#### Sample records for dimensional analysis

1. Dimensional Analysis

Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.

2. Dimensional analysis for engineers

CERN Document Server

Simon, Volker; Gomaa, Hassan

2017-01-01

This monograph provides the fundamentals of dimensional analysis and illustrates the method by numerous examples for a wide spectrum of applications in engineering. The book covers thoroughly the fundamental definitions and the Buckingham theorem, as well as the choice of the system of basic units. The authors also include a presentation of model theory and similarity solutions. The target audience primarily comprises researchers and practitioners but the book may also be suitable as a textbook at university level.

International Nuclear Information System (INIS)

Lira, Ignacio

2013-01-01

An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)

4. Dimensional analysis in field theory

International Nuclear Information System (INIS)

Stevenson, P.M.

1981-01-01

Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms

5. Stochastic and infinite dimensional analysis

CERN Document Server

Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José

2016-01-01

This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.

6. Dimensional analysis and group theory in astrophysics

CERN Document Server

Kurth, Rudolf

2013-01-01

Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

7. Perspective of Dimensional Analysis in Medical Science

Directory of Open Access Journals (Sweden)

Kowalewski Wojciech

2017-09-01

Full Text Available This paper presents several applications of the dimensional analysis method to problems investigated in medical sciences. The method is used to analyze various complex processes without using formal laws governing the same. It is particularly suitable for a general analysis of fluid transfer (liquids and gases in the human body. This paper mainly serves as an overview of selected applications, mostly those emerging in the recent years, and includes a discussion of the mathematical fundamentals of dimensional analysis together followed by its critical analysis. Containing detailed calculations of two examples, the paper also serves as training material in the area of the computational method of the dimensional analysis algorithm.

8. Dimensional analysis, scaling and fractals

International Nuclear Information System (INIS)

Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.

2004-01-01

Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a

9. Analysis of infinite dimensional diffusions

NARCIS (Netherlands)

Maas, J.

2009-01-01

Stochastic processes in infinite dimensional state spaces provide a mathematical description of various phenomena in physics, population biology, finance, and other fields of science. Several aspects of these processes have been studied in this thesis by means of new analytic methods. Firstly,

10. A student's guide to dimensional analysis

CERN Document Server

Lemons, Don S

2017-01-01

This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals.

11. Two-dimensional signal analysis

CERN Document Server

Garello, René

2010-01-01

This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.

12. Dimensional analysis beyond the Pi theorem

CERN Document Server

Zohuri, Bahman

2017-01-01

Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...

13. LINKAGE ANALYSIS BY 2-DIMENSIONAL DNA TYPING

NARCIS (Netherlands)

MEERMAN, GJT; MULLAART, E; VANDERMEULEN, MA; DENDAAS, JHG; MOROLLI, B; UITTERLINDEN, AG; VIJG, J

1993-01-01

In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

14. Three dimensional analysis of laterally loaded piles

International Nuclear Information System (INIS)

Yilmaz, C.

1987-01-01

In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)

15. FRACTAL DIMENSIONALITY ANALYSIS OF MAMMARY GLAND THERMOGRAMS

Directory of Open Access Journals (Sweden)

Yu. E. Lyah

2016-06-01

Full Text Available Thermography may enable early detection of a cancer tumour within a mammary gland at an early, treatable stage of the illness, but thermogram analysis methods must be developed to achieve this goal. This study analyses the feasibility of applying the Hurst exponent readings algorithm for evaluation of the high dimensionality fractals to reveal any possible difference between normal thermograms (NT and malignant thermograms (MT.

16. Three-dimensional (3D) analysis of the temporomandibular joint

DEFF Research Database (Denmark)

Kitai, N.; Kreiborg, S.; Murakami, S.

Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

17. Global sensitivity analysis by polynomial dimensional decomposition

Energy Technology Data Exchange (ETDEWEB)

Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

2011-07-15

This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.

18. Three-dimensional analysis of antenna sheaths

International Nuclear Information System (INIS)

Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.

1996-01-01

The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)

19. Bifurcation analysis of a three dimensional system

Directory of Open Access Journals (Sweden)

Yongwen WANG

2018-04-01

Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

20. Discretization model for nonlinear dynamic analysis of three dimensional structures

International Nuclear Information System (INIS)

Hayashi, Y.

1982-12-01

A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

1. Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis

Science.gov (United States)

Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca

2017-11-01

Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.

2. Two-dimensional multifractal cross-correlation analysis

International Nuclear Information System (INIS)

Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

2017-01-01

Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

3. Dimensional analysis of heart rate variability in heart transplant recipients

Energy Technology Data Exchange (ETDEWEB)

Zbilut, J.P.; Mayer-Kress, G.; Geist, K.

1987-01-01

We discuss periodicities in the heart rate in normal and transplanted hearts. We then consider the possibility of dimensional analysis of these periodicities in transplanted hearts and problems associated with the record.

4. Dimensional Analysis with space discrimination applied to Fickian difussion phenomena

International Nuclear Information System (INIS)

Diaz Sanchidrian, C.; Castans, M.

1989-01-01

Dimensional Analysis with space discrimination is applied to Fickian difussion phenomena in order to transform its partial differen-tial equations into ordinary ones, and also to obtain in a dimensionl-ess fom the Ficks second law. (Author)

5. Dimensionally constrained energy confinement analysis of W7-AS data

International Nuclear Information System (INIS)

Dose, V.; Preuss, R.; Linden, W. von der

1998-01-01

A recently assembled W7-AS stellarator database has been subject to dimensionally constrained confinement analysis. The analysis employs Bayesian inference. Dimensional information is taken from the Connor-Taylor (CT) similarity transformation theory, which provides six possible physical scenarios with associated dimensional conditions. Bayesian theory allows the calculations of the probability for each model and it is found that the present W7-AS data are most probably described by the collisionless high-β case. Probabilities for all models and the associated exponents of a power law scaling function are presented. (author)

6. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

International Nuclear Information System (INIS)

Ono, Ichiro; Ohura, Takehiko; Kimura, Chu

1989-01-01

Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

7. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

Energy Technology Data Exchange (ETDEWEB)

Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)

1989-08-01

Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

8. A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers

KAUST Repository

Elkhalil, Khalil

2017-11-01

This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.

9. High-dimensional data in economics and their (robust) analysis

Czech Academy of Sciences Publication Activity Database

Kalina, Jan

2017-01-01

Roč. 12, č. 1 (2017), s. 171-183 ISSN 1452-4864 R&D Projects: GA ČR GA17-07384S Institutional support: RVO:67985556 Keywords : econometrics * high-dimensional data * dimensionality reduction * linear regression * classification analysis * robustness Subject RIV: BA - General Mathematics OBOR OECD: Business and management http://library.utia.cas.cz/separaty/2017/SI/kalina-0474076.pdf

10. High-dimensional Data in Economics and their (Robust) Analysis

Czech Academy of Sciences Publication Activity Database

Kalina, Jan

2017-01-01

Roč. 12, č. 1 (2017), s. 171-183 ISSN 1452-4864 R&D Projects: GA ČR GA17-07384S Grant - others:GA ČR(CZ) GA13-01930S Institutional support: RVO:67985807 Keywords : econometrics * high-dimensional data * dimensionality reduction * linear regression * classification analysis * robustness Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability

11. Two-dimensional gel electrophoresis analysis of different parts of ...

African Journals Online (AJOL)

Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...

12. Three-dimensional model analysis and processing

CERN Document Server

Yu, Faxin; Luo, Hao; Wang, Pinghui

2011-01-01

This book focuses on five hot research directions in 3D model analysis and processing in computer science:  compression, feature extraction, content-based retrieval, irreversible watermarking and reversible watermarking.

13. Analysis and validation of carbohydrate three-dimensional structures

International Nuclear Information System (INIS)

Lütteke, Thomas

2009-01-01

The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

14. Methodology for dimensional variation analysis of ITER integrated systems

International Nuclear Information System (INIS)

Fuentes, F. Javier; Trouvé, Vincent; Cordier, Jean-Jacques; Reich, Jens

2016-01-01

Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

15. Methodology for dimensional variation analysis of ITER integrated systems

Energy Technology Data Exchange (ETDEWEB)

Fuentes, F. Javier, E-mail: FranciscoJavier.Fuentes@iter.org [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France); Trouvé, Vincent [Assystem Engineering & Operation Services, rue J-M Jacquard CS 60117, 84120 Pertuis (France); Cordier, Jean-Jacques; Reich, Jens [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France)

2016-11-01

Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on

16. Analysis of chaos in high-dimensional wind power system.

Science.gov (United States)

Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

2018-01-01

A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

17. Regularized Discriminant Analysis: A Large Dimensional Study

KAUST Repository

Yang, Xiaoke

2018-04-28

In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).

18. Dimensional analysis examples of the use of symmetry

CERN Document Server

Hornung, Hans G

2006-01-01

Derived from a course in fluid mechanics, this text for advanced undergraduates and beginning graduate students employs symmetry arguments to demonstrate the principles of dimensional analysis. The examples provided illustrate the effectiveness of symmetry arguments in obtaining the mathematical form of the functions yielded by dimensional analysis. Students will find these methods applicable to a wide field of interests.After discussing several examples of method, the text examines pipe flow, material properties, gasdynamical examples, body in nonuniform flow, and turbulent flow. Additional t

19. Multi-Dimensional Customer Data Analysis in Online Auctions

Institute of Scientific and Technical Information of China (English)

LAO Guoling; XIONG Kuan; QIN Zheng

2007-01-01

In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction,accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example,analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.

20. Code Coupling for Multi-Dimensional Core Transient Analysis

International Nuclear Information System (INIS)

Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il

2015-01-01

After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident

1. Code Coupling for Multi-Dimensional Core Transient Analysis

Energy Technology Data Exchange (ETDEWEB)

Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

2015-05-15

After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

2. Wavelet analysis in two-dimensional tomography

Science.gov (United States)

Burkovets, Dimitry N.

2002-02-01

The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

3. Linkage analysis by two-dimensional DNA typing

NARCIS (Netherlands)

te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

1993-01-01

In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core

4. Dimensional analysis for the mechanical effects of some underground explosions

Energy Technology Data Exchange (ETDEWEB)

Delort, Francis [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

1970-05-15

The influence of the medium properties upon the effects of underground nuclear and high explosive explosions is studied by dimensional analysis methods. A comparison is made with the experimental data from the Hoggar contained nuclear shots, specially with the particle motion data and the cavity radii. Furthermore, for example, crater data from explosions in Nevada have been examined by statistical methods. (author)

5. Analysis of Two-Dimensional Electrophoresis Gel Images

DEFF Research Database (Denmark)

Pedersen, Lars

2002-01-01

This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...

6. Dimensional analysis of flame angles versus wind speed

Science.gov (United States)

Robert E. Martin; Mark A. Finney; Domingo M. Molina; David B. Sapsis; Scott L. Stephens; Joe H. Scott; David R. Weise

1991-01-01

Dimensional analysis has potential to help explain and predict physical phenomena, but has been used very little in studies of wildland fire behavior. By combining variables into dimensionless groups, the number of variables to be handled and the experiments to be run is greatly reduced. A low velocity wind tunnel was constructed, and methyl, ethyl, and isopropyl...

7. Dimensional analysis of small-scale steam explosion experiments

International Nuclear Information System (INIS)

1986-01-01

Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

8. Dimensionality analysis of multiparticle production at high energies

International Nuclear Information System (INIS)

Chilingaryan, A.A.

1989-01-01

An algorithm of analysis of multiparticle final states is offered. By the Renyi dimensionalities, which were calculated according to experimental data, though it were hadron distribution over the rapidity intervals or particle distribution in an N-dimensional momentum space, we can judge about the degree of correlation of particles, separate the momentum space projections and areas where the probability measure singularities are observed. The method is tested in a series of calculations with samples of fractal object points and with samples obtained by means of different generators of pseudo- and quasi-random numbers. 27 refs.; 11 figs

9. On two flexible methods of 2-dimensional regression analysis

Czech Academy of Sciences Publication Activity Database

Volf, Petr

2012-01-01

Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf

10. Two-dimensional analysis of motion artifacts, including flow effects

International Nuclear Information System (INIS)

Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.

1990-01-01

The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

11. Explorative data analysis of two-dimensional electrophoresis gels

DEFF Research Database (Denmark)

Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

2004-01-01

of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

12. Canonical and symplectic analysis for three dimensional gravity without dynamics

Energy Technology Data Exchange (ETDEWEB)

Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

2017-03-15

In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

13. Multi-dimensional Code Development for Safety Analysis of LMR

International Nuclear Information System (INIS)

Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

2006-08-01

A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

14. Data analysis in high-dimensional sparse spaces

DEFF Research Database (Denmark)

Clemmensen, Line Katrine Harder

classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...... are applied to classifications of fish species, ear canal impressions used in the hearing aid industry, microbiological fungi species, and various cancerous tissues and healthy tissues. In addition, novel applications of sparse regressions (also called the elastic net) to the medical, concrete, and food...

15. The stress analysis method for three-dimensional composite materials

Science.gov (United States)

Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki

1994-05-01

This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.

16. Problems associated with dimensional analysis of electroencephalogram data

Energy Technology Data Exchange (ETDEWEB)

Layne, S.; Mayer-Kress, G.; Holzfuss, J.

1985-01-01

The goal was to evaluate anesthetic depth for a series of 5 to 10 patients by dimensional analysis. It has been very difficult to obtain clean EEG records from the operating room. Noise is prominent due to electrocautery and to movement of the patient's head by operating room personnel. In addition, specialized EEG equipment must be used to reduce noise and to accommodate limited space in the room. This report discusses problems associated with dimensional analysis of the EEG. We choose one EEG record from a single patient, in order to study the method but not to draw general conclusions. For simplicity, we consider only two states: awake but quiet, and medium anesthesia. 14 refs., 8 figs., 1 tab.

17. Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence

CERN Document Server

Hutter, Kolumban

2004-01-01

The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

18. Two-dimensional analysis of trapped-ion eigenmodes

International Nuclear Information System (INIS)

Marchand, R.; Tang, W.M.; Rewoldt, G.

1979-11-01

A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta

19. Analysis of the three dimensional flow in a turbine scroll

Science.gov (United States)

1979-01-01

The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.

20. Analysis of two dimensional signals via curvelet transform

Science.gov (United States)

Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.

2007-04-01

This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

1. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

Science.gov (United States)

Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

2009-01-01

Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

2. Three-dimensional seismic analysis for spent fuel storage rack

International Nuclear Information System (INIS)

Lee, Gyu Mahn; Kim, Kang Soo; Park, Keun Bae; Park, Jong Kyun

1998-01-01

Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack (SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input. In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSY code. The 3-D model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall. This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. As a result of the adequacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input. (author)

3. Comparison of two three-dimensional cephalometric analysis computer software.

Science.gov (United States)

2014-10-01

Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

4. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

Energy Technology Data Exchange (ETDEWEB)

Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

2016-06-15

Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

5. Dimensional analysis and qualitative methods in problem solving: II

International Nuclear Information System (INIS)

Pescetti, D

2009-01-01

We show that the underlying mathematical structure of dimensional analysis (DA), in the qualitative methods in problem-solving context, is the algebra of the affine spaces. In particular, we show that the qualitative problem-solving procedure based on the parallel decomposition of a problem into simple special cases yields the new original mathematical concepts of special points and special representations of affine spaces. A qualitative problem-solving algorithm piloted by the mathematics of DA is illustrated by a set of examples.

6. Tag gas burnup based on three-dimensional FTR analysis

International Nuclear Information System (INIS)

Kidman, R.B.

1976-01-01

Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

7. Three dimensional finite element linear analysis of reinforced concrete structures

International Nuclear Information System (INIS)

Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

1979-01-01

A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

8. Addressing Curse of Dimensionality in Sensitivity Analysis: How Can We Handle High-Dimensional Problems?

Science.gov (United States)

Safaei, S.; Haghnegahdar, A.; Razavi, S.

2016-12-01

Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.

9. Two-dimensional disruption thermal analysis code DREAM

International Nuclear Information System (INIS)

Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

1988-08-01

When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

10. Dimensionality of the UWES-17: An item response modelling analysis

Directory of Open Access Journals (Sweden)

Deon P. de Bruin

2013-10-01

Research purpose: The main focus of this study was to use the Rasch model to provide insight into the dimensionality of the UWES-17, and to assess whether work engagement should be interpreted as one single overall score, three separate scores, or a combination. Motivation for the study: It is unclear whether a summative score is more representative of work engagement or whether scores are more meaningful when interpreted for each dimension separately. Previous work relied on confirmatory factor analysis; the potential of item response models has not been tapped. Research design: A quantitative cross-sectional survey design approach was used. Participants, 2429 employees of a South African Information and Communication Technology (ICT company, completed the UWES-17. Main findings: Findings indicate that work engagement should be treated as a unidimensional construct: individual scores should be interpreted in a summative manner, giving a single global score. Practical/managerial implications: Users of the UWES-17 may interpret a single, summative score for work engagement. Findings of this study should also contribute towards standardising UWES-17 scores, allowing meaningful comparisons to be made. Contribution/value-add: The findings will benefit researchers, organisational consultants and managers. Clarity on dimensionality and interpretation of work engagement will assist researchers in future studies. Managers and consultants will be able to make better-informed decisions when using work engagement data.

11. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

Science.gov (United States)

Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

2016-04-15

Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

12. Stability analysis of lower dimensional gravastars in noncommutative geometry

Energy Technology Data Exchange (ETDEWEB)

Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

2016-11-15

The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)

13. CFD three dimensional wake analysis in complex terrain

Science.gov (United States)

Castellani, F.; Astolfi, D.; Terzi, L.

2017-11-01

Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

14. PWR core safety analysis with 3-dimensional methods

International Nuclear Information System (INIS)

Gensler, A.; Kühnel, K.; Kuch, S.

2015-01-01

Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

15. Two-dimensional DFA scaling analysis applied to encrypted images

Science.gov (United States)

Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

2015-01-01

The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.

16. Three-dimensional calculation analysis of ICRF heating in LHD

International Nuclear Information System (INIS)

Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi

2004-01-01

Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)

17. High-dimensional cluster analysis with the Masked EM Algorithm

Science.gov (United States)

Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.

2014-01-01

Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694

18. [Dimensional analysis of the concept of biosafety due to bioterrorism].

Science.gov (United States)

Bernard, Laurence; Shaha, Maya

2014-03-01

In recent years with the strengthening of the discourse surrounding the biological risk of bioterrorist nature, the concept of biosafety emerged gradually. A dimensional analysis was used to contextualize the concept. Initially, biosafety was essentially a technical term related to the risks of contamination in laboratories or food industry and then be used to protect biodiversity against the spread of genetically modified organisms (GMOs) into the environment. Now, it is increasingly used in reference to the prevention and infections control, even though its use remains marginal. However, biosecurity may be defined as the security of life and therefore affect the safety devices participating in the government of bodies and power over life. A more critical approach including social and political dimensions within a Foucauldian perspective is needed to expand the scope of the biosecurity concept up to biological hazards constructs.

19. Drifting plasmons in open two-dimensional channels: modal analysis

International Nuclear Information System (INIS)

Sydoruk, O

2013-01-01

Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)

20. Multifractal analysis of three-dimensional histogram from color images

International Nuclear Information System (INIS)

Chauveau, Julien; Rousseau, David; Richard, Paul; Chapeau-Blondeau, Francois

2010-01-01

Natural images, especially color or multicomponent images, are complex information-carrying signals. To contribute to the characterization of this complexity, we investigate the possibility of multiscale organization in the colorimetric structure of natural images. This is realized by means of a multifractal analysis applied to the three-dimensional histogram from natural color images. The observed behaviors are confronted to those of reference models with known multifractal properties. We use for this purpose synthetic random images with trivial monofractal behavior, and multidimensional multiplicative cascades known for their actual multifractal behavior. The behaviors observed on natural images exhibit similarities with those of the multifractal multiplicative cascades and display the signature of elaborate multiscale organizations stemming from the histograms of natural color images. This type of characterization of colorimetric properties can be helpful to various tasks of digital image processing, as for instance modeling, classification, indexing.

1. Three dimensional analysis of cosmic ray intensity variation

International Nuclear Information System (INIS)

Yasue, Shin-ichi; Mori, Satoru; Nagashima, Kazuo.

1974-01-01

Three dimensional analysis of cosmic ray anisotropy and its time variation was performed. This paper describes the analysis of the Forbush decrease in Jan. 1968 to investigate by comparing the direction of the magnetic field in interplanetary space and the direction of the reference axis for cosmic ray anisotropy. New anisotropy becomes dominant at the time of Forbush decrease because the anisotropy of cosmic ray in calm state is wiped out. Such anisotropy produces intensity variation in neutron monitors on the ground. The characteristic parameters of three dimensional anisotropy can be determined from theoretical value and observed intensity. Analyzed data were taken for 6 days from Jan. 25 to Jan. 30, 1968, at Deep River. The decrease of intensity at Deep River was seen for several hours from 11 o'clock (UT), Jan. 26, just before The Forbush decrease. This may be due to the loss cone. The Forbush decrease began at 19 o'clock, Jan. 26, and the main phase continued to 5 o'clock in the next morning. The spectrum of variation was Psup(-0.5). The time variations of the magnetic field in interplanetary space and the reference axis of cosmic ray anisotropy are shown for 15 hours. The average directions of both are almost in coincidence. The spatial distribution of cosmic ray near the earth may be expressed by the superposition of axial symmetrical distribution along a reference axis and its push-out to the direction of 12 o'clock. It is considered that the direction of magnetic force line and the velocity of solar wind correspond to the direction of the reference axis and the magnitude of anisotropy in the direction of 12 o'clock, respectively. (Kato, T.)

2. Two- and three-dimensional CT analysis of ankle fractures

International Nuclear Information System (INIS)

Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

1988-01-01

CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

3. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

Science.gov (United States)

Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

2015-11-01

Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

4. Multi dimensional analysis of Design Basis Events using MARS-LMR

International Nuclear Information System (INIS)

Woo, Seung Min; Chang, Soon Heung

2012-01-01

Highlights: ► The one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions. ► The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. ► The difference of the sodium flow pattern due to structure effect in the hot pool and mass flow rates in the core lead the different sodium temperature and temperature history under transient condition. - Abstract: KALIMER-600 (Korea Advanced Liquid Metal Reactor), which is a pool type SFR (Sodium-cooled Fast Reactor), was developed by KAERI (Korea Atomic Energy Research Institute). DBE (Design Basis Events) for KALIMER-600 has been analyzed in the one dimension. In this study, the one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions, such as UIS (Upper Internal Structure), IHX (Intermediate Heat eXchanger), DHX (Decay Heat eXchanger), and pump. The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. First, the results in normal operation condition show the good agreement between the one and multi-dimensional analysis. However, according to the sodium temperatures of the core inlet, outlet, the fuel central line, cladding and PDRC (Passive Decay heat Removal Circuit), the temperatures of the one dimensional analysis are generally higher than the multi-dimensional analysis in conditions except the normal operation state, and the PDRC operation time in the one dimensional analysis is generally longer than

5. Multivariate statistical analysis a high-dimensional approach

CERN Document Server

Serdobolskii, V

2000-01-01

In the last few decades the accumulation of large amounts of in­ formation in numerous applications. has stimtllated an increased in­ terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de­ ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat­ ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari­ ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen­ ...

6. Hospital nurse administrators in Japan: a feminist dimensional analysis.

Science.gov (United States)

Brandi, C L; Naito, A

2006-03-01

7. Appropriateness of one-dimensional calculations for repository analysis

International Nuclear Information System (INIS)

Eaton, R.R.

1994-01-01

This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed

8. Analysis of competitive equilibrium in an infinite dimensional ...

African Journals Online (AJOL)

This paper considered the cost of allocated goods and attaining maximal utility with such price in the finite dimensional commodity space and observed that there exist an equilibrium price. It goes further to establish that in an infinite dimensional commodity space with subsets as consumption and production set there exist a ...

9. 3-dimensional analysis of FELIX brick with hole

International Nuclear Information System (INIS)

Lee, Taek-Kyung; Lee, Soo-Young; Ra, Jung-Woong

1987-01-01

Electromagnetic induction on FELIX brick with a hole has been analyzed with 3-Dimensional EDDYNET computer code. Incorporating loop currents on hexahedral meshes, the 3-Dimensional EDDYNET program solves eddy current problems by a network approach, and provides good accuracy even for coarse meshes. (author)

10. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

International Nuclear Information System (INIS)

Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

1983-01-01

A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

11. Dimensional analysis, similarity, analogy, and the simulation theory

International Nuclear Information System (INIS)

Davis, A.A.

1978-01-01

Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theory which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others

12. Semi-automated analysis of three-dimensional track images

International Nuclear Information System (INIS)

Meesen, G.; Poffijn, A.

2001-01-01

In the past, three-dimensional (3-d) track images in solid state detectors were difficult to obtain. With the introduction of the confocal scanning laser microscope it is now possible to record 3-d track images in a non-destructive way. These 3-d track images can latter be used to measure typical track parameters. Preparing the detectors and recording the 3-d images however is only the first step. The second step in this process is enhancing the image quality by means of deconvolution techniques to obtain the maximum possible resolution. The third step is extracting the typical track parameters. This can be done on-screen by an experienced operator. For large sets of data however, this manual technique is not desirable. This paper will present some techniques to analyse 3-d track data in an automated way by means of image analysis routines. Advanced thresholding techniques guarantee stable results in different recording situations. By using pre-knowledge about the track shape, reliable object identification is obtained. In case of ambiguity, manual intervention is possible

13. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

Science.gov (United States)

Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

2012-01-01

A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

14. Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets

International Nuclear Information System (INIS)

Embrechts, M.J.

1982-02-01

A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium

15. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

DEFF Research Database (Denmark)

Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

2014-01-01

We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

16. Dimensionality of the UWES-17: An item response modelling analysis

OpenAIRE

Deon P. de Bruin; Carin Hill; Carolina M. Henn; Klaus-Peter Muller

2013-01-01

Orientation: Questionnaires, particularly the Utrecht Work Engagement Scale (UWES-17), are an almost standard method by which to measure work engagement. Conflicting evidence regarding the dimensionality of the UWES-17 has led to confusion regarding the interpretation of scores. Research purpose: The main focus of this study was to use the Rasch model to provide insight into the dimensionality of the UWES-17, and to assess whether work engagement should be interpreted as one single overall...

17. Comparison of two three-dimensional cephalometric analysis computer software

OpenAIRE

2014-01-01

Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

18. A dimensional analysis of patient-centered care.

Science.gov (United States)

Hobbs, Jennifer Lynn

2009-01-01

Patient-centered care (PCC) is a poorly conceptualized phenomenon and can indicate anything from soothing room design, emotional support of patients, customization of meals, to support of patient decision making. This inconsistency across the clinical and research literature makes the application of PCC difficult. The objective of this study was to identify dimensions of PCC as found in the literature. A dimensional analysis of PCC was conducted from 69 clinical and research articles published from 2000 to 2006. Coding of the literature for the perspective, context, conditions, process, and consequences of PCC was completed. These codes were used to determine literature selected for inclusion, organize article content, and frame the delineation of PCC. Alleviating vulnerabilities, consisting of both compromised physiological states and threats to individual identity, was constant throughout the literature. Therapeutic engagement was the process sustaining the patient during an illness episode that necessitated service use and involved allocating time, carrying out information practices, knowing the patient, and developing a relationship. This process occurs during nurse-patient interaction, sustained during successive interactions, and reinforced by the information practices of a particular setting. The interaction between nurse and patient is central to the effective study and application of PCC. Appropriate use of PCC can improve study outcomes and measurements by clarifying the variables involved, and PCC holds great promise to frame patient outcome and satisfaction research by analyzing how and with what effect nurses alleviate patient vulnerability. Moreover, consideration of information practices as a critical supporting structure of nurse-patient interaction can be explored.

19. Three-dimensional segmented poincare plot analysis - A new approach of cardiovascular and cardiorespiratory regulation analysis.

Science.gov (United States)

Fischer, Claudia; Voss, Andreas

2014-01-01

Hypertensive pregnancy disorders affect 6 to 8 percent of all pregnancies which can cause severe complications for the mother and the fetus. The aim of this study was to develop a new method suitable for a three dimensional coupling analysis. Therefore, the three-dimensional segmented Poincaré plot analysis (SPPA3) is introduced that represents the Poincare analysis based on a cubic box model representation. The box representing the three dimensional phase space is (based on the SPPA method) subdivided into 12×12×12 equal cubelets according to the predefined range of signals and all single probabilities of occurring points in a specific cubelet related to the total number of points are calculated. From 10 healthy non-pregnant women, 66 healthy pregnant women and 56 hypertensive pregnant women suffering from chronic hypertension, gestational hypertension and preeclampsia, 30 minutes of beat-to-beat intervals (BBI), noninvasive blood pressure and respiration (RESP) were continuously recorded and analyzed. Couplings between the different signals were analyzed. The ability of SPPA3 for a screening could be confirmed by multivariate discriminant analysis differentiating between all pregnant woman and preeclampsia (index BBI3_SBP9_RESP6/ BBI8_SBP11_RESP4 leads to an area under the ROC curve of AUC=91.2%). In conclusion, SPPA3 could be a useful method for enhanced risk stratification in pregnant women.

20. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running.

Science.gov (United States)

Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

2017-07-01

In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Descriptive laboratory study. In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in

1. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool.

Science.gov (United States)

Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi

2015-11-01

Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.

2. Numerical experiment on different validation cases of water coolant flow in supercritical pressure test sections assisted by discriminated dimensional analysis part I: the dimensional analysis

International Nuclear Information System (INIS)

Kiss, A.; Aszodi, A.

2011-01-01

As recent studies prove in contrast to 'classical' dimensional analysis, whose application is widely described in heat transfer textbooks despite its poor results, the less well known and used discriminated dimensional analysis approach can provide a deeper insight into the physical problems involved and much better results in all cases where it is applied. As a first step of this ongoing research discriminated dimensional analysis has been performed on supercritical pressure water pipe flow heated through the pipe solid wall to identify the independent dimensionless groups (which play an independent role in the above mentioned thermal hydraulic phenomena) in order to serve a theoretical base to comparison between well known supercritical pressure water pipe heat transfer experiments and results of their validated CFD simulations. (author)

3. Analysis of three-dimensional transient seepage into ditch drains ...

Ratan Sarmah

waterlogged soils in many regions of the world, including. India [2, 6–9]—to name a ... predicting two-dimensional seepage into a network of ...... when d1 ¼ 0, the lower limits of integration of the integral ...... and agricultural development. Irrig.

4. Three-dimensional analysis of mandibular growth and tooth eruption

DEFF Research Database (Denmark)

Krarup, S.; Darvann, Tron Andre; Larsen, Per

2005-01-01

Normal and abnormal jaw growth and tooth eruption are topics of great importance for several dental and medical disciplines. Thus far, clinical studies on these topics have used two-dimensional (2D) radiographic techniques. The purpose of the present study was to analyse normal mandibular growth...

5. Statistical mechanical analysis of (1 + ∞) dimensional disordered systems

International Nuclear Information System (INIS)

Skantzos, Nikolaos Stavrou

2001-01-01

Valuable insight into the theory of disordered systems and spin-glasses has been offered by two classes of exactly solvable models: one-dimensional models and mean-field (infinite-range) ones, which, each carry their own specific techniques and restrictions. Both classes of models are now considered as 'exactly solvable' in the sense that in the thermodynamic limit the partition sum can been carried out analytically and the average over the disorder can be performed using methods which are well understood. In this thesis I study equilibrium properties of spin systems with a combination of one-dimensional short- and infinite-range interactions. I find that such systems, under either synchronous or asynchronous spin dynamics, and even in the absence of disorder, lead to phase diagrams with first-order transitions and regions with a multiple number of locally stable states. I then proceed to the study of recurrent neural network models with (1+∞)-dimensional interactions, and find that the competing short- and long-range forces lead to highly complex phase diagrams and that unlike infinite-range (Hopfield-type) models these phase diagrams depend crucially on the number of patterns stored, even away from saturation. To solve the statics of such models for the case of synchronous dynamics I first make a detour to solve the synchronous counterpart of the one-dimensional random-field Ising model, where I prove rigorously that the physics of the two random-field models (synchronous vs. sequential) becomes asymptotically the same, leading to an extensive ground state entropy and an infinite hierarchy of discontinuous transitions close to zero temperature. Finally, I propose and solve the statics of a spin model for the prediction of secondary structure in random hetero-polymers (which are considered as the natural first step to the study of real proteins). The model lies in the class of (1+∞)-dimensional disordered systems as a consequence of having steric- and hydrogen

6. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

Directory of Open Access Journals (Sweden)

Young S. Shin

1998-01-01

Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

7. The analysis of one-dimensional reactor kinetics benchmark computations

International Nuclear Information System (INIS)

Sidell, J.

1975-11-01

During March 1973 the European American Committee on Reactor Physics proposed a series of simple one-dimensional reactor kinetics problems, with the intention of comparing the relative efficiencies of the numerical methods employed in various codes, which are currently in use in many national laboratories. This report reviews the contributions submitted to this benchmark exercise and attempts to assess the relative merits and drawbacks of the various theoretical and computer methods. (author)

8. Costochondral ossification pattern. Analysis by 3-dimensional CT image

International Nuclear Information System (INIS)

Ma, Hailong; Nakatani, Kimiko

2005-01-01

We reviewed about an ossification pattern of costal cartilage with using three dimensional images made from computed tomography. We analyzed ossification of 16 costal cartilages in each case. We classified ossification pattern into eight groups by its configuration in one hundred cases. The sexual specificity of ossification pattern was revealed, and we can determinate sex in 82%. It was also revealed that ossification grows with increasing age. Finally, the knowledge of costochondral ossification pattern must help in case of reading chest radiographs. (author)

9. Design of Dimensional Model for Clinical Data Storage and Analysis

Directory of Open Access Journals (Sweden)

Dipankar SENGUPTA

2013-06-01

Full Text Available Current research in the field of Life and Medical Sciences is generating chunk of data on daily basis. It has thus become a necessity to find solutions for efficient storage of this data, trying to correlate and extract knowledge from it. Clinical data generated in Hospitals, Clinics & Diagnostics centers is falling under a similar paradigm. Patient’s records in various hospitals are increasing at an exponential rate, thus adding to the problem of data management and storage. Major problem being faced corresponding to storage, is the varied dimensionality of the data, ranging from images to numerical form. Therefore there is a need for development of efficient data model which can handle this multi-dimensionality data issue and store the data with historical aspect.For the stated problem lying in façade of clinical informatics we propose a clinical dimensional model design which can be used for development of a clinical data mart. The model has been designed keeping in consideration temporal storage of patient's data with respect to all possible clinical parameters which can include both textual and image based data. Availability of said data for each patient can be then used for application of data mining techniques for finding the correlation of all the parameters at the level of individual and population.

10. Dimensional analysis, falling bodies, and the fine art of not solving differential equations

Science.gov (United States)

Bohren, Craig F.

2004-04-01

Dimensional analysis is a simple, physically transparent and intuitive method for obtaining approximate solutions to physics problems, especially in mechanics. It may-indeed sometimes should-precede or even supplant mathematical analysis. And yet dimensional analysis usually is given short shrift in physics textbooks, presented mostly as a diagnostic tool for finding errors in solutions rather than in finding solutions in the first place. Dimensional analysis is especially well suited to estimating the magnitude of errors associated with the inevitable simplifying assumptions in physics problems. For example, dimensional arguments quickly yield estimates for the errors in the simple expression 2h/g for the descent time of a body dropped from a height h on a spherical, rotating planet with an atmosphere as a consequence of ignoring the variation of the acceleration due to gravity g with height, rotation, relativity, and atmospheric drag.

11. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

Energy Technology Data Exchange (ETDEWEB)

Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

2006-07-01

The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

12. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

International Nuclear Information System (INIS)

Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

2006-01-01

The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

13. Analysis of the OPERA-15 two-dimensional voiding experiment using the SAS4A code

International Nuclear Information System (INIS)

Briggs, L.L.

1984-01-01

Overall, SAS4A appears to do a good job for simulating the OPERA-15 experiment. For most of the experiment parameters, the code calculations compare quite well with the experimental data. The lack of a multi-dimensional voiding model has the effect of extending the flow coastdown time until voiding starts; otherwise, the code simulates the accident progression satisfactorily. These results indicate a need for further work in this area in the form of a tandem analysis by a two-dimensional flow code and a one-dimensional version of that code to confirm the observations derived from the SAS4A analysis

14. Dimensional analysis and self-similarity methods for engineers and scientists

CERN Document Server

Zohuri, Bahman

2015-01-01

This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book's coverage of  dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book's theoretical explanations and step-by-step mathematical solutions to practical impleme

15. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

Science.gov (United States)

Liang, Fayun; Chen, Haibing; Huang, Maosong

2017-07-01

To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

16. Field analysis of two-dimensional focusing grating

OpenAIRE

Borsboom, P.P.; Frankena, H.J.

1995-01-01

The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

17. Human muscle proteins: analysis by two-dimensional electrophoresis

Energy Technology Data Exchange (ETDEWEB)

Giometti, C.S.; Danon, M.J.; Anderson, N.G.

1983-09-01

Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

18. Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations

Science.gov (United States)

2015-08-01

which is found to be fairly constant for each impact velocity V0. A plot of P versus V0 at fixed values of h gives an overall estimate of vP/vV0, which...55,58]. An overall strat- egy can be written as ballistic performance ðP=L0Þ 4 1 dimensional parameters ðL ;E Þ 4 2 material properties ðG=E; t=rÞ 4 3...Cronin D, Worswick M, Pageau G, Beth A. Influence of material properties on the ballistic performance of ceramics for personal body armour . Shock

19. Three-dimensional analysis of free-electron laser performance using brightness scaled variables

Directory of Open Access Journals (Sweden)

M. Gullans

2008-06-01

Full Text Available A three-dimensional analysis of radiation generation in a free-electron laser (FEL is performed in the small signal regime. The analysis includes beam conditioning, harmonic generation, flat beams, and a new scaling of the FEL equations using the six-dimensional beam brightness. The six-dimensional beam brightness is an invariant under Liouvillian flow; therefore, any nondissipative manipulation of the phase space, performed, for example, in order to optimize FEL performance, must conserve this brightness. This scaling is more natural than the commonly used scaling with the one-dimensional growth rate. The brightness-scaled equations allow for the succinct characterization of the optimal FEL performance under various additional constraints. The analysis allows for the simple evaluation of gain enhancement schemes based on beam phase space manipulations such as emittance exchange and conditioning. An example comparing the gain in the first and third harmonics of round or flat and conditioned or unconditioned beams is presented.

20. Low dimensional equivalence of core neutronics model and its application to transient analysis

International Nuclear Information System (INIS)

Song Hongbing; Zhao Fuyu

2015-01-01

Three-dimensional coupled neutronics thermal-hydraulics reactor analysis is time consuming and occupies huge memory. A one-dimensional model is preferable than the three one in nuclear system analysis, control system design and load following. In this paper, a corewide three dimensional to one dimensional equivalent method has been developed. On the basis of this method 1D axial few groups constants were obtained. The equivalent cross sections were calculated by general spatial homogenization while the transverse buckling was computed through an equivalence based on the 3D flux conservation. Three steady test cases were performed on one dimensional finite difference code ODTAC and the results were compared with TRIVAC-5. The comparison shows that the one dimensional axial power distribution computed by ODTAC correlates well with the three dimensional results calculated by TRIVAC-5. In this study, DRAGON-4 was used to generate the few-group constants of fuel assemblies and the reflector few-group parameters were calculated by WIMS-D4. These collapsed few-group constants were tabulated in a database sorted in ascending order of fuel temperature, coolant temperature and concentration of boric acid. Trilinear interpolation was adopted in cross sections feedback during the transient analysis. In this paper, G1 rod drop accident (RDA) and G1 rod ejection accident (REA) were performed on ODTAC and the computation results were consistent of the physical rules. (author)

1. Three-dimensional analysis of nonlinear plasma oscillation

International Nuclear Information System (INIS)

Miano, G.

1990-01-01

In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

2. Three dimensional non-linear cracking analysis of prestressed concrete containment vessel

International Nuclear Information System (INIS)

Al-Obaid, Y.F.

2001-01-01

The paper gives full development of three-dimensional cracking matrices. These matrices are simulated in three-dimensional non-linear finite element analysis adopted for concrete containment vessels. The analysis includes a combination of conventional steel, the steel line r and prestressing tendons and the anisotropic stress-relations for concrete and concrete aggregate interlocking. The analysis is then extended and is linked to cracking analysis within the global finite element program OBAID. The analytical results compare well with those available from a model test. (author)

3. Two dimensional neutral transport analysis in tokamak plasma

International Nuclear Information System (INIS)

Shimizu, Katsuhiro; Azumi, Masafumi

1987-02-01

Neutral particle influences the particle and energy balance, and play an important role on sputtering impurity and the charge exchange loss of neutral beam injection. In order to study neutral particle behaviour including the effects of asymmetric source and divertor configuration, the two dimensional neutral transport code has been developed using the Monte-Carlo techniques. This code includes the calculation of the H α radiation intensity based on the collisional-radiation model. The particle confinement time of the joule heated plasma in JT-60 tokamak is evaluated by comparing the calculated H α radiation intensity with the experimental data. The effect of the equilibrium on the neutral density profile in high-β plasma is also investigated. (author)

4. Brain lesion analysis using three-dimensional SPECT imaging

International Nuclear Information System (INIS)

Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao

1995-01-01

A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

5. 1-Dimensional Analysis of Ultrasound at Closed Interface of Solid

International Nuclear Information System (INIS)

Yamawaki, H

2014-01-01

As a first step to investigate mechanism of nonlinear ultrasonic generation at closed cracks, computer simulation for ultrasonic propagation in 1 -dimensional solid including closed interface was examined using Improved-FDM. Fundamental calculation model which described interaction between open / closure motion of the interface and ultrasonic stress was developed. In the model, compression stress is distributed over the entire solid, as motive force for closure of the interface. The interface is exhibited by the small region, and its open / closure are determined using calculated strain of the region. As a result, motion of the interface causing generation of saw-tooth like displacement waveform was observed. Amplitude modulation of displacement waveform was also observed, and it indicated possibility that small fluctuation of open / closure timing caused the modulation of the amplitude

6. Raman scattering in air: four-dimensional analysis

International Nuclear Information System (INIS)

Lin, Y.; Kessler, T.J.; Lawrence, G.N.

1994-01-01

Inertial confinement fusion requires propagation of high-intensity, pulse-shaped IR and UV laser beams through long air paths. Such beams are subject to energy losses and decreased beam quality as a result by stimulated rotational Raman scattering (SRRS). In this paper we describe how quantum fluctuations, stimulated Raman amplification, diffraction propagation, and optical aberrations interact during the propagation of short, high-power laser pulses using a four-dimensional (4-D) model of the optical beams and the medium. The 4-D model has been incorporated into a general optical-propagation computer program that allows the entire optical system to be modeled and that is implemented on high-end personal computers, workstations, and supercomputers. The numerical model is used to illustrate important phenomena in the evolution of the optical beams. In addition, the OMEGA Upgrade laser system is used as a design case to illustrate the various considerations for inertial confinement fusion laser design

7. CANDU safety analysis system establishment; development of trip coverage and multi-dimensional hydrogen analysis methodology

Energy Technology Data Exchange (ETDEWEB)

Choi, Jong Ho; Ohn, M. Y.; Cho, C. H. [KOPEC, Taejon (Korea)

2002-03-01

The trip coverage analysis model requires the geometry network for primary and secondary circuit as well as the plant control system to simulate all the possible plant operating conditions throughout the plant life. The model was validated for the power maneuvering and the Wolsong 4 commissioning test. The trip coverage map was produced for the large break loss of coolant accident and the complete loss of class IV power event. The reliable multi-dimensional hydrogen analysis requires the high capability for thermal hydraulic modelling. To acquire such a basic capability and verify the applicability of GOTHIC code, the assessment of heat transfer model, hydrogen mixing and combustion model was performed. Also, the assessment methodology for flame acceleration and deflagration-to-detonation transition is established. 22 refs., 120 figs., 31 tabs. (Author)

8. A Recurrent Probabilistic Neural Network with Dimensionality Reduction Based on Time-series Discriminant Component Analysis.

Science.gov (United States)

Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio

2015-12-01

This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.

9. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

International Nuclear Information System (INIS)

Downar, T.J.

1987-01-01

A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

10. Infinite Dimensional Stochastic Analysis : in Honor of Hui-Hsiung Kuo

CERN Document Server

Sundar, Pushpa

2008-01-01

This volume contains current work at the frontiers of research in infinite dimensional stochastic analysis. It presents a carefully chosen collection of articles by experts to highlight the latest developments in white noise theory, infinite dimensional transforms, quantum probability, stochastic partial differential equations, and applications to mathematical finance. Included in this volume are expository papers which will help increase communication between researchers working in these areas. The tools and techniques presented here will be of great value to research mathematicians, graduate

11. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

NARCIS (Netherlands)

Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

12. A three-dimensional analysis of the sigmoid notch

Directory of Open Access Journals (Sweden)

Evan D. Collins

2011-12-01

13. Analysis of secondary coxarthrosis by three dimensional computed tomography

Energy Technology Data Exchange (ETDEWEB)

Hemmi, Osamu [Keio Univ., Tokyo (Japan). School of Medicine

1997-11-01

The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan`s distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)

14. Analysis of secondary coxarthrosis by three dimensional computed tomography

International Nuclear Information System (INIS)

Hemmi, Osamu

1997-01-01

The majority of coxarthrosis in Japan is due to congenital dislocation of the hip and acetabular dysplasia. Until now coxarthrosis has been chiefly analyzed on the basis of anterior-posterior radiographs. By using three-dimensional (3D) CT, it was possible to analyze the morphological features of secondary coxarthrosis more accurately, and by using new computer graphics software, it was possible to display the contact area in the hip joint and observe changes associated with progression of the stages of the disease. There were 34 subjects (68 joints), and all of who were women. The CT data were read into a work station, and 3D reconstruction was achieved with hip surgery simulation software (SurgiPlan). Pelvic inclination, acetabular anteversion, seven parameters indicating the investment of the femoral head and two indicating the position of the hip joint in the pelvis were measured. The results showed that secondary coxarthrosis is characterized not only by lateral malposition of the hip joint according to the pelvic coordinates, but by anterior malposition as well. Many other measurements provided 3D information on the acetabular dysplasia. Many of them were correlated with the CE angle on plain radiographs. Furthermore, a strong correlation was not found between anterior and posterior acetabular coverage of the femoral head. In addition, SurgiPlan's distance mapping function enabled 3D observation of the pattern of progression of arthrosis based on the pattern of progression of joint space narrowing. (author)

15. Analysis of Human Fibroadenomas Using Three-Dimensional Impedance Maps

Science.gov (United States)

Dapore, Alexander J.; King, Michael R.; Harter, Josephine; Sarwate, Sandhya; Oelze, Michael L.; Zagzebski, James A.; Do, Minh N.; Hall, Timothy J.

2012-01-01

Three-dimensional impedance maps (3DZMs) are virtual volumes of acoustic impedance values constructed from histology to represent tissue microstructure acoustically. From the 3DZM, the ultrasonic backscattered power spectrum can be predicted and model based scatterer properties, such as effective scatterer diameter (ESD), can be estimated. Additionally, the 3DZM can be exploited to visualize and identify possible scattering sites, which may aid in the development of more effective scattering models to better represent the ultrasonic interaction with underlying tissue microstructure. In this study, 3DZMs were created from a set of human fibroadenoma samples. ESD estimates were made assuming a fluid-filled sphere form factor model from 3DZMs of volume 300 × 300 × 300 µm. For a collection of 33 independent human fibroadenoma tissue samples, the ESD was estimated to be 111 ± 40.7 µm. The 3DZMs were then investigated visually to identify possible scattering sources which conformed to the estimated model scatterer dimensions. This estimation technique allowed a better understanding of the spatial distribution and variability of the estimates throughout the volume. PMID:21278015

16. A scaling analysis of electronic localization in two-dimensional random media

International Nuclear Information System (INIS)

Ye Zhen

2003-01-01

By an improved scaling analysis, we suggest that there may appear two possibilities concerning the electronic localization in two-dimensional random media. The first is that all electronic states are localized in two dimensions, as conjectured previously. The second possibility is that electronic behaviors in two- and three-dimensional random systems are similar, in agreement with a recent calculation based on a direct calculation of the conductance with the use of the Kubo formula. In this case, non-localized states are possible in two dimensions, and have some peculiar properties. A few predictions are proposed. Moreover, the present analysis accommodates results from the previous scaling analysis

17. Performance prediction of centrifugal compressor impellers using quasi-three-dimensional analysis

International Nuclear Information System (INIS)

Ahn, S. J.; Kim, K. Y.; Oh, H. W.

2001-01-01

This-paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant

18. Extended forward sensitivity analysis of one-dimensional isothermal flow

International Nuclear Information System (INIS)

Johnson, M.; Zhao, H.

2013-01-01

Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)

19. Pixel-based analysis of comprehensive two-dimensional gas chromatograms (color plots) of petroleum

DEFF Research Database (Denmark)

Furbo, Søren; Hansen, Asger B.; Skov, Thomas

2014-01-01

We demonstrate how to process comprehensive two-dimensional gas chromatograms (GC × GC chromatograms) to remove nonsample information (artifacts), including background and retention time shifts. We also demonstrate how this, combined with further reduction of the influence of irrelevant informati......, allows for data analysis without integration or peak deconvolution (pixelbased analysis)....

20. Impact response analysis of cask for spent fuel by dimensional analysis and mode superposition method

International Nuclear Information System (INIS)

Kim, Y. J.; Kim, W. T.; Lee, Y. S.

2006-01-01

1. Two-dimensional χ2 analysis in kaon interferometry

International Nuclear Information System (INIS)

1997-01-01

This work presents preliminary results obtained from the χ 2 analysis performed on the E 859 Joint Work data. The work objective is to quantify the resolution power of the kaon two-dimension interferometry

2. Three-dimensional free vibration analysis of thick laminated circular ...

African Journals Online (AJOL)

Dr Oke

1 ,2 Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal-462003, INDIA ... In this communication, a numerical analysis regarding free vibration of thick laminated .... ANSYS finite element software.

3. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.

Science.gov (United States)

Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E

2018-03-01

Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

4. On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.

Science.gov (United States)

Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing

2018-03-19

In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.

5. Two dimensional Fourier transform methods for fringe pattern analysis

Science.gov (United States)

Sciammarella, C. A.; Bhat, G.

An overview of the use of FFTs for fringe pattern analysis is presented, with emphasis on fringe patterns containing displacement information. The techniques are illustrated via analysis of the displacement and strain distributions in the direction perpendicular to the loading, in a disk under diametral compression. The experimental strain distribution is compared to the theoretical, and the agreement is found to be excellent in regions where the elasticity solution models well the actual problem.

6. Three-Dimensional Analysis and Modeling of a Wankel Engine

Science.gov (United States)

Raju, M. S.; Willis, E. A.

1991-01-01

A new computer code, AGNI-3D, has been developed for the modeling of combustion, spray, and flow properties in a stratified-charge rotary engine (SCRE). The mathematical and numerical details of the new code are described by the first author in a separate NASA publication. The solution procedure is based on an Eulerian-Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas-mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite-volume, Steger-Warming flux vector splitting scheme. The liquid-phase equations are solved in Lagrangian coordinates. The engine configuration studied was similar to existing rotary engine flow-visualization and hot-firing test rigs. The results of limited test cases indicate a good degree of qualitative agreement between the predicted and measured pressures. It is conjectured that the impulsive nature of the torque generated by the observed pressure nonuniformity may be one of the mechanisms responsible for the excessive wear of the timing gears observed during the early stages of the rotary combustion engine (RCE) development. It was identified that the turbulence intensities near top-dead-center were dominated by the compression process and only slightly influenced by the intake and exhaust processes. Slow mixing resulting from small turbulence intensities within the rotor pocket and also from a lack of formation of any significant recirculation regions within the rotor pocket were identified as the major factors leading to incomplete combustion. Detailed flowfield results during exhaust and intake, fuel injection, fuel vaporization, combustion, mixing and expansion processes are also presented. The numerical procedure is very efficient as it takes 7 to 10 CPU hours on a CRAY Y-MP for one entire engine cycle when the computations are performed over a 31 x16 x 20 grid.

7. Three-dimensional geometric analysis of felid limb bone allometry.

Directory of Open Access Journals (Sweden)

Michael Doube

Full Text Available Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats to investigate regional complexities in bone allometry.Computed tomographic (CT images (16435 slices in 116 stacks were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus to tiger (Panthera tigris. Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals.

8. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.

Science.gov (United States)

Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

2016-09-15

In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.

9. Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.

Science.gov (United States)

Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi

2016-01-01

Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

10. Two dimensional chromatographic analysis as a quality measure of ...

African Journals Online (AJOL)

Background: Homoeopathic mother tinctures and herbal extracts are used worldwide for medicinal purposes on the basis that the plant extract contains the active components essential for medicinal use. Quality analysis of samples ensures that the correct active components are present for medicinal use. Thin layer ...

11. Three-dimensional wake field analysis by boundary element method

International Nuclear Information System (INIS)

Miyata, K.

1987-01-01

A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity

12. Advances in three-dimensional field analysis and evaluation of performance parameters of electrical machines

Science.gov (United States)

Sivasubramaniam, Kiruba

This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is

13. Constructive analysis of two dimensional Fermi systems at finite temperature

International Nuclear Information System (INIS)

Lu, Long

2013-01-01

We consider a dilute Fermion system in continuum two spatial dimensions with short-range interaction. We prove nonperturbatively that at low temperature the renormalized perturbation expansion has non-zero radius of convergence. The convergence radius shrinks when the energy scale goes to the infrared cutoff. The shrinking rate of the convergence radius is established to be dependent of the sign of the coupling constant g by a detailed analysis of the so-called ladder contributions. We prove further that the self-energy of the model is uniformly of C 1 , but not C 2 in the analytic domain of the theory. The proofs are based on renormalization of the Fermi surface and multiscale analysis employing mathematical renormalization group technique. Tree expansion is introduced to reorganize perturbation expansion nicely. Finally we apply these techniques to construct a half-filled Hubbard model on honeycomb bilayer lattice with local interaction.

14. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

Science.gov (United States)

Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis

2015-01-01

Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the

15. Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy

OpenAIRE

?anda, Franti?ek; Perl?k, V?clav; Lincoln, Craig N.; Hauer, J?rgen

2015-01-01

Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency?frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and...

16. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.

Directory of Open Access Journals (Sweden)

Georgios Arampatzis

Full Text Available Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of

17. Three dimensional mathematical model of tooth for finite element analysis

Directory of Open Access Journals (Sweden)

Puškar Tatjana

2010-01-01

Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

18. Kinematics of swimming of the manta ray: three-dimensional analysis of open-water maneuverability.

Science.gov (United States)

Fish, Frank E; Kolpas, Allison; Crossett, Andrew; Dudas, Michael A; Moored, Keith W; Bart-Smith, Hilary

2018-03-22

For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult, particularly in the field. To measure turning performance in a three-dimensional space for the manta ray ( Mobula birostris ), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal component analysis was used to project the three-dimensional trajectory onto the two-dimensional turn. Smoothing splines were applied to these turns. These are flexible models that minimize a cost function with a parameter controlling the balance between data fidelity and regularity of the derivative. Data for 30 sequences of rays performing slow, steady turns showed the highest 20% of values for the turning rate and smallest 20% of turn radii were 42.65±16.66 deg s -1 and 2.05±1.26 m, respectively. Such turning maneuvers fall within the range of performance exhibited by swimmers with rigid bodies. © 2018. Published by The Company of Biologists Ltd.

19. Three dimensional, thermal stress analysis of a welded plate

International Nuclear Information System (INIS)

Koening, H.A.; Lai, C.K.-F.; Morral, J.E.

1985-01-01

A general finite element thermal stress analysis has been developed. The analysis can be uncoupled to solve either the heat transfer problem or the stress problem independently and it can accommodate non-linear material behavior, initial states of stress and strain, and moving boundary conditions. A unique feature of the model it that it properly accounts for the latent heat effect during phase changes. Applying the moving heat flux boundary condition to simulate arc welding, the model has been used to predict the transient thermal mechanical response of a welded plate. It is the absorption and liberation of latent heat in the fusion zone of a weld which complicates numerical methods of treating welding. For pure materials and eutectic alloys the latent heat effect is less of a problem because phase changes take place at a specific temperature. But for most alloys, phase changes take place over a range of temperatures bounded by the solidus, T S , and liquidus, T L , and the latent heat effect occurs continuously over the temperature range. (author)

20. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

Energy Technology Data Exchange (ETDEWEB)

Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)

2000-10-01

MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

1. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

International Nuclear Information System (INIS)

Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu

2000-01-01

MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

2. Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity

Directory of Open Access Journals (Sweden)

Fubiao Feng

2017-03-01

Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.

3. Software Tools for Robust Analysis of High-Dimensional Data

Directory of Open Access Journals (Sweden)

Valentin Todorov

2014-06-01

Full Text Available The present work discusses robust multivariate methods specifically designed for highdimensions. Their implementation in R is presented and their application is illustratedon examples. The first group are algorithms for outlier detection, already introducedelsewhere and implemented in other packages. The value added of the new package isthat all methods follow the same design pattern and thus can use the same graphicaland diagnostic tools. The next topic covered is sparse principal components including anobject oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani(2006 and the robust one proposed by Croux, Filzmoser, and Fritz (2013. Robust partialleast squares (see Hubert and Vanden Branden 2003 as well as partial least squares fordiscriminant analysis conclude the scope of the new package.

4. Lempel-Ziv complexity analysis of one dimensional cellular automata.

Science.gov (United States)

Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

2015-12-01

Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

5. Three-dimensional analysis and display of medical images

International Nuclear Information System (INIS)

Bajcsy, R.

1985-01-01

Until recently, the most common medical images were X-rays on film analyzed by an expert, ususally a radiologist, who used, in addition to his/her visual perceptual abilities, knowledge obtained through medical studies, and experience. Today, however, with the advent of various imaging techniques, X-ray computerized axial tomographs (CAT), positron emission tomographs (PET), ultrasound tomographs, nuclear magnetic resonance tomographs (NMR), just to mention a few, the images are generated by computers and displayed on computer-controlled devices; so it is appropriate to think about more quantitative and perhaps automated ways of data analysis. Furthermore, since the data are generated by computer, it is only natural to take advantage of the computer for analysis purposes. In addition, using the computer, one can analyze more data and relate different modalities from the same subject, such as, for example, comparing the CAT images with PET images from the same subject. In the next section (The PET Scanner) the authors shall only briefly mention with appropriate references the modeling of the positron emission tomographic scanner, since this imaging technique is not as widely described in the literature as the CAT scanner. The modeling of the interpreter is not going to be mentioned, since it is a topic that by itself deserves a full paper; see, for example, Pizer [1981]. The thrust of this chapter is on modeling the organs that are being imaged and the matching techniques between the model and the data. The image data is from CAT and PET scans. Although the authors believe that their techniques are applicable to any organ of the human body, the examples are only from the brain

6. Possibility of estimating three-dimensional mandibular morphology by cephalogram analysis

International Nuclear Information System (INIS)

Kim, S.; Motegi, Etsuko; Kikuchi, Yu; Yamaguchi, Hideharu; Takaki, Takashi; Shibahara, Takahiko

2007-01-01

The purpose of this study was to investigate the possibility of a surmise of three-dimensional mandibular morphology by two-dimensional cephalogram analysis. The materials were three-dimensional CT and cephalogram of 20 female mandibular prognathism patients (average age: 25.20±7.49) before there orthognathic surgery. Mandibular bone volume and sponge bone width were calculated from three-dimensional images constructed from CT images using imaging software (Real Intage, KGT inc.). There was a positive correlation (r=0.72) between mandibular volume value and mandibular ramus width. There was a positive correlation between sponge bone width at the site of the mandibular cuspid and mandibular ramus width and SNB angle (r=0.80), and between sponge bone width at the site of the mandibular molar and symphysis height and mandibular ramus width (r=0.81). It was thought that these results will be useful for a surmise of three-dimensional mandibular morphology by cephalogram analysis. (author)

7. Three dimensional visualization breakthrough in analysis and communication of technical information for nuclear waste management

International Nuclear Information System (INIS)

Alexander, D.H.; Cerny, B.A.; Hill, E.R.; Krupka, K.M.; Smoot, J.L.; Smith, D.R.; Waldo, K.

1990-11-01

Computer graphics systems that provide interactive display and manipulation of three-dimensional data are powerful tools for the analysis and communication of technical information required for characterization and design of a geologic repository for nuclear waste. Greater understanding of site performance and repository design information is possible when performance-assessment modeling results can be visually analyzed in relation to site geologic and hydrologic information and engineering data for surface and subsurface facilities. In turn, this enhanced visualization capability provides better communication between technical staff and program management with respect to analysis of available information and prioritization of program planning. A commercially-available computer system was used to demonstrate some of the current technology for three-dimensional visualization within the architecture of systems for nuclear waste management. This computer system was used to interactively visualize and analyze the information for two examples: (1) site-characterization and engineering data for a potential geologic repository at Yucca Mountain, Nevada; and (2) three-dimensional simulations of a hypothetical release and transport of contaminants from a source of radionuclides to the vadose zone. Users may assess the three-dimensional distribution of data and modeling results by interactive zooming, rotating, slicing, and peeling operations. For those parts of the database where information is sparse or not available, the software incorporates models for the interpolation and extrapolation of data over the three-dimensional space of interest. 12 refs., 4 figs

8. Relationship between alexithymia and dependent personality disorder: a dimensional analysis.

Science.gov (United States)

Loas, Gwenolé; Baelde, Olympe; Verrier, Annie

2015-02-28

The present study had two aims and used two different samples. The first aim was to determine if alexithymia and dependent personality disorder (DPD) are distinct or overlapping constructs. The second aim was to determine the specificity and the stability of the relationship between alexithymia and DPD. The first study used exploratory principal components analysis (PCA) in a sample of 477 non-clinical subjects who completed three questionnaires measuring alexithymia (Twenty item Toronto Alexithymia Scale, i.e. TAS-20), dependent personality disorder (Dependent Personality Questionnaire, i.e. DPQ) and depression (Beck Depression Inventory-II, i.e. BDI-II). The second study used a sample of 305 subjects consecutively admitted to an outpatient department of legal medicine. The subjects completed (at admission and 3 months later) the Structured Clinical Interview for DSM-IV, screen questionnaire (SCID-II-SQ), the TAS-20 and the BDI. Multiple regressions were done. For the first study, the PCA yielded a four-factor solution with no overlap of the significant factor loadings for the items from each scale and with the factors corresponding to their respective construct. For the second study, multiple regressions showed that only avoidant personality disorder was an independent predictor of the TAS-20 scores. Alexithymia is a construct that is distinct and separate from DPD and depression. Alexithymia is not a stable feature of DPD while it is a core feature of avoidant personality disorder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

9. Tidal Disruption of Strengthless Rubble Piles: A Dimensional Analysis

Science.gov (United States)

Hahn, Joseph M.; Rettig, Terrence W.

1998-01-01

A relatively simple prescription for estimating the number of debris clumps (n) that form after a catastrophic tidal disruption event is presented. Following the breakup event, it is assumed that the individual debris particles follow keplerian orbits about the planet until the debris' gravitational contraction timescale (t(sub c)) becomes shorter than its orbital spreading timescale (t(sub s)). When the two timescales become comparable, self-gravity breaks up the debris train into n = L/D clumps, which is the debris length/diameter ratio at that instant. The clumps subsequently orbit the planet independent of each other. The predicted number of clumps n is in good agreement with more sophisticated N-body treatments of tidal breakup for parabolic encounters, and the dependence of n upon the progenitor's density as well as its orbit is also mapped out for hyperbolic encounters. These findings may be used to further constrain both the orbits and densities of the tidally disrupted bodies that struck Callisto and Ganymede. A cursory analysis shows that the Gomul and Gipul crater chains on Callisto, which have the greatest number of craters among the known chains, were formed by projectiles having comet-like densities estimated at rho(sub o) < 1 gm/cc.

10. IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS

International Nuclear Information System (INIS)

Kushnir, Doron; Waxman, Eli; Livne, Eli

2012-01-01

We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R crit . An approximate analytic expression for R crit is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R crit ∼ 100 μm (spherical) and R crit ∼ 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R crit . Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R crit within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.

11. Multi-dimensional flood vulnerability assessment using data envelopment analysis

Science.gov (United States)

Zahid, Zalina; Saharizan, Nurul Syuhada; Hamzah, Paezah; Hussin, Siti Aida Sheikh; Khairi, Siti Shaliza Mohd

2017-11-01

Malaysia has been greatly impacted by flood during monsoon seasons. Even though flood prone areas are well identified, assessment on the vulnerability of the disaster is lacking. Assessment of flood vulnerability, defined as the potential for loss when a disaster occurs, is addressed in this paper. The focus is on the development of flood vulnerability measurement in 11 states in Peninsular Malaysia using a non-parametric approach of Data Envelopment Analysis. Scores for three dimensions of flood vulnerability (Population Vulnerability, Social Vulnerability and Biophysical) were calculated using secondary data of selected input and output variables across an 11-year period from 2004 to 2014. The results showed that Johor and Pahang were the most vulnerable to flood in terms of Population Vulnerability, followed by Kelantan, the most vulnerable to flood in terms of Social Vulnerability and Kedah, Pahang and Terengganu were the most vulnerable to flood in terms of Biophysical Vulnerability among the eleven states. The results also showed that the state of Johor, Pahang and Kelantan to be most vulnerable across the three dimensions. Flood vulnerability assessment is important as it provides invaluable information that will allow the authority to identify and develop plans for flood mitigation and to reduce the vulnerability of flood at the affected regions.

12. Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments

NARCIS (Netherlands)

Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke

Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode,

13. Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics

Science.gov (United States)

Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.

2007-01-01

We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…

14. Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation

NARCIS (Netherlands)

P.W. Hemker (Piet); M.H. van Raalte (Marc)

2002-01-01

textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the

15. A Discussion on an Expression Written about Dimensional Analysis in a Physics Textbook

Science.gov (United States)

Yildiz, Ali

2015-01-01

The purpose of this study is to discuss a wrong statement written about dimensional analysis in a physics text book prepared for the students who are studying in science, engineering and teaching undergraduate programs at universities and who have to take compulsory physics courses, to analyse the use of the text book including the wrong…

16. High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm

Science.gov (United States)

Cai, Li

2010-01-01

A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…

17. Comprehensive two-dimensional gas chromatography for the analysis of organohalogenated micro-contaminants

NARCIS (Netherlands)

Korytar, P.; Haglund, P.; Boer, de J.; Brinkman, U.A.Th.

2006-01-01

We explain the principles of comprehensive two-dimensional gas chromatography (GC × GC), and discuss key instrumental aspects - with emphasis on column combinations and mass spectrometric detection. As the main item of interest, we review the potential of GC × GC for the analysis of

18. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

KAUST Repository

Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain

2017-01-01

In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive

19. Modelling extrudate expansion in a twin-screw food extrusion cooking process through dimensional analysis methodology

DEFF Research Database (Denmark)

Cheng, Hongyuan; Friis, Alan

2010-01-01

A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...

20. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

Energy Technology Data Exchange (ETDEWEB)

Buntat, Z; Harry, J E; Smith, I R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)

2003-07-07

This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

1. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

DEFF Research Database (Denmark)

Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten

2015-01-01

We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...

2. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

CERN Document Server

Buntat, Z; Smith, I R

2003-01-01

This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

3. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

International Nuclear Information System (INIS)

Buntat, Z; Harry, J E; Smith, I R

2003-01-01

This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings

4. Application of dimensional analysis to ozone production by pulsed streamer discharge in oxygen

Science.gov (United States)

Buntat, Z.; Harry, J. E.; Smith, I. R.

2003-07-01

This paper describes the use of dimensional analysis in investigating the effects of the electrical and the discharge configuration parameters on ozone production in oxygen, by means of a pulsed streamer discharge. Ozone destruction factors are taken into account in the model, and predicted results are shown to be in good agreement with experimental findings.

5. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

LENUS (Irish Health Repository)

McDermott, Ailish

2010-10-01

Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

6. Quantitative analysis of target components by comprehensive two-dimensional gas chromatography

NARCIS (Netherlands)

Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van

2003-01-01

Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms.

7. and three-dimensional models for analysis of optical absorption in ...

Unknown

The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near ... Optical band gap; two- and three-dimensional; optical absorption. 1. ..... ssion, New Delhi, in the form of a research project is.

8. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

Science.gov (United States)

2018-04-01

9. Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics

DEFF Research Database (Denmark)

Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T

2017-01-01

Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...

10. One dimensional analysis model for condensation heat transfer in feed water heater

International Nuclear Information System (INIS)

Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi

1998-01-01

In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)

11. Computation of focal values and stability analysis of 4-dimensional systems

Directory of Open Access Journals (Sweden)

Bo Sang

2015-08-01

Full Text Available This article presents a recursive formula for computing the n-th singular point values of a class of 4-dimensional autonomous systems, and establishes the algebraic equivalence between focal values and singular point values. The formula is linear and then avoids complicated integrating operations, therefore the calculation can be carried out by computer algebra system such as Maple. As an application of the formula, bifurcation analysis is made for a quadratic system with a Hopf equilibrium, which can have three small limit cycles around an equilibrium point. The theory and methodology developed in this paper can be used for higher-dimensional systems.

12. Mathematical analysis of the dimensional scaling technique for the Schroedinger equation with power-law potentials

International Nuclear Information System (INIS)

Ding Zhonghai; Chen, Goong; Lin, Chang-Shou

2010-01-01

The dimensional scaling (D-scaling) technique is an innovative asymptotic expansion approach to study the multiparticle systems in molecular quantum mechanics. It enables the calculation of ground and excited state energies of quantum systems without having to solve the Schroedinger equation. In this paper, we present a mathematical analysis of the D-scaling technique for the Schroedinger equation with power-law potentials. By casting the D-scaling technique in an appropriate variational setting and studying the corresponding minimization problem, the D-scaling technique is justified rigorously. A new asymptotic dimensional expansion scheme is introduced to compute asymptotic expansions for ground state energies.

13. Two and dimensional heat analysis inside a high pressure electrical discharge tube

International Nuclear Information System (INIS)

Aghanajafi, C.; Dehghani, A. R.; Fallah Abbasi, M.

2005-01-01

This article represents the heat transfer analysis for a horizontal high pressure mercury steam tube. To get a more realistic numerical simulation, heat radiation at different wavelength width bands, has been used besides convection and conduction heat transfer. The analysis for different gases with different pressure in two and three dimensional cases has been investigated and the results compared with empirical and semi empirical values. The effect of the environmental temperature on the arc tube temperature is also studied

14. QUALITY INSPECTION AND ANALYSIS OF THREE-DIMENSIONAL GEOGRAPHIC INFORMATION MODEL BASED ON OBLIQUE PHOTOGRAMMETRY

Directory of Open Access Journals (Sweden)

S. Dong

2018-04-01

Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

15. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

Science.gov (United States)

Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

2018-04-01

In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

16. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

Directory of Open Access Journals (Sweden)

Hsu Kimberly K

2005-06-01

Full Text Available Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine, showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyldimethylammonio]-1-propanesulfonate. Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.

17. Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014

CERN Document Server

Bühlmann, Peter; Glad, Ingrid; Langaas, Mette; Richardson, Sylvia; Vannucci, Marina

2016-01-01

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on...

18. Development of three dimensional transient analysis code STTA for SCWR core

International Nuclear Information System (INIS)

Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

2015-01-01

Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

19. A three-dimensional pin-wise analysis for CEA ejection accident

Energy Technology Data Exchange (ETDEWEB)

Park, Guen-Tae; Park, Min-Ho; Park, Jin-Woo; Um, Kil-Sup; Choi, Tong-Soo [KEPCO NF, Daejeon (Korea, Republic of)

2016-10-15

The ejection of a control element assembly (CEA) with high reactivity worth causes the sudden insertion of reactivity into the core. Immediately after the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the doppler effect becomes important and turns the reactivity balance and power down to lower levels. The 3-D CEA ejection analysis methodology has been developed using the multi-dimensional code coupling system, CHASER, which couples three dimensional core neutron kinetics code ASTRA, subchannel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). This paper presents the pin-by-pin level analysis result with the 3-D CEA ejection analysis methodology using the CHASER. The pin-by-pin level analysis consists of DNBR, enthalpy and Pellet/Clad Mechanical Interaction (PCMI) analysis. All the evaluations are simulated for APR1400 plant loaded with PLUS7 fuel. In this paper, the pin-by-pin analysis using the multidimensional core transient code, CHASER, is presented with respect to enthalpy, DNBR and PCMI for APR1400 plant loaded with PLUS7 fuel. For the pin-by-pin enthalpy and DNBR analysis, the quarter core for HFP case or 15 - 20 assemblies around the most severe assembly for part powers or HZP cases are selected. And PCMI calculation is performed for all the rods in the whole core during a conservative time period. The pin-by-pin analysis results show that the regulatory guidelines of CEA ejection accident are satisfied.

20. Development of three-dimensional ENRICHED FREE MESH METHOD and its application to crack analysis

International Nuclear Information System (INIS)

Suzuki, Hayato; Matsubara, Hitoshi; Ezawa, Yoshitaka; Yagawa, Genki

2010-01-01

In this paper, we describe a method for three-dimensional high accurate analysis of a crack included in a large-scale structure. The Enriched Free Mesh Method (EFMM) is a method for improving the accuracy of the Free Mesh Method (FMM), which is a kind of meshless method. First, we developed an algorithm of the three-dimensional EFMM. The elastic problem was analyzed using the EFMM and we find that its accuracy compares advantageously with the FMM, and the number of CG iterations is smaller. Next, we developed a method for calculating the stress intensity factor by employing the EFMM. The structure with a crack was analyzed using the EFMM, and the stress intensity factor was calculated by the developed method. The analysis results were very well in agreement with reference solution. It was shown that the proposed method is very effective in the analysis of the crack included in a large-scale structure. (author)

1. On intermittency in heavy ion collisions and the importance of γ-conversion in a multi-dimensional intermittency analysis

International Nuclear Information System (INIS)

Adamovich, M.I.; Alexandrov, Y.A.; Aggarwal, M.M.

1992-03-01

Non-statistical fluctuations are used to probe the dynamical behaviour of multiparticle production in heavy ion interactions at ultra-relativistic energies. In a one-dimensional analysis a 1/ρ-scaling is established and it is furthermore found that effects from higher order particle correlations are small. In a two-dimensional analysis it is shown that a small background of particle-pairs with a narrow opening angle can distort the observed signal. As an example we estimate of the influence of γ-conversion and find that in our experiment γ-conversion alone gives results consistent with the experimental observations from a two-dimensional analysis. Whereas a two-dimensional analysis filters events where two particles are extremely close in phase space, the one-dimensional analysis picks out events with particles clustered in pseudorapidity, which are at the same time diluted in the azimuthal plane. (au)

2. Two-dimensional horizontal model seismic test and analysis for HTGR core

International Nuclear Information System (INIS)

Ikushima, Takeshi; Honma, Toshiaki.

1988-05-01

The resistance against earthquakes of high-temperature gas-cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. The paper presented the test results of seismic behavior of a half scale two-dimensional horizontal slice core model and analysis. The following is a summary of the more important results. (1) When the core is subjected to the single axis excitation and simultaneous two-axis excitations to the core across-corners, it has elliptical motion. The core stays lumped motion at the low excitation frequencies. (2) When the load is placed on side fixed reflector blocks from outside to the core center, the core displacement and reflector impact reaction force decrease. (3) The maximum displacement occurs at simultaneous two-axis excitations. The maximum displacement occurs at the single axis excitation to the core across-flats. (4) The results of two-dimensional horizontal slice core model was compared with the results of two-dimensional vertical one. It is clarified that the seismic response of actual core can be predicted from the results of two-dimensional vertical slice core model. (5) The maximum reflector impact reaction force for seismic waves was below 60 percent of that for sinusoidal waves. (6) Vibration behavior and impact response are in good agreement between test and analysis. (author)

3. A two-dimensional vibration analysis of piezoelectrically actuated microbeam with nonideal boundary conditions

Science.gov (United States)

Rezaei, M. P.; Zamanian, M.

2017-01-01

In this paper, the influences of nonideal boundary conditions (due to flexibility) on the primary resonant behavior of a piezoelectrically actuated microbeam have been studied, for the first time. The structure has been assumed to treat as an Euler-Bernoulli beam, considering the effects of geometric nonlinearity. In this work, the general nonideal supports have been modeled as a the combination of horizontal, vertical and rotational springs, simultaneously. Allocating particular values to the stiffness of these springs provides the mathematical models for the majority of boundary conditions. This consideration leads to use a two-dimensional analysis of the multiple scales method instead of previous works' method (one-dimensional analysis). If one neglects the nonideal effects, then this paper would be an effort to solve the two-dimensional equations of motion without a need of a combination of these equations using the shortening or stretching effect. Letting the nonideal effects equal to zero and comparing their results with the results of previous approaches have been demonstrated the accuracy of the two-dimensional solutions. The results have been identified the unique effects of constraining and stiffening of boundaries in horizontal, vertical and rotational directions. This means that it is inaccurate to suppose the nonideality of supports only in one or two of these directions like as previous works. The findings are of vital importance as a better prediction of the frequency response for the nonideal supports. Furthermore, the main findings of this effort can help to choose appropriate boundary conditions for desired systems.

4. Finite Element Analysis of Three-Dimensional (3D Auxetic Textile Composite under Compression

Directory of Open Access Journals (Sweden)

Jifang Zeng

2018-03-01

Full Text Available This paper reports a finite element (FE analysis of three-dimensional (3D auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.

5. Automated three-dimensional X-ray analysis using a dual-beam FIB

International Nuclear Information System (INIS)

Schaffer, Miroslava; Wagner, Julian; Schaffer, Bernhard; Schmied, Mario; Mulders, Hans

2007-01-01

We present a fully automated method for three-dimensional (3D) elemental analysis demonstrated using a ceramic sample of chemistry (Ca)MgTiO x . The specimen is serially sectioned by a focused ion beam (FIB) microscope, and energy-dispersive X-ray spectrometry (EDXS) is used for elemental analysis of each cross-section created. A 3D elemental model is reconstructed from the stack of two-dimensional (2D) data. This work concentrates on issues arising from process automation, the large sample volume of approximately 17x17x10 μm 3 , and the insulating nature of the specimen. A new routine for post-acquisition data correction of different drift effects is demonstrated. Furthermore, it is shown that EDXS data may be erroneous for specimens containing voids, and that back-scattered electron images have to be used to correct for these errors

6. Dimensionality Reduction Methods: Comparative Analysis of methods PCA, PPCA and KPCA

Directory of Open Access Journals (Sweden)

Jorge Arroyo-Hernández

2016-01-01

Full Text Available The dimensionality reduction methods are algorithms mapping the set of data in subspaces derived from the original space, of fewer dimensions, that allow a description of the data at a lower cost. Due to their importance, they are widely used in processes associated with learning machine. This article presents a comparative analysis of PCA, PPCA and KPCA dimensionality reduction methods. A reconstruction experiment of worm-shape data was performed through structures of landmarks located in the body contour, with methods having different number of main components. The results showed that all methods can be seen as alternative processes. Nevertheless, thanks to the potential for analysis in the features space and the method for calculation of its preimage presented, KPCA offers a better method for recognition process and pattern extraction

7. Two-dimensional cross-section sensitivity and uncertainty analysis of the LBM experience at LOTUS

International Nuclear Information System (INIS)

Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.

1989-01-01

In recent years, the LOTUS fusion blanket facility at IGA-EPF in Lausanne provided a series of irradiation experiments with the Lithium Blanket Module (LBM). The LBM has both realistic fusion blanket and materials and configuration. It is approximately an 80-cm cube, and the breeding material is Li 2 . Using as the D-T neutron source the Haefely Neutron Generator (HNG) with an intensity of about 5·10 12 n/s, a series of experiments with the bare LBM as well as with the LBM preceded by Pb, Be and ThO 2 multipliers were carried out. In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S n -transport code ONEDANT, the two-dimensional finite element S n -transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. For the nucleonic transport calculations, three 187-neutron-group libraries are presently available: MATXS8A and MATXS8F based on ENDF/B-V evaluations and MAT187 based on JEF/EFF evaluations. COVFILS-2, a 74-group library of neutron cross-sections, scattering matrices and covariances, is the data source for SENSIBL; the 74-group structure of COVFILS-2 is a subset of the Los Alamos 187-group structure. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed

8. Energy analysis of four dimensional extended hyperbolic Scarf I plus three dimensional separable trigonometric noncentral potentials using SUSY QM approach

International Nuclear Information System (INIS)

Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.

2016-01-01

The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)

9. Completely two-dimensional model for analysis of characteristics of linear induction cylindrical pump

International Nuclear Information System (INIS)

Kirillov, I.R.; Obukhov, D.M.

2005-01-01

One introduces a completely two-dimensional mathematical model to calculate characteristics of induction magnetohydrodynamic (MHD) machines with a cylindrical channel. On the basis of the numerical analysis one obtained a pattern of liquid metal flow in a electromagnetic pump at presence of the MHD-instability characterized by initiation of large-scale vortices propagating longitudinally and azimuthally. Comparison of the basic calculated characteristics of pump with the experiment shows their adequate qualitative and satisfactory quantitative coincidence [ru

10. Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics

Directory of Open Access Journals (Sweden)

2007-12-01

Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.

11. Development of calculation method for one-dimensional kinetic analysis in fission reactors, including feedback effects

International Nuclear Information System (INIS)

Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.

1986-01-01

The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt

12. STRUYA a code for two-dimensional fluid flow analysis with and without structure coupling

International Nuclear Information System (INIS)

Katz, F.W.; Schlechtendahl, E.G.; Stoelting, K.

1979-11-01

STRUYA is a code for two-dimensional subsonic and supersonic flow analysis. Both Eulerian and Lagrangian grids are allowed. In the third dimension the flow domain may be bounded by a moving wall. The wall movement may be prescribed in a time-and space varying way or computed by a structural model. STRUYA offers a general scheme for adapting various structural models. As a standard feature it includes a cylindrical shell model (CYLDY2). (orig.) [de

13. A novel four-dimensional analytical approach for analysis of complex samples.

Science.gov (United States)

Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J

2016-05-01

A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation.

14. Application of tomographic techniques to two-dimensional surface analysis using the Harwell nuclear microprobe

International Nuclear Information System (INIS)

Huddleston, J.; Hutchinson, I.G.; Pierce, T.B.

1983-01-01

Nuclear methods of surface analysis are discussed briefly, and the circumstances are described in which a two-dimensional analysis of the sample surface is desirable to enable the surface composition to be mapped accurately. Tomographic techniques of data manipulation are outlined. Data acquisition in the present case is performed by moving the sample in a defined sequence of positions, at each of which analytical data are gathered by the proton microprobe. The method and equipment are outlined. Data processing leading to the reconstruction of the image is summarised. (U.K.)

15. Coupling Visualization and Data Analysis for Knowledge Discovery from Multi-dimensional Scientific Data

International Nuclear Information System (INIS)

Rubel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G.R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keranen, Soile V.E.; Knowles, David W.; Hendriks, Chris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng

2010-01-01

Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies 'such as efficient data management' supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.

16. Three-dimensional analysis of eddy current with the finite element method

International Nuclear Information System (INIS)

Takano, Ichiro; Suzuki, Yasuo

1977-05-01

The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

17. Three-dimensional heat transfer analysis of the Doublet III beamline calorimeter

International Nuclear Information System (INIS)

Kamperschroer, J.H.; Pipkins, J.F.

1979-10-01

A general three-dimensional analysis has been formulated to study the flow of heat in a neutral beam calorimeter. The boundary value problem with an arbitrary incident heat flux has been solved using Fourier analysis and Laplace transform techniques. A general solution has been obtained and subsequently studied using numerical techniques as applied to the particular geometry and incident heat flux conditions of the Doublet III injection system. Negligible errors result in unfolding the incident heat flux through the use of thermocouples located near the rear surface, if data taking is initiated at the proper time and proceeds at a sufficiently rapid rate

18. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

Energy Technology Data Exchange (ETDEWEB)

Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

1998-09-01

The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.

19. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

International Nuclear Information System (INIS)

Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

1998-09-01

The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs

20. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

Science.gov (United States)

Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

2011-09-23

Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

1. Multi-dimensional analysis of the ECC behavior in the UPI plant Kori Unit 1

International Nuclear Information System (INIS)

Bae, Sungwon; Chung, Bub-Dong; Bang, Young Seok

2008-01-01

A multi-dimensional transient analysis during the LBLOCA of the Kori Unit 1 has been performed by using the MARS code. Based on 1-D nodalization of the Kori Unit 1, the reactor vessel nodalizations have been replaced by the multi-dimensional component. The multi-dimensional component for the reactor vessel is designed as 5 radial, 8 peripheral, and 21 vertical grids. It is assumed that the fuel assemblies are homogeneously distributed in inner 3 radial grids. The outer 1 radial grid region is modeled as the core bypass. The outer-model 1 radial grid is used for the downcomer region. The corresponding heat structures and fuels are modified to fit for the multi-dimensional reactor vessel model. The form drag coefficients for the upper plenum and the core have been designated as 0.6 and 9.39, respectively. The form drag coefficients for the radial and peripheral directions are assigned to the same on the assumption of homogeneous distribution of the flow obstacles. After obtaining the 102% power steady operation condition, cold leg LOCA simulation is performed during 400 second period. The multi-dimensional steady run results show no severe differences compared to the traditional 1-D nodalization results. After the ECC injection starts, a liquid pool is maintained at the upper plenum because the ECCS water can not overcome the upward gas flow that comes from the reactor core through the upper tie plate. The depth of ECCS water pool is predicted as about 20% of the total height from the upper tie plate and the center line of the hot leg pipe. At the vicinity region of the active ECCS show higher depth of liquid pool. The accumulated water flow rate passing the upper tie plate is calculated by the transient result. Much downward water flow is obtained at the outer-most region of upper plenum space. The downward flow dominant region is about 32.3% of the total upper tie plate area. The accumulated ECCS bypass ratio is predicted as 27.64% at 300 second. It is calculated

2. Three-dimensional finite element impact analysis of a nuclear waste truck cask

International Nuclear Information System (INIS)

Miller, J.D.

1985-01-01

3. Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data.

Science.gov (United States)

Kehl, Catherine; Simms, Andrew M; Toofanny, Rudesh D; Daggett, Valerie

2008-06-01

The Dynameomics project is our effort to characterize the native-state dynamics and folding/unfolding pathways of representatives of all known protein folds by way of molecular dynamics simulations, as described by Beck et al. (in Protein Eng. Des. Select., the first paper in this series). The data produced by these simulations are highly multidimensional in structure and multi-terabytes in size. Both of these features present significant challenges for storage, retrieval and analysis. For optimal data modeling and flexibility, we needed a platform that supported both multidimensional indices and hierarchical relationships between related types of data and that could be integrated within our data warehouse, as described in the accompanying paper directly preceding this one. For these reasons, we have chosen On-line Analytical Processing (OLAP), a multi-dimensional analysis optimized database, as an analytical platform for these data. OLAP is a mature technology in the financial sector, but it has not been used extensively for scientific analysis. Our project is further more unusual for its focus on the multidimensional and analytical capabilities of OLAP rather than its aggregation capacities. The dimensional data model and hierarchies are very flexible. The query language is concise for complex analysis and rapid data retrieval. OLAP shows great promise for the dynamic protein analysis for bioengineering and biomedical applications. In addition, OLAP may have similar potential for other scientific and engineering applications involving large and complex datasets.

4. Numerical analysis of biological clogging in two-dimensional sand box experiments

DEFF Research Database (Denmark)

Kildsgaard, J.; Engesgaard, Peter Knudegaard

2001-01-01

Two-dimensional models for biological clogging and sorptive tracer transport were used to study the progress of clogging in a sand box experiment. The sand box had been inoculated with a strip of bacteria and exposed to a continuous injection of nitrate and acetate. Brilliant Blue was regularly...... injected during the clogging experiment and digital images of the tracer movement had been converted to concentration maps using an image analysis. The calibration of the models to the Brilliant Blue observations shows that Brilliant Blue has a solid biomass dependent sorption that is not compliant...... with the assumed linear constant Kd behaviour. It is demonstrated that the dimensionality of sand box experiments in comparison to column experiments results in a much lower reduction in hydraulic conductivity Žfactor of 100. and that the bulk hydraulic conductivity of the sand box decreased only slightly. However...

5. Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates

Energy Technology Data Exchange (ETDEWEB)

Haghighi, M.R. Golbahar; Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario (Canada)

2009-03-15

In this paper, a three-dimensional transient inverse heat conduction (IHC) procedure is presented to estimate the unknown boundary heat flux of thick functionally graded (FG) plates. For this purpose, the conjugate gradient method (CGM) in conjunction with adjoint problem is used. A recently developed three-dimensional efficient hybrid method is employed to solve variable-coefficient initial-boundary-value differential equations of direct problem as a part of the inverse solution. The accuracy of the inverse analysis is examined by simulating the exact and noisy data for problems with different types of boundary conditions and material properties. In addition to rectangular domain, skew plates are considered. The results obtained show good accuracy for the estimation of boundary heat fluxes. (author)

6. A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells

Energy Technology Data Exchange (ETDEWEB)

Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Boushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Farid, M. [Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Zahedinejad, P. [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

2008-07-15

A mixed layerwise theory and differential quadrature (DQ) method (LW-DQ) for three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells is introduced. Using the layerwise theory in conjunction with the three-dimensional form of Hamilton's principle, the transversely discretized equations of motion and the related boundary conditions are obtained. Then, the DQ method is employed to discretize the resulting equations in the axial directions. The fast convergence behavior of the method is demonstrated and its accuracy is verified by comparing the results with those of other shell theories obtained using conventional methods and also with those of ANSYS software. In the case of arbitrary laminated shells with simply supported ends, the exact solution is developed for comparison purposes. It is shown that using few DQ grid points, converged accurate solutions are obtained. Less computational efforts of the proposed approach with respect to ANSYS software is shown.

7. Three-Dimensional Assembly Tolerance Analysis Based on the Jacobian-Torsor Statistical Model

Directory of Open Access Journals (Sweden)

Peng Heping

2017-01-01

Full Text Available The unified Jacobian-Torsor model has been developed for deterministic (worst case tolerance analysis. This paper presents a comprehensive model for performing statistical tolerance analysis by integrating the unified Jacobian-Torsor model and Monte Carlo simulation. In this model, an assembly is sub-divided into surfaces, the Small Displacements Torsor (SDT parameters are used to express the relative position between any two surfaces of the assembly. Then, 3D dimension-chain can be created by using a surface graph of the assembly and the unified Jacobian-Torsor model is developed based on the effect of each functional element on the whole functional requirements of products. Finally, Monte Carlo simulation is implemented for the statistical tolerance analysis. A numerical example is given to demonstrate the capability of the proposed method in handling three-dimensional assembly tolerance analysis.

8. A computer-based biomechanical analysis of the three-dimensional motion of cementless hip prostheses.

Science.gov (United States)

Gilbert, J L; Bloomfeld, R S; Lautenschlager, E P; Wixson, R L

1992-04-01

A computer-based mathematical technique was developed to measure and completely describe the migration and micromotion of a femoral hip prosthesis relative to the femur. This technique utilized the mechanics of rigid-body motion analysis and apparatus of seven linear displacement transducers to measure and describe the complete three-dimensional motion of the prosthesis during cyclic loading. Computer acquisition of the data and custom analysis software allowed one to calculate the magnitude and direction of the motion of any point of interest on the prostheses from information about the motion of two points on the device. The data were also used to replay the tests using a computer animation technique, which allowed a magnified view of the three-dimensional motion of the prosthesis. This paper describes the mathematical development of the rigid-body motion analysis, the experimental method and apparatus for data collection, the technique used to animate the motion, the sources of error and the effect of the assumptions (rigid bodies) on the results. Selected results of individual test runs of uncemented and cemented prostheses are presented to demonstrate the efficacy of the method. The combined effect of the vibration and electrical noise resulted in a resolution of the system of about 3-5 microns motion for each transducer. Deformation effects appear to contribute about 3-15 microns to the measurement error. This measurement and analysis technique is a very sensitive and powerful means of assessing the effects of different design parameters on the migration and micromotion of total joint prostheses and can be applied to any other case (knee, dental implant) where three-dimensional relative motion between two bodies is important.

9. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

Science.gov (United States)

Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

2014-01-01

Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

10. Transient analysis of cutoff waveguide antenna in three-dimensional space

International Nuclear Information System (INIS)

Kashiwa, Tatsuya; Yoshida, Norinobu; Fukai, Ichiro

1986-01-01

Recently, the exciting system for electric power heating as seen in nuclear fusion plasma heating and medical purpose has been actively studied and developed. Since such system treats basically a neighborhood field, various problems unlike conventional exciting system for communication arise. In such situation, the structure having the waveguides of simple and robust construction as the main body has been proposed. In this exciting system including the condition of media, the complex distribution of a neighborhood field based on a three-dimensional structure exerts an important effect on the characteristics. Especially in large power excitation, the higher mode of relatively small power distribution cannot be neglected. Besides, also a transient field distribution exerts an important effect on the characteristics, and the time response analysis is required. In this analysis, by the three-dimensional time response analysis method using Bergeron method, the unified analysis of the total system comprising a cutoff waveguide, a coaxial exciting part and a heating region was carried out for determining a radiation neighborhood electromagnetic field by a cutoff waveguide antenna. (Kako, I.)

11. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

Science.gov (United States)

A Rashid, Ahmad Safuan; Ali, Nazri

2014-01-01

Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

12. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

Directory of Open Access Journals (Sweden)

Roohollah Kalatehjari

2014-01-01

Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

13. Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data, Phase II

Data.gov (United States)

National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) empirical mode decomposition (EMD) analysis was applied to NASA's Gravity Recovery and Climate Experiment (GRACE)...

14. Dissecting high-dimensional phenotypes with bayesian sparse factor analysis of genetic covariance matrices.

Science.gov (United States)

Runcie, Daniel E; Mukherjee, Sayan

2013-07-01

Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, classical analytical techniques are poorly suited to quantitative genetic studies of gene expression where the number of traits assayed per individual can reach many thousand. Here, we derive a Bayesian genetic sparse factor model for estimating the genetic covariance matrix (G-matrix) of high-dimensional traits, such as gene expression, in a mixed-effects model. The key idea of our model is that we need consider only G-matrices that are biologically plausible. An organism's entire phenotype is the result of processes that are modular and have limited complexity. This implies that the G-matrix will be highly structured. In particular, we assume that a limited number of intermediate traits (or factors, e.g., variations in development or physiology) control the variation in the high-dimensional phenotype, and that each of these intermediate traits is sparse - affecting only a few observed traits. The advantages of this approach are twofold. First, sparse factors are interpretable and provide biological insight into mechanisms underlying the genetic architecture. Second, enforcing sparsity helps prevent sampling errors from swamping out the true signal in high-dimensional data. We demonstrate the advantages of our model on simulated data and in an analysis of a published Drosophila melanogaster gene expression data set.

15. COBRA/TRAC analysis of two-dimensional thermal-hydraulic behavior in SCTF reflood tests

International Nuclear Information System (INIS)

Iwamura, Takamichi; Ohnuki, Akira; Sobajima, Makoto; Adachi, Hiromichi

1987-01-01

The effects of radial power distribution and non-uniform upper plenum water accumulation on thermal-hydraulic behavior in the core were observed in the reflood tests with Slab Core Test Facility (SCTF). In order to examine the predictability of these two effects by a multi-dimensional analysis code, the COBRA/TRAC calculations were made. The calculated results indicated that the heat transfer enhancement in high power bundles above quench front was caused by high vapor flow rate in those bundles due to the radial power distribution. On the other hand, the heat transfer degradation in the peripheral bundles under the condition of non-uniform upper plenum water accumulation was caused by the lower flow rates of vapor and entrained liquid above the quench front in those bundles by the reason that vapor concentrated in the center bundles due to the cross flow induced by the horizontal pressure gradient in the core. The above-mentioned two-dimensional heat transfer behaviors calculated with the COBRA/TRAC code is similar to those observed in SCTF tests and therefore those calculations are useful to investigate the mechanism of the two-dimensional effects in SCTF reflood tests. (author)

16. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

International Nuclear Information System (INIS)

Raymond, P.; Allaire, G.; Boudsocq, G.

1995-01-01

FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

17. Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method

International Nuclear Information System (INIS)

Park, Jai Hak

2009-01-01

SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook

18. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

Science.gov (United States)

Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

2011-09-01

Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

19. Comparison of two intraoral scanners based on three-dimensional surface analysis

Directory of Open Access Journals (Sweden)

Kyung-Min Lee

2018-02-01

Full Text Available Abstract Background This in vivo study evaluated the difference of two well-known intraoral scanners used in dentistry, namely iTero (Align Technology and TRIOS (3Shape. Methods Thirty-two participants underwent intraoral scans with TRIOS and iTero scanners, as well as conventional alginate impressions. The scans obtained with the two intraoral scanners were compared with each other and were also compared with the corresponding model scans by means of three-dimensional surface analysis. The average differences between the two intraoral scans on the surfaces were evaluated by color-mapping. The average differences in the three-dimensional direction between each intraoral scans and its corresponding model scan were calculated at all points on the surfaces. Results The average differences between the two intraoral scanners were 0.057 mm at the maxilla and 0.069 mm at the mandible. Color histograms showed that local deviations between the two scanners occurred in the posterior area. As for difference in the three-dimensional direction, there was no statistically significant difference between two scanners. Conclusions Although there were some deviations in visible inspection, there was no statistical significance between the two intraoral scanners.

20. Model - including thermal creep effects - for the analysis of three-dimensional concrete structures

International Nuclear Information System (INIS)

Rodriguez, C.; Rebora, B.; Favrod, J.D.

1979-01-01

This article presents the most recent developments and results of research carried out by IPEN to establish a mathematical model for the non-linear rheological three-dimensional analysis of massive prestressed concrete structures. The main point of these latest developments is the simulation of the creep of concrete submitted to high temperatures over a long period of time. This research, financed by the Swiss National Science Foundation, has taken an increased importance with the advent of nuclear reactor vessels of the HHT type and new conceptions concerning the cooling of their concrete (replacement of the thermal insulation by a zone of hot concrete). (orig.)

1. Two dimensional analysis of MHD generator by means of equivalent circuit

International Nuclear Information System (INIS)

Yoshida, Masaharu; Umoto, Juro

1975-01-01

The authors report on the method analyzing generally the MHD generator by means of the equivalent circuit including the negative resistance. At first, they divide the duct space into many space elements, and for each space element they derive the fundamental equivalent four-terminal circuit which satisfies the two-dimensional Ohm's law. Next, they make an attempt to apply the equivalent circuits to the typical MHD generators such as diagonal, Faraday and Hall generators considering the boundary layer in the duct and the wall leakage current. Using their analysis, the current density, Joul's heat, generated and output electrical powers, electrical efficiency etc. in the generator can be fairly easily calculated. (auth.)

2. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

Energy Technology Data Exchange (ETDEWEB)

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

2009-01-01

This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

3. Development of a calculation method for one dimensional kinetic analysis in fission reactors, with feedback effects

International Nuclear Information System (INIS)

Paixao, S.B.

1985-01-01

The methodology used in the WIGLE3 computer code is studied. This methodology has been applied for the steady-state and transient solutions of the one-dimensional, two-group, diffusion equations in slab geometry, in axial type probelm analysis. It's also studied, based in a WIGLE3 computer code, reactor representative models, considering non-boiling heat transfer. A steady-state program for control rod bank position search- CITER 1D- has been developed. Some criticality research on the proposed system has been done using different control rod bank initial positions, time steps and convergence parameters. (E.G.) [pt

4. Symmetrical analysis of the defect level splitting in two-dimensional photonic crystals

International Nuclear Information System (INIS)

Malkova, N; Kim, S; Gopalan, V

2003-01-01

In this paper doubly degenerate defect states in the band gap of the two-dimensional photonic crystal are studied. These states can be split by a convenient distortion of the lattice. Through analogy with the Jahn-Teller effect in solids, we present a group theoretical analysis of the lifting of the degeneracy of doubly degenerate states in a square lattice by different vibronic modes. The effect is supported by the supercell plane-wave model and by the finite difference time domain technique. We suggest ways for using the effect in photonic switching devices and waveguides

5. A large-dimensional factor analysis of the Federal Reserve's large-scale asset purchases

DEFF Research Database (Denmark)

Bork, Lasse

This paper assesses the economy-wide effects of US unconventional monetary policy shocks. A precise identification of the unconventional monetary policy shocks is achieved by imposing zero and sign restrictions on a number of impulse responses from a large-dimensional dynamic factor model....... In particular, an unconventional expansionary monetary policy shock is identified as a shock that increases the Federal Reserve's market share of US treasuries and mortgage-backed securities, and leads to an improvement in the real economy and improved credit conditions. I find that an unconventional monetary...... securities by the Federal Reserve Bank avoided a severe downturn according to estimates from a counterfactual analysis....

6. Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat

Science.gov (United States)

Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi

2010-07-01

Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.

7. A method for three-dimensional structural analysis of reinforced concrete containment

International Nuclear Information System (INIS)

Kulak, R.F.; Fiala, C.

1989-01-01

A finite element method designed to assist reactor safety analysts in the three-dimensional numerical simulation of reinforced concrete containments to normal and off-normal mechanical loadings is presented. The development of a lined reinforced concrete plate element is described in detail, and the implementation of an empirical transverse shear failure criteria is discussed. The method is applied to the analysis of a 1/6th scale reinforced concrete containment model subjected to static internal pressurization. 11 refs., 14 figs., 1 tab

8. Performance of dental impression materials: Benchmarking of materials and techniques by three-dimensional analysis.

Science.gov (United States)

Rudolph, Heike; Graf, Michael R S; Kuhn, Katharina; Rupf-Köhler, Stephanie; Eirich, Alfred; Edelmann, Cornelia; Quaas, Sebastian; Luthardt, Ralph G

2015-01-01

Among other factors, the precision of dental impressions is an important and determining factor for the fit of dental restorations. The aim of this study was to examine the three-dimensional (3D) precision of gypsum dies made using a range of impression techniques and materials. Ten impressions of a steel canine were fabricated for each of the 24 material-method-combinations and poured with type 4 die stone. The dies were optically digitized, aligned to the CAD model of the steel canine, and 3D differences were calculated. The results were statistically analyzed using one-way analysis of variance. Depending on material and impression technique, the mean values had a range between +10.9/-10.0 µm (SD 2.8/2.3) and +16.5/-23.5 µm (SD 11.8/18.8). Qualitative analysis using colorcoded graphs showed a characteristic location of deviations for different impression techniques. Three-dimensional analysis provided a comprehensive picture of the achievable precision. Processing aspects and impression technique were of significant influence.

9. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis

Science.gov (United States)

Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.

2016-01-01

Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification. PMID:27224653

10. Evaluating two-dimensional skeletal structure parameters using radiological bone morphometric analysis

International Nuclear Information System (INIS)

Asa, Kensuke; Sakurai, Takashi; Kashima, Isamu; Kumasaka, Satsuki

2005-01-01

The objectives of this study was to investigate the reliability of two-dimensional (2D) skeletal structure parameters obtained using radiological bone morphometric analysis. The 2D skeletal parameters in the regions of interest (ROIs) were measured on computed radiography (CR) images of first phalanges from racehorses, using radiological bone morphometric analysis. Cancellous bone blocks were made from the phalanges in the same position as the ROI determined on CR images. Three-dimensional (3D) trabecular parameters were measured using micro-computed tomography (μCT). The correlations between the 2D skeletal parameters and 3D trabecular parameters were evaluated in relation to the measured bone strength. The following 2D skeletal structure parameters were correlated with bone strength (r=0.61-0.69): skeletal perimeter (Sk.Pm), skeletal number (Sk.N), skeletal separation (Sk.Sp), skeletal spacing (Sk.Spac), fractal dimension (FD), and skeletal pattern factor (SkPf). The 3D trabecular structure parameters were closely correlated with bone strength (r=0.74-0.86). The 2D skeletal parameters Sk.N, Sk.Pm, FD, SkPf, and Sk.Spac were correlated with the 3D trabecular parameters (r=0.61-0.70). The 2D skeletal parameters obtained using radiological bone morphometric analysis may be useful indicators of trabecular strength. (author)

11. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

Science.gov (United States)

Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng

2012-12-01

This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.

12. Stability analysis of nonlinear Roesser-type two-dimensional systems via a homogenous polynomial technique

International Nuclear Information System (INIS)

Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng

2012-01-01

This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)

13. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

KAUST Repository

Ting, Chee-Ming

2017-05-18

In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatio-temporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the signals in each cluster by a small number of latent factors. The correlation matrix for all nodes in the network are approximated by lower-dimensional sub-structures derived from the cluster-specific factors. To estimate regional connectivity between numerous nodes (within each cluster), we apply principal components analysis (PCA) to produce factors which are derived as the optimal reconstruction of the observed signals under the squared loss. Then, we estimate global connectivity (between clusters or sub-networks) based on the factors across regions using the RV-coefficient as the cross-dependence measure. This gives a reliable and computationally efficient multi-scale analysis of both regional and global dependencies of the large networks. The proposed novel approach is applied to estimate brain connectivity networks using functional magnetic resonance imaging (fMRI) data. Results on resting-state fMRI reveal interesting modular and hierarchical organization of human brain networks during rest.

14. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

Science.gov (United States)

Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B

2016-01-01

Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; ptalent identification.

15. Reduction of the dimensionality and comparative analysis of multivariate radiological data

International Nuclear Information System (INIS)

Seddeek, M.K.; Kozae, A.M.; Sharshar, T.; Badran, H.M.

2009-01-01

Computational methods were used to reduce the dimensionality and to find clusters of multivariate data. The variables were the natural radioactivity contents and the texture characteristics of sand samples. The application of discriminate analysis revealed that samples with high negative values of the former score have the highest contamination with black sand. Principal component analysis (PCA) revealed that radioactivity concentrations alone are sufficient for the classification. Rough set analysis (RSA) showed that the concentration of 238 U, 226 Ra or 232 Th, combined with the concentration of 40 K, can specify the clusters and characteristics of the sand. Both PCA and RSA show that 238 U, 226 Ra and 232 Th behave similarly. RSA revealed that one or two of them can be omitted without degrading predictions.

16. A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis

DEFF Research Database (Denmark)

Abrahamsen, Trine Julie; Hansen, Lars Kai

2011-01-01

Small sample high-dimensional principal component analysis (PCA) suffers from variance inflation and lack of generalizability. It has earlier been pointed out that a simple leave-one-out variance renormalization scheme can cure the problem. In this paper we generalize the cure in two directions......: First, we propose a computationally less intensive approximate leave-one-out estimator, secondly, we show that variance inflation is also present in kernel principal component analysis (kPCA) and we provide a non-parametric renormalization scheme which can quite efficiently restore generalizability in kPCA....... As for PCA our analysis also suggests a simplified approximate expression. © 2011 Trine J. Abrahamsen and Lars K. Hansen....

17. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

Energy Technology Data Exchange (ETDEWEB)

2016-12-01

In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.

18. A three-dimensional rupture analysis of steel liners anchored to concrete pressure and containment vessels

International Nuclear Information System (INIS)

Bangash, Y.

1987-01-01

Steel liners or plates are anchored to concrete pressure and containment vessels for nuclear and offshore facilities. Due to extreme loading conditions a liner may buckle due to the pull-out or shearing of anchors from the base metal and concrete. Under certain conditions attributed to loadings, liner metal deterioration and cracking of concrete behind the liner, the liner may fail by rupture. This paper presents a three-dimensional analysis of steel-concrete elements, using finite elements analysis in which a provision is made for liner instability, anchor strength and stiffness, concrete cracking and finally liner rupture. The analysis is tested first on an octagonal slab with and without an anchored steel liner. It is then extended to concrete pressure and containment vessels. The analytical results obtained are compared well with those available from the experimental tests and other sources. (author)

19. Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.

Directory of Open Access Journals (Sweden)

Kevin Till

Full Text Available Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional. Players were blindly and randomly divided into an exploratory (n = 165 and validation dataset (n = 92. The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001, although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003. Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.

20. Multi-dimensional Analysis for SLB Transient in ATLAS Facility as Activity of DSP (Domestic Standard Problem)

International Nuclear Information System (INIS)

Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y.; Sung, H. J.; Hwang, M. J.; Kang, D. H.; Lim, S. G.; Jun, S. S.

2015-01-01

Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components

1. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

Science.gov (United States)

Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

2016-01-01

Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering

2. Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.

Science.gov (United States)

Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J

2011-11-01

Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.

3. Present state and future of CFD based on three-dimensional RANS analysis

International Nuclear Information System (INIS)

Kim, Kwang Yong

2004-01-01

Computational Fluid Dynamics (CFD) based on Navier-Stokes equations has been developed rapidly for several decades with the developments of high speed computers and numerical algorithms, and presently is regarded as an essential analysis tool in the engineering applications containing fluid flow and convective heat transfer. It is known that for turbulent flow the Navier-Stokes equations can be calculated precisely by Direct Numerical Simulation (DNS). However, DNS needs huge computing time even for simple low-Reynolds number flows, and thus is not practical. Large Eddy Simulation (LES) can be an alternative. But, LES also needs considerable computing time for the analysis of engineering flows, and have some problem in the methods. Therefore, the analysis methods using Reynolds-averaged Navier-stokes equations (RANS) and turbulence closure models are still regarded as the major techniques for the analysis of turbulent flows in spite of the inaccuracy of the prediction. In this presentation, the present state and the prospect of CFD based on three-dimensional RANS analysis are introduced for physical models and numerical algorithms with the engineering examples. Especially, for the analysis of two-phase flows in nuclear reactor, the recently developed techniques are also introduced. And, the presentation includes the methods of design optimization using RANS analysis and numerical optimization techniques with variety of the applications

4. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

International Nuclear Information System (INIS)

Yu, L.; Batlle, F.

2011-01-01

Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that

5. Two-dimensional cross-section and SED uncertainty analysis for the Fusion Engineering Device (FED)

International Nuclear Information System (INIS)

Embrechts, M.J.; Urban, W.T.; Dudziak, D.J.

1982-01-01

The theory of two-dimensional cross-section and secondary-energy-distribution (SED) sensitivity was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. Analyses of the Fusion Engineering Design (FED) conceptual inboard shield indicate that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. The more complex the geometry, the more compulsory a 2-D analysis becomes. Specific results show that the uncertainty for the integral heating of the toroidal field (TF) coil for the FED is 114.6%. The main contributors to the cross-section uncertainty are chromium and iron. Contributions to the total uncertainty were smaller for nickel, copper, hydrogen and carbon. All analyses were performed with the Los Alamos 42-group cross-section library generated from ENDF/B-V data, and the COVFILS covariance matrix library. The large uncertainties due to chromium result mainly from large convariances for the chromium total and elastic scattering cross sections

6. Sensitivity analysis using two-dimensional models of the Whiteshell geosphere

Energy Technology Data Exchange (ETDEWEB)

Scheier, N. W.; Chan, T.; Stanchell, F. W.

1992-12-01

As part of the assessment of the environmental impact of disposing of immobilized nuclear fuel waste in a vault deep within plutonic rock, detailed modelling of groundwater flow, heat transport and containment transport through the geosphere is being performed using the MOTIF finite-element computer code. The first geosphere model is being developed using data from the Whiteshell Research Area, with a hypothetical disposal vault at a depth of 500 m. This report briefly describes the conceptual model and then describes in detail the two-dimensional simulations used to help initially define an adequate three-dimensional representation, select a suitable form for the simplified model to be used in the overall systems assessment with the SYVAC computer code, and perform some sensitivity analysis. The sensitivity analysis considers variations in the rock layer properties, variations in fracture zone configurations, the impact of grouting a vault/fracture zone intersection, and variations in boundary conditions. This study shows that the configuration of major fracture zones can have a major influence on groundwater flow patterns. The flows in the major fracture zones can have high velocities and large volumes. The proximity of the radionuclide source to a major fracture zone may strongly influence the time it takes for a radionuclide to be transported to the surface. (auth)

7. Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine

Science.gov (United States)

Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.

1991-01-01

8. Three-dimensional analysis of a vacuum window connected to waveguide

International Nuclear Information System (INIS)

Nakatsuka, H.; Yoshida, N.

1988-01-01

Recently, as the experimental tokamak-type system for nuclear fusion has become larger, the additional heating system by microwave power has become more and more important. In this heating system the pillbox-type vacuum window is arranged for isolation, but discharge by local concentration of the electric field and destruction by local heating in this window are becoming serious problems. So far designing the system of the vacuum window and deciding on the matching condition, it is indispensable to know exactly the characteristics of the electromagnetic field. But the electromagnetic field inside such a system is very complicated because of its three-dimensional structure with various medium conditions. For the analysis of this complicated field numerical methods are generally known to be useful. The analysis by Bergeron's method has been shown to be effective for problems of this type involving complex boundary and medium conditions in three-dimensional space. In this paper, the authors show Bergeron's formulation of the pillbox-type vacuum window system and the fundamental characteristics of the electromagnetic field within this system. For an effective additional heating system in the experimental tokamak-type system the pillbox-type vacuum window is proposed to isolate each part. In this paper, the authors describe Bergeron's formulation of the pillbox-type vacuum window connected to cylindrical waveguides and show the fundamental characteristics of the electromagnetic field within this system

9. Registration and three-dimensional reconstruction of autoradiographic images by the disparity analysis method

International Nuclear Information System (INIS)

Zhao, Weizhao; Ginsberg, M.; Young, T.Y.

1993-01-01

Quantitative autoradiography is a powerful radio-isotopic-imaging method for neuroscientists to study local cerebral blood flow and glucose-metabolic rate at rest, in response to physiologic activation of the visual, auditory, somatosensory, and motor systems, and in pathologic conditions. Most autoradiographic studies analyze glucose utilization and blood flow in two-dimensional (2-D) coronal sections. With modern digital computer and image-processing techniques, a large number of closely spaced coronal sections can be stacked appropriately to form a three-dimensional (3-d) image. 3-D autoradiography allows investigators to observe cerebral sections and surfaces from any viewing angle. A fundamental problem in 3-D reconstruction is the alignment (registration) of the coronal sections. A new alignment method based on disparity analysis is presented which can overcome many of the difficulties encountered by previous methods. The disparity analysis method can deal with asymmetric, damaged, or tilted coronal sections under the same general framework, and it can be used to match coronal sections of different sizes and shapes. Experimental results on alignment and 3-D reconstruction are presented

10. Efficient analysis of three dimensional EUV mask induced imaging artifacts using the waveguide decomposition method

Science.gov (United States)

Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas

2009-10-01

This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.

11. An educationally inspired illustration of two-dimensional Quantitative Microbiological Risk Assessment (QMRA) and sensitivity analysis.

Science.gov (United States)

Vásquez, G A; Busschaert, P; Haberbeck, L U; Uyttendaele, M; Geeraerd, A H

2014-11-03

Quantitative Microbiological Risk Assessment (QMRA) is a structured methodology used to assess the risk involved by ingestion of a pathogen. It applies mathematical models combined with an accurate exploitation of data sets, represented by distributions and - in the case of two-dimensional Monte Carlo simulations - their hyperparameters. This research aims to highlight background information, assumptions and truncations of a two-dimensional QMRA and advanced sensitivity analysis. We believe that such a detailed listing is not always clearly presented in actual risk assessment studies, while it is essential to ensure reliable and realistic simulations and interpretations. As a case-study, we are considering the occurrence of listeriosis in smoked fish products in Belgium during the period 2008-2009, using two-dimensional Monte Carlo and two sensitivity analysis methods (Spearman correlation and Sobol sensitivity indices) to estimate the most relevant factors of the final risk estimate. A risk estimate of 0.018% per consumption of contaminated smoked fish by an immunocompromised person was obtained. The final estimate of listeriosis cases (23) is within the actual reported result obtained for the same period and for the same population. Variability on the final risk estimate is determined by the variability regarding (i) consumer refrigerator temperatures, (ii) the reference growth rate of L. monocytogenes, (iii) the minimum growth temperature of L. monocytogenes and (iv) consumer portion size. Variability regarding the initial contamination level of L. monocytogenes tends to appear as a determinant of risk variability only when the minimum growth temperature is not included in the sensitivity analysis; when it is included the impact regarding the variability on the initial contamination level of L. monocytogenes is disappearing. Uncertainty determinants of the final risk indicated the need of gathering more information on the reference growth rate and the minimum

12. Three-dimensional architectural and structural analysis--a transition in concept and design from Delaire's cephalometric analysis.

Science.gov (United States)

Lee, S-H; Kil, T-J; Park, K-R; Kim, B C; Kim, J-G; Piao, Z; Corre, P

2014-09-01

The aim of this study was to present a systematic sequence for three-dimensional (3D) measurement and cephalometry, provide the norm data for computed tomography-based 3D architectural and structural cephalometric analysis, and validate the 3D data through comparison with Delaire's two-dimensional (2D) lateral cephalometric data for the same Korean adults. 2D and 3D cephalometric analyses were performed for 27 healthy subjects and the measurements of both analyses were then individually and comparatively analyzed. Essential diagnostic tools for 3D cephalometry with modified definitions of the points, planes, and measurements were set up based on a review of the conceptual differences between two and three dimensions. Some 2D and 3D analysis results were similar, though significant differences were found with regard to craniofacial angle (C1-F1), incisal axis angles, cranial base length (C2), and cranial height (C3). The discrepancy in C2 and C3 appeared to be directly related to the magnification of 2D cephalometric images. Considering measurement discrepancies between 2D and 3D Delaire's analyses due to differences in concept and design, 3D architectural and structural analysis needs to be conducted based on norms and a sound 3D basis for the sake of its accurate application and widespread adoption. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

13. Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography

International Nuclear Information System (INIS)

Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi

2011-01-01

Based on the molecular architecture revealed by electron cryo-tomography, the mechanism of the bending motion of eukaryotic flagella/cilia is discussed. Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed

14. Three dimensional computational fluid dynamic analysis of debris transport under emergency cooling water recirculation

International Nuclear Information System (INIS)

Park, Jong Woon

2010-01-01

This paper provides a computational fluid dynamic (CFD) analysis method on the evaluation of debris transport under emergency recirculation mode after loss of coolant accident of a nuclear power plant. Three dimensional reactor building floor geometrical model is constructed including flow obstacles larger than 6 inches such as mechanical components and equipments and considering various inlet flow paths from the upper reactor building such as break and spray flow. In the modeling of the inlet flows from the upper floors, effect of gravitational force was also reflected. For the precision of the analysis, 3 millions of tetrahedral-shaped meshes were generated. Reference calculation showed physically reasonable results. Sensitivity studies for mesh type and turbulence model showed very similar results to the reference case. This study provides useful information on the application of CFD to the evaluation of debris transport fraction for the design of new emergency sump filters. (orig.)

15. Prediction of axial limit capacity of stone columns using dimensional analysis

Science.gov (United States)

Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

2017-08-01

Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

16. [Recent advances in analysis of petroleum geological samples by comprehensive two-dimensional gas chromatography].

Science.gov (United States)

Gao, Xuanbo; Chang, Zhenyang; Dai, Wei; Tong, Ting; Zhang, Wanfeng; He, Sheng; Zhu, Shukui

2014-10-01

Abundant geochemical information can be acquired by analyzing the chemical compositions of petroleum geological samples. The information obtained from the analysis provides scientifical evidences for petroleum exploration. However, these samples are complicated and can be easily influenced by physical (e. g. evaporation, emulsification, natural dispersion, dissolution and sorption), chemical (photodegradation) and biological (mainly microbial degradation) weathering processes. Therefore, it is very difficult to analyze the petroleum geological samples and they cannot be effectively separated by traditional gas chromatography/mass spectrometry. A newly developed separation technique, comprehensive two-dimensional gas chromatography (GC x GC), has unique advantages in complex sample analysis, and recently it has been applied to petroleum geological samples. This article mainly reviews the research progres- ses in the last five years, the main problems and the future research about GC x GC applied in the area of petroleum geology.

17. Using FDFD Technique in Two-Dimensional TE Analysis for Modeling Clutter in Wall Penetrating Radar

Directory of Open Access Journals (Sweden)

David Insana

2014-01-01

Full Text Available Finite difference frequency domain (FDFD computational electromagnetic modeling is implemented to perform a two-dimensional TEz analysis for the application of wall penetrating radar (WPR. Resolving small targets of interest, embedded in a strong clutter environment of unknown configuration, is difficult. Field interaction between clutter elements will dominate the received fields back-scattered from the scene. Removing the effects of clutter ultimately relies on the accuracy of the model. Analysis starts with a simple model that continues to build based on the dominant scattering features of the scene. FDFD provides a steady state frequency response to a discrete excitation. Taking the fast Fourier transform of the wideband response of the scene, at several external transmit/receive locations, produces 2D images of the clutter, which are used to mature the model.

18. Three-dimensional rail cooling analysis for a repetitively fired railgun

International Nuclear Information System (INIS)

Liu, H.P.

1991-01-01

This paper reports on a three-dimensional (3-D) rail cooling analysis for fabrication and demonstration of a stand-alone repetitive fire compulsator driven 9 MJ gun system which has been performed to assure the entire rail can be maintained below its thermal limit for multiple shots. The 3-D rail thermal model can predict the temperature, pressure, and convective heat transfer coefficient variations of the coolant along the 10 m long copper rail. The 9-MJ projectiles will be fired every 20 s for 3 min. Water cooling was used in the model for its high cooling capacity. Single liquid phase heat transfer was assumed in the cooling analysis. For multiple shots, the temperature difference between the rail and the water was enhanced due to accumulated heat in the rail. As a result, the heat removal by water increased from shot-to-shot. The rail temperature initially increased and finally stabilized after a number of shots

19. Three-dimensional analysis for piled raft machine foundation embedded in sand

Directory of Open Access Journals (Sweden)

Mahmood Mahmood

2018-01-01

Full Text Available Three-dimensional analysis for the dynamic response of a piled raft foundation subjected to vertical vibration is presented in this study. The analysis considers several factors affecting the amplitude of displacement for deep foundation such as pile cap embedment, pile cap thickness, relative density of the sand and the boundary effect. A validation for an experimental piled raft model depending on a scale factor of (20 using at (Plaxis 3D computer program was performed. The sand is simulated using Mohr-Coloumb model while the concrete is simulated as linear elastic material. It has been found that embedding the pile cap in the soil and increasing its thickness lead to decrease the maximum amplitude of displacement. Furthermore, the predictions showed that increasing the distance between the foundation and the boundaries and increasing the relative density of the sand can significantly minimize the dynamic response of the foundation.

20. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

Science.gov (United States)

Dai, Xiao-Lin

2014-04-01

This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.

1. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

Science.gov (United States)

Bo, Z.; Chen, J. H.

2010-02-01

The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

2. Further studies on stability analysis of nonlinear Roesser-type two-dimensional systems

International Nuclear Information System (INIS)

Dai Xiao-Lin

2014-01-01

This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi–Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result. (general)

3. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

International Nuclear Information System (INIS)

Bo, Z; Chen, J H

2010-01-01

The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

4. Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry

International Nuclear Information System (INIS)

Rosa, M.; Warsa, J. S.; Kelley, T. M.

2009-01-01

A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete ordinates (S N ) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (BJ) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to 0. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to 1. (authors)

5. Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies

Directory of Open Access Journals (Sweden)

Manan Singh

2016-11-01

Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.

6. International Conference on Finite or Infinite Dimensional Complex Analysis and Applications

CERN Document Server

Tutschke, W; Yang, C

2004-01-01

There is almost no field in Mathematics which does not use Mathe­ matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam....

7. Therapeutic effect analysis of three dimensional conformal radiotherapy non-small cell lung cancer

International Nuclear Information System (INIS)

Yao Zhijun; Cao Yongzhen; Zhang Wenxue; Liang Feng

2012-01-01

Objective: To analyse the treatment effect of non-small cell lung cancer of three dimensional conformal radiotherapy (3D-CRT) and to study the effect of patient survival related factors. Methods: Retrospective analysis was mack for 136 cases of non-small cell lung cancer, all accept 3D-CRT, through the case data collection and long-term follow-up, using the single factor and multiple factor analysis survival time and its influencing factors. Results: The recent curative effects of 136 cases of patients with three dimensional conformal radiotherapy: Complete response (CR) 14.7% (20/136), partial response (PR) 60.3 (82/136), stable disease(SD) 19.9% (27/136), progression disease (PD) 5.1% (7/136), total effective rate is 75% (102/136). One, two, three, five year survival rate is 79.4%, 45.4%, 22.1%, 12.5%. Side effects: Class 1 radiated esophagitis 35 cases, Class 2 radiated esophagitis 16 cases, Class 3 and above radiated esophagitis 0 case. Class I radiated pneumonia 20 cases, Class 2 radiated pneumonia 9 cases, Class 3 radiated pneumonia 0 case. Single factor analysis shows the influence of gender, age, pathology, phase, dose, and first-phase curative effect to the survival time are of a statistical significance, Multiple factor analysis showed KPS score, phase, dose, first-phase curative effect are the survival time independent factors. Conclusion: 3D-CRT for patients with non-small cell lung carcinoma is a safe, effective treatment method, Side effects are relatively low, and the patients survival time is long after radiotherapy. (authors)

8. Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation by geometric approach

Science.gov (United States)

Ray, S. Saha

2018-04-01

In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.

9. Two-dimensional over-all neutronics analysis of the ITER device

Science.gov (United States)

Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi

1993-07-01

The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.

10. Two-dimensional over-all neutronics analysis of the ITER device

International Nuclear Information System (INIS)

Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi.

1993-07-01

The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR) and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li 2 O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No.5 and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design. (author)

11. Confirmatory factor analysis of the Multi-dimensional Emotional Empathy Scale in the South African context

Directory of Open Access Journals (Sweden)

Chantal Olckers

2010-11-01

Full Text Available Orientation: Empathy is a core competency in aiding individuals to address the challenges of social living. An indicator of emotional intelligence, it is useful in a globalising and cosmopolitan world. Moreover, managing staff, stakeholders and conflict in many social settings relies on communicative skills, of which empathy forms a large part. Empathy plays a pivotal role in negotiating, persuading and influencing behaviour. The skill of being able to empathise thus enables the possessor to attune to the needs of clients and employees and provides opportunities to become responsive to these needs. Research purpose: This study attempted to determine the construct validity of the Multi-dimensional Emotional Empathy Scale within the South African context. Motivation for the study: In South Africa, a large number of psychometrical instruments have been adopted directly from abroad. Studies determining the construct validity of several of these imported instruments, however, have shown that these instruments are not suited for use in the South African context. Research design, approach and method: The study was based on a quantitative research method with a survey design. A convenience sample of 212 respondents completed the Multi-dimensional Emotional Empathy Scale. The constructs explored were Suffering, Positive Sharing, Responsive Crying, Emotional Attention, a Feel for Others and Emotional Contagion. The statistical procedure used was a confirmatory factor analysis. Main findings: The study showed that, from a South African perspective, the Multi-dimensional Emotional Empathy Scale lacks sufficient construct validity. Practical/managerial implications: Further refinement of the model would provide valuable information that would aid people to be more appreciative of individual contributions, to meet client needs and to understand the motivations of others. Contribution/value-add: From a South African perspective, the findings of this study are

12. Exploration of High-Dimensional Scalar Function for Nuclear Reactor Safety Analysis and Visualization

Energy Technology Data Exchange (ETDEWEB)

Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev

2013-05-01

The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.

13. Three-dimensional analysis of facial morphology in Brazilian population with Caucasian, Asian, and Black ethnicity

Directory of Open Access Journals (Sweden)

Ana Maria Bettoni Rodrigues da Silva

2017-01-01

Full Text Available Aim: To compare facial features related to the nose, lips and face between the Caucasian, Asian, and Black ethnicity in the Brazilian population by means of linear measurements and proportion indices obtained from the analysis of three-dimensional (3D images taken by 3D stereophotogrammetry. Materials and Methods: Thirty healthy subjects, being 10 Caucasians, 10 Blacks and 10 Asians had reference points (landmarks demarcated on their faces, 3D images were obtained (Vectra M3 and the following measurements were calculated: Facial proportion indices relative to the nose, lips and face. The statistical analysis was performed comparing the ethnic groups (one-way analysis of variance. Results: The Blacks and Asians showed the greatest difference in the face analysis (width, height of the lower face, upper face index and lower face index – P < 0.05. In the comparisons between groups, differences were verified to the mouth width and lower lip vermilion height. In the nose analysis, the biggest differences were obtained for the proportion indices, being that Caucasians versus Asians and Caucasians versus Blacks have showed the largest differences. Conclusion: This study found the presence of some similarities in the proportion indices of nose, lips and face between the ethnic groups of the Brazilian population, as well as some important differences that should be known to guide surgical and forensics procedures, among others.

14. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

Science.gov (United States)

Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

2013-01-21

A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

15. Analysis of Phenix End-of-Life asymmetry test with multi-dimensional pool modeling of MARS-LMR code

International Nuclear Information System (INIS)

Jeong, H.-Y.; Ha, K.-S.; Choi, C.-W.; Park, M.-G.

2015-01-01

Highlights: • Pool behaviors under asymmetrical condition in an SFR were evaluated with MARS-LMR. • The Phenix asymmetry test was analyzed one-dimensionally and multi-dimensionally. • One-dimensional modeling has limitation to predict the cold pool temperature. • Multi-dimensional modeling shows improved prediction of stratification and mixing. - Abstract: The understanding of complicated pool behaviors and its modeling is essential for the design and safety analysis of a pool-type Sodium-cooled Fast Reactor. One of the remarkable recent efforts on the study of pool thermal–hydraulic behaviors is the asymmetrical test performed as a part of Phenix End-of-Life tests by the CEA. To evaluate the performance of MARS-LMR code, which is a key system analysis tool for the design of an SFR in Korea, in the prediction of thermal hydraulic behaviors during an asymmetrical condition, the Phenix asymmetry test is analyzed with MARS-LMR in the present study. Pool regions are modeled with two different approaches, one-dimensional modeling and multi-dimensional one, and the prediction results are analyzed to identify the appropriateness of each modeling method. The prediction with one-dimensional pool modeling shows a large deviation from the measured data at the early stage of the test, which suggests limitations to describe the complicated thermal–hydraulic phenomena. When the pool regions are modeled multi-dimensionally, the prediction gives improved results quite a bit. This improvement is explained by the enhanced modeling of pool mixing with the multi-dimensional modeling. On the basis of the results from the present study, it is concluded that an accurate modeling of pool thermal–hydraulics is a prerequisite for the evaluation of design performance and safety margin quantification in the future SFR developments

16. Multi-dimensional Analysis Method of Hydrogen Combustion in the Containment of a Nuclear Power Plant

Energy Technology Data Exchange (ETDEWEB)

Kim, Jongtae; Hong, Seongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E and C Co., Seongnam (Korea, Republic of)

2014-05-15

The most severe case is the occurrence of detonation, which induces a few-fold greater pressure load on the containment wall than a deflagration flame. The occurrence of a containment-wise global detonation is prohibited by a national regulation. The compartments located in the flow path such as steam generator compartment, annular compartment, and dome region are likely to have highly-concentrated hydrogen. If it is found that hydrogen concentration in any compartment is far below a detonation criterion during an accident progression, it can be thought that the occurrence of a detonative explosion in a compartment is excluded. However, if it is not, it is necessary to evaluate the characteristics of flame acceleration in the containment. The possibility of a flame transition from a deflagration to a detonation (DDT) can be evaluated from a calculated hydrogen distribution in a compartment by using sigma-lambda criteria. However, this method can provide a very conservative result because the geometric characteristics of a real compartment are not considered well. In order to evaluate the containment integrity from a threat of a hydrogen explosion, it is necessary to establish an integrated evaluation system, which includes a lumped-parameter and detail analysis methods. In this study, a method for the multi-dimensional analysis of hydrogen combustion is proposed to mechanistically evaluate the flame acceleration characteristics with a geometric effect. The geometry of the containment is modeled 3-dimensionally using a CAD tool. To resolve a propagating flame front, an adaptive mesh refinement method is coupled with a combustion analysis solver.

17. SALT4: a two-dimensional displacement discontinuity code for thermomechanical analysis in bedded salt deposits

International Nuclear Information System (INIS)

1983-04-01

SALT4 is a two-dimensional analytical/displacement-discontinuity code designed to evaluate temperatures, deformation, and stresses associated with underground disposal of radioactive waste in bedded salt. This code was developed by the University of Minnesota. This documentation describes the mathematical equations of the physical system being modeled, the numerical techniques utilized, and the organization of the computer code, SALT4. The SALT4 code takes into account: (1) viscoelastic behavior in the pillars adjacent to excavations; (2) transversely isotropic elastic moduli such as those exhibited by bedded or stratified rock; and (2) excavation sequence. Major advantages of the SALT4 code are: (1) computational efficiency; (2) the small amount of input data required; and (3) a creep law consistent with laboratory experimental data for salt. The main disadvantage is that some of the assumptions in the formulation of SALT4, i.e., temperature-independent material properties, render it unsuitable for canister-scale analysis or analysis of lateral deformation of the pillars. The SALT4 code can be used for parameter sensitivity analyses of two-dimensional, repository-scale, thermal and thermomechanical response in bedded salt during the excavation, operational, and post-closure phases. It is especially useful in evaluating alternative patterns and sequences of excavation or waste canister placement. SALT4 can also be used to verify fully numerical codes. This is similar to the use of analytic solutions for code verification. Although SALT4 was designed for analysis of bedded salt, it is also applicable to crystalline rock if the creep calculation is suppressed. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

18. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

International Nuclear Information System (INIS)

Dunning, M.J.; Haan, S.W.

1995-01-01

Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

19. Sagittal balance in scoliosis associated with Marfan syndrome: a stereoradiographic three-dimensional analysis.

Science.gov (United States)

Glard, Yann; Pomero, Vincent; Collignon, Patrick; Skalli, Wafa; Jouve, Jean-Luc; Bollini, Gérard

2008-03-01

Marfan syndrome (MFS) is a genetic disease often marked by the presence of scoliosis. There is no three-dimensional analysis of the deformity in the literature. Our aim was to determine what kind of sagittal balance defines scoliosis associated with MFS, namely a flexion deformity, as it is in scoliosis associated with Chiari I or an extension deformity, as in adolescent idiopathic scoliosis (AIS). To address this issue, we compared the presence or absence of a thoracic scoliosis with the presence or absence of a segment in extension in the thoracic spine. In our series, 30 patients diagnosed with Marfan syndrome were prospectively included. In each patient, personalized three-dimensional reconstruction from T1 to L5 of the spine was made using stereoradiography. The patients were first separated based on the presence or absence of thoracic scoliosis, in order to compare this with the presence or absence of a segment in extension in the thoracic spine. They were then classified into two groups based on the presence or absence of the segment in extension (meaning containing negative values of inter-vertebral sagittal rotation) in the thoracic spine. Among scoliotic patients with a thoracic scoliosis (17 cases), there were 13 (76.5% cases) with a segment in extension in the thoracic spine and 4 with no segment in extension. Our results showed that scoliosis associated with MFS is somehow original, demonstrating a sagittal balance in extension (as AIS) in about 80% of thoracic curves, but without this characteristic feature in about 20%.

20. Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis

Energy Technology Data Exchange (ETDEWEB)

Nguyen, Hoa T. [Univ. of Utah, Salt Lake City, UT (United States); Stone, Daithi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

2016-01-01

An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different case studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.

1. Positioning accuracy analysis of adjusting target mechanism of three-dimensional attitude

International Nuclear Information System (INIS)

Ma Li; Wang Kun; Sun Linzhi; Zhou Shasha

2012-01-01

A novel adjusting target mechanism of three-dimensional attitude is presented according to the characteristics of the target transport subsystem in inertial confinement fusion (ICF). The mechanism consists of a tangent mechanism adjusting rotation angle and a set of orthogonal tangent mechanism adjusting two-dimensional deflection angles. The structural parameters of the adjusting target mechanism are analyzed according to principle errors, structure errors and motion errors of following. The analysis results indicate that the system error of the adjusting target mechanism is influenced by the displacement of the linear actuators, the actuator ball radius, the working radius of the tangent mechanism, the angle error of the inclined installation hole, the centralization error of the actuators, the orthogonal error of the two tangent mechanism, and the angle errors of the inclined target rod inclined rotation shaft. The errors of the inclined target rod and inclined rotation shaft are the two greatest impact factors, the spherical contact error is the next. By means of precise assembly and control system compensation, the accuracy of the adjusting target mechanism can be less than 0.1 mrad. (authors)

2. Three-dimensional analysis of relationship between relative orientation and motion modes

Directory of Open Access Journals (Sweden)

Fan Shijie

2014-12-01

Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

3. [Analysis of total proteins in the seed of almond (Prunus dulcis) by two-dimensional electrophoresis].

Science.gov (United States)

Li, Dong-dong; He, Shao-heng

2004-07-01

To analyse the total proteins in the seeds of almond (Prunus dulcis), one of the popular ingestent allergens in China, by two-dimensional electrophoresis. The total proteins of the seeds were extracted by trichloracetic acid (TCA) method, and then separated by isoelectric focusing as first dimension and SDS-PAGE as the second dimension. The spots of proteins were visualized by staining with Coomassie Brilliant Blue R-250. After analysis with software (ImageMaster 2D), 188 different proteins were detected. The isoelectric points (pI) for approximately 28% of total proteins were between 4.5-5.5, and the relative molecular mass (M(r)) of approximately 62% total proteins were between (20-25)x10(3). This was the first high-resolution, two-dimensional protein map of the seed of almond (Prunus dulcis) in China. Our finding has laid a solid foundation for further identification, characterization, gene cloning and standardization of allergenic proteins in the seed of almond (Prunus dulcis).

4. Analysis of fracture surface of CFRP material by three-dimensional reconstruction methods

International Nuclear Information System (INIS)

Lobo, Raquel M.; Andrade, Arnaldo H.P.

2009-01-01

Fracture surfaces of CFRP (carbon Fiber Reinforced Polymer) materials, used in the nuclear fuel cycle, presents an elevated roughness, mainly due to the fracture mode known as pulling out, that displays pieces of carbon fibers after debonding between fiber and matrix. The fractographic analysis, by bi-dimensional images is deficient for not considering the so important vertical resolution as much as the horizontal resolution. In this case, the knowledge of this heights distribution that occurs during the breaking, can lead to the calculation of the involved energies in the process that would allows a better agreement on the fracture mechanisms of the composite material. An important solution for the material characterization, whose surface presents a high roughness due to the variation in height, is to reconstruct three-dimensionally these fracture surfaces. In this work, the 3D reconstruction was done by two different methods: the variable focus reconstruction, through a stack of images obtained by optical microscopy (OM) and the parallax reconstruction, carried through with images acquired by scanning electron microscopy (SEM). The results of both methods present an elevation map of the reconstructed image that determine the height of the surface pixel by pixel,. The results obtained by the methods of reconstruction for the CFRP surfaces, have been compared with others materials such as aluminum and copper that present a ductile type fracture surface, with lower roughness. (author)

5. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

International Nuclear Information System (INIS)

Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

2002-01-01

In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

6. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

International Nuclear Information System (INIS)

Russell, D.L.; Consigli, R.A.

1986-01-01

The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

7. Latent class models for joint analysis of disease prevalence and high-dimensional semicontinuous biomarker data.

Science.gov (United States)

Zhang, Bo; Chen, Zhen; Albert, Paul S

2012-01-01

High-dimensional biomarker data are often collected in epidemiological studies when assessing the association between biomarkers and human disease is of interest. We develop a latent class modeling approach for joint analysis of high-dimensional semicontinuous biomarker data and a binary disease outcome. To model the relationship between complex biomarker expression patterns and disease risk, we use latent risk classes to link the 2 modeling components. We characterize complex biomarker-specific differences through biomarker-specific random effects, so that different biomarkers can have different baseline (low-risk) values as well as different between-class differences. The proposed approach also accommodates data features that are common in environmental toxicology and other biomarker exposure data, including a large number of biomarkers, numerous zero values, and complex mean-variance relationship in the biomarkers levels. A Monte Carlo EM (MCEM) algorithm is proposed for parameter estimation. Both the MCEM algorithm and model selection procedures are shown to work well in simulations and applications. In applying the proposed approach to an epidemiological study that examined the relationship between environmental polychlorinated biphenyl (PCB) exposure and the risk of endometriosis, we identified a highly significant overall effect of PCB concentrations on the risk of endometriosis.

8. Two-dimensional radiation shielding optimization analysis of spent fuel transport container

International Nuclear Information System (INIS)

Tian Yingnan; Chen Yixue; Yang Shouhai

2013-01-01

The intelligent radiation shielding optimization design software platform is a one-dimensional multi-target radiation shielding optimization program which is developed on the basis of the genetic algorithm program and one-dimensional discrete ordinate program-ANISN. This program was applied in the optimization design analysis of the spent fuel transport container radiation shielding. The multi-objective optimization calculation model of the spent fuel transport container radiation shielding was established, and the optimization calculation of the spent fuel transport container weight and radiation dose rate was carried by this program. The calculation results were checked by Monte-Carlo program-MCNP/4C. The results show that the weight of the optimized spent fuel transport container decreases to 81.1% of the origin and the radiation dose rate decreases to below 65.4% of the origin. The maximum deviation between the calculated values from the program and the MCNP is below 5%. The results show that the optimization design scheme is feasible and the calculation result is correct. (authors)

9. Two-dimensional kinetic analysis on the ionization waves in a low current discharge

International Nuclear Information System (INIS)

Yamazaki, Tsutomu; Fujii, Masaharu; Noda, Shozou; Miura, Kousuke; Imazu, Shingo.

1982-01-01

In the research on the ionization waves produced in the positive column in a low pressure discharge, theoretical analyses have been made since long ago using mainly the fluid theory. However, the experimental properties that cannot be explained with the fluid theory have been found lately. For example, it has been shown experimentally that the product of longitudinal electric field E and the wavelength lambda of ionization waves becomes some specific values depending on the kinds of gas as one of the characteristics of the ionization waves produced in the positive column plasma in rare gas glow discharge, but these specific values of E-lambda cannot be explained with the fluid theory. In this paper, the perturbation component of electron energy distribution function accompanying ionization waves was derived from a two-dimensional Boltzmann equation which takes the radial non-uniformity into account, to consider the E-lambda values of ionization waves from the relative equation between electron density and the perturbation component of an electric field. The following results were obtained. The relative equation between electron density and the perturbation component of an electric field, which cannot be derived from the fluid theory, was able to be obtained; the values of E-lambda product agreed with the experimental results better than one-dimensional analysis; The steeper the shape of radial potential distribution, the more likely the resonance occurrence and the larger the E-lambda product; and so forth. (Wakatsuki, Y.)

10. Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces

International Nuclear Information System (INIS)

Arai, A.

1985-01-01

We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)

11. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

Energy Technology Data Exchange (ETDEWEB)

Roy S. Baty, F. Farassat, John A. Hargreaves

2007-05-25

Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

12. Two-dimensional transient thermal analysis of a fuel rod by finite volume method

Energy Technology Data Exchange (ETDEWEB)

Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

2017-07-01

One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)

13. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

Science.gov (United States)

Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

2011-11-01

In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

14. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

Science.gov (United States)

Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

2016-03-01

Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

15. Dimensional analysis and extended hydrodynamic theory applied to long-rod penetration of ceramics

Directory of Open Access Journals (Sweden)

J.D. Clayton

2016-08-01

Full Text Available Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature (e.g., Tate's theory demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit (HEL only in the latter. In contrast, in the former (i.e., hypervelocity and thick target experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.

16. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

International Nuclear Information System (INIS)

Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

1989-01-01

The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

17. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

Directory of Open Access Journals (Sweden)

Iris Eke

2015-11-01

Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

18. Fast Transient And Spatially Non-Homogenous Accident Analysis Of Two-Dimensional Cylindrical Nuclear Reactor

International Nuclear Information System (INIS)

Yulianti, Yanti; Su'ud, Zaki; Waris, Abdul; Khotimah, S. N.; Shafii, M. Ali

2010-01-01

The research about fast transient and spatially non-homogenous nuclear reactor accident analysis of two-dimensional nuclear reactor has been done. This research is about prediction of reactor behavior is during accident. In the present study, space-time diffusion equation is solved by using direct methods which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference discretization method is solved by using iterative methods ADI (Alternating Direct Implicit). The indication of accident is decreasing macroscopic absorption cross-section that results large external reactivity. The power reactor has a peak value before reactor has new balance condition. Changing of temperature reactor produce a negative Doppler feedback reactivity. The reactivity will reduce excess positive reactivity. Temperature reactor during accident is still in below fuel melting point which is in secure condition.

19. Measurement of heterogeneous distribution on technegas SPECT images by three-dimensional fractal analysis

International Nuclear Information System (INIS)

Nagao, Michinobu; Murase, Kenya

2002-01-01

This review article describes a method for quantifying heterogeneous distribution on Technegas ( 99m Tc-carbon particle radioaerosol) SPECT images by three-dimensional fractal analysis (3D-FA). Technegas SPECT was performed to quantify the severity of pulmonary emphysema. We delineated the SPECT images by using five cut-offs (15, 20, 25, 30 and 35% of the maximal voxel radioactivity), and measured the total number of voxels in the areas surrounded by the contours obtained with each cut-off level. We calculated fractal dimensions from the relationship between the total number of voxels and the cut-off levels transformed into natural logarithms. The fractal dimension derived from 3D-FA is the relative and objective measurement, which can assess the heterogeneous distribution on Technegas SPECT images. The fractal dimension strongly correlate pulmonary function in patients with emphysema and well documented the overall and regional severity of emphysema. (author)

20. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

International Nuclear Information System (INIS)

Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

1995-01-01

FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

1. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method

Science.gov (United States)

Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang

2012-06-01

Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.

2. Three-dimensional determination of absorbed dose by spectrophotometric analysis of ferrous-sulphate agarose gel

International Nuclear Information System (INIS)

Gambarini, G.; Gomarasca, G.; Marchesini, R.; Pecci, A.; Pirola, L.; Tomatis, S.

1999-01-01

We describe a technique to obtain three-dimensional (3-D) imaging of an absorbed dose by optical transmittance measurements of phantoms composed by agarose gel in which a ferrous sulphate and xylenol orange solution are incorporated. The analysis of gel samples is performed by acquiring transmittance images with a system based on a CCD camera provided with an interference filter matching the optical absorption peak of interest. The proposed technique for 3-D measurements of an absorbed dose is based on the imaging of phantoms composed of sets of properly piled up gel slices. The slice thickness was optimized in order to obtain a good image contrast as well as a good in-depth spatial resolution. To test the technique, a phantom has been irradiated with a collimated γ-beam and then analysed. Proper software was adapted in order to visualise the images of all slices and to attain the 2-D profiles of the dose absorbed by each slice

3. The quantum spectral analysis of the two-dimensional annular billiard system

International Nuclear Information System (INIS)

Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin

2009-01-01

Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)

4. Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis.

Science.gov (United States)

Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng

2012-04-20

This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.

5. Coupled DQ-FE methods for two dimensional transient heat transfer analysis of functionally graded material

Energy Technology Data Exchange (ETDEWEB)

Golbahar Haghighi, M.R.; Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75169-13798 (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir

2008-05-15

In this paper, a mixed finite element (FE) and differential quadrature (DQ) method as a simple, accurate and computationally efficient numerical tool for two dimensional transient heat transfer analysis of functionally graded materials (FGMs) is developed. The method benefits from the high accuracy, fast convergence behavior and low computational efforts of the DQ in conjunction with the advantages of the FE method in general geometry, loading and systematic boundary treatment. Also, the boundary conditions at the top and bottom surfaces of the domain can be implemented more precisely and in strong form. The temporal derivatives are discretized using an incremental DQ method (IDQM), whose numerical stability is not sensitive to time step size. The effects of non-uniform convective-radiative conditions on the boundaries are investigated. The accuracy of the proposed method is demonstrated by comparing its results with those available in the literature. It is shown that using few grid points, highly accurate results can be obtained.

6. Bispectral analysis of nonlinear compressional waves in a two-dimensional dusty plasma crystal

International Nuclear Information System (INIS)

Nosenko, V.; Goree, J.; Skiff, F.

2006-01-01

Bispectral analysis was used to study the nonlinear interaction of compressional waves in a two-dimensional strongly coupled dusty plasma. A monolayer of highly charged polymer microspheres was suspended in a plasma sheath. The microspheres interacted with a Yukawa potential and formed a triangular lattice. Two sinusoidal pump waves with different frequencies were excited in the lattice by pushing the particles with modulated Ar + laser beams. Coherent nonlinear interaction of the pump waves was shown to be the mechanism of generating waves at the sum, difference, and other combination frequencies. However, coherent nonlinear interaction was ruled out for certain combination frequencies, in particular, for the difference frequency below an excitation-power threshold, as predicted by theory

7. Three-Dimensional Exact Free Vibration Analysis of Spherical, Cylindrical, and Flat One-Layered Panels

Directory of Open Access Journals (Sweden)

Salvatore Brischetto

2014-01-01

equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.

8. Corporate social responsibility practice of Malaysian public listed government-linked companies: A dimensional analysis

Directory of Open Access Journals (Sweden)

Lim Boon Keong

2018-06-01

Full Text Available This paper examines the corporate social responsibility (CSR practices of the Malaysian public-listed government-linked companies (GLCs using a dimensional analysis. Four dimensions of CSR activities, namely community, employees, environment and governance, are investigated to study the latest CSR practice of GLCs in year 2016. Each dimension is divided into three subcategories to further examine the performance of GLCs on a particular CSR area. This is the first paper in Malaysia which uses CSR ratings (obtained from CSRHub database to proxy for CSR practice. None of the past literature has been found to adopt this approach. The findings show that Malay-sian public-listed GLCs performed better in community, employees and environment dimensions, whilst tend to underperform in governance dimension.

9. A Lagrangian analysis of a two-dimensional airfoil with vortex shedding

Energy Technology Data Exchange (ETDEWEB)

Lipinski, Doug; Cardwell, Blake; Mohseni, Kamran [Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309-0429 (United States)], E-mail: Mohseni@colorado.edu

2008-08-29

Using invariant material manifolds and flow topology, the flow behavior and structure of flow around a two-dimensional Eppler 387 airfoil is examined with an emphasis on vortex shedding and the time-dependent reattachment profile. The examination focuses on low Reynolds number (Re = 60 000) flow at several angles of attack. Using specialized software, we identify invariant manifolds in the flow and use these structures to illuminate the process of vortex formation and the periodic behavior of the reattachment profile. Our analysis concludes with a topological view of the flow, including fixed points and a discussion of phase plots and the frequency spectrum of several key points in the flow. The behavior of invariant manifolds directly relates to the flow topology and illuminates some aspects seen in phase space during vortex shedding. Furthermore, it highlights the reattachment behavior in ways not seen before.

10. A Lagrangian analysis of a two-dimensional airfoil with vortex shedding

International Nuclear Information System (INIS)

Lipinski, Doug; Cardwell, Blake; Mohseni, Kamran

2008-01-01

Using invariant material manifolds and flow topology, the flow behavior and structure of flow around a two-dimensional Eppler 387 airfoil is examined with an emphasis on vortex shedding and the time-dependent reattachment profile. The examination focuses on low Reynolds number (Re = 60 000) flow at several angles of attack. Using specialized software, we identify invariant manifolds in the flow and use these structures to illuminate the process of vortex formation and the periodic behavior of the reattachment profile. Our analysis concludes with a topological view of the flow, including fixed points and a discussion of phase plots and the frequency spectrum of several key points in the flow. The behavior of invariant manifolds directly relates to the flow topology and illuminates some aspects seen in phase space during vortex shedding. Furthermore, it highlights the reattachment behavior in ways not seen before

11. 1DB, a one-dimensional diffusion code for nuclear reactor analysis

International Nuclear Information System (INIS)

Little, W.W. Jr.

1991-09-01

1DB is a multipurpose, one-dimensional (plane, cylinder, sphere) diffusion theory code for use in reactor analysis. The code is designed to do the following: To compute k eff and perform criticality searches on time absorption, reactor composition, reactor dimensions, and buckling by means of either a flux or an adjoint model; to compute collapsed microscopic and macroscopic cross sections averaged over the spectrum in any specified zone; to compute resonance-shielded cross sections using data in the shielding factor formnd to compute isotopic burnup using decay chains specified by the user. All programming is in FORTRAN. Because variable dimensioning is employed, no simple restrictions on problem complexity can be stated. The number of spatial mesh points, energy groups, upscattering terms, etc. is limited only by the available memory. The source file contains about 3000 cards. 4 refs

12. Quantitative two-dimensional gel electrophoresis analysis of human fibroblasts transformed by ras oncogenes.

Science.gov (United States)

Miller, M J; Maher, V M; McCormick, J J

1992-11-01

Quantitative two-dimensional gel electrophoresis was used to compare the cellular protein patterns of a normal foreskin-derived human fibroblasts cell line (LG1) and three immortal derivatives of LG1. One derivative, designated MSU-1.1 VO, was selected for its ability to grow in the absence of serum and is non-tumorigenic in athymic mice. The other two strains were selected for focus-formation following transfection with either Ha-ras or N-ras oncogenes and form high grade malignant tumors. Correspondence and cluster analysis provided a nonbiased estimate of the relative similarity of the different two-dimensional patterns. These techniques separated the gel patterns into three distinct classes: LG1, MSU-1.1 VO, and the ras transformed cell strains. The MSU-1.1 VO cells were more closely related to the parental LG1 than to the ras-transformed cells. The differences between the three classes were primarily quantitative in nature: 16% of the spots demonstrated statistically significant changes (P 2) in the rate of incorporation of radioactive amino acids. The patterns from the two ras-transformed cell strains were similar, and variations in the expression of proteins that occurred between the separate experiments obscured consistent differences between the Ha-ras and N-ras transformed cells. However, while only 9 out of 758 spots were classified as different (1%), correspondence analysis could consistently separate the two ras transformants. One of these spots was five times more intense in the Ha-ras transformed cells than the N-ras.(ABSTRACT TRUNCATED AT 250 WORDS)

13. Development of Three-Dimensional Multicellular Tissue-Like Constructs for Mutational Analysis Using Macroporous Microcarriers

Science.gov (United States)

Jordan, Jacqueline A.; Fraga, Denise N.; Gonda, Steve R.

2002-01-01

14. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

Science.gov (United States)

Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

2018-02-15

Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R

15. Two-dimensional gap analysis: a tool for efficient conservation planning and biodiversity policy implementation.

Science.gov (United States)

Angelstam, Per; Mikusiński, Grzegorz; Rönnbäck, Britt-Inger; Ostman, Anders; Lazdinis, Marius; Roberge, Jean-Michel; Arnberg, Wolter; Olsson, Jan

2003-12-01

The maintenance of biodiversity by securing representative and well-connected habitat networks in managed landscapes requires a wise combination of protection, management, and restoration of habitats at several scales. We suggest that the integration of natural and social sciences in the form of "Two-dimensional gap analysis" is an efficient tool for the implementation of biodiversity policies. The tool links biologically relevant "horizontal" ecological issues with "vertical" issues related to institutions and other societal issues. Using forest biodiversity as an example, we illustrate how one can combine ecological and institutional aspects of biodiversity conservation, thus facilitating environmentally sustainable regional development. In particular, we use regional gap analysis for identification of focal forest types, habitat modelling for ascertaining the functional connectivity of "green infrastructures", as tools for the horizontal gap analysis. For the vertical dimension we suggest how the social sciences can be used for assessing the success in the implementation of biodiversity policies in real landscapes by identifying institutional obstacles while implementing policies. We argue that this interdisciplinary approach could be applied in a whole range of other environments including other terrestrial biota and aquatic ecosystems where functional habitat connectivity, nonlinear response to habitat loss and a multitude of economic and social interests co-occur in the same landscape.

16. Dimensional Analysis of Psychosocial Barriers to Prevention of Early Childhood Caries Among Recent Immigrants

Directory of Open Access Journals (Sweden)

Arnaldo Perez

2014-06-01

Full Text Available The objective of this article is to define the underlying dimensions of psychosocial barriers to obtaining and providing dental care for young children among recent immigrants. Fifteen focus groups were conducted with 99 primary caregivers from African, South Asian, and Chinese recent immigrants. A secondary analysis of identified barriers using dimensional analysis methodology was performed to determine dimensions and properties of barriers. The analysis continued until irreducible properties were found or emerging dimensions were not relevant to the study. Identified dimensions were associated with barriers and individuals. Type, number, level, objectiveness, nature, and impact were barrier-related; awareness and controllability were individual-related dimensions. Type refers to barriers themselves. Number and level indicate the amount and location of barriers, respectively. Objectiveness refers to the extent that perceived barrier reflects reality and nature indicates its intrinsic characteristic. Impact concerns behaviors, goals, and outcomes compromised by barriers. Awareness alludes to the extent that individuals are aware of the barriers and controllability explains how much control people perceive to have over barriers. Identified dimensions are useful for better understanding and addressing existing barriers to children’s optimal oral health.

17. On the detection of corrosion pit interactions using two-dimensional spectral analysis

International Nuclear Information System (INIS)

Jarrah, Adil; Nianga, Jean-Marie; Iost, Alain; Guillemot, Gildas; Najjar, Denis

2010-01-01

A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can be advanced as an alternative of classical methods based on distance. One of the major advantages of the spectral analysis approach over the use of classical methods is its ability to reveal more details about the spatial structure like the scale for which pits corrosion can be considered as independent. Furthermore, directional components of pattern can be investigated. The method is validated in a first time using numerical simulations on random, regular and aggregated structures. The density of pits, used in the numerical simulations, corresponds to that assessed from a corroded aluminium sheet. In a second time, this method is applied to verify the independence of the corrosion pits observed on the aforementioned aluminium sheet before applying the Gumbel theory to determine the maximum pit depth. Indeed, the property of independence is a prerequisite of the Gumbel theory which is one of the most frequently used in the field of safety and reliability.

18. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

Science.gov (United States)

Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

2017-12-01

Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

19. Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems

International Nuclear Information System (INIS)

Motoyama, Yasunori; Tanaka, Nobuatsu

2005-01-01

Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)

20. Transition of a Three-Dimensional Unsteady Viscous Flow Analysis from a Research Environment to the Design Environment

Science.gov (United States)

Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)

2001-01-01

The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.

1. Scale-free crystallization of two-dimensional complex plasmas: Domain analysis using Minkowski tensors

Science.gov (United States)

Böbel, A.; Knapek, C. A.; Räth, C.

2018-05-01

Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski

2. Two-dimensional cross-section sensitivity and uncertainty analysis of the LBM [Lithium Blanket Module] experiments at LOTUS

International Nuclear Information System (INIS)

Davidson, J.W.; Dudziak, D.J.; Pelloni, S.; Stepanek, J.

1988-01-01

In a recent common Los Alamos/PSI effort, a sensitivity and nuclear data uncertainty path for the modular code system AARE (Advanced Analysis for Reactor Engineering) was developed. This path includes the cross-section code TRAMIX, the one-dimensional finite difference S/sub N/-transport code ONEDANT, the two-dimensional finite element S/sub N/-transport code TRISM, and the one- and two-dimensional sensitivity and nuclear data uncertainty code SENSIBL. Within the framework of the present work a complete set of forward and adjoint two-dimensional TRISM calculations were performed both for the bare, as well as for the Pb- and Be-preceeded, LBM using MATXS8 libraries. Then a two-dimensional sensitivity and uncertainty analysis for all cases was performed. The goal of this analysis was the determination of the uncertainties of a calculated tritium production per source neutron from lithium along the central Li 2 O rod in the LBM. Considered were the contributions from 1 H, 6 Li, 7 Li, 9 Be, /sup nat/C, 14 N, 16 O, 23 Na, 27 Al, /sup nat/Si, /sup nat/Cr, /sup nat/Fe, /sup nat/Ni, and /sup nat/Pb. 22 refs., 1 fig., 3 tabs

3. The analysis of carbohydrates in milk powder by a new "heart-cutting" two-dimensional liquid chromatography method.

Science.gov (United States)

Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong

2014-03-01

In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

4. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

Science.gov (United States)

Yu, L; Batlle, F

2011-12-01

Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

5. Morphometric analysis of acetabular dysplasia in cerebral palsy: three-dimensional CT study.

Science.gov (United States)

Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

2009-12-01

Three-dimensional computed tomography (3D-CT) eliminates the positioning errors and allows the clinician to more accurately assess the radiographic parameters present. To elucidate the 3D geometry of the acetabulum and the extent of hip subluxation/dislocation in patients with cerebral palsy (CP), quantitative morphometric analysis was performed using 3D-CT data. We evaluated 150 hips in 75 patients with bilateral spastic CP. The mean age of the patients was 5.4 years (range: 2.7 to 6.9 y). The fitting plane of the ilium was projected onto the coronal plane and then onto the sagittal plane, and then the angle formed with a horizontal line was defined as CTalpha (the lateral opening angle) and CTbeta (the sagittal inclination angle), respectively. The center of the acetabulum and the femoral head were defined, and the distance between these centers was divided by the femoral head diameter, defined as CT migration percentage (CTMP, %). In 123 (82%) of the 150 hips, the femoral head center was located posteriorly, superiorly, and laterally relative to the acetabular center. Large CTalpha cases tended to show large CTMP. CTalpha and CTMP were significantly larger in the cases with Gross Motor Functional Classification System (GMFCS) level IV/V and spastic quadriplegia, than in the cases with GMFCS level II/III and spastic diplegia. CTbeta showed significant correlation with the acetabular defect on the lateral 3D reconstructed images. Three-dimensional acetabular geometry and migration percentage in CP patients can be analyzed quantitatively using 3D-CT regardless of the abnormal spastic posture. The extent of acetabular dysplasia and subluxation is more severe in patients with GMFCS level IV/V and spastic quadriplesia. Level 4.

6. Three-dimensional finite element analysis of implant-assisted removable partial dentures.

Science.gov (United States)

Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom

2017-06-01

Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

7. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

Science.gov (United States)

Xu, C.; Luo, Z.; Sun, R.; Li, Q.

2017-12-01

The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

8. SDAR: a practical tool for graphical analysis of two-dimensional data

Directory of Open Access Journals (Sweden)

Weeratunga Saroja

2012-08-01

9. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

Science.gov (United States)

Martín, Juan A.; Paredes, Pedro

2017-12-01

A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

10. Multi-Dimensional Shallow Landslide Stability Analysis Suitable for Application at the Watershed Scale

Science.gov (United States)

Milledge, David; Bellugi, Dino; McKean, Jim; Dietrich, William E.

2013-04-01

Current practice in regional-scale shallow landslide hazard assessment is to adopt a one-dimensional slope stability representation. Such a representation cannot produce discrete landslides and thus cannot make predictions on landslide size. Furthermore, one-dimensional approaches cannot include lateral effects, which are known to be important in defining instability. Here we derive an alternative model that accounts for lateral resistance by representing the forces acting on each margin of an unstable block of soil. We model boundary frictional resistances using 'at rest' earth pressure on the lateral sides, and 'active' and 'passive' pressure, using the log-spiral method, on the upslope and downslope margins. We represent root reinforcement on each margin assuming that root cohesion declines exponentially with soil depth. We test our model's ability to predict failure of an observed landslide where the relevant parameters are relatively well constrained and find that our model predicts failure at the observed location and predicts that larger or smaller failures conformal to the observed shape are indeed more stable. We use a sensitivity analysis of the model to show that lateral reinforcement sets a minimum landslide size, and that the additional strength at the downslope boundary results in optimal shapes that are longer in the downslope direction. However, reinforcement effects alone cannot fully explain the size or shape distributions of observed landslides, highlighting the importance of the spatial pattern of key parameters (e.g. pore water pressure and soil depth) at the watershed scale. The application of the model at this scale requires an efficient method to find unstable shapes among an exponential number of candidates. In this context, the model allows a more extensive examination of the controls on landslide size, shape and location.

11. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

Science.gov (United States)

Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

2017-03-01

In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

12. Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis

Science.gov (United States)

Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen

2016-04-01

Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular

13. Comprehensive two-dimensional gas chromatography for biogas and biomethane analysis.

Science.gov (United States)

Hilaire, F; Basset, E; Bayard, R; Gallardo, M; Thiebaut, D; Vial, J

2017-11-17

The gas industry is going to be revolutionized by being able to generate bioenergy from biomass. The production of biomethane - a green substitute of natural gas - is growing in Europe and the United-States of America. Biomethane can be injected into the gas grid or used as fuel for vehicles after compression. Due to various biomass inputs (e.g. agricultural wastes, sludges from sewage treatment plants, etc.), production processes (e.g. anaerobic digestion, municipal solid waste (MSW) landfills), seasonal effects and purification processes (e.g. gas scrubbers, pressure swing adsorption, membranes for biogas upgrading), the composition and quality of biogas and biomethane produced is difficult to assess. All previous publications dealing with biogas analysis reported that hundreds of chemicals from ten chemical families do exist in trace amounts in biogas. However, to the best of our knowledge, no study reported a detailed analysis or the implementation of comprehensive two-dimensional gas chromatography (GC×GC) for biogas matrices. This is the reason why the benefit of implementing two-dimensional gas chromatography for the characterization of biogas and biomethane samples was evaluated. In a first step, a standard mixture of 89 compounds belonging to 10 chemical families, representative of those likely to be found, was used to optimize the analytical method. A set consisting of a non-polar and a polar columns, respectively in the first and the second dimension, was used with a modulation period of six seconds. Applied to ten samples of raw biogas, treated biogas and biomethane collected on 4 industrial sites (two MSW landfills, one anaerobic digester on a wastewater treatment plant and one agricultural biogas plant), this analytical method provided a "fingerprint" of the gases composition at the molecular level in all biogas and biomethane samples. Estimated limits of detection (far below the μgNm -3 ) coupled with the resolution of GC×GC allowed the comparison

14. Two-dimensional versus three-dimensional CT angiography in analysis of anatomical suitability for stentgraft repair of abdominal aortic aneurysms

International Nuclear Information System (INIS)

Pitoulias, Georgios A.; Aslanidou, Eleni A.; Papadimitriou, Dimitrios K.; Donas, Konstantinos P.; Schulte, Stefan

2011-01-01

Background The morphological analysis prior to endovascular abdominal aneurysm repair (EVAR) plays an important role in long-term outcomes. Post-imaging analysis of computed tomographic angiography (CTA) by three-dimensional reconstruction with central lumen line detection (CLL 3D-CTA) enables measurements to be made in orthogonal slices. This might be more precise than equal post-imaging analysis in axial slices by two-dimensional computed tomographic angiography (2D-CTA). Purpose To evaluate the intra- and interobserver variability of CLL 3D-CTA and 2D-CTA post-imaging analysis methods and the agreement between them in pre-EVAR suitability analysis of patients with abdominal aortic aneurysm (AAA). Material and Methods Anonymized CTA data-sets from 70 patients with AAA were analyzed retrospectively. Length measurements included proximal and distal aortic neck lengths and total distance from the lower renal artery to the higher iliac bifurcation. Width measurements included proximal and distal neck diameters, maximum AAA diameter and common iliac diameters just above the iliac bifurcations. The measurements were performed in random order by two vascular surgeons, twice per method with 1-month interval between readings. In the CLL 3D-CTA method we used semi-automated CLL detection by software and manual measurements on CTA slices perpendicular to CLL. The equal measurements in 2D-CTA were performed manually on axial CTA slices using a DICOM viewer workstation. The intra- and interobserver variability, as well as the agreement between the two methods were assessed by Bland-Altman test and bivariate correlation analysis. Results The intraobserver variability was significantly higher in 2D-CTA measurements for both readers. The interobserver variability was significant in 2D-CTA measurements of proximal neck dimensions while the agreement in CLL 3D-CTA analysis between the two readers was excellent in all studied parameters. The agreement between the two suitability

15. One-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools

International Nuclear Information System (INIS)

Haihua Zhao; Per F. Peterson

2007-01-01

Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems such as the Sodium Fast Reactor (SFR). It is important to accurately predict the temperature and density distributions both for design optimation and accident analysis. Current major reactor system analysis codes such as RELAP5 (for LWR's, and recently extended to analyze high temperature reactors), TRAC (for LWR's), and SASSYS (for liquid metal fast reactors) only provide lumped-volume based models which can only give very approximate results and can only handle simple cases with one mixing source. While 2-D or 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, yet such fine grid resolution is difficult or impossible to provide for studying the reactor response to transients due to computational expense. Therefore, new methods are needed to support design optimization and safety analysis of Generation IV pool type reactor systems. Previous scaling has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was originally developed at UC Berkeley to implement such ideas. This code solves mixing and heat transfer problems in stably stratified enclosures. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical or 1-D integral models to compute substructures. By including liquid salt properties, BMIX++ code is

16. Three dimensional fuzzy influence analysis of fitting algorithms on integrated chip topographic modeling

International Nuclear Information System (INIS)

Liang, Zhong Wei; Wang, Yi Jun; Ye, Bang Yan; Brauwer, Richard Kars

2012-01-01

In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process

17. Aerodynamic Analysis and Three-Dimensional Redesign of a Multi-Stage Axial Flow Compressor

Directory of Open Access Journals (Sweden)

Tao Ning

2016-04-01

Full Text Available This paper describes the introduction of three-dimension (3-D blade designs into a 5-stage axial compressor with multi-stage computational fluid dynamic (CFD methods. Prior to a redesign, a validation study is conducted for the overall performance and flow details based on full-scale test data, proving that the multi-stage CFD applied is a relatively reliable tool for the analysis of the follow-up redesign. Furthermore, at the near stall point, the aerodynamic analysis demonstrates that significant separation exists in the last stator, leading to the aerodynamic redesign, which is the focus of the last stator. Multi-stage CFD methods are applied throughout the three-dimensional redesign process for the last stator to explore their aerodynamic improvement potential. An unconventional asymmetric bow configuration incorporated with leading edge re-camber and re-solidity is employed to reduce the high loss region dominated by the mainstream. The final redesigned version produces a 13% increase in the stall margin while maintaining the efficiency at the design point.

18. A high throughput mass spectrometry screening analysis based on two-dimensional carbon microfiber fractionation system.

Science.gov (United States)

Ma, Biao; Zou, Yilin; Xie, Xuan; Zhao, Jinhua; Piao, Xiangfan; Piao, Jingyi; Yao, Zhongping; Quinto, Maurizio; Wang, Gang; Li, Donghao

2017-06-09

A novel high-throughput, solvent saving and versatile integrated two-dimensional microscale carbon fiber/active carbon fiber system (2DμCFs) that allows a simply and rapid separation of compounds in low-polar, medium-polar and high-polar fractions, has been coupled with ambient ionization-mass spectrometry (ESI-Q-TOF-MS and ESI-QqQ-MS) for screening and quantitative analyses of real samples. 2DμCFs led to a substantial interference reduction and minimization of ionization suppression effects, thus increasing the sensitivity and the screening capabilities of the subsequent MS analysis. The method has been applied to the analysis of Schisandra Chinensis extracts, obtaining with a single injection a simultaneous determination of 33 compounds presenting different polarities, such as organic acids, lignans, and flavonoids in less than 7min, at low pressures and using small solvent amounts. The method was also validated using 10 model compounds, giving limit of detections (LODs) ranging from 0.3 to 30ngmL -1 , satisfactory recoveries (from 75.8 to 93.2%) and reproducibilities (relative standard deviations, RSDs, from 1.40 to 8.06%). Copyright © 2017 Elsevier B.V. All rights reserved.

19. Sexual difference of human hyoid bones. Quantitative analysis of CT three-dimensional image

International Nuclear Information System (INIS)

Terashima, Yoshiharu; Izumi, Masahiro; Hanamura, Hajime; Takada, Yasushi

2007-01-01

We investigated sexual differences in hyoid bones of 50 dissected Japanese cadavers: 26 males (aged 52 to 101, averaged 81.9 years) and 24 females (aged 61 to 94, averaged 83.6 years). All extracted hyoid bones were scanned by multi-slice CT. Length of body, distance between bilateral greater horns, length of greater horns, distance between bilateral lesser horns, and length of lesser horns were measured on CT three-dimensional image, and were analyzed by univariate and multivariate statistics. t-tests showed significant sexual differences in all the dimensions; being about 20% longer in males than in females. In principal component analysis using five hyoid dimensions, factor 1, expressing the overall size of the bone, fairly separated each sex, but factors 2 and 3, expressing the shape, did not. Discriminant analysis by a stepwise model, using all the eight dimensions, classified sex rightly (88.6% of the bone) by a function of two dimensions: length of body and distance between bilateral tips of lesser horns. In conclusion, a sexual difference of the hyoid bone was evident in size rather than in shape. (author)

20. Three dimensional fuzzy influence analysis of fitting algorithms on integrated chip topographic modeling

Energy Technology Data Exchange (ETDEWEB)

Liang, Zhong Wei; Wang, Yi Jun [Guangzhou Univ., Guangzhou (China); Ye, Bang Yan [South China Univ. of Technology, Guangzhou (China); Brauwer, Richard Kars [Indian Institute of Technology, Kanpur (India)

2012-10-15

In inspecting the detailed performance results of surface precision modeling in different external parameter conditions, the integrated chip surfaces should be evaluated and assessed during topographic spatial modeling processes. The application of surface fitting algorithms exerts a considerable influence on topographic mathematical features. The influence mechanisms caused by different surface fitting algorithms on the integrated chip surface facilitate the quantitative analysis of different external parameter conditions. By extracting the coordinate information from the selected physical control points and using a set of precise spatial coordinate measuring apparatus, several typical surface fitting algorithms are used for constructing micro topographic models with the obtained point cloud. In computing for the newly proposed mathematical features on surface models, we construct the fuzzy evaluating data sequence and present a new three dimensional fuzzy quantitative evaluating method. Through this method, the value variation tendencies of topographic features can be clearly quantified. The fuzzy influence discipline among different surface fitting algorithms, topography spatial features, and the external science parameter conditions can be analyzed quantitatively and in detail. In addition, quantitative analysis can provide final conclusions on the inherent influence mechanism and internal mathematical relation in the performance results of different surface fitting algorithms, topographic spatial features, and their scientific parameter conditions in the case of surface micro modeling. The performance inspection of surface precision modeling will be facilitated and optimized as a new research idea for micro-surface reconstruction that will be monitored in a modeling process.

1. Definition of coordinate system for three-dimensional data analysis in the foot and ankle.

LENUS (Irish Health Repository)

Green, Connor

2012-02-01

BACKGROUND: Three-dimensional data is required to have advanced knowledge of foot and ankle kinematics and morphology. However, studies have been difficult to compare due to a lack of a common coordinate system. Therefore, we present a means to define a coordinate frame in the foot and ankle and its clinical application. MATERIALS AND METHODS: We carried out ten CT scans in anatomically normal feet and segmented them in a general purpose segmentation program for grey value images. 3D binary formatted stereolithography files were then create and imported to a shape analysis program for biomechanics which was used to define a coordinate frame and carry out morphological analysis of the forefoot. RESULTS: The coordinate frame had axes standard deviations of 2.36 which are comparable to axes variability of other joint coordinate systems. We showed a strong correlation between the lengths of the metatarsals within and between the columns of the foot and also among the lesser metatarsal lengths. CONCLUSION: We present a reproducible method for construction of a coordinate system for the foot and ankle with low axes variability. CLINICAL RELEVANCE: To conduct meaningful comparison between multiple subjects the coordinate system must be constant. This system enables such comparison and therefore will aid morphological data collection and improve preoperative planning accuracy.

2. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

International Nuclear Information System (INIS)

Miki, K.

1979-01-01

The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

3. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

International Nuclear Information System (INIS)

Okano, Yasushi; Ohira, Hiroaki

1998-08-01

In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

4. Three-dimensional morphometric analysis of the coracohumeral distance using magnetic resonance imaging

Directory of Open Access Journals (Sweden)

Taku Hatta

2017-03-01

Full Text Available There have been no studies investigating three-dimensional (3D alteration of the coracohumeral distance (CHD associated with shoulder motion. The aim of this study was to investigate the change of 3D-CHD with the arm in flexion/internal rotation and horizontal adduction. Six intact shoulders of four healthy volunteers were obtained for this study. MRI was taken in four arm positions: with the arm in internal rotation at 0°, 45°, and 90° of flexion, and 90° of flexion with maximum horizontal adduction. Using a motion analysis system, 3D models of the coracoid process and proximal humerus were created from MRI data. The CHD among the four positions were compared, and the closest part of coracoid process to the proximal humerus was also assessed. 3D-CHD significantly decreased with the arm in 90° of flexion and in 90° of flexion with horizontal adduction comparing with that in 0° flexion (P<0.05. In all subjects, lateral part of the coracoid process was the closest to the proximal humerus in these positions. In vivo quasi-static motion analysis revealed that the 3D-CHD was narrower in the arm position of flexion with horizontal abduction than that in 0° flexion. The lateral part on the coracoid process should be considered to be closest to the proximal humerus during the motion.

5. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites.

Directory of Open Access Journals (Sweden)

Luis Gutierrez-Heredia

Full Text Available Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters, but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon and freeware (123D Catch, Meshmixer and Netfabb, allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.

6. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites.

Science.gov (United States)

Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G

2016-01-01

Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.

7. Two-dimensional vertical model seismic test and analysis for HTGR core

International Nuclear Information System (INIS)

Ikushima, Takeshi; Honma, Toshiaki.

1983-02-01

The resistance against earthquakes of high-temperature gas cooled reactor (HTGR) core with block-type fuels is not fully ascertained yet. Seismic studies must be made if such a reactor plant is to be installed in areas with frequent earthquakes. In the paper the test results of seismic behavior of a half-scale two-dimensional vertical slice core model and analysis are presented. The following results were obtained: (1) With soft spring support of the fixed side reflector structure, the relative column displacement is larger than that for hand support but the impact reaction force is smaller. (2) In the case of hard spring support the dowel force is smaller than for soft support. (3) The relative column displacement is larger in the core center than at the periphery. The impact acceleration (force) in the center is smaller than at the periphery. (4) The relative column displacement and impact reaction force are smaller with the gas pressure simulation spring than without. (5) With decreasing gap width between the top blocks of columns, the relative column displacement and impact reaction force decrease. (6) The column damping ratio was estimated as 4 -- 10% of critical. (7) The maximum impact reaction force for random waves such as seismic was below 60% that for a sinusoidal wave. (8) Vibration behavior and impact response are in good agreement between test and analysis. (author)

8. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay

Science.gov (United States)

Zhong, Xuefeng; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

2018-01-01

Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter–receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter–receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity. PMID:29337911

9. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

International Nuclear Information System (INIS)

Minato, Akihiko; Naitoh, Masanori

1987-01-01

A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

10. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

Science.gov (United States)

Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

2007-02-01

Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

11. A multi-dimensional functional principal components analysis of EEG data.

Science.gov (United States)

Hasenstab, Kyle; Scheffler, Aaron; Telesca, Donatello; Sugar, Catherine A; Jeste, Shafali; DiStefano, Charlotte; Şentürk, Damla

2017-09-01

The electroencephalography (EEG) data created in event-related potential (ERP) experiments have a complex high-dimensional structure. Each stimulus presentation, or trial, generates an ERP waveform which is an instance of functional data. The experiments are made up of sequences of multiple trials, resulting in longitudinal functional data and moreover, responses are recorded at multiple electrodes on the scalp, adding an electrode dimension. Traditional EEG analyses involve multiple simplifications of this structure to increase the signal-to-noise ratio, effectively collapsing the functional and longitudinal components by identifying key features of the ERPs and averaging them across trials. Motivated by an implicit learning paradigm used in autism research in which the functional, longitudinal, and electrode components all have critical interpretations, we propose a multidimensional functional principal components analysis (MD-FPCA) technique which does not collapse any of the dimensions of the ERP data. The proposed decomposition is based on separation of the total variation into subject and subunit level variation which are further decomposed in a two-stage functional principal components analysis. The proposed methodology is shown to be useful for modeling longitudinal trends in the ERP functions, leading to novel insights into the learning patterns of children with Autism Spectrum Disorder (ASD) and their typically developing peers as well as comparisons between the two groups. Finite sample properties of MD-FPCA are further studied via extensive simulations. © 2017, The International Biometric Society.

12. Development of a 3-dimensional flow analysis procedure for axial pump impellers

International Nuclear Information System (INIS)

Kim, Min Hwan; Kim, Jong In; Park, Jin Seok; Huh, Houng Huh; Chang, Moon Hee

1999-06-01

A fluid dynamic analysis procedure was developed using the three-dimensional solid model of an axial pump impeller which was theoretically designed using I-DEAS CAD/CAM/CAE software. The CFD software FLUENT was used in the flow field analysis. The steady-state flow regime in the MCP impeller and diffuser was simulated using the developed procedure. The results of calculation were analyzed to confirm whether the design requirements were properly implemented in the impeller model. The validity of the developed procedure was demonstrated by comparing the calculation results with the experimental data available. The pump performance at the design point could be effectively predicted using the developed procedure. The computed velocity distributions have shown a good agreement with the experimental data except for the regions near the wall. The computed head, however, was over-predicted than the experiment. The design period and cost required for the development of an axial pump impeller can be significantly reduced by applying the proposed methodology. (author). 7 refs., 2 tabs

13. Accuracy and initial clinical experience with measurement software (advanced vessel analysis) in three-dimensional imaging

International Nuclear Information System (INIS)

Abe, Toshi; Hirohata, Masaru; Tanigawa, Hitoshi

2002-01-01

Recently, the clinical benefits of three dimensional (3D) imaging, such as 3D-CTA and 3D-DSA, in cerebro-vascular disease have been widely recognized. Software for quantitative analysis of vascular structure in 3D imaging (advanced vessel analysis: AVA) has been developed. We evaluated AVA with both phantom studies and a few clinical cases. In spiral and curvy aluminum tube phantom studies, the accuracy of diameter measurements was good in 3D images produced from data set generated by multi-detector row CT or rotational angiography. The measurement error was less than 0.03 mm on aluminum tube phantoms that were 3 mm and 5 mm in diameter. In the clinical studies, the differences of carotid artery diameter measurements between 2D-DSA and 3D-DSA was less than 0.3 mm in. The measurement of length, diameter and angle by AVA should provide useful information for planning surgical and endovascular treatments of cerebro-vascular disease. (author)

14. Low-cost three-dimensional gait analysis system for mice with an infrared depth sensor.

Science.gov (United States)

Nakamura, Akihiro; Funaya, Hiroyuki; Uezono, Naohiro; Nakashima, Kinichi; Ishida, Yasumasa; Suzuki, Tomohiro; Wakana, Shigeharu; Shibata, Tomohiro

2015-11-01

Three-dimensional (3D) open-field gait analysis of mice is an essential procedure in genetic and nerve regeneration research. Existing gait analysis systems are generally expensive and may interfere with the natural behaviors of mice because of optical markers and transparent floors. In contrast, the proposed system captures the subjects shape from beneath using a low-cost infrared depth sensor (Microsoft Kinect) and an opaque infrared pass filter. This means that we can track footprints and 3D paw-tip positions without optical markers or a transparent floor, thereby preventing any behavioral changes. Our experimental results suggest with healthy mice that they are more active on opaque floors and spend more time in the center of the open-field, when compared with transparent floors. The proposed system detected footprints with a comparable performance to existing systems, and precisely tracked the 3D paw-tip positions in the depth image coordinates. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

15. Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage

International Nuclear Information System (INIS)

Yao, Kai; Shen, Kai; Wang, Zheng-Dao; Wang, Yue-Sheng

2014-01-01

In this study, 3D finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. The contour maps of tangential and normal RMF gradients are given, and the 3D effect is discussed. The results show that the tangential peak–peak amplitude and normal peak–vale amplitude are remarkably different in 2D and 3D simulations, but the tangential peak–peak width and normal peak–vale width are similar. Moreover, some key points are capable of capturing the plastic-zone shape, especially when the lift-off is small enough. The present study suggests an effective defect identification method with Metal magnetic memory (MMM) technique. - Highlights: • Three-dimensional (3D) finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. • The contour maps of gradients of the tangential and normal residual magnetic fields are given, and the 3D effect is discussed. • The present study suggests an effective defect identification method with metal magnetic memory technique

16. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

Directory of Open Access Journals (Sweden)

Jiang-Jun Zhou

2017-01-01

Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

17. Throughput Analysis on 3-Dimensional Underwater Acoustic Network with One-Hop Mobile Relay.

Science.gov (United States)

Zhong, Xuefeng; Chen, Fangjiong; Fan, Jiasheng; Guan, Quansheng; Ji, Fei; Yu, Hua

2018-01-16

Underwater acoustic communication network (UACN) has been considered as an essential infrastructure for ocean exploitation. Performance analysis of UACN is important in underwater acoustic network deployment and management. In this paper, we analyze the network throughput of three-dimensional randomly deployed transmitter-receiver pairs. Due to the long delay of acoustic channels, complicated networking protocols with heavy signaling overhead may not be appropriate. In this paper, we consider only one-hop or two-hop transmission, to save the signaling cost. That is, we assume the transmitter sends the data packet to the receiver by one-hop direct transmission, or by two-hop transmission via mobile relays. We derive the closed-form formulation of packet delivery rate with respect to the transmission delay and the number of transmitter-receiver pairs. The correctness of the derivation results are verified by computer simulations. Our analysis indicates how to obtain a precise tradeoff between the delay constraint and the network capacity.

18. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

Directory of Open Access Journals (Sweden)

Daniel P Riordan

Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

19. The use of multi-dimensional flow and morphodynamic models for restoration design analysis

Science.gov (United States)

McDonald, R.; Nelson, J. M.

2013-12-01

River restoration projects with the goal of restoring a wide range of morphologic and ecologic channel processes and functions have become common. The complex interactions between flow and sediment-transport make it challenging to design river channels that are both self-sustaining and improve ecosystem function. The relative immaturity of the field of river restoration and shortcomings in existing methodologies for evaluating channel designs contribute to this problem, often leading to project failures. The call for increased monitoring of constructed channels to evaluate which restoration techniques do and do not work is ubiquitous and may lead to improved channel restoration projects. However, an alternative approach is to detect project flaws before the channels are built by using numerical models to simulate hydraulic and sediment-transport processes and habitat in the proposed channel (Restoration Design Analysis). Multi-dimensional models provide spatially distributed quantities throughout the project domain that may be used to quantitatively evaluate restoration designs for such important metrics as (1) the change in water-surface elevation which can affect the extent and duration of floodplain reconnection, (2) sediment-transport and morphologic change which can affect the channel stability and long-term maintenance of the design; and (3) habitat changes. These models also provide an efficient way to evaluate such quantities over a range of appropriate discharges including low-probability events which often prove the greatest risk to the long-term stability of restored channels. Currently there are many free and open-source modeling frameworks available for such analysis including iRIC, Delft3D, and TELEMAC. In this presentation we give examples of Restoration Design Analysis for each of the metrics above from projects on the Russian River, CA and the Kootenai River, ID. These examples demonstrate how detailed Restoration Design Analysis can be used to

20. Two-dimensional chromatographic analysis using three second-dimension columns for continuous comprehensive analysis of intact proteins.

Science.gov (United States)

Zhu, Zaifang; Chen, Huang; Ren, Jiangtao; Lu, Juan J; Gu, Congying; Lynch, Kyle B; Wu, Si; Wang, Zhe; Cao, Chengxi; Liu, Shaorong

2018-03-01

We develop a new two-dimensional (2D) high performance liquid chromatography (HPLC) approach for intact protein analysis. Development of 2D HPLC has a bottleneck problem - limited second-dimension (second-D) separation speed. We solve this problem by incorporating multiple second-D columns to allow several second-D separations to be proceeded in parallel. To demonstrate the feasibility of using this approach for comprehensive protein analysis, we select ion-exchange chromatography as the first-dimension and reverse-phase chromatography as the second-D. We incorporate three second-D columns in an innovative way so that three reverse-phase separations can be performed simultaneously. We test this system for separating both standard proteins and E. coli lysates and achieve baseline resolutions for eleven standard proteins and obtain more than 500 peaks for E. coli lysates. This is an indication that the sample complexities are greatly reduced. We see less than 10 bands when each fraction of the second-D effluents are analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), compared to hundreds of SDS-PAGE bands as the original sample is analyzed. This approach could potentially be an excellent and general tool for protein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

1. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

Science.gov (United States)

Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

2014-10-01

Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

2. Morphometric analysis of the femur in cerebral palsy: 3-dimensional CT study.

Science.gov (United States)

Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

2010-09-01

=-0.25), or between the neck-shaft angle and the femoral anteversion (r=0.23). The neck-shaft angle, the femoral anteversion, and the CT migration percentage were significantly larger, and the femoral offset was significantly smaller, in patients with the Gross Motor Functional Classification System (GMFCS) level IV/V (nonwalking children) and SQ type, than in patients with GMFCS level II/III (mostly walking children) and SD type. The 3-dimensional femoral geometry in CP patients can be analyzed quantitatively using 3D-CT regardless of the abnormal spastic posture. Our data indicate that 3-dimensional evaluation is accurate and useful for analysis of the femur and acetabulum in CP, and that the extent of coxa valga and femoral anteversion is more severe in the patients with GMFCS level IV/V and SQ type. Level IV.

3. Three-dimensional analysis of AP600 standard plant shield building roof

International Nuclear Information System (INIS)

Greimann, L.; Fanous, F.; Safar, S.; Khalil, A.; Bluhm, D.

1999-01-01

The AP600 passive containment vessel is surrounded by a concrete cylindrical shell covered with a truncated conical roof. This roof supports the passive containment cooling system (PCS) annular tank, shield plate and other nonstructural attachments. When the shield building is subjected to different loading combinations as defined in the Standard Review Plan (SRP), some of the sections in the shield building could experience forces in excess of their design values. This report summarized the three-dimensional finite element analysis that was conducted to review the adequacy of the proposed Westinghouse shield building design. The ANSYS finite element software was utilized to analyze the Shield Building Roof (SBR) under dead, snow, wind, thermal and seismic loadings. A three-dimensional model that included a portion of the shield building cylindrical shell, the conical roof and its attachments, the eccentricities at the cone-cylinder connection and at the compression ring and the PCS tank was developed. Mesh sensitivity studies were conducted to select appropriate element size in the cylinder, cone, near air intakes and in the vicinity of the eccentricities. Also, a study was carried out to correctly idealize the water-structure interaction in the PCS tank. Response spectrum analysis was used to calculate the internal forces at different sections in the SBR under Safe Shutdown Earthquake (SSE). Forty-nine structural modes and twenty sloshing modes were used. Two horizontal components of the SSE together with a vertical component were used. Modal stress resultants were combined taking into account the effects of closely spaced modes. The three earthquake directions were combined by the Square Root of the Sum Squares method. Two load combinations were studied. The load combination that included dead, snow, fluid, thermal and seismic loads was selected to be the most critical. Interaction diagrams for critical sections were developed and used to check the design

4. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

Energy Technology Data Exchange (ETDEWEB)

Akhbardeh, Alireza; Jacobs, Michael A. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 (United States)

2012-04-15

Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B{sub 1} inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment

5. A three-dimensional model for thermal analysis in a vanadium flow battery

International Nuclear Information System (INIS)

Zheng, Qiong; Zhang, Huamin; Xing, Feng; Ma, Xiangkun; Li, Xianfeng; Ning, Guiling

2014-01-01

Highlights: • A three-dimensional model for thermal analysis in a VFB has been developed. • A quasi-static thermal behavior and temperature spatial distribution were showed. • Ohmic heat gets vital in heat generation if applied current density is large enough. • A lower porosity or a faster flow shows a more uniform temperature distribution. • The model shows good prospect in heat and temperature management for a VFB. - Abstract: A three-dimensional model for thermal analysis has been developed to gain a better understanding of thermal behavior in a vanadium flow battery (VFB). The model is based on a comprehensive description of mass, momentum, charge and energy transport and conservation, combining with a global kinetic model for reactions involving all vanadium species. The emphasis in this paper is placed on the heat losses inside a cell. A quasi-static behavior of temperature and the temperature spatial distribution were characterized via the thermal model. The simulations also indicate that the heat generation exhibits a strong dependence on the applied current density. The reaction rate and the over potential rise with an increased applied current density, resulting in the electrochemical reaction heat rises proportionally and the activation heat rises at a parabolic rate. Based on the Ohm’s law, the ohmic heat rises at a parabolic rate when the applied current density increases. As a result, the determining heat source varies when the applied current density changes. While the relative contribution of the three types of heat is dependent on the cell materials and cell geometry, the regularities of heat losses can also be attained via the model. In addition, the electrochemical reaction heat and activation heat have a lack of sensitivity to the porosity and flow rate, whereas an obvious increase of ohmic heat has been observed with the rise of the porosity. A lower porosity or a faster flow shows a better uniformity of temperature distribution in

6. Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation

International Nuclear Information System (INIS)

Akhbardeh, Alireza; Jacobs, Michael A.

2012-01-01

Purpose: Visualization of anatomical structures using radiological imaging methods is an important tool in medicine to differentiate normal from pathological tissue and can generate large amounts of data for a radiologist to read. Integrating these large data sets is difficult and time-consuming. A new approach uses both supervised and unsupervised advanced machine learning techniques to visualize and segment radiological data. This study describes the application of a novel hybrid scheme, based on combining wavelet transform and nonlinear dimensionality reduction (NLDR) methods, to breast magnetic resonance imaging (MRI) data using three well-established NLDR techniques, namely, ISOMAP, local linear embedding (LLE), and diffusion maps (DfM), to perform a comparative performance analysis. Methods: Twenty-five breast lesion subjects were scanned using a 3T scanner. MRI sequences used were T1-weighted, T2-weighted, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging. The hybrid scheme consisted of two steps: preprocessing and postprocessing of the data. The preprocessing step was applied for B 1 inhomogeneity correction, image registration, and wavelet-based image compression to match and denoise the data. In the postprocessing step, MRI parameters were considered data dimensions and the NLDR-based hybrid approach was applied to integrate the MRI parameters into a single image, termed the embedded image. This was achieved by mapping all pixel intensities from the higher dimension to a lower dimensional (embedded) space. For validation, the authors compared the hybrid NLDR with linear methods of principal component analysis (PCA) and multidimensional scaling (MDS) using synthetic data. For the clinical application, the authors used breast MRI data, comparison was performed using the postcontrast DCE MRI image and evaluating the congruence of the segmented lesions. Results: The NLDR-based hybrid approach was able to define and segment both

7. Correlation between two-dimensional video analysis and subjective assessment in evaluating knee control among elite female team handball players

DEFF Research Database (Denmark)

Stensrud, Silje; Myklebust, Grethe; Kristianslund, Eirik

2011-01-01

. The present study investigated the correlation between a two-dimensional (2D) video analysis and subjective assessment performed by one physiotherapist in evaluating knee control. We also tested the correlation between three simple clinical tests using both methods. A cohort of 186 female elite team handball...

8. Dimensional analysis to transform the differential equations in partial derivates in the theory of heat transmission into ordinary ones

International Nuclear Information System (INIS)

Diaz Sanchidrian, C.

1989-01-01

The present paper applies dimensional analysis with spatial discrimination to transform the differential equations in partial derivatives developed in the theory of heat transmission into ordinary ones. The effectivity of the method is comparable to that methods based in transformations of uni or multiparametric groups, with the advantage of being more direct and simple. (Author)

9. Estimate of the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model: a sensitivity analysis

International Nuclear Information System (INIS)

Guerrieri, A.

2009-01-01

In this report the largest Lyapunov characteristic exponent of a high dimensional atmospheric global circulation model of intermediate complexity has been estimated numerically. A sensitivity analysis has been carried out by varying the equator-to-pole temperature difference, the space resolution and the value of some parameters employed by the model. Chaotic and non-chaotic regimes of circulation have been found. [it

10. Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials

International Nuclear Information System (INIS)

Sasaki, T; Maruyama, Y; Ohba, H; Ejiri, S

2014-01-01

In this study, an application of the two-dimensional imaging technology to the X ray tri-axial stress analysis was studied. An image plate (IP) was used to obtain a Debye-Scherre ring and the image data was analized for determining stress. A new principle for stress analysis which is suitable to two-dimensional imaging data was used. For the verification of this two-dimensional imaging type X-ray stress measurement method, an experiment was conducted using a ferritic steel sample which was processed with a surface grinder. Tri-axial stress analysis was conducted to evaluate the sample. The conventional method for X-ray tri-axial stress analysis proposed by Dölle and Hauk was used to evaluate residual stress in order to compare with the present method. As a result, it was confirmed that a sufficiently highly precise and high-speed stress measurement was enabled with the two-dimensional imaging technology compared with the conventional method

11. Two-dimensional heat flow analysis applied to heat sterilization of ponderosa pine and Douglas-fir square timbers

Science.gov (United States)

William T. Simpson

2004-01-01

Equations for a two-dimensional finite difference heat flow analysis were developed and applied to ponderosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating air, and thus surface temperatures failed to attain...

12. A Meta-Analysis of the Educational Effectiveness of Three-Dimensional Visualization Technologies in Teaching Anatomy

Science.gov (United States)

Yammine, Kaissar; Violato, Claudio

2015-01-01

Many medical graduates are deficient in anatomy knowledge and perhaps below the standards for safe medical practice. Three-dimensional visualization technology (3DVT) has been advanced as a promising tool to enhance anatomy knowledge. The purpose of this review is to conduct a meta-analysis of the effectiveness of 3DVT in teaching and learning…

13. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

International Nuclear Information System (INIS)

Kisohara, Naoyuki; Yamaguchi, Akira

1997-12-01

The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

14. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis

Directory of Open Access Journals (Sweden)

Ueki Masao

2012-05-01

Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.

15. Feasibility of wall stress analysis of abdominal aortic aneurysms using three-dimensional ultrasound.

Science.gov (United States)

Kok, Annette M; Nguyen, V Lai; Speelman, Lambert; Brands, Peter J; Schurink, Geert-Willem H; van de Vosse, Frans N; Lopata, Richard G P

2015-05-01

16. Metabolic profiling based on two-dimensional J-resolved 1H NMR data and parallel factor analysis

DEFF Research Database (Denmark)

Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W.

2011-01-01

the intensity variances along the chemical shift axis are taken into account. Here, we describe the use of parallel factor analysis (PARAFAC) as a tool to preprocess a set of two-dimensional J-resolved spectra with the aim of keeping the J-coupling information intact. PARAFAC is a mathematical decomposition......-model was done automatically by evaluating amount of explained variance and core consistency values. Score plots showing the distribution of objects in relation to each other, and loading plots in the form of two-dimensional pseudo-spectra with the same appearance as the original J-resolved spectra...

17. Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators

International Nuclear Information System (INIS)

Shaik Dawood, M S I; Iannucci, L; Greenhalgh, E S

2008-01-01

In this work, based on a linear piezoelectric constitutive model, a three-dimensional finite element code using an eight-node brick element that includes the anisotropic and coupled field effects of piezoelectric actuators has been developed for the static shape control analysis of fibre reinforced composite laminates. The code was used to study voltage sensing and actuation capabilities of piezoelectric actuators on composite laminates. The required input voltages to the actuators in order to achieve a specified structural shape were determined using a weighted shape control method. The code was validated using two test cases obtained from the literature. The results were found to show good correlation for voltage actuation. However, since determining input voltages to achieve the desired structural shape is a type of inverse problem, there are no explicit solutions and hence the results obtained from the present model were not similar to those reported in the literature. The second validation also suggests that the anisotropic and coupled field effects of the piezoelectric actuators cannot be neglected as this has been shown to underestimate the required control voltages. The effects of different lamination angles, boundary conditions, plate length-to-thickness ratios and actuator dimensions on the control voltages have also been reported

18. Biomarker identification and effect estimation on schizophrenia –a high dimensional data analysis

Directory of Open Access Journals (Sweden)

Yuanzhang eLi

2015-05-01

Full Text Available Biomarkers have been examined in schizophrenia research for decades. Medical morbidity and mortality rates, as well as personal and societal costs, are associated with schizophrenia patients. The identification of biomarkers and alleles, which often have a small effect individually, may help to develop new diagnostic tests for early identification and treatment. Currently, there is not a commonly accepted statistical approach to identify predictive biomarkers from high dimensional data. We used space Decomposition-Gradient-Regression method (DGR to select biomarkers, which are associated with the risk of schizophrenia. Then, we used the gradient scores, generated from the selected biomarkers, as the prediction factor in regression to estimate their effects. We also used an alternative approach, classification and regression tree (CART, to compare the biomarker selected by DGR and found about 70% of the selected biomarkers were the same. However, the advantage of DGR is that it can evaluate individual effects for each biomarker from their combined effect. In DGR analysis of serum specimens of US military service members with a diagnosis of schizophrenia from 1992 to 2005 and their controls, Alpha-1-Antitrypsin (AAT, Interleukin-6 receptor (IL-6r and Connective Tissue Growth Factor (CTGF were selected to identify schizophrenia for males; and Alpha-1-Antitrypsin (AAT, Apolipoprotein B (Apo B and Sortilin were selected for females. If these findings from military subjects are replicated by other studies, they suggest the possibility of a novel biomarker panel as an adjunct to earlier diagnosis and initiation of treatment.

19. 3-dimensional thermohydraulic analysis of KALIMER reactor pool during unprotected accidents

Energy Technology Data Exchange (ETDEWEB)

Lee, Yong Bum; Hahn Do Hee

2003-01-01

During a normal reactor scram, the heat generation is reduced almost instantaneously while the coolant flow rate follows the pump coastdown. This mismatch between power and flow results in a situation where the core flow entering the hot pool is at a lower temperature than the temperature of the bulk pool sodium. This temperature difference leads to thermal stratification. Thermal stratification can occur in the hot pool region if the entering coolant is colder than the existing hot pool coolant and the flow momentum is not large enough to overcome the negative buoyancy force. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response. Hence, it is necessary to predict the pool coolant temperature distribution with sufficient accuracy to determine the inlet temperature conditions for the IHXs and its contribution to the net buoyancy head. Therefore, two-dimensional hot pool thermohydraulic model named HP2D has been developed. In this report code-to-code comparison analysis between HP2D and COMMIX-1AR/P has been performed in the case of steady-state and UTOP.

20. Quasi-steady-state analysis of two-dimensional random intermittent search processes

KAUST Repository

Bressloff, Paul C.

2011-06-01

We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

1. Development of three-dimensional shoulder kinematic and electromyographic exposure variation analysis methodology in violin musicians.

Science.gov (United States)

Reynolds, Jonathan F; Leduc, Robert E; Kahnert, Emily K; Ludewig, Paula M

2014-01-01

A total of 11 male and 19 female violinists performed 30-second random-ordered slow and fast musical repertoire while right shoulder three-dimensional kinematic, and upper trapezius and serratus anterior surface electromyography (EMG) data were summarised using exposure variation analysis (EVA), a bivariate distribution of work time spent at categories of signal amplitude, and duration spent at a fixed category of amplitude. Sixty-two per cent of intraclass correlation coefficients [1,1] for all kinematic and EMG variables exceeded 0.75, and 40% of standard error of the measurement results were below 5%, confirming EVA reliability. When fast repertoire was played, increases in odds ratios in short duration cells were seen in 23 of 24 possible instances, and decreases in longer duration cells were seen in 17 instances in all EVA arrays using multinomial logistic regression with random effects, confirming a shift towards shorter duration. A reliable technique to assess right shoulder kinematic and EMG exposure in violinists was identified. A reliable method of measuring right shoulder motion and muscle activity exposure variation in violinists was developed which can be used to assess ergonomic risk in other occupations. Recently developed statistical methods enabled differentiation between fast and slow musical performance of standardised musical repertoire.

2. Research on characteristics of varying conditions for nozzle governing stage based on dimensional analysis

International Nuclear Information System (INIS)

Xu, Jian-qun; Ma, Lin; Sun, You-yuan; Cao, Zu-qing

2014-01-01

In this paper, thermodynamic calculations of nozzle governing stage are taken based on APROS (Advanced Process Simulation), and verify through the comparison of experiment table data. The influence of partial admission on pressure ratio within the governing stage is also analyzed. The results show that partial admission not only leads to partial admission losses, but also makes an impact on pressure ratio, enthalpy and reaction degree, in turn, causes the change of efficiency. Then, the nozzle pressure ratio after the full-open valve and semi-open valve respectively, is expressed as a function of flow ratio based on dimensional analysis. This paper presents a method of thermodynamic calculation for nozzle governing stage. Comparing with the results calculated through APROS and discussing the change of pressure ratio and reaction degree, it shows that the method can reflect the influence of partial admission on pressure ratio exactly, and further improve the accuracy of existing thermodynamic calculation. - Highlights: • Partial admission is an important factor that affects the characteristics of governing stage. • Simulated test together with thermodynamic calculation to build a simplified efficiency model. • A method of thermodynamic calculation for nozzle governing stage is also proposed in this paper. • This presented method is successfully applied to a 600 MW steam turbine unit

3. Three-dimensional computed tomography analysis of non-osteoarthritic adult acetabular dysplasia

Energy Technology Data Exchange (ETDEWEB)

Ito, Hiroshi; Matsuno, Takeo; Hirayama, Teruhisa; Tanino, Hiromasa; Yamanaka, Yasuhiro [Asahikawa Medical College, Department of Orthopaedic Surgery, Asahikawa (Japan); Minami, Akio [Hokkaido University School of Medicine, Department of Orthopaedic Surgery, Sapporo (Japan)

2009-02-15

Little data exists on the original morphology of acetabular dysplasia obtained from patients without radiographic advanced osteoarthritic changes. The aim of this study was to investigate the distribution and degree of acetabular dysplasia in a large number of patients showing no advanced degenerative changes using three-dimensional computed tomography (3DCT). Eighty-four dysplastic hips in 55 consecutive patients were studied. All 84 hips were in pre- or early osteoarthritis without radiographic evidence of joint space narrowing, formation of osteophytes or cysts, or deformity of femoral heads. The mean age at the time of CT scan was 35 years (range 15-64 years). 3D images were reconstructed and analyzed using recent computer imaging software (INTAGE Realia and Volume Player). Deficiency types and degrees of acetabular dysplasia were precisely evaluated using these computer software. The average Harris hip score at CT scans was 82 points. Twenty-two hips (26%) were classified as anterior deficiency, 17 hips (20%) as posterior deficiency, and 45 hips (54%) as lateral deficiency. No significant difference was found in the Harris hip score among these groups. The analysis of various measurements indicated wide variations. There was a significant correlation between the Harris hip score and the acetabular coverage (p < 0.001). Our results indicated wide variety of deficiency type and degree of acetabular dysplasia. Hips with greater acetabular coverage tended to have a higher Harris hip score. (orig.)

4. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

Energy Technology Data Exchange (ETDEWEB)

Stemkens, Bjorn, E-mail: b.stemkens@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Tijssen, Rob H.N. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Senneville, Baudouin D. de [Imaging Division, University Medical Center Utrecht, Utrecht (Netherlands); L' Institut de Mathématiques de Bordeaux, Unité Mixte de Recherche 5251, Centre National de la Recherche Scientifique/University of Bordeaux, Bordeaux (France); Heerkens, Hanne D.; Vulpen, Marco van; Lagendijk, Jan J.W.; Berg, Cornelis A.T. van den [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)

2015-03-01

Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

5. Analysis of oxidised heavy paraffininc products by high temperature comprehensive two-dimensional gas chromatography.

Science.gov (United States)

Potgieter, H; Bekker, R; Beigley, J; Rohwer, E

2017-08-04

Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

6. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

Energy Technology Data Exchange (ETDEWEB)

Ganeshan, Balaji [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Miles, Kenneth A.; Critchley, Hugo D. [University of Sussex, Falmer, Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton (United Kingdom); Young, Rupert C.D.; Chatwin, Christopher R. [University of Sussex, Falmer, Department of Engineering and Design, Brighton (United Kingdom); Gurling, Hugh M.D. [University College London, Department of Mental Health Sciences, London (United Kingdom)

2010-04-15

Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

7. A Three-Dimensional Movement Analysis of the Spike in Fistball

Directory of Open Access Journals (Sweden)

Andreas Bund

2016-12-01

Full Text Available Due to its relevancy to point scoring, the spike is considered as one of the most important skills in fistball. Biomechanical analyses of this sport are very rare. In the present study, we performed a three-dimensional kinematic analysis of the fistball spike, which helps to specify performance parameters on a descriptive level. Recorded by four synchronized cameras (120 Hz and linked to the motion capture software Simi Motion® 5.0, three female fistball players of the second German league (24–26 years, 1.63–1.69 m performed several spikes under standardized conditions. Results show that the segment velocities of the arm reached their maximum successively from proximal to distal, following the principle of temporal coordination of single impulses. The wrist shows maximum speed when the fist hits the ball. The elbow joint angle performs a rapid transition from a strong flexion to a (almost full extension; however, the extension is completed after the moment of ball impact. In contrast, the shoulder joint angle increases almost linearly until the fistball contact and decreases afterward. The findings can be used to optimize the training of the spike.

8. Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media

KAUST Repository

El-Amin, Mohamed

2015-04-01

In this paper, a mathematical model and numerical simulation are developed to describe the imbibition of nanoparticles-water suspension into two-phase flow in a porous medium. The flow system may be changed from oil-wet to water-wet due to nanoparticles (which are also water-wet) deposition on surface of the pores. So, the model is extended to include the negative capillary pressure and mixed-wet relative permeability correlations to fit with the mixed-wet system. Moreover, buoyancy and capillary forces as well as Brownian diffusion and mechanical dispersion are considered in the mathematical model. An example of countercurrent imbibition in a core of small scale is considered. A dimensional analysis of the governing equations is introduced to examine contributions of each term of the model. Several important dimensionless numbers appear in the dimensionless equations, such as Darcy number Da, capillary number Ca, and Bond number Bo. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles using numerical experiments.

9. Three-dimensional textural analysis of brain images reveals distributed grey-matter abnormalities in schizophrenia

International Nuclear Information System (INIS)

Ganeshan, Balaji; Miles, Kenneth A.; Critchley, Hugo D.; Young, Rupert C.D.; Chatwin, Christopher R.; Gurling, Hugh M.D.

2010-01-01

Three-dimensional (3-D) selective- and relative-scale texture analysis (TA) was applied to structural magnetic resonance (MR) brain images to quantify the presence of grey-matter (GM) and white-matter (WM) textural abnormalities associated with schizophrenia. Brain TA comprised volume filtration using the Laplacian of Gaussian filter to highlight fine, medium and coarse textures within GM and WM, followed by texture quantification. Relative TA (e.g. ratio of fine to medium) was also computed. T1-weighted MR whole-brain images from 32 participants with diagnosis of schizophrenia (n = 10) and healthy controls (n = 22) were examined. Five patients possessed marker alleles (SZ8) associated with schizophrenia on chromosome 8 in the pericentriolar material 1 gene while the remaining five had not inherited any of the alleles (SZ0). Filtered fine GM texture (mean grey-level intensity; MGI) most significantly differentiated schizophrenic patients from controls (P = 0.0058; area under the receiver-operating characteristic curve = 0.809, sensitivity = 90%, specificity = 70%). WM measurements did not distinguish the two groups. Filtered GM and WM textures (MGI) correlated with total GM and WM volume respectively. Medium-to-coarse GM entropy distinguished SZ0 from controls (P = 0.0069) while measures from SZ8 were intermediate between the two. 3-D TA of brain MR enables detection of subtle distributed morphological features associated with schizophrenia, determined partly by susceptibility genes. (orig.)

10. Three-Dimensional Numerical Analysis of LOX/Kerosene Engine Exhaust Plume Flow Field Characteristics

Directory of Open Access Journals (Sweden)

Hong-hua Cai

2017-01-01

Full Text Available Aiming at calculating and studying the flow field characteristics of engine exhaust plume and comparative analyzing the effects of different chemical reaction mechanisms on the engine exhaust plume flow field characteristics, a method considering fully the combustion state influence is put forward, which is applied to exhaust plume flow field calculation of multinozzle engine. On this basis, a three-dimensional numerical analysis of the effects of different chemical reaction mechanisms on LOX/kerosene engine exhaust plume flow field characteristics was carried out. It is found that multistep chemical reaction can accurately describe the combustion process in the LOX/kerosene engine, the average chamber pressure from the calculation is 4.63% greater than that of the test, and the average chamber temperature from the calculation is 3.34% greater than that from the thermodynamic calculation. The exhaust plumes of single nozzle and double nozzle calculated using the global chemical reaction are longer than those using the multistep chemical reaction; the highest temperature and the highest velocity on the plume axis calculated using the former are greater than that using the latter. The important influence of chemical reaction mechanism must be considered in the study of the fixing structure of double nozzle engine on the rocket body.

11. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

Science.gov (United States)

Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

2018-05-15

A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

12. Two-dimensional fluid-hammer analysis by the method of nearcharacteristics

International Nuclear Information System (INIS)

Shin, Y.W.; Kot, C.A.

1975-05-01

A numerical technique based on the method of nearcharacteristics is considered for solving propagation of fluid-hammer waves in a two-dimensional geometry. The solution is constructed by relating flow conditions by compatibility equations along lines called nearcharacteristics. Three choices are considered in the numerical scheme that are accurate within an error of the order of magnitude of the time step. Since the nearcharacteristics lie in the coordinate planes, the technique provides an efficient method requiring only simple interpolations in the initial plane. On the other hand, the nearcharacteristics fall outside the characteristics cone. Thus the solution procedure directly refers to conditions outside the true domain of dependence. The effect of this is studied through numerical calculation of a simple example problem and comparison with results obtained by a bicharacteristic method. Comparison is also made with existing analytical solutions and experiments. Furthermore, the three solution schemes considered are examined for numerical stability by the vonNeumann test. Two of the schemes were found to be unstable; the third yielded a stability criterion equivalent to that of the bicharacteristic formulation. The stability-analysis results were confirmed by numerical experimentation. (auth)

13. Sideband instability analysis based on a one-dimensional high-gain free electron laser model

Science.gov (United States)

Tsai, Cheng-Ying; Wu, Juhao; Yang, Chuan; Yoon, Moohyun; Zhou, Guanqun

2017-12-01

When an untapered high-gain free electron laser (FEL) reaches saturation, the exponential growth ceases and the radiation power starts to oscillate about an equilibrium. The FEL radiation power or efficiency can be increased by undulator tapering. For a high-gain tapered FEL, although the power is enhanced after the first saturation, it is known that there is a so-called second saturation where the FEL power growth stops even with a tapered undulator system. The sideband instability is one of the primary reasons leading to this second saturation. In this paper, we provide a quantitative analysis on how the gradient of undulator tapering can mitigate the sideband growth. The study is carried out semianalytically and compared with one-dimensional numerical simulations. The physical parameters are taken from Linac Coherent Light Source-like electron bunch and undulator systems. The sideband field gain and the evolution of the radiation spectra for different gradients of undulator tapering are examined. It is found that a strong undulator tapering (˜10 %) provides effective suppression of the sideband instability in the postsaturation regime.

14. A three-dimensional finite element model for biomechanical analysis of the hip.

Science.gov (United States)

Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

2013-11-01

The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

15. Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins

Energy Technology Data Exchange (ETDEWEB)

Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran); Rahideh, H. [Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran)

2009-04-15

The two-dimensional nonlinear transient heat transfer analysis of variable cross section pin-fins is studied using the incremental differential quadrature method (IDQM) as a simple, accurate, and computationally efficient numerical tool. The formulations are general so that it can easily be used for arbitrary continuously varying cross section pin fins with the spatial-temperature dependent thermal parameters. On all external surfaces of the pin fin, the convective-radiative condition is considered. The effects of two different types of boundary conditions at the base of pin fin are investigated: time and spatial dependent temperature, and the convection heat transfer. The thermal conductivity of the pin fin is assumed to vary as a linear function of the temperature. The accuracy of the method is demonstrated by comparing its results with those generated by finite difference method. It is shown that using few grid points, results in excellent agreements with those of FDM are obtained. Less computational efforts of the method with respect to finite difference method is shown. (author)

16. A semi-analytical three-dimensional free vibration analysis of functionally graded curved panels

Energy Technology Data Exchange (ETDEWEB)

Zahedinejad, P. [Department of Mechanical Engineering, Islamic Azad University, Branch of Shiraz, Shiraz (Iran, Islamic Republic of); Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, Persian Gulf University, Persian Gulf University Boulevard, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of); Farid, M. [Department of Mechanical Engineering, Islamic Azad University, Branch of Shiraz, Shiraz (Iran, Islamic Republic of); Karami, G. [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105-5285 (United States)

2010-08-15

Based on the three-dimensional elasticity theory, free vibration analysis of functionally graded (FG) curved thick panels under various boundary conditions is studied. Panel with two opposite edges simply supported and arbitrary boundary conditions at the other edges are considered. Two different models of material properties variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential distribution of the material properties through the thickness are considered. Differential quadrature method in conjunction with the trigonometric functions is used to discretize the governing equations. With a continuous material properties variation assumption through the thickness of the curved panel, differential quadrature method is efficiently used to discretize the governing equations and to implement the related boundary conditions at the top and bottom surfaces of the curved panel and in strong form. The convergence of the method is demonstrated and to validate the results, comparisons are made with the solutions for isotropic and FG curved panels. By examining the results of thick FG curved panels for various geometrical and material parameters and subjected to different boundary conditions, the influence of these parameters and in particular, those due to functionally graded material parameters are studied.

17. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

Directory of Open Access Journals (Sweden)

Nima Babanouri

2013-12-01

Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

18. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

Science.gov (United States)

Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

2017-12-01

Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

19. Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles

Directory of Open Access Journals (Sweden)

Che-Kai Yeh

2017-06-01

Full Text Available The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST, cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc. and some published experimental data.

20. Three-dimensional computed tomography analysis of non-osteoarthritic adult acetabular dysplasia

International Nuclear Information System (INIS)

Ito, Hiroshi; Matsuno, Takeo; Hirayama, Teruhisa; Tanino, Hiromasa; Yamanaka, Yasuhiro; Minami, Akio

2009-01-01

Little data exists on the original morphology of acetabular dysplasia obtained from patients without radiographic advanced osteoarthritic changes. The aim of this study was to investigate the distribution and degree of acetabular dysplasia in a large number of patients showing no advanced degenerative changes using three-dimensional computed tomography (3DCT). Eighty-four dysplastic hips in 55 consecutive patients were studied. All 84 hips were in pre- or early osteoarthritis without radiographic evidence of joint space narrowing, formation of osteophytes or cysts, or deformity of femoral heads. The mean age at the time of CT scan was 35 years (range 15-64 years). 3D images were reconstructed and analyzed using recent computer imaging software (INTAGE Realia and Volume Player). Deficiency types and degrees of acetabular dysplasia were precisely evaluated using these computer software. The average Harris hip score at CT scans was 82 points. Twenty-two hips (26%) were classified as anterior deficiency, 17 hips (20%) as posterior deficiency, and 45 hips (54%) as lateral deficiency. No significant difference was found in the Harris hip score among these groups. The analysis of various measurements indicated wide variations. There was a significant correlation between the Harris hip score and the acetabular coverage (p < 0.001). Our results indicated wide variety of deficiency type and degree of acetabular dysplasia. Hips with greater acetabular coverage tended to have a higher Harris hip score. (orig.)

1. Analysis of UPTF downcomer tests with the Cathare multi-dimensional model

International Nuclear Information System (INIS)

Dor, I.

1993-01-01

This paper presents the analysis and the modelling - with the system code CATHARE - of UPTF downcomer refill tests simulating the refill phase of a large break LOCA. The modelling approach in a system code is discussed. First the reasons why in this particular case available flooding correlations are difficult to use in system code are developed. Then the use of a 1 - D modelling of the downcomer with specific closure relations for the annular geometry is examined. But UPTF 1:1 scale tests and CREARE reduced scale tests point out some weaknesses of this modelling due to the particular multi-dimensional nature of the flow in the upper part of the downcomer. Thus a 2-D model is elaborated and implemented into CATHARE version 1.3e code. The assessment of the model is based on UPTF 1:1 scale tests (saturated and subcooled conditions). Discretization and meshing influence are investigated. On the basis of saturated tests a new discretization is proposed for different terms of the momentum balance equations (interfacial friction, momentum transport terms) which results in a significant improvement. Sensitivity studies performed on subcooled tests show that the water downflow predictions are improved by increasing the condensation in the downcomer. (author). 8 figs., 5 tabs., 9 refs., 2 appendix

2. Quasi-steady-state analysis of two-dimensional random intermittent search processes

KAUST Repository

Bressloff, Paul C.; Newby, Jay M.

2011-01-01

We use perturbation methods to analyze a two-dimensional random intermittent search process, in which a searcher alternates between a diffusive search phase and a ballistic movement phase whose velocity direction is random. A hidden target is introduced within a rectangular domain with reflecting boundaries. If the searcher moves within range of the target and is in the search phase, it has a chance of detecting the target. A quasi-steady-state analysis is applied to the corresponding Chapman-Kolmogorov equation. This generates a reduced Fokker-Planck description of the search process involving a nonzero drift term and an anisotropic diffusion tensor. In the case of a uniform direction distribution, for which there is zero drift, and isotropic diffusion, we use the method of matched asymptotics to compute the mean first passage time (MFPT) to the target, under the assumption that the detection range of the target is much smaller than the size of the domain. We show that an optimal search strategy exists, consistent with previous studies of intermittent search in a radially symmetric domain that were based on a decoupling or moment closure approximation. We also show how the decoupling approximation can break down in the case of biased search processes. Finally, we analyze the MFPT in the case of anisotropic diffusion and find that anisotropy can be useful when the searcher starts from a fixed location. © 2011 American Physical Society.

3. The knock study of methanol fuel based on multi-dimensional simulation analysis

International Nuclear Information System (INIS)

Zhen, Xudong; Liu, Daming; Wang, Yang

2017-01-01

Methanol is an alternative fuel, and considered to be one of the most favorable fuels for engines. In this study, knocking combustion in a developed ORCEM (optical rapid compression and expansion machine) is studied based on the multi-dimensional simulation analysis. The LES (large-eddy simulation) models coupled with methanol chemical reaction kinetics (contains 21-species and 84-elementary reactions) is adopted to study knocking combustion. The results showed that the end-gas auto-ignition first occurred in the position near the chamber wall because of the higher temperature and pressure. The H_2O_2 species could be a good flame front indicator. OH radicals played the major role, and the HCO radicals almost could be ignored during knocking combustion. The HCO radicals generated little, so its concentration during knocking combustion almost may be ignored. The mean reaction intensity results of CH_2O, OH, H_2O_2, and CO were higher than others during knocking combustion. Finally, this paper put forward some new suggestions on the weakness in the knocking combustion researches of methanol fuel. - Highlights: • Knocking combustion of methanol was studied in a developed ORCEM. • The LES coupled with detailed chemical kinetics was adopted to simulation study. • The end-gas auto-ignition first occurred in the place near the chamber wall. • OH radical was the predominant species during knocking combustion. • The H_2O_2 species could be a good flame front indicator.

4. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

Science.gov (United States)

Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

2018-01-01

Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P  0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

5. Painleve analysis and transformations for a generalized two-dimensional variable-coefficient Burgers model from fluid mechanics, acoustics and cosmic-ray astrophysics

International Nuclear Information System (INIS)

Wei, Guang-Mei

2006-01-01

Generalized two-dimensional variable-coefficient Burgers model is of current value in fluid mechanics, acoustics and cosmic-ray astrophysics. In this paper, Painleve analysis leads to the constraints on the variable coefficients for such a model to pass the Painleve test and to an auto-Baecklund transformation. Moreover, four transformations from this model are constructed, to the standard two-dimensional and one-dimensional Burgers models with the relevant constraints on the variable coefficients via symbolic computation. By virtue of the given transformations the properties and solutions of this model can be obtained from those of the standard two-dimensional and one-dimensional ones

6. Improved non-dimensional dynamic influence function method for vibration analysis of arbitrarily shaped plates with clamped edges

Directory of Open Access Journals (Sweden)

Sang-Wook Kang

2016-03-01

Full Text Available A new formulation for the non-dimensional dynamic influence function method, which was developed by the authors, is proposed to efficiently extract eigenvalues and mode shapes of clamped plates with arbitrary shapes. Compared with the finite element and boundary element methods, the non-dimensional dynamic influence function method yields highly accurate solutions in eigenvalue analysis problems of plates and membranes including acoustic cavities. However, the non-dimensional dynamic influence function method requires the uneconomic procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues because it produces a non-algebraic eigenvalue problem. This article describes a new approach that reduces the problem of free vibrations of clamped plates to an algebraic eigenvalue problem, the solution of which is straightforward. The validity and efficiency of the proposed method are illustrated through several numerical examples.

7. Singularity Structure Analysis of the Higher-Dimensional Time-Gated Manakov System: Periodic Excitations and Elastic Scattering

International Nuclear Information System (INIS)

Kuetche, Victor Kamgang; Bouetou, Thomas Bouetou; Kofane, Timoleon Crepin

2010-12-01

We investigate the singularity structure analysis of the higher-dimensional time-gated Manakov system referring to the (2+1)-dimensional coupled nonlinear Schroedinger (CNLS) equations, and we show that these equations are Painleve-integrable. By means of the Weiss et al.'s methodology, we show the arbitrariness of the expansion coefficients and the consistency of the truncation corresponding to a special Baecklund transformation (BT) of these CNLS equations. In the wake of such transformation, following the Hirota's formalism, we derive a one-soliton solution. Besides, by using the Zakharov-Shabat (ZS) scheme which provides a general Lax-representation of an evolution system, we show that the (2+1)-dimensional CNLS system under interests is completely integrable. Furthermore, using the arbitrariness of the above coefficients, we unearth and investigate a typical spectrum of periodic coherent structures while depicting elastic interactions amongst such patterns. (author)

8. Quantitative analysis of fragrance in selectable one dimensional or two dimensional gas chromatography-mass spectrometry with simultaneous detection of multiple detectors in single injection.

Science.gov (United States)

Tan, Hui Peng; Wan, Tow Shi; Min, Christina Liew Shu; Osborne, Murray; Ng, Khim Hui

2014-03-14

A selectable one-dimensional ((1)D) or two-dimensional ((2)D) gas chromatography-mass spectrometry (GC-MS) system coupled with flame ionization detector (FID) and olfactory detection port (ODP) was employed in this study to analyze perfume oil and fragrance in shower gel. A split/splitless (SSL) injector and a programmable temperature vaporization (PTV) injector are connected via a 2-way splitter of capillary flow technology (CFT) in this selectable (1)D/(2)D GC-MS/FID/ODP system to facilitate liquid sample injections and thermal desorption (TD) for stir bar sorptive extraction (SBSE) technique, respectively. The dual-linked injectors set-up enable the use of two different injector ports (one at a time) in single sequence run without having to relocate the (1)D capillary column from one inlet to another. Target analytes were separated in (1)D GC-MS/FID/ODP and followed by further separation of co-elution mixture from (1)D in (2)D GC-MS/FID/ODP in single injection without any instrumental reconfiguration. A (1)D/(2)D quantitative analysis method was developed and validated for its repeatability - tR; calculated linear retention indices (LRI); response ratio in both MS and FID signal, limit of detection (LOD), limit of quantitation (LOQ), as well as linearity over a concentration range. The method was successfully applied in quantitative analysis of perfume solution at different concentration level (RSD≤0.01%, n=5) and shower gel spiked with perfume at different dosages (RSD≤0.04%, n=5) with good recovery (96-103% for SSL injection; 94-107% for stir bar sorptive extraction-thermal desorption (SBSE-TD). Copyright © 2014 Elsevier B.V. All rights reserved.

9. Application of the three-dimensional transport code to analysis of the neutron streaming experiment

International Nuclear Information System (INIS)

Chatani, K.; Slater, C.O.

1990-01-01

The neutron streaming through an experimental mock-up of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway was recalculated with a three-dimensional discrete ordinates code. The experiment was conducted at the Tower Shielding Facility at Oak Ridge National Laboratory in 1976 and 1977. The measurement of the neutron flux, using Bonner ball detectors, indicated nine orders of attenuation in the empty pipeway, which contained two 90-deg bends and was surrounded by concrete walls. The measurement data were originally analyzed using the DOT3.5 two-dimensional discrete ordinates radiation transport code. However, the results did not agree with measurement data at the bend because of the difficulties in modeling the three-dimensional configurations using two-dimensional methods. The two-dimensional calculations used a three-step procedure in which each of the three legs making the two 90-deg bends was a separate calculation. The experiment was recently analyzed with the TORT three-dimensional discrete ordinates radiation transport code, not only to compare the calculational results with the experimental results, but also to compare with results obtained from analyses in Japan using DOT3.5, MORSE, and ENSEMBLE, which is a three-dimensional discrete ordinates radiation transport code developed in Japan

10. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

Directory of Open Access Journals (Sweden)

Huanhuan Li

2017-08-01

Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our

11. Three-dimensional thermal analysis of a baseline spent fuel repository

International Nuclear Information System (INIS)

Altenbach, T.J.; Lowry, W.E.

1980-01-01

A three-dimensional thermal analysis has been performed using finite difference techniques to determine the near-field response of a baseline spent fuel repository in a deep geologic salt medium. A baseline design incorporates previous thermal modeling experience and OWI recommendations for areal thermal loading in specifying the waste form properties, package details, and emplacement configuration. The base case in this thermal analysis considers one 10-year old PWR spent fuel assembly emplaced to yield a 36 kw/acre (8.9 w/m 2 ) loading. A unit cell model in an infinite array is used to simplify the problem and provide upper-bound temperatures. Boundary conditions are imposed which allow simulations to 1000 years. Variations studied include a comparison of ventilated and unventilated storage room conditions, emplacement packages with and without air gaps surrounding the canister, and room cool-down scenarios with ventilation following an unventilated state for retrieval purposes. At this low power level ventilating the emplacement room has an immediate cooling influence on the canister and effectively maintains the emplacement room floor near the temperature of the ventilating air. The annular gap separating the canister and sleeve causes the peak temperature of the canister surface to rise by 10 0 F (5.6 0 C) over that from a no gap case assuming perfect thermal contact. It was also shown that the time required for the emplacement room to cool down to 100 0 F (38 0 C) from an unventilated state ranged from 2 weeks to 6 months; when ventilation initiated after times of 5 years to 50 years, respectively. As the work was performed for the Nuclear Regulatory Commission, these results provide a significant addition to the regulatory data base for spent fuel performance in a geologic repository

12. Agreement Between Visual Assessment and 2-Dimensional Analysis During Jump Landing Among Healthy Female Athletes.

Science.gov (United States)

Rabin, Alon; Einstein, Ofira; Kozol, Zvi

2018-04-01

Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown.   To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes.   Cross-sectional study.   Gymnasiums of participating volleyball teams.   A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association.   Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements.   Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01).   Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.

13. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.

Science.gov (United States)

Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon

2017-08-04

The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with

14. Low-dimensional analysis, using POD, for two mixing layer-wake interactions

International Nuclear Information System (INIS)

Braud, Caroline; Heitz, Dominique; Arroyo, Georges; Perret, Laurent; Delville, Joeel; Bonnet, Jean-Paul

2004-01-01

The mixing layer-wake interaction is studied experimentally in the framework of two flow configurations. For the first one, the initial conditions of the mixing layer are modified by using a thick trailing edge, a wake effect is therefore superimposed to the mixing layer from its beginning (blunt trailing edge). In the second flow configuration, a canonical mixing layer is perturbed in its asymptotic region by the wake of a cylinder arranged perpendicular to the plane of the mixing layer. These interactions are analyzed mainly by using two-point velocity correlations and the proper orthogonal decomposition (POD). These two flow configurations differ by the degree of complexity they involve: the former is mainly 2D while the latter is highly 3D. The blunt trailing edge configuration is analyzed by using rakes of hot wire probes. This flow configuration is found to be considerably different when compared to a conventional mixing layer. It appears in particular that the scale of the large structures depends only on the trailing edge thickness and does not grow in its downstream evolution. A criterion, based on POD, is proposed in order to separate wake-mixing layer dominant areas of the downstream evolution of the flow. The complex 3D dynamical behaviour resulting from the interaction between the canonical plane mixing layer and the wake of a cylinder is investigated using data arising from particle image velocimetry measurements. An analysis of the velocity correlations shows different length scales in the regions dominated by wake like structures and shear layer type structures. In order to characterize the particular organization in the plane of symmetry, a POD-Galerkin projection of the Navier-Stokes equations is performed in this plane. This leads to a low-dimensional dynamical system that allows the analysis of the relationship between the dominant frequencies to be performed. A reconstruction of the dominant periodic motion suspected from previous studies is

15. Analysis of Polycyclic Aromatic Hydrocarbons in Ambient Aerosols by Using One-Dimensional and Comprehensive Two-Dimensional Gas Chromatography Combined with Mass Spectrometric Method: A Comparative Study

Directory of Open Access Journals (Sweden)

Yun Gyong Ahn

2018-01-01

Full Text Available Advanced separation technology paired with mass spectrometry is an ideal method for the analysis of atmospheric samples having complex chemical compositions. Due to the huge variety of both natural and anthropogenic sources of organic compounds, simultaneous quantification and identification of organic compounds in aerosol samples represents a demanding analytical challenge. In this regard, comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS has become an effective analytical method. However, verification and validation approaches to quantify these analytes have not been critically evaluated. We compared the performance of gas chromatography with quadrupole mass spectrometry (GC-qMS and GC×GC-TOFMS for quantitative analysis of eighteen target polycyclic aromatic hydrocarbons (PAHs. The quantitative obtained results such as limits of detection (LODs, limits of quantification (LOQs, and recoveries of target PAHs were approximately equivalent based on both analytical methods. Furthermore, a larger number of analytes were consistently identified from the aerosol samples by GC×GC-TOFMS compared to GC-qMS. Our findings suggest that GC×GC-TOFMS would be widely applicable to the atmospheric and related sciences with simultaneous target and nontarget analysis in a single run.

16. Two-dimensional coherence analysis of magnetic and gravity data from the Cascer Quadrangle, Wyoming. Final report

International Nuclear Information System (INIS)

QEB, Inc. has completed a two-dimensional coherence analysis of gravity and magnetic data from the Casper, Wyoming NTMS quadrangle. Magnetic data from an airborne survey were reduced to produce a Residual Magnetic map, and gravity data obtained from several sources were reduced to produce a Complete Bouguer Gravity map. Both sets of data were upward continued to a plane one kilometer above the surface; and then, to make the magnetic and gravity data comparable, the magnetic data were transformed to pseudo-gravity data by the application of Poisson's relationship for rocks that are both dense and magnetic relative to the surrounding rocks. A pseudo-gravity map was then produced and an analysis made of the two-dimensional coherence between the upward continued Bouguer gravity and the pseudo-gravity data. Based on the results of the coherence analysis, digital filters were designed to either pass or reject wavelength bands with high coherence

17. Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant

International Nuclear Information System (INIS)

Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko

2013-01-01

As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)

18. Multi-dimensional approach of MARS-LMR for the analysis of Phenix End-of-Life natural circulation test

International Nuclear Information System (INIS)

Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim

2012-01-01

Phenix is one of the important prototype sodium-cooled fast reactors (SFR) in nuclear reactor development history. It had been operated successfully for 35 years by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) achieving its original objectives of demonstrating a fast breeder reactor technology and of playing the role of irradiation facility for innovative fuels and materials. After its final shutdown in 2009, CEA launched the Phenix End-of-life (EOL) test program. It provided a unique opportunity to generate reliable test data which is inevitable in the validation and verification of a SFR system analysis code. KAERI joined this international collaboration program of IAEA CRP and has performed the pretest analysis and post-test analysis utilizing the one-dimensional modeling of the MARS-LMR code, which had been developed by KAERI for the transient analysis of SFR systems. Through the previous studies, it has been identified that there are some limitations in the modeling of complicated thermal-hydraulic behaviors in the large pool volumes with the one-dimensional modeling. Recently, KAERI performed the analysis of Phenix EOL natural circulation test with multi-dimensional pool modeling, which is detailed below

19. Multi-dimensional approach of MARS-LMR for the analysis of Phenix End-of-Life natural circulation test

Energy Technology Data Exchange (ETDEWEB)

Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

2012-05-15

Phenix is one of the important prototype sodium-cooled fast reactors (SFR) in nuclear reactor development history. It had been operated successfully for 35 years by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) achieving its original objectives of demonstrating a fast breeder reactor technology and of playing the role of irradiation facility for innovative fuels and materials. After its final shutdown in 2009, CEA launched the Phenix End-of-life (EOL) test program. It provided a unique opportunity to generate reliable test data which is inevitable in the validation and verification of a SFR system analysis code. KAERI joined this international collaboration program of IAEA CRP and has performed the pretest analysis and post-test analysis utilizing the one-dimensional modeling of the MARS-LMR code, which had been developed by KAERI for the transient analysis of SFR systems. Through the previous studies, it has been identified that there are some limitations in the modeling of complicated thermal-hydraulic behaviors in the large pool volumes with the one-dimensional modeling. Recently, KAERI performed the analysis of Phenix EOL natural circulation test with multi-dimensional pool modeling, which is detailed below

20. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

International Nuclear Information System (INIS)

Shvets', D.V.

2009-01-01

By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

1. Symmetry Analysis and Exact Solutions of (2+1)-Dimensional Sawada-Kotera Equation

International Nuclear Information System (INIS)

Zhi Hongyan; Zhang Hongqing

2008-01-01

Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)-dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko-Dubrovsky equations, respectively.

2. Three dimensional analysis of coelacanth body structure by computer graphics and X-ray CT images

International Nuclear Information System (INIS)

1990-01-01

Three dimensional imaging processes were applied for the structural and functional analyses of the modern coelacanth (Latimeria chalumnae). Visualization of the obtained images is performed with computer graphics on the basis of serial images by an X-ray CT scanning method. Reconstruction of three dimensional images of the body structure of coelacanth using the volume rendering and surface rendering methods provides us various information about external and internal shapes of this exquisite fish. (author)

3. Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance

International Nuclear Information System (INIS)

Batygin, Yuri K.

2001-01-01

A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given

4. Analysis of the two dimensional Datta-Das Spin Field Effect Transistor

OpenAIRE

2010-01-01

An analytical expression is derived for the conductance modulation of a ballistic two dimensional Datta-Das Spin Field Effect Transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

5. Analysis of the two-dimensional Datta-Das spin field effect transistor

Science.gov (United States)

2010-03-01

An analytical expression is derived for the conductance modulation of a ballistic two-dimensional Datta-das spin field effect transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

6. HDclassif : An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data

Directory of Open Access Journals (Sweden)

Laurent Berge

2012-01-01

Full Text Available This paper presents the R package HDclassif which is devoted to the clustering and the discriminant analysis of high-dimensional data. The classification methods proposed in the package result from a new parametrization of the Gaussian mixture model which combines the idea of dimension reduction and model constraints on the covariance matrices. The supervised classification method using this parametrization is called high dimensional discriminant analysis (HDDA. In a similar manner, the associated clustering method iscalled high dimensional data clustering (HDDC and uses the expectation-maximization algorithm for inference. In order to correctly t the data, both methods estimate the specific subspace and the intrinsic dimension of the groups. Due to the constraints on the covariance matrices, the number of parameters to estimate is significantly lower than other model-based methods and this allows the methods to be stable and efficient in high dimensions. Two introductory examples illustrated with R codes allow the user to discover the hdda and hddc functions. Experiments on simulated and real datasets also compare HDDC and HDDA with existing classification methods on high-dimensional datasets. HDclassif is a free software and distributed under the general public license, as part of the R software project.

7. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet.

Science.gov (United States)

Watanabe, Kota; Ikeda, Yasutoshi; Suzuki, Daisuke; Teramoto, Atsushi; Kobayashi, Takuma; Suzuki, Tomoyuki; Yamashita, Toshihiko

2017-02-01

Patients with hallux valgus present a variety of symptoms that may be related to the type of deformity. Weightbearing affects the deformities, and the evaluation of the load response of tarsal bones has been mainly performed using two-dimensional plane radiography. The purpose of this study was to investigate and compare structural changes in the medial foot arch between patients with hallux valgus and normal controls using a computer image analysis technique and weightbearing computed tomography data. Eleven patients with hallux valgus and eleven normal controls were included. Computed tomograms were obtained with and without simulated weightbearing using a compression device. Computed tomography data were transferred into a personal computer, and a three-dimensional bone model was created using image analysis software. The load responses of each tarsal bone in the medial foot arch were measured three-dimensionally and statistically compared between the two groups. Displacement of each tarsal bone under two weightbearing conditions was visually observed by creating three-dimensional bone models. At the first metatarsophalangeal joint, the proximal phalanges of the hallux valgus group showed significantly different displacements in multiple directions. Moreover, opposite responses to axial loading were also observed in both translation and rotation between the two groups. Weightbearing caused deterioration of the hallux valgus deformity three-dimensionally at the first metatarsophalangeal joint. Information from the computer image analysis was useful for understanding details of the pathology of foot disorders related to the deformities or instability and may contribute to the development of effective conservative and surgical treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

8. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

Directory of Open Access Journals (Sweden)

Daniel Sousa

2018-02-01

Full Text Available Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1 How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2 Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3 How much variability in rock and soil substrate endmembers (EMs present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

9. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

Directory of Open Access Journals (Sweden)

2017-01-01

Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

10. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness.

Science.gov (United States)

2009-07-01

To compare the exactness of simulated clinical impressions and stone replicas of crown preparations, using digitization and virtual three-dimensional analysis. Three master dies (mandibular incisor, canine and molar) were prepared for full crowns, mounted in full dental arches in a plane line articulator. Eight impressions were taken using an experimental monophase vinyl polysiloxane-based material. Stone replicas were poured in type IV stone (Vel-Mix Stone; Kerr). The master dies and the stone replicas were digitized in a touch-probe scanner (Procera) Forte; Nobel Biocare AB) and the impressions in a laser scanner (D250, 3Shape A/S), to create virtual models. The resulting point-clouds from the digitization of the master dies were used as CAD-Reference-Models (CRM). Discrepancies between the points in the pointclouds and the corresponding CRM were measured by a matching-software (CopyCAD 6.504 SP2; Delcam Plc). The distribution of the discrepancies was analyzed and depicted on color-difference maps. The discrepancies of the digitized impressions and the stone replicas compared to the CRM were of similar size with a mean+/-SD within 40microm, with the exception of two of the digitized molar impressions. The precision of the digitized impressions and stone replicas did not differ significantly (F=4.2; p=0.053). However, the shape affected the digitization (F=5.4; p=0.013) and the interaction effect of shape and digitization source (impression or stone replica) was pronounced (F=28; pimpressions varied with shape. Both impressions and stone replicas can be digitized repeatedly with a high reliability.

11. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

Science.gov (United States)

Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

2011-01-01

We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

12. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

Science.gov (United States)

Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

13. Motion Analysis of Chinese Bajiquan Based on Three-dimensional Images of Biomechanics

Directory of Open Access Journals (Sweden)

Ming Zi

2017-06-01

Full Text Available With the development of sports biomechanics, human motion mechanical characteristics have received more and more attention from plenty of researchers. Therefore, how to analyze the biomechanics of the living body has become the principle problem at the present stage. In this study, the three-dimensional (3D image was adopted for a sport dynamics analysis of the riding style of the Chinese Bajiquan. First of all, the change rules of the temporal characteristic parameters when the research objects in the experiment group and the control group completing the riding style action were analyzed based on the characteristics of the action; in the initial stage of the action, the movement speed was relatively slow, and with the center of gravity of the right feet moving down, stable support was formed. Secondly, parameters such as hip joint angle and knee joint angle, etc., were tested from the perspective of dynamics sensors and a rigid block model was constructed to accurately calculate the joint angle. The hip joint guaranteed the stability of center of gravity during movement; the fluctuation of the ankle joint was relatively small, while the maximum fluctuation range of the trunk angle during movement was small, which could keep the upper limbs up straight as well as reduce fluctuation, and the lowering of the center of gravity was good for the stability of the lower limbs. When the riding style action was completed, the toes of the research objects in the experiment group would buckle subconsciously to control the balance of the body. Therefore, the riding style requires the interaction among different parameters, which conforms with the characteristics of the Chinese Bajiquan.

14. Dimensional personality traits and alcohol treatment outcome: a systematic review and meta-analysis.

Science.gov (United States)

Foulds, James; Newton-Howes, Giles; Guy, Nicola H; Boden, Joseph M; Mulder, Roger T

2017-08-01

To identify dimensional personality traits associated with treatment outcome for patients with an alcohol use disorder (AUD). Systematic review and meta-analysis of clinical trials and longitudinal studies of ≥ 8 weeks in patients receiving treatment for AUD, in which the association between personality dimensions and treatment outcome was reported. Primary outcomes were relapse and alcohol consumption measures. Treatment retention was a secondary outcome. Eighteen studies, including 4783 subjects, were identified. Twelve studies used Cloninger's Temperament and Personality Questionnaire (TPQ) or Temperament and Character Inventory (TCI). Remaining studies used a broad range of other personality measures. Compared with non-relapsers, patients who relapsed had higher novelty-seeking [standardized mean difference in novelty-seeking score 0.28; 95% confidence interval (CI) = 0.12, 0.44], lower persistence (-0.30, 95% = CI -0.48, -0.12), lower reward dependence (-0.16, 95% CI = -0.31, -0.01) and lower cooperativeness (-0.23, 95% CI = -0.41, -0.04). Few studies reported on alcohol consumption outcomes, therefore findings for those outcomes were inconclusive. Lower novelty-seeking predicted better retention in treatment in two of three studies. Most studies reported findings only for those retained in treatment, and did not attempt to account for missing data; therefore, findings for the primary outcomes cannot be generalized to patients who dropped out of treatment. Studies using personality instruments other than the TCI or TPQ reported no consistent findings on the association between personality variables and treatment outcome. Among patients receiving treatment for an alcohol use disorder, those who relapse during follow-up have higher novelty-seeking, lower persistence, lower reward dependence and lower cooperativeness than those who do not relapse. © 2017 Society for the Study of Addiction.

15. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

International Nuclear Information System (INIS)

Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

2004-01-01

Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

16. Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions

International Nuclear Information System (INIS)

Carpenter, D.C.

1997-01-01

Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions

17. Bi-dimensional null model analysis of presence-absence binary matrices.

Science.gov (United States)

Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J

2018-01-01

Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological

18. Etiological factors in hallux valgus, a three-dimensional analysis of the first metatarsal.

Science.gov (United States)

Ota, Tomohiko; Nagura, Takeo; Kokubo, Tetsuro; Kitashiro, Masateru; Ogihara, Naomichi; Takeshima, Kenichiro; Seki, Hiroyuki; Suda, Yasunori; Matsumoto, Morio; Nakamura, Masaya

2017-01-01

It has been reported that hallux valgus (HV) is associated with axial rotation of the first metatarsal (1MT). However, the association between HV and torsion of the 1MT head with respect to the base has not been previously investigated. The present study examined whether there was a significant difference in 1MT torsion between HV and control groups. Three-dimensional (3D) computed tomography (CT) scans of 39 ft were obtained, and 3D surface models of the 1MT were generated to quantify the torsion of the head with respect to the base. The HV group consisted of 27 ft from 27 women (69.5 ± 7.5 years old). Only the feet of HV patients with an HV angle >20° on weight-bearing radiography were selected for analysis. The control group consisted of 12 ft from 12 women (67.7 ± 7.2 years old). In a virtual 3D space, two unit vectors, which describe the orientation of the 1MT head and base, were calculated. The angle formed by these two unit vectors representing 1MT torsion was compared between the control and hallux valgus groups. The mean (± standard deviation) of the torsional angle of the 1MT was 17.6 (± 7.7)° and 4.7 (± 4.0)° in the HV and control groups, respectively, and the difference was significant ( p  hallux valgus patients compared to control group patients.

19. Electrophoretic analysis of proteins from Mycoplasma hominis strains detected by SDS-PAGE, two-dimensional gel electrophoresis and immunoblotting

DEFF Research Database (Denmark)

Andersen, H; Birkelund, Svend; Christiansen, Gunna

1987-01-01

The proteins of 14 strains of Mycoplasma hominis were compared by SDS-PAGE in gradient gels, by two-dimensional (2D) gel electrophoresis of extracts of 35S-labelled cells and by immunoblot analysis of cell proteins. The strains examined included the M. hominis type strain PG21 and 13 others...... isolated variously from genital tract, mouth, blood, upper urinary tract and a wound. These 14 strains shared 76-99% of proteins in SDS-gradient gel analysis and 41-72% in the 2D gels. As expected, the immunoblot analysis likewise revealed the existence of an extensive common protein pattern in M. hominis...

20. Problems on one-dimensionally disordered lattices, and reliability of structural analysis of liquids and amorphous solids

International Nuclear Information System (INIS)

Kakinoki, J.

1974-01-01

Methods for obtaining the intensity of X-ray diffraction by one-dimensional by disordered lattices have been studied, and matrix method was developed. The method has been applied for structural analysis. Several problems concerning neutron diffraction were shown in the course of analysis. Large single crystals should be used for measurement. It is hard to grasp the local variation of structure. The technique of topography is still in development. Measurement of weak intensity diffraction is not sufficient. Technique of photography to observe overall feature is not good. General remarks concerning the one-dimensionally disordered lattices are as follows. A large number of parameters for analysis are not practical, and the disorder parameters are preferably two. In case of the disorder between two kinds of layers having same frequency and different structure, peak shift is not caused, and Laue term remains at the position. Reliability of the structural analysis of liquid and amorphous solid is discussed. The analysis is basically the analysis two atom molecule of same kind of atoms. The intensity of diffraction can be obtained from radial distribution function (RDF). Since practical observation is limited to a finite region, termination effect should be taken into consideration. Accuracy of analysis is not good in case of X-ray diffraction. The analysis by neutron diffraction is preferable. (Kato, T.)

1. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

Energy Technology Data Exchange (ETDEWEB)

Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

2014-09-30

Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

2. Accuracy of Digital vs Conventional Implant Impression Approach: A Three-Dimensional Comparative In Vitro Analysis.

Science.gov (United States)

Basaki, Kinga; Alkumru, Hasan; De Souza, Grace; Finer, Yoav

To assess the three-dimensional (3D) accuracy and clinical acceptability of implant definitive casts fabricated using a digital impression approach and to compare the results with those of a conventional impression method in a partially edentulous condition. A mandibular reference model was fabricated with implants in the first premolar and molar positions to simulate a patient with bilateral posterior edentulism. Ten implant-level impressions per method were made using either an intraoral scanner with scanning abutments for the digital approach or an open-tray technique and polyvinylsiloxane material for the conventional approach. 3D analysis and comparison of implant location on resultant definitive casts were performed using laser scanner and quality control software. The inter-implant distances and interimplant angulations for each implant pair were measured for the reference model and for each definitive cast (n = 20 per group); these measurements were compared to calculate the magnitude of error in 3D for each definitive cast. The influence of implant angulation on definitive cast accuracy was evaluated for both digital and conventional approaches. Statistical analysis was performed using t test (α = .05) for implant position and angulation. Clinical qualitative assessment of accuracy was done via the assessment of the passivity of a master verification stent for each implant pair, and significance was analyzed using chi-square test (α = .05). A 3D error of implant positioning was observed for the two impression techniques vs the reference model, with mean ± standard deviation (SD) error of 116 ± 94 μm and 56 ± 29 μm for the digital and conventional approaches, respectively (P = .01). In contrast, the inter-implant angulation errors were not significantly different between the two techniques (P = .83). Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). The verification stent

3. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis

International Nuclear Information System (INIS)

Oetzel, Dieter; Schraube, Peter; Hensley, Frank; Sroka-Perez, Gabriele; Menke, Markus; Flentje, Michael

1995-01-01

Purpose: Investigations to study correlations between the estimations of biophysical models in three dimensional (3D) treatment planning and clinical observations are scarce. The development of clinically symptomatic pneumonitis in the radiotherapy of thoracic malignomas was chosen to test the predictive power of Lyman's normal tissue complication probability (NTCP) model for the assessment of side effects for nonuniform irradiation. Methods and Materials: In a retrospective analysis individual computed-tomography-based 3D dose distributions of a random sample of (46(20)) patients with lung/esophageal cancer were reconstructed. All patients received tumor doses between 50 and 60 Gy in a conventional treatment schedule. Biological isoeffective dose-volume histograms (DVHs) were used for the calculation of complication probabilities after applying Lyman's and Kutcher's DVH-reduction algorithm. Lung dose statistics were performed for single lung (involved ipsilateral and contralateral) and for the lung as a paired organ. Results: In the lung cancer group, about 20% of the patients (9 out of 46) developed pneumonitis 3-12 (median 7.5) weeks after completion of radiotherapy. For the majority of these lung cancer patients, the involved ipsilateral lung received a much higher dose than the contralateral lung, and the pneumonitis patients had on average a higher lung exposure with a doubling of the predicted complication risk (38% vs. 20%). The lower lung exposure for the esophagus patients resulted in a mean lung dose of 13.2 Gy (lung cancer: 20.5 Gy) averaged over all patients in correlation with an almost zero complication risk and only one observed case of pneumonitis (1 out of 20). To compare the pneumonitis risk estimations with observed complication rates, the patients were ranked into bins of mean ipsilateral lung dose. Particularly, in the bins with the highest patient numbers, a good correlation was achieved. Agreement was not reached for the lung functioning as

4. Extraction Analysis and Creation of Three-Dimensional Road Profiles Using Matlab OpenCRG Tool

Directory of Open Access Journals (Sweden)

Rakesh Hari Borse

2015-08-01

Full Text Available In vehicle systems dynamics there are wide applications of simulation of vehicles on road surfaces. These simulation applications are related to vehicle handling ride comfort and durability. For accurate prediction of results there is a need for a reliable and efficient road representations. The efficient representation of road surface profiles is to represent them in three-dimensional space. This is made possible by the CRG Curved Regular Grid approach. OpenCRG is a completely open source project including a tool suite for the creation modification and evaluation of road surfaces. Its objective is to standardized detailed road surface description and it may be used for applications like tire models vibrations or driving simulation. The Matlab tool suite of OpenCRG provides powerful modification or creation tools and allows to visualize the 3D road data representation. The current research focuses on basic concepts of OpenCRG and its Matlab environment. The extraction of longitudinal two-dimensional road profiles from three-dimensional CRG format is researched. The creation of simple virtual three-dimensional roads has been programmed. A Matlab software tool to extract create and analyze the three-dimensional road profiles is to be developed.

5. TURBO: a computer program for two-dimensional incompressible fluid flow analysis using a two-equations turbulence model

International Nuclear Information System (INIS)

Botelho, D.A.; Moreira, M.L.

1991-06-01

The Reynolds turbulent transport equations for an incompressible fluid are integrated on a bi-dimensional staggered grid, for velocity and pressure, using the SIMPLER method. With the resulting algebraic relations it was developed the TURBO program, which final objectives are the thermal stratification and natural convection analysis of nuclear reactor pools. This program was tested in problems applications with analytic or experimental solutions previously known. (author)

6. OBSERVER RATING VERSUS THREE-DIMENSIONAL MOTION ANALYSIS OF LOWER EXTREMITY KINEMATICS DURING FUNCTIONAL SCREENING TESTS: A SYSTEMATIC REVIEW.

Science.gov (United States)

Maclachlan, Liam; White, Steven G; Reid, Duncan

2015-08-01

Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation. To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests. Systematic review. A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks. Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (≥ 80%) but not specificity values (≥ 50%>%). Drop-jump task agreement ranged from poor ( 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 198 (peak knee flexion) were found in

7. Seismic response analysis of soil-structure interactive system using a coupled three-dimensional FE-IE method

International Nuclear Information System (INIS)

Ryu, Jeong-Soo; Seo, Choon-Gyo; Kim, Jae-Min; Yun, Chung-Bang

2010-01-01

This paper proposes a slightly new three-dimensional radial-shaped dynamic infinite elements fully coupled to finite elements for an analysis of soil-structure interaction system in a horizontally layered medium. We then deal with a seismic analysis technique for a three-dimensional soil-structure interactive system, based on the coupled finite-infinite method in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with wave functions propagating multi-generated wave components. The accuracy of the dynamic infinite element and effectiveness of the seismic analysis technique may be demonstrated through a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are (1) a site response analysis of the well-known Hualien site excited by all travelling wave components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of a nuclear power plant. The obtained dynamic results show good agreement compared with the measured response data and numerical values of other soil-structure interaction analysis package.

8. Does Attention-Deficit/Hyperactivity Disorder Have a Dimensional Latent Structure? A Taxometric Analysis

Science.gov (United States)

Marcus, David K.; Barry, Tammy D.

2010-01-01

An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667–1078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators, for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD. PMID:20973595

9. Three-Dimensional Numerical Analysis of Compound Lining in Complex Underground Surge-Shaft Structure

Directory of Open Access Journals (Sweden)

Juntao Chen

2015-01-01

Full Text Available The mechanical behavior of lining structure of deep-embedded cylinder surge shaft with multifork tunnel is analyzed using three-dimensional nonlinear FEM. With the elastic-plastic constitutive relations of rock mass imported and the implicit bolt element and distributed concrete cracking model adopted, a computing method of complex surge shaft is presented for the simulation of underground excavations and concrete lining cracks. In order to reflect the interaction and initial gap between rock mass and concrete lining, a three-dimensional nonlinear interface element is adopted, which can take into account both the normal and tangential characteristics. By an actual engineering computation, the distortion characteristics and stress distribution rules of the dimensional multifork surge-shaft lining structure under different behavior are revealed. The results verify the rationality and feasibility of this computation model and method and provide a new idea and reference for the complex surge-shaft design and construction.

10. Does attention-deficit/hyperactivity disorder have a dimensional latent structure? A taxometric analysis.

Science.gov (United States)

Marcus, David K; Barry, Tammy D

2011-05-01

An understanding of the latent structure of attention-deficit/hyperactivity disorder (ADHD) is essential for developing causal models of this disorder. Although some researchers have presumed that ADHD is dimensional and others have assumed that it is taxonic, there has been relatively little research directly examining the latent structure of ADHD. The authors conducted a set of taxometric analyses using data from the NICHD Study of Early Child Care and Youth Development (ns between 667 and 1,078). The results revealed a dimensional latent structure across a variety of different analyses and sets of indicators for inattention, hyperactivity/impulsivity, and ADHD. Furthermore, analyses of correlations with associated features indicated that dimensional models demonstrated stronger validity coefficients with these criterion measures than dichotomous models. These findings jibe with recent research on the genetic basis of ADHD and with contemporary models of ADHD.

11. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

Science.gov (United States)

Nagaoka, Tomoaki; Watanabe, Soichi

2010-01-01

Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

12. A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber

Science.gov (United States)

Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.

1992-01-01

Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.

13. Two-dimensional errors

International Nuclear Information System (INIS)

Anon.

1991-01-01

This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

14. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

Science.gov (United States)

Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

2013-01-01

The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone

15. Propagation of aortic dissection and visceral artery compromise. Three-dimensional analysis on CT angiography

International Nuclear Information System (INIS)

Minamiguchi, Hiroki

2003-01-01

artery were significant factors to explain the difference. Three-dimensional analysis using CT angiography was essential to understand the propagation of aortic dissection and visceral artery compromise. (author)

16. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

Energy Technology Data Exchange (ETDEWEB)

Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

2004-07-15

To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

17. A general methodology for three-dimensional analysis of variation in target volume delineation

NARCIS (Netherlands)

Remeijer, P.; Rasch, C.; Lebesque, J. V.; van Herk, M.

1999-01-01

A generic method for three-dimensional (3-D) evaluation of target volume delineation in multiple imaging modalities is presented. The evaluation includes geometrical and statistical methods to estimate observer differences and variability in defining the Gross Tumor Volume (GTV) in relation to the

18. Three dimensional monocular human motion analysis in end-effector space

DEFF Research Database (Denmark)

Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol

2009-01-01

In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinemati...

19. The Two- and Three-Dimensional Models of the HK-WISC: A Confirmatory Factor Analysis.

Science.gov (United States)

Chan, David W.; Lin, Wen-Ying

1996-01-01

Confirmatory analyses on the Hong Kong Wechsler Intelligence Scale for Children (HK-WISC) provided support for composite score interpretation based on the two- and three-dimensional models across age levels. Test sample was comprised of 1,100 children, ranging in age from 5 to 15 years at all 11 age levels specified by the HK-WISC. (KW)

20. Three-Dimensional (3D) Printers in Libraries: Perspective and Preliminary Safety Analysis

Science.gov (United States)

Bharti, Neelam; Singh, Shailendra

2017-01-01

As an emerging technology, three-dimensional (3D) printing has gained much attention as a rapid prototyping and small-scale manufacturing technology around the world. In the changing scenario of library inclusion, Makerspaces are becoming a part of most public and academic libraries, and 3D printing is one of the technologies included in…

1. Three dimensional analysis of brace biomechanical efficacy for patients with AIS

DEFF Research Database (Denmark)

Lebel, David E; Al-Aubaidi, Zaid; Shin, Eyun-Jung

2013-01-01

Corrective three dimensional (3D) effect of different braces is debatable. We evaluated differences in in-brace radiographic correction comparing a custom thoracic-lumbo-sacral-orthosis (TLSO) (T) brace to a Chêneau type TLSO (C) brace using 3D EOS reconstruction technology. Our primary research ...

2. ANALYSIS OF IMPACT ON COMPOSITE STRUCTURES WITH THE METHOD OF DIMENSIONALITY REDUCTION

Directory of Open Access Journals (Sweden)

Valentin L. Popov

2015-04-01

Full Text Available In the present paper, we discuss the impact of rigid profiles on continua with non-local criteria for plastic yield. For the important case of media whose hardness is inversely proportional to the indentation radius, we suggest a rigorous treatment based on the method of dimensionality reduction (MDR and study the example of indentation by a conical profile.

3. The acoustic response of burner-stabilised flat flames : a two-dimensional numerical analysis

NARCIS (Netherlands)

Rook, R.; Goey, de L.P.H.

2003-01-01

The response of burner-stabilized flat flames to acoustic perturbations is studied numerically. So far, one-dimensional models have been used to study this system. However, in most practical surface burners, the scale of the perforations in the burner plate is of the order of the flame thickness.

4. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration

NARCIS (Netherlands)

Dieleman, Edith M. T.; Senan, Suresh; Vincent, Andrew; Lagerwaard, Frank J.; Slotman, Ben J.; van Sörnsen de Koste, John R.

2007-01-01

BACKGROUND: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). METHODS

5. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

DEFF Research Database (Denmark)

Tvergaard, Viggo

1998-01-01

Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...

6. X-ray structural analysis of two-dimensional assembling lead sulfide nanocrystals of different sizes

Science.gov (United States)

Ushakova, Elena V.; Golubkov, Valery V.; Litvin, Aleksandr P.; Parfenov, Peter S.; Cherevkov, Sergei A.; Fedorov, Anatoly V.; Baranov, Alexander V.

2016-08-01

We report on the structural investigation of self-organized assemblies of PbS nanocrystals (NCs) of different sizes, which were deposited on a glass substrate or embedded in a porous matrix. Regardless of the NC size and the type of the substrate and matrix, the assemblies were ordered in two-dimensional superlattices with densely packed NCs.

7. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown

NARCIS (Netherlands)

Violato, D.; Scarano, F.

2013-01-01

The three-dimensional behavior of jet core breakdown is investigated with experiments conducted on a free water jet at Re = 5000 by time-resolved tomographic particle image velocimetry (TR-TOMO PIV). The investigated domain encompasses the range between 0 and 10 jet diameters. The characteristic

8. Analysis of Traditional versus Three-Dimensional Augmented Curriculum on Anatomical Learning Outcome Measures

Science.gov (United States)

Peterson, Diana Coomes; Mlynarczyk, Gregory S.A.

2016-01-01

This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods…

9. The Analysis of Corporate Bond Valuation under an Infinite Dimensional Compound Poisson Framework

Directory of Open Access Journals (Sweden)

Sheng Fan

2014-01-01

Full Text Available This paper analyzes the firm bond valuation and credit spread with an endogenous model for the pure default and callable default corporate bond. Regarding the stochastic instantaneous forward rates and the firm value as an infinite dimensional Poisson process, we provide some analytical results for the embedded American options and firm bond valuations.

10. 76 FR 18769 - Prospective Grant of Exclusive License: Device and System for Two Dimensional Analysis of...

Science.gov (United States)

2011-04-05

... Samples AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION: Notice. SUMMARY: This... and Patenting Manager, Office of Technology Transfer, National Institutes of Health, 6011 Executive... sample, or performing a combination thereof, that substantially preserve two-dimensional (2D) spatial...

11. Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics

NARCIS (Netherlands)

Reenalda, Jasper; Maartens, Erik; Maartens, Erik; Homan, Lotte; Buurke, Jaap

2016-01-01

Recent developments in wearable and wireless sensor technology allow for a continuous three dimensional analysis of running mechanics in the sport specific setting. The present study is the first to demonstrate the possibility of analyzing three dimensional (3D) running mechanics continuously, by

12. Analysis of Operating Performance and Three Dimensional Magnetic Field of High Voltage Induction Motors with Stator Chute

Directory of Open Access Journals (Sweden)

WANG Qing-shan

2017-06-01

Full Text Available In view of the difficulties on technology of rotor chute in high voltage induction motor，the desig method adopted stator chute structure is put forward． The mathematical model of three dimensional nonlinear transient field for solving stator chute in high voltage induction motor is set up． Through the three dimensional entity model of motor，three dimensional finite element method based on T，ψ － ψ electromagnetic potential is adopted for the analysis and calculation of stator chute in high voltage induction motor under rated condition． The distributions long axial of fundamental wave magnetic field and tooth harmonic wave magnetic field are analyzed after stator chute，and the weakening effects on main tooth harmonic magnetic field are researched． Further more，the comparison analysis of main performance parameters of chute and straight slot is carried out under rated condition． The results show that the electrical performance of stator chute is better than that of straight slot in high voltage induction motor，and the tooth harmonic has been sharply decreased

13. Three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis.

Science.gov (United States)

Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen

2006-05-01

To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.

14. Joint High-Dimensional Bayesian Variable and Covariance Selection with an Application to eQTL Analysis

KAUST Repository

2013-04-22

We describe a Bayesian technique to (a) perform a sparse joint selection of significant predictor variables and significant inverse covariance matrix elements of the response variables in a high-dimensional linear Gaussian sparse seemingly unrelated regression (SSUR) setting and (b) perform an association analysis between the high-dimensional sets of predictors and responses in such a setting. To search the high-dimensional model space, where both the number of predictors and the number of possibly correlated responses can be larger than the sample size, we demonstrate that a marginalization-based collapsed Gibbs sampler, in combination with spike and slab type of priors, offers a computationally feasible and efficient solution. As an example, we apply our method to an expression quantitative trait loci (eQTL) analysis on publicly available single nucleotide polymorphism (SNP) and gene expression data for humans where the primary interest lies in finding the significant associations between the sets of SNPs and possibly correlated genetic transcripts. Our method also allows for inference on the sparse interaction network of the transcripts (response variables) after accounting for the effect of the SNPs (predictor variables). We exploit properties of Gaussian graphical models to make statements concerning conditional independence of the responses. Our method compares favorably to existing Bayesian approaches developed for this purpose. © 2013, The International Biometric Society.

15. Comparison of Two- and Three-Dimensional Methods for Analysis of Trunk Kinematic Variables in the Golf Swing.

Science.gov (United States)

Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E

2016-02-01

Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.

16. Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography

Directory of Open Access Journals (Sweden)

A. E. Eﬁmov

2017-01-01

Full Text Available Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modiﬁ ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers. Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signiﬁ cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artiﬁ cial cellular systems

17. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

International Nuclear Information System (INIS)

Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

1985-01-01

In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

18. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

Science.gov (United States)

El-Zein, Abbas; Carter, John P.; Airey, David W.

2006-06-01

A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

19. What Are You Measuring? Dimensionality and Reliability Analysis of Ability and Speed in Medical School Didactic Examinations.

Science.gov (United States)

Thompson, James J

2016-01-01

Summative didactic evaluation often involves multiple choice questions which are then aggregated into exam scores, course scores, and cumulative grade point averages. To be valid, each of these levels should have some relationship to the topic tested (dimensionality) and be sufficiently reproducible between persons (reliability) to justify student ranking. Evaluation of dimensionality is difficult and is complicated by the classic observation that didactic performance involves a generalized component (g) in addition to subtest specific factors. In this work, 183 students were analyzed over two academic years in 13 courses with 44 exams and 3352 questions for both accuracy and speed. Reliability at all levels was good (>0.95). Assessed by bifactor analysis, g effects dominated most levels resulting in essential unidimensionality. Effect sizes on predicted accuracy and speed due to nesting in exams and courses was small. There was little relationship between person ability and person speed. Thus, the hierarchical grading system appears warrented because of its g-dependence.

20. Fractal analysis on a classical hard-wall billiard with openings using a two-dimensional set of initial conditions

International Nuclear Information System (INIS)

Ree, Suhan

2003-01-01

Fractal analysis is performed to measure the chaoticity of a classical hard-wall billiard with openings. We use the circular billiard with a straight cut with two openings, and a two-dimensional (2D) set of initial conditions that produce all possible trajectories of a particle injected from one opening. We numerically compute the fractal dimension of singular points of the function that maps an initial condition to the number of collisions with the wall before the exit, using the box-counting algorithm that uses uniformly distributed points inside the 2D set of initial conditions. Finally, the classical chaotic properties are observed while the parameters of the billiard are varied, and the results are compared with those with the one-dimensional set of initial conditions