark Mzubanzi
A coupled neutron transport thermal-hydraulics code system with both diffusion and transport theory capabilities is presented. At the heart of the coupled code is a powerful neutronics solver, based on a neutron transport theory approach, powered by the time-dependent extension of the well known DORT code, DORT-TD. DORT-TD uses a fully implicit time integration scheme and is coupled via a general interface to the thermal-hydraulics code THERMIX-DIREKT, an HTR-specific two dimensional core thermal-hydraulics code. Feedback is accounted for by interpolating multigroup cross sections from pre-generated libraries which are structured for user specified discrete sets of thermal-hydraulic parameters e.g. fuel and moderator temperatures. The coupled code system is applied to two HTGR designs, the PBMR 400MW and the PBMR 268MW. Steady-state and several design basis transients are modeled in an effort to discern with the adequacy of using neutron diffusion theory as against the more accurate but yet computationally expensive neutron transport theory. It turns out that there are small but significant differences in the results from using either of the two theories. It is concluded that diffusion theory can be used with a higher degree of confidence in the PBMR as long as more than two energy groups are used and that the result must be checked against lower order transport solution, especially for safety analysis purposes. The end product of this thesis is a high fidelity, state-of-the-art computer code system, with multiple capabilities to analyze all PBMR safety related transients in an accurate and efficient manner.
High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California
Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.
2011-01-01
We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.
Azad Wan Hazdy
2017-01-01
Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.
Son, Hyeonho; Choi, Honggu; Oh, Kyunghwan
2017-01-01
In this paper, a free-space light propagation analysis between 3-dimensional (3-D) volumetric spaces is proposed. In contrast to conventional scalar diffraction, the proposed theory is based on quantum mechanical scattering providing a general volumetric analysis for the free-space light propagation. Assuming a plane wave light incidence, we obtained a new analytic formula for 3-D volumetric convolution, which provided a transfer function in a closed form used for caculating the electric fields at the observation points. The proposed method was consistent with the conventional numerical methods for a 2-dimensional aperture and can be further applied to exact calculation of diffraction fields from 3-D surfaces, providing a compact reconstruction algorithm for 3-D images in a computer generated hologram.
MacAulay Calum
2008-10-01
Full Text Available Abstract Background High throughput microarray technologies have afforded the investigation of genomes, epigenomes, and transcriptomes at unprecedented resolution. However, software packages to handle, analyze, and visualize data from these multiple 'omics disciplines have not been adequately developed. Results Here, we present SIGMA2, a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. Multi-dimensional datasets can be simultaneously visualized and analyzed with respect to each dimension, allowing combinatorial integration of the different assays belonging to the different 'omics. Conclusion The identification of genes altered at multiple levels such as copy number, loss of heterozygosity (LOH, DNA methylation and the detection of consequential changes in gene expression can be concertedly performed, establishing SIGMA2 as a novel tool to facilitate the high throughput systems biology analysis of cancer.
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun
2016-10-01
A high-speed camera-based two-dimensional optical coherence vibration tomography (2DOCVT) system with a subnanometre displacement resolution was developed and employed for low-frequency vibration measurement and modal analysis. Experimental results demonstrated the ability of low-frequency absolute displacement measurement of structural line vibrations without scanning. Three-dimensional (3D) surface displacement of a vibrating structure could also be obtained using the developed 2DOCVT by scanning the structure. The scanning 2DOCVT system acted like a 3D optical coherence vibration tomography system. The developed 2DOCVT system could capture structural modal parameters without vibration excitation input information, and therefore, it is a response-only method. The 2DOCVT could be recommended in the application of low-frequency vibration measurement and modal analysis of beam and plate structures, especially when the vibration amplitude is at nanometre or micrometre scale.
Muthamizhi, Karuppannan; Kalaichelvi, Ponnusamy
2015-06-01
Versatile applications of plate heat exchangers (PHE's) in various industrial processes signify their command over other types of heat exchangers. The objective of this work was to derive Nusselt number correlations using dimensional analysis in terms of all the parameters to determine the heat transfer coefficients in a PHE for various concentrations of carboxymethyl cellulose (CMC) solution and it was also compared with the available models in literature. The heat transfer coefficient increases with increase in concentration of CMC from 0.1 to 0.6 %w/w and also increases with increase in mass flow rates of both cold and hot fluids from 0.016 to 0.099 kg/s. The Nusselt number correlation developed using dimensional analysis has predicted the Nusselt number for the given PHE with a RMS deviation of 14.61.
Ni, X.; Liu, Z.; Boltasseva, Alexandra;
2010-01-01
Fundamentals of the three-dimensional spatial harmonic analysis (SHA) approach are reviewed, and the advantages of a fast-converging formulation versus the initial SHA formulation are emphasized with examples using periodic plasmonic nanostructures. First, two independent parallel versions of bot...... to the fast parallel implementation of this approach are also revealed. The results of test simulations are validated using the data obtained from a commercial finite-element method (FEM) simulations and from the experimental characterization of fabricated samples.......Fundamentals of the three-dimensional spatial harmonic analysis (SHA) approach are reviewed, and the advantages of a fast-converging formulation versus the initial SHA formulation are emphasized with examples using periodic plasmonic nanostructures. First, two independent parallel versions of both...
Texture analysis of carotid artery atherosclerosis from three-dimensional ultrasound images.
Awad, Joseph; Krasinski, Adam; Parraga, Grace; Fenster, Aaron
2010-04-01
To quantitatively evaluate local carotid arterial statin effects in 3D US images using multiclassifier image texture analysis tools. Texture analysis tools were used to evaluate the effect of 80 mg atorvastatin administered daily to patients with carotid stenosis compared to those treated with placebo. Using three-dimensional carotid ultrasound images, 270 texture features from seven texture techniques were extracted from manually segmented carotid arteries based on the intima-media boundary [vessel wall (VW)]. Individual texture features were compared to the previously determined changes in VW volume (VWV) using the distance between classes, the Wilcoxon rank sum test, and accuracy of the classifiers. Texture features that resulted in maximal classification accuracy from each texture technique were selected using Pudil's sequential floating forward selection (SFFS) as a method of ranking each technique. Finally, SFFS-selected texture features from all texture techniques were used in combination with 24 classifier fusion techniques to improve classification accuracy. Using the measurement of change in VWV, the distance between classes (DBC), Wilcoxon rank sum (WRS) p-value, and median accuracy measures (ACC) were 0.3798, 0.076, and 54.50%, respectively. Texture features improved the detection of statin-related changes using DBC to 0.5199, using WRS to 0.002, and ACC to 63.87%, respectively. The texture techniques that most differentiated between atorvastatin and placebo classes were Fourier power spectrum and Laws texture energy measures. The average classification accuracy between atorvastatin and placebo classes was improved from 57.22 +/- 12.11% using VWV to 97.87 +/- 3.93% using specific texture features. Furthermore, the use of specific texture features resulted in the average area under the receiver-operator characteristic curve (AUC) a value of 0.9988 +/- 0.0069 compared to 0.617 +/- 0.15 using carotid VWV. Based on DBC, WRS, ACC, and AUC texture features
Tran, T.C.; Harynuk, J.; Marriott, P. [RMIT University, Melbourne (Australia). Dept. of Applied Chemistry; Logan, G.A.; Grosjean, E. [Geoscience Australia, Canberra (Australia); Ryan, D. [Charles Sturt University, Wagga Wagga (Australia). School of Science and Technology
2006-09-15
An inverted phase (polar to non-polar) column set has been compared with a non-polar to polar column set for the GC x GC separation of petroleum hydrocarbons. This column configuration is shown to provide greatly enhanced resolution for less polar compounds and makes greater use of the two dimensional separation space. It improves resolution of a greater number of components within one analysis and offers new possibilities for crude oil fingerprinting. (Author)
Methods of Numerical Analysis of One-Dimensional Two-Body Problem in Wheeler-Feynman Electrodynamics
Klimenko, S. V.; Nikitin, I. N.; Urazmetov, W. F.
Numerical methods for solutions of differential equations with deviating arguments describing one-dimensional ultra-relativistic scattering of two identical charged particles in Wheeler-Feynman electrodynamics with half-retarded/half-advanced interaction are developed. Utilization of the methods for the physical problem analysis leads to the discovery of a bifurcation of solutions and breaking of their reflectional symmetry for particles asymptotic velocity v>0.937c in their center-of-mass frame.
Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.
Extraction Analysis and Creation of Three-Dimensional Road Profiles Using Matlab OpenCRG Tool
Rakesh Hari Borse
2015-08-01
Full Text Available In vehicle systems dynamics there are wide applications of simulation of vehicles on road surfaces. These simulation applications are related to vehicle handling ride comfort and durability. For accurate prediction of results there is a need for a reliable and efficient road representations. The efficient representation of road surface profiles is to represent them in three-dimensional space. This is made possible by the CRG Curved Regular Grid approach. OpenCRG is a completely open source project including a tool suite for the creation modification and evaluation of road surfaces. Its objective is to standardized detailed road surface description and it may be used for applications like tire models vibrations or driving simulation. The Matlab tool suite of OpenCRG provides powerful modification or creation tools and allows to visualize the 3D road data representation. The current research focuses on basic concepts of OpenCRG and its Matlab environment. The extraction of longitudinal two-dimensional road profiles from three-dimensional CRG format is researched. The creation of simple virtual three-dimensional roads has been programmed. A Matlab software tool to extract create and analyze the three-dimensional road profiles is to be developed.
Marcus, David K; Barry, Tammy D
2011-05-01
An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.
Algorithms for three-dimensional chemical analysis via multi-energy synchrotron X-ray tomography
Ham, Kyungmin; Butler, Leslie G.
2007-08-01
The conversion of X-ray tomography images into three-dimensional chemical composition requires accurate mass absorption values, high-quality images, and a robust fitting algorithm. The least-squares fits of the images to a three-dimensional chemical composition can proceed with several different options such as minimal vs. over-determined and/or constrained parameters. This project has investigated the impact of XAFS features and a limited CCD dynamic range. These simulated results are compared to a recent experimental project in which synchrotron X-ray tomography was used to image a polymer blend, and from those images, calculated three-dimensional chemical composition maps of the two-component flame retardant, a brominated phthalimide dimer, Saytex ™ BT-93 and a synergist, antimony(III) oxide (Sb 2O 3).
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
Three-Dimensional Numerical Analysis of Compound Lining in Complex Underground Surge-Shaft Structure
Juntao Chen
2015-01-01
Full Text Available The mechanical behavior of lining structure of deep-embedded cylinder surge shaft with multifork tunnel is analyzed using three-dimensional nonlinear FEM. With the elastic-plastic constitutive relations of rock mass imported and the implicit bolt element and distributed concrete cracking model adopted, a computing method of complex surge shaft is presented for the simulation of underground excavations and concrete lining cracks. In order to reflect the interaction and initial gap between rock mass and concrete lining, a three-dimensional nonlinear interface element is adopted, which can take into account both the normal and tangential characteristics. By an actual engineering computation, the distortion characteristics and stress distribution rules of the dimensional multifork surge-shaft lining structure under different behavior are revealed. The results verify the rationality and feasibility of this computation model and method and provide a new idea and reference for the complex surge-shaft design and construction.
DeFroda, Steven F; Thigpen, Charles A; Kriz, Peter K
2016-01-01
Three-dimensional (3D) motion analysis is the gold standard for analyzing the biomechanics of the baseball pitching motion. Historically, 3D analysis has been available primarily to elite athletes, requiring advanced cameras, and sophisticated facilities with expensive software. The advent of newer technology, and increased affordability of video recording devices, and smartphone/tablet-based applications has led to increased access to this technology for youth/amateur athletes and sports medicine professionals. Two-dimensional (2D) video analysis is an emerging tool for the kinematic assessment and observational measurement of pitching biomechanics. It is important for providers, coaches, and players to be aware of this technology, its application in identifying causes of arm pain and preventing injury, as well as its limitations. This review provides an in-depth assessment of 2D video analysis studies for pitching, a direct comparison of 2D video versus 3D motion analysis, and a practical introduction to assessing pitching biomechanics using 2D video analysis.
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
Analysis of three-dimensional transient seepage into ditch drains from a ponded field
RATAN SARMAH; GAUTAM BARUA
2017-05-01
An analytical solution in the form of infinite series is developed for predicting time-dependent three-dimensional seepage into ditch drains from a flat, homogeneous and anisotropic ponded field of finite size,the field being assumed to be surrounded on all its vertical faces by ditch drains with unequal water level heights in them. It is also assumed that the field is being underlain by a horizontal impervious barrier at a finite distance from the surface of the soil and that all the ditches are being dug all the way up to this barrier. The solution can account for a variable ponding distribution at the surface of the field. The correctness of the proposed solution for a few simplified situations is tested by comparing predictions obtained from it with the corresponding values attained from the analytical and experimental works of others. Further, a numerical check on it is also performed using the Processing MODFLOW environment. It is noticed that considerable improvement on the uniformity of the distribution of the flow lines in a three-dimensional ponded drainage space can be achieved by suitablyaltering the ponding distribution at the surface of the soil. As the developed three-dimensional ditch drainage model is pretty general in nature and includes most of the common variables of a ditch drainage system, it is hoped that the drainage designs based on it for reclaiming salt-affected and water-logged soils would prove to be more efficient and cost-effective as compared with designs based on solutions developed by making use of more restrictive assumptions. Also, as the developed model can handle three-dimensional flow situations, it isexpected to provide reliable and realistic drainage solutions to real field situations than models being developed utilizing the two-dimensional flow assumption. This is because the existing two-dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only.