The stress analysis method for three-dimensional composite materials
Nagai, Kanehiro; Yokoyama, Atsushi; Maekawa, Zen'ichiro; Hamada, Hiroyuki
1994-05-01
This study proposes a stress analysis method for three-dimensionally fiber reinforced composite materials. In this method, the rule-of mixture for composites is successfully applied to 3-D space in which material properties would change 3-dimensionally. The fundamental formulas for Young's modulus, shear modulus, and Poisson's ratio are derived. Also, we discuss a strength estimation and an optimum material design technique for 3-D composite materials. The analysis is executed for a triaxial orthogonally woven fabric, and their results are compared to the experimental data in order to verify the accuracy of this method. The present methodology can be easily understood with basic material mechanics and elementary mathematics, so it enables us to write a computer program of this theory without difficulty. Furthermore, this method can be applied to various types of 3-D composites because of its general-purpose characteristics.
On two flexible methods of 2-dimensional regression analysis
Czech Academy of Sciences Publication Activity Database
Volf, Petr
2012-01-01
Roč. 18, č. 4 (2012), s. 154-164 ISSN 1803-9782 Grant - others:GA ČR(CZ) GAP209/10/2045 Institutional support: RVO:67985556 Keywords : regression analysis * Gordon surface * prediction error * projection pursuit Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/SI/volf-on two flexible methods of 2-dimensional regression analysis.pdf
Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence
Hutter, Kolumban
2004-01-01
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.
Dimensional analysis and qualitative methods in problem solving: II
International Nuclear Information System (INIS)
Pescetti, D
2009-01-01
We show that the underlying mathematical structure of dimensional analysis (DA), in the qualitative methods in problem-solving context, is the algebra of the affine spaces. In particular, we show that the qualitative problem-solving procedure based on the parallel decomposition of a problem into simple special cases yields the new original mathematical concepts of special points and special representations of affine spaces. A qualitative problem-solving algorithm piloted by the mathematics of DA is illustrated by a set of examples.
PWR core safety analysis with 3-dimensional methods
International Nuclear Information System (INIS)
Gensler, A.; Kühnel, K.; Kuch, S.
2015-01-01
Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation
Dimensionality Reduction Methods: Comparative Analysis of methods PCA, PPCA and KPCA
Directory of Open Access Journals (Sweden)
Jorge Arroyo-Hernández
2016-01-01
Full Text Available The dimensionality reduction methods are algorithms mapping the set of data in subspaces derived from the original space, of fewer dimensions, that allow a description of the data at a lower cost. Due to their importance, they are widely used in processes associated with learning machine. This article presents a comparative analysis of PCA, PPCA and KPCA dimensionality reduction methods. A reconstruction experiment of worm-shape data was performed through structures of landmarks located in the body contour, with methods having different number of main components. The results showed that all methods can be seen as alternative processes. Nevertheless, thanks to the potential for analysis in the features space and the method for calculation of its preimage presented, KPCA offers a better method for recognition process and pattern extraction
Indian Academy of Sciences (India)
Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.
Three-dimensional wake field analysis by boundary element method
International Nuclear Information System (INIS)
Miyata, K.
1987-01-01
A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity
Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang
2012-06-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis
International Nuclear Information System (INIS)
Downar, T.J.
1987-01-01
A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback
Two dimensional Fourier transform methods for fringe pattern analysis
Sciammarella, C. A.; Bhat, G.
An overview of the use of FFTs for fringe pattern analysis is presented, with emphasis on fringe patterns containing displacement information. The techniques are illustrated via analysis of the displacement and strain distributions in the direction perpendicular to the loading, in a disk under diametral compression. The experimental strain distribution is compared to the theoretical, and the agreement is found to be excellent in regions where the elasticity solution models well the actual problem.
Dimensional analysis and self-similarity methods for engineers and scientists
Zohuri, Bahman
2015-01-01
This ground-breaking reference provides an overview of key concepts in dimensional analysis, and then pushes well beyond traditional applications in fluid mechanics to demonstrate how powerful this tool can be in solving complex problems across many diverse fields. Of particular interest is the book's coverage of dimensional analysis and self-similarity methods in nuclear and energy engineering. Numerous practical examples of dimensional problems are presented throughout, allowing readers to link the book's theoretical explanations and step-by-step mathematical solutions to practical impleme
International Nuclear Information System (INIS)
Kim, Y. J.; Kim, W. T.; Lee, Y. S.
2006-01-01
Full text: Full text: Due to the potentiality of accidents, the transportation safety of radioactive material has become extremely important in these days. The most important means of accomplishing the safety in transportation for radioactive material is the integrity of cask. The cask for spent fuel consists of a cask body and two impact limiters generally. The impact limiters are attached at the upper and the lower of the cask body. The cask comprises general requirements and test requirements for normal transport conditions and hypothetical accident conditions in accordance with IAEA regulations. Among the test requirements for hypothetical accident conditions, the 9 m drop test of dropping the cask from 9 m height to unyielding surface to get maximum damage becomes very important requirement because it can affect the structural soundness of the cask. So far the impact response analysis for 9 m drop test has been obtained by finite element method with complex computational procedure. In this study, the empirical equations of the impact forces for 9 m drop test are formulated by dimensional analysis. And then using the empirical equations the characteristics of material used for impact limiters are analysed. Also the dynamic impact response of the cask body is analysed using the mode superposition method and the analysis method is proposed. The results are also validated by comparing with previous experimental results and finite element analysis results. The present method is simpler than finite element method and can be used to predict the impact response of the cask
Development of three-dimensional ENRICHED FREE MESH METHOD and its application to crack analysis
International Nuclear Information System (INIS)
Suzuki, Hayato; Matsubara, Hitoshi; Ezawa, Yoshitaka; Yagawa, Genki
2010-01-01
In this paper, we describe a method for three-dimensional high accurate analysis of a crack included in a large-scale structure. The Enriched Free Mesh Method (EFMM) is a method for improving the accuracy of the Free Mesh Method (FMM), which is a kind of meshless method. First, we developed an algorithm of the three-dimensional EFMM. The elastic problem was analyzed using the EFMM and we find that its accuracy compares advantageously with the FMM, and the number of CG iterations is smaller. Next, we developed a method for calculating the stress intensity factor by employing the EFMM. The structure with a crack was analyzed using the EFMM, and the stress intensity factor was calculated by the developed method. The analysis results were very well in agreement with reference solution. It was shown that the proposed method is very effective in the analysis of the crack included in a large-scale structure. (author)
International Nuclear Information System (INIS)
Paixao, S.B.; Marzo, M.A.S.; Alvim, A.C.M.
1986-01-01
The calculation method used in WIGLE code is studied. Because of the non availability of such a praiseworthy solution, expounding the method minutely has been tried. This developed method has been applied for the solution of the one-dimensional, two-group, diffusion equations in slab, axial analysis, including non-boiling heat transfer, accountig for feedback. A steady-state program (CITER-1D), written in FORTRAN 4, has been implemented, providing excellent results, ratifying the developed work quality. (Author) [pt
International Nuclear Information System (INIS)
Park, Jai Hak
2009-01-01
SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook
Three-dimensional analysis of eddy current with the finite element method
International Nuclear Information System (INIS)
Takano, Ichiro; Suzuki, Yasuo
1977-05-01
The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)
A method for three-dimensional structural analysis of reinforced concrete containment
International Nuclear Information System (INIS)
Kulak, R.F.; Fiala, C.
1989-01-01
A finite element method designed to assist reactor safety analysts in the three-dimensional numerical simulation of reinforced concrete containments to normal and off-normal mechanical loadings is presented. The development of a lined reinforced concrete plate element is described in detail, and the implementation of an empirical transverse shear failure criteria is discussed. The method is applied to the analysis of a 1/6th scale reinforced concrete containment model subjected to static internal pressurization. 11 refs., 14 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Golbahar Haghighi, M.R.; Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75169-13798 (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir
2008-05-15
In this paper, a mixed finite element (FE) and differential quadrature (DQ) method as a simple, accurate and computationally efficient numerical tool for two dimensional transient heat transfer analysis of functionally graded materials (FGMs) is developed. The method benefits from the high accuracy, fast convergence behavior and low computational efforts of the DQ in conjunction with the advantages of the FE method in general geometry, loading and systematic boundary treatment. Also, the boundary conditions at the top and bottom surfaces of the domain can be implemented more precisely and in strong form. The temporal derivatives are discretized using an incremental DQ method (IDQM), whose numerical stability is not sensitive to time step size. The effects of non-uniform convective-radiative conditions on the boundaries are investigated. The accuracy of the proposed method is demonstrated by comparing its results with those available in the literature. It is shown that using few grid points, highly accurate results can be obtained.
International Nuclear Information System (INIS)
Zhao, Weizhao; Ginsberg, M.; Young, T.Y.
1993-01-01
Quantitative autoradiography is a powerful radio-isotopic-imaging method for neuroscientists to study local cerebral blood flow and glucose-metabolic rate at rest, in response to physiologic activation of the visual, auditory, somatosensory, and motor systems, and in pathologic conditions. Most autoradiographic studies analyze glucose utilization and blood flow in two-dimensional (2-D) coronal sections. With modern digital computer and image-processing techniques, a large number of closely spaced coronal sections can be stacked appropriately to form a three-dimensional (3-d) image. 3-D autoradiography allows investigators to observe cerebral sections and surfaces from any viewing angle. A fundamental problem in 3-D reconstruction is the alignment (registration) of the coronal sections. A new alignment method based on disparity analysis is presented which can overcome many of the difficulties encountered by previous methods. The disparity analysis method can deal with asymmetric, damaged, or tilted coronal sections under the same general framework, and it can be used to match coronal sections of different sizes and shapes. Experimental results on alignment and 3-D reconstruction are presented
Multi-dimensional Analysis Method of Hydrogen Combustion in the Containment of a Nuclear Power Plant
Energy Technology Data Exchange (ETDEWEB)
Kim, Jongtae; Hong, Seongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E and C Co., Seongnam (Korea, Republic of)
2014-05-15
The most severe case is the occurrence of detonation, which induces a few-fold greater pressure load on the containment wall than a deflagration flame. The occurrence of a containment-wise global detonation is prohibited by a national regulation. The compartments located in the flow path such as steam generator compartment, annular compartment, and dome region are likely to have highly-concentrated hydrogen. If it is found that hydrogen concentration in any compartment is far below a detonation criterion during an accident progression, it can be thought that the occurrence of a detonative explosion in a compartment is excluded. However, if it is not, it is necessary to evaluate the characteristics of flame acceleration in the containment. The possibility of a flame transition from a deflagration to a detonation (DDT) can be evaluated from a calculated hydrogen distribution in a compartment by using sigma-lambda criteria. However, this method can provide a very conservative result because the geometric characteristics of a real compartment are not considered well. In order to evaluate the containment integrity from a threat of a hydrogen explosion, it is necessary to establish an integrated evaluation system, which includes a lumped-parameter and detail analysis methods. In this study, a method for the multi-dimensional analysis of hydrogen combustion is proposed to mechanistically evaluate the flame acceleration characteristics with a geometric effect. The geometry of the containment is modeled 3-dimensionally using a CAD tool. To resolve a propagating flame front, an adaptive mesh refinement method is coupled with a combustion analysis solver.
International Nuclear Information System (INIS)
Mitsuyasu, T.; Ishii, K.; Hino, T.; Aoyama, M.
2009-01-01
Spectral history methods for pin-by-pin core analysis method using the three-dimensional direct response matrix have been developed. The direct response matrix is formalized by four sub-response matrices in order to respond to a core eigenvalue k and thus can be recomposed at each outer iteration in the core analysis. For core analysis, it is necessary to take into account the burn-up effect related to spectral history. One of the methods is to evaluate the nodal burn-up spectrum obtained using the out-going neutron current. The other is to correct the fuel rod neutron production rates obtained the pin-by-pin correction. These spectral history methods were tested in a heterogeneous system. The test results show that the neutron multiplication factor error can be reduced by half during burn-up, the nodal neutron production rates errors can be reduced by 30% or more. The root-mean-square differences between the relative fuel rod neutron production rate distributions can be reduced within 1.1% error. This means that these methods can accurately reflect the effects of intra- and inter-assembly heterogeneities during burn-up and can be used for core analysis. Core analysis with the DRM method was carried out for an ABWR quarter core and it was found that both thermal power and coolant-flow distributions were smoothly converged. (authors)
Analysis of fracture surface of CFRP material by three-dimensional reconstruction methods
International Nuclear Information System (INIS)
Lobo, Raquel M.; Andrade, Arnaldo H.P.
2009-01-01
Fracture surfaces of CFRP (carbon Fiber Reinforced Polymer) materials, used in the nuclear fuel cycle, presents an elevated roughness, mainly due to the fracture mode known as pulling out, that displays pieces of carbon fibers after debonding between fiber and matrix. The fractographic analysis, by bi-dimensional images is deficient for not considering the so important vertical resolution as much as the horizontal resolution. In this case, the knowledge of this heights distribution that occurs during the breaking, can lead to the calculation of the involved energies in the process that would allows a better agreement on the fracture mechanisms of the composite material. An important solution for the material characterization, whose surface presents a high roughness due to the variation in height, is to reconstruct three-dimensionally these fracture surfaces. In this work, the 3D reconstruction was done by two different methods: the variable focus reconstruction, through a stack of images obtained by optical microscopy (OM) and the parallax reconstruction, carried through with images acquired by scanning electron microscopy (SEM). The results of both methods present an elevation map of the reconstructed image that determine the height of the surface pixel by pixel,. The results obtained by the methods of reconstruction for the CFRP surfaces, have been compared with others materials such as aluminum and copper that present a ductile type fracture surface, with lower roughness. (author)
Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas
2009-10-01
This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.
Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis
Directory of Open Access Journals (Sweden)
Ueki Masao
2012-05-01
Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.
Dimensional analysis for engineers
Simon, Volker; Gomaa, Hassan
2017-01-01
This monograph provides the fundamentals of dimensional analysis and illustrates the method by numerous examples for a wide spectrum of applications in engineering. The book covers thoroughly the fundamental definitions and the Buckingham theorem, as well as the choice of the system of basic units. The authors also include a presentation of model theory and similarity solutions. The target audience primarily comprises researchers and practitioners but the book may also be suitable as a textbook at university level.
Two-dimensional transient thermal analysis of a fuel rod by finite volume method
Energy Technology Data Exchange (ETDEWEB)
Costa, Rhayanne Yalle Negreiros; Silva, Mário Augusto Bezerra da; Lira, Carlos Alberto de Oliveira, E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear
2017-07-01
One of the greatest concerns when studying a nuclear reactor is the warranty of safe temperature limits all over the system at all time. The preservation of core structure along with the constraint of radioactive material into a controlled system are the main focus during the operation of a reactor. The purpose of this paper is to present the temperature distribution for a nominal channel of the AP1000 reactor developed by Westinghouse Co. during steady-state and transient operations. In the analysis, the system was subjected to normal operation conditions and then to blockages of the coolant flow. The time necessary to achieve a new safe stationary stage (when it was possible) was presented. The methodology applied in this analysis was based on a two-dimensional survey accomplished by the application of Finite Volume Method (FVM). A steady solution is obtained and compared with an analytical analysis that disregard axial heat transport to determine its relevance. The results show the importance of axial heat transport consideration in this type of study. A transient analysis shows the behavior of the system when submitted to coolant blockage at channel's entrance. Three blockages were simulated (10%, 20% and 30%) and the results show that, for a nominal channel, the system can still be considerate safe (there's no bubble formation until that point). (author)
Analysis of one-dimensional nonequilibrium two-phase flow using control volume method
International Nuclear Information System (INIS)
Minato, Akihiko; Naitoh, Masanori
1987-01-01
A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)
International Nuclear Information System (INIS)
Yu, L.; Batlle, F.
2011-01-01
Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that
The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method
International Nuclear Information System (INIS)
Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang
2011-01-01
Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)
Directory of Open Access Journals (Sweden)
SW Kang
2015-02-01
Full Text Available This article introduces an improved non-dimensional dynamic influence function method using a sub-domain method for efficiently extracting the eigenvalues and mode shapes of concave membranes with arbitrary shapes. The non-dimensional dynamic influence function method (non-dimensional dynamic influence function method, which was developed by the authors in 1999, gives highly accurate eigenvalues for membranes, plates, and acoustic cavities, compared with the finite element method. However, it needs the inefficient procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues and mode shapes. To overcome the inefficient procedure, this article proposes a practical approach to make the system matrix equation of the concave membrane of interest into a form of algebraic eigenvalue problem. It is shown by several case studies that the proposed method has a good convergence characteristics and yields very accurate eigenvalues, compared with an exact method and finite element method (ANSYS.
Two-dimensional fluid-hammer analysis by the method of nearcharacteristics
International Nuclear Information System (INIS)
Shin, Y.W.; Kot, C.A.
1975-05-01
A numerical technique based on the method of nearcharacteristics is considered for solving propagation of fluid-hammer waves in a two-dimensional geometry. The solution is constructed by relating flow conditions by compatibility equations along lines called nearcharacteristics. Three choices are considered in the numerical scheme that are accurate within an error of the order of magnitude of the time step. Since the nearcharacteristics lie in the coordinate planes, the technique provides an efficient method requiring only simple interpolations in the initial plane. On the other hand, the nearcharacteristics fall outside the characteristics cone. Thus the solution procedure directly refers to conditions outside the true domain of dependence. The effect of this is studied through numerical calculation of a simple example problem and comparison with results obtained by a bicharacteristic method. Comparison is also made with existing analytical solutions and experiments. Furthermore, the three solution schemes considered are examined for numerical stability by the vonNeumann test. Two of the schemes were found to be unstable; the third yielded a stability criterion equivalent to that of the bicharacteristic formulation. The stability-analysis results were confirmed by numerical experimentation. (auth)
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis
Directory of Open Access Journals (Sweden)
Huanhuan Li
2017-08-01
Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our
A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.
Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon
2017-08-04
The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
ANALYSIS OF IMPACT ON COMPOSITE STRUCTURES WITH THE METHOD OF DIMENSIONALITY REDUCTION
Directory of Open Access Journals (Sweden)
Valentin L. Popov
2015-04-01
Full Text Available In the present paper, we discuss the impact of rigid profiles on continua with non-local criteria for plastic yield. For the important case of media whose hardness is inversely proportional to the indentation radius, we suggest a rigorous treatment based on the method of dimensionality reduction (MDR and study the example of indentation by a conical profile.
Directory of Open Access Journals (Sweden)
Sang-Wook Kang
2016-03-01
Full Text Available A new formulation for the non-dimensional dynamic influence function method, which was developed by the authors, is proposed to efficiently extract eigenvalues and mode shapes of clamped plates with arbitrary shapes. Compared with the finite element and boundary element methods, the non-dimensional dynamic influence function method yields highly accurate solutions in eigenvalue analysis problems of plates and membranes including acoustic cavities. However, the non-dimensional dynamic influence function method requires the uneconomic procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues because it produces a non-algebraic eigenvalue problem. This article describes a new approach that reduces the problem of free vibrations of clamped plates to an algebraic eigenvalue problem, the solution of which is straightforward. The validity and efficiency of the proposed method are illustrated through several numerical examples.
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
Direct-coupled-ray method for design-oriented three-dimensional transport analysis
International Nuclear Information System (INIS)
Bucholz, J.A.; Poncelet, C.G.
1977-01-01
A fast three-dimensional design-oriented transport method has been developed for the solution of both neutron and gamma transport problems. It combines a nodal approach with analytic integral transport to achieve relative speed and accuracy. An analytic solution is obtained for the angular flux in each of the 14 directions defined by the six faces and eight corners of a cubic mesh block. The scheme used to accommodate high-order anisotropic scattering is based on the formulation of ray-to-ray scattering probabilities in an integral sense. A variable mesh approximation has also been introduced to provide greater flexibility. The details of a direct-coupled-ray (DCR) → P 1 conversion technique have been developed but not yet implemented. The DCR method, as implemented in the TRANS3 code, has been used in a number of liquid-metal fast breeder reactor shielding applications. These included a one-dimensional deep penetration configuration and one-, two-, and three dimensional representations of the lower axial shield of the Clinch River Breeder Reactor. Comparisons with ANISN and DOT-III solutions indicated good to excellent agreement in most situations
Yu, L; Batlle, F
2011-12-01
Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also
Directory of Open Access Journals (Sweden)
S. W. Kang
2014-04-01
Full Text Available This paper establishes an improved NDIF method for the eigenvalue extraction of two-dimensional acoustic cavities with arbitrary shapes. The NDIF method, which was introduced by the authors in 1999, gives highly accurate eigenvalues despite employing a small number of nodes. However, it needs the inefficient procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues and mode shapes. The paper proposes a practical approach for overcoming the inefficient procedure by making the final system matrix equation of the NDIF method into a form of algebraic eigenvalue problem. The solution quality of the proposed method is investigated by obtaining the eigenvalues and mode shapes of a circular, a rectangular, and an arbitrarily shaped cavity.
International Nuclear Information System (INIS)
Paixao, S.B.
1985-01-01
The methodology used in the WIGLE3 computer code is studied. This methodology has been applied for the steady-state and transient solutions of the one-dimensional, two-group, diffusion equations in slab geometry, in axial type probelm analysis. It's also studied, based in a WIGLE3 computer code, reactor representative models, considering non-boiling heat transfer. A steady-state program for control rod bank position search- CITER 1D- has been developed. Some criticality research on the proposed system has been done using different control rod bank initial positions, time steps and convergence parameters. (E.G.) [pt
Lipscomb, K
1980-01-01
Biplane cineradiography is a potentially powerful tool for precise measurement of intracardiac dimensions. The most systematic approach to these measurements is the creation of a three-dimensional coordinate system within the x-ray field. Using this system, interpoint distances, such as between radiopaque clips or coronary artery bifurcations, can be calculated by use of the Pythagoras theorem. Alternatively, calibration factors can be calculated in order to determine the absolute dimensions of a structure, such as a ventricle or coronary artery. However, cineradiography has two problems that have precluded widespread use of the system. These problems are pincushion distortion and variable image magnification. In this paper, methodology to quantitate and compensate for these variables is presented. The method uses radiopaque beads permanently mounted in the x-ray field. The position of the bead images on the x-ray film determine the compensation factors. Using this system, measurements are made with a standard deviation of approximately 1% of the true value.
Smith, Aimée C; Roberts, Jonathan R; Wallace, Eric S; Kong, Pui; Forrester, Stephanie E
2016-02-01
Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (-6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.
Application of finite-element method to three-dimensional nuclear reactor analysis
International Nuclear Information System (INIS)
Cheung, K.Y.
1985-01-01
The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired
International Nuclear Information System (INIS)
Ryu, Jeong-Soo; Seo, Choon-Gyo; Kim, Jae-Min; Yun, Chung-Bang
2010-01-01
This paper proposes a slightly new three-dimensional radial-shaped dynamic infinite elements fully coupled to finite elements for an analysis of soil-structure interaction system in a horizontally layered medium. We then deal with a seismic analysis technique for a three-dimensional soil-structure interactive system, based on the coupled finite-infinite method in frequency domain. The dynamic infinite elements are simulated for the unbounded domain with wave functions propagating multi-generated wave components. The accuracy of the dynamic infinite element and effectiveness of the seismic analysis technique may be demonstrated through a typical compliance analysis of square surface footing, an L-shaped mat concrete footing on layered soil medium and two kinds of practical seismic analysis tests. The practical analyses are (1) a site response analysis of the well-known Hualien site excited by all travelling wave components (primary, shear, Rayleigh waves) and (2) a generation of a floor response spectrum of a nuclear power plant. The obtained dynamic results show good agreement compared with the measured response data and numerical values of other soil-structure interaction analysis package.
Directory of Open Access Journals (Sweden)
Yun Gyong Ahn
2018-01-01
Full Text Available Advanced separation technology paired with mass spectrometry is an ideal method for the analysis of atmospheric samples having complex chemical compositions. Due to the huge variety of both natural and anthropogenic sources of organic compounds, simultaneous quantification and identification of organic compounds in aerosol samples represents a demanding analytical challenge. In this regard, comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS has become an effective analytical method. However, verification and validation approaches to quantify these analytes have not been critically evaluated. We compared the performance of gas chromatography with quadrupole mass spectrometry (GC-qMS and GC×GC-TOFMS for quantitative analysis of eighteen target polycyclic aromatic hydrocarbons (PAHs. The quantitative obtained results such as limits of detection (LODs, limits of quantification (LOQs, and recoveries of target PAHs were approximately equivalent based on both analytical methods. Furthermore, a larger number of analytes were consistently identified from the aerosol samples by GC×GC-TOFMS compared to GC-qMS. Our findings suggest that GC×GC-TOFMS would be widely applicable to the atmospheric and related sciences with simultaneous target and nontarget analysis in a single run.
Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei
2015-04-01
Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.
International Nuclear Information System (INIS)
Wang, Hongchang; Berujon, Sebastien; Pape, Ian; Rutishauser, Simon; David, Christian; Sawhney, Kawal
2013-01-01
A two-dimensional (2D) grating interferometer was used to perform at-wavelength metrology. A Fast Fourier Transform (FFT) of the interferograms recovers the differential X-ray beam phase in two orthogonal directions simultaneously. As an example, the X-ray wavefronts downstream from a Fresnel Zone plate were measured using the moiré fringe analysis method, which requires only a single image. The rotating shearing interferometer technique for moiré fringe analysis was extended from one dimension to two dimensions to carry out absolute wavefront metrology. In addition, the 2D moiré fringes were extrapolated using Gerchberg's method to reduce the boundary artifacts. The advantages and limitations of the phase-stepping method and the moiré fringe analysis method are also discussed. -- Highlights: ► A rapid and sensitive strip test for CPPU (forchlorfenuron) detection is reported. ► Carbon nanoparticles were used for antibody labelling. ► A common flatbed scanner was employed to the quantitate strip spots. ► The new method was successfully applied to the analysis of the field samples
Directory of Open Access Journals (Sweden)
A. E. Eﬁmov
2017-01-01
Full Text Available Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modiﬁ ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers. Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signiﬁ cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artiﬁ cial cellular systems
International Nuclear Information System (INIS)
Nissen, K.L.
1988-06-01
Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de
Numerical stress analysis of toroidal coil by three-dimensional finite element method
International Nuclear Information System (INIS)
Nishimura, Hidetomo; Shimamoto, Susumu
1977-10-01
A structure analysis program based on finite element method for toroidal coils, developed in JAERI, and its example application to a medium-size tokamak are described. In this application, the effects of material anisotropy, poloidal field and spring constant value were studied, and also the influence of toroidal coil failure on the peak stress. The following were revealed. The effect of anisotropy on the peak stress in reinforcement must be considered. The effect of poloidal field on the peak stress is small compared with that of toroidal field. The spring constant value between coil and support does not much influence the peak stress value, The peak stress in reinforcement rises with increasing number of failed coils. In the case of 2000 nodes on the structure, CPU time with the program is about 40 min. (auth.)
Dimensional analysis made simple
International Nuclear Information System (INIS)
Lira, Ignacio
2013-01-01
An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Perspective of Dimensional Analysis in Medical Science
Directory of Open Access Journals (Sweden)
Kowalewski Wojciech
2017-09-01
Full Text Available This paper presents several applications of the dimensional analysis method to problems investigated in medical sciences. The method is used to analyze various complex processes without using formal laws governing the same. It is particularly suitable for a general analysis of fluid transfer (liquids and gases in the human body. This paper mainly serves as an overview of selected applications, mostly those emerging in the recent years, and includes a discussion of the mathematical fundamentals of dimensional analysis together followed by its critical analysis. Containing detailed calculations of two examples, the paper also serves as training material in the area of the computational method of the dimensional analysis algorithm.
Quantitative analysis of scaling error compensation methods in dimensional X-ray computed tomography
DEFF Research Database (Denmark)
Müller, P.; Hiller, Jochen; Dai, Y.
2015-01-01
X-ray Computed Tomography (CT) has become an important technology for quality control of industrial components. As with other technologies, e.g., tactile coordinate measurements or optical measurements, CT is influenced by numerous quantities which may have negative impact on the accuracy...... errors of the manipulator system (magnification axis). This article also introduces a new compensation method for scaling errors using a database of reference scaling factors and discusses its advantages and disadvantages. In total, three methods for the correction of scaling errors – using the CT ball...
Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Král, Radomil
2016-01-01
Roč. 744, č. 1 (2016), č. článku 012177. ISSN 1742-6588. [International Conference on Motion and Vibration Control (MOVIC 2016) /13./ and International Conference on Recent Advances in Structural Dynamics (RASD 2016) /12./. Southampton, 04.07.2016-06.07.2016] R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * single degree of freedom systems (SDOF) Subject RIV: JM - Building Engineering http://iopscience.iop.org/article/10.1088/1742-6596/744/1/012177
Energy Technology Data Exchange (ETDEWEB)
Alashti, R. Akbari, E-mail: raalashti@nit.ac.ir [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of); Khorsand, M. [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of)
2011-05-15
Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: > A numerical study of an FGM cylindrical shell with piezoelectric layers is made. > Governing equations are solved by two versions of differential quadrature methods. > The effect of layers thickness, grading index and geometrical ratios is presented.
International Nuclear Information System (INIS)
Alashti, R. Akbari; Khorsand, M.
2011-01-01
Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: → A numerical study of an FGM cylindrical shell with piezoelectric layers is made. → Governing equations are solved by two versions of differential quadrature methods. → The effect of layers thickness, grading index and geometrical ratios is presented.
Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement
Richardson, John G.
2005-11-15
An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.
International Nuclear Information System (INIS)
Trent, D.S.; Eyler, L.L.; Budden, M.J.
1983-09-01
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
Energy Technology Data Exchange (ETDEWEB)
Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)
2017-05-15
As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.
A student's guide to dimensional analysis
Lemons, Don S
2017-01-01
This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals.
Directory of Open Access Journals (Sweden)
Raftery Adrian E
2009-02-01
Full Text Available Abstract Background Microarray technology is increasingly used to identify potential biomarkers for cancer prognostics and diagnostics. Previously, we have developed the iterative Bayesian Model Averaging (BMA algorithm for use in classification. Here, we extend the iterative BMA algorithm for application to survival analysis on high-dimensional microarray data. The main goal in applying survival analysis to microarray data is to determine a highly predictive model of patients' time to event (such as death, relapse, or metastasis using a small number of selected genes. Our multivariate procedure combines the effectiveness of multiple contending models by calculating the weighted average of their posterior probability distributions. Our results demonstrate that our iterative BMA algorithm for survival analysis achieves high prediction accuracy while consistently selecting a small and cost-effective number of predictor genes. Results We applied the iterative BMA algorithm to two cancer datasets: breast cancer and diffuse large B-cell lymphoma (DLBCL data. On the breast cancer data, the algorithm selected a total of 15 predictor genes across 84 contending models from the training data. The maximum likelihood estimates of the selected genes and the posterior probabilities of the selected models from the training data were used to divide patients in the test (or validation dataset into high- and low-risk categories. Using the genes and models determined from the training data, we assigned patients from the test data into highly distinct risk groups (as indicated by a p-value of 7.26e-05 from the log-rank test. Moreover, we achieved comparable results using only the 5 top selected genes with 100% posterior probabilities. On the DLBCL data, our iterative BMA procedure selected a total of 25 genes across 3 contending models from the training data. Once again, we assigned the patients in the validation set to significantly distinct risk groups (p
Energy Technology Data Exchange (ETDEWEB)
Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)
2008-10-21
Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.
International Nuclear Information System (INIS)
Boyd, J; Buick, J M
2008-01-01
Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.
Czech Academy of Sciences Publication Activity Database
Král, Radomil; Náprstek, Jiří
2017-01-01
Roč. 113, November (2017), s. 54-75 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * simplex element * multi-dimensional problem * non-symmetric operator Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0965997817301904
International Nuclear Information System (INIS)
Tanaka, Masa-aki; Kamide, Hideki
2001-02-01
This investigation deals with the porous blockage in a wire spacer type fuel subassembly in Fast Breeder Reactors (FBR's). Multi-dimensional analysis method for a porous blockage in a fuel subassembly is developed using the standard k-ε turbulence model with the typical correlations in handbooks. The purpose of this analysis method is to evaluate the position and the magnitude of the maximum temperature, and to investigate the thermo-hydraulic phenomena in the porous blockage. Verification of this analysis method was conducted based on the results of 4-subchannel geometry water test. It was revealed that the evaluation of the porosity distribution and the particle diameter in a porous blockage was important to predict the temperature distribution. This analysis method could simulate the spatial characteristic of velocity and temperature distributions in the blockage and evaluate the pin surface temperature inside the porous blockage. Through the verification of this analysis method, it is shown that this multi-dimensional analysis method is useful to predict the thermo-hydraulic field and the highest temperature in a porous blockage. (author)
TSOM Method for Nanoelectronics Dimensional Metrology
International Nuclear Information System (INIS)
Attota, Ravikiran
2011-01-01
Through-focus scanning optical microscopy (TSOM) is a relatively new method that transforms conventional optical microscopes into truly three-dimensional metrology tools for nanoscale to microscale dimensional analysis. TSOM achieves this by acquiring and analyzing a set of optical images collected at various focus positions going through focus (from above-focus to under-focus). The measurement resolution is comparable to what is possible with typical light scatterometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM). TSOM method is able to identify nanometer scale difference, type of the difference and magnitude of the difference between two nano/micro scale targets using a conventional optical microscope with visible wavelength illumination. Numerous industries could benefit from the TSOM method--such as the semiconductor industry, MEMS, NEMS, biotechnology, nanomanufacturing, data storage, and photonics. The method is relatively simple and inexpensive, has a high throughput, provides nanoscale sensitivity for 3D measurements and could enable significant savings and yield improvements in nanometrology and nanomanufacturing. Potential applications are demonstrated using experiments and simulations.
Shiota, Takahiro; Jones, Michael; Tsujino, Hiroyuki; Qin, Jian Xin; Zetts, Arthur D.; Greenberg, Neil L.; Cardon, Lisa A.; Panza, Julio A.; Thomas, James D.
2002-01-01
BACKGROUND: For evaluating patients with aortic regurgitation (AR), regurgitant volumes, left ventricular (LV) stroke volumes (SV), and absolute LV volumes are valuable indices. AIM: The aim of this study was to validate the combination of real-time 3-dimensional echocardiography (3DE) and semiautomated digital color Doppler cardiac flow measurement (ACM) for quantifying absolute LV volumes, LVSV, and AR volumes using an animal model of chronic AR and to investigate its clinical applicability. METHODS: In 8 sheep, a total of 26 hemodynamic states were obtained pharmacologically 20 weeks after the aortic valve noncoronary (n = 4) or right coronary (n = 4) leaflet was incised to produce AR. Reference standard LVSV and AR volume were determined using the electromagnetic flow method (EM). Simultaneous epicardial real-time 3DE studies were performed to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV), and LVSV by subtracting LVESV from LVEDV. Simultaneous ACM was performed to obtain LVSV and transmitral flows; AR volume was calculated by subtracting transmitral flow volume from LVSV. In a total of 19 patients with AR, real-time 3DE and ACM were used to obtain LVSVs and these were compared with each other. RESULTS: A strong relationship was found between LVSV derived from EM and those from the real-time 3DE (r = 0.93, P <.001, mean difference (3D - EM) = -1.0 +/- 9.8 mL). A good relationship between LVSV and AR volumes derived from EM and those by ACM was found (r = 0.88, P <.001). A good relationship between LVSV derived from real-time 3DE and that from ACM was observed (r = 0.73, P <.01, mean difference = 2.5 +/- 7.9 mL). In patients, a good relationship between LVSV obtained by real-time 3DE and ACM was found (r = 0.90, P <.001, mean difference = 0.6 +/- 9.8 mL). CONCLUSION: The combination of ACM and real-time 3DE for quantifying LV volumes, LVSV, and AR volumes was validated by the chronic animal study and was shown to be clinically applicable.
International Nuclear Information System (INIS)
Chiu, C.
1981-01-01
Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)
Analysis of infinite dimensional diffusions
Maas, J.
2009-01-01
Stochastic processes in infinite dimensional state spaces provide a mathematical description of various phenomena in physics, population biology, finance, and other fields of science. Several aspects of these processes have been studied in this thesis by means of new analytic methods. Firstly,
Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M
2015-02-01
Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.
Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang
2014-06-01
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models.
Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang
2014-01-01
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models. PMID:25264474
International Nuclear Information System (INIS)
Besuner, P.M.; Caughey, W.R.
1976-11-01
The finite element (FE) and influence function (IF) methods are compared for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). These are two of the possible methods for determining stress intensity factors for nozzle corner cracks. The FE method is incorporated in a direct manner. The IF method is used to compute stress intensity factors only when the uncracked stress field (i.e., the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. Both the IF and FE methods are described in detail and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availablility of an accurate published result obtained from some recognized third method of solution
Li, Xiaomin; Guo, Xueli; Guo, Haiyan
2018-06-01
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
Peng, Xingchen; Gong, Fengming M; Ren, Min; Ai, Ping; Wu, ShaoYong; Tang, Jie; Hu, XiaoLin
2016-09-01
Docetaxel-based chemotherapy has been recommended for advanced nasopharyngeal carcinoma (NPC). However, treatment failure often occurs because of acquired drug resistance. In this study, a docetaxel-resistant NPC cell line CNE-2R was established with increasing doses of docetaxel for more than 6 months. Two-dimensional gel electrophoresis and ESI-Q-TOF-MS were used to compare the differential expression of docetaxel-resistance-associated proteins between human NPC CNE-2 cells and docetaxel-resistant CNE-2R cells. As a result, 24 differentially expressed proteins were identified, including 11 proteins with increased expression and 13 proteins with decreased expression. These proteins function in diverse biological processes such as metabolism, signal transduction, calcium ion binding, immune response, proteolysis, and so on. Among these, α-enolase (ENO1), significantly upregulated in CNE-2R, was selected for detailed analysis. Inhibition of ENO1 by shRNA restored CNE-2R cells' sensitivity to docetaxel. Moreover, overexpression of ENO1 could facilitate the development of acquired resistance of docetaxel in CNE-2 cells. Western blot and reverse-transcription PCR data of clinical samples confirmed that α-enolase was upregulated in docetaxel-resistant human NPC tissues. Finding such proteins might improve interpretation of the molecular mechanisms leading to the acquisition of docetaxel chemoresistance.
International Nuclear Information System (INIS)
Utaya
1996-01-01
Pressure vessel is an important part of nuclear power plan, and its function is as pressure boundary of cooling water and reactor core. The pressure vessel wall will get pressure and thermal stress. The pressure and thermal stress analysis at the simplified AP600 wall was done. The analysis is carried out by finite method, and then solved by computer. The analysis result show, that the pressure will give the maximum stress at the inner wall (1837 kg/cm 2 ) and decreased to the outer wall (1685 kg/cm 2 ). The temperature will decreased the stress at the inner wall (1769 kg/cm 2 ) and increased the stress at the outer wall (1749 kg/cm 2 )
Stochastic and infinite dimensional analysis
Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José
2016-01-01
This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
Wang, Yanwei; Gao, Wenying; Wang, Xiaogong; Yu, Zhiwu
2008-07-01
Two-dimensional correlation spectroscopy (2D-COS) has been widely used to separate overlapped spectroscopic bands. However, band overlap may sometimes cause misleading results in the 2D-COS spectra, especially if one peak is embedded within another peak by the overlap. In this work, we propose a new normalization method, based on principal component analysis (PCA). For each spectrum under discussion, the first principal component of PCA is simply taken as the normalization factor of the spectrum. It is demonstrated that the method works well with simulated dynamic spectra. Successful result has also been obtained from the analysis of an overlapped band in the wavenumber range 1440-1486 cm -1 for the evaporation process of a solution containing behenic acid, methanol, and chloroform.
International Nuclear Information System (INIS)
Leal, M.A.; Ruperti Junior, N.J.; Cotta, R.M.
1997-01-01
A two-dimensional model for the flow and mass transfer of radioactive waste in porous media is investigated. The flow equations are modeled under steady-state Darcy regime assumptions, subjected to discrete boundary source terms. The mass transfer of the contaminant is modeled through the transient convection-diffusion equation, allowing for variable dispersivity coefficients and boundary source functions. The Generalized Integral Transform Technique (GITT) is utilized to provide the proposed hybrid numerical-analytical solution . (author)
Energy Technology Data Exchange (ETDEWEB)
Leal, M.A.; Ruperti Junior, N.J. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Rejeitos Radioativos; Cotta, R.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Transmissao e Tecnologia do Calor
1997-12-31
A two-dimensional model for the flow and mass transfer of radioactive waste in porous media is investigated. The flow equations are modeled under steady-state Darcy regime assumptions, subjected to discrete boundary source terms. The mass transfer of the contaminant is modeled through the transient convection-diffusion equation, allowing for variable dispersivity coefficients and boundary source functions. The Generalized Integral Transform Technique (GITT) is utilized to provide the proposed hybrid numerical-analytical solution . (author) 12 refs., 3 figs.
FRACTAL DIMENSIONALITY ANALYSIS OF MAMMARY GLAND THERMOGRAMS
Directory of Open Access Journals (Sweden)
Yu. E. Lyah
2016-06-01
Full Text Available Thermography may enable early detection of a cancer tumour within a mammary gland at an early, treatable stage of the illness, but thermogram analysis methods must be developed to achieve this goal. This study analyses the feasibility of applying the Hurst exponent readings algorithm for evaluation of the high dimensionality fractals to reveal any possible difference between normal thermograms (NT and malignant thermograms (MT.
International Nuclear Information System (INIS)
Besuner, P.M.; Caughey, W.R.
1976-11-01
The paper compares the finite element (FE) and influence function (IF) methods for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). The FE method is incorporated in a direct manner. The nozzle and crack geometry and the complex loading are all included in the model which simulates the structural crack problem. The IF method is used to compute stress intensity factors only when the uncracked stress field (that is, the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. The IF method evaluates correctly the disturbance of this uncracked stress field caused by the crack by utilizing a method of elastic superposition. Both the IF and FE methods are described in detail in the paper and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availability of an accurate published result obtained from some recognized third method of solution. Results are given which summarize both the accuracy and the direct computer costs of the two methods
International Nuclear Information System (INIS)
Hofschen, S.; Wolff, I.
1996-01-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement
Energy Technology Data Exchange (ETDEWEB)
Hofschen, S.; Wolff, I. [Gerhard Mercator Univ. of Duisburg (Germany). Dept. of Electrical Engineering
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement.
Three dimensional analysis of laterally loaded piles
International Nuclear Information System (INIS)
Yilmaz, C.
1987-01-01
In this study static analysis of laterally loaded pile is studied by the three models. The first model is the beam on discrete elastic springs. This model is analyzed using a flexibility method. The second model is the beam on a two-parameter elastic foundation. This model is analyzed using the linear finite element method. The third model is the finite element model, using the three-dimensional iso-parametric parabolic brick element. Three-dimensional pile group analysis is also performed using elastic constants of single pile obtained by any one of the above analyses. The main objective is to develop computer programs for each model related to single piles and to group analysis. Then, the deflections, rotations, moments, shears, stresses and strains of the single pile are obtained at any arbitrary point. Comparison is made between each model and with other studies such as Poulos 1971, Desai and Appel 1976. In addition, to provide a benchmark of three-dimensional finite element analysis, the Boussinesq problem is analyzed. (orig.)
Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations
International Nuclear Information System (INIS)
Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.
2005-01-01
Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications
Energy Technology Data Exchange (ETDEWEB)
Boyd, J [Cardiovascular Research Group, Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Mechanical and Design Engineering, Anglesea Building, Anglesea Road, University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)
2008-10-21
Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.
International Nuclear Information System (INIS)
Boyd, J; Buick, J M
2008-01-01
Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.
Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki
2006-02-17
Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Sun; Lee, Eun Joo; Lee, Jae Seo; Kang, Byung Cheock; Yoon, Suk Ja [Dental Science Research Institute, Chonnam National University, Gwangju (Korea, Republic of); Song, In Ja [Dept. of Nursing, Kwangju Women' s University, Gwangju (Korea, Republic of)
2015-12-15
The purpose of this study was to evaluate the influence of methods of establishing the midsagittal reference plane (MRP) on the locations of midfacial landmarks in the three-dimensional computed tomography (CT) analysis of facial asymmetry. A total of 24 patients (12 male and 12 female; mean age, 22.5 years; age range, 18.2-29.7 years) with facial asymmetry were included in this study. The MRP was established using two different methods on each patient's CT image. The x-coordinates of four midfacial landmarks (the menton, nasion, upper incisor, and lower incisor) were obtained by measuring the distance and direction of the landmarks from the MRP, and the two methods were compared statistically. The direction of deviation and the severity of asymmetry found using each method were also compared. The x-coordinates of the four anatomic landmarks all showed a statistically significant difference between the two methods of establishing the MRP. For the nasion and lower incisor, six patients (25.0%) showed a change in the direction of deviation. The severity of asymmetry also changed in 16 patients (66.7%). The results of this study suggest that the locations of midfacial landmarks change significantly according to the method used to establish the MRP.
Hao, Ruijie; Adoligbe, Camus; Jiang, Bijie; Zhao, Xianlin; Gui, Linsheng; Qu, Kaixing; Wu, Sen; Zan, Linsen
2015-01-01
Longissimus dorsi muscle (LD) proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA)/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W) in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE) analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
La Marra, D.; Battaglia, M.
2013-12-01
Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.
Oomori, H; Imura, S; Gesso, H
1992-04-01
To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.
Ichihashi, K; Imura, S; Oomori, H; Gesso, H
1994-11-01
We compared the biomechanical characteristics of bipolar and unipolar hemiarthroplasty on the proximal migration of the outer head by determining the von Mises stress distribution and acetabular (outer head) displacement with clinical assessment of hemiarthroplasty in 75 patients. This analysis used the two-dimensional finite element method, which incorporated boundary friction layers on both the inner and outer bearings of the prosthesis. Acetabular reaming increased stress within the pelvic bone and migration of the outer head. A combination of the acetabular reaming and bone transplantation increased the stress within the pelvic bone and grafted bone, and caused outer head migration. These findings were supported by clinical results. Although the bipolar endoprosthesis was biomechanically superior to the unipolar endoprosthesis, migration of the outer head still occurred. The bipolar endoprosthesis appeared to be indicated in cases of a femoral neck fracture or of avascular necrosis in the femoral head, but its use in cases of osteoarthritis in the hip required caution.
International Nuclear Information System (INIS)
Fujihara, Hirohiko; Ueda, Masahiro
1975-01-01
In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)
Dimensional analysis and group theory in astrophysics
Kurth, Rudolf
2013-01-01
Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si
International Nuclear Information System (INIS)
Eleonskij, V.M.; Kulagin, N.E.; Novozhilova, N.S.; Silin, V.P.
1984-01-01
The reasons which prevent the existence of periodic in time and self-localised in space solutions of the nonlinear wave equation u=F (u) are determined by the methods of qualitative theory of dynamical systems. The correspondence between the qualitative behaviour of special (separatrix) trajectories in the phase space and asymptotic solutions of the nonlinear wave equation is analysed
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Degirmenci, Elif; Landais, Pascal
2013-10-20
Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.
DEFF Research Database (Denmark)
Lomsky, Milan; Richter, Jens; Johansson, Lena
2005-01-01
A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model....... The maximal differences between the CAFU estimations and the true left ventricular volumes of the digital phantoms were 11 ml for the end-diastolic volume (EDV), 3 ml for the end-systolic volume (ESV) and 3% for the ejection fraction (EF). The largest differences were seen in the smallest heart....... In the patient group the EDV calculated using QGS and CAFU showed good agreement for large hearts and higher CAFU values compared with QGS for the smaller hearts. In the larger hearts, ESV was much larger for QGS than for CAFU both in the phantom and patient studies. In the smallest hearts there was good...
International Nuclear Information System (INIS)
Sonka, M.; Park, W.; Hoffman, E.A.
1995-01-01
Accurate assessment of airway physiology, evaluated in terms of geometric changes, is critically dependent upon the accurate imaging and image segmentation of the three-dimensional airway tree structure. The authors have previously reported a knowledge-based method for three-dimensional airway tree segmentation from high resolution CT (HRCT) images. Here, they report a substantially improved version of the method. In the current implementation, the method consists of several stages. First, the lung borders are automatically determined in the three-dimensional set of HRCT data. The primary airway tree is semi-automatically identified. In the next stage, potential airways are determined in individual CT slices using a rule-based system that uses contextual information and a priori knowledge about pulmonary anatomy. Using three-dimensional connectivity properties of the pulmonary airway tree, the three-dimensional tree is constructed from the set of adjacent slices. The method's performance and accuracy were assessed in five 3D HRCT canine images. Computer-identified airways matched 226/258 observer-defined airways (87.6%); the computer method failed to detect the airways in the remaining 32 locations. By visual assessment of rendered airway trees, the experienced observers judged the computer-detected airway trees as highly realistic
Czech Academy of Sciences Publication Activity Database
Kubínová, Lucie; Janáček, Jiří; Karen, Petr; Radochová, Barbora; Difato, Francesco; Krekule, Ivan
2004-01-01
Roč. 53, Suppl.1 (2004), s. S47-S55 ISSN 0862-8408 R&D Projects: GA ČR GA304/01/0257; GA ČR GA310/02/1470; GA AV ČR KJB6011309; GA AV ČR KJB5039302 Grant - others:SI - CZ(CZ) KONTAKT 001/2001 Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image analysis * stereology Subject RIV: EA - Cell Biology Impact factor: 1.140, year: 2004
A sparse grid based method for generative dimensionality reduction of high-dimensional data
Bohn, Bastian; Garcke, Jochen; Griebel, Michael
2016-03-01
Generative dimensionality reduction methods play an important role in machine learning applications because they construct an explicit mapping from a low-dimensional space to the high-dimensional data space. We discuss a general framework to describe generative dimensionality reduction methods, where the main focus lies on a regularized principal manifold learning variant. Since most generative dimensionality reduction algorithms exploit the representer theorem for reproducing kernel Hilbert spaces, their computational costs grow at least quadratically in the number n of data. Instead, we introduce a grid-based discretization approach which automatically scales just linearly in n. To circumvent the curse of dimensionality of full tensor product grids, we use the concept of sparse grids. Furthermore, in real-world applications, some embedding directions are usually more important than others and it is reasonable to refine the underlying discretization space only in these directions. To this end, we employ a dimension-adaptive algorithm which is based on the ANOVA (analysis of variance) decomposition of a function. In particular, the reconstruction error is used to measure the quality of an embedding. As an application, the study of large simulation data from an engineering application in the automotive industry (car crash simulation) is performed.
Pan, Hongwei; Lei, Hongjun; Liu, Xin; Wei, Huaibin; Liu, Shufang
2017-09-01
A large number of simple and informal landfills exist in developing countries, which pose as tremendous soil and groundwater pollution threats. Early warning and monitoring of landfill leachate pollution status is of great importance. However, there is a shortage of affordable and effective tools and methods. In this study, a soil column experiment was performed to simulate the pollution status of leachate using three-dimensional excitation-emission fluorescence (3D-EEMF) and parallel factor analysis (PARAFAC) models. Sum of squared residuals (SSR) and principal component analysis (PCA) were used to determine the optimal components for PARAFAC. A one-way analysis of variance showed that the component scores of the soil column leachate were significant influenced by landfill leachate (plandfill to that of natural soil could be used to evaluate the leakage status of landfill leachate. Furthermore, a hazard index (HI) and a hazard evaluation standard were established. A case study of Kaifeng landfill indicated a low hazard (level 5) by the use of HI. In summation, HI is presented as a tool to evaluate landfill pollution status and for the guidance of municipal solid waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.
1978-01-01
A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.
Directory of Open Access Journals (Sweden)
Iman Zafarparandeh
2016-03-01
Full Text Available In some finite element analysis studies of models of sections of the spine, the three-dimensional solid model is built by assuming symmetry about the mid-sagittal plane of the section, whereas in other studies, the model is built from the exact geometry of the section. The influence of the method used to build the solid model on model parameters, in the case of the cervical spine, has not been reported in the literature. This issue is the subject of this study, with the section being C2–C7, the applied loadings being extension, flexion, left lateral bending, and right axial rotation (each of magnitude 1 Nm, and the model parameters determined being rotation, intradiskal pressure, and facet load at each of the segments. When all the parameter results were considered, it was found that, by and large, the influence of solid model construction method used (exact geometry vs assumption of symmetry about the mid-sagittal plane of the section was marginal. As construction of a symmetric finite element model requires less time and effort, construction of an asymmetric model may be justified in special cases only.
Three-dimensional image signals: processing methods
Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru
2010-11-01
Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.
Dimensional analysis, scaling and fractals
International Nuclear Information System (INIS)
Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.
2004-01-01
Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a
Menéndez-Carreño, M.; Steenbergen, H.; Janssen, H.-G.
2012-01-01
Phytosterol oxidation products (POPs) have been suggested to exert adverse biological effects similar to, although less severe than, their cholesterol counterparts. For that reason, their analysis in human plasma is highly relevant. Comprehensive two-dimensional gas chromatography (GC×GC) coupled
International Nuclear Information System (INIS)
Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Shimizu, Kento; Ogasawara, Tatsuhiko; Nakai, Alisa; Kasuya, Takuji
2017-01-01
Due to the complated flow field and aerodynamic forces characteristics, the performance and safety standard of straight-bladed VAWT have not been full developed. The objective of this study is to investigate the effect of rotor aspect ratio and solidity on the power performance in three-dimensional analysis by panel method. The panel method is based on the assumption of an incompressible and potential flow coupled with a free vortex wake. First of all, the fluctuations of power coefficient and the circulation amount distribution of the bound vortex are discussed at the fixed solidity of σ = 0.064 during rotation. Then, the fluctuations of power coefficient and the circulation amount ratio are also investigated in the spanwise direction of the blade. It can be observed from the results that the peak of power coefficient increases with the increase of the ratio of the diameter and blade span length H/D at the fixed solidity. However, the optimum tip speed ratio was expected to be increased with the increase of H/D. Moreover, in the case of the fixed rotor aspect ratio of H/c = 6, the power coefficient depends on the rotor aspect ratio, rather than the ratio of the diameter and blade span length. Compared with the H/D = 1.2, the circulation amount ratio of H/D = 0.9 indicates a large negative value in the blade center position. - Highlights: • Power and vortex characteristic are discussed with panel method. • Effects of the rotor aspect ratio and solidity on the performance are investigated. • For the σ = 0.064, the maximum power coefficient increases with increasing of H/D. • Circulation amount ratio indicates a large negative value in the case of H/D = 0.9. • Power at the blade central position increases with increasing of rotor aspect ratio.
Sipkova, Zuzana; Lam, Fook Chang; Francis, Ian; Herold, Jim; Liu, Christopher
2013-04-01
To assess the use of serial computed tomography (CT) in the detection of osteo-odonto-lamina resorption in osteo-odonto-keratoprosthesis (OOKP) and to investigate the use of new volumetric software, Advanced Lung Analysis software (3D-ALA; GE Healthcare), for detecting changes in OOKP laminar volume. A retrospective assessment of the radiological databases and hospital records was performed for 22 OOKP patients treated at the National OOKP referral center in Brighton, United Kingdom. Three-dimensional surface reconstructions of the OOKP laminae were performed using stored CT data. For the 2-dimensional linear analysis, the linear dimensions of the reconstructed laminae were measured, compared with original measurements taken at the time of surgery, and then assigned a CT grade based on a predetermined resorption grading scale. The volumetric analysis involved calculating the laminar volumes using 3D-ALA. The effectiveness of 2-dimensional linear analysis, volumetric analysis, and clinical examination in detecting laminar resorption was compared. The mean change in laminar volume between the first and second scans was -6.67% (range, +10.13% to -24.86%). CT grades assigned to patients based on laminar dimension measurements remained the same, despite significant changes in laminar volumes. Clinical examination failed to identify 60% of patients who were found to have resorption on volumetric analysis. Currently, the detection of laminar resorption relies on clinical examination and the measurement of laminar dimensions on the 2- and 3-dimensional radiological images. Laminar volume measurement is a useful new addition to the armamentarium. It provides an objective tool that allows for a precise and reproducible assessment of laminar resorption.
International Nuclear Information System (INIS)
Alam, Y.; Suparmi; Cari; Anwar, F.
2016-01-01
In this study, we used asymptotic iteration method (AIM) to obtain the relativistic energy spectra and wavefunctions for D Dimensional Dirac equation. Solution of the D Dimensional Dirac equation using asymptotic iteration method was done by four steps. The first step, we substitutied q deformed Poschl-Teller potential plus q-deformed Manning Rosen Non-Central potential into D dimensional Dirac equation. And then, general term of D dimensioanl Dirac equation for q deformed Poschl-Teller potential plus q-deformed Manning Rosen Non-Central potential was reduced into one dimensioanal Dirac equation, consist of radial part and angular part. The second step, both of one dimensional part must be reduced to hypergeometric type differential equation by suitable parameter change. And then, hypergeometric type differential equation was transformed into AIM type differential equation. For the last step, AIM type differential equation can be solved to obtain the relativistic energy and wavefunctions of Dirac equation. Relativistic energy and wavefunctions were visualized by using Matlab software. (paper)
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
International Nuclear Information System (INIS)
Usami, Akinobu; Hara, Toshihiro; Ide, Yoshinobu
2003-01-01
The purpose of this study was to analyze the morphological and mechanical properties of the internal structures of maxillae at the molar region using a micro-CT system. Ten dentulous and edentulous maxillae were employed in this study. Images and angle information from all materials were taken by a micro-CT and 100 x 100 x 100 voxels were extracted from the fixed buccal and palatal molar regions in each material for three-dimensional morphological analysis of the internal structure. The bone volume fraction, trabecular thickness, trabecular separation and trabecular number were calculated. To analyze mechanical properties all voxels were converted to micro finite element models with element size of 33 x 33 x 33 μm 3 and maximal stiffness, axial stiffness and angle between the stiffest direction of trabecular and the axial loading direction (angleα) were determined using micro finite element method. In the result, the morphological changes including decrease of bone volume fraction, trabecular thickness and increase of trabecular separation were evident with tooth loss, although trabecular number was not changed. Mechanically, maximal stiffness was decreased with tooth loss at buccal region. However, the axial stiffness at buccal region was larger and the angleα was distributed widely in each edentulous maxilla, comparing to the same region of dentulous maxilla. These findings suggest that trabecular bone become thinner in both buccal and palatal regions, consequently maximal stiffness at buccal region become smaller with tooth loss. On the other hand, axial stiffness at the buccal region in edentulous was larger than one in dentulous. It seems to be caused by the change of the angleα. (author)
International Nuclear Information System (INIS)
Rahnema, Farzad
2009-01-01
This project has resulted in a highly efficient method that has been shown to provide accurate solutions to a variety of 2D and 3D reactor problems. The goal of this project was to develop (1) an accurate and efficient three-dimensional whole-core neutronics method with the following features: based solely on transport theory, does not require the use of cross-section homogenization, contains a highly accurate and self-consistent global flux reconstruction procedure, and is applicable to large, heterogeneous reactor models, and to (2) create new numerical benchmark problems for code cross-comparison.
High dimensional model representation method for fuzzy structural dynamics
Adhikari, S.; Chowdhury, R.; Friswell, M. I.
2011-03-01
Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.
International Nuclear Information System (INIS)
Namita, Yoshio; Kawahata, Jun-ichi; Ichihashi, Ichiro; Fukuda, Toshihiko.
1995-01-01
Component and piping systems in current nuclear power plants and chemical plants are designed to employ many supports to maintain safety and reliability against earthquakes. However, these supports are rigid and have a slight energy-dissipating effect. It is well known that applying high-damping supports to the piping system is very effective for reducing the seismic response. In this study, we investigated the design method of the elastoplastic damper [energy absorber (EAB)] and the seismic design method for a piping system supported by the EAB. Our final goal is to develop technology for applying the EAB to the piping system of an actual plant. In this paper, the vibration test results of the three-dimensional piping model are presented. From the test results, it is confirmed that EAB has a large energy-dissipating effect and is effective in reducing the seismic response of the piping system, and that the seismic design method for the piping system, which is the response spectrum mode superposition method using each modal damping and requires iterative calculation of EAB displacement, is applicable for the three-dimensional piping model. (author)
Two-dimensional signal analysis
Garello, René
2010-01-01
This title sets out to show that 2-D signal analysis has its own role to play alongside signal processing and image processing.Concentrating its coverage on those 2-D signals coming from physical sensors (such as radars and sonars), the discussion explores a 2-D spectral approach but develops the modeling of 2-D signals and proposes several data-oriented analysis techniques for dealing with them. Coverage is also given to potential future developments in this area.
Two-dimensional gel electrophoresis analysis of different parts of ...
African Journals Online (AJOL)
Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...
Dimensional analysis for the mechanical effects of some underground explosions
Energy Technology Data Exchange (ETDEWEB)
Delort, Francis [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)
1970-05-15
The influence of the medium properties upon the effects of underground nuclear and high explosive explosions is studied by dimensional analysis methods. A comparison is made with the experimental data from the Hoggar contained nuclear shots, specially with the particle motion data and the cavity radii. Furthermore, for example, crater data from explosions in Nevada have been examined by statistical methods. (author)
Dimensional analysis beyond the Pi theorem
Zohuri, Bahman
2017-01-01
Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...
Dimensional analysis examples of the use of symmetry
Hornung, Hans G
2006-01-01
Derived from a course in fluid mechanics, this text for advanced undergraduates and beginning graduate students employs symmetry arguments to demonstrate the principles of dimensional analysis. The examples provided illustrate the effectiveness of symmetry arguments in obtaining the mathematical form of the functions yielded by dimensional analysis. Students will find these methods applicable to a wide field of interests.After discussing several examples of method, the text examines pipe flow, material properties, gasdynamical examples, body in nonuniform flow, and turbulent flow. Additional t
Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection
Directory of Open Access Journals (Sweden)
Jie Zhao
2014-01-01
Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.
Bifurcation analysis of a three dimensional system
Directory of Open Access Journals (Sweden)
Yongwen WANG
2018-04-01
Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.
LINKAGE ANALYSIS BY 2-DIMENSIONAL DNA TYPING
MEERMAN, GJT; MULLAART, E; VANDERMEULEN, MA; DENDAAS, JHG; MOROLLI, B; UITTERLINDEN, AG; VIJG, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core
Three-dimensional display techniques: description and critique of methods
International Nuclear Information System (INIS)
Budinger, T.F.
1982-01-01
The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)
Utility of three-dimensional method for diagnosing meniscal lesions
International Nuclear Information System (INIS)
Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro
1998-01-01
MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)
Jyotshna; Srivastava, Pooja; Killadi, Bharti; Shanker, Karuna
2015-06-01
Mango (Mangifera indica) fruit is one of the important commercial fruit crops of India. Similar to other tropical fruits it is also highly perishable in nature. During storage/ripening, changes in its physico-chemical quality parameters viz. firmness, titrable acidity, total soluble solid content (TSSC), carotenoids content, and other biochemicals are inevitable. A uni-dimensional double-development high-performance thin-layer chromatography (UDDD-HPTLC) method was developed for the real-time monitoring of mangiferin and lupeol in mango pulp and peel during storage. The quantitative determination of both compounds of different classes was achieved by densitometric HPTLC method. Silica gel 60F254 HPTLC plates and two solvent systems viz. toluene/EtOAC/MeOH and EtOAC/MeOH, respectively were used for optimum separation and selective evaluation. Densitometric quantitation of mangiferin was performed at 390nm, while lupeol at 610nm after post chromatographic derivatization. Validated method was used to real-time monitoring of mangiferin and lupeol content during storage in four Indian cultivars, e.g. Bombay green (Bgreen), Dashehari, Langra, and Chausa. Significant correlations (pacidity and TSSC with mangiferin and lupeol in pulp and peel during storage were also observed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method of dimensionality reduction in contact mechanics and friction
Popov, Valentin L
2015-01-01
This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in...
International Nuclear Information System (INIS)
Berthomier, Charles
1975-01-01
A method capable of handling the amplitude and the frequency time laws of a certain kind of geophysical signals is described here. This method is based upon the analytical signal idea of Gabor and Ville, which is constructed either in the time domain by adding an imaginary part to the real signal (in-quadrature signal), or in the frequency domain by suppressing negative frequency components. The instantaneous frequency of the initial signal is then defined as the time derivative of the phase of the analytical signal, and his amplitude, or envelope, as the modulus of this complex signal. The method is applied to three types of magnetospheric signals: chorus, whistlers and pearls. The results obtained by analog and numerical calculations are compared to results obtained by classical systems using filters, i.e. based upon a different definition of the concept of frequency. The precision with which the frequency-time laws are determined leads then to the examination of the principle of the method and to a definition of instantaneous power density spectrum attached to the signal, and to the first consequences of this definition. In this way, a two-dimensional representation of the signal is introduced which is less deformed by the analysis system properties than the usual representation, and which moreover has the advantage of being obtainable practically in real time [fr
Wu, Y. H.; Nakakita, E.
2017-12-01
Hillslope stability is highly related to stress equilibrium near the top surface of soil-mantled hillslopes. Stress field in a hillslope can also be significantly altered by variable groundwater motion under the rainfall influence as well as by different vegetation above and below the slope. The topographic irregularity, biological effects from vegetation and variable rainfall patterns couple with others to make the prediction of shallow landslide complicated and difficult. In an increasing tendency of extreme rainfall, the mountainous area in Japan has suffered more and more shallow landslides. To better assess shallow landslide hazards, we would like to develop a new mechanically-based method to estimate the fully three-dimensional stress field in hillslopes. The surface soil-layer of hillslope is modelled as a poroelastic medium, and the tree surcharge on the slope surface is considered as a boundary input of stress forcing. The modelling of groundwater motion is involved to alter effective stress state in the soil layer, and the tree root-reinforcement estimated by allometric equations is taken into account for influencing the soil strength. The Mohr-Coulomb failure theory is then used for locating possible yielding surfaces, or says for identifying failure zones. This model is implemented by using the finite element method. Finally, we performed a case study of the real event of massive shallow landslides occurred in Hiroshima in August, 2014. The result shows good agreement with the field condition.
Four-Dimensional Data Assimilation Using the Adjoint Method
Bao, Jian-Wen
The calculus of variations is used to confirm that variational four-dimensional data assimilation (FDDA) using the adjoint method can be implemented when the numerical model equations have a finite number of first-order discontinuous points. These points represent the on/off switches associated with physical processes, for which the Jacobian matrix of the model equation does not exist. Numerical evidence suggests that, in some situations when the adjoint method is used for FDDA, the temperature field retrieved using horizontal wind data is numerically not unique. A physical interpretation of this type of non-uniqueness of the retrieval is proposed in terms of energetics. The adjoint equations of a numerical model can also be used for model-parameter estimation. A general computational procedure is developed to determine the size and distribution of any internal model parameter. The procedure is then applied to a one-dimensional shallow -fluid model in the context of analysis-nudging FDDA: the weighting coefficients used by the Newtonian nudging technique are determined. The sensitivity of these nudging coefficients to the optimal objectives and constraints is investigated. Experiments of FDDA using the adjoint method are conducted using the dry version of the hydrostatic Penn State/NCAR mesoscale model (MM4) and its adjoint. The minimization procedure converges and the initialization experiment is successful. Temperature-retrieval experiments involving an assimilation of the horizontal wind are also carried out using the adjoint of MM4.
New method for solving three-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Melezhik, V.S.
1990-01-01
The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs
Czech Academy of Sciences Publication Activity Database
Kopačka, Ján; Tkachuk, A.; Gabriel, Dušan; Kolman, Radek; Bischoff, M.; Plešek, Jiří
2018-01-01
Roč. 113, č. 10 (2018), s. 1607-1629 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR(CZ) GA17-22615S; GA ČR GA17-12925S; GA ČR(CZ) GA16-03823S Grant - others:AV ČR(CZ) DAAD-16-12 Program:Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : bipenalty method * explicit time integration * finite element method * penalty method * reflection-transmission analysis * stability analysis Subject RIV: JC - Computer Hardware ; Software OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/nme.5712/full
International Nuclear Information System (INIS)
Shenderovich, M.D.; Sekatsis, I.P.; Liepin'sh, E.E.; Nikiforovich, G.V.; Papsuevich, O.S.
1986-01-01
An assignment of the 1 H NMR signals of des-Gly 9 -[Arg 8 ]vasopressin in dimethyl sulfoxide has been made by 2D spectroscopy. The SSCCs and temperature coefficients Δδ/Δ T have been obtained for the amide protons and the system of NOE cross-peaks in the two-dimensional NOESY spectrum has been analyzed. The most important information on the spatial structure of des-Gly 9 -[Arg 8 ]vasopressin is given by the low value of the temperature coefficient Δδ/Δ T of the Asn 5 amide proton and the NOE between the α-protons of Cys 1 and Cys 6 . It is assumed that the screening of the NH proton of the Asn 5 residue from the solvent is connected with a β-bend of the backbone in the 2-5 sequence, and the distance between the C/sup α/H atoms of the Cys 1 and Cys 6 residues does not exceed 4 A. Bearing these limitations in mind, a theoretical conformational analysis of the molecule has been made. The group of low-energy conformations of the backbone obtained has been compared with the complete set of NMR characteristics
Three-dimensional (3D) analysis of the temporomandibular joint
DEFF Research Database (Denmark)
Kitai, N.; Kreiborg, S.; Murakami, S.
Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...
Dimensionality analysis of multiparticle production at high energies
International Nuclear Information System (INIS)
Chilingaryan, A.A.
1989-01-01
An algorithm of analysis of multiparticle final states is offered. By the Renyi dimensionalities, which were calculated according to experimental data, though it were hadron distribution over the rapidity intervals or particle distribution in an N-dimensional momentum space, we can judge about the degree of correlation of particles, separate the momentum space projections and areas where the probability measure singularities are observed. The method is tested in a series of calculations with samples of fractal object points and with samples obtained by means of different generators of pseudo- and quasi-random numbers. 27 refs.; 11 figs
Direct Linear Transformation Method for Three-Dimensional Cinematography
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine......Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Çelik Köycü, Berrak; İmirzalıoğlu, Pervin
2017-07-01
Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.
International Nuclear Information System (INIS)
Bian, Liang; Dong, Fa-qin; Song, Mian-xin; Dong, Hai-liang; Li, Wei-Min; Duan, Tao; Xu, Jin-bao; Zhang, Xiao-yan
2015-01-01
Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr 1−c Pu c SiO 4 over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f xy -shell electron excites an inner-shell O-2s 2 orbital to create an oxygen defect (V O-s ) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p 6 5s 2 electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V O-p defect captures a high-angular-momentum Zr-4d z electron and two Si-p z electrons to create delocalized Si 4+ → Si 2+ charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO 8 polyhedral and SiO 4 tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials
Three-dimensional space charge calculation method
International Nuclear Information System (INIS)
Lysenko, W.P.; Wadlinger, E.A.
1981-01-01
A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries
Variational iteration method for one dimensional nonlinear thermoelasticity
International Nuclear Information System (INIS)
Sweilam, N.H.; Khader, M.M.
2007-01-01
This paper applies the variational iteration method to solve the Cauchy problem arising in one dimensional nonlinear thermoelasticity. The advantage of this method is to overcome the difficulty of calculation of Adomian's polynomials in the Adomian's decomposition method. The numerical results of this method are compared with the exact solution of an artificial model to show the efficiency of the method. The approximate solutions show that the variational iteration method is a powerful mathematical tool for solving nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Bian, Liang, E-mail: bianliang@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Fa-qin; Song, Mian-xin [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Hai-liang [Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056 (United States); Li, Wei-Min [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Duan, Tao; Xu, Jin-bao [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Zhang, Xiao-yan [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China)
2015-08-30
Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr{sub 1−c}Pu{sub c}SiO{sub 4} over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f{sub xy}-shell electron excites an inner-shell O-2s{sup 2} orbital to create an oxygen defect (V{sub O-s}) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p{sup 6}5s{sup 2} electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V{sub O-p} defect captures a high-angular-momentum Zr-4d{sub z} electron and two Si-p{sub z} electrons to create delocalized Si{sup 4+} → Si{sup 2+} charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO{sub 8} polyhedral and SiO{sub 4} tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.
Czech Academy of Sciences Publication Activity Database
Hamarová, Ivana; Šmíd, Petr; Horváth, P.; Hrabovský, M.
2014-01-01
Roč. 2014, č. 1 (2014), "704368-1"-"704368-12" ISSN 1537-744X R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : one-dimensional speckle correlation * speckle * general In-plane translation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.219, year: 2013
Three-dimensional analysis of antenna sheaths
International Nuclear Information System (INIS)
Myra, J.R.; D'Ippolito, D.A.; Ho, Y.L.
1996-01-01
The present work is motivated by the importance of r.f. sheaths in determining the antenna-plasma interaction and the sensitivity of the sheaths to the complicated three-dimensional structure of modern ion cyclotron range of frequency (ICRF) antennas. To analyze r.f. sheaths on the plasma facing regions of the launcher, we first calculate the contact points of the tokamak magnetic field lines on the surface of the antenna Faraday screen and nearby limiters for realistic three-dimensional magnetic flux surface and antenna geometries. Next, the r.f. voltage that can drive sheaths at the contact points is determined and used to assess the resulting sheath power dissipation, r.f.-driven sputtering, and r.f.-induced convective cells (which produce edge profile modification). The calculations are embodied in a computer code, ANSAT (antenna sheath analysis tool), and sample ANSAT runs are shown to highlight the physics- and geometry-dependent characteristics of the r.f. sheaths and their relationship to the antenna design. One use of ANSAT is therefore as a design tool, to assess the strengths and weaknesses of a given design with respect to critical voltage handling and edge plasma interaction issues. Additionally, examples are presented where ANSAT has been useful in the analysis and interpretation of ICRF experiments (orig.)
Analysis of the three dimensional flow in a turbine scroll
Hamed, A.; Baskharone, E.
1979-01-01
The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.
The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow
Meakin, Robert L.
1996-01-01
The Chimera overset grid method is reviewed and discussed in the context of a method of solution and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support software required to use the approach is discussed. A variety of recent applications of the method is presented. Current limitations of the approach are defined.
A multi-dimensional sampling method for locating small scatterers
International Nuclear Information System (INIS)
Song, Rencheng; Zhong, Yu; Chen, Xudong
2012-01-01
A multiple signal classification (MUSIC)-like multi-dimensional sampling method (MDSM) is introduced to locate small three-dimensional scatterers using electromagnetic waves. The indicator is built with the most stable part of signal subspace of the multi-static response matrix on a set of combinatorial sampling nodes inside the domain of interest. It has two main advantages compared to the conventional MUSIC methods. First, the MDSM is more robust against noise. Second, it can work with a single incidence even for multi-scatterers. Numerical simulations are presented to show the good performance of the proposed method. (paper)
Irregular grid methods for pricing high-dimensional American options
Berridge, S.J.
2004-01-01
This thesis proposes and studies numerical methods for pricing high-dimensional American options; important examples being basket options, Bermudan swaptions and real options. Four new methods are presented and analysed, both in terms of their application to various test problems, and in terms of
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
International Nuclear Information System (INIS)
S. GOLUOGLU, C. BENTLEY, R. DEMEGLIO, M. DUNN, K. NORTON, R. PEVEY I.SUSLOV AND H.L. DODDS
1998-01-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems
Directory of Open Access Journals (Sweden)
Xiaoni Dong
2016-01-01
Full Text Available Process models and parameters are two critical steps for fault prognosis in the operation of rotating machinery. Due to the requirement for a short and rapid response, it is important to study robust sensor data representation schemes. However, the conventional holospectrum defined by one-dimensional or two-dimensional methods does not sufficiently present this information in both the frequency and time domains. To supply a complete holospectrum model, a new three-dimensional spatial representation method is proposed. This method integrates improved three-dimensional (3D holospectra and 3D filtered orbits, leading to the integration of radial and axial vibration features in one bearing section. The results from simulation and experimental analysis on a complex compressor show that the proposed method can present the real operational status and clearly reveal early faults, thus demonstrating great potential for condition-based maintenance prediction in industrial machinery.
Problems associated with dimensional analysis of electroencephalogram data
Energy Technology Data Exchange (ETDEWEB)
Layne, S.; Mayer-Kress, G.; Holzfuss, J.
1985-01-01
The goal was to evaluate anesthetic depth for a series of 5 to 10 patients by dimensional analysis. It has been very difficult to obtain clean EEG records from the operating room. Noise is prominent due to electrocautery and to movement of the patient's head by operating room personnel. In addition, specialized EEG equipment must be used to reduce noise and to accommodate limited space in the room. This report discusses problems associated with dimensional analysis of the EEG. We choose one EEG record from a single patient, in order to study the method but not to draw general conclusions. For simplicity, we consider only two states: awake but quiet, and medium anesthesia. 14 refs., 8 figs., 1 tab.
Calculation of two-dimensional thermal transients by the method of finite elements
International Nuclear Information System (INIS)
Fontoura Rodrigues, J.L.A. da.
1980-08-01
The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt
A method of image improvement in three-dimensional imaging
International Nuclear Information System (INIS)
Suto, Yasuzo; Huang, Tewen; Furuhata, Kentaro; Uchino, Masafumi.
1988-01-01
In general, image interpolation is required when the surface configurations of such structures as bones and organs are three-dimensionally constructed from the multi-sliced images obtained by CT. Image interpolation is a processing method whereby an artificial image is inserted between two adjacent slices to make spatial resolution equal to slice resolution in appearance. Such image interpolation makes it possible to increase the image quality of the constructed three-dimensional image. In our newly-developed algorithm, we have converted the presently and subsequently sliced images to distance images, and generated the interpolation images from these two distance images. As a result, compared with the previous method, three-dimensional images with better image quality have been constructed. (author)
Computational methods for three-dimensional microscopy reconstruction
Frank, Joachim
2014-01-01
Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology. Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.
Similarity measurement method of high-dimensional data based on normalized net lattice subspace
Institute of Scientific and Technical Information of China (English)
Li Wenfa; Wang Gongming; Li Ke; Huang Su
2017-01-01
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity, leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals, and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this meth-od, three data types are used, and seven common similarity measurement methods are compared. The experimental result indicates that the relative difference of the method is increasing with the di-mensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition, the similarity range of this method in different dimensions is [0, 1], which is fit for similarity analysis after dimensionality reduction.
Calculation of two-dimensional thermal transients by the finite element method
International Nuclear Information System (INIS)
Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de
1981-01-01
The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt
A three-dimensional correlation method for registration of medical images in radiology
International Nuclear Information System (INIS)
Georgiou, Michalakis; Sfakianakis, George N.; Nagel, Joachim H.
1998-01-01
The availability of methods to register multi-modality images in order to 'fuse' them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as p olar Shells . The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors)
The Validity of Dimensional Regularization Method on Fractal Spacetime
Directory of Open Access Journals (Sweden)
Yong Tao
2013-01-01
Full Text Available Svozil developed a regularization method for quantum field theory on fractal spacetime (1987. Such a method can be applied to the low-order perturbative renormalization of quantum electrodynamics but will depend on a conjectural integral formula on non-integer-dimensional topological spaces. The main purpose of this paper is to construct a fractal measure so as to guarantee the validity of the conjectural integral formula.
A simple three dimensional wide-angle beam propagation method
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.
Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil
2017-01-19
Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.
International Nuclear Information System (INIS)
Pramono, Subur; Suparmi, A.; Cari, Cari
2016-01-01
We study the exact solution of Dirac equation in the hyperspherical coordinate under influence of separable q-deformed quantum potentials. The q-deformed hyperbolic Rosen-Morse potential is perturbed by q-deformed noncentral trigonometric Scarf potentials, where all of them can be solved by using Asymptotic Iteration Method (AIM). This work is limited to spin symmetry case. The relativistic energy equation and orbital quantum number equation l_D_-_1 have been obtained using Asymptotic Iteration Method. The upper radial wave function equations and angular wave function equations are also obtained by using this method. The relativistic energy levels are numerically calculated using Matlab, and the increase of radial quantum number n causes the increase of bound state relativistic energy level in both dimensions D=5 and D=3. The bound state relativistic energy level decreases with increasing of both deformation parameter q and orbital quantum number n_l.
Three-dimensional seismic analysis for spent fuel storage rack
International Nuclear Information System (INIS)
Lee, Gyu Mahn; Kim, Kang Soo; Park, Keun Bae; Park, Jong Kyun
1998-01-01
Time history analysis is usually performed to characterize the nonlinear seismic behavior of a spent fuel storage rack (SFSR). In the past, the seismic analyses of the SFSR were performed with two-dimensional planar models, which could not account for torsional response and simultaneous multi-directional seismic input. In this study, three-dimensional seismic analysis methodology is developed for the single SFSR using the ANSY code. The 3-D model can be used to determine the nonlinear behavior of the rack, i.e., sliding, uplifting, and impact evaluation between the fuel assembly and rack, and rack and the pool wall. This paper also reviews the 3-D modeling of the SFSR and the adequacy of the ANSYS for the seismic analysis. As a result of the adequacy study, the method of ANSYS transient analysis with acceleration time history is suitable for the seismic analysis of highly nonlinear structure such as an SFSR but it isn't appropriate to use displacement time history of seismic input. (author)
Wave field restoration using three-dimensional Fourier filtering method.
Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R
2001-11-01
A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.
New method for solving three-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Melezhik, V.S.
1992-01-01
A new method is developed for solving the multidimensional Schroedinger equation without the variable separation. To solve the Schroedinger equation in a multidimensional coordinate space X, a difference grid Ω i (i=1,2,...,N) for some of variables, Ω, from X={R,Ω} is introduced and the initial partial-differential equation is reduced to a system of N differential-difference equations in terms of one of the variables R. The arising multi-channel scattering (or eigenvalue) problem is solved by the algorithm based on a continuous analog of the Newton method. The approach has been successfully tested for several two-dimensional problems (scattering on a nonspherical potential well and 'dipole' scatterer, a hydrogen atom in a homogenous magnetic field) and for a three-dimensional problem of the helium-atom bound states. (author)
Tang, Shuaiqi
Atmospheric vertical velocities and advective tendencies are essential as large-scale forcing data to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES). They cannot be directly measured or easily calculated with great accuracy from field measurements. In the Atmospheric Radiation Measurement (ARM) program, a constrained variational algorithm (1DCVA) has been used to derive large-scale forcing data over a sounding network domain with the aid of flux measurements at the surface and top of the atmosphere (TOA). We extend the 1DCVA algorithm into three dimensions (3DCVA) along with other improvements to calculate gridded large-scale forcing data. We also introduce an ensemble framework using different background data, error covariance matrices and constraint variables to quantify the uncertainties of the large-scale forcing data. The results of sensitivity study show that the derived forcing data and SCM simulated clouds are more sensitive to the background data than to the error covariance matrices and constraint variables, while horizontal moisture advection has relatively large sensitivities to the precipitation, the dominate constraint variable. Using a mid-latitude cyclone case study in March 3rd, 2000 at the ARM Southern Great Plains (SGP) site, we investigate the spatial distribution of diabatic heating sources (Q1) and moisture sinks (Q2), and show that they are consistent with the satellite clouds and intuitive structure of the mid-latitude cyclone. We also evaluate the Q1 and Q2 in analysis/reanalysis, finding that the regional analysis/reanalysis all tend to underestimate the sub-grid scale upward transport of moist static energy in the lower troposphere. With the uncertainties from large-scale forcing data and observation specified, we compare SCM results and observations and find that models have large biases on cloud properties which could not be fully explained by the uncertainty from the large-scale forcing
Safaei, S.; Haghnegahdar, A.; Razavi, S.
2016-12-01
Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.
Three-dimensional protein structure prediction: Methods and computational strategies.
Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C
2014-10-12
A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Deville, J.P.
1998-01-01
Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)
International Nuclear Information System (INIS)
Utsunomiya, H.; Nawata, M.; Ogasawara, T.; Okazaki, M.; Miyoshi, M.
1996-01-01
The planum temporale of the supratemporal plane is important for language function and shows left-right asymmetry in most brains. To estimate the size and allow side comparison of the planum temporale, we developed a new technique for 3-D MR analysis of the supratemporal plane using a personal computer and computer-aided graphics. The temporal lobes of 5 human cadavers were imaged by MR in the sagittal plane, at a slice thickness of 3 mm. The images of the supratemporal plane were entered into a personal computer using the original software to determine the positions of anatomic landmarks and the size of the planum temporale. The data were then transferred to a supercomputer to reconstruct the 3-D surface image of the supratemporal plane. Computer images of the spuratemporal plane agreed with macroscopic observations. The positions of anatomic landmarks and the size of the planum temporale also agreed with macroscopic measurements. Thus, the persent technique provides valuable anatomic data on the spuratemporal plane which should be useful for further clarification of the anatomic basis of language function. (orig.)
Development of two dimensional electrophoresis method using single chain DNA
International Nuclear Information System (INIS)
Ikeda, Junichi; Hidaka, So
1998-01-01
By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
One New Method to Generate 3-Dimensional Virtual Mannequin
Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le
The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.
The transmission probability method in one-dimensional cylindrical geometry
International Nuclear Information System (INIS)
Rubin, I.E.
1983-01-01
The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems
Methods of Multivariate Analysis
Rencher, Alvin C
2012-01-01
Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Three dimensional finite element linear analysis of reinforced concrete structures
International Nuclear Information System (INIS)
Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.
1979-01-01
A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)
Performance prediction of centrifugal compressor impellers using quasi-three-dimensional analysis
International Nuclear Information System (INIS)
Ahn, S. J.; Kim, K. Y.; Oh, H. W.
2001-01-01
This-paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant
Discretization model for nonlinear dynamic analysis of three dimensional structures
International Nuclear Information System (INIS)
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
The dimension split element-free Galerkin method for three-dimensional potential problems
Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.
2018-02-01
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
Kimura, Kosei; Wada, Akira; Ueta, Masami; Ogata, Akihiko; Tanaka, Satoru; Sakai, Akiko; Yoshida, Hideji; Fushitani, Hideo; Miyamoto, Akiko; Fukushima, Masakazu; Uchiumi, Toshio; Tanigawa, Nobuhiko
2010-11-01
Many auxiliary functions of ribosomal proteins (r-proteins) have received considerable attention in recent years. However, human r-proteins have hardly been examined by proteomic analysis. In this study, we isolated ribosomal particles and subsequently compared the proteome of r-proteins between the DLD-1 human colon cancer cell line and its 5-fluorouracil (5-FU)-resistant sub-line, DLD-1/5-FU, using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis, which has a superior ability to separate basic proteins, and we discuss the role of r-proteins in 5-FU resistance. Densitometric analysis was performed to quantify modulated proteins, and protein spots showing significant changes were identified by employing matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Three basic proteins (L15, L37 and prohibitin) which were significantly modulated between DLD-1 and DLD-1/5-FU were identified. Two proteins, L15 and L37, showed down-regulated expression in DLD-1/5-FU in comparison to DLD-1. Prohibitin, which is not an r-protein and is known to be localized in the mitochondria, showed up-regulated expression in DLD-1/5-FU. These 3 proteins may be related to 5-FU resistance.
Discovering Hidden Controlling Parameters using Data Analytics and Dimensional Analysis
Del Rosario, Zachary; Lee, Minyong; Iaccarino, Gianluca
2017-11-01
Dimensional Analysis is a powerful tool, one which takes a priori information and produces important simplifications. However, if this a priori information - the list of relevant parameters - is missing a relevant quantity, then the conclusions from Dimensional Analysis will be incorrect. In this work, we present novel conclusions in Dimensional Analysis, which provide a means to detect this failure mode of missing or hidden parameters. These results are based on a restated form of the Buckingham Pi theorem that reveals a ridge function structure underlying all dimensionless physical laws. We leverage this structure by constructing a hypothesis test based on sufficient dimension reduction, allowing for an experimental data-driven detection of hidden parameters. Both theory and examples will be presented, using classical turbulent pipe flow as the working example. Keywords: experimental techniques, dimensional analysis, lurking variables, hidden parameters, buckingham pi, data analysis. First author supported by the NSF GRFP under Grant Number DGE-114747.
Energy Technology Data Exchange (ETDEWEB)
Baldwin, J.M. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems
1996-04-01
The Dimensional Inspection Techniques Specification (DITS) Project is an ongoing effort to produce tools and guidelines for optimum sampling and data analysis of machined parts, when measured using point-sample methods of dimensional metrology. This report is a compilation of results of a literature survey, conducted in support of the DITS. Over 160 citations are included, with author abstracts where available.
Drifting plasmons in open two-dimensional channels: modal analysis
International Nuclear Information System (INIS)
Sydoruk, O
2013-01-01
Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)
Dimensional analysis of heart rate variability in heart transplant recipients
Energy Technology Data Exchange (ETDEWEB)
Zbilut, J.P.; Mayer-Kress, G.; Geist, K.
1987-01-01
We discuss periodicities in the heart rate in normal and transplanted hearts. We then consider the possibility of dimensional analysis of these periodicities in transplanted hearts and problems associated with the record.
Dimensional Analysis with space discrimination applied to Fickian difussion phenomena
International Nuclear Information System (INIS)
Diaz Sanchidrian, C.; Castans, M.
1989-01-01
Dimensional Analysis with space discrimination is applied to Fickian difussion phenomena in order to transform its partial differen-tial equations into ordinary ones, and also to obtain in a dimensionl-ess fom the Ficks second law. (Author)
New method of 2-dimensional metrology using mask contouring
Matsuoka, Ryoichi; Yamagata, Yoshikazu; Sugiyama, Akiyuki; Toyoda, Yasutaka
2008-10-01
We have developed a new method of accurately profiling and measuring of a mask shape by utilizing a Mask CD-SEM. The method is intended to realize high accuracy, stability and reproducibility of the Mask CD-SEM adopting an edge detection algorithm as the key technology used in CD-SEM for high accuracy CD measurement. In comparison with a conventional image processing method for contour profiling, this edge detection method is possible to create the profiles with much higher accuracy which is comparable with CD-SEM for semiconductor device CD measurement. This method realizes two-dimensional metrology for refined pattern that had been difficult to measure conventionally by utilizing high precision contour profile. In this report, we will introduce the algorithm in general, the experimental results and the application in practice. As shrinkage of design rule for semiconductor device has further advanced, an aggressive OPC (Optical Proximity Correction) is indispensable in RET (Resolution Enhancement Technology). From the view point of DFM (Design for Manufacturability), a dramatic increase of data processing cost for advanced MDP (Mask Data Preparation) for instance and surge of mask making cost have become a big concern to the device manufacturers. This is to say, demands for quality is becoming strenuous because of enormous quantity of data growth with increasing of refined pattern on photo mask manufacture. In the result, massive amount of simulated error occurs on mask inspection that causes lengthening of mask production and inspection period, cost increasing, and long delivery time. In a sense, it is a trade-off between the high accuracy RET and the mask production cost, while it gives a significant impact on the semiconductor market centered around the mask business. To cope with the problem, we propose the best method of a DFM solution using two-dimensional metrology for refined pattern.
DEFF Research Database (Denmark)
Olivarius, Signe
of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...
Development of three-dimensional individual bubble-velocity measurement method by bubble tracking
International Nuclear Information System (INIS)
Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa
2012-01-01
A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)
Dimensionally constrained energy confinement analysis of W7-AS data
International Nuclear Information System (INIS)
Dose, V.; Preuss, R.; Linden, W. von der
1998-01-01
A recently assembled W7-AS stellarator database has been subject to dimensionally constrained confinement analysis. The analysis employs Bayesian inference. Dimensional information is taken from the Connor-Taylor (CT) similarity transformation theory, which provides six possible physical scenarios with associated dimensional conditions. Bayesian theory allows the calculations of the probability for each model and it is found that the present W7-AS data are most probably described by the collisionless high-β case. Probabilities for all models and the associated exponents of a power law scaling function are presented. (author)
A three-dimensional correlation method for registration of medical images in radiology
Energy Technology Data Exchange (ETDEWEB)
Georgiou, Michalakis; Sfakianakis, George N [Department of Radiology, University of Miami, Jackson Memorial Hospital, Miami, FL 33136 (United States); Nagel, Joachim H [Institute of Biomedical Engineering, University of Stuttgart, Stuttgart 70174 (Germany)
1999-12-31
The availability of methods to register multi-modality images in order to `fuse` them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as {sup p}olar Shells{sup .} The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors) 6 refs., 3 figs.
Isaacson, Eugene
1994-01-01
This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography
International Nuclear Information System (INIS)
Ono, Ichiro; Ohura, Takehiko; Kimura, Chu
1989-01-01
Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)
Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography
Energy Technology Data Exchange (ETDEWEB)
Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)
1989-08-01
Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).
Fischer, Claudia; Voss, Andreas
2014-01-01
Hypertensive pregnancy disorders affect 6 to 8 percent of all pregnancies which can cause severe complications for the mother and the fetus. The aim of this study was to develop a new method suitable for a three dimensional coupling analysis. Therefore, the three-dimensional segmented Poincaré plot analysis (SPPA3) is introduced that represents the Poincare analysis based on a cubic box model representation. The box representing the three dimensional phase space is (based on the SPPA method) subdivided into 12×12×12 equal cubelets according to the predefined range of signals and all single probabilities of occurring points in a specific cubelet related to the total number of points are calculated. From 10 healthy non-pregnant women, 66 healthy pregnant women and 56 hypertensive pregnant women suffering from chronic hypertension, gestational hypertension and preeclampsia, 30 minutes of beat-to-beat intervals (BBI), noninvasive blood pressure and respiration (RESP) were continuously recorded and analyzed. Couplings between the different signals were analyzed. The ability of SPPA3 for a screening could be confirmed by multivariate discriminant analysis differentiating between all pregnant woman and preeclampsia (index BBI3_SBP9_RESP6/ BBI8_SBP11_RESP4 leads to an area under the ROC curve of AUC=91.2%). In conclusion, SPPA3 could be a useful method for enhanced risk stratification in pregnant women.
Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation
P.W. Hemker (Piet); M.H. van Raalte (Marc)
2002-01-01
textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the
On a novel matrix method for three-dimensional photoelasticity
International Nuclear Information System (INIS)
Theocaris, P.S.; Gdoutos, E.E.
1978-01-01
A non-destructive method for the photoelastic determination of three-dimensional stress distributions, based on the Mueller and Jones calculi, is developed. The differential equations satisfied by the Stokes and Jones vectors, when a polarized light beam passes through a photoelastic model, presenting rotation of the secondary principal stress directions, are established in matrix form. The Peano-Baker method is used for the solution of these differential equations in a matrix series form, establishing the elements of the Mueller and Jones matrices of the photoelastic model. These matrices are experimentally determined by using different wavelengths in conjunction with Jones' 'equivalence theorem'. The Neumann equations are immediately deduced from the above-mentioned differential equations. (orig.) [de
A Large Dimensional Analysis of Regularized Discriminant Analysis Classifiers
Elkhalil, Khalil
2017-11-01
This article carries out a large dimensional analysis of standard regularized discriminant analysis classifiers designed on the assumption that data arise from a Gaussian mixture model with different means and covariances. The analysis relies on fundamental results from random matrix theory (RMT) when both the number of features and the cardinality of the training data within each class grow large at the same pace. Under mild assumptions, we show that the asymptotic classification error approaches a deterministic quantity that depends only on the means and covariances associated with each class as well as the problem dimensions. Such a result permits a better understanding of the performance of regularized discriminant analsysis, in practical large but finite dimensions, and can be used to determine and pre-estimate the optimal regularization parameter that minimizes the misclassification error probability. Despite being theoretically valid only for Gaussian data, our findings are shown to yield a high accuracy in predicting the performances achieved with real data sets drawn from the popular USPS data base, thereby making an interesting connection between theory and practice.
Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments.
Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke E
2018-03-01
Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.
Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi
2015-11-01
Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.
Three-dimensional calculation analysis of ICRF heating in LHD
International Nuclear Information System (INIS)
Seki, Tetsuo; Kumazawa, Ryuhei; Mutoh, Takashi
2004-01-01
Ion cyclotron range of frequencies (ICRF) heating is one of the heating methods for the fusion plasma experiments and also effective for the helical plasmas. For the purpose of analysis of the ICRF heating in the helical plasmas, the three-dimensional full-wave code has been developed. The feature of the helical system compared with the tokamak device is the strong coupling of the toroidal harmonic modes. They cannot be treated independently. Dependence of the power absorption on the position of the ion cyclotron resonance layer is calculated including all toroidal modes. Strong power absorption was obtained when the position of the resonance layer is slightly different from the experimental results. Difference of the position of the resonance layer in different toroidal angle is thought to be important to achieve the good heating efficiency in the ICRF heating for the helical plasmas. (author)
New method of three-dimensional reconstruction from two-dimensional MR data sets
International Nuclear Information System (INIS)
Wrazidlo, W.; Schneider, S.; Brambs, H.J.; Richter, G.M.; Kauffmann, G.W.; Geiger, B.; Fischer, C.
1989-01-01
In medical diagnosis and therapy, cross-sectional images are obtained by means of US, CT, or MR imaging. The authors propose a new solution to the problem of constructing a shape over a set of cross-sectional contours from two-dimensional (2D) MR data sets. The authors' method reduces the problem of constructing a shape over the cross sections to one of constructing a sequence of partial shapes, each of them connecting two cross sections lying on adjacent planes. The solution makes use of the Delaunay triangulation, which is isomorphic in that specific situation. The authors compute this Delaunay triangulation. Shape reconstruction is then achieved section by pruning Delaunay triangulations
Dimensional analysis, falling bodies, and the fine art of not solving differential equations
Bohren, Craig F.
2004-04-01
Dimensional analysis is a simple, physically transparent and intuitive method for obtaining approximate solutions to physics problems, especially in mechanics. It may-indeed sometimes should-precede or even supplant mathematical analysis. And yet dimensional analysis usually is given short shrift in physics textbooks, presented mostly as a diagnostic tool for finding errors in solutions rather than in finding solutions in the first place. Dimensional analysis is especially well suited to estimating the magnitude of errors associated with the inevitable simplifying assumptions in physics problems. For example, dimensional arguments quickly yield estimates for the errors in the simple expression 2h/g for the descent time of a body dropped from a height h on a spherical, rotating planet with an atmosphere as a consequence of ignoring the variation of the acceleration due to gravity g with height, rotation, relativity, and atmospheric drag.
Casimir effect in a d-dimensional flat spacetime and the cut-off method
International Nuclear Information System (INIS)
Svaiter, N.F.; Svaiter, B.F.
1989-01-01
The CasiMir efeect in a D-dimensional spacetime produced by a Hermitian massless scalar field in the presence of a pair of perfectly reflecting parallel flat plates is discussed. The exponential cut-off regularization method is employed. The regularized vacuum energy and the Casimir energy of this field are evaluated and a detailed analysis of the divergent terms in the regularized vacuum energy is carried out. The two-dimensional version of the Casimir effect is discussed by means of the same cut-off method. A comparison between the above method and the zeta function regularization procedure is presented in a way which gives the unification between these two methods in the present case. (author) [pt
CFD three dimensional wake analysis in complex terrain
Castellani, F.; Astolfi, D.; Terzi, L.
2017-11-01
Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.
Modeling of three-dimensional diffusible resistors with the one-dimensional tube multiplexing method
International Nuclear Information System (INIS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Meunier, Michel
2009-01-01
Electronic-behavior modeling of three-dimensional (3D) p + -π-p + and n + -ν-n + semiconducting diffusible devices with highly accurate resistances for the design of analog resistors, which are compatible with the CMOS (complementary-metal-oxide-semiconductor) technologies, is performed in three dimensions with the fast tube multiplexing method (TMM). The current–voltage (I–V) curve of a silicon device is usually computed with traditional device simulators of technology computer-aided design (TCAD) based on the finite-element method (FEM). However, for the design of 3D p + -π-p + and n + -ν-n + diffusible resistors, they show a high computational cost and convergence that may fail with fully non-separable 3D dopant concentration profiles as observed in many diffusible resistors resulting from laser trimming. These problems are avoided with the proposed TMM, which divides the 3D resistor into one-dimensional (1D) thin tubes with longitudinal axes following the main orientation of the average electrical field in the tubes. The I–V curve is rapidly obtained for a device with a realistic 3D dopant profile, since a system of three first-order ordinary differential equations has to be solved for each 1D multiplexed tube with the TMM instead of three second-order partial differential equations in the traditional TCADs. Simulations with the TMM are successfully compared to experimental results from silicon-based 3D resistors fabricated by laser-induced dopant diffusion in the gaps of MOSFETs (metal-oxide-semiconductor field-effect transistors) without initial gate. Using thin tubes with other shapes than parallelepipeds as ring segments with toroidal lateral surfaces, the TMM can be generalized to electronic devices with other types of 3D diffusible microstructures
Exact rebinning methods for three-dimensional PET.
Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D
1999-08-01
The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.
International Nuclear Information System (INIS)
Alverbro, Karin
2010-01-01
Many decision-making situations today affect humans and the environment. In practice, many such decisions are made without an overall view and prioritise one or other of the two areas. Now and then these two areas of regulation come into conflict, e.g. the best alternative as regards environmental considerations is not always the best from a human safety perspective and vice versa. This report was prepared within a major project with the aim of developing a framework in which both the environmental aspects and the human safety aspects are integrated, and decisions can be made taking both fields into consideration. The safety risks have to be analysed in order to be successfully avoided and one way of doing this is to use different kinds of risk analysis methods. There is an abundance of existing methods to choose from and new methods are constantly being developed. This report describes some of the risk analysis methods currently available for analysing safety and examines the relationships between them. The focus here is mainly on human safety aspects
Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.
Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative
High-dimensional data in economics and their (robust) analysis
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2017-01-01
Roč. 12, č. 1 (2017), s. 171-183 ISSN 1452-4864 R&D Projects: GA ČR GA17-07384S Institutional support: RVO:67985556 Keywords : econometrics * high-dimensional data * dimensionality reduction * linear regression * classification analysis * robustness Subject RIV: BA - General Mathematics OBOR OECD: Business and management http://library.utia.cas.cz/separaty/2017/SI/kalina-0474076.pdf
High-dimensional Data in Economics and their (Robust) Analysis
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2017-01-01
Roč. 12, č. 1 (2017), s. 171-183 ISSN 1452-4864 R&D Projects: GA ČR GA17-07384S Grant - others:GA ČR(CZ) GA13-01930S Institutional support: RVO:67985807 Keywords : econometrics * high-dimensional data * dimensionality reduction * linear regression * classification analysis * robustness Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is
Dimensionality of the UWES-17: An item response modelling analysis
Deon P. de Bruin; Carin Hill; Carolina M. Henn; Klaus-Peter Muller
2013-01-01
Orientation: Questionnaires, particularly the Utrecht Work Engagement Scale (UWES-17), are an almost standard method by which to measure work engagement. Conflicting evidence regarding the dimensionality of the UWES-17 has led to confusion regarding the interpretation of scores. Research purpose: The main focus of this study was to use the Rasch model to provide insight into the dimensionality of the UWES-17, and to assess whether work engagement should be interpreted as one single overall...
Comparison of two three-dimensional cephalometric analysis computer software
Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek
2014-01-01
Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...
Low dimensional equivalence of core neutronics model and its application to transient analysis
International Nuclear Information System (INIS)
Song Hongbing; Zhao Fuyu
2015-01-01
Three-dimensional coupled neutronics thermal-hydraulics reactor analysis is time consuming and occupies huge memory. A one-dimensional model is preferable than the three one in nuclear system analysis, control system design and load following. In this paper, a corewide three dimensional to one dimensional equivalent method has been developed. On the basis of this method 1D axial few groups constants were obtained. The equivalent cross sections were calculated by general spatial homogenization while the transverse buckling was computed through an equivalence based on the 3D flux conservation. Three steady test cases were performed on one dimensional finite difference code ODTAC and the results were compared with TRIVAC-5. The comparison shows that the one dimensional axial power distribution computed by ODTAC correlates well with the three dimensional results calculated by TRIVAC-5. In this study, DRAGON-4 was used to generate the few-group constants of fuel assemblies and the reflector few-group parameters were calculated by WIMS-D4. These collapsed few-group constants were tabulated in a database sorted in ascending order of fuel temperature, coolant temperature and concentration of boric acid. Trilinear interpolation was adopted in cross sections feedback during the transient analysis. In this paper, G1 rod drop accident (RDA) and G1 rod ejection accident (REA) were performed on ODTAC and the computation results were consistent of the physical rules. (author)
Three-dimensional model analysis and processing
Yu, Faxin; Luo, Hao; Wang, Pinghui
2011-01-01
This book focuses on five hot research directions in 3D model analysis and processing in computer science: compression, feature extraction, content-based retrieval, irreversible watermarking and reversible watermarking.
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.
Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments
Choi, Ji Yeh; Hwang, Heungsun; Timmerman, Marieke
Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode,
International Nuclear Information System (INIS)
Ren Dan; Ren Zhuoxiang; Qu Hui; Xu Xiaoyu
2015-01-01
Capacitance extraction is one of the key issues in integrated circuits and also a typical electrostatic problem. The dual discrete geometric method (DGM) is investigated to provide relative solutions in two-dimensional unstructured mesh space. The energy complementary characteristic and quick field energy computation thereof based on it are emphasized. Contrastive analysis between the dual finite element methods and the dual DGMs are presented both from theoretical derivation and through case studies. The DGM, taking the scalar potential as unknown on dual interlocked meshes, with simple form and good accuracy, is expected to be one of the mainstreaming methods in associated areas. (paper)
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Analysis and validation of carbohydrate three-dimensional structures
International Nuclear Information System (INIS)
Lütteke, Thomas
2009-01-01
The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures
Methodology for dimensional variation analysis of ITER integrated systems
International Nuclear Information System (INIS)
Fuentes, F. Javier; Trouvé, Vincent; Cordier, Jean-Jacques; Reich, Jens
2016-01-01
Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on
Methodology for dimensional variation analysis of ITER integrated systems
Energy Technology Data Exchange (ETDEWEB)
Fuentes, F. Javier, E-mail: FranciscoJavier.Fuentes@iter.org [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France); Trouvé, Vincent [Assystem Engineering & Operation Services, rue J-M Jacquard CS 60117, 84120 Pertuis (France); Cordier, Jean-Jacques; Reich, Jens [ITER Organization, Route de Vinon-sur-Verdon—CS 90046, 13067 St Paul-lez-Durance (France)
2016-11-01
Highlights: • Tokamak dimensional management methodology, based on 3D variation analysis, is presented. • Dimensional Variation Model implementation workflow is described. • Methodology phases are described in detail. The application of this methodology to the tolerance analysis of ITER Vacuum Vessel is presented. • Dimensional studies are a valuable tool for the assessment of Tokamak PCR (Project Change Requests), DR (Deviation Requests) and NCR (Non-Conformance Reports). - Abstract: The ITER machine consists of a large number of complex systems highly integrated, with critical functional requirements and reduced design clearances to minimize the impact in cost and performances. Tolerances and assembly accuracies in critical areas could have a serious impact in the final performances, compromising the machine assembly and plasma operation. The management of tolerances allocated to part manufacture and assembly processes, as well as the control of potential deviations and early mitigation of non-compliances with the technical requirements, is a critical activity on the project life cycle. A 3D tolerance simulation analysis of ITER Tokamak machine has been developed based on 3DCS dedicated software. This integrated dimensional variation model is representative of Tokamak manufacturing functional tolerances and assembly processes, predicting accurate values for the amount of variation on critical areas. This paper describes the detailed methodology to implement and update the Tokamak Dimensional Variation Model. The model is managed at system level. The methodology phases are illustrated by its application to the Vacuum Vessel (VV), considering the status of maturity of VV dimensional variation model. The following topics are described in this paper: • Model description and constraints. • Model implementation workflow. • Management of input and output data. • Statistical analysis and risk assessment. The management of the integration studies based on
Analysis of chaos in high-dimensional wind power system.
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping
2018-01-01
A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.
Regularized Discriminant Analysis: A Large Dimensional Study
Yang, Xiaoke
2018-04-28
In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
Two-dimensional isostatic meshes in the finite element method
Martínez Marín, Rubén; Samartín, Avelino
2002-01-01
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...
Matrix method for two-dimensional waveguide mode solution
Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee
2018-05-01
In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.
Kernel based methods for accelerated failure time model with ultra-high dimensional data
Directory of Open Access Journals (Sweden)
Jiang Feng
2010-12-01
Full Text Available Abstract Background Most genomic data have ultra-high dimensions with more than 10,000 genes (probes. Regularization methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic data. However, when the sample size n ≪ m (the number of genes, directly identifying a small subset of genes from ultra-high (m > 10, 000 dimensional data is time-consuming and not computationally efficient. In current microarray analysis, what people really do is select a couple of thousands (or hundreds of genes using univariate analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically important genes. Results The accelerated failure time (AFT model is a linear regression model and a useful alternative to the Cox model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of unknown variables (genes is much larger than the number of samples. Moreover, the primal variables are explicitly updated and the sparsity in the solution is exploited. Conclusions Our proposed methods can simultaneously identify survival associated prognostic factors and predict survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our methods with both simulation and real data. The proposed method performs superbly with limited computational studies.
Multi-Dimensional Customer Data Analysis in Online Auctions
Institute of Scientific and Technical Information of China (English)
LAO Guoling; XIONG Kuan; QIN Zheng
2007-01-01
In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction,accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example,analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.
Code Coupling for Multi-Dimensional Core Transient Analysis
International Nuclear Information System (INIS)
Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il
2015-01-01
After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident
Code Coupling for Multi-Dimensional Core Transient Analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)
2015-05-15
After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.
COMPUTER METHODS OF GENETIC ANALYSIS.
Directory of Open Access Journals (Sweden)
A. L. Osipov
2017-02-01
Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.
Wavelet analysis in two-dimensional tomography
Burkovets, Dimitry N.
2002-02-01
The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.
Can We Train Machine Learning Methods to Outperform the High-dimensional Propensity Score Algorithm?
Karim, Mohammad Ehsanul; Pang, Menglan; Platt, Robert W
2018-03-01
The use of retrospective health care claims datasets is frequently criticized for the lack of complete information on potential confounders. Utilizing patient's health status-related information from claims datasets as surrogates or proxies for mismeasured and unobserved confounders, the high-dimensional propensity score algorithm enables us to reduce bias. Using a previously published cohort study of postmyocardial infarction statin use (1998-2012), we compare the performance of the algorithm with a number of popular machine learning approaches for confounder selection in high-dimensional covariate spaces: random forest, least absolute shrinkage and selection operator, and elastic net. Our results suggest that, when the data analysis is done with epidemiologic principles in mind, machine learning methods perform as well as the high-dimensional propensity score algorithm. Using a plasmode framework that mimicked the empirical data, we also showed that a hybrid of machine learning and high-dimensional propensity score algorithms generally perform slightly better than both in terms of mean squared error, when a bias-based analysis is used.
Advanced numerical methods for three dimensional two-phase flow calculations in PWR
International Nuclear Information System (INIS)
Toumi, I.; Gallo, D.; Royer, E.
1997-01-01
This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)
Multivariate statistical analysis a high-dimensional approach
Serdobolskii, V
2000-01-01
In the last few decades the accumulation of large amounts of in formation in numerous applications. has stimtllated an increased in terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen ...
Three-dimensional discrete element method simulation of core disking
Wu, Shunchuan; Wu, Haoyan; Kemeny, John
2018-04-01
The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.
Directory of Open Access Journals (Sweden)
Farshid Mirzaee
2014-06-01
Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...
Dimensional analysis of flame angles versus wind speed
Robert E. Martin; Mark A. Finney; Domingo M. Molina; David B. Sapsis; Scott L. Stephens; Joe H. Scott; David R. Weise
1991-01-01
Dimensional analysis has potential to help explain and predict physical phenomena, but has been used very little in studies of wildland fire behavior. By combining variables into dimensionless groups, the number of variables to be handled and the experiments to be run is greatly reduced. A low velocity wind tunnel was constructed, and methyl, ethyl, and isopropyl...
Bedani, F.; Schoenmakers, P.J.; Janssen, H.-G.
2012-01-01
On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization
Method and system for manipulating a digital representation of a three-dimensional object
DEFF Research Database (Denmark)
2010-01-01
A method of manipulating a three-dimensional virtual building block model by means of two-dimensional cursor movements, the virtual building block model including a plurality of virtual building blocks each including a number of connection elements for connecting the virtual building block...... with another virtual building block according to a set of connection rules, the method comprising positioning by means of cursor movements in a computer display area representing a two-dimensional projection of said model, a two-dimensional projection of a first virtual building block to be connected...... to the structure, resulting in a two-dimensional position; determining, from the two-dimensional position, a number of three-dimensional candidate positions of the first virtual building block in the three-dimensional coordinate system; selecting one of said candidate positions based on the connection rules...
Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio
2015-12-01
This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.
On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy.
Zhao, Nanjing; Zhang, Xiaoling; Yin, Gaofang; Yang, Ruifang; Hu, Li; Chen, Shuang; Liu, Jianguo; Liu, Wenqing
2018-03-19
In view of the problem of the on-line measurement of algae classification, a method of algae classification and concentration determination based on the discrete three-dimensional fluorescence spectra was studied in this work. The discrete three-dimensional fluorescence spectra of twelve common species of algae belonging to five categories were analyzed, the discrete three-dimensional standard spectra of five categories were built, and the recognition, classification and concentration prediction of algae categories were realized by the discrete three-dimensional fluorescence spectra coupled with non-negative weighted least squares linear regression analysis. The results show that similarities between discrete three-dimensional standard spectra of different categories were reduced and the accuracies of recognition, classification and concentration prediction of the algae categories were significantly improved. By comparing with that of the chlorophyll a fluorescence excitation spectra method, the recognition accuracy rate in pure samples by discrete three-dimensional fluorescence spectra is improved 1.38%, and the recovery rate and classification accuracy in pure diatom samples 34.1% and 46.8%, respectively; the recognition accuracy rate of mixed samples by discrete-three dimensional fluorescence spectra is enhanced by 26.1%, the recovery rate of mixed samples with Chlorophyta 37.8%, and the classification accuracy of mixed samples with diatoms 54.6%.
Dimensional analysis of small-scale steam explosion experiments
International Nuclear Information System (INIS)
Huh, K.; Corradini, M.L.
1986-01-01
Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions
The Use of Statistical Methods in Dimensional Process Control
National Research Council Canada - National Science Library
Krajcsik, Stephen
1985-01-01
... erection. To achieve this high degree of unit accuracy, we have begun a pilot dimensional control program that has set the guidelines for systematically monitoring each stage of the production process prior to erection...
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
International Nuclear Information System (INIS)
Yoo, Sung Min; Kim, Yoon Young
2007-01-01
This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins
Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method
Energy Technology Data Exchange (ETDEWEB)
Haihua Zhao; Ling Zou; Hongbin Zhang
2014-01-01
The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
The analysis of one-dimensional reactor kinetics benchmark computations
International Nuclear Information System (INIS)
Sidell, J.
1975-11-01
During March 1973 the European American Committee on Reactor Physics proposed a series of simple one-dimensional reactor kinetics problems, with the intention of comparing the relative efficiencies of the numerical methods employed in various codes, which are currently in use in many national laboratories. This report reviews the contributions submitted to this benchmark exercise and attempts to assess the relative merits and drawbacks of the various theoretical and computer methods. (author)
Method for coupling two-dimensional to three-dimensional discrete ordinates calculations
International Nuclear Information System (INIS)
Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.
1985-01-01
A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code
Bellman, Richard Ernest
1970-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Directory of Open Access Journals (Sweden)
Fubiao Feng
2017-03-01
Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.
Applying Clustering to Statistical Analysis of Student Reasoning about Two-Dimensional Kinematics
Springuel, R. Padraic; Wittman, Michael C.; Thompson, John R.
2007-01-01
We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and…
DEFF Research Database (Denmark)
Cheng, Hongyuan; Friis, Alan
2010-01-01
A new phenomenological model is proposed to correlate extrudate expansion and extruder operation parameters in a twin-screw food extrusion cooking process. Buckingham's pi dimensional analysis method is applied to establish the model. Three dimensionless groups, i.e. pump efficiency, water content...
Canonical and symplectic analysis for three dimensional gravity without dynamics
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)
2017-03-15
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Multi-dimensional Code Development for Safety Analysis of LMR
International Nuclear Information System (INIS)
Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.
2006-08-01
A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150
Transport Methods Conquering the Seven-Dimensional Mountain
International Nuclear Information System (INIS)
Graziani, F; Olson, G
2003-01-01
In a wide variety of applications, a significant fraction of the momentum and energy present in a physical problem is carried by the transport of particles. Depending on the circumstances, the types of particles might involve some or all of photons, neutrinos, charged particles, or neutrons. In application areas that use transport, the computational time is usually dominated by the transport calculation. Therefore, there is a potential for great synergy; progress in transport algorithms could help quicken the time to solution for many applications. The complexity, and hence expense, involved in solving the transport problem can be understood by realizing that the general solution to the Boltzmann transport equation is seven dimensional: 3 spatial coordinates, 2 angles, 1 time, and 1 for speed or energy. Low-order approximations to the transport equation are frequently used due in part to physical justification but many times simply because a solution to the full transport problem is too computationally expensive. An example is the diffusion equation, which effectively drops the two angles in phase space by assuming that a linear representation in angle is adequate. Another approximation is the grey approximation, which drops the energy variable by averaging over it. If the grey approximation is applied to the diffusion equation, the expense of solving what amounts to the simplest possible description of transport is roughly equal to the cost of implicit computational fluid dynamics. It is clear therefore, that for those application areas needing some form of transport, fast, accurate and robust transport algorithms can lead to an increase in overall code performance and a decrease in time to solution. The seven-dimensional nature of transport means that factors of 100 or 1000 improvement in computer speed or memory are quickly absorbed in slightly higher resolution in space, angle, and energy. Therefore, the biggest advances in the last few years and in the next
A new digitized reverse correction method for hypoid gears based on a one-dimensional probe
Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo
2017-12-01
In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.
Data analysis in high-dimensional sparse spaces
DEFF Research Database (Denmark)
Clemmensen, Line Katrine Harder
classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...... are applied to classifications of fish species, ear canal impressions used in the hearing aid industry, microbiological fungi species, and various cancerous tissues and healthy tissues. In addition, novel applications of sparse regressions (also called the elastic net) to the medical, concrete, and food...
A method for three-dimensional quantitative observation of the microstructure of biological samples
Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying
2009-07-01
Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.
Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures
Energy Technology Data Exchange (ETDEWEB)
Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein
2016-12-01
In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.
TMCC: a transient three-dimensional neutron transport code by the direct simulation method - 222
International Nuclear Information System (INIS)
Shen, H.; Li, Z.; Wang, K.; Yu, G.
2010-01-01
A direct simulation method (DSM) is applied to solve the transient three-dimensional neutron transport problems. DSM is based on the Monte Carlo method, and can be considered as an application of the Monte Carlo method in the specific type of problems. In this work, the transient neutronics problem is solved by simulating the dynamic behaviors of neutrons and precursors of delayed neutrons during the transient process. DSM gets rid of various approximations which are always necessary to other methods, so it is precise and flexible in the requirement of geometric configurations, material compositions and energy spectrum. In this paper, the theory of DSM is introduced first, and the numerical results obtained with the new transient analysis code, named TMCC (Transient Monte Carlo Code), are presented. (authors)
Impact of comprehensive two-dimensional gas chromatography with mass spectrometry on food analysis.
Tranchida, Peter Q; Purcaro, Giorgia; Maimone, Mariarosa; Mondello, Luigi
2016-01-01
Comprehensive two-dimensional gas chromatography with mass spectrometry has been on the separation-science scene for about 15 years. This three-dimensional method has made a great positive impact on various fields of research, and among these that related to food analysis is certainly at the forefront. The present critical review is based on the use of comprehensive two-dimensional gas chromatography with mass spectrometry in the untargeted (general qualitative profiling and fingerprinting) and targeted analysis of food volatiles; attention is focused not only on its potential in such applications, but also on how recent advances in comprehensive two-dimensional gas chromatography with mass spectrometry will potentially be important for food analysis. Additionally, emphasis is devoted to the many instances in which straightforward gas chromatography with mass spectrometry is a sufficiently-powerful analytical tool. Finally, possible future scenarios in the comprehensive two-dimensional gas chromatography with mass spectrometry food analysis field are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional analysis of trapped-ion eigenmodes
International Nuclear Information System (INIS)
Marchand, R.; Tang, W.M.; Rewoldt, G.
1979-11-01
A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.
2009-01-01
Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016
Multivariate analysis: models and method
International Nuclear Information System (INIS)
Sanz Perucha, J.
1990-01-01
Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis
Multivariate analysis methods in physics
International Nuclear Information System (INIS)
Wolter, M.
2007-01-01
A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru
Methods in algorithmic analysis
Dobrushkin, Vladimir A
2009-01-01
…helpful to any mathematics student who wishes to acquire a background in classical probability and analysis … This is a remarkably beautiful book that would be a pleasure for a student to read, or for a teacher to make into a year's course.-Harvey Cohn, Computing Reviews, May 2010
Communication Network Analysis Methods.
Farace, Richard V.; Mabee, Timothy
This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…
Improved algorithm for three-dimensional inverse method
Qiu, Xuwen
An inverse method, which works for full 3D viscous applications in turbomachinery aerodynamic design, is developed. The method takes pressure loading and thickness distribution as inputs and computes the 3D-blade geometry. The core of the inverse method consists of two closely related steps, which are integrated into a time-marching procedure of a Navier-Stokes solver. First, the pressure loading condition is enforced while flow is allowed to cross the blade surfaces. A permeable blade boundary condition is developed here in order to be consistent with the propagation characteristics of the transient Navier-Stokes equations. In the second step, the blade geometry is adjusted so that the flow-tangency condition is satisfied for the new blade. A Non-Uniform Rational B-Spline (NURBS) model is used to represent the span-wise camber curves. The flow-tangency condition is then transformed into a general linear least squares fitting problem, which is solved by a robust Singular Value Decomposition (SVD) scheme. This blade geometry generation scheme allows the designer to have direct control over the smoothness of the calculated blade, and thus ensures the numerical stability during the iteration process. Numerical experiments show that this method is very accurate, efficient and robust. In target-shooting tests, the program was able to converge to the target blade accurately from a different initial blade. The speed of an inverse run is only about 15% slower than its analysis counterpart, which means a complete 3D viscous inverse design can be done in a matter of hours. The method is also proved to work well with the presence of clearance between the blade and the housing, a key factor to be considered in aerodynamic design. The method is first developed for blades without splitters, and is then extended to provide the capability of analyzing and designing machines with splitters. This gives designers an integrated environment where the aerodynamic design of both full
Complementing Gender Analysis Methods.
Kumar, Anant
2016-01-01
The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.
Experimental study on two-dimensional film flow with local measurement methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2015-12-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
Experimental study on two-dimensional film flow with local measurement methods
International Nuclear Information System (INIS)
Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl
2015-01-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
Energy Technology Data Exchange (ETDEWEB)
Bosevski, T [elektrotehnicki fakultet, Skopje (Yugoslavia); Kusakatov, V [Matematicki fakultet, Skopje (Yugoslavia)
1978-07-01
In this work an improvement of the methodology for analysis of time dependent one-dimensional heat exchange between a river flow and atmosphere at additional discharge of condenser heated water from thermal power plant, published at the XXI Yugoslav Conference of ETAN, is performed. In comparison with the already published methodology this work comprises the following improvements: The dispersive member along the river flow is taken into account, so that the basic second order partial differential equation is to be solved. With this improvement the mentioned methodology becomes applicable for analysis of rivers with high and low velocities. The assumption for stationarity is dropped out for at least three consequent days, in a manner that the conditions for equality of temperature and derivative at the beginning and at the end of the day is replaced with assumption that the river flow reaches minimal and maximal ambient temperature at sunrise and sunset. It is possible to conclude that the main characteristics of the developed methodology is the minimal number of hydro meteorological data are needed, that is only two temperature measurements of the water and two measurements of the wind velocity for the whole day - night time period. This conclusion is especially important when statistical analyses of data for longer past period of time are made, i.e. when it is not possible to obtain additional information. (author)
International Nuclear Information System (INIS)
Ma Songhua; Fang Jianping; Zheng Chunlong
2009-01-01
By means of an extended mapping method and a variable separation method, a series of solitary wave solutions, periodic wave solutions and variable separation solutions to the (2 + 1)-dimensional breaking soliton system is derived.
Application of Exp-function method for (2 + 1)-dimensional nonlinear evolution equations
International Nuclear Information System (INIS)
Bekir, Ahmet; Boz, Ahmet
2009-01-01
In this paper, the Exp-function method is used to construct solitary and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. (2 + 1)-dimensional breaking soliton (Calogero) equation, modified Zakharov-Kuznetsov and Konopelchenko-Dubrovsky equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations.
A Comparison of Machine Learning Methods in a High-Dimensional Classification Problem
Zekić-Sušac, Marijana; Pfeifer, Sanja; Šarlija, Nataša
2014-01-01
Background: Large-dimensional data modelling often relies on variable reduction methods in the pre-processing and in the post-processing stage. However, such a reduction usually provides less information and yields a lower accuracy of the model. Objectives: The aim of this paper is to assess the high-dimensional classification problem of recognizing entrepreneurial intentions of students by machine learning methods. Methods/Approach: Four methods were tested: artificial neural networks, CART ...
International Nuclear Information System (INIS)
Chen, G.S.; Christenson, J.M.
1985-01-01
In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program
Directory of Open Access Journals (Sweden)
Fahimeh Hamedi Rad
2010-12-01
Full Text Available Background and aims. The most common method for alginate impression disinfection is spraying it with disinfecting agents, but some studies have shown that these impressions can be immersed, too. The aim of this study was to evaluate the dimensional stability of alginate impressions following disinfecting by spray and immersion methods. Materials and methods. Four common disinfecting agents (Sodium Hypochlorite, Micro 10, Glutaraldehyde and Deconex were selected and the impressions (n=108 were divided into four groups (n=24 and eight subgroups (n=12 for disinfecting by any of the four above-mentioned agents by spray or immersion methods. The control group (n=12 was not disinfected. Then the impressions were poured by type III Dental Stone Plaster in a standard method. The results were analyzed by descriptive methods (mean and standard deviation, t-test, two-way analysis of variance (ANOVA and Duncan test, using SPSS 14.0 software for windows. Results. The mean changes of length and height were significant between the various groups and disinfecting methods. Regarding the length, the greatest and the least amounts were related to Deconex and Micro 10 in the immersion method, respectively. Regarding height, the greatest and the least amounts were related to Glutaraldehyde and Deconex in the immersion method, respectively. Conclusion. Disinfecting alginate impressions by Sodium Hypochlorite, Deconex and Glutaraldehyde by immersion method is not recommended and it is better to disinfect alginate impressions by spraying of Micro 10, Sodium Hypochlorite, Glutaraldehyde and immersion in Micro 10.
Directory of Open Access Journals (Sweden)
Sung-Hye You
2017-01-01
Full Text Available Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL, for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D and three-dimensional (3D methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.
STOCHASTIC METHODS IN RISK ANALYSIS
Directory of Open Access Journals (Sweden)
Vladimíra OSADSKÁ
2017-06-01
Full Text Available In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.
International Nuclear Information System (INIS)
Park, Jai Hak; Nikishkov, G. P.
2010-01-01
An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the above mentioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems
Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)
2000-10-01
MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)
Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis
International Nuclear Information System (INIS)
Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu
2000-01-01
MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji
2004-09-28
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Energy Technology Data Exchange (ETDEWEB)
You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Suh, Sangil; Ryoo, In Seon; Seol, Hae Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)
2017-01-15
The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.
International Nuclear Information System (INIS)
You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon; Suh, Sangil; Ryoo, In Seon; Seol, Hae Young; Lee, Young Hen; Seo, Hyung Suk
2017-01-01
The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism
Statistical mechanical analysis of (1 + ∞) dimensional disordered systems
International Nuclear Information System (INIS)
Skantzos, Nikolaos Stavrou
2001-01-01
Valuable insight into the theory of disordered systems and spin-glasses has been offered by two classes of exactly solvable models: one-dimensional models and mean-field (infinite-range) ones, which, each carry their own specific techniques and restrictions. Both classes of models are now considered as 'exactly solvable' in the sense that in the thermodynamic limit the partition sum can been carried out analytically and the average over the disorder can be performed using methods which are well understood. In this thesis I study equilibrium properties of spin systems with a combination of one-dimensional short- and infinite-range interactions. I find that such systems, under either synchronous or asynchronous spin dynamics, and even in the absence of disorder, lead to phase diagrams with first-order transitions and regions with a multiple number of locally stable states. I then proceed to the study of recurrent neural network models with (1+∞)-dimensional interactions, and find that the competing short- and long-range forces lead to highly complex phase diagrams and that unlike infinite-range (Hopfield-type) models these phase diagrams depend crucially on the number of patterns stored, even away from saturation. To solve the statics of such models for the case of synchronous dynamics I first make a detour to solve the synchronous counterpart of the one-dimensional random-field Ising model, where I prove rigorously that the physics of the two random-field models (synchronous vs. sequential) becomes asymptotically the same, leading to an extensive ground state entropy and an infinite hierarchy of discontinuous transitions close to zero temperature. Finally, I propose and solve the statics of a spin model for the prediction of secondary structure in random hetero-polymers (which are considered as the natural first step to the study of real proteins). The model lies in the class of (1+∞)-dimensional disordered systems as a consequence of having steric- and hydrogen
Comparison of two three-dimensional cephalometric analysis computer software.
Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek
2014-10-01
Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.
Development of three dimensional transient analysis code STTA for SCWR core
International Nuclear Information System (INIS)
Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping
2015-01-01
Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation
Basic methods of isotope analysis
International Nuclear Information System (INIS)
Ochkin, A.V.; Rozenkevich, M.B.
2000-01-01
The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru
International Nuclear Information System (INIS)
Witt, R.J.
1989-01-01
Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)
Pulmonary vasculature in dogs assessed by three-dimensional fractal analysis and chemometrics
DEFF Research Database (Denmark)
Müller, Anna V; Marschner, Clara B; Kristensen, Annemarie T
2017-01-01
Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary...... angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs. A total of 34 dogs were sampled. Based on computed...... for each dog using a semiautomated segmentation technique. Vascular three-dimensional reconstructions were then evaluated using fractal analysis. Fractal dimensions were analyzed, by group, using analysis of variance and principal component analysis. Fractal dimensions were significantly different among...
One-dimensional calculation of flow branching using the method of characteristics
International Nuclear Information System (INIS)
Meier, R.W.; Gido, R.G.
1978-05-01
In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements
One-dimensional treatment of polyatomic crystals by the Laplace transform method
International Nuclear Information System (INIS)
Rosato, A.; Santana, P.H.A.
1976-01-01
The one dimensional periodic potential problem is solved using the Laplace transform method and a condensed expression for the relation E x k and effective mass for one electron in a polyatomic structure is determined. Applications related to the effect of the asymmetry of the potential upon the one dimensional band structure are discussed [pt
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
Energy Technology Data Exchange (ETDEWEB)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn [School of Information Science and Technology, ShanghaiTech University, Shanghai 200031 (China); Lin, Guang, E-mail: guanglin@purdue.edu [Department of Mathematics & School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
Energy Technology Data Exchange (ETDEWEB)
Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Boushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Farid, M. [Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Zahedinejad, P. [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)
2008-07-15
A mixed layerwise theory and differential quadrature (DQ) method (LW-DQ) for three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells is introduced. Using the layerwise theory in conjunction with the three-dimensional form of Hamilton's principle, the transversely discretized equations of motion and the related boundary conditions are obtained. Then, the DQ method is employed to discretize the resulting equations in the axial directions. The fast convergence behavior of the method is demonstrated and its accuracy is verified by comparing the results with those of other shell theories obtained using conventional methods and also with those of ANSYS software. In the case of arbitrary laminated shells with simply supported ends, the exact solution is developed for comparison purposes. It is shown that using few DQ grid points, converged accurate solutions are obtained. Less computational efforts of the proposed approach with respect to ANSYS software is shown.
Tag gas burnup based on three-dimensional FTR analysis
International Nuclear Information System (INIS)
Kidman, R.B.
1976-01-01
Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified
A Galleria Boundary Element Method for two-dimensional nonlinear magnetostatics
Brovont, Aaron D.
The Boundary Element Method (BEM) is a numerical technique for solving partial differential equations that is used broadly among the engineering disciplines. The main advantage of this method is that one needs only to mesh the boundary of a solution domain. A key drawback is the myriad of integrals that must be evaluated to populate the full system matrix. To this day these integrals have been evaluated using numerical quadrature. In this research, a Galerkin formulation of the BEM is derived and implemented to solve two-dimensional magnetostatic problems with a focus on accurate, rapid computation. To this end, exact, closed-form solutions have been derived for all the integrals comprising the system matrix as well as those required to compute fields in post-processing; the need for numerical integration has been eliminated. It is shown that calculation of the system matrix elements using analytical solutions is 15-20 times faster than with numerical integration of similar accuracy. Furthermore, through the example analysis of a c-core inductor, it is demonstrated that the present BEM formulation is a competitive alternative to the Finite Element Method (FEM) for linear magnetostatic analysis. Finally, the BEM formulation is extended to analyze nonlinear magnetostatic problems via the Dual Reciprocity Method (DRBEM). It is shown that a coarse, meshless analysis using the DRBEM is able to achieve RMS error of 3-6% compared to a commercial FEM package in lightly saturated conditions.
Numerical method for three dimensional steady-state two-phase flow calculations
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.
1992-01-01
This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers
Energy method for multi-dimensional balance laws with non-local dissipation
Duan, Renjun
2010-06-01
In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.
Energy method for multi-dimensional balance laws with non-local dissipation
Duan, Renjun; Fellner, Klemens; Zhu, Changjiang
2010-01-01
In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.
Directory of Open Access Journals (Sweden)
S. Dong
2018-04-01
Full Text Available In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.
Dong, S.; Yan, Q.; Xu, Y.; Bai, J.
2018-04-01
In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
宮西, 智久; Tomohisa, Miyanishi; 仙台大学; Sendai College
1998-01-01
In sports biomechanics, joint torque analysis play a very important role. For this reason, if we understand the joint torque during sports activity, it will be useful for the diagnosis and/or evaluation of sports technique, the specific method for muscle training and the mechanisms of sports movement. In the past decade, many studies which dealt with the motion analysis for sports activity using a three-dimensional cinematography, have been done. However, most of these studies has been focuse...
Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014
Bühlmann, Peter; Glad, Ingrid; Langaas, Mette; Richardson, Sylvia; Vannucci, Marina
2016-01-01
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on...
Numerical methods and analysis of multiscale problems
Madureira, Alexandre L
2017-01-01
This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.
International Nuclear Information System (INIS)
Tanaka, Hirofumi
1999-01-01
A new numerical analysis method capable of precise modeling of complex three dimensional magnetic field of superconducting wiggler and of long-term beam simulation without destroying property of Hamiltonian dynamics system was developed by using the above-mentioned method. Therefore, a fundamental design of a compact synchrotron radiation equipment with hexagonal column shape was also developed. Its main parameters had 1 GeV in energy, 36 m in circumference, 300 mA in stored current, and 184 nmrad in emittance. So as to enable to research the x-ray and vacuum UV regions, a superconducting wiggler with 7T in magnetic field strength and an undulator were set at straight section. It depends upon if beam around stable region on exciting the superconducting wiggler is wider than the required region whether this type of synchrotron radiation equipment can be realized or not. By using three orbit analysis methods containing the developed one, the circulating stable region was introduced. As a result, although shape of the stable region was different from used methods, it was found that considerably larger stable region was obtained than the required in circulation results of every three methods. That is to say, it was shown that the designed compact equipment can accumulate electron beams stably. (G.K.)
METHOD FOR OPTIMAL RESOLUTION OF MULTI-AIRCRAFT CONFLICTS IN THREE-DIMENSIONAL SPACE
Directory of Open Access Journals (Sweden)
Denys Vasyliev
2017-03-01
Full Text Available Purpose: The risk of critical proximities of several aircraft and appearance of multi-aircraft conflicts increases under current conditions of high dynamics and density of air traffic. The actual problem is a development of methods for optimal multi-aircraft conflicts resolution that should provide the synthesis of conflict-free trajectories in three-dimensional space. Methods: The method for optimal resolution of multi-aircraft conflicts using heading, speed and altitude change maneuvers has been developed. Optimality criteria are flight regularity, flight economy and the complexity of maneuvering. Method provides the sequential synthesis of the Pareto-optimal set of combinations of conflict-free flight trajectories using multi-objective dynamic programming and selection of optimal combination using the convolution of optimality criteria. Within described method the following are defined: the procedure for determination of combinations of aircraft conflict-free states that define the combinations of Pareto-optimal trajectories; the limitations on discretization of conflict resolution process for ensuring the absence of unobservable separation violations. Results: The analysis of the proposed method is performed using computer simulation which results show that synthesized combination of conflict-free trajectories ensures the multi-aircraft conflict avoidance and complies with defined optimality criteria. Discussion: Proposed method can be used for development of new automated air traffic control systems, airborne collision avoidance systems, intelligent air traffic control simulators and for research activities.
Effective method for construction of low-dimensional models for heat transfer process
Energy Technology Data Exchange (ETDEWEB)
Blinov, D.G.; Prokopov, V.G.; Sherenkovskii, Y.V.; Fialko, N.M.; Yurchuk, V.L. [National Academy of Sciences of Ukraine, Kiev (Ukraine). Inst. of Engineering Thermophysics
2004-12-01
A low-dimensional model based on the method of proper orthogonal decomposition (POD) and the method of polyargumental systems (MPS) for thermal conductivity problems with strongly localized source of heat has been presented. The key aspect of these methods is that they enable to avoid weak points of other projection methods, which consists in a priori choice of basis functions. It enables us to use the MPS method and the POD method as convenient means to construct low-dimensional models of heat and mass transfer problems. (Author)
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Three-Dimensional Compound Comparison Methods and Their Application in Drug Discovery
Directory of Open Access Journals (Sweden)
Woong-Hee Shin
2015-07-01
Full Text Available Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D, two-dimensional (2D, and three-dimensional (3D. Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Rezaei, M. P.; Zamanian, M.
2017-01-01
In this paper, the influences of nonideal boundary conditions (due to flexibility) on the primary resonant behavior of a piezoelectrically actuated microbeam have been studied, for the first time. The structure has been assumed to treat as an Euler-Bernoulli beam, considering the effects of geometric nonlinearity. In this work, the general nonideal supports have been modeled as a the combination of horizontal, vertical and rotational springs, simultaneously. Allocating particular values to the stiffness of these springs provides the mathematical models for the majority of boundary conditions. This consideration leads to use a two-dimensional analysis of the multiple scales method instead of previous works' method (one-dimensional analysis). If one neglects the nonideal effects, then this paper would be an effort to solve the two-dimensional equations of motion without a need of a combination of these equations using the shortening or stretching effect. Letting the nonideal effects equal to zero and comparing their results with the results of previous approaches have been demonstrated the accuracy of the two-dimensional solutions. The results have been identified the unique effects of constraining and stiffening of boundaries in horizontal, vertical and rotational directions. This means that it is inaccurate to suppose the nonideality of supports only in one or two of these directions like as previous works. The findings are of vital importance as a better prediction of the frequency response for the nonideal supports. Furthermore, the main findings of this effort can help to choose appropriate boundary conditions for desired systems.
Probabilistic methods for rotordynamics analysis
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.
Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S
2014-11-01
Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Huddleston, J.; Hutchinson, I.G.; Pierce, T.B.
1983-01-01
Nuclear methods of surface analysis are discussed briefly, and the circumstances are described in which a two-dimensional analysis of the sample surface is desirable to enable the surface composition to be mapped accurately. Tomographic techniques of data manipulation are outlined. Data acquisition in the present case is performed by moving the sample in a defined sequence of positions, at each of which analytical data are gathered by the proton microprobe. The method and equipment are outlined. Data processing leading to the reconstruction of the image is summarised. (U.K.)
International Nuclear Information System (INIS)
Rubel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G.R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keranen, Soile V.E.; Knowles, David W.; Hendriks, Chris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng
2010-01-01
Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies 'such as efficient data management' supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.
Applying clustering to statistical analysis of student reasoning about two-dimensional kinematics
Directory of Open Access Journals (Sweden)
R. Padraic Springuel
2007-12-01
Full Text Available We use clustering, an analysis method not presently common to the physics education research community, to group and characterize student responses to written questions about two-dimensional kinematics. Previously, clustering has been used to analyze multiple-choice data; we analyze free-response data that includes both sketches of vectors and written elements. The primary goal of this paper is to describe the methodology itself; we include a brief overview of relevant results.
Analysis of Precision of Activation Analysis Method
DEFF Research Database (Denmark)
Heydorn, Kaj; Nørgaard, K.
1973-01-01
The precision of an activation-analysis method prescribes the estimation of the precision of a single analytical result. The adequacy of these estimates to account for the observed variation between duplicate results from the analysis of different samples and materials, is tested by the statistic T...
Analysis apparatus and method of analysis
International Nuclear Information System (INIS)
1976-01-01
A continuous streaming method developed for the excution of immunoassays is described in this patent. In addition, a suitable apparatus for the method was developed whereby magnetic particles are automatically employed for the consecutive analysis of a series of liquid samples via the RIA technique
A computational method for the solution of one-dimensional ...
Indian Academy of Sciences (India)
embedding parameter p ∈ [0, 1], which is considered as a 'small parameter'. Consid- erable research work has recently been conducted in applying this method to a class of linear and nonlinear equations. This method was further developed and improved by He, and applied to nonlinear oscillators with discontinuities [1], ...
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Chemical methods of rock analysis
National Research Council Canada - National Science Library
Jeffery, P. G; Hutchison, D
1981-01-01
A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...
Three dimensional iterative beam propagation method for optical waveguide devices
Ma, Changbao; Van Keuren, Edward
2006-10-01
The finite difference beam propagation method (FD-BPM) is an effective model for simulating a wide range of optical waveguide structures. The classical FD-BPMs are based on the Crank-Nicholson scheme, and in tridiagonal form can be solved using the Thomas method. We present a different type of algorithm for 3-D structures. In this algorithm, the wave equation is formulated into a large sparse matrix equation which can be solved using iterative methods. The simulation window shifting scheme and threshold technique introduced in our earlier work are utilized to overcome the convergence problem of iterative methods for large sparse matrix equation and wide-angle simulations. This method enables us to develop higher-order 3-D wide-angle (WA-) BPMs based on Pade approximant operators and the multistep method, which are commonly used in WA-BPMs for 2-D structures. Simulations using the new methods will be compared to the analytical results to assure its effectiveness and applicability.
Two-dimensional disruption thermal analysis code DREAM
International Nuclear Information System (INIS)
Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.
1988-08-01
When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)
Methods and devices for fabricating three-dimensional nanoscale structures
Rogers, John A.; Jeon, Seokwoo; Park, Jangung
2010-04-27
The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
Dimensionality of the UWES-17: An item response modelling analysis
Directory of Open Access Journals (Sweden)
Deon P. de Bruin
2013-10-01
Research purpose: The main focus of this study was to use the Rasch model to provide insight into the dimensionality of the UWES-17, and to assess whether work engagement should be interpreted as one single overall score, three separate scores, or a combination. Motivation for the study: It is unclear whether a summative score is more representative of work engagement or whether scores are more meaningful when interpreted for each dimension separately. Previous work relied on confirmatory factor analysis; the potential of item response models has not been tapped. Research design: A quantitative cross-sectional survey design approach was used. Participants, 2429 employees of a South African Information and Communication Technology (ICT company, completed the UWES-17. Main findings: Findings indicate that work engagement should be treated as a unidimensional construct: individual scores should be interpreted in a summative manner, giving a single global score. Practical/managerial implications: Users of the UWES-17 may interpret a single, summative score for work engagement. Findings of this study should also contribute towards standardising UWES-17 scores, allowing meaningful comparisons to be made. Contribution/value-add: The findings will benefit researchers, organisational consultants and managers. Clarity on dimensionality and interpretation of work engagement will assist researchers in future studies. Managers and consultants will be able to make better-informed decisions when using work engagement data.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.
Stability analysis of lower dimensional gravastars in noncommutative geometry
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2016-11-15
The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)
Classification Methods for High-Dimensional Genetic Data
Czech Academy of Sciences Publication Activity Database
Kalina, Jan
2014-01-01
Roč. 34, č. 1 (2014), s. 10-18 ISSN 0208-5216 Institutional support: RVO:67985807 Keywords : multivariate statistics * classification analysis * shrinkage estimation * dimension reduction * data mining Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.646, year: 2014
Directory of Open Access Journals (Sweden)
Haiwen Li
2018-01-01
Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
International Nuclear Information System (INIS)
Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo
2015-01-01
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
Energy Technology Data Exchange (ETDEWEB)
Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)
2015-02-15
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
Three-dimensional analysis of nonlinear plasma oscillation
International Nuclear Information System (INIS)
Miano, G.
1990-01-01
In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)
Seismic design and analysis methods
International Nuclear Information System (INIS)
Varpasuo, P.
1993-01-01
Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)
International Nuclear Information System (INIS)
Shtromberger, N.L.
1989-01-01
To design a cyclotron magnetic system the legitimacy of two-dimensional approximations application is discussed. In all the calculations the finite difference method is used, and the linearization method with further use of the gradient conjugation method is used to solve the set of finite-difference equations. 3 refs.; 5 figs
TreePM Method for Two-Dimensional Cosmological Simulations ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
We discuss the integration of the equations of motion that we use in the 2d TreePM code in section 7. .... spaced values of r in order to keep interpolation errors in control. .... hence we cannot use the usual leap-frog method. We recast the ...
Novel Method of Detecting Movement of the Interference Fringes Using One-Dimensional PSD
Directory of Open Access Journals (Sweden)
Qi Wang
2015-06-01
Full Text Available In this paper, a method of using a one-dimensional position-sensitive detector (PSD by replacing charge-coupled device (CCD to measure the movement of the interference fringes is presented first, and its feasibility is demonstrated through an experimental setup based on the principle of centroid detection. Firstly, the centroid position of the interference fringes in a fiber Mach-Zehnder (M-Z interferometer is solved in theory, showing it has a higher resolution and sensitivity. According to the physical characteristics and principles of PSD, a simulation of the interference fringe’s phase difference in fiber M-Z interferometers and PSD output is carried out. Comparing the simulation results with the relationship between phase differences and centroid positions in fiber M-Z interferometers, the conclusion that the output of interference fringes by PSD is still the centroid position is obtained. Based on massive measurements, the best resolution of the system is achieved with 5.15, 625 μm. Finally, the detection system is evaluated through setup error analysis and an ultra-narrow-band filter structure. The filter structure is configured with a one-dimensional photonic crystal containing positive and negative refraction material, which can eliminate background light in the PSD detection experiment. This detection system has a simple structure, good stability, high precision and easily performs remote measurements, which makes it potentially useful in material small deformation tests, refractivity measurements of optical media and optical wave front detection.
Directory of Open Access Journals (Sweden)
Neng Wan
2014-01-01
Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.
Extended forward sensitivity analysis of one-dimensional isothermal flow
International Nuclear Information System (INIS)
Johnson, M.; Zhao, H.
2013-01-01
Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)
A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry
International Nuclear Information System (INIS)
Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan
1988-01-01
The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory
Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method
Directory of Open Access Journals (Sweden)
Hassan A. Zedan
2012-01-01
Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.
A novel four-dimensional analytical approach for analysis of complex samples.
Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J
2016-05-01
A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation.
Chen, C-C; Lin, C-C; Chen, Y-J; Hong, S-W; Lu, T-W
2013-01-01
Objectives Accurate measurement of the three-dimensional (3D) motion of the mandible in vivo is essential for relevant clinical applications. Existing techniques are either of limited accuracy or require the use of transoral devices that interfere with jaw movements. This study aimed to develop further an existing method for measuring 3D, in vivo mandibular kinematics using single-plane fluoroscopy; to determine the accuracy of the method; and to demonstrate its clinical applicability via measurements on a healthy subject during opening/closing and chewing movements. Methods The proposed method was based on the registration of single-plane fluoroscopy images and 3D low-radiation cone beam CT data. It was validated using roentgen single-plane photogrammetric analysis at static positions and during opening/closing and chewing movements. Results The method was found to have measurement errors of 0.1 ± 0.9 mm for all translations and 0.2° ± 0.6° for all rotations in static conditions, and of 1.0 ± 1.4 mm for all translations and 0.2° ± 0.7° for all rotations in dynamic conditions. Conclusions The proposed method is considered an accurate method for quantifying the 3D mandibular motion in vivo. Without relying on transoral devices, the method has advantages over existing methods, especially in the assessment of patients with missing or unstable teeth, making it useful for the research and clinical assessment of the temporomandibular joint and chewing function. PMID:22842637
Two-dimensional DFA scaling analysis applied to encrypted images
Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.
2015-01-01
The technique of detrended fluctuation analysis (DFA) has been widely used to unveil scaling properties of many different signals. In this paper, we determine scaling properties in the encrypted images by means of a two-dimensional DFA approach. To carry out the image encryption, we use an enhanced cryptosystem based on a rule-90 cellular automaton and we compare the results obtained with its unmodified version and the encryption system AES. The numerical results show that the encrypted images present a persistent behavior which is close to that of the 1/f-noise. These results point to the possibility that the DFA scaling exponent can be used to measure the quality of the encrypted image content.
High-dimensional cluster analysis with the Masked EM Algorithm
Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.
2014-01-01
Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694
[Dimensional analysis of the concept of biosafety due to bioterrorism].
Bernard, Laurence; Shaha, Maya
2014-03-01
In recent years with the strengthening of the discourse surrounding the biological risk of bioterrorist nature, the concept of biosafety emerged gradually. A dimensional analysis was used to contextualize the concept. Initially, biosafety was essentially a technical term related to the risks of contamination in laboratories or food industry and then be used to protect biodiversity against the spread of genetically modified organisms (GMOs) into the environment. Now, it is increasingly used in reference to the prevention and infections control, even though its use remains marginal. However, biosecurity may be defined as the security of life and therefore affect the safety devices participating in the government of bodies and power over life. A more critical approach including social and political dimensions within a Foucauldian perspective is needed to expand the scope of the biosecurity concept up to biological hazards constructs.
Multifractal analysis of three-dimensional histogram from color images
International Nuclear Information System (INIS)
Chauveau, Julien; Rousseau, David; Richard, Paul; Chapeau-Blondeau, Francois
2010-01-01
Natural images, especially color or multicomponent images, are complex information-carrying signals. To contribute to the characterization of this complexity, we investigate the possibility of multiscale organization in the colorimetric structure of natural images. This is realized by means of a multifractal analysis applied to the three-dimensional histogram from natural color images. The observed behaviors are confronted to those of reference models with known multifractal properties. We use for this purpose synthetic random images with trivial monofractal behavior, and multidimensional multiplicative cascades known for their actual multifractal behavior. The behaviors observed on natural images exhibit similarities with those of the multifractal multiplicative cascades and display the signature of elaborate multiscale organizations stemming from the histograms of natural color images. This type of characterization of colorimetric properties can be helpful to various tasks of digital image processing, as for instance modeling, classification, indexing.
International Nuclear Information System (INIS)
Diaz Sanchidrian, C.
1989-01-01
The present paper applies dimensional analysis with spatial discrimination to transform the differential equations in partial derivatives developed in the theory of heat transmission into ordinary ones. The effectivity of the method is comparable to that methods based in transformations of uni or multiparametric groups, with the advantage of being more direct and simple. (Author)
Automated three-dimensional X-ray analysis using a dual-beam FIB
International Nuclear Information System (INIS)
Schaffer, Miroslava; Wagner, Julian; Schaffer, Bernhard; Schmied, Mario; Mulders, Hans
2007-01-01
We present a fully automated method for three-dimensional (3D) elemental analysis demonstrated using a ceramic sample of chemistry (Ca)MgTiO x . The specimen is serially sectioned by a focused ion beam (FIB) microscope, and energy-dispersive X-ray spectrometry (EDXS) is used for elemental analysis of each cross-section created. A 3D elemental model is reconstructed from the stack of two-dimensional (2D) data. This work concentrates on issues arising from process automation, the large sample volume of approximately 17x17x10 μm 3 , and the insulating nature of the specimen. A new routine for post-acquisition data correction of different drift effects is demonstrated. Furthermore, it is shown that EDXS data may be erroneous for specimens containing voids, and that back-scattered electron images have to be used to correct for these errors
Three dimensional analysis of cosmic ray intensity variation
International Nuclear Information System (INIS)
Yasue, Shin-ichi; Mori, Satoru; Nagashima, Kazuo.
1974-01-01
Three dimensional analysis of cosmic ray anisotropy and its time variation was performed. This paper describes the analysis of the Forbush decrease in Jan. 1968 to investigate by comparing the direction of the magnetic field in interplanetary space and the direction of the reference axis for cosmic ray anisotropy. New anisotropy becomes dominant at the time of Forbush decrease because the anisotropy of cosmic ray in calm state is wiped out. Such anisotropy produces intensity variation in neutron monitors on the ground. The characteristic parameters of three dimensional anisotropy can be determined from theoretical value and observed intensity. Analyzed data were taken for 6 days from Jan. 25 to Jan. 30, 1968, at Deep River. The decrease of intensity at Deep River was seen for several hours from 11 o'clock (UT), Jan. 26, just before The Forbush decrease. This may be due to the loss cone. The Forbush decrease began at 19 o'clock, Jan. 26, and the main phase continued to 5 o'clock in the next morning. The spectrum of variation was Psup(-0.5). The time variations of the magnetic field in interplanetary space and the reference axis of cosmic ray anisotropy are shown for 15 hours. The average directions of both are almost in coincidence. The spatial distribution of cosmic ray near the earth may be expressed by the superposition of axial symmetrical distribution along a reference axis and its push-out to the direction of 12 o'clock. It is considered that the direction of magnetic force line and the velocity of solar wind correspond to the direction of the reference axis and the magnitude of anisotropy in the direction of 12 o'clock, respectively. (Kato, T.)
Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates
Energy Technology Data Exchange (ETDEWEB)
Haghighi, M.R. Golbahar; Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario (Canada)
2009-03-15
In this paper, a three-dimensional transient inverse heat conduction (IHC) procedure is presented to estimate the unknown boundary heat flux of thick functionally graded (FG) plates. For this purpose, the conjugate gradient method (CGM) in conjunction with adjoint problem is used. A recently developed three-dimensional efficient hybrid method is employed to solve variable-coefficient initial-boundary-value differential equations of direct problem as a part of the inverse solution. The accuracy of the inverse analysis is examined by simulating the exact and noisy data for problems with different types of boundary conditions and material properties. In addition to rectangular domain, skew plates are considered. The results obtained show good accuracy for the estimation of boundary heat fluxes. (author)
Seismic response of three-dimensional rockfill dams using the Indirect Boundary Element Method
International Nuclear Information System (INIS)
Sanchez-Sesma, Francisco J; Arellano-Guzman, Mauricio; Perez-Gavilan, Juan J; Suarez, Martha; Marengo-Mogollon, Humberto; Chaillat, Stephanie; Jaramillo, Juan Diego; Gomez, Juan; Iturraran-Viveros, Ursula; Rodriguez-Castellanos, Alejandro
2010-01-01
The Indirect Boundary Element Method (IBEM) is used to compute the seismic response of a three-dimensional rockfill dam model. The IBEM is based on a single layer integral representation of elastic fields in terms of the full-space Green function, or fundamental solution of the equations of dynamic elasticity, and the associated force densities along the boundaries. The method has been applied to simulate the ground motion in several configurations of surface geology. Moreover, the IBEM has been used as benchmark to test other procedures. We compute the seismic response of a three-dimensional rockfill dam model placed within a canyon that constitutes an irregularity on the surface of an elastic half-space. The rockfill is also assumed elastic with hysteretic damping to account for energy dissipation. Various types of incident waves are considered to analyze the physical characteristics of the response: symmetries, amplifications, impulse response and the like. Computations are performed in the frequency domain and lead to time response using Fourier analysis. In the present implementation a symmetrical model is used to test symmetries. The boundaries of each region are discretized into boundary elements whose size depends on the shortest wavelength, typically, six boundary segments per wavelength. Usually, the seismic response of rockfill dams is simulated using either finite elements (FEM) or finite differences (FDM). In most applications, commercial tools that combine features of these methods are used to assess the seismic response of the system for a given motion at the base of model. However, in order to consider realistic excitation of seismic waves with different incidence angles and azimuth we explore the IBEM.
Three-dimensional space-charge calculation method
International Nuclear Information System (INIS)
Lysenko, W.P.; Wadlinger, E.A.
1980-09-01
A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition
Two- and three-dimensional CT analysis of ankle fractures
International Nuclear Information System (INIS)
Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.
1988-01-01
CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem
A Diminution Method of Large Multi-dimensional Data Retrievals
Directory of Open Access Journals (Sweden)
Nushwan Yousif Baithoon
2010-01-01
Full Text Available The intention of this work is to introduce a method ofcompressing data at the transmitter (source and expanding it atthe receiver (destination.The amount of data compression is directly related to datadimensionality, hence, for example an N by N RGB image file isconsidered to be an M-D, with M=3, image data file.Also, the amount of scatter in an M-D file, hence, the covariancematrix is calculated, along with the average value of eachdimension, to represent the signature or code for each individualdata set to be sent by the source.At the destination random sets can test a particular receivedsignature so that only one set is acceptable thus giving thecorresponding intended set to be received.Sound results are obtained depending on the constrains beingimplemented. These constrains are user tolerant in so far as howwell tuned or rapid the information is to be processed for dataretrieval.The proposed method is well suited in application areas whereboth source and destination are communicating using the samesets of data files at each end. Also such a technique is feasible forthe availability of fast microprocessors and frame-grabbers.
Ray, S. Saha
2018-04-01
In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.
Method and apparatus for two-dimensional spectroscopy
DeCamp, Matthew F.; Tokmakoff, Andrei
2010-10-12
Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.
Energy Technology Data Exchange (ETDEWEB)
Sato, T; Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-05-27
Discussed in this report is a wavefield simulation in the 3-dimensional seismic survey. With the level of the object of exploration growing deeper and the object more complicated in structure, the survey method is now turning 3-dimensional. There are several modelling methods for numerical calculation of 3-dimensional wavefields, such as the difference method, pseudospectral method, and the like, all of which demand an exorbitantly large memory and long calculation time, and are costly. Such methods have of late become feasible, however, thanks to the advent of the parallel computer. As compared with the difference method, the pseudospectral method requires a smaller computer memory and shorter computation time, and is more flexible in accepting models. It outputs the result in fullwave just like the difference method, and does not cause wavefield numerical variance. As the computation platform, the parallel computer nCUBE-2S is used. The object domain is divided into the number of the processors, and each of the processors takes care only of its share so that parallel computation as a whole may realize a very high-speed computation. By the use of the pseudospectral method, a 3-dimensional simulation is completed within a tolerable computation time length. 7 refs., 3 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Park, Kyung Bae; Chung, Jae Hun; Hwang, Gwang Seok; Jung, Eui Han; Kwon, Oh Myoung [Korea University, Seoul (Korea, Republic of)
2014-12-15
We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.
A finite-dimensional reduction method for slightly supercritical elliptic problems
Directory of Open Access Journals (Sweden)
Riccardo Molle
2004-01-01
Full Text Available We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reduction can be obtained applying the methods already developed in the subcritical case; finally, we show that, if the truncation is realized at a sufficiently large level, then the solutions of the approximating problems, given by these methods, also solve the supercritical problems when the parameter is small enough.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)
2004-10-15
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
International Nuclear Information System (INIS)
Yoon, Hyun Jin; Kim, Dong Il
2004-01-01
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
Comparing 3-dimensional virtual methods for reconstruction in craniomaxillofacial surgery.
Benazzi, Stefano; Senck, Sascha
2011-04-01
In the present project, the virtual reconstruction of digital osteomized zygomatic bones was simulated using different methods. A total of 15 skulls were scanned using computed tomography, and a virtual osteotomy of the left zygomatic bone was performed. Next, virtual reconstructions of the missing part using mirror imaging (with and without best fit registration) and thin plate spline interpolation functions were compared with the original left zygomatic bone. In general, reconstructions using thin plate spline warping showed better results than the mirroring approaches. Nevertheless, when dealing with skulls characterized by a low degree of asymmetry, mirror imaging and subsequent registration can be considered a valid and easy solution for zygomatic bone reconstruction. The mirroring tool is one of the possible alternatives in reconstruction, but it might not always be the optimal solution (ie, when the hemifaces are asymmetrical). In the present pilot study, we have verified that best fit registration of the mirrored unaffected hemiface and thin plate spline warping achieved better results in terms of fitting accuracy, overcoming the evident limits of the mirroring approach. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method
Energy Technology Data Exchange (ETDEWEB)
Li, Xin, E-mail: lixin@fuji.waseda.jp; Yamaji, Akifumi
2017-04-01
Highlights: • 3-D simulation of a MCCI test was presented with improved moving particle method. • The influence of thermally stable silica aggregates on MCCI has been investigated. • The mechanisms for isotropic/anisotropic ablation have been clarified mechanistically. - Abstract: In two-dimensional (2-D) molten corium-concrete interaction (MCCI) experiments with prototypic corium and siliceous concrete, the more pronounced lateral concrete erosion behavior than that in the axial direction, namely anisotropic ablation, has been a research interest. However, the knowledge of the mechanism on this anisotropic ablation behavior, which is important for severe accident analysis and management, is still limited. In this paper, 3-D simulation of 2-D MCCI experiment VULCANO VB-U7 has been carried out with improved Moving Particle Semi-implicit (MPS) method. Heat conduction, phase change, and corium viscosity models have been developed and incorporated into MPS code MPS-SW-MAIN-Ver.2.0 for current study. The influence of thermally stable silica aggregates has been investigated by setting up different simulation cases for analysis. The simulation results suggested reasonable models and assumptions to be considered in order to achieve best estimation of MCCI with prototypic oxidic corium and siliceous concrete. The simulation results also indicated that silica aggregates can contribute to anisotropic ablation. The mechanisms for anisotropic ablation pattern in siliceous concrete as well as isotropic ablation pattern in limestone-rich concrete have been clarified from a mechanistic perspective.
International Nuclear Information System (INIS)
Shestakov, A.I.; Mirin, A.A.
1984-01-01
A numerical method based on Fourier expansions and finite differences is presented. The method is demonstrated by solving a scalar, three-dimensional elliptic equation arising in MFE research, but has applicability to a wider class of problems. The scheme solves equations whose solutions are expected to be periodic in one or more of the independent variables
Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.
1975-01-01
Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which
Buisman, Wijnand J; van Herwaarden-Lindeboom, MYA; Mauritz, Femke A; El Ouamari, Mourad; Hausken, Trygve; Olafsdottir, Edda J; van der Zee, David C; Gilja, Odd Helge
OBJECTIVES: A novel automated 3-dimensional (3D) sonographic method has been developed for measuring gastric volumes. This study aimed to validate and assess the reliability of this novel 3D sonographic method compared to the reference standard in 3D gastric sonography: freehand magneto-based 3D
A finite element method for calculating the 3-dimensional magnetic fields of cyclotron
International Nuclear Information System (INIS)
Zhao Xiaofeng
1986-01-01
A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given
Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
Abuasad, Salah; Hashim, Ishak
2018-04-01
In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.
CubeAid - an interactive method of quickly analyzing 3-dimensional gamma-ray data sets
Energy Technology Data Exchange (ETDEWEB)
Kuehner, J A; Waddington, J C; Prevost, D [McMaster Univ., Hamilton, ON (Canada)
1992-08-01
With the advent of highly efficient gamma detector arrays capable of producing significant 4- and 5-fold data, a new challenge will be to develop appropriate data analysis techniques. One method may be to exploit the relatively fast analysis possible using three-dimensional (3D) analysis of sorted higher-fold data, as can be done using CubeAid software running on a personal computer (PC). This paper describes some of the capabilities of CubeAid. The main idea is to construct and use a 3D array (a cube) of triple data of dimensions suitable to the capability of a PC using VGA mode or higher. So far (as of the time of the conference), the authors had used a cube of edge size 640, and typically 2 or 3 keV per channel. In order to make data extraction fast, and to reduce disk space, a symmetrized 1/2 cube was used, the depth dimension having been compressed. In making this cube, sorting was first done into a symmetrized 1/6 cube from tape to a VAX hard disk. 2 figs.
Multi dimensional analysis of Design Basis Events using MARS-LMR
International Nuclear Information System (INIS)
Woo, Seung Min; Chang, Soon Heung
2012-01-01
Highlights: ► The one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions. ► The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. ► The difference of the sodium flow pattern due to structure effect in the hot pool and mass flow rates in the core lead the different sodium temperature and temperature history under transient condition. - Abstract: KALIMER-600 (Korea Advanced Liquid Metal Reactor), which is a pool type SFR (Sodium-cooled Fast Reactor), was developed by KAERI (Korea Atomic Energy Research Institute). DBE (Design Basis Events) for KALIMER-600 has been analyzed in the one dimension. In this study, the one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions, such as UIS (Upper Internal Structure), IHX (Intermediate Heat eXchanger), DHX (Decay Heat eXchanger), and pump. The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. First, the results in normal operation condition show the good agreement between the one and multi-dimensional analysis. However, according to the sodium temperatures of the core inlet, outlet, the fuel central line, cladding and PDRC (Passive Decay heat Removal Circuit), the temperatures of the one dimensional analysis are generally higher than the multi-dimensional analysis in conditions except the normal operation state, and the PDRC operation time in the one dimensional analysis is generally longer than
Hospital nurse administrators in Japan: a feminist dimensional analysis.
Brandi, C L; Naito, A
2006-03-01
Nursing administration research is scarce in Japan during a time when health care is rapidly reforming and baccalaureate and graduate nursing programmes are rapidly developing. Additionally, nursing administration content relies heavily on Western and non-nursing theories, some of which have been criticized for male bias. The purpose of this article is to present key findings from a qualitative study that explored the perspectives or viewpoints of 16 Japanese senior female nurse administrators in hospitals in order to learn what was happening in their working situations and how they were managing. This feminist study used dimensional analysis strategies for data collection and analysis. Semi-structured, tape-recorded interviews were conducted by both researchers in Japanese, transcribed into Japanese, and translated into English. The resulting explanatory matrix portrayed a story of 16 nurse administrators, most of whom were able successfully to enact a management role in a context of role ambiguity that was congruent with their relational values and beliefs. Important conditions influencing value-based role enactment included organization mission and purpose, organization structure, nurse-doctor relationships, participant-supervisor relationships, and personal attributes. Many participants were able to overcome barriers in these categories using strategies of tempered radicalism and consequently made positive organizational changes. Advanced formal education, better organizational support, and a raised consciousness among nurses that views nurses and midwives as equal partners with other professionals will enable Japanese nurse administrators to help advance patient-centred care and nursing development and empowerment.
A new analytical method to solve the heat equation for a multi-dimensional composite slab
International Nuclear Information System (INIS)
Lu, X; Tervola, P; Viljanen, M
2005-01-01
A novel analytical approach has been developed for heat conduction in a multi-dimensional composite slab subject to time-dependent boundary changes of the first kind. Boundary temperatures are represented as Fourier series. Taking advantage of the periodic properties of boundary changes, the analytical solution is obtained and expressed explicitly. Nearly all the published works necessitate searching for associated eigenvalues in solving such a problem even for a one-dimensional composite slab. In this paper, the proposed method involves no iterative computation such as numerically searching for eigenvalues and no residue evaluation. The adopted method is simple which represents an extension of the novel analytical approach derived for the one-dimensional composite slab. Moreover, the method of 'separation of variables' employed in this paper is new. The mathematical formula for solutions is concise and straightforward. The physical parameters are clearly shown in the formula. Further comparison with numerical calculations is presented
Biomedical applications of two- and three-dimensional deterministic radiation transport methods
International Nuclear Information System (INIS)
Nigg, D.W.
1992-01-01
Multidimensional deterministic radiation transport methods are routinely used in support of the Boron Neutron Capture Therapy (BNCT) Program at the Idaho National Engineering Laboratory (INEL). Typical applications of two-dimensional discrete-ordinates methods include neutron filter design, as well as phantom dosimetry. The epithermal-neutron filter for BNCT that is currently available at the Brookhaven Medical Research Reactor (BMRR) was designed using such methods. Good agreement between calculated and measured neutron fluxes was observed for this filter. Three-dimensional discrete-ordinates calculations are used routinely for dose-distribution calculations in three-dimensional phantoms placed in the BMRR beam, as well as for treatment planning verification for live canine subjects. Again, good agreement between calculated and measured neutron fluxes and dose levels is obtained
SWOT ANALYSIS ON SAMPLING METHOD
Directory of Open Access Journals (Sweden)
CHIS ANCA OANA
2014-07-01
Full Text Available Audit sampling involves the application of audit procedures to less than 100% of items within an account balance or class of transactions. Our article aims to study audit sampling in audit of financial statements. As an audit technique largely used, in both its statistical and nonstatistical form, the method is very important for auditors. It should be applied correctly for a fair view of financial statements, to satisfy the needs of all financial users. In order to be applied correctly the method must be understood by all its users and mainly by auditors. Otherwise the risk of not applying it correctly would cause loose of reputation and discredit, litigations and even prison. Since there is not a unitary practice and methodology for applying the technique, the risk of incorrectly applying it is pretty high. The SWOT analysis is a technique used that shows the advantages, disadvantages, threats and opportunities. We applied SWOT analysis in studying the sampling method, from the perspective of three players: the audit company, the audited entity and users of financial statements. The study shows that by applying the sampling method the audit company and the audited entity both save time, effort and money. The disadvantages of the method are difficulty in applying and understanding its insight. Being largely used as an audit method and being a factor of a correct audit opinion, the sampling method’s advantages, disadvantages, threats and opportunities must be understood by auditors.
A two-dimensional adaptive numerical grids generation method and its realization
International Nuclear Information System (INIS)
Xu Tao; Shui Hongshou
1998-12-01
A two-dimensional adaptive numerical grids generation method and its particular realization is discussed. This method is effective and easy to realize if the control functions are given continuously, and the grids for some regions is showed in this case. For Computational Fluid Dynamics, because the control values of adaptive grids-numerical solution is given in dispersed form, it is needed to interpolate these values to get the continuous control functions. These interpolation techniques are discussed, and some efficient adaptive grids are given. A two-dimensional fluid dynamics example was also given
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
Appropriateness of one-dimensional calculations for repository analysis
International Nuclear Information System (INIS)
Eaton, R.R.
1994-01-01
This paper brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. It is shown that in many cases, one-dimensional modeling is more rigorous than previously assumed
Analysis of competitive equilibrium in an infinite dimensional ...
African Journals Online (AJOL)
This paper considered the cost of allocated goods and attaining maximal utility with such price in the finite dimensional commodity space and observed that there exist an equilibrium price. It goes further to establish that in an infinite dimensional commodity space with subsets as consumption and production set there exist a ...
3-dimensional analysis of FELIX brick with hole
International Nuclear Information System (INIS)
Lee, Taek-Kyung; Lee, Soo-Young; Ra, Jung-Woong
1987-01-01
Electromagnetic induction on FELIX brick with a hole has been analyzed with 3-Dimensional EDDYNET computer code. Incorporating loop currents on hexahedral meshes, the 3-Dimensional EDDYNET program solves eddy current problems by a network approach, and provides good accuracy even for coarse meshes. (author)
Inverse thermal analysis method to study solidification in cast iron
DEFF Research Database (Denmark)
Dioszegi, Atilla; Hattel, Jesper
2004-01-01
Solidification modelling of cast metals is widely used to predict final properties in cast components. Accurate models necessitate good knowledge of the solidification behaviour. The present study includes a re-examination of the Fourier thermal analysis method. This involves an inverse numerical...... solution of a 1-dimensional heat transfer problem connected to solidification of cast alloys. In the analysis, the relation between the thermal state and the fraction solid of the metal is evaluated by a numerical method. This method contains an iteration algorithm controlled by an under relaxation term...... inverse thermal analysis was tested on both experimental and simulated data....
Prediction of axial limit capacity of stone columns using dimensional analysis
Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.
2017-08-01
Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.
Transient analysis of cutoff waveguide antenna in three-dimensional space
International Nuclear Information System (INIS)
Kashiwa, Tatsuya; Yoshida, Norinobu; Fukai, Ichiro
1986-01-01
Recently, the exciting system for electric power heating as seen in nuclear fusion plasma heating and medical purpose has been actively studied and developed. Since such system treats basically a neighborhood field, various problems unlike conventional exciting system for communication arise. In such situation, the structure having the waveguides of simple and robust construction as the main body has been proposed. In this exciting system including the condition of media, the complex distribution of a neighborhood field based on a three-dimensional structure exerts an important effect on the characteristics. Especially in large power excitation, the higher mode of relatively small power distribution cannot be neglected. Besides, also a transient field distribution exerts an important effect on the characteristics, and the time response analysis is required. In this analysis, by the three-dimensional time response analysis method using Bergeron method, the unified analysis of the total system comprising a cutoff waveguide, a coaxial exciting part and a heating region was carried out for determining a radiation neighborhood electromagnetic field by a cutoff waveguide antenna. (Kako, I.)
Crater ejecta scaling laws: fundamental forms based on dimensional analysis
International Nuclear Information System (INIS)
Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.
1983-01-01
A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles
Dimensional analysis, similarity, analogy, and the simulation theory
International Nuclear Information System (INIS)
Davis, A.A.
1978-01-01
Dimensional analysis, similarity, analogy, and cybernetics are shown to be four consecutive steps in application of the simulation theory. This paper introduces the classes of phenomena which follow the same formal mathematical equations as models of the natural laws and the interior sphere of restraints groups of phenomena in which one can introduce simplfied nondimensional mathematical equations. The simulation by similarity in a specific field of physics, by analogy in two or more different fields of physics, and by cybernetics in nature in two or more fields of mathematics, physics, biology, economics, politics, sociology, etc., appears as a unique theory which permits one to transport the results of experiments from the models, convenably selected to meet the conditions of researches, constructions, and measurements in the laboratories to the originals which are the primary objectives of the researches. Some interesting conclusions which cannot be avoided in the use of simplified nondimensional mathematical equations as models of natural laws are presented. Interesting limitations on the use of simulation theory based on assumed simplifications are recognized. This paper shows as necessary, in scientific research, that one write mathematical models of general laws which will be applied to nature in its entirety. The paper proposes the extent of the second law of thermodynamics as the generalized law of entropy to model life and its activities. This paper shows that the physical studies and philosophical interpretations of phenomena and natural laws cannot be separated in scientific work; they are interconnected and one cannot be put above the others
Semi-automated analysis of three-dimensional track images
International Nuclear Information System (INIS)
Meesen, G.; Poffijn, A.
2001-01-01
In the past, three-dimensional (3-d) track images in solid state detectors were difficult to obtain. With the introduction of the confocal scanning laser microscope it is now possible to record 3-d track images in a non-destructive way. These 3-d track images can latter be used to measure typical track parameters. Preparing the detectors and recording the 3-d images however is only the first step. The second step in this process is enhancing the image quality by means of deconvolution techniques to obtain the maximum possible resolution. The third step is extracting the typical track parameters. This can be done on-screen by an experienced operator. For large sets of data however, this manual technique is not desirable. This paper will present some techniques to analyse 3-d track data in an automated way by means of image analysis routines. Advanced thresholding techniques guarantee stable results in different recording situations. By using pre-knowledge about the track shape, reliable object identification is obtained. In case of ambiguity, manual intervention is possible
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Correlation based method for comparing and reconstructing quasi-identical two-dimensional structures
International Nuclear Information System (INIS)
Mejia-Barbosa, Y.
2000-03-01
We show a method for comparing and reconstructing two similar amplitude-only structures, which are composed by the same number of identical apertures. The structures are two-dimensional and differ only in the location of one of the apertures. The method is based on a subtraction algorithm, which involves the auto-correlations and cross-correlation functions of the compared structures. Experimental results illustrate the feasibility of the method. (author)
Semi-implicit method for three-dimensional compressible MHD simulation
International Nuclear Information System (INIS)
Harned, D.S.; Kerner, W.
1984-03-01
A semi-implicit method for solving the full compressible MHD equations in three dimensions is presented. The method is unconditionally stable with respect to the fast compressional modes. The time step is instead limited by the slower shear Alfven motion. The computing time required for one time step is essentially the same as for explicit methods. Linear stability limits are derived and verified by three-dimensional tests on linear waves in slab geometry. (orig.)
A study on three dimensional layout design by the simulated annealing method
International Nuclear Information System (INIS)
Jang, Seung Ho
2008-01-01
Modern engineered products are becoming increasingly complicated and most consumers prefer compact designs. Layout design plays an important role in many engineered products. The objective of this study is to suggest a method to apply the simulated annealing method to the arbitrarily shaped three-dimensional component layout design problem. The suggested method not only optimizes the packing density but also satisfies constraint conditions among the components. The algorithm and its implementation as suggested in this paper are extendable to other research objectives
Development of three-dimensional transport code by the double finite element method
International Nuclear Information System (INIS)
Fujimura, Toichiro
1985-01-01
Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)
A novel three-dimensional mesh deformation method based on sphere relaxation
International Nuclear Information System (INIS)
Zhou, Xuan; Li, Shuixiang
2015-01-01
In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations
A novel three-dimensional mesh deformation method based on sphere relaxation
Energy Technology Data Exchange (ETDEWEB)
Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)
2015-10-01
In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.
Pseudo three-dimensional modeling of particle-fuel packing using distinct element method
International Nuclear Information System (INIS)
Yuki, Daisuke; Takata, Takashi; Yamaguchi, Akira
2007-01-01
Vibration-based packing of sphere-pac fuel is a key technology in a nuclear fuel manufacturing. In the production process of sphere-pac fuel, a Mixed Oxide (MOX) fuel is formed to spherical form and is packed in a cladding tube by adding a vibration force. In the present study, we have developed a numerical simulation method to investigate the behavior of the particles in a vibrated tube using the Distinct Element Method (DEM). In general, the DEM requires a significant computational cost. Therefore we propose a new approach in which a small particle can move through the space between three larger particles even in the two-dimensional simulation. We take into account an equivalent three-dimensional effect in the equations of motion. Thus it is named pseudo three-dimensional modeling. (author)
International Nuclear Information System (INIS)
Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.
2016-01-01
The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)
Three-dimensional reconstruction volume: a novel method for volume measurement in kidney cancer.
Durso, Timothy A; Carnell, Jonathan; Turk, Thomas T; Gupta, Gopal N
2014-06-01
The role of volumetric estimation is becoming increasingly important in the staging, management, and prognostication of benign and cancerous conditions of the kidney. We evaluated the use of three-dimensional reconstruction volume (3DV) in determining renal parenchymal volumes (RPV) and renal tumor volumes (RTV). We compared 3DV with the currently available methods of volume assessment and determined its interuser reliability. RPV and RTV were assessed in 28 patients who underwent robot-assisted laparoscopic partial nephrectomy for kidney cancer. Patients with a preoperative creatinine level of kidney pre- and postsurgery overestimated 3D reconstruction volumes by 15% to 102% and 12% to 101%, respectively. In addition, volumes obtained from 3DV displayed high interuser reliability regardless of experience. 3DV provides a highly reliable way of assessing kidney volumes. Given that 3DV takes into account visible anatomy, the differences observed using previously published methods can be attributed to the failure of geometry to accurately approximate kidney or tumor shape. 3DV provides a more accurate, reproducible, and clinically useful tool for urologists looking to improve patient care using analysis related to volume.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi
2018-04-01
This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.
Three-Dimensional Assembly Tolerance Analysis Based on the Jacobian-Torsor Statistical Model
Directory of Open Access Journals (Sweden)
Peng Heping
2017-01-01
Full Text Available The unified Jacobian-Torsor model has been developed for deterministic (worst case tolerance analysis. This paper presents a comprehensive model for performing statistical tolerance analysis by integrating the unified Jacobian-Torsor model and Monte Carlo simulation. In this model, an assembly is sub-divided into surfaces, the Small Displacements Torsor (SDT parameters are used to express the relative position between any two surfaces of the assembly. Then, 3D dimension-chain can be created by using a surface graph of the assembly and the unified Jacobian-Torsor model is developed based on the effect of each functional element on the whole functional requirements of products. Finally, Monte Carlo simulation is implemented for the statistical tolerance analysis. A numerical example is given to demonstrate the capability of the proposed method in handling three-dimensional assembly tolerance analysis.
Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.
Arampatzis, Georgios; Katsoulakis, Markos A; Pantazis, Yannis
2015-01-01
Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the
Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks.
Directory of Open Access Journals (Sweden)
Georgios Arampatzis
Full Text Available Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in "sloppy" systems. In particular, the computational acceleration is quantified by the ratio between the total number of
Gilbert, J L; Bloomfeld, R S; Lautenschlager, E P; Wixson, R L
1992-04-01
A computer-based mathematical technique was developed to measure and completely describe the migration and micromotion of a femoral hip prosthesis relative to the femur. This technique utilized the mechanics of rigid-body motion analysis and apparatus of seven linear displacement transducers to measure and describe the complete three-dimensional motion of the prosthesis during cyclic loading. Computer acquisition of the data and custom analysis software allowed one to calculate the magnitude and direction of the motion of any point of interest on the prostheses from information about the motion of two points on the device. The data were also used to replay the tests using a computer animation technique, which allowed a magnified view of the three-dimensional motion of the prosthesis. This paper describes the mathematical development of the rigid-body motion analysis, the experimental method and apparatus for data collection, the technique used to animate the motion, the sources of error and the effect of the assumptions (rigid bodies) on the results. Selected results of individual test runs of uncemented and cemented prostheses are presented to demonstrate the efficacy of the method. The combined effect of the vibration and electrical noise resulted in a resolution of the system of about 3-5 microns motion for each transducer. Deformation effects appear to contribute about 3-15 microns to the measurement error. This measurement and analysis technique is a very sensitive and powerful means of assessing the effects of different design parameters on the migration and micromotion of total joint prostheses and can be applied to any other case (knee, dental implant) where three-dimensional relative motion between two bodies is important.
Finite element method for radiation heat transfer in multi-dimensional graded index medium
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium
International Nuclear Information System (INIS)
Kucukboyaci, Vefa; Haghighat, Alireza
2001-01-01
We have developed new angular multigrid formulations, including the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle schemes, that are compatible with the parallel environment and the adaptive differencing strategy of the PENTRAN three-dimensional parallel S N code. Using the Fourier analysis method for an infinite, homogenous medium, we have investigated the effectiveness of the V-Cycle scheme for different problem parameters including scattering ratio, spatial differencing weights, quadrature order, and mesh size. We have further investigated the effectiveness of the new schemes for practical shielding applications such as the Kobayashi benchmark problem and the boiling water reactor core shroud problem. In this paper, we summarize the angular V-Cycle scheme implemented in the PENTRAN code, the Fourier Analysis of the V-Cycle scheme, and results of convergence analysis of the V-Cycle scheme using different problem parameters. The theoretical analysis reveals that the V-Cycle scheme is effective for a large range of scattering ratios and is insensitive to mesh size. Besides the theoretical analysis, we have applied the new angular multigrid schemes to shielding problems. In comparison to the standard PCR formulation, combinations of the new angular multigrid schemes and PCR (e.g., SAM+V-Cycle+PCR) have proved to be very effective for scattering ratios in a range of 0.6 to 0.9. (authors)
Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets
International Nuclear Information System (INIS)
Embrechts, M.J.
1982-02-01
A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium
Directory of Open Access Journals (Sweden)
Laurent Berge
2012-01-01
Full Text Available This paper presents the R package HDclassif which is devoted to the clustering and the discriminant analysis of high-dimensional data. The classification methods proposed in the package result from a new parametrization of the Gaussian mixture model which combines the idea of dimension reduction and model constraints on the covariance matrices. The supervised classification method using this parametrization is called high dimensional discriminant analysis (HDDA. In a similar manner, the associated clustering method iscalled high dimensional data clustering (HDDC and uses the expectation-maximization algorithm for inference. In order to correctly t the data, both methods estimate the specific subspace and the intrinsic dimension of the groups. Due to the constraints on the covariance matrices, the number of parameters to estimate is significantly lower than other model-based methods and this allows the methods to be stable and efficient in high dimensions. Two introductory examples illustrated with R codes allow the user to discover the hdda and hddc functions. Experiments on simulated and real datasets also compare HDDC and HDDA with existing classification methods on high-dimensional datasets. HDclassif is a free software and distributed under the general public license, as part of the R software project.
A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix
Hu, Zongliang
2017-09-27
The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.
A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix.
Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun
2017-09-21
The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.
A Comparison of Methods for Estimating the Determinant of High-Dimensional Covariance Matrix
Hu, Zongliang; Dong, Kai; Dai, Wenlin; Tong, Tiejun
2017-01-01
The determinant of the covariance matrix for high-dimensional data plays an important role in statistical inference and decision. It has many real applications including statistical tests and information theory. Due to the statistical and computational challenges with high dimensionality, little work has been proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation methods for comparison. Through extensive simulation studies, we explore and summarize some interesting comparison results among all compared methods. We also provide practical guidelines based on the sample size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may also serve as a proxy to assess the performance of the covariance matrix estimation.
A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series
Directory of Open Access Journals (Sweden)
Keke Zhang
2018-01-01
Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.
Two dimensional analysis of MHD generator by means of equivalent circuit
International Nuclear Information System (INIS)
Yoshida, Masaharu; Umoto, Juro
1975-01-01
The authors report on the method analyzing generally the MHD generator by means of the equivalent circuit including the negative resistance. At first, they divide the duct space into many space elements, and for each space element they derive the fundamental equivalent four-terminal circuit which satisfies the two-dimensional Ohm's law. Next, they make an attempt to apply the equivalent circuits to the typical MHD generators such as diagonal, Faraday and Hall generators considering the boundary layer in the duct and the wall leakage current. Using their analysis, the current density, Joul's heat, generated and output electrical powers, electrical efficiency etc. in the generator can be fairly easily calculated. (auth.)
DEFF Research Database (Denmark)
Stensrud, Silje; Myklebust, Grethe; Kristianslund, Eirik
2011-01-01
. The present study investigated the correlation between a two-dimensional (2D) video analysis and subjective assessment performed by one physiotherapist in evaluating knee control. We also tested the correlation between three simple clinical tests using both methods. A cohort of 186 female elite team handball...
Two-dimensional imaging of Debye-Scherrer ring for tri-axial stress analysis of industrial materials
International Nuclear Information System (INIS)
Sasaki, T; Maruyama, Y; Ohba, H; Ejiri, S
2014-01-01
In this study, an application of the two-dimensional imaging technology to the X ray tri-axial stress analysis was studied. An image plate (IP) was used to obtain a Debye-Scherre ring and the image data was analized for determining stress. A new principle for stress analysis which is suitable to two-dimensional imaging data was used. For the verification of this two-dimensional imaging type X-ray stress measurement method, an experiment was conducted using a ferritic steel sample which was processed with a surface grinder. Tri-axial stress analysis was conducted to evaluate the sample. The conventional method for X-ray tri-axial stress analysis proposed by Dölle and Hauk was used to evaluate residual stress in order to compare with the present method. As a result, it was confirmed that a sufficiently highly precise and high-speed stress measurement was enabled with the two-dimensional imaging technology compared with the conventional method
Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials
DEFF Research Database (Denmark)
Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole
2014-01-01
We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...
Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant
International Nuclear Information System (INIS)
Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko
2013-01-01
As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)
A New Ensemble Method with Feature Space Partitioning for High-Dimensional Data Classification
Directory of Open Access Journals (Sweden)
Yongjun Piao
2015-01-01
Full Text Available Ensemble data mining methods, also known as classifier combination, are often used to improve the performance of classification. Various classifier combination methods such as bagging, boosting, and random forest have been devised and have received considerable attention in the past. However, data dimensionality increases rapidly day by day. Such a trend poses various challenges as these methods are not suitable to directly apply to high-dimensional datasets. In this paper, we propose an ensemble method for classification of high-dimensional data, with each classifier constructed from a different set of features determined by partitioning of redundant features. In our method, the redundancy of features is considered to divide the original feature space. Then, each generated feature subset is trained by a support vector machine, and the results of each classifier are combined by majority voting. The efficiency and effectiveness of our method are demonstrated through comparisons with other ensemble techniques, and the results show that our method outperforms other methods.
Present state and future of CFD based on three-dimensional RANS analysis
International Nuclear Information System (INIS)
Kim, Kwang Yong
2004-01-01
Computational Fluid Dynamics (CFD) based on Navier-Stokes equations has been developed rapidly for several decades with the developments of high speed computers and numerical algorithms, and presently is regarded as an essential analysis tool in the engineering applications containing fluid flow and convective heat transfer. It is known that for turbulent flow the Navier-Stokes equations can be calculated precisely by Direct Numerical Simulation (DNS). However, DNS needs huge computing time even for simple low-Reynolds number flows, and thus is not practical. Large Eddy Simulation (LES) can be an alternative. But, LES also needs considerable computing time for the analysis of engineering flows, and have some problem in the methods. Therefore, the analysis methods using Reynolds-averaged Navier-stokes equations (RANS) and turbulence closure models are still regarded as the major techniques for the analysis of turbulent flows in spite of the inaccuracy of the prediction. In this presentation, the present state and the prospect of CFD based on three-dimensional RANS analysis are introduced for physical models and numerical algorithms with the engineering examples. Especially, for the analysis of two-phase flows in nuclear reactor, the recently developed techniques are also introduced. And, the presentation includes the methods of design optimization using RANS analysis and numerical optimization techniques with variety of the applications
A two-dimensional, semi-analytic expansion method for nodal calculations
International Nuclear Information System (INIS)
Palmtag, S.P.
1995-08-01
Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure
Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu
2014-01-01
The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…
Newton-sor iterative method for solving the two-dimensional porous ...
African Journals Online (AJOL)
In this paper, we consider the application of the Newton-SOR iterative method in obtaining the approximate solution of the two-dimensional porous medium equation (2D PME). The nonlinear finite difference approximation equation to the 2D PME is derived by using the implicit finite difference scheme. The developed ...
A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data
DEFF Research Database (Denmark)
Kulshreshth, Arun Kumar; Alpers, Andreas; Herman, Gabor T.
2009-01-01
An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which...
Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case
Institute of Scientific and Technical Information of China (English)
BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.
Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method
International Nuclear Information System (INIS)
Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin
2015-01-01
Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility. (paper)
Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.
2015-05-01
A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.
Geotechnical applications of a two-dimensional elastodynamic displacement discontinuity method
CSIR Research Space (South Africa)
Siebrits, E
1993-12-01
Full Text Available A general two-dimensional elastodynamic displacement discontinuity method is used to model a variety of application problems. The plane strain problems are: the elastodynamic motions induced on a cavity by shear slip on a nearby crack; the dynamic...
Study on color difference estimation method of medicine biochemical analysis
Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Sun, Jiashi; Zhou, Fengkun
2006-01-01
The biochemical analysis in medicine is an important inspection and diagnosis method in hospital clinic. The biochemical analysis of urine is one important item. The Urine test paper shows corresponding color with different detection project or different illness degree. The color difference between the standard threshold and the test paper color of urine can be used to judge the illness degree, so that further analysis and diagnosis to urine is gotten. The color is a three-dimensional physical variable concerning psychology, while reflectance is one-dimensional variable; therefore, the estimation method of color difference in urine test can have better precision and facility than the conventional test method with one-dimensional reflectance, it can make an accurate diagnose. The digital camera is easy to take an image of urine test paper and is used to carry out the urine biochemical analysis conveniently. On the experiment, the color image of urine test paper is taken by popular color digital camera and saved in the computer which installs a simple color space conversion (RGB -> XYZ -> L *a *b *)and the calculation software. Test sample is graded according to intelligent detection of quantitative color. The images taken every time were saved in computer, and the whole illness process will be monitored. This method can also use in other medicine biochemical analyses that have relation with color. Experiment result shows that this test method is quick and accurate; it can be used in hospital, calibrating organization and family, so its application prospect is extensive.
Analysis of Phenix End-of-Life asymmetry test with multi-dimensional pool modeling of MARS-LMR code
International Nuclear Information System (INIS)
Jeong, H.-Y.; Ha, K.-S.; Choi, C.-W.; Park, M.-G.
2015-01-01
Highlights: • Pool behaviors under asymmetrical condition in an SFR were evaluated with MARS-LMR. • The Phenix asymmetry test was analyzed one-dimensionally and multi-dimensionally. • One-dimensional modeling has limitation to predict the cold pool temperature. • Multi-dimensional modeling shows improved prediction of stratification and mixing. - Abstract: The understanding of complicated pool behaviors and its modeling is essential for the design and safety analysis of a pool-type Sodium-cooled Fast Reactor. One of the remarkable recent efforts on the study of pool thermal–hydraulic behaviors is the asymmetrical test performed as a part of Phenix End-of-Life tests by the CEA. To evaluate the performance of MARS-LMR code, which is a key system analysis tool for the design of an SFR in Korea, in the prediction of thermal hydraulic behaviors during an asymmetrical condition, the Phenix asymmetry test is analyzed with MARS-LMR in the present study. Pool regions are modeled with two different approaches, one-dimensional modeling and multi-dimensional one, and the prediction results are analyzed to identify the appropriateness of each modeling method. The prediction with one-dimensional pool modeling shows a large deviation from the measured data at the early stage of the test, which suggests limitations to describe the complicated thermal–hydraulic phenomena. When the pool regions are modeled multi-dimensionally, the prediction gives improved results quite a bit. This improvement is explained by the enhanced modeling of pool mixing with the multi-dimensional modeling. On the basis of the results from the present study, it is concluded that an accurate modeling of pool thermal–hydraulics is a prerequisite for the evaluation of design performance and safety margin quantification in the future SFR developments
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.
International Nuclear Information System (INIS)
Wang Qi; Chen Yong; Zhang Hongqing
2005-01-01
In this paper, we present a new Riccati equation rational expansion method to uniformly construct a series of exact solutions for nonlinear evolution equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recover some known solutions, but also find some new and general solutions. The solutions obtained in this paper include rational triangular periodic wave solutions, rational solitary wave solutions and rational wave solutions. The efficiency of the method can be demonstrated on (2 + 1)-dimensional Burgers equation
Global/local methods research using a common structural analysis framework
Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.
1991-01-01
Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.
Software Tools for Robust Analysis of High-Dimensional Data
Directory of Open Access Journals (Sweden)
Valentin Todorov
2014-06-01
Full Text Available The present work discusses robust multivariate methods specifically designed for highdimensions. Their implementation in R is presented and their application is illustratedon examples. The first group are algorithms for outlier detection, already introducedelsewhere and implemented in other packages. The value added of the new package isthat all methods follow the same design pattern and thus can use the same graphicaland diagnostic tools. The next topic covered is sparse principal components including anobject oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani(2006 and the robust one proposed by Croux, Filzmoser, and Fritz (2013. Robust partialleast squares (see Hubert and Vanden Branden 2003 as well as partial least squares fordiscriminant analysis conclude the scope of the new package.
A dimensional analysis of patient-centered care.
Hobbs, Jennifer Lynn
2009-01-01
Patient-centered care (PCC) is a poorly conceptualized phenomenon and can indicate anything from soothing room design, emotional support of patients, customization of meals, to support of patient decision making. This inconsistency across the clinical and research literature makes the application of PCC difficult. The objective of this study was to identify dimensions of PCC as found in the literature. A dimensional analysis of PCC was conducted from 69 clinical and research articles published from 2000 to 2006. Coding of the literature for the perspective, context, conditions, process, and consequences of PCC was completed. These codes were used to determine literature selected for inclusion, organize article content, and frame the delineation of PCC. Alleviating vulnerabilities, consisting of both compromised physiological states and threats to individual identity, was constant throughout the literature. Therapeutic engagement was the process sustaining the patient during an illness episode that necessitated service use and involved allocating time, carrying out information practices, knowing the patient, and developing a relationship. This process occurs during nurse-patient interaction, sustained during successive interactions, and reinforced by the information practices of a particular setting. The interaction between nurse and patient is central to the effective study and application of PCC. Appropriate use of PCC can improve study outcomes and measurements by clarifying the variables involved, and PCC holds great promise to frame patient outcome and satisfaction research by analyzing how and with what effect nurses alleviate patient vulnerability. Moreover, consideration of information practices as a critical supporting structure of nurse-patient interaction can be explored.
Linear feature selection in texture analysis - A PLS based method
DEFF Research Database (Denmark)
Marques, Joselene; Igel, Christian; Lillholm, Martin
2013-01-01
We present a texture analysis methodology that combined uncommitted machine-learning techniques and partial least square (PLS) in a fully automatic framework. Our approach introduces a robust PLS-based dimensionality reduction (DR) step to specifically address outliers and high-dimensional feature...... and considering all CV groups, the methods selected 36 % of the original features available. The diagnosis evaluation reached a generalization area-under-the-ROC curve of 0.92, which was higher than established cartilage-based markers known to relate to OA diagnosis....
International Nuclear Information System (INIS)
Lee, Joo Hee
2006-02-01
There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)
Data Analysis Methods for Paleogenomics
DEFF Research Database (Denmark)
Avila Arcos, Maria del Carmen
(Danmarks Grundforskningfond) 'Centre of Excellence in GeoGenetics' grant, with additional funding provided by the Danish Council for Independent Research 'Sapere Aude' programme. The thesis comprises five chapters, all of which represent different projects that involved the analysis of massive amounts......, thanks to the introduction of NGS and the implementation of data analysis methods specific for each project. Chapters 1 to 3 have been published in peer-reviewed journals and Chapter 4 is currently in review. Chapter 5 consists of a manuscript describing initial results of an ongoing research project......The work presented in this thesis is the result of research carried out during a three-year PhD at the Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, under supervision of Professor Tom Gilbert. The PhD was funded by the Danish National Research Foundation...
Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem
Directory of Open Access Journals (Sweden)
Baiyu Wang
2014-01-01
Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.
Image-Based Compression Method of Three-Dimensional Range Data with Texture
Chen, Xia; Bell, Tyler; Zhang, Song
2017-01-01
Recently, high speed and high accuracy three-dimensional (3D) scanning techniques and commercially available 3D scanning devices have made real-time 3D shape measurement and reconstruction possible. The conventional mesh representation of 3D geometry, however, results in large file sizes, causing difficulties for its storage and transmission. Methods for compressing scanned 3D data therefore become desired. This paper proposes a novel compression method which stores 3D range data within the c...
Shintani, Kenichirou; Yoshitomi, Shinta; Takewaki, Izuru
2017-01-01
A method of physical parameter system identification (SI) is proposed here for three-dimensional (3D) building structures with in-plane rigid floors in which the stiffness and damping coefficients of each structural frame in the 3D building structure are identified from the measured floor horizontal accelerations. A batch processing least-squares estimation method for many discrete time domain measured data is proposed for the direct identification of the stiffness and damping coefficients of...
International Nuclear Information System (INIS)
Yasuk, F.; Tekin, S.; Boztosun, I.
2010-01-01
In this study, the exact solutions of the d-dimensional Schroedinger equation with a position-dependent mass m(r)=1/(1+ζ 2 r 2 ) is presented for a free particle, V(r)=0, by using the method of point canonical transformations. The energy eigenvalues and corresponding wavefunctions for the effective potential which is to be a generalized Poeschl-Teller potential are obtained within the framework of the asymptotic iteration method.
One-Dimensional Finite Elements An Introduction to the FE Method
Öchsner, Andreas
2013-01-01
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics.
Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert
2015-12-08
Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.
An axial calculation method for accurate two-dimensional PWR core simulation
International Nuclear Information System (INIS)
Grimm, P.
1985-02-01
An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Weitman, J; Daaverhoeg, N; Farvolden, S
1970-07-01
In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.
The contribution of particle swarm optimization to three-dimensional slope stability analysis.
Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
A Rashid, Ahmad Safuan; Ali, Nazri
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
Directory of Open Access Journals (Sweden)
Roohollah Kalatehjari
2014-01-01
Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
Kumar, Manoj; Singh, Rajendra; Meena, Anil; Patidar, Bhagwan S; Prasad, Rajendra; Chhabra, Sunil K; Bansal, Surendra K
2017-01-01
The 2-dimensional gel electrophoresis (2-DE) technique is widely used for the analysis of complex protein mixtures extracted from biological samples. It is one of the most commonly used analytical techniques in proteomics to study qualitative and quantitative protein changes between different states of a cell or an organism (eg, healthy and diseased), conditionally expressed proteins, posttranslational modifications, and so on. The 2-DE technique is used for its unparalleled ability to separate thousands of proteins simultaneously. The resolution of the proteins by 2-DE largely depends on the quality of sample prepared during protein extraction which increases results in terms of reproducibility and minimizes protein modifications that may result in artifactual spots on 2-DE gels. The buffer used for the extraction and solubilization of proteins influences the quality and reproducibility of the resolution of proteins on 2-DE gel. The purification by cleanup kit is another powerful process to prevent horizontal streaking which occurs during isoelectric focusing due to the presence of contaminants such as salts, lipids, nucleic acids, and detergents. Erythrocyte membrane proteins serve as prototypes for multifunctional proteins in various erythroid and nonerythroid cells. In this study, we therefore optimized the selected major conditions of 2-DE for resolving various proteins of human erythrocyte membrane. The modification included the optimization of conditions for sample preparation, cleanup of protein sample, isoelectric focusing, equilibration, and storage of immobilized pH gradient strips, which were further carefully examined to achieve optimum conditions for improving the quality of protein spots on 2-DE gels. The present improved 2-DE analysis method enabled better detection of protein spots with higher quality and reproducibility. Therefore, the conditions established in this study may be used for the 2-DE analysis of erythrocyte membrane proteins for
Sensitivity analysis of numerical results of one- and two-dimensional advection-diffusion problems
International Nuclear Information System (INIS)
Motoyama, Yasunori; Tanaka, Nobuatsu
2005-01-01
Numerical simulation has been playing an increasingly important role in the fields of science and engineering. However, every numerical result contains errors such as modeling, truncation, and computing errors, and the magnitude of the errors that are quantitatively contained in the results is unknown. This situation causes a large design margin in designing by analyses and prevents further cost reduction by optimizing design. To overcome this situation, we developed a new method to numerically analyze the quantitative error of a numerical solution by using the sensitivity analysis method and modified equation approach. If a reference case of typical parameters is calculated once by this method, then no additional calculation is required to estimate the results of other numerical parameters such as those of parameters with higher resolutions. Furthermore, we can predict the exact solution from the sensitivity analysis results and can quantitatively evaluate the error of numerical solutions. Since the method incorporates the features of the conventional sensitivity analysis method, it can evaluate the effect of the modeling error as well as the truncation error. In this study, we confirm the effectiveness of the method through some numerical benchmark problems of one- and two-dimensional advection-diffusion problems. (author)
Directory of Open Access Journals (Sweden)
Shoubin Wang
2017-01-01
Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.
Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running.
Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian
2017-07-01
In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Descriptive laboratory study. In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in
Reduction of the dimensionality and comparative analysis of multivariate radiological data
International Nuclear Information System (INIS)
Seddeek, M.K.; Kozae, A.M.; Sharshar, T.; Badran, H.M.
2009-01-01
Computational methods were used to reduce the dimensionality and to find clusters of multivariate data. The variables were the natural radioactivity contents and the texture characteristics of sand samples. The application of discriminate analysis revealed that samples with high negative values of the former score have the highest contamination with black sand. Principal component analysis (PCA) revealed that radioactivity concentrations alone are sufficient for the classification. Rough set analysis (RSA) showed that the concentration of 238 U, 226 Ra or 232 Th, combined with the concentration of 40 K, can specify the clusters and characteristics of the sand. Both PCA and RSA show that 238 U, 226 Ra and 232 Th behave similarly. RSA revealed that one or two of them can be omitted without degrading predictions.
International Nuclear Information System (INIS)
Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.
1983-01-01
The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)
International Nuclear Information System (INIS)
Yulianti, Yanti; Su'ud, Zaki; Waris, Abdul; Khotimah, S. N.; Shafii, M. Ali
2010-01-01
The research about fast transient and spatially non-homogenous nuclear reactor accident analysis of two-dimensional nuclear reactor has been done. This research is about prediction of reactor behavior is during accident. In the present study, space-time diffusion equation is solved by using direct methods which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference discretization method is solved by using iterative methods ADI (Alternating Direct Implicit). The indication of accident is decreasing macroscopic absorption cross-section that results large external reactivity. The power reactor has a peak value before reactor has new balance condition. Changing of temperature reactor produce a negative Doppler feedback reactivity. The reactivity will reduce excess positive reactivity. Temperature reactor during accident is still in below fuel melting point which is in secure condition.
Directory of Open Access Journals (Sweden)
Salvatore Brischetto
2014-01-01
equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.
Modified Splitting FDTD Methods for Two-Dimensional Maxwell’s Equations
Directory of Open Access Journals (Sweden)
Liping Gao
2017-01-01
Full Text Available In this paper, we develop a new method to reduce the error in the splitting finite-difference method of Maxwell’s equations. By this method two modified splitting FDTD methods (MS-FDTDI, MS-FDTDII for the two-dimensional Maxwell equations are proposed. It is shown that the two methods are second-order accurate in time and space and unconditionally stable by Fourier methods. By energy method, it is proved that MS-FDTDI is second-order convergent. By deriving the numerical dispersion (ND relations, we prove rigorously that MS-FDTDI has less ND errors than the ADI-FDTD method and the ND errors of ADI-FDTD are less than those of MS-FDTDII. Numerical experiments for computing ND errors and simulating a wave guide problem and a scattering problem are carried out and the efficiency of the MS-FDTDI and MS-FDTDII methods is confirmed.
Comparison of two intraoral scanners based on three-dimensional surface analysis
Directory of Open Access Journals (Sweden)
Kyung-Min Lee
2018-02-01
Full Text Available Abstract Background This in vivo study evaluated the difference of two well-known intraoral scanners used in dentistry, namely iTero (Align Technology and TRIOS (3Shape. Methods Thirty-two participants underwent intraoral scans with TRIOS and iTero scanners, as well as conventional alginate impressions. The scans obtained with the two intraoral scanners were compared with each other and were also compared with the corresponding model scans by means of three-dimensional surface analysis. The average differences between the two intraoral scans on the surfaces were evaluated by color-mapping. The average differences in the three-dimensional direction between each intraoral scans and its corresponding model scan were calculated at all points on the surfaces. Results The average differences between the two intraoral scanners were 0.057 mm at the maxilla and 0.069 mm at the mandible. Color histograms showed that local deviations between the two scanners occurred in the posterior area. As for difference in the three-dimensional direction, there was no statistically significant difference between two scanners. Conclusions Although there were some deviations in visible inspection, there was no statistical significance between the two intraoral scanners.
International Nuclear Information System (INIS)
Ravi Kanth, A.S.V.; Aruna, K.
2009-01-01
In this paper, we propose a reliable algorithm to develop exact and approximate solutions for the linear and nonlinear Schroedinger equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.
Directory of Open Access Journals (Sweden)
Liu Bing
2014-10-01
Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.
Development of a three dimensional circulation model based on fractional step method
Directory of Open Access Journals (Sweden)
Mazen Abualtayef
2010-03-01
Full Text Available A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
International Nuclear Information System (INIS)
Chen, G.S.
1997-01-01
We apply and compare the preconditioned generalized conjugate gradient methods to solve the linear system equation that arises in the two-dimensional neutron and photon transport equation in this paper. Several subroutines are developed on the basis of preconditioned generalized conjugate gradient methods for time-independent, two-dimensional neutron and photon transport equation in the transport theory. These generalized conjugate gradient methods are used. TFQMR (transpose free quasi-minimal residual algorithm), CGS (conjuage gradient square algorithm), Bi-CGSTAB (bi-conjugate gradient stabilized algorithm) and QMRCGSTAB (quasi-minimal residual variant of bi-conjugate gradient stabilized algorithm). These sub-routines are connected to computer program DORT. Several problems are tested on a personal computer with Intel Pentium CPU. (author)
COMPETITIVE INTELLIGENCE ANALYSIS - SCENARIOS METHOD
Directory of Open Access Journals (Sweden)
Ivan Valeriu
2014-07-01
Full Text Available Keeping a company in the top performing players in the relevant market depends not only on its ability to develop continually, sustainably and balanced, to the standards set by the customer and competition, but also on the ability to protect its strategic information and to know in advance the strategic information of the competition. In addition, given that economic markets, regardless of their profile, enable interconnection not only among domestic companies, but also between domestic companies and foreign companies, the issue of economic competition moves from the national economies to the field of interest of regional and international economic organizations. The stakes for each economic player is to keep ahead of the competition and to be always prepared to face market challenges. Therefore, it needs to know as early as possible, how to react to others’ strategy in terms of research, production and sales. If a competitor is planning to produce more and cheaper, then it must be prepared to counteract quickly this movement. Competitive intelligence helps to evaluate the capabilities of competitors in the market, legally and ethically, and to develop response strategies. One of the main goals of the competitive intelligence is to acknowledge the role of early warning and prevention of surprises that could have a major impact on the market share, reputation, turnover and profitability in the medium and long term of a company. This paper presents some aspects of competitive intelligence, mainly in terms of information analysis and intelligence generation. Presentation is theoretical and addresses a structured method of information analysis - scenarios method – in a version that combines several types of analysis in order to reveal some interconnecting aspects of the factors governing the activity of a company.
Three-dimensional analysis of a vacuum window connected to waveguide
International Nuclear Information System (INIS)
Nakatsuka, H.; Yoshida, N.
1988-01-01
Recently, as the experimental tokamak-type system for nuclear fusion has become larger, the additional heating system by microwave power has become more and more important. In this heating system the pillbox-type vacuum window is arranged for isolation, but discharge by local concentration of the electric field and destruction by local heating in this window are becoming serious problems. So far designing the system of the vacuum window and deciding on the matching condition, it is indispensable to know exactly the characteristics of the electromagnetic field. But the electromagnetic field inside such a system is very complicated because of its three-dimensional structure with various medium conditions. For the analysis of this complicated field numerical methods are generally known to be useful. The analysis by Bergeron's method has been shown to be effective for problems of this type involving complex boundary and medium conditions in three-dimensional space. In this paper, the authors show Bergeron's formulation of the pillbox-type vacuum window system and the fundamental characteristics of the electromagnetic field within this system. For an effective additional heating system in the experimental tokamak-type system the pillbox-type vacuum window is proposed to isolate each part. In this paper, the authors describe Bergeron's formulation of the pillbox-type vacuum window connected to cylindrical waveguides and show the fundamental characteristics of the electromagnetic field within this system
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
On the detection of corrosion pit interactions using two-dimensional spectral analysis
International Nuclear Information System (INIS)
Jarrah, Adil; Nianga, Jean-Marie; Iost, Alain; Guillemot, Gildas; Najjar, Denis
2010-01-01
A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can be advanced as an alternative of classical methods based on distance. One of the major advantages of the spectral analysis approach over the use of classical methods is its ability to reveal more details about the spatial structure like the scale for which pits corrosion can be considered as independent. Furthermore, directional components of pattern can be investigated. The method is validated in a first time using numerical simulations on random, regular and aggregated structures. The density of pits, used in the numerical simulations, corresponds to that assessed from a corroded aluminium sheet. In a second time, this method is applied to verify the independence of the corrosion pits observed on the aforementioned aluminium sheet before applying the Gumbel theory to determine the maximum pit depth. Indeed, the property of independence is a prerequisite of the Gumbel theory which is one of the most frequently used in the field of safety and reliability.
Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa
2017-12-01
Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.
Comprehensive two-dimensional gas chromatography applied to illicit drug analysis.
Mitrevski, Blagoj; Wynne, Paul; Marriott, Philip J
2011-11-01
Multidimensional gas chromatography (MDGC), and especially its latest incarnation--comprehensive two-dimensional gas chromatography (GC × GC)--have proved advantageous over and above classic one-dimensional gas chromatography (1D GC) in many areas of analysis by offering improved peak capacity, often enhanced sensitivity and, especially in the case of GC × GC, the unique feature of 'structured' chromatograms. This article reviews recent advances in MDGC and GC × GC in drug analysis with special focus on ecstasy, heroin and cocaine profiling. Although 1D GC is still the method of choice for drug profiling in most laboratories because of its simplicity and instrument availability, GC × GC is a tempting proposition for this purpose because of its ability to generate a higher net information content. Effluent refocusing due to the modulation (compression) process, combined with the separation on two 'orthogonal' columns, results in more components being well resolved and therefore being analytically and statistically useful to the profile. The spread of the components in the two-dimensional plots is strongly dependent on the extent of retention 'orthogonality' (i.e. the extent to which the two phases possess different or independent retention mechanisms towards sample constituents) between the two columns. The benefits of 'information-driven' drug profiling, where more points of reference are usually required for sample differentiation, are discussed. In addition, several limitations in application of MDGC in drug profiling, including data acquisition rate, column temperature limit, column phase orthogonality and chiral separation, are considered and discussed. Although the review focuses on the articles published in the last decade, a brief chronological preview of the profiling methods used throughout the last three decades is given.
Gravimetric and titrimetric methods of analysis
International Nuclear Information System (INIS)
Rives, R.D.; Bruks, R.R.
1983-01-01
Gravimetric and titrimetric methods of analysis are considered. Methods of complexometric titration are mentioned, as well as methods of increasing sensitivity in titrimetry. Gravimetry and titrimetry are applied during analysis for traces of geological materials
Rudolph, Heike; Graf, Michael R S; Kuhn, Katharina; Rupf-Köhler, Stephanie; Eirich, Alfred; Edelmann, Cornelia; Quaas, Sebastian; Luthardt, Ralph G
2015-01-01
Among other factors, the precision of dental impressions is an important and determining factor for the fit of dental restorations. The aim of this study was to examine the three-dimensional (3D) precision of gypsum dies made using a range of impression techniques and materials. Ten impressions of a steel canine were fabricated for each of the 24 material-method-combinations and poured with type 4 die stone. The dies were optically digitized, aligned to the CAD model of the steel canine, and 3D differences were calculated. The results were statistically analyzed using one-way analysis of variance. Depending on material and impression technique, the mean values had a range between +10.9/-10.0 µm (SD 2.8/2.3) and +16.5/-23.5 µm (SD 11.8/18.8). Qualitative analysis using colorcoded graphs showed a characteristic location of deviations for different impression techniques. Three-dimensional analysis provided a comprehensive picture of the achievable precision. Processing aspects and impression technique were of significant influence.
Zhang, Tie-Yan; Zhao, Yan; Xie, Xiang-Peng
2012-12-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach.
International Nuclear Information System (INIS)
Zhang Tie-Yan; Zhao Yan; Xie Xiang-Peng
2012-01-01
This paper is concerned with the problem of stability analysis of nonlinear Roesser-type two-dimensional (2D) systems. Firstly, the fuzzy modeling method for the usual one-dimensional (1D) systems is extended to the 2D case so that the underlying nonlinear 2D system can be represented by the 2D Takagi—Sugeno (TS) fuzzy model, which is convenient for implementing the stability analysis. Secondly, a new kind of fuzzy Lyapunov function, which is a homogeneous polynomially parameter dependent on fuzzy membership functions, is developed to conceive less conservative stability conditions for the TS Roesser-type 2D system. In the process of stability analysis, the obtained stability conditions approach exactness in the sense of convergence by applying some novel relaxed techniques. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is also given to demonstrate the effectiveness of the proposed approach. (general)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
A Comparison of Machine Learning Methods in a High-Dimensional Classification Problem
Directory of Open Access Journals (Sweden)
Zekić-Sušac Marijana
2014-09-01
Full Text Available Background: Large-dimensional data modelling often relies on variable reduction methods in the pre-processing and in the post-processing stage. However, such a reduction usually provides less information and yields a lower accuracy of the model. Objectives: The aim of this paper is to assess the high-dimensional classification problem of recognizing entrepreneurial intentions of students by machine learning methods. Methods/Approach: Four methods were tested: artificial neural networks, CART classification trees, support vector machines, and k-nearest neighbour on the same dataset in order to compare their efficiency in the sense of classification accuracy. The performance of each method was compared on ten subsamples in a 10-fold cross-validation procedure in order to assess computing sensitivity and specificity of each model. Results: The artificial neural network model based on multilayer perceptron yielded a higher classification rate than the models produced by other methods. The pairwise t-test showed a statistical significance between the artificial neural network and the k-nearest neighbour model, while the difference among other methods was not statistically significant. Conclusions: Tested machine learning methods are able to learn fast and achieve high classification accuracy. However, further advancement can be assured by testing a few additional methodological refinements in machine learning methods.
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas
2018-02-01
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.
International Nuclear Information System (INIS)
Kiss, A.; Aszodi, A.
2011-01-01
As recent studies prove in contrast to 'classical' dimensional analysis, whose application is widely described in heat transfer textbooks despite its poor results, the less well known and used discriminated dimensional analysis approach can provide a deeper insight into the physical problems involved and much better results in all cases where it is applied. As a first step of this ongoing research discriminated dimensional analysis has been performed on supercritical pressure water pipe flow heated through the pipe solid wall to identify the independent dimensionless groups (which play an independent role in the above mentioned thermal hydraulic phenomena) in order to serve a theoretical base to comparison between well known supercritical pressure water pipe heat transfer experiments and results of their validated CFD simulations. (author)
Analysis of three-dimensional transient seepage into ditch drains ...
Indian Academy of Sciences (India)
Ratan Sarmah
waterlogged soils in many regions of the world, including. India [2, 6–9]—to name a ... predicting two-dimensional seepage into a network of ...... when d1 ¼ 0, the lower limits of integration of the integral ...... and agricultural development. Irrig.
Three-dimensional analysis of mandibular growth and tooth eruption
DEFF Research Database (Denmark)
Krarup, S.; Darvann, Tron Andre; Larsen, Per
2005-01-01
Normal and abnormal jaw growth and tooth eruption are topics of great importance for several dental and medical disciplines. Thus far, clinical studies on these topics have used two-dimensional (2D) radiographic techniques. The purpose of the present study was to analyse normal mandibular growth...
One-dimensional transient unequal velocity two-phase flow by the method of characteristics
International Nuclear Information System (INIS)
Rasouli, F.
1981-01-01
An understanding of two-phase flow is important when one is analyzing the accidental loss of coolant or when analyzing industrial processes. If a pipe in the steam generator of a nuclear reactor breaks, the flow will remain critical (or choked) for almost the entire blowdown. For this reason the knowledge of the two-phase maximum (critical) flow rate is important. A six-equation model--consisting of two continuity equations, two energy equations, a mixture momentum equation, and a constitutive relative velocity equation--is solved numerically by the method of characteristics for one-dimensional, transient, two-phase flow systems. The analysis is also extended to the special case of transient critical flow. The six-equation model is used to study the flow of a nonequilibrium sodium-argon system in a horizontal tube in which the nonequilibrium sodium-argon system in a horizontal tube in which the critical flow condition is at the entrance. A four-equation model is used to study the pressure-pulse propagation rate in an isothermal air-water system, and the results that are found are compared with the experimental data. Proper initial and boundary conditions are obtained for the blowdown problem. The energy and mass exchange relations are evaluated by comparing the model predictions with results of void-fraction and heat-transfer experiments. A simplified two-equation model is obtained for the special case of two incompressible phases. This model is used in the preliminary analysis of batch sedimentation. It is also used to predict the shock formation in the gas-solid fluidized bed
Directory of Open Access Journals (Sweden)
Ross S Williamson
2015-04-01
Full Text Available Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID, uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex.
Advanced numerical methods for three dimensional two-phase flow calculations
Energy Technology Data Exchange (ETDEWEB)
Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Advanced numerical methods for three dimensional two-phase flow calculations
International Nuclear Information System (INIS)
Toumi, I.; Caruge, D.
1997-01-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations
Improvement of neutron kinetics module in TRAC-BF1code: one-dimensional nodal collocation method
Energy Technology Data Exchange (ETDEWEB)
Jambrina, Ana; Barrachina, Teresa; Miro, Rafael; Verdu, Gumersindo, E-mail: ajambrina@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidade Politecnica de Valencia (UPV), Valencia (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S.L., Madrid (Spain); Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion S.A.U., Madrid (Spain)
2013-07-01
The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method. (author)