WorldWideScience

Sample records for dimensional 15d quantum-dynamical

  1. Geometry of quantum dynamics in infinite-dimensional Hilbert space

    Science.gov (United States)

    Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana

    2018-04-01

    We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.

  2. Ultrabroadband Two-Dimensional Coherent Optical Spectrometer for Directed Energy Trapping in Quantum Dynamical Systems

    Science.gov (United States)

    2015-12-04

    with remarkable efficiency despite their exposure to “hot and wet” environmental conditions. This proposal seeks to develop instrumentation tailored...on solution processing. 1.1.2. Autonomous Systems. The systems described here are incredibly robust to a host of environmental conditions, both...static and dynamic. Since feedback can perturb the fragile quantum state of the system, a robust quantum dynamical system must avoid direct

  3. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liuyang [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shao, Kejie; Chen, Jun [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yang, Minghui, E-mail: yangmh@wipm.ac.cn [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Zhang, Dong H. [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}H → H + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  4. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  5. Langevin formulation of quantum dynamics

    International Nuclear Information System (INIS)

    Roncadelli, M.

    1989-03-01

    We first show that nonrelativistic quantum mechanics formulated at imaginary-(h/2 π) can formally be viewed as the Fokker-Planck description of a frictionless brownian motion, which occurs (in general) in an absorbing medium. We next offer a new formulation of quantum mechanics, which is basically the Langevin treatment of this brownian motion. Explicitly, we derive a noise-average representation for the transition probability W(X'',t''|X',t'), in terms of the solutions to a Langevin equation with a Gaussian white-noise. Upon analytic continuation back to real-(h/2 π),W(X'',t''|X',t') becomes the propagator of the original Schroedinger equation. Our approach allows for a straightforward application to quantum dynamical problems of the mathematical techniques of classical stochastic processes. Moreover, computer simulations of quantum mechanical systems can be carried out by using numerical programs based on the Langevin dynamics. (author). 19 refs, 1 tab

  6. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  7. Testing quantum dynamics in genetic information processing

    Indian Academy of Sciences (India)

    Unknown

    . Centre for Theoretical Studies, and Supercomputer Education and Research Centre,. Indian Institute of Science, Bangalore 560 012, India. Abstract. Does quantum dynamics play a role in DNA replication? What type of tests would reveal that ...

  8. Controllable Subspaces of Open Quantum Dynamical Systems

    International Nuclear Information System (INIS)

    Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi

    2008-01-01

    This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.

  9. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  10. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  11. Quantumness-generating capability of quantum dynamics

    Science.gov (United States)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  12. 7 CFR 15d.2 - Discrimination prohibited.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Discrimination prohibited. 15d.2 Section 15d.2... THE UNITED STATES DEPARTMENT OF AGRICULTURE § 15d.2 Discrimination prohibited. (a) No agency, officer... participation in, deny the benefits of, or subject to discrimination any person in the United States under any...

  13. 7 CFR 15d.3 - Compliance.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Compliance. 15d.3 Section 15d.3 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE UNITED STATES DEPARTMENT OF AGRICULTURE § 15d.3 Compliance. The Director of the Office of Civil Rights shall...

  14. Molecular quantum dynamics. From theory to applications

    International Nuclear Information System (INIS)

    Gatti, Fabien

    2014-01-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the

  15. Adaptive resummation of Markovian quantum dynamics

    International Nuclear Information System (INIS)

    Lucas, Felix

    2014-01-01

    In this thesis we derive a highly convergent, nonperturbative expansion of Markovian open quantum dynamics. It is based on a splitting of the incoherent dynamics into periods of continuous evolution and abrupt jumps and attains its favorable convergence properties from an adaptive resummation of this so-called jump expansion. By means of the long-standing problems of spatial particle detection and Landau-Zener tunneling in the presence of dephasing, we show that this adaptive resummation technique facilitates new highly accurate analytic approximations of Markovian open systems. The open Landau-Zener model leads us to propose an efficient and robust incoherent control technique for the isomerization reaction of the visual pigment protein rhodopsin. Besides leading to approximate analytic descriptions of Markovian open quantum dynamics, the adaptive resummation of the jump expansion implies an efficient numerical simulation method. We spell out the corresponding numerical algorithm by means of Monte Carlo integration of the relevant terms in the jump expansion and demonstrate it in a set of paradigmatic open quantum systems.

  16. Quantum dynamics modeled by interacting trajectories

    Science.gov (United States)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  17. Quantum dynamic imaging theoretical and numerical methods

    CERN Document Server

    Ivanov, Misha

    2011-01-01

    Studying and using light or "photons" to image and then to control and transmit molecular information is among the most challenging and significant research fields to emerge in recent years. One of the fastest growing areas involves research in the temporal imaging of quantum phenomena, ranging from molecular dynamics in the femto (10-15s) time regime for atomic motion to the atto (10-18s) time scale of electron motion. In fact, the attosecond "revolution" is now recognized as one of the most important recent breakthroughs and innovations in the science of the 21st century. A major participant in the development of ultrafast femto and attosecond temporal imaging of molecular quantum phenomena has been theory and numerical simulation of the nonlinear, non-perturbative response of atoms and molecules to ultrashort laser pulses. Therefore, imaging quantum dynamics is a new frontier of science requiring advanced mathematical approaches for analyzing and solving spatial and temporal multidimensional partial differ...

  18. Assumptions that imply quantum dynamics is linear

    International Nuclear Information System (INIS)

    Jordan, Thomas F.

    2006-01-01

    A basic linearity of quantum dynamics, that density matrices are mapped linearly to density matrices, is proven very simply for a system that does not interact with anything else. It is assumed that at each time the physical quantities and states are described by the usual linear structures of quantum mechanics. Beyond that, the proof assumes only that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. The basic linearity is linked with previously established results to complete a simple derivation of the linear Schroedinger equation. For this it is assumed that density matrices are mapped one-to-one onto density matrices. An alternative is to assume that pure states are mapped one-to-one onto pure states and that entropy does not decrease

  19. Classical and quantum dynamics of a kicked relativistic particle in a box

    Science.gov (United States)

    Yusupov, J. R.; Otajanov, D. M.; Eshniyazov, V. E.; Matrasulov, D. U.

    2018-03-01

    We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing the trembling motion.

  20. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces.

    Science.gov (United States)

    Richings, Gareth W; Habershon, Scott

    2017-09-12

    We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.

  1. Emergent Eigenstate Solution to Quantum Dynamics Far from Equilibrium

    Directory of Open Access Journals (Sweden)

    Lev Vidmar

    2017-04-01

    Full Text Available The quantum dynamics of interacting many-body systems has become a unique venue for the realization of novel states of matter. Here, we unveil a new class of nonequilibrium states that are eigenstates of an emergent local Hamiltonian. The latter is explicitly time dependent and, even though it does not commute with the physical Hamiltonian, it behaves as a conserved quantity of the time-evolving system. We discuss two examples of integrable systems in which the emergent eigenstate solution can be applied for an extensive (in system size time: transport in one-dimensional lattices with initial particle (or spin imbalance and sudden expansion of quantum gases in optical lattices. We focus on noninteracting spinless fermions, hard-core bosons, and the Heisenberg model. We show that current-carrying states can be ground states of emergent local Hamiltonians, and that they can exhibit a quasimomentum distribution function that is peaked at nonzero (and tunable quasimomentum. We also show that time-evolving states can be highly excited eigenstates of emergent local Hamiltonians, with an entanglement entropy that does not exhibit volume-law scaling.

  2. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  3. Effective evolution equations from quantum dynamics

    CERN Document Server

    Benedikter, Niels; Schlein, Benjamin

    2016-01-01

    These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of t...

  4. Symmetries, variational principles, and quantum dynamics

    Directory of Open Access Journals (Sweden)

    A. Sissakian

    2004-05-01

    Full Text Available We describe the role of symmetries in formation of quantum dynamics. A quantum version of d'Alembert's principle is proposed to take into account the symmetry constrains more exact. It is argued that the time reversibility of quantum process, as the quantum analogy of d'Alembert's principle, makes the measure of the corresponding path integral δ-like. The argument of this δ-function is the sum of all classical forces of the problem under consideration plus the random force of quantum excitations. Such measure establishes the one-to-one correspondence with classical mechanics and, for this reason, allows a free choice of the useful dynamical variables. The analysis shows that choosing the action-angle variables, one may get to the free-from-divergences quantum field theory. Moreover, one can try to get an independence from necessity to extract the degrees of freedom constrained by the symmetry. These properties of new quantization scheme are vitally essential for such theories as the non-Abelian Yang-Mills gauge theory and quantum gravity.

  5. Laser coherent control of quantum dynamics at the CSIR: NLC

    CSIR Research Space (South Africa)

    Botha, L

    2010-09-01

    Full Text Available Coherent control of quantum dynamics in optical, molecular and biological systems is a rapidly advancing field with many possible applications. This field of study was originally motivated by the goal of steering photoreactions into specific...

  6. Quantum dynamics and breakdown of classical realism in nonlinear oscillators

    International Nuclear Information System (INIS)

    Gat, Omri

    2007-01-01

    The leading nonclassical term in the quantum dynamics of nonlinear oscillators is calculated in the Moyal quasi-trajectory representation. The irreducibility of the quantum dynamics to phase-space trajectories is quantified by the discrepancy of the canonical quasi-flow and the quasi-flow of a general observable. This discrepancy is shown to imply the breakdown of classical realism that can give rise to a dynamical violation of Bell's inequalities. (fast track communication)

  7. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    Science.gov (United States)

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  8. Quantum Dynamical Entropies and Gács Algorithmic Entropy

    Directory of Open Access Journals (Sweden)

    Fabio Benatti

    2012-07-01

    Full Text Available Several quantum dynamical entropies have been proposed that extend the classical Kolmogorov–Sinai (dynamical entropy. The same scenario appears in relation to the extension of algorithmic complexity theory to the quantum realm. A theorem of Brudno establishes that the complexity per unit time step along typical trajectories of a classical ergodic system equals the KS-entropy. In the following, we establish a similar relation between the Connes–Narnhofer–Thirring quantum dynamical entropy for the shift on quantum spin chains and the Gács algorithmic entropy. We further provide, for the same system, a weaker linkage between the latter algorithmic complexity and a different quantum dynamical entropy proposed by Alicki and Fannes.

  9. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum mechanical study of vibrational state-resolved differential cross sections and transition probabilities for both the elastic/inelastic and the charge transfer processes have been carried out in the H+ + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the ...

  10. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H. +. + O2 collisions at collision energy 23 eV. †. SAIESWARI AMARAN# and SANJAY KUMAR*. Department of Chemistry, Indian Institute of ...

  11. Note on transmitted complexity for quantum dynamical systems

    Science.gov (United States)

    Watanabe, Noboru; Muto, Masahiro

    2017-10-01

    Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  12. Quantum dynamics via a time propagator in Wigner's phase space

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1995-01-01

    that the simple classical deterministic motion breaks down surprisingly fast in an anharmonic potential. Finally, we discuss the possibility of using the scheme as a useful approach to quantum dynamics in many dimensions. To that end we present a Monte Carlo integration scheme using the norm of the propagator...

  13. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the vibrational close-coupling rotational infinite-order sudden approximation frame- work employing our newly obtained quasi-diabatic potential energy surfaces corresponding to the ground and the first excited ...

  14. A quantum dynamics study of the benzopyran ring opening guided by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Saab, Mohamad, E-mail: mohamad.saab@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Doriol, Loïc Joubert, E-mail: Loic.Joubert-Doriol@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Lasorne, Benjamin, E-mail: lasorne@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Guérin, Stéphane, E-mail: sguerin@u-bourgogne.fr [Département Optique, Interaction Matière-Rayonnement (OMR) (UMR 6303), Université de Bourgogne, F-21078 Dijon (France); Gatti, Fabien, E-mail: gatti@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France)

    2014-10-17

    Highlights: • We perform quantum mechanical simulations for the ring-opening of benzopyran. • We develop strategies of control with laser pulses. • We focus on the physics involving the conical intersection. - Abstract: The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump–dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.

  15. Tensor-Train Split-Operator Fourier Transform (TT-SOFT) Method: Multidimensional Nonadiabatic Quantum Dynamics.

    Science.gov (United States)

    Greene, Samuel M; Batista, Victor S

    2017-09-12

    We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

  16. Phase space approach to quantum dynamics

    International Nuclear Information System (INIS)

    Leboeuf, P.

    1991-03-01

    The Schroedinger equation for the time propagation of states of a quantised two-dimensional spherical phase space is replaced by the dynamics of a system of N particles lying in phase space. This is done through factorization formulae of analytic function theory arising in coherent-state representation, the 'particles' being the zeros of the quantum state. For linear Hamiltonians, like a spin in a uniform magnetic field, the motion of the particles is classical. However, non-linear terms induce interactions between the particles. Their time propagation is studied and it is shown that, contrary to integrable systems, for chaotic maps they tend to fill, as their classical counterpart, the whole phase space. (author) 13 refs., 3 figs

  17. Quantum dynamics of a strongly driven Josephson Junction

    Energy Technology Data Exchange (ETDEWEB)

    Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)

    2015-07-01

    A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.

  18. Quantum Dynamics of Skyrmions in Chiral Magnets

    Science.gov (United States)

    Psaroudaki, Christina; Hoffman, Silas; Klinovaja, Jelena; Loss, Daniel

    2017-10-01

    We study the quantum propagation of a Skyrmion in chiral magnetic insulators by generalizing the micromagnetic equations of motion to a finite-temperature path integral formalism, using field theoretic tools. Promoting the center of the Skyrmion to a dynamic quantity, the fluctuations around the Skyrmionic configuration give rise to a time-dependent damping of the Skyrmion motion. From the frequency dependence of the damping kernel, we are able to identify the Skyrmion mass, thus providing a microscopic description of the kinematic properties of Skyrmions. When defects are present or a magnetic trap is applied, the Skyrmion mass acquires a finite value proportional to the effective spin, even at vanishingly small temperature. We demonstrate that a Skyrmion in a confined geometry provided by a magnetic trap behaves as a massive particle owing to its quasi-one-dimensional confinement. An additional quantum mass term is predicted, independent of the effective spin, with an explicit temperature dependence which remains finite even at zero temperature.

  19. Fundamental limits on quantum dynamics based on entropy change

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Siopsis, George; Wilde, Mark M.

    2018-01-01

    It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde [Phys. Rev. A 93(6), 062314 (2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.

  20. Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.

    Science.gov (United States)

    Accardi, A; Borowski, A; Kühn, O

    2009-07-02

    A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.

  1. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  2. On the quantum dynamical foundations of collision terms

    International Nuclear Information System (INIS)

    Nemes, M.C.; Toledo Piza, A.F.R. de

    1981-08-01

    Collision terms are non-unitary corrections usually added to mean field descriptions in order to describe dissipative effects. Derivations of collision terms usually include assumptions which lack an explicit connection with a fully quantum dynamical description. Quantum dynamical foundations of collision terms are examined: they are shown to reflect the dynamics of quantum correlations. A careful study of the non-unitary aspects of the evolution of quantum correlations leads naturally to an unambiguous definition of a collision term. This collision term is shown to obey a non-linear pre-master equation, whose derivation is fully quantum-mechanical. Moreover, it is shown that quantum correlations also yield an unitary correction to the mean field description, which could be absorbed in a suitable redefinition of the mean field. Formal expressions for these corrections are derived and their connection with memory effects exhibited explicitely. The typical time of evaluation of quantum correlations allows for an analytical expression for the 'lifetime of mean field descriptions'. Finally, a quantum mechanical point of view for 'irreversibility' in deep inelastic is discussed. (Author) [pt

  3. Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.

    Science.gov (United States)

    Iomin, A

    2013-05-01

    Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.

  4. Monte Carlo techniques for real-time quantum dynamics

    International Nuclear Information System (INIS)

    Dowling, Mark R.; Davis, Matthew J.; Drummond, Peter D.; Corney, Joel F.

    2007-01-01

    The stochastic-gauge representation is a method of mapping the equation of motion for the quantum mechanical density operator onto a set of equivalent stochastic differential equations. One of the stochastic variables is termed the 'weight', and its magnitude is related to the importance of the stochastic trajectory. We investigate the use of Monte Carlo algorithms to improve the sampling of the weighted trajectories and thus reduce sampling error in a simulation of quantum dynamics. The method can be applied to calculations in real time, as well as imaginary time for which Monte Carlo algorithms are more-commonly used. The Monte-Carlo algorithms are applicable when the weight is guaranteed to be real, and we demonstrate how to ensure this is the case. Examples are given for the anharmonic oscillator, where large improvements over stochastic sampling are observed

  5. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  6. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  7. Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning

    Science.gov (United States)

    Fujii, Keisuke; Nakajima, Kohei

    2017-08-01

    The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.

  8. Communication: Mode specific quantum dynamics of the F + CHD{sub 3} → HF + CD{sub 3} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Ji; Song, Hongwei; Yang, Minghui, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Palma, Juliana, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD (Argentina); Manthe, Uwe, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld (Germany); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-05-07

    The mode specific reactivity of the F + CHD{sub 3} → HF + CD{sub 3} reaction is investigated using an eight-dimensional quantum dynamical model on a recently developed ab initio based full-dimensional potential energy surface. Our results indicate prominent resonance structures at low collision energies and absence of an energy threshold in reaction probabilities. It was also found that excitation of the C–D stretching or CD{sub 3} umbrella mode has a relatively small impact on reactivity. On the other hand, the excitation of the C–H vibration (v{sub 1}) in CHD{sub 3} is shown to significantly increase the reactivity, which, like several recent quasi-classical trajectory studies, is at odds with the available experimental data. Possible sources of the disagreement are discussed.

  9. Full Quantum Dynamics Simulation of a Realistic Molecular System Using the Adaptive Time-Dependent Density Matrix Renormalization Group Method.

    Science.gov (United States)

    Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo

    2018-01-18

    The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.

  10. Quantum dynamics and electronic spectroscopy within the framework of wavelets

    International Nuclear Information System (INIS)

    Toutounji, Mohamad

    2013-01-01

    This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)

  11. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  12. Quantum dynamics of dynamically unstable, integrable few-mode systems

    Science.gov (United States)

    Mathew, Ranchu; Tiesinga, Eite

    2017-04-01

    Recently, quenches in isolated ultra-cold atomic quantum systems have become a subject of intense study. We consider quantum few-mode systems that are integrable in their classical mean-field limit and become dynamically unstable after a quench of a system parameter. Specifically, we study the cases of a Bose-Einstein condensate (BEC) in a double-well potential and of an antiferromagnetic F = 1 spinor BEC constrained to a single spatial mode. First, we study the time dynamics of a coherent state after the quench within the truncated Wigner approximation and find that due to phase-space mixing the systems relax to a steady state. Using action-angle formalism and guided by insights from the related pendulum system, we obtain analytical expressions for the time evolution of expectation values of observables and their long-time values. We also study the full quantum dynamics of the systems. Comparing their results with the TWA results, we find agreement in the long-time expectation value of the observables. The relaxation time scales, however, are different.

  13. Universal Solutions of Quantum Dynamical Yang-Baxter Equations

    CERN Document Server

    Arnaudon, Daniel; Ragoucy, E; Roche, P; Roche, Ph.

    1998-01-01

    We construct a universal trigonometric solution of the Gervais-Neveu-Felder equation in the case of finite dimensional simple Lie algebras and finite dimensional contragredient simple Lie superalgebras.

  14. Fuzzy Geometry of Commutative Spaces and Quantum Dynamics

    International Nuclear Information System (INIS)

    Mayburov, S.N.

    2016-01-01

    Fuzzy topology and geometry considered as the possible mathematical framework for novel quantum-mechanical formalism. In such formalism the states of massive particle m correspond to the elements of fuzzy manifold called fuzzy points. Due to the manifold weak topology, m space coordinate x acquires principal uncertainty σ x and described by the positive, normalized density w(r-vector , t) in 3-dimensional case. It’s shown that the evolution of m state on such 3-dimensional manifold corresponds to Shroedinger dynamics of massive quantum particle

  15. A non-critical string approach to black holes, time and quantum dynamics

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.

    1994-01-01

    We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\

  16. Some details of proofs of theorems related to the quantum dynamical Yang-Baxter equation

    NARCIS (Netherlands)

    Koornwinder, Tom H.

    2000-01-01

    This paper gives some further details of proofs of some theorems related to the quantum dynamical Yang-Baxter equation. This mainly expands proofs given in "Lectures on the dynamical Yang-Baxter equation" by P. Etingof and O. Schiffmann, math.QA/9908064. This concerns the intertwining operator, the

  17. 17 CFR 240.15d-20 - Plain English presentation of specified information.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Plain English presentation of specified information. 240.15d-20 Section 240.15d-20 Commodity and Securities Exchanges SECURITIES AND... Regulations Under the Securities Exchange Act of 1934 Other Reports § 240.15d-20 Plain English presentation of...

  18. Global optimization for quantum dynamics of few-fermion systems

    Science.gov (United States)

    Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.

    2018-03-01

    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.

  19. Chapter 5: Quantum Dynamics in Dissipative Molecular Systems

    Science.gov (United States)

    Zhang, Hou-Dao; Xu, J.; Xu, Rui-Xue; Yan, Y. J.

    2014-04-01

    The following sections are included: * Introduction * HEOM versus Path Integral Formalism: Background * Generic form and terminology of HEOM * Statistical mechanics description of bath influence * Feynman-Vernon influence functional formalism * General comments * Memory-Frequency Decomposition of Bath Correlation Functions * PSD of Bose function * Brownian oscillators decomposition of bath spectral density function * Optimized HEOM Theory With Accuracy Control * Construction of HEOM via path integral formalism * Accuracy control on white-noise residue ansatz * Efficient HEOM propagator: Numerical filtering and indexing algorithm * HEOM in Quantum Mechanics for Open Systems * The HEOM space and the Schrödinger picture * HEOM in the Heisenberg picture * Mixed Heisenberg-Schrödinger block-matrix dynamics in nonlinear optical response functions * Two-Dimensional Spectroscopy: Model Calculations * Concluding Remarks * Acknowledgments * References

  20. Quantum dynamics and entanglement of spins on a square lattice

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis

    2007-01-01

    Bulk magnetism in solids is fundamentally quantum mechanical in nature. Yet in many situations, including our everyday encounters with magnetic materials, quantum effects are masked, and it often suffices to think of magnetism in terms of the interaction between classical dipole moments. Whereas ......, suggesting entanglement of spins at short distances in the simplest of all two-dimensional quantum antiferromagnets, the square lattice Heisenberg system.......Bulk magnetism in solids is fundamentally quantum mechanical in nature. Yet in many situations, including our everyday encounters with magnetic materials, quantum effects are masked, and it often suffices to think of magnetism in terms of the interaction between classical dipole moments. Whereas...... this intuition generally holds for ferromagnets, even as the size of the magnetic moment is reduced to that of a single electron spin (the quantum limit), it breaks down spectacularly for antiferromagnets, particularly in low dimensions. Considerable theoretical and experimental progress has been made...

  1. Dimensionality

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1983-01-01

    The role played by the dimensions of space and space-time in determining the form of various physical laws and constants of Nature is examined. Low dimensional manifolds are also seen to possess special mathematical properties. The concept of fractal dimension is introduced and the recent renaissance of Kaluza-Klein theories obtained by dimensional reduction from higher dimensional gravity or supergravity theories is discussed. A formulation of the anthropic principle is suggested. (author)

  2. Quantum dynamics for classical systems with applications of the number operator

    CERN Document Server

    Bagarello, Fabio

    2013-01-01

    Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a uniqu...

  3. Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics

    Science.gov (United States)

    Wu, Yinghua; Herman, Michael F.; Batista, Victor S.

    2005-03-01

    A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.

  4. Automatic generation of active coordinates for quantum dynamics calculations: Application to the dynamics of benzene photochemistry

    International Nuclear Information System (INIS)

    Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis

    2008-01-01

    A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments

  5. Pseudospectral sampling of Gaussian basis sets as a new avenue to high-dimensional quantum dynamics

    Science.gov (United States)

    Heaps, Charles

    This thesis presents a novel approach to modeling quantum molecular dynamics (QMD). Theoretical approaches to QMD are essential to understanding and predicting chemical reactivity and spectroscopy. We implement a method based on a trajectory-guided basis set. In this case, the nuclei are propagated in time using classical mechanics. Each nuclear configuration corresponds to a basis function in the quantum mechanical expansion. Using the time-dependent configurations as a basis set, we are able to evolve in time using relatively little information at each time step. We use a basis set of moving frozen (time-independent width) Gaussian functions that are well-known to provide a simple and efficient basis set for nuclear dynamics. We introduce a new perspective to trajectory-guided Gaussian basis sets based on existing numerical methods. The distinction is based on the Galerkin and collocation methods. In the former, the basis set is tested using basis functions, projecting the solution onto the functional space of the problem and requiring integration over all space. In the collocation method, the Dirac delta function tests the basis set, projecting the solution onto discrete points in space. This effectively reduces the integral evaluation to function evaluation, a fundamental characteristic of pseudospectral methods. We adopt this idea for independent trajectory-guided Gaussian basis functions. We investigate a series of anharmonic vibrational models describing dynamics in up to six dimensions. The pseudospectral sampling is found to be as accurate as full integral evaluation, while the former method is fully general and integration is only possible on very particular model potential energy surfaces. Nonadiabatic dynamics are also investigated in models of photodissociation and collinear triatomic vibronic coupling. Using Ehrenfest trajectories to guide the basis set on multiple surfaces, we observe convergence to exact results using hundreds of basis functions. The pseudospectral sampling of Gaussian basis functions introduces a new and efficient means of calculating the underlying quantum mechanics associated with trajectory-guided basis sets. We also discuss the conceptual connections to the quantum trajectory method and the benefits of solving quantum mechanics on a discrete grid. We include a chapter studying the strengths and weaknesses of the parametric two-electron reduced-density-matrix (p2-RDM) method for systems susceptible to delocalization error. Density matrix methods are known to overestimate the energetic effects of electron delocalization, including severe effects such as diatomic dissociation to fractionally charged atoms. We consider the role of delocalization error in p2-RDM and demonstrate that the p2-RDM is resistant to delocalization error in challenging cases.

  6. Classical and quantum dynamics of driven elliptical billiards

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Florian

    2009-12-09

    Subject of this thesis is the investigation of the classical dynamics of the driven elliptical billiard and the development of a numerical method allowing the propagation of arbitrary initial states in the quantum version of the system. In the classical case, we demonstrate that there is Fermi acceleration in the driven billiard. The corresponding transport process in momentum space shows a surprising crossover from sub- to normal diffusion. This crossover is not parameter induced, but rather occurs dynamically in the evolution of the ensemble. The four-dimensional phase space is analyzed in depth, especially how its composition changes in different velocity regimes. We show that the stickiness properties, which eventually determine the diffusion, are intimately connected with this change of the composition of the phase space with respect to velocity. In the course of the evolution, the accelerating ensemble thus explores regions of varying stickiness, leading to the mentioned crossover in the diffusion. In the quantum case, a series of transformations tailored to the elliptical billiard is applied to circumvent the time-dependent Dirichlet boundary conditions. By means of an expansion ansatz, this eventually yields a large system of coupled ordinary differential equations, which can be solved by standard techniques. (orig.)

  7. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  8. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  9. Noise Induced Dissipation in Discrete-Time Classical and Quantum Dynamical Systems

    OpenAIRE

    Wolowski, Lech

    2004-01-01

    We introduce a new characteristics of chaoticity of classical and quantum dynamical systems by defining the notion of the dissipation time which enables us to test how the system responds to the noise and in particular to measure the speed at which an initially closed, conservative system converges to the equilibrium when subjected to noisy (stochastic) perturbations. We prove fast dissipation result for classical Anosov systems and ...

  10. An investigation of algebraic quantum dynamics for mesoscopic coupled electric circuits with mutual inductance

    International Nuclear Information System (INIS)

    Pahlavani, H.; Kolur, E. Rahmanpour

    2016-01-01

    Based on the electrical charge discreteness, the Hamiltonian operator for the mutual inductance coupled quantum mesoscopic LC circuits has been found. The persistent current on two driven coupled mesoscopic electric pure L circuits (two quantum loops) has been obtained by using algebraic quantum dynamic approach. The influence of the mutual inductance on energy spectrum and quantum fluctuations of the charge and current for two coupled quantum electric mesoscopic LC circuits have been investigated.

  11. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Blancafort, Lluis [Institut de Quimica Computacional, Department de Quimica, Universitat de Girona, Campus de Montilivi, 17071 Girona (Spain); Gatti, Fabien [CTMM, Institut Charles Gerhardt Montpellier (UMR 5253), CC 1501, Universite Montpellier 2, 34095 Montpellier Cedex 05 (France); Meyer, Hans-Dieter [Theoretische Chemie, Ruprecht-Karls-Universitaet, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany)

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  12. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    International Nuclear Information System (INIS)

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-01-01

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  13. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

    DEFF Research Database (Denmark)

    Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    the fundamentals and several overtones of the vibrational motion are computed. The spectrum of H5O2+ is shaped to a large extent by couplings of the proton-transfer motion to large amplitude fluxional motions of the water molecules, water bending and water-water stretch motions. These couplings are identified...

  14. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    Science.gov (United States)

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  15. AMS-IMS-SIAM joint summer conference on advances in quantum dynamics

    CERN Document Server

    Baker, B. Mitchell; Jorgensen, Palle E.T.; Muhly, Paul S

    2003-01-01

    This volume contains the proceedings of the conference on Advances in Quantum Dynamics. The purpose of the conference was to assess the current state of knowledge and to outline future research directions of quantum dynamical semigroups on von Neumann algebras. Since the appearance of the landmark papers by F. Murray and J. von Neumann, "On the Rings of Operators", von Neumann algebras have been used as a mathematical model in the study of time evolution of quantum mechanical systems. Following the work of M. H. Stone, von Neumann, and others on the structure of one-parameter groups of unitary transformations, many researchers have made fundamental contributions to the understanding of time-reversible dynamical systems.This book deals with the mathematics of time-irreversible systems, also called dissipative systems. The time parameter is the half-line, and the transformations are now endomorphisms as opposed to automorphisms. For over a decade, W. B. Arveson and R. T. Powers have pioneered the effort to unde...

  16. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.

    Science.gov (United States)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  17. Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.

    Science.gov (United States)

    Brown, Paul A; Messina, Michael

    2016-03-03

    We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.

  18. Entropy of Quantum Dynamical Systems and Sufficient Families in Orthomodular Lattices with Bayessian State

    Science.gov (United States)

    Mona, Khare; Shraddha, Roy

    2008-09-01

    The purpose of the present paper is to study the entropy hs(Φ) of a quantum dynamical systems Φ = (L,s,phi), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs(phi,Script A) of partition Script A of a Boolean algebra B with respect to a state s and a state preserving homomorphism phi, we prove a few results on that, define the entropy of a dynamical system hs(Φ), and show its invariance. The concept of sufficient families is also given and we establish that hs(Φ) comes out to be equal to the supremum of hs(phi,Script A), where Script A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system (L,s,phi), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B,s0,phi), where B is a Boolean algebra and s0 is a state on B.

  19. Entropy of Quantum Dynamical Systems and Sufficient Families in Orthomodular Lattices with Bayessian State

    International Nuclear Information System (INIS)

    Khare, Mona; Roy, Shraddha

    2008-01-01

    The purpose of the present paper is to study the entropy h s (Φ) of a quantum dynamical systems Φ = (L,s,φ), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy h s (φ,A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism φ, we prove a few results on that, define the entropy of a dynamical system h s (Φ), and show its invariance. The concept of sufficient families is also given and we establish that h s (Φ) comes out to be equal to the supremum of h s (φ,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system (L,s,φ), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B,s 0 ,φ), where B is a Boolean algebra and s 0 is a state on B

  20. Ab initio potential energy surfaces and quantum dynamics for polyatomic bimolecular reactions.

    Science.gov (United States)

    Fu, Bina; Zhang, Donghui

    2018-03-26

    There has been great progress in the development of potential energy surfaces (PESs) and quantum dynamics calculations in the gas phase. The establishment of fitting procedure for highly accurate PESs and new developments in quantum reactive scattering on reliable PESs allow accurate characterization of reaction dynamics beyond triatomic systems. This review will give the recent development in our group in constructing ab initio PESs based on the neural networks, and the time-dependent wave packet calculations for bimolecular reactions beyond three atoms. Bimolecular reactions of current interest to the community, namely, OH+H2, H+H2O, OH+CO, H+CH4 and Cl+CH4 are focused on. Quantum mechanical characterization of these reactions uncovers interesting dynamical phenomena with an unprecedented level of sophistication, and has greatly advanced our understanding of polyatomic reaction dynamics.

  1. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    Science.gov (United States)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  2. Morse oscillator propagator in the high temperature limit II: Quantum dynamics and spectroscopy

    Science.gov (United States)

    Toutounji, Mohamad

    2018-04-01

    This paper is a continuation of Paper I (Toutounji, 2017) of which motivation was testing the applicability of Morse oscillator propagator whose analytical form was derived by Duru (1983). This is because the Morse oscillator propagator was reported (Duru, 1983) in a triple-integral form of a functional of modified Bessel function of the first kind, which considerably limits its applicability. For this reason, I was prompted to find a regime under which Morse oscillator propagator may be simplified and hence be expressed in a closed-form. This was well accomplished in Paper I. Because Morse oscillator is of central importance and widely used in modelling vibrations, its propagator applicability will be extended to applications in quantum dynamics and spectroscopy as will be reported in this paper using the off-diagonal propagator of Morse oscillator whose analytical form is derived.

  3. Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study

    International Nuclear Information System (INIS)

    Christov, Ivan P.

    2016-01-01

    In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.

  4. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.

    Science.gov (United States)

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-21

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems.

  5. Shallow gas incident in 3-ELPS-15D-SPS well; Incidente com shallow gas no poco 3-ELPS-15D-SPS

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rubens Fausto [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the concerns during the planning phase of an exploratory offshore well drilling is the possibility of occurrence of a shallow gas accumulation. In spite of being a rare event, taking into account that an event like this can have disastrous consequences, the cares to work with that type of incident cannot be despised. As example, in 2003, during the operations in the extension well 3-ELPS-15D-SPS, it happened the uncontrolled influx of water and gas to the bottom of the sea: the annular space between the 30'' and 13 3/8'' casings was not filled out with cement, allowing the flow from a shallow permeable interval to the bottom of the sea through the wellhead's cement return orifices, generating the need of an corrective action to make the abandonment of the well in accordance with the Regulation of Abandonment of Wells existent in Brazil. This work presents the mechanical conditions of the interval close to the wet wellhead of the 3-ELPS-15D-SPS, enumerating the sequence of operations accomplished to solve the problem. (author)

  6. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules

    International Nuclear Information System (INIS)

    Grohmann, Thomas

    2012-01-01

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  7. Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework

    Science.gov (United States)

    Miller, Harry J. D.; Anders, Janet

    2017-06-01

    A central topic in the emerging field of quantum thermodynamics is the definition of thermodynamic work in the quantum regime. One widely used solution is to define work for a closed system undergoing non-equilibrium dynamics according to the two-point energy measurement scheme. However, due to the invasive nature of measurement the two-point quantum work probability distribution cannot describe the statistics of energy change from the perspective of the system alone. We here introduce the quantum histories framework as a method to characterise the thermodynamic properties of the unmeasured, closed dynamics. Constructing continuous power operator trajectories allows us to derive an alternative quantum work distribution for closed quantum dynamics that fulfils energy conservation and is time-reversal symmetric. This opens the possibility to compare the measured work with the unmeasured work, contrasting with the classical situation where measurement does not affect the work statistics. We find that the work distribution of the unmeasured dynamics leads to deviations from the classical Jarzynski equality and can have negative values highlighting distinctly non-classical features of quantum work.

  8. Quantum dynamics of STM and laser induced desorption of atoms and molecules from surfaces

    CERN Document Server

    Boendgen, G

    2001-01-01

    The manipulation of atoms and molecules at solid surfaces by electronic excitations with electrons (or holes) emitted from the tip of a scanning tunneling microscope (STM) or with laser radiation is both of applied and fundamental interest, e.g. for micro- and nanostructuring of materials, the clarification of elementary (catalytic) reaction mechanisms and for the question of how to treat the quantum dynamics of a laser or STM driven 'system' (the adsorbate) in contact with a dissipative (energy-withdrawing) 'bath' (the substrate). Desorption induced by electronic transitions (DIET) and its variant DIMET (M = multiple) are among the simplest possible 'reactions' of adsorbate-surface systems; usually involving extremely short-lived electronically excited intermediates. In this thesis, the ultra-short dynamics of directly (localised to the adsorbate-substrate complex) and indirectly (i.e., through the substrate) stimulated DIET and DIMET processes was studied for Si(100)-(2x1):H(D) and Pt(111):NO. Isotope effec...

  9. Quantum dynamics of bosons in a two-ring ladder: Dynamical algebra, vortexlike excitations, and currents

    Science.gov (United States)

    Richaud, Andrea; Penna, Vittorio

    2017-07-01

    We study the quantum dynamics of the Bose-Hubbard model on a ladder formed by two rings coupled by the tunneling effect. By implementing the Bogoliubov approximation scheme, we prove that, despite the presence of the inter-ring coupling term, the Hamiltonian decouples in many independent sub-Hamiltonians Ĥk associated with momentum-mode pairs ±k . Each sub-Hamiltonian Ĥk is then shown to be part of a specific dynamical algebra. The properties of the latter allow us to perform the diagonalization process, to find the energy spectrum and the conserved quantities of the model, and to derive the time evolution of important physical observables. We then apply this solution scheme to the simplest possible closed ladder, the double trimer. After observing that the excitations of the system are weakly populated vortices, we explore the corresponding dynamics by varying the initial conditions and the model parameters. Finally, we show that the inter-ring tunneling determines a spectral collapse when approaching the border of the dynamical-stability region.

  10. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.

    Science.gov (United States)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-14

    Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.

  11. Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2017-05-15

    The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)

  12. Parametrization of complex absorbing potentials for time-dependent quantum dynamics

    International Nuclear Information System (INIS)

    Vibok, A.; Balint-Kurti, G.G.

    1992-01-01

    Five different forms of complex absorbing potentials are examined and compared. Such potentials are needed to absorb wavepackets near the edges of grids in time-dependent quantum dynamical calculations. The extent to which the different potentials transmit or reflect an incident wavepacket is quantified, and optimal potential parameters to minimize both the reflection and transmission for each type of potential are derived. A rigorously derived scaling procedure, which permits the derivation of optimal potential parameters for use with any chosen mass or kinetic energy from those optimized for different conditions, is described. Tables are also presented which permit the immediate selection of the parameters for an absorbing potential of a particular form so as to allow a preselected (very small) degree of transmitted plus reflected probability to be attained. It is always desirable to devote a minimal region to the absorbing potential, while at the same time effectively absorbing all of the wavepacket and neither transmitting nor reflecting any of it. The tables presented here enable the use to easily select the potential parameters he will require to attain these goals. 23 refs., 7 figs., 4 tabs

  13. Time-reversal symmetric work distributions for closed quantum dynamics in the histories framework

    International Nuclear Information System (INIS)

    Miller, Harry J D; Anders, Janet

    2017-01-01

    A central topic in the emerging field of quantum thermodynamics is the definition of thermodynamic work in the quantum regime. One widely used solution is to define work for a closed system undergoing non-equilibrium dynamics according to the two-point energy measurement scheme. However, due to the invasive nature of measurement the two-point quantum work probability distribution cannot describe the statistics of energy change from the perspective of the system alone. We here introduce the quantum histories framework as a method to characterise the thermodynamic properties of the unmeasured , closed dynamics. Constructing continuous power operator trajectories allows us to derive an alternative quantum work distribution for closed quantum dynamics that fulfils energy conservation and is time-reversal symmetric. This opens the possibility to compare the measured work with the unmeasured work, contrasting with the classical situation where measurement does not affect the work statistics. We find that the work distribution of the unmeasured dynamics leads to deviations from the classical Jarzynski equality and can have negative values highlighting distinctly non-classical features of quantum work. (fast track communication)

  14. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    Science.gov (United States)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  15. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations

    Science.gov (United States)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.

  16. Classical versus quantum dynamical chaos: Sensitivity to external perturbations, stability and reversibility

    Science.gov (United States)

    Sokolov, Valentin V.; Zhirov, Oleg V.; Kharkov, Yaroslav A.

    The extraordinary complexity of classical trajectories of typical nonlinear systems that manifest stochastic behavior is intimately connected with exponential sensitivity to small variations of initial conditions and/or weak external perturbations. In rigorous terms, such classical systems are characterized by positive algorithmic complexity described by the Lyapunov exponent or, alternatively, by the Kolmogorov-Sinai entropy. The said implies that, in spite of the fact that, formally, any however complex trajectory of a perfectly isolated (closed) system is unique and differentiable for any certain initial conditions and the motion is perfectly reversible, it is impractical to treat that sort of classical systems as closed ones. Inevitably, arbitrary weak influence of an environment crucially impacts the dynamics. This influence, that can be considered as a noise, rapidly effaces the memory of initial conditions and turns the motion into an irreversible random process. In striking contrast, the quantum mechanics of the classically chaotic systems exhibit much weaker sensitivity and strong memory of the initial state. Qualitatively, this crucial difference could be expected in view of a much simpler structure of quantum states as compared to the extraordinary complexity of random and unpredictable classical trajectories. However the very notion of trajectories is absent in quantum mechanics so that the concept of exponential instability seems to be irrelevant in this case. The problem of a quantitative measure of complexity of a quantum state of motion, that is a very important and nontrivial issue of the theory of quantum dynamical chaos, is the one of our concern. With such a measure in hand, we quantitatively analyze the stability and reversibility of quantum dynamics in the presence of external noise. To solve this problem we point out that individual classical trajectories are of minor interest if the motion is chaotic. Properties of all of them are alike in

  17. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations.

    Science.gov (United States)

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  18. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  19. The effect of classical and quantum dynamics on vibrational frequency shifts of H{sub 2} in clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Plattner, Nuria, E-mail: nuria.plattner@fu-berlin.de [Department of Mathematics and Computer Science, Free University Berlin, Arnimallee 6, 14195 Berlin (Germany); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland and Chemistry Department, Brown University, Providence, Rhode Island 02912 (United States)

    2014-01-14

    Vibrational frequency shifts of H{sub 2} in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H{sub 2} in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H{sub 2} in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H{sub 2} vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H{sub 2} in the 5{sup 12} cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5{sup 12} cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5{sup 12}6{sup 4} cages for which higher occupation numbers than one H{sub 2} per cage are likely.

  20. A straightforward method of analysis for direct quantum dynamics: application to the photochemistry of a model cyanine.

    Science.gov (United States)

    Allan, Charlotte S M; Lasorne, Benjamin; Worth, Graham A; Robb, Michael A

    2010-08-26

    We present a new way of analyzing direct quantum dynamics simulations based on a Mulliken-type population analysis. This provides a straightforward interpretation of the wavepacket in much the same way as semiclassical trajectories are usually analyzed. The result can be seen as a coupled set of quantum trajectories. We apply this to the study of the photochemistry of a 12-atom model cyanine to explore possibilities for intelligent optimal control. The work presented here builds on previous semiclassical dynamics simulations [ Hunt , P. A. ; Robb , M. A. J. Am. Chem. Soc. 2005 , 127 , 5720 ]. Those calculations suggested that, by controlling the distribution of momentum components in the initial wavepacket, it should be possible to drive the system to a specific region of the conical intersection seam and ultimately control the product distribution. This was confirmed experimentally by optimal control methods [ Dietzek , B. ; Bruggemann , B. ; Pascher , T. ; Yartsev , A. J. Am. Chem. Soc. 2007 , 129 , 13014 ]. This paper aims to demonstrate this in a quantum dynamics context and give further insight into the conditions required for control. Our results show that directly addressing the trans-cis torsional modes is not efficient. Instead, one needs to decrease the momentum in the skeletal deformation coordinates to prompt radiationless decay near the minimum conical intersection at large twist angles.

  1. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    Science.gov (United States)

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E.

    2015-03-01

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  2. The continuous 1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS

    Directory of Open Access Journals (Sweden)

    Stephan Friedrichs

    2016-05-01

    Full Text Available In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP we are given an $x$-monotone chain of line segments in $R^2$ (the terrain $T$, and ask for the minimum number of guards (located anywhere on $T$ required to guard all of $T$. We construct guard candidate and witness sets $G, W \\subset T$ of polynomial size such that any feasible (optimal guard cover $G^* \\subseteq G$ for $W$ is also feasible (optimal for the continuous TGP. This discretization allows us to: (1 settle NP-completeness for the continuous TGP; (2 provide a Polynomial Time Approximation Scheme (PTAS for the continuous TGP using the PTAS for the discrete TGP by Gibson et al.; (3 formulate the continuous TGP as an Integer Linear Program (IP. Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to $10^6$ vertices within minutes on a standard desktop computer.

  3. Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains

    Directory of Open Access Journals (Sweden)

    Goran Martinović

    2015-03-01

    Full Text Available In the 1.5D terrain guarding problem, an x-monotone polygonal line is dened by k vertices and a G set of terrain points, i.e. guards, and a N set of terrain points which guards are to observe (guard. This involves a weighted version of the guarding problem where guards G have weights. The goal is to determine a minimum weight subset of G to cover all the points in N, including a version where points from N have demands. Furthermore, another goal is to determine the smallest subset of G, such that every point in N is observed by the required number of guards. Both problems are NP-hard and have a factor 5 approximation [3, 4]. This paper will show that if the (1+ϵ-approximate solver for the corresponding linear program is a computer, for any ϵ > 0, an extra 1+ϵ factor will appear in the final approximation factor for both problems. A comparison will be carried out the parallel implementation based on GPU and CPU threads with the Gurobi solver, leading to the conclusion that the respective algorithm outperforms the Gurobi solver on large and dense inputs typically by one order of magnitude.

  4. On a class of integral equations having application in quantum dynamics

    International Nuclear Information System (INIS)

    Cacciari, Ilaria; Moretti, Paolo

    2007-01-01

    A class of Fredholm integral equations of the second kind is studied, with kernel separable outside the basic interval (a, b). Using theorems of matrix algebra, the solution for x outside (a, b) is found in terms of the Fredholm determinants in a simple and compact form. As a particular case, the quantum propagator for one-dimensional problems is obtained. (fast track communication)

  5. Quantum dynamical study of the O(1D)+HCl reaction employing three electronic state potential energy surfaces

    Science.gov (United States)

    Yang, Huan; Han, Ke-Li; Nanbu, Shinkoh; Nakamura, Hiroki; Balint-Kurti, Gabriel G.; Zhang, Hong; Smith, Sean C.; Hankel, Marlies

    2008-01-01

    Quantum dynamical calculations are reported for the title reaction, for both product arrangement channels and using potential energy surfaces corresponding to the three electronic states, 1A'1, 2A'1, and 1A″1, which correlate with both reactants and products. The calculations have been performed for J =0 using the time-dependent real wavepacket approach by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)]. Reaction probabilities for both product arrangement channels on all three potential energy surfaces are presented for total energies between 0.1 and 1.1eV. Product vibrational state distributions at two total energies, 0.522 and 0.722eV, are also presented for both channels and all three electronic states. Product rotational quantum state distributions are presented for both product arrangement channels and all three electronic states for the first six product vibrational states.

  6. Comparison between the disease-specific Airways Questionnaire 20 and the generic 15D instruments in COPD

    Directory of Open Access Journals (Sweden)

    Kinnula Vuokko L

    2011-01-01

    Full Text Available Abstract Background Given that the assessment of health-related quality of life (HRQoL is an essential outcome measure to optimize chronic obstructive pulmonary disease (COPD patient management, there is a need for a short and fast, reliable and valid instrument for routine use in clinical practice. The objective of this study was to analyse the relationship between the disease-specific Airways questionnaire (AQ20 and the generic 15D health-related quality of life (HRQoL instrument simultaneously in a large cohort of patients with COPD. We also compare the HRQoL of COPD patients with that of the general population. Methods The AQ20 and 15D were administered to 739 COPD patients representing an unselected hospital-based COPD population. The completion rates and validity of, and correlations among the questions and dimension scores were examined. A factor analysis with varimax rotation was performed in order to find subsets of highly correlating items of the questionnaires. Results The summary scores of AQ20 and 15D were highly correlated (r = - 0.71, p Conclusions The AQ20 and 15D summary scores are comparable in terms of measuring HRQoL in COPD patients. The data support the validity of 15D to measure the quality of life in COPD. COPD compromises the HRQoL broadly, as reflected by the generic instrument. Both questionnaires are simple and short, and could easily be used in clinical practice with high completion rates.

  7. UNTANGLING THE NEAR-IR SPECTRAL FEATURES IN THE PROTOPLANETARY ENVIRONMENT OF KH 15D

    Energy Technology Data Exchange (ETDEWEB)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.; Cauley, P. Wilson [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Leggett, S. K., E-mail: nicole.arulanantham@colorado.edu [Gemini Observatory (North), Hilo, HI 96720 (United States)

    2017-01-10

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H{sub 2} emission features associated with the inner part of the jet show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μ m size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 M {sub J}, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.

  8. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat

    KAUST Repository

    Byrt, Caitlin Siobhan

    2014-10-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K+/Na+ ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na+-selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na+ concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na+ from the xylem vessels in the root and has an important role in restricting the transport of Na+ from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na+ exclusion and is critical in maintaining a high K+/Na+ ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.

  9. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    International Nuclear Information System (INIS)

    Kar, Rekha; Mishra, Nandita; Singha, Prajjal K.; Venkatachalam, Manjeri A.; Saikumar, Pothana

    2010-01-01

    Research highlights: → Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. → Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. → Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. → Loss of mitochondrial tubular rigidity and disorganization of cristae. → Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy Δ 12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.

  10. Relativistic classical and quantum dynamics in intense crossed laser beams of various polarizations

    Directory of Open Access Journals (Sweden)

    M. Verschl

    2007-02-01

    Full Text Available The dynamics of an electron in crossed laser fields is investigated analytically. Two different standing wave configurations are compared. The counterpropagating laser waves are either linearly or circularly polarized. Both configurations have in common that there are one-dimensional trajectories on which the electron can oscillate with vanishing Lorentz force. The dynamics is analyzed for the situations when the electron moves in the vicinity of these ideal axes. If the laser intensities imply nonrelativistic electron dynamics, the system is described quantum mechanically. A semiclassical treatment renders the strongly relativistic regime accessible as well. To describe relativistic wave packets, the results of the classical analysis are employed for a Monte Carlo ensemble. This allows for a comparison of the wave packet dynamics for both configurations in the strongly relativistic regime. It is found for certain cases that relativity slows down the dynamics, i.e., for higher laser intensities, wave packet spreading and the drift away from the ideal axis of vanishing Lorentz force are shown to be increasingly suppressed.

  11. Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, Federico, E-mail: federico.grasselli@unimore.it; Goldoni, Guido, E-mail: guido.goldoni@unimore.it [Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena (Italy); CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy); Bertoni, Andrea, E-mail: andrea.bertoni@nano.cnr.it [CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy)

    2015-01-21

    We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.

  12. Simulational studies of epitaxial semiconductor superlattices: Quantum dynamical phenomena in ac and dc electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Joseph [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Using high-accuracy numerical methods the author investigates the dynamics of independent electrons in both ideal and realistic superlattices subject to arbitrary ac and/or dc electric fields. For a variety of superlattice potentials, optically excited initial wave packets, and combinations of ac and dc electric fields, he numerically solves the time-dependent Schroedinger equation. In the case of ideal periodic superlattice potentials, he investigates a long list of dynamical phenomena involving multiple miniband transitions and time-dependent electric fields. These include acceleration effects associated with interminiband transitions in strong fields, Zener resonances between minibands, dynamic localization with ac fields, increased single-miniband transport with an auxiliary resonant ac field, and enhanced or suppressed interminiband probability exchange using an auxiliary ac field. For all of the cases studied, the resulting time-dependent wave function is analyzed by projecting the data onto convenient orthonormal bases. This allows a detailed comparison with approximately analytic treatments. In an effort to explain the rapid decay of experimentally measured Bloch oscillation (BO) signals the author incorporates a one-dimensional representation of interface roughness (IR) into their superlattice potential. He shows that as a result of IR, the electron dynamics can be characterized in terms of many discrete, incommensurate frequencies near the Block frequency. Chapters 2, 3, 4 and 5 have been removed from this report and will be processed separately.

  13. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    International Nuclear Information System (INIS)

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-01

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate

  14. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  15. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    Science.gov (United States)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  16. Communication: On the consistency of approximate quantum dynamics simulation methods for vibrational spectra in the condensed phase.

    Science.gov (United States)

    Rossi, Mariana; Liu, Hanchao; Paesani, Francesco; Bowman, Joel; Ceriotti, Michele

    2014-11-14

    Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks D2O doped with HOD and pure H2O at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm(-1). Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.

  17. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  18. Preliminary core-engine noise abatement experimental results of a fluid injection nozzle on a JT-15D turbofan engine

    Science.gov (United States)

    Cheng, D. Y.; Wang, P.

    1975-01-01

    Jet noise, as induced by shear stress, in an jet exhaust is investigated. Experiments were performed on a JT-15D fan jet to verify the inward momentum stress reduction concept. The experiments involved making fan air flow convergently around the high velocity core jet with a small angle. Ring airfoils were used as flow separators for the minimization of the thrust loss. Jet exhaust noise reduction of ll db at 30 deg from the jet axis was recorded and 8 db integrated overall noise reduction over a hemisphere was measured with only 4.6% thrust loss, or 152 db/percent thrust loss.

  19. Effects of cereal bar containing polydextrose on subjective feelings of appetite and energy intake in overweight adults over 15 d.

    Science.gov (United States)

    Martinelli, Marcela; Hick, Emilia; Walz, Florencia; Drago, Silvina R

    2018-01-18

    The effects of 15 d polydextrose (16.7 g) consumption on energy intake (EI) and appetite feelings were investigated. Overweight adults consumed a polydextrose-bar or a control-bar matched in energy content as a midmorning snack for 15 consecutive days in a single-blind, randomised, crossover design. The two 15-d intervention periods were separated by a 15-d washout period. On the day 1 and the day 15 of each intervention period, energy intake (primary outcome) and appetite feelings (secondary outcome) were assessed. There were not significant main effects of the day, type of bar, or their interaction for EI (at lunchtime test meal, at rest of the day, or at total daily) or subjective feelings (hunger, desire to eat, fullness, and prospective food consumption) during the satiation and satiety periods. The results showed the consumption of polydextrose-bar during 15 d did not significantly affect energy intake and subjective feelings of appetite in overweight adults.

  20. Quantum dynamics of a BEC interacting with a single-mode quantized field in the presence of interatom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemian, E. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Tavassoly, M.K., E-mail: mktavassoly@yazd.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)

    2016-09-23

    In this paper, we consider a model in which N two-level atoms in a Bose–Einstein condensate (BEC) interact with a single-mode quantized laser field. Our goal is to investigate the quantum dynamics of atoms in the BEC in the presence of interatom interactions. To achieve the purpose, at first, using the collective angular momentum operators, we try to reduce the dynamical Hamiltonian of the system to a well-known Jaynes–Cummings like model (JCM). We also use the Dicke model to construct the state of atomic subsystem, by which the analytical solution of the system may be obtained. Then, we analyze the atomic population inversion, the degree of entanglement between the “atoms in BEC” and the “field” as well as the Mandel parameter. Numerical results show that, the atomic population inversion, atom-field entanglement and quantum statistics of photons are very sensitive to the evolved parameters in the model (and so can be well-adjusted), such as the number of atoms in BEC, the intensity of initial field, the interatom coupling constant and detuning. To investigate the entanglement properties, we pay attention to the entropy and linear entropy. It is shown that, oscillations in the two entropy criteria may be seen, with some maxima of entanglement at some moments of time. Finally, looking for the quantum statistics, we evaluate the Mandel parameter, by which we demonstrate the sub-Poissonian statistics and so the nonclassical characteristics of the field state of system. Collapse-revival phenomenon, which is a distinguishable nonclassical characteristic of the system, can be apparently observed in the atomic population inversion and the Mandel parameter. - Highlights: • N two-level atoms in a BEC interacting with a laser field in the presence of interatom interactions is considered. • The atomic population inversion, degree of entanglement between the “atoms in BEC” and the “field” and the Mandel parameter are investigated. • Collapse

  1. Geometry-based approach to studying the semi-classical limit in quantum dynamics by the coherent states and quantum mechanics on the torus

    International Nuclear Information System (INIS)

    Faure, F.

    1993-01-01

    This thesis deals with problems linked to the study of the semi-classical limit in quantum dynamics. The first part presents a geometrical formulation which is tantamount to the time dependent variational principle. The classical dynamics is considered as an orthogonal projection of the quantum dynamics on the family of coherent states. The angle of projection provides an information on the validity of the approximation. This angle is studied in an illustrating example. In the second part, we study quantum mechanics on the torus as a phase space, and particularly degeneracies in the spectrum of Harper like models or kicked Harper like models which manifest chaotic dynamics. These models find direct applications in solid state physics, especially with the quantum Hall effect. In this study, we use the Chern index, which is a topological characterization of the localization of the eigenfunctions as some periodicity conditions are changed. The use of the Husimi distribution provides a phase space representation of the quantum states. We discuss the role played by separatrix-states, by the effects of quantum tunneling, and by a classically chaotic dynamics. (orig.)

  2. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    Energy Technology Data Exchange (ETDEWEB)

    Unn-Toc, W.; Meier, C.; Halberstadt, N. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Uranga-Pina, Ll. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Facultad de Fisica, Universidad de la Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Rubayo-Soneira, J. [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Ave. Salvador Allende y Luaces, Habana 10600, AP 6163 La Habana (Cuba)

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  3. A breakthrough in neuroscience needs a "Nebulous Cartesian System" Oscillations, quantum dynamics and chaos in the brain and vegetative system.

    Science.gov (United States)

    Başar, Erol; Güntekin, Bahar

    2007-04-01

    The Cartesian System is a fundamental conceptual and analytical framework related and interwoven with the concept and applications of Newtonian Dynamics. In order to analyze quantum processes physicist moved to a Probabilistic Cartesian System in which the causality principle became a probabilistic one. This means the trajectories of particles (obeying quantum rules) can be described only with the concept of cloudy wave packets. The approach to the brain-body-mind problem requires more than the prerequisite of modern physics and quantum dynamics. In the analysis of the brain-body-mind construct we have to include uncertain causalities and consequently multiple uncertain causalities. These multiple causalities originate from (1) nonlinear properties of the vegetative system (e.g. irregularities in biochemical transmitters, cardiac output, turbulences in the vascular system, respiratory apnea, nonlinear oscillatory interactions in peristalsis); (2) nonlinear behavior of the neuronal electricity (e.g. chaotic behavior measured by EEG), (3) genetic modulations, and (4) additional to these physiological entities nonlinear properties of physical processes in the body. The brain shows deterministic chaos with a correlation dimension of approx. D(2)=6, the smooth muscles approx. D(2)=3. According to these facts we propose a hyper-probabilistic approach or a hyper-probabilistic Cartesian System to describe and analyze the processes in the brain-body-mind system. If we add aspects as our sentiments, emotions and creativity to this construct, better said to this already hyper-probabilistic construct, this "New Cartesian System" is more than hyper-probabilistic, it is a nebulous system, we can predict the future only in a nebulous way; however, despite this chain of reasoning we can still provide predictions on brain-body-mind incorporations. We tentatively assume that the processes or mechanisms of the brain-body-mind system can be analyzed and predicted similar to the

  4. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan; Civiš, S.

    2013-01-01

    Roč. 139, č. 10 (2013), s. 104314 ISSN 0021-9606 R&D Projects: GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046; GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : Gaussian distribution * helium * oscillator strengths * quantum chemistry * rotational states * Rydberg states * two-photon processes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.122, year: 2013

  5. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan; Civiš, Svatopluk

    2013-01-01

    Roč. 139, č. 10 (2013), s. 104314 ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571; GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : HARMONIC-GENERATION SPECTRA * DEPENDENT SCHRODINGER-EQUATION * MOLECULAR MULTIPHOTON PROCESSES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.122, year: 2013

  6. Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: the multi-layer multi-configuration time-dependent Hartree method for bosons

    International Nuclear Information System (INIS)

    Krönke, Sven; Cao, Lushuai; Schmelcher, Peter; Vendrell, Oriol

    2013-01-01

    We develop and apply the multi-layer multi-configuration time-dependent Hartree method for bosons, which represents an ab initio method for investigating the non-equilibrium quantum dynamics of multi-species bosonic systems. Its multi-layer feature allows for tailoring the wave function ansatz to describe intra- and inter-species correlations accurately and efficiently. To demonstrate the beneficial scaling and efficiency of the method, we explored the correlated tunneling dynamics of two species with repulsive intra- and inter-species interactions, to which a third species with vanishing intra-species interaction was weakly coupled. The population imbalances of the first two species can feature a temporal equilibration and their time evolution significantly depends on the coupling to the third species. Bosons of the first and second species exhibit a bunching tendency, whose strength can be influenced by their coupling to the third species. (paper)

  7. Quantum Dynamics Study of the Potential Energy Minima Effect on Energy Efficiency for the F- + CH3Cl → FCH3 + Cl- Reaction.

    Science.gov (United States)

    Li, Yida; Wang, Yuping; Wang, Dunyou

    2017-04-13

    The Polanyi rules on the energy efficiency on reactivity are summarized solely from the locations of barriers on the potential energy surfaces. Here, our quantum dynamics study for the F - + CH 3 Cl → FCH 3 + Cl - reaction shows that the two potential energy minima in the entrance channel on the potential energy surface play an essential role in energy efficiency on reactivity. The reactivity of this reaction is dominated by the low collision energies where two distinctive reaction mechanisms involve the two minima in the entrance channel. Overall, the Cl-CH 3 stretching motion and C-H 3 umbrella motion both are more efficient than the translational motion in promoting this reaction. Although this reaction has a negative energy barrier, our study shows that it is the minima in the entrance channel, together with the energy barrier relative to these minima, that determine the energy efficacy on reactivity.

  8. Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone

    Directory of Open Access Journals (Sweden)

    Møller K. B.

    2013-03-01

    Full Text Available In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s to (n,π* internal conversion involves direct motion in nuclear modes coupling the two states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer.

  9. Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone

    DEFF Research Database (Denmark)

    Kuhlman, T. S.; Sauer, Stephan P. A.; Solling, T. I.

    2013-01-01

    In this paper we present 4-state, 5-dimensional Vibronic Coupling Hamiltonians for cyclobutanone and cyclopentanone. Wave packet calculations using these Hamiltonians reveal that for cyclobutanone the (n,3s) to (n,π*) internal conversion involves direct motion in nuclear modes coupling the two st...... states leading to fast population transfer. For cyclopentanone, internal vibrational energy redistribution is a bottleneck for activating reactive nuclear modes leading to slower population transfer....

  10. Single florescent nanodiamond in a three dimensional ABEL trap

    Science.gov (United States)

    Kayci, Metin; Radenovic, Aleksandra

    2015-01-01

    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  11. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages.

    Science.gov (United States)

    Giannotti, Karina Cristina; Leiguez, Elbio; Carvalho, Ana Eduarda Zulim de; Nascimento, Neide Galvão; Matsubara, Márcio Hideki; Fortes-Dias, Consuelo Latorre; Moreira, Vanessa; Teixeira, Catarina

    2017-06-22

    Crotoxin B (CB) is a catalytically active group IIA sPLA 2 from Crotalus durissus terrificus snake venom. In contrast to most GIIA sPLA 2 s, CB exhibits anti-inflammatory effects, including the ability to inhibit leukocyte functions. Lipid droplets (LDs) are lipid-rich organelles associated with inflammation and recognized as a site for the synthesis of inflammatory lipid mediators. Here, the ability of CB to induce formation of LDs and the mechanisms involved in this effect were investigated in isolated macrophages. The profile of CB-induced 15-d-PGJ 2 (15-Deoxy-Delta-12,14-prostaglandin J 2 ) production and involvement of LDs in 15-d-PGJ 2 biosynthesis were also investigated. Stimulation of murine macrophages with CB induced increased number of LDs and release of 15-d-PGJ 2 . LDs induced by CB were associated to PLIN2 recruitment and expression and required activation of PKC, PI3K, MEK1/2, JNK, iPLA 2 and PLD. Both 15-d-PGJ 2 and COX-1 were found in CB-induced LDs indicating that LDs contribute to the inhibitory effects of CB by acting as platform for synthesis of 15-d-PGJ 2 , a pro-resolving lipid mediator. Together, our data indicate that an immunomodulatory GIIA sPLA 2 can directly induce LD formation and production of a pro-resolving mediator in an inflammatory cell and afford new insights into the roles of LDs in resolution of inflammatory processes.

  12. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules; Theoretische Untersuchung zur Quantendynamik der Kernspinisomere nicht-linearer Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, Thomas

    2012-05-31

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  13. Many-body quantum dynamics in the decay of bent dark solitons of Bose-Einstein condensates

    Science.gov (United States)

    Katsimiga, G. C.; Mistakidis, S. I.; Koutentakis, G. M.; Kevrekidis, P. G.; Schmelcher, P.

    2017-12-01

    The beyond mean-field (MF) dynamics of a bent dark soliton (BDS) embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single BDS comparing the MF dynamics to a correlated approach, the multi-configuration time-dependent Hartree method for bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the MF approximation ‘filling’ of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the MF vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond MF dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.

  14. Quantum dynamics of a BEC interacting with a single-mode quantized field under the influence of a dissipation process: thermal and squeezed vacuum reservoirs

    Science.gov (United States)

    Ghasemian, E.; Tavassoly, M. K.

    2017-09-01

    In this paper we consider a system consisting of a number of two-level atoms in a Bose-Einstein condensate (BEC) and a single-mode quantized field, which interact with each other in the presence of two different damping sources, i.e. cavity and atomic reservoirs. The reservoirs which we consider here are thermal and squeezed vacuum ones corresponding to field and atom modes. Strictly speaking, by considering both types of reservoirs for each of the atom and field modes, we investigate the quantum dynamics of the interacting bosons in the system. Then, via solving the quantum Langevin equations for such a dissipative BEC system, we obtain analytical expressions for the time dependence of atomic population inversion, mean atom as well as photon number and quadrature squeezing in the field and atom modes. Our investigations demonstrate that for modeling the real physical systems, considering the dissipation effects is essential. Also, numerical calculations which are presented show that the atomic population inversion, the mean number of atoms in the BEC and the photons in the cavity possess damped oscillatory behavior due to the presence of reservoirs. In addition, non-classical squeezing effects in the field quadrature can be observed especially when squeezed vacuum reservoirs are taken into account. As an outstanding property of this model, we may refer to the fact that one can extract the atom-field coupling constant from the frequency of oscillations in the mentioned quantities such as atomic population inversion.

  15. A combined INS and DINS study of proton quantum dynamics of ice and water across the triple point and in the supercritical phase

    International Nuclear Information System (INIS)

    Andreani, C.; Romanelli, G.; Senesi, R.

    2013-01-01

    Highlights: • Joint Inelastic and Deep Inelastic Neutron Scattering study of proton n(p) in water. • Hardening and softening of vibrational frequencies observed across the melting point. • Small deviations from harmonic behavior of the proton dynamics are determined. - Abstract: We report new results of a combined analysis of previous Inelastic Neutron Scattering (INS) and Deep Inelastic Neutron Scattering (DINS) experiments on ice at T = 271 K and water at T = 285 K and T = 673 K. Proton quantum dynamics is discussed in terms of the total mean kinetic energy, 〈E K 〉, and its three principal direction components, 〈E K 〉 α (with α=x,y,z), the lineshape momentum distribution, n(p), and its harmonic lineshape components, n h (p). The results show that the single proton dynamics is ground-state dominated and that 〈E K 〉 x ,〈E K 〉 y and 〈E K 〉 z consist mainly of weighted averages of a mix of bending and librational, librational and stretching mean kinetic energy components, respectively. The stretching component 〈E K 〉 z is redshifted respect to its harmonic component due to additional network mode contributions and softening caused by anharmonicity. The n(p) lineshapes derived at the investigated temperature reflect the anisotropy and quasi-harmonic nature of proton motion in ice and water

  16. Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Peroxisome proliferator-activated receptor-γ (PPAR-γ has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ(2 on neuronal autophagy induced by I/R. The expression of autophagic-related protein in ischemic cortex such as LC3-II, Beclin 1, cathepsin-B and LAMP1 increased significantly after cerebral I/R injury. Furthermore, increased punctate LC3 labeling and cathepsin-B staining occurred in neurons. Treatment with PPAR-γ agonist 15d-PGJ(2 decreased not only autophagic-related protein expression in ischemic cortex, but also immunoreactivity of LC3 and cathepsin-B in neurons. Autophagic inhibitor 3-methyladenine (3-MA decreased LC3-II levels, reduced the infarct volume, and mimicked some protective effect of 15d-PGJ(2 against cerebral I/R injury. These results indicate that PPAR-γ agonist 15d-PGJ(2 exerts neuroprotection by inhibiting neuronal autophagy after cerebral I/R injury. Although the molecular mechanisms underlying PPAR-γ agonist in mediating neuronal autophagy remain to be determined, neuronal autophagy may be a new target for PPAR-γ agonist treatment in cerebral I/R injury.

  17. Symptom Burden, Medication Detriment, and Support for the Use of the 15D Health-Related Quality of Life Instrument in a Chronic Pain Clinic Population

    Directory of Open Access Journals (Sweden)

    Bruce D. Dick

    2011-01-01

    Full Text Available Chronic noncancer pain is a prevalent problem associated with poor quality of life. While symptom burden is frequently mentioned in the literature and clinical settings, this research highlights the considerable negative impact of chronic pain on the individual. The 15D, a measure of health-related quality of life (HRQOL, is a user-friendly tool with good psychometric properties. Using a modified edmonton symptom assessment scale (ESAS, we examined whether demographics, medical history, and symptom burden reports from the ESAS would be related statistically to HRQOL measured with the 15D. Symptom burden, medication detriment scores, and number of medical comorbidities were significant negative predictors of 15D scores with ESAS symptom burden being the strongest predictor. Our findings highlight the tremendous symptom burden experienced in our sample. Our data suggest that heavier prescription medication treatment for chronic pain has the potential to negatively impact HRQOL. Much remains unknown regarding how to assess and improve HRQOL in this relatively heterogeneous clinical population.

  18. C++QEDv2 Milestone 10: A C++/Python application-programming framework for simulating open quantum dynamics

    Science.gov (United States)

    Sandner, Raimar; Vukics, András

    2014-09-01

    ++ libraries, GNU Scientific Library, Blitz++, FLENS, NumPy, SciPy Catalogue identifier of previous version: AELU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381 Does the new version supersede the previous version?: Yes Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [2,3]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [4] and Monte Carlo wave-function simulation [5]. Solution method: Master equation, Monte Carlo wave-function method Reasons for new version: The new version is mainly a feature release, but it does correct some problems of the previous version, especially as regards the build system. Summary of revisions: We give an example for a typical Python script implementing the ring-cavity system presented in Sec. 3.3 of Ref. [2]: Restrictions: Total dimensionality of the system. Master equation-few thousands. Monte Carlo wave-function trajectory-several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. We use several C++11 features which limits the range of supported compilers (g++ 4.7, clang++ 3.1) Documentation, http://cppqed.sourceforge.net/ Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks. References: [1] Entry point: http://cppqed.sf.net [2] A. Vukics, C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems, Comp. Phys. Comm. 183(2012)1381. [3] A. Vukics, H. Ritsch, C++QED: an object-oriented framework for wave-function simulations of cavity QED systems, Eur. Phys. J. D 44 (2007) 585. [4] H. J. Carmichael, An Open

  19. Tensor network methods for the simulation of open quantum dynamics in multichromophore systems: Application to singlet fission in novel pentacene dimers

    Science.gov (United States)

    Chin, Alex

    Singlet fission (SF) is an ultrafast process in which a singlet exciton spontaneously converts into a pair of entangled triplet excitons on neighbouring organic molecules. As a mechanism of multiple exciton generation, it has been suggested as a way to increase the efficiency of organic photovoltaic devices, and its underlying photophysics across a wide range of molecules and materials has attracted significant theoretical attention. Recently, a number of studies using ultrafast nonlinear optics have underscored the importance of intramolecular vibrational dynamics in efficient SF systems, prompting a need for methods capable of simulating open quantum dynamics in the presence of highly structured and strongly coupled environments. Here, a combination of ab initio electronic structure techniques and a new tensor-network methodology for simulating open vibronic dynamics is presented and applied to a recently synthesised dimer of pentacene (DP-Mes). We show that ultrafast (300 fs) SF in this system is driven entirely by symmetry breaking vibrations, and our many-body approach enables the real-time identification and tracking of the ''functional' vibrational dynamics and the role of the ''bath''-like parts of the environment. Deeper analysis of the emerging wave functions points to interesting links between the time at which parts of the environment become relevant to the SF process and the optimal topology of the tensor networks, highlighting the additional insight provided by moving the problem into the natural language of correlated quantum states and how this could lead to simulations of much larger multichromophore systems Supported by The Winton Programme for the Physics of Sustainability.

  20. Quantum Dynamics of Complex Hamiltonians

    OpenAIRE

    Nigam, Kushagra; Banerjee, Kinjal

    2016-01-01

    Non hermitian Hamiltonians play an important role in the study of dissipative quantum systems. We show that using states with time dependent normalization can simplify the description of such systems especially in the context of the classical limit. We apply this prescription to study the damped harmonic oscillator system. This is then used to study the problem of radiation in leaky cavity.

  1. Health-related quality of life: validity, reliability, and responsiveness of SF-36, 15D, EQ-5D RAQoL, and HAQ in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Linde, L.; Sørensen, J.; Østergaard, Morten

    2008-01-01

    OBJECTIVE: To compare validity, reliability, and responsiveness of generic and disease specific health-related quality of life (HRQOL) instruments in rheumatoid arthritis (RA). METHODS: Two samples of patients completed the Medical Outcomes Study Short Form-36 Health Survey (SF-36), EuroQol (EQ)-5D......, 15D, Rheumatoid Arthritis Quality of Life Scale (RAQoL), Health Assessment Questionnaire (HAQ), and visual analog scales (VAS) for pain, fatigue, and global RA. Validity (convergent, discriminant, and known-groups) was evaluated in a cross-section of 200 patients. Reliability was evaluated...... questionnaires (at 2 weeks and 6 months) included questions about changes in health status since baseline. RESULTS: The cross-sectional sample included 77% women, median age 57 years (range 19-87), disease duration 6 years (0-58), with Disease Activity Score 28-joint count (DAS28) of 3.10 (1...

  2. Optical and Radio Observations of the T Tauri Binary KH 15D (V582 Mon): Stellar Properties, Disk Mass Limit, and Discovery of a CO Outflow

    Science.gov (United States)

    Aronow, Rachel A.; Herbst, William; Hughes, A. Meredith; Wilner, David J.; Winn, Joshua N.

    2018-01-01

    We present VRIJHK photometry of the KH 15D T Tauri binary system for the 2015/2016 and 2016/2017 observing seasons. For the first time in the modern (CCD) era, we are seeing Star B fully emerge from behind the trailing edge of the precessing circumbinary ring during each apastron passage. We are, therefore, able to measure its luminosity and color. Decades of photometry on the system now allow us to infer the effective temperature, radius, mass, and age of each binary component. We find our values to be in good agreement with previous studies, including archival photographic photometry from the era when both stars were fully visible, and they set the stage for a full model of the system that can be constructed once radial velocity measurements are available. We also present the first high-sensitivity radio observations of the system, taken with the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array. The respective 2.0 and 0.88 mm observations provide an upper limit on the circumbinary (gas and dust) disk mass of 1.7 M Jup and reveal an extended CO outflow, which overlaps with the position, systemic velocity, and orientation of the KH 15D system and is certainly associated with it. The low velocity, tight collimation, and extended nature of the emission suggest that the outflow is inclined nearly orthogonal to the line of sight, implying it is also orthogonal to the circumbinary ring. The position angle of the radio outflow also agrees precisely with the direction of polarization of the optical emission during the faint phase. A small offset between the optical image of the binary and the central line of the CO outflow remains a puzzle and possible clue to the jet launching mechanism.

  3. Dimensional Analysis

    CERN Document Server

    Tan, Qingming

    2011-01-01

    Dimensional analysis is an essential scientific method and a powerful tool for solving problems in physics and engineering. This book starts by introducing the Pi Theorem, which is the theoretical foundation of dimensional analysis. It also provides ample and detailed examples of how dimensional analysis is applied to solving problems in various branches of mechanics. The book covers the extensive findings on explosion mechanics and impact dynamics contributed by the author's research group over the past forty years at the Chinese Academy of Sciences. The book is intended for advanced undergra

  4. The Study of Sawtooth Oscillation during ECRH of HL-2A-like Plasma using 1.5D BALDUR Code

    International Nuclear Information System (INIS)

    Promping, J.; Onjun, T.; Poolyarat, N.; Picha, R.

    2009-07-01

    Full text: One of the current issues in tokamak plasma is sawtooth oscillation, because each sawtooth crash results in a significant reduction of central temperature and density. Consequently, the nuclear fusion power will drop. This has a significant impact on the performance of future nuclear fusion power plants. In this work, behaviors of sawtooth oscillations during an electron-cyclotron resonant heating (ECRH) in HL-2A tokamak experiment are studied. The simulation of plasma in HL-2A tokamak is carried out using the 1.5 D BALDUR integrated predictive modeling code, where the plasma core can be described by the combination of anomalous and neoclassical transport. This simulation used the Mixed Bohm/Gyro-Bohm (Mixed B/gB) model for the anomalous transport and the the NCLASS module for the neoclassical transport. For the anomamouse transport, we use Multimode (MMM95) model, while for the neoclassical transport, we use the NCLASS module for the neoclassical transport. In each simulation, a sawtooth crash is predicted by either Rogers-Zakharov sawtooth triggering model, Park-Monticello sawtooth triggering model, or Porcelli sawtooth triggering model. The effect of sawtooth crash is described by a modified Kadomtsev magnetic reconnection model

  5. Time dependent quantum dynamics study of the O++H2(v=0,j=0)→OH++H ion-molecule reaction and isotopic variants (D2,HD)

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Sierra, Jose Daniel; Gray, Stephen K.; Gonzalez, Miguel

    2006-01-01

    The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O + +H 2 (v=0,j=0)→OH + +H reaction and its isotopic variants with D 2 and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections

  6. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) mediates repression of TNF-α by decreasing levels of acetylated histone H3 and H4 at its promoter

    International Nuclear Information System (INIS)

    Engdahl, Ryan; Monroy, M. Alexandra; Daly, John M.

    2007-01-01

    Prostaglandin metabolite 15-Deoxy-Δ 12,14 -prostaglandin J2 (15d-PGJ2) is known to inhibit a number of pro-inflammatory cytokines as well as being a ligand for nuclear receptor PPARγ. We investigated the ability of 15d-PGJ2 to inhibit TNF-α gene expression through mechanisms that involve histone modification. Pretreatment with 15d-PGJ2 (10 μM) inhibited LPS-stimulated TNF-α mRNA in THP-1 monocytes or PMA-differentiated cells to nearly basal levels. A specific PPARγ ligand, GW1929, failed to inhibit LPS-induced TNF-α mRNA expression nor did a PPARγ antagonist, GW9662, alter the repression of TNF-α mRNA in LPS-stimulated cells pretreated with 15d-PGJ2 suggesting a PPARγ-independent inhibition of TNF-α mRNA in THP-1 cells. Transfection studies with a reporter construct and subsequent treatment with 15d-PGJ2 demonstrated a dose-dependent inhibition of the TNF-α promoter. Additional studies demonstrated that inhibition of histone deacetylases with trichostatin A (TSA) or overexpression of histone acetyltransferase CBP could overcome 15d-PGJ2-mediated repression of the TNF-α promoter, suggesting that an important mechanism whereby 15d-PGJ2 suppresses a cytokine is through factors that regulate histone modifications. To examine the endogenous TNF-α promoter, chromatin immunoprecipitations (ChIP) were performed. ChIP assays demonstrated that LPS stimulation induced an increase in histone H3 and H4 acetylation at the TNF-α promoter, which was reduced in cells pretreated with 15d-PGJ2. These results highlight the ability of acetylation and deacetylation factors to affect the TNF-α promoter and demonstrate that an additional important mechanism whereby 15d-PGJ2 mediates TNF-α transcriptional repression by altering levels of acetylated histone H3 and H4 at its promoter

  7. In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier.

    Science.gov (United States)

    Stephens, M F C; Tan, M; Gordienko, V; Harper, P; Doran, N J

    2017-10-02

    We demonstrate and characterize polarization-division multiplexed (PDM) DWDM data transmission for the first time in a range of systems incorporating a net-gain polarization-insensitive fiber optical parametric amplifier (PI-FOPA) for loss compensation. The PI-FOPA comprises a modified diversity-loop architecture to achieve 15dB net-gain, and up to 2.3THz (~18nm) bandwidth. Three representative systems are characterized using a 100Gb/s PDM-QPSK signal in conjunction with emulated DWDM neighbouring channels: (a) a 4x75km in-line fiber transmission system incorporating multiple EDFAs and a single PI-FOPA (b) N cascaded PI-FOPA amplification stages in an unlevelled Nx25km recirculating loop arrangement, with no EDFAs used within the loop signal path, and (c) M cascaded PI-FOPA amplification stages as part of an Mx75.6km gain-flattened recirculating loop system with the FOPA compensating for the transmission fiber loss, and EDFA compensation for loop switching and levelling loss. For the 4x75km in-line system (a), we transmit 45x50GHz-spaced signals ('equivalent' data-rate of 4.5Tb/s) with average OSNR penalty of 1.3dB over the band at 10 -3 BER. For the unlevelled 'FOPA-only' 25.2km cascaded system (b), we report a maximum of eight recirculations for all 10x100GHz-spaced signals, and five recirculations for 20x50GHz-spaced signals. For the 75.6km levelled system (c), we achieve eight recirculations for all 20x50GHz signals resulting in a total transmission distance of 604.8km.

  8. Dimensional Analysis

    Indian Academy of Sciences (India)

    Dimensional analysis is a useful tool which finds important applications in physics and engineering. It is most effective when there exist a maximal number of dimensionless quantities constructed out of the relevant physical variables. Though a complete theory of dimen- sional analysis was developed way back in 1914 in a.

  9. Dimensional Analysis

    Indian Academy of Sciences (India)

    to understand and quite straightforward to use. Dimensional analysis is a topic which every student of 'science encounters in elementary physics courses. The basics of this topic are taught and learnt quite hurriedly (and forgotten fairly quickly thereafter!) It does not generally receive the attention and the respect it deserves ...

  10. Brandteknisk Dimensionering

    DEFF Research Database (Denmark)

    Carlsen, Bent Erik; Jensen, Bjarne Chr.; Olesen, Frits Bolonius

    grundlag for at vurdere, om - og i givet fald hvordan - brandteknisk dimensionering af bærende konstruktioner vil kunne indføres i DIF's konstruktionsnormer, indeholder et skitseforslag til, efter hvilke principper dette vil kunne gøres. Men derudover har udvalget i fire dataoplæg (rapportens bilag 1...

  11. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  12. A reactant-coordinate-based wave packet method for full-dimensional state-to-state quantum dynamics of tetra-atomic reactions: Application to both the abstraction and exchange channels in the H + H2O reaction.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-02-14

    An efficient and accurate wave packet method is proposed for the calculation of the state-to-state S-matrix elements in bimolecular reactions involving four atoms. This approach propagates an initial state specific wave packet in reactant Jacobi coordinates. The projection in product channels is carried out on projection planes, which have one less degree of freedom, by transforming both the time-dependent wave packet and final product states into a set of intermediate coordinates. This reactant-coordinate-based method is more efficient than product-coordinate-based methods because it typically requires a smaller number of basis functions or grid points and allows the determination of S-matrix elements for multiple product channels from a single propagation. This method is demonstrated in calculating the (Jtot = 0) state-to-state S-matrix elements for both the abstraction and exchange channels of the H + H2O reaction.

  13. Quantum dynamics study of energy requirement on reactivity for the HBr + OH reaction with a negative-energy barrier

    Science.gov (United States)

    Wang, Yuping; Li, Yida; Wang, Dunyou

    2017-01-01

    A time-dependent, quantum reaction dynamics approach in full dimensional, six degrees of freedom was carried out to study the energy requirement on reactivity for the HBr + OH reaction with an early, negative energy barrier. The calculation shows both the HBr and OH vibrational excitations enhance the reactivity. However, even this reaction has a negative energy barrier, the calculation shows not all forms of energy are equally effective in promoting the reactivity. On the basis of equal amount of total energy, the vibrational energies of both the HBr and OH are more effective in enhancing the reactivity than the translational energy, whereas the rotational excitations of both the HBr and OH hinder the reactivity. The rate constants were also calculated for the temperature range between 5 to 500 K. The quantal rate constants have a better slope agreement with the experimental data than quasi-classical trajectory results.

  14. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  15. Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model

    Science.gov (United States)

    Hashimoto, Hiroshi; Ishihara, Sumio

    2017-07-01

    Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO melting dynamics in one-dimensional many-body quantum systems.

  16. Quantum Dynamics in the HMF Model

    Science.gov (United States)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  17. Formulations of classical and quantum dynamical theory

    CERN Document Server

    Rosen, Gerald

    1969-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank

  18. Testing quantum dynamics in genetic information processing

    Indian Academy of Sciences (India)

    Unknown

    genetic information is organized in a base-4 language, and not in the base-2 language of our classical digital com- puters (Patel 2000b). My study of the molecular structure of DNA showed that .... In reality, the quantum algorithm is unlikely to work with 100% efficiency. Disturbances from the environ- ment, i.e. decoherence ...

  19. Driven Quantum Dynamics: Will It Blend?

    Directory of Open Access Journals (Sweden)

    Leonardo Banchi

    2017-10-01

    Full Text Available Randomness is an essential tool in many disciplines of modern sciences, such as cryptography, black hole physics, random matrix theory, and Monte Carlo sampling. In quantum systems, random operations can be obtained via random circuits thanks to so-called q-designs and play a central role in condensed-matter physics and in the fast scrambling conjecture for black holes. Here, we consider a more physically motivated way of generating random evolutions by exploiting the many-body dynamics of a quantum system driven with stochastic external pulses. We combine techniques from quantum control, open quantum systems, and exactly solvable models (via the Bethe ansatz to generate Haar-uniform random operations in driven many-body systems. We show that any fully controllable system converges to a unitary q-design in the long-time limit. Moreover, we study the convergence time of a driven spin chain by mapping its random evolution into a semigroup with an integrable Liouvillian and finding its gap. Remarkably, we find via Bethe-ansatz techniques that the gap is independent of q. We use mean-field techniques to argue that this property may be typical for other controllable systems, although we explicitly construct counterexamples via symmetry-breaking arguments to show that this is not always the case. Our findings open up new physical methods to transform classical randomness into quantum randomness, via a combination of quantum many-body dynamics and random driving.

  20. Quantum dynamics of fast chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Light, J.C. [Univ. of Chicago, IL (United States)

    1993-12-01

    The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.

  1. Quantum dynamics of attosecond electron pulse compression

    Science.gov (United States)

    Baum, Peter

    2017-12-01

    If an electron beam is periodically modulated in velocity, for example by laser field cycles, it can transform upon further propagation into a train of attosecond or shorter electron pulses. Here, I investigate the quantum mechanics of such an approach by numerically solving the Schrödinger equation in the time domain. There is a limit for the shortest electron pulses that can be achieved, and it depends on simple relations between the electron energy, the laser period, and the modulation strength. These results allow to design future experiments and to compare the measured electron pulse shapes to their quantum limit.

  2. Molecular quantum dynamics from theory to applications

    CERN Document Server

    Gatti, Fabien

    2014-01-01

    Emphasizing fundamental educational concepts, this book offers an accessible introduction that covers eigenstates, wave packets, quantum mechanical resonances and more. Examples show that high-level experiments and theory must work closely together.

  3. Conditional and unconditional Gaussian quantum dynamics

    Science.gov (United States)

    Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio

    2016-07-01

    This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.

  4. Quantum dynamics of deformed open systems

    CERN Document Server

    Isar, A

    2002-01-01

    A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is derived in the microscopic model using perturbation theory . The coefficient of the master equation depend on the deformation function. The steady state solution of the equation for the density matrix in the number representation is obtained and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation. (author)

  5. A full dimensional investigation of infrared spectroscopy of the RbCs dimer using the multi-configuration time-dependent Hartree method.

    Science.gov (United States)

    Wang, Huihui; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang

    2013-12-28

    The geometry and infrared absorption spectrum of (RbCs)2 have been studied by full dimensional quantum dynamics simulations. For this purpose, the potential energy and dipole moment surfaces are generated by means of a cluster expansion with all two and three mode correlations, and fitted to analytical expressions with negligible deviations. Accordingly, the ground state (RbCs)2 has a diamond geometry with D(2h) symmetry. The infrared spectrum with frequencies up to 120 cm(-1), exhibits rich details of the fundamentals, overtones, and combination bands; the highest fundamental frequency of (RbCs)2 is only 40.26 cm(-1). The present study unravels important details of the interactions between the widely investigated ultracold RbCs molecules.

  6. A full dimensional investigation of infrared spectroscopy of the RbCs dimer using the multi-configuration time-dependent Hartree method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huihui; Yang, Yonggang, E-mail: ygyang@sxu.edu.cn; Xiao, Liantuan; Jia, Suotang [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China)

    2013-12-28

    The geometry and infrared absorption spectrum of (RbCs){sub 2} have been studied by full dimensional quantum dynamics simulations. For this purpose, the potential energy and dipole moment surfaces are generated by means of a cluster expansion with all two and three mode correlations, and fitted to analytical expressions with negligible deviations. Accordingly, the ground state (RbCs){sub 2} has a diamond geometry with D{sub 2h} symmetry. The infrared spectrum with frequencies up to 120 cm{sup −1}, exhibits rich details of the fundamentals, overtones, and combination bands; the highest fundamental frequency of (RbCs){sub 2} is only 40.26 cm{sup −1}. The present study unravels important details of the interactions between the widely investigated ultracold RbCs molecules.

  7. Health-related quality of life: validity, reliability, and responsiveness of SF-36, 15D, EQ-5D [corrected] RAQoL, and HAQ in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Linde, Louise; Sørensen, Jan; Ostergaard, Mikkel

    2008-01-01

    OBJECTIVE: To compare validity, reliability, and responsiveness of generic and disease specific health-related quality of life (HRQOL) instruments in rheumatoid arthritis (RA). METHODS: Two samples of patients completed the Medical Outcomes Study Short Form-36 Health Survey (SF-36), EuroQol (EQ)-5D......, 15D, Rheumatoid Arthritis Quality of Life Scale (RAQoL), Health Assessment Questionnaire (HAQ), and visual analog scales (VAS) for pain, fatigue, and global RA. Validity (convergent, discriminant, and known-groups) was evaluated in a cross-section of 200 patients. Reliability was evaluated...... questionnaires (at 2 weeks and 6 months) included questions about changes in health status since baseline. RESULTS: The cross-sectional sample included 77% women, median age 57 years (range 19-87), disease duration 6 years (0-58), with Disease Activity Score 28-joint count (DAS28) of 3.10 (1...

  8. Mode specificity in the OH + CHD{sub 3} reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hongwei, E-mail: hwsong@wipm.ac.cn; Yang, Minghui [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-04-28

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD{sub 3} reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  9. Supersymmetric dimensional regularization

    International Nuclear Information System (INIS)

    Egoryan, E.Sh.

    1982-01-01

    A generalized scheme of dimensional regularization which preserves supersymmetry is proposed. The scheme is applicable to all supersymmetric theories. Two models with extended supersymmetry are considered. The Slavnov naive supersymmetric identities are shown to hold at a dimensional regularized level

  10. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  11. Dimensionality reduction methods:

    OpenAIRE

    Amenta, Pietro; D'Ambra, Luigi; Gallo, Michele

    2005-01-01

    In case one or more sets of variables are available, the use of dimensional reduction methods could be necessary. In this contest, after a review on the link between the Shrinkage Regression Methods and Dimensional Reduction Methods, authors provide a different multivariate extension of the Garthwaite's PLS approach (1994) where a simple linear regression coefficients framework could be given for several dimensional reduction methods.

  12. Therapeutic Treatment of Arthritic Mice with 15-Deoxy Δ12,14-Prostaglandin J2 (15d-PGJ2 Ameliorates Disease through the Suppression of Th17 Cells and the Induction of CD4+CD25−FOXP3+ Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Carregaro

    2016-01-01

    Full Text Available The prostaglandin, 15-deoxy Δ12,14-prostaglandin J2 (15d-PGJ2, is a lipid mediator that plays an important role in the control of chronic inflammatory disease. However, the role of prostanoid in rheumatoid arthritis (RA is not well determined. We demonstrated the therapeutic effect of 15d-PGJ2 in an experimental model of arthritis. Daily administration of 15d-PGJ2 attenuated the severity of CIA, reducing the clinical score, pain, and edema. 15d-PGJ2 treatment was associated with a marked reduction in joint levels of proinflammatory cytokines. Although the mRNA expression of ROR-γt was profoundly reduced, FOXP3 was enhanced in draining lymph node cells from 15d-PGJ2-treated arthritic mice. The specific and polyclonal CD4+ Th17 cell responses were limited during the addition of prostaglandin to cell culture. Moreover, in vitro 15d-PGJ2 increased the expression of FOXP3, GITR, and CTLA-4 in the CD4+CD25− population, suggesting the induction of Tregs on conventional T cells. Prostanoid addition to CD4+CD25− cells selectively suppressed Th17 differentiation and promoted the enhancement of FOXP3 under polarization conditions. Thus, 15d-PGJ2 ameliorated symptoms of collagen-induced arthritis by regulating Th17 differentiation, concomitant with the induction of Tregs, and, consequently, protected mice from diseases aggravation. Altogether, these results indicate that 15d-PGJ2 may represent a potential therapeutic strategy in RA.

  13. Dimensional Enhancement via Supersymmetry

    Directory of Open Access Journals (Sweden)

    M. G. Faux

    2011-01-01

    of supersymmetry in one time-like dimension. This is enabled by algebraic criteria, derived, exhibited, and utilized in this paper, which indicate which subset of one-dimensional supersymmetric models describes “shadows” of higher-dimensional models. This formalism delineates that minority of one-dimensional supersymmetric models which can “enhance” to accommodate extra dimensions. As a consistency test, we use our formalism to reproduce well-known conclusions about supersymmetric field theories using one-dimensional reasoning exclusively. And we introduce the notion of “phantoms” which usefully accommodate higher-dimensional gauge invariance in the context of shadow multiplets in supersymmetric quantum mechanics.

  14. Dimensional cosmological principles

    International Nuclear Information System (INIS)

    Chi, L.K.

    1985-01-01

    The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle

  15. Dimensionality Reduction Algorithms on High Dimensional Datasets

    Directory of Open Access Journals (Sweden)

    Iwan Syarif

    2014-12-01

    Full Text Available Classification problem especially for high dimensional datasets have attracted many researchers in order to find efficient approaches to address them. However, the classification problem has become very complicatedespecially when the number of possible different combinations of variables is so high. In this research, we evaluate the performance of Genetic Algorithm (GA and Particle Swarm Optimization (PSO as feature selection algorithms when applied to high dimensional datasets.Our experiments show that in terms of dimensionality reduction, PSO is much better than GA. PSO has successfully reduced the number of attributes of 8 datasets to 13.47% on average while GA is only 31.36% on average. In terms of classification performance, GA is slightly better than PSO. GA‐ reduced datasets have better performance than their original ones on 5 of 8 datasets while PSO is only 3 of 8 datasets. Keywords: feature selection, dimensionality reduction, Genetic Algorithm (GA, Particle Swarm Optmization (PSO.

  16. Dimensionality Reduction Algorithms on High Dimensional Datasets

    OpenAIRE

    Iwan Syarif

    2014-01-01

    Classification problem especially for high dimensional datasets have attracted many researchers in order to find efficient approaches to address them. However, the classification problem has become very complicatedespecially when the number of possible different combinations of variables is so high. In this research, we evaluate the performance of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) as feature selection algorithms when applied to high dimensional datasets.Our experime...

  17. Dimensional-reduction anomaly

    Science.gov (United States)

    Frolov, V.; Sutton, P.; Zelnikov, A.

    2000-01-01

    In a wide class of D-dimensional spacetimes which are direct or semi-direct sums of a (D-n)-dimensional space and an n-dimensional homogeneous ``internal'' space, a field can be decomposed into modes. As a result of this mode decomposition, the main objects which characterize the free quantum field, such as Green functions and heat kernels, can effectively be reduced to objects in a (D-n)-dimensional spacetime with an external dilaton field. We study the problem of the dimensional reduction of the effective action for such spacetimes. While before renormalization the original D-dimensional effective action can be presented as a ``sum over modes'' of (D-n)-dimensional effective actions, this property is violated after renormalization. We calculate the corresponding anomalous terms explicitly, illustrating the effect with some simple examples.

  18. Bayesian supervised dimensionality reduction.

    Science.gov (United States)

    Gönen, Mehmet

    2013-12-01

    Dimensionality reduction is commonly used as a preprocessing step before training a supervised learner. However, coupled training of dimensionality reduction and supervised learning steps may improve the prediction performance. In this paper, we introduce a simple and novel Bayesian supervised dimensionality reduction method that combines linear dimensionality reduction and linear supervised learning in a principled way. We present both Gibbs sampling and variational approximation approaches to learn the proposed probabilistic model for multiclass classification. We also extend our formulation toward model selection using automatic relevance determination in order to find the intrinsic dimensionality. Classification experiments on three benchmark data sets show that the new model significantly outperforms seven baseline linear dimensionality reduction algorithms on very low dimensions in terms of generalization performance on test data. The proposed model also obtains the best results on an image recognition task in terms of classification and retrieval performances.

  19. Dimensionality Reduction Ensembles

    OpenAIRE

    Farrelly, Colleen M.

    2017-01-01

    Ensemble learning has had many successes in supervised learning, but it has been rare in unsupervised learning and dimensionality reduction. This study explores dimensionality reduction ensembles, using principal component analysis and manifold learning techniques to capture linear, nonlinear, local, and global features in the original dataset. Dimensionality reduction ensembles are tested first on simulation data and then on two real medical datasets using random forest classifiers; results ...

  20. Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom

    Science.gov (United States)

    Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.

    2017-01-01

    We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.

  1. Three dimensional reductions of four-dimensional quasilinear systems

    Science.gov (United States)

    Pavlov, Maxim V.; Stoilov, Nikola M.

    2017-11-01

    In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to two-dimensional hydrodynamic reductions in a generic case.

  2. Nonlinear dimensionality reduction

    CERN Document Server

    Lee, John A

    2007-01-01

    Methods of dimensionality reduction provide a way to understand and visualize the structure of complex data sets. This book describes the methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the mathematical details, and ends by outlining the algorithmic implementation.

  3. COMPLEX VARIABILITY OF THE Hα EMISSION LINE PROFILE OF THE T TAURI BINARY SYSTEM KH 15D: THE INFLUENCE OF ORBITAL PHASE, OCCULTATION BY THE CIRCUMBINARY DISK, AND ACCRETION PHENOMENA

    International Nuclear Information System (INIS)

    Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard; Herbst, William; Winn, Joshua N.

    2012-01-01

    We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e ∼ 0.6, M A = 0.6 M ☉ , M B = 0.7 M ☉ ). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingress and egress events. The Hα line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the Hα emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Günther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.

  4. Quantum vortex dynamics in two-dimensional neutral superfluids

    NARCIS (Netherlands)

    Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.

    2010-01-01

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and

  5. Dimensional comparison theory.

    Science.gov (United States)

    Möller, Jens; Marsh, Herb W

    2013-07-01

    Although social comparison (Festinger, 1954) and temporal comparison (Albert, 1977) theories are well established, dimensional comparison is a largely neglected yet influential process in self-evaluation. Dimensional comparison entails a single individual comparing his or her ability in a (target) domain with his or her ability in a standard domain (e.g., "How good am I in math compared with English?"). This article reviews empirical findings from introspective, path-analytic, and experimental studies on dimensional comparisons, categorized into 3 groups according to whether they address the "why," "with what," or "with what effect" question. As the corresponding research shows, dimensional comparisons are made in everyday life situations. They impact on domain-specific self-evaluations of abilities in both domains: Dimensional comparisons reduce self-concept in the worse off domain and increase self-concept in the better off domain. The motivational basis for dimensional comparisons, their integration with recent social cognitive approaches, and the interdependence of dimensional, temporal, and social comparisons are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster......High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... that provide different cluster models and different algorithmic approaches for cluster detection. Common to all approaches is the fact that they require some underlying assessment of similarity between data objects. In this article, we provide an overview of the effects of high-dimensional spaces...

  7. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    –. (4)) by applying the exp-function method. The computer symbolic systems such as. Maple and Mathematica allow us to perform complicated and tedious calculations. 2. Solutions of (N + 1)-dimensional generalized Boussinesq equation.

  8. Classification Constrained Dimensionality Reduction

    OpenAIRE

    Raich, Raviv; Costa, Jose A.; Damelin, Steven B.; Hero III, Alfred O.

    2008-01-01

    Dimensionality reduction is a topic of recent interest. In this paper, we present the classification constrained dimensionality reduction (CCDR) algorithm to account for label information. The algorithm can account for multiple classes as well as the semi-supervised setting. We present an out-of-sample expressions for both labeled and unlabeled data. For unlabeled data, we introduce a method of embedding a new point as preprocessing to a classifier. For labeled data, we introduce a method tha...

  9. Fitting sparse multidimensional data with low-dimensional terms

    Science.gov (United States)

    Manzhos, Sergei; Yamashita, Koichi; Carrington, Tucker

    2009-10-01

    An algorithm that fits a continuous function to sparse multidimensional data is presented. The algorithm uses a representation in terms of lower-dimensional component functions of coordinates defined in an automated way and also permits dimensionality reduction. Neural networks are used to construct the component functions. Program summaryProgram title: RS_HDMR_NN Catalogue identifier: AEEI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19 566 No. of bytes in distributed program, including test data, etc.: 327 856 Distribution format: tar.gz Programming language: MatLab R2007b Computer: any computer running MatLab Operating system: Windows XP, Windows Vista, UNIX, Linux Classification: 4.9 External routines: Neural Network Toolbox Version 5.1 (R2007b) Nature of problem: Fitting a smooth, easily integratable and differentiatable, function to a very sparse ( ˜2-3 points per dimension) multidimensional ( D⩾6) large ( ˜10-10 data) dataset. Solution method: A multivariate function is represented as a sum of a small number of terms each of which is a low-dimensional function of optimised coordinates. The optimal coordinates reduce both the dimensionality and the number of the terms. Neural networks (including exponential neurons) are used to obtain a general and robust method and a functional form which is easily differentiated and integrated (in the case of exponential neurons). Running time: Depends strongly on the dataset to be modelled and the chosen structure of the approximating function, ranges from about a minute for ˜10 data in 3- D to about a day for ˜10 data in 15- D.

  10. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.

    1990-01-01

    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  11. Dimensionality Reduction Mappings

    NARCIS (Netherlands)

    Bunte, Kerstin; Biehl, Michael; Hammer, Barbara

    2011-01-01

    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization

  12. Spontaneous dimensional reduction?

    Science.gov (United States)

    Carlip, Steven

    2012-10-01

    Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations.

  13. Integrable two dimensional supersystems

    International Nuclear Information System (INIS)

    Tripathy, K.C.; Tripathy, L.K.

    1988-08-01

    The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs

  14. De fire dimensioner

    DEFF Research Database (Denmark)

    Larsen, Mihail

    De fire dimensioner er en humanistisk håndbog beregnet især på studerende og vejledere inden for humaniora, men kan også læses af andre med interesse for, hvad humanistisk forskning er og kan. Den er blevet til over et langt livs engageret forskning, uddannelse og formidling på Roskilde Universitet...... og udgør på den måde også et bidrag til universitetets historie, som jeg var med til at grundlægge. De fire dimensioner sætter mennesket i centrum. Men det er et centrum, der peger ud over sig selv; et centrum, hvorfra verden anskues, erfares og forstås. Alle mennesker har en forhistorie og en...... fremtid, og udstrakt mellem disse punkter i tiden tænker og handler de i rummet. Den menneskelige tilværelse omfatter alle fire dimensioner. De fire dimensioner udgør derfor også et forsvar for en almen dannelse, der gennemtrænger og kommer kulturelt til udtryk i vores historie, viden, praksis og kunst....

  15. A new ab initio potential energy surface of LiClH (1A') system and quantum dynamics calculation for Li + HCl (v = 0, j = 0-2) → LiCl + H reaction

    Science.gov (United States)

    Tan, Rui Shan; Zhai, Huan Chen; Yan, Wei; Gao, Feng; Lin, Shi Ying

    2017-04-01

    A new ab initio potential energy surface (PES) for the ground state of Li + HCl reactive system has been constructed by three-dimensional cubic spline interpolation of 36 654 ab initio points computed at the MRCI+Q/aug-cc-pV5Z level of theory. The title reaction is found to be exothermic by 5.63 kcal/mol (9 kcal/mol with zero point energy corrections), which is very close to the experimental data. The barrier height, which is 2.99 kcal/mol (0.93 kcal/mol for the vibrationally adiabatic barrier height), and the depth of van der Waals minimum located near the entrance channel are also in excellent agreement with the experimental findings. This study also identified two more van der Waals minima. The integral cross sections, rate constants, and their dependence on initial rotational states are calculated using an exact quantum wave packet method on the new PES. They are also in excellent agreement with the experimental measurements.

  16. dimensional Broer–Kaup system

    Indian Academy of Sciences (India)

    dimensional functions of the (2+1)-dimensional Broer–Kaup (BK) equations was derived by means of a projec- tive equation method and a variable separation hypothesis. Based on the derived variable separation excitation, some new special ...

  17. Dimensional Analysis...in Calculus.

    Science.gov (United States)

    Brody, Burt

    1994-01-01

    Discusses using dimensional analysis in beginning calculus to help the students determine if the correct exponents and factors are being used. Suggests that dimensional analysis may be very useful but must be used with care. (MVL)

  18. Dimensional Approach in Psychiatry

    Directory of Open Access Journals (Sweden)

    Osman Ozdemir

    2012-09-01

    Full Text Available In psychiatry there is a traditional categorical conception stating that several disorders like schizophrenia and bipolar disorder have distinct etiologies. On the other hand, dimensional approach claims that these entities are actually the same disorder reflecting different clinical aspects of same mental disorder in the course of time. ICD and DSM classifications are based on separate categories of different mental disorders. Howewer, it is quite difficult to consider a mental disorder as a discrete entity that has absolute boundaries from other disorders. There are patients manifesting symptoms of two or more categories but do not fulfill all diagnostic criteria for any mental disorder. Dimensional approach handles the psychopathology as a continuing process and establish the patients to the different ongoing points. According to this view, in fact, multiple diagnosis reflect dimensions of the same disease.

  19. Adaptive Metric Dimensionality Reduction

    OpenAIRE

    Gottlieb, Lee-Ad; Kontorovich, Aryeh; Krauthgamer, Robert

    2013-01-01

    We study adaptive data-dependent dimensionality reduction in the context of supervised learning in general metric spaces. Our main statistical contribution is a generalization bound for Lipschitz functions in metric spaces that are doubling, or nearly doubling. On the algorithmic front, we describe an analogue of PCA for metric spaces: namely an efficient procedure that approximates the data's intrinsic dimension, which is often much lower than the ambient dimension. Our approach thus leverag...

  20. Dimensionality Reduction Mappings

    OpenAIRE

    Bunte, Kerstin; Biehl, Michael; Hammer, Barbara

    2011-01-01

    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives. Most methods, however, provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general vi...

  1. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2005-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  2. An alternative dimensional reduction prescription

    International Nuclear Information System (INIS)

    Edelstein, J.D.; Giambiagi, J.J.; Nunez, C.; Schaposnik, F.A.

    1995-08-01

    We propose an alternative dimensional reduction prescription which in respect with Green functions corresponds to drop the extra spatial coordinate. From this, we construct the dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization and supersymmetry in the particular 2-dimensional case. We argue that our proposal is in some situations more physical in the sense that it maintains the form of the interactions between particles thus preserving the dynamics corresponding to the higher dimensional space. (author). 12 refs

  3. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia

    2004-01-01

    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  4. Dimensional Comparison Theory

    Directory of Open Access Journals (Sweden)

    Friederike Helm

    2016-05-01

    Full Text Available Dimensional comparison theory (DCT defines dimensional comparisons as intraindividual comparisons that a person draws between his or her own achievements in two domains or subjects. DCT assumes that dimensional comparisons influence students’ academic self-concepts, causing stronger self-concept differences between subjects perceived as dissimilar, such as math and English, than between subjects perceived as more similar, like math and physics. However, there have been no experimental studies testing the causal effect of perceived subject similarity on domain-specific self-concepts. In the present research, three experimental studies analyzed the effects of experimentally induced higher or lower perceived subject similarity on academic self-concept differences: Study 1 (N = 351, with math and German; Study 2a (N = 148, with math and physics; and Study 2b (N = 161, with English and German, show that, in line with expectations, induced lower perceived subject similarity led to stronger self-concept differences than did higher perceived similarity. Some implications of the results for DCT are discussed.

  5. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

    Science.gov (United States)

    Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S

    2009-08-21

    Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.

  6. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  7. Two dimensional simplicial paths

    International Nuclear Information System (INIS)

    Piso, M.I.

    1994-07-01

    Paths on the R 3 real Euclidean manifold are defined as 2-dimensional simplicial strips which are orbits of the action of a discrete one-parameter group. It is proven that there exists at least one embedding of R 3 in the free Z-module generated by S 2 (x 0 ). The speed is defined as the simplicial derivative of the path. If mass is attached to the simplex, the free Lagrangian is proportional to the width of the path. In the continuum limit, the relativistic form of the Lagrangian is recovered. (author). 7 refs

  8. Three-dimensional metamaterials

    Science.gov (United States)

    Burckel, David Bruce [Albuquerque, NM

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  9. Dimensional analysis made simple

    International Nuclear Information System (INIS)

    Lira, Ignacio

    2013-01-01

    An inductive strategy is proposed for teaching dimensional analysis to second- or third-year students of physics, chemistry, or engineering. In this strategy, Buckingham's theorem is seen as a consequence and not as the starting point. In order to concentrate on the basics, the mathematics is kept as elementary as possible. Simple examples are suggested for classroom demonstrations of the power of the technique and others are put forward for homework or experimentation, but instructors are encouraged to produce examples of their own. (paper)

  10. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  11. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo

    2010-01-01

    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  12. High dimensional entanglement

    CSIR Research Space (South Africa)

    Mc

    2012-07-01

    Full Text Available stream_source_info McLaren_2012.pdf.txt stream_content_type text/plain stream_size 2190 Content-Encoding ISO-8859-1 stream_name McLaren_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 High dimensional... entanglement M. McLAREN1,2, F.S. ROUX1 & A. FORBES1,2,3 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of the Stellenbosch, Private Bag X1, 7602, Matieland 3. School of Physics, University of Kwazulu...

  13. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  14. Dimensionality reduction for registration of high-dimensional data sets.

    Science.gov (United States)

    Xu, Min; Chen, Hao; Varshney, Pramod K

    2013-08-01

    Registration of two high-dimensional data sets often involves dimensionality reduction to yield a single-band image from each data set followed by pairwise image registration. We develop a new application-specific algorithm for dimensionality reduction of high-dimensional data sets such that the weighted harmonic mean of Cramér-Rao lower bounds for the estimation of the transformation parameters for registration is minimized. The performance of the proposed dimensionality reduction algorithm is evaluated using three remotes sensing data sets. The experimental results using mutual information-based pairwise registration technique demonstrate that our proposed dimensionality reduction algorithm combines the original data sets to obtain the image pair with more texture, resulting in improved image registration.

  15. Dimensionality Reduction Particle Swarm Algorithm for High Dimensional Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; ST Charles, Jesse Lee [ORNL; Potok, Thomas E [ORNL; Beaver, Justin M [ORNL

    2008-01-01

    The Particle Swarm Optimization (PSO) clustering algorithm can generate more compact clustering results than the traditional K-means clustering algorithm. However, when clustering high dimensional datasets, the PSO clustering algorithm is notoriously slow because its computation cost increases exponentially with the size of the dataset dimension. Dimensionality reduction techniques offer solutions that both significantly improve the computation time, and yield reasonably accurate clustering results in high dimensional data analysis. In this paper, we introduce research that combines different dimensionality reduction techniques with the PSO clustering algorithm in order to reduce the complexity of high dimensional datasets and speed up the PSO clustering process. We report significant improvements in total runtime. Moreover, the clustering accuracy of the dimensionality reduction PSO clustering algorithm is comparable to the one that uses full dimension space.

  16. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  17. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  18. The dimensional reduction in a multi-dimensional cosmology

    International Nuclear Information System (INIS)

    Demianski, M.; Golda, Z.A.; Heller, M.; Szydlowski, M.

    1986-01-01

    Einstein's field equations are solved for the case of the eleven-dimensional vacuum spacetime which is the product R x Bianchi V x T 7 , where T 7 is a seven-dimensional torus. Among all possible solutions, the authors identify those in which the macroscopic space expands and the microscopic space contracts to a finite size. The solutions with this property are 'typical' within the considered class. They implement the idea of a purely dynamical dimensional reduction. (author)

  19. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  20. Dimensional reduction of Dirac operator

    Science.gov (United States)

    Nikolov, Petko A.; Ruseva, Gergana R.

    2006-07-01

    We construct an explicit example of dimensional reduction of the free massless Dirac operator with an internal SU(3) symmetry, defined on a 12-dimensional manifold that is the total space of a principal SU(3)-bundle over a four-dimensional (nonflat) pseudo-Riemannian manifold. Upon dimensional reduction the free 12-dimensional Dirac equation is transformed into a rather nontrivial four-dimensional one: a pair of massive Lorentz spinor SU(3)-octets interacting with an SU(3)-gauge field with a source term depending on the curvature tensor of the gauge field. The SU(3) group is complicated enough to illustrate features of the general case. It should not be confused with the color SU(3) of quantum chromodynamics where the fundamental spinors, the quark fields, are SU(3) triplets rather than octets.

  1. Nonlinear Dimensionality Reduction on Graphs

    OpenAIRE

    Shen, Yanning; Traganitis, Panagiotis A.; Giannakis, Georgios B.

    2018-01-01

    In this era of data deluge, many signal processing and machine learning tasks are faced with high-dimensional datasets, including images, videos, as well as time series generated from social, commercial and brain network interactions. Their efficient processing calls for dimensionality reduction techniques capable of properly compressing the data while preserving task-related characteristics, going beyond pairwise data correlations. The present paper puts forth a nonlinear dimensionality redu...

  2. Dimensional reduction for conformal blocks

    Science.gov (United States)

    Hogervorst, Matthijs

    2016-09-01

    We consider the dimensional reduction of a CFT, breaking multiplets of the d-dimensional conformal group SO( d + 1 , 1) up into multiplets of SO( d, 1). This leads to an expansion of d-dimensional conformal blocks in terms of blocks in d - 1 dimensions. In particular, we obtain a formula for 3 d conformal blocks as an infinite sum over 2 F 1 hypergeometric functions with closed-form coefficients.

  3. Robust linear dimensionality reduction.

    Science.gov (United States)

    Koren, Yehuda; Carmel, Liran

    2004-01-01

    We present a novel family of data-driven linear transformations, aimed at finding low-dimensional embeddings of multivariate data, in a way that optimally preserves the structure of the data. The well-studied PCA and Fisher's LDA are shown to be special members in this family of transformations, and we demonstrate how to generalize these two methods such as to enhance their performance. Furthermore, our technique is the only one, to the best of our knowledge, that reflects in the resulting embedding both the data coordinates and pairwise relationships between the data elements. Even more so, when information on the clustering (labeling) decomposition of the data is known, this information can also be integrated in the linear transformation, resulting in embeddings that clearly show the separation between the clusters, as well as their internal structure. All of this makes our technique very flexible and powerful, and lets us cope with kinds of data that other techniques fail to describe properly.

  4. Real four-dimensional biquadrics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)

    2011-04-30

    We consider intersections of two real five-dimensional quadrics, which are referred to for brevity as real four-dimensional biquadrics. Their rigid isotopy classes were described long ago: there are 16 such classes. We prove that the rigid isotopy class of a non-singular real four-dimensional biquadric is uniquely determined by the topological type of its real part. To do this, we calculate the dimensions of the cohomology spaces of the real part of a four-dimensional biquadric.

  5. Three dimensional moire pattern alignment

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1991-01-01

    An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.

  6. The Three-Dimensional Sign.

    Science.gov (United States)

    Davis, Daniel R.

    1997-01-01

    Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…

  7. dimensional Broer–Kaup system

    Indian Academy of Sciences (India)

    straints [17], as a concrete example to study possible oscillating soliton structures in higher-dimensional physical models. The (2+1)-dimensional BK equations have been extensively studied in several papers [18–22]. Abundant solutions, such as soliton-like solutions, triangular-like solutions, single and combined ...

  8. Dimensional Reduction Near the Horizon

    Science.gov (United States)

    Haba, Z.

    2008-11-01

    In the Euclidean formulation of functional integration we discuss a dimensional reduction of quantum field theory near the horizon in terms of Green functions. We show that a massless scalar quantum field in D dimensions can be approximated near the bifurcate Killing horizon by a massless two-dimensional conformal field.

  9. Low-dimensional molecular metals

    CERN Document Server

    Toyota, Naoki; Muller, Jens

    2007-01-01

    Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.

  10. Isometries, dimensional reduction, and superunification

    International Nuclear Information System (INIS)

    Mansouri, F.; Witten, L.

    1984-01-01

    Dimensional reduction is carried out for space-times, with or without torsion, which admit a group, G, of isometries. The spectrum and the field equations are derived directly from the higher dimensional theory. A method of probing the extra dimensions is suggested

  11. Dimensional analysis in field theory

    International Nuclear Information System (INIS)

    Stevenson, P.M.

    1981-01-01

    Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms

  12. On four dimensional mirror symmetry

    International Nuclear Information System (INIS)

    Losev, A.; Nekrasov, N.; Shatashvili, S.

    2000-01-01

    A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)

  13. Two dimensional image correlation processor

    Science.gov (United States)

    Yao, Shi-Kai

    1992-06-01

    Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.

  14. ANDRomeda: adaptive nonlinear dimensionality reduction

    Science.gov (United States)

    Marchette, David J.; Priebe, Carey E.

    2000-03-01

    Standard approaches for the classification of high dimensional data require the selection of features, the projection of the features to a lower dimensional space, and the construction of the classifier in the lower dimensional space. Two fundamental issues arise in determining an appropriate projection to a lower dimensional space: the target dimensionality for the projection must be determined, and a particular projection must be selected from a specified family. We present an algorithm which is designed specifically for classification task and addresses both these issues. The family of nonlinear projections considered is based on interpoint distances - in particular, we consider point-to-subset distances. Our algorithm selects both the number of subsets to use and the subsets themselves. The methodology is applied to an artificial nose odorant classification task.

  15. Higher dimensional loop quantum cosmology

    International Nuclear Information System (INIS)

    Zhang, Xiangdong

    2016-01-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)

  16. Basic study on ultrasonic monitoring using 1.5-dimensional ultrasound phased array for ultrasound-guided high-intensity focused ultrasound treatment

    Science.gov (United States)

    Takagi, Ryo; Iwasaki, Ryosuke; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    We have been studying a real-time detection method for tissue changes induced by high-intensity focused ultrasound (HIFU) treatment using ultrasonic RF signals. It has been difficult to track the target region when the tissue to be treated deviates from the imaging plane along the elevation axis of the probe. In this study, a new 1.5-dimensional (1.5D) prototype phased array probe consisting of transducer elements along both the lateral and elevation axes was developed to track tissue motion along the elevation axis of the probe, and the elevational displacement range where the tracking is effective was investigated. The complex cross-correlation coefficient based on a block matching algorithm was applied to 2.5D volumetric RF images acquired by the 1.5D probe and the displacement vector along the elevation axis was calculated. From the results, it was found that the effective tracking range using this prototype probe was up to 3 mm, about 3 times that of a conventional 1D imaging probe. The proposed 1.5D phased array probe has the potential to track target tissue with intrafractional motion.

  17. High dimensional bowling - n-dimensional ball rolling on (n-1)-dimensional surface

    DEFF Research Database (Denmark)

    Deryabin, M.V.; Hjorth, Poul G.

    2003-01-01

    We consider the non-holonomic system of a n-dimensional ball rolling on a (n - 1)-dimensional surface. We discuss the structure of the equations of motion, the existence of an invariant measure and some generalizations of the problem....

  18. Quantum dynamics study of H + DBr and D + HBr reaction.

    Science.gov (United States)

    Zhang, Ai Jie; Jia, JianFeng; Wu, Hai Shun; He, Guo Zhong

    2014-09-01

    Time-dependent quantum wave packet calculations have been performed for the H + DBr and D + HBr reaction using the recent diabatic potential energy surfaces. Reaction probabilities, integral cross sections, and rate constants are obtained. The results show that the isotopic effects have an influence on the nonadiabatic effect which is generally inversely proportional to the atom mass. The calculated rate constants are in good overall agreement with experimental values, indicating that the ab initio surfaces are accurate to describe the isotopic effects.

  19. Quantum dynamics of a particle in a tracking chamber

    International Nuclear Information System (INIS)

    Figari, Rodolfo; INFN, Napoli; Teta, Alessandro

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  20. The quantum dynamics of electronically nonadiabatic chemical reactions

    Science.gov (United States)

    Truhlar, Donald G.

    1993-01-01

    Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally adiabatic functions in various quantum scattering algorithms.

  1. Quantum dynamics in nanoscale magnets in dissipative environments

    NARCIS (Netherlands)

    Miyashita, S; Saito, K; Kobayashi, H.; de Raedt, H.A.

    2000-01-01

    In discrete energy structure of nanoscale magnets, nonadiabatic transitions at avoided level crossings lead to fundamental processes of dynamics of magnetizations. The thermal environment causes dissipative effects on these processes. In this paper we review the features of the nonadiabatic

  2. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    Science.gov (United States)

    Demiralp, Emre; Demiralp, Metin

    2010-09-01

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called "Quantum Harmonical Form (QHF)". QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.

  3. Control of quantum dynamics: The dream is alive

    International Nuclear Information System (INIS)

    Rabitz, H.

    1995-01-01

    In atomic and molecular physics, a long sought-after dream has been the use of optical fields to steer wavepackets into desired states. The inherent mechanism of such control consists of manipulating quantum mechanical constructive and destructive interferences. Finding the proper control fields is a problem of design, best expressed in terms of control theory. An overview of the latest developments in this field will be given, along with an indication of where the subject is heading. copyright 1995 American Institute of Physics

  4. Quantum dynamics of the driven and dissipative Rabi model

    Science.gov (United States)

    Henriet, Loïc; Ristivojevic, Zoran; Orth, Peter P.; Le Hur, Karyn

    2014-08-01

    The Rabi model considers a two-level system (or spin 1/2) coupled to a quantized harmonic oscillator and describes the simplest interaction between matter and light. The recent experimental progress in solid-state circuit quantum electrodynamics has engendered theoretical efforts to quantitatively describe the mathematical and physical aspects of the light-matter interaction beyond the rotating-wave approximation. We develop a stochastic Schrödinger equation approach which enables us to access the strong-coupling limit of the Rabi model and study the effects of dissipation and ac drive in an exact manner. We include the effect of Ohmic noise on the non-Markovian spin dynamics, resulting in Kondo-type correlations, as well as cavity losses. We compute the time evolution of spin variables in various conditions. As a consideration for future work, we discuss the possibility of reaching a steady state with one polariton in realistic experimental conditions.

  5. Gauge fixing in the partition function for generalized quantum dynamics

    International Nuclear Information System (INIS)

    Adler, S.L.

    1998-01-01

    We discuss the problem of gauge fixing for the partition function in generalized quantum (or trace) dynamics, deriving analogs of the De Witt endash Faddeev endash Popov procedure and of the BRST invariance familiar in the functional integral context. copyright 1998 American Institute of Physics

  6. Nonperturbative quantum dynamics of a new inflation model

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Cormier, D.; Holman, R.; Kumar, S.P.; Vega, H.J. de

    1998-01-01

    We consider an O(N) model coupled self-consistently to gravity in the semiclassical approximation, where the field is subject to open-quotes new inflationclose quotes type initial conditions. We study the dynamics self-consistently and non-perturbatively with non-equilibrium field theory methods in the large N limit. We find that spinodal instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary growth of the scale factor. We find that a very specific combination of these large fluctuations plus the inflaton zero mode assemble into a new effective field. This new field behaves classically and it is the object which actually rolls down. We show how this reinterpretation saves the standard picture of how metric perturbations are generated during inflation and that the spinodal growth of fluctuations dominates the time dependence of the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the spectrum of scalar density and tensor perturbations and argue that in all models of this type the spinodal instabilities are responsible for a open-quotes redclose quotes spectrum of primordial scalar density perturbations. A criterion for the validity of these models is provided and contact with the reconstruction program is established validating some of the results within a non-perturbative framework. The decoherence aspects and the quantum to classical transition through inflation are studied in detail by following the full evolution of the density matrix and relating the classicality of cosmological perturbations to that of long-wavelength matter fluctuations. copyright 1998 The American Physical Society

  7. Proof of Jacobi identity in generalized quantum dynamics

    International Nuclear Information System (INIS)

    Adler, S.L.; Bhanot, G.V.; Weckel, J.D.

    1994-01-01

    It is proven that the Jacobi identity for the generalized Poisson bracket is satisfied in the generalization of Heisenberg picture quantum mechanics recently proposed by one of the authors. The identity holds for any combination of fermionic and bosonic fields, and requires no assumptions about their mutual commutativity

  8. Long and short time quantum dynamics III. Transients,

    Czech Academy of Sciences Publication Activity Database

    Špička, Václav; Velický, Bedřich; Kalvová, Anděla

    2005-01-01

    Roč. 29, - (2005), s. 196-212 ISSN 1386-9477 R&D Projects: GA ČR(CZ) GA202/04/0585; GA AV ČR(CZ) IAA1010404 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : non-equilibrium * Green functions * quantum transport equations * initial conditions Subject RIV: BE - Theoretical Physics Impact factor: 0.946, year: 2005

  9. Quantum dynamics of a particle interacting with a double barrier

    International Nuclear Information System (INIS)

    Cacciari, Ilaria; Lantieri, Marco; Moretti, Paolo

    2007-01-01

    Following a previously developed method, the problem of a particle scattered by a double barrier is studied. Instead of the simple transmission or reflection, the more difficult case of the arrival in the region between the barriers is considered and solved explicitly by using matrix methods

  10. Quantum dynamics of a two-atom-qubit system

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Nguyen Bich Ha; Le Thi Ha Linh

    2009-01-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  11. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A. E-mail: antonio@ubxlab.comtoni@ubxlab.com

    2004-05-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field.

  12. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    International Nuclear Information System (INIS)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A.

    2004-01-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

  13. Turning big bang into big bounce: II. Quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz, E-mail: pmalk@fuw.edu.p, E-mail: piech@fuw.edu.p [Theoretical Physics Department, Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2010-11-21

    We analyze the big bounce transition of the quantum Friedmann-Robertson-Walker model in the setting of the nonstandard loop quantum cosmology (LQC). Elementary observables are used to quantize composite observables. The spectrum of the energy density operator is bounded and continuous. The spectrum of the volume operator is bounded from below and discrete. It has equally distant levels defining a quantum of the volume. The discreteness may imply a foamy structure of spacetime at a semiclassical level which may be detected in astro-cosmo observations. The nonstandard LQC method has a free parameter that should be fixed in some way to specify the big bounce transition.

  14. Global optimization for quantum dynamics of few-fermion systems

    DEFF Research Database (Denmark)

    Li, Xikun; Pecak, Daniel; Sowinski, Tomasz

    2018-01-01

    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it...

  15. On the inclusion of collisional correlations in quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Slama, N. [Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, F-31062 Toulouse Cédex (France); Reinhard, P.-G. [Institut für Theoretische Physik, Universität Erlangen, D-91058 Erlangen (Germany); Suraud, E., E-mail: suraud@irsamc.ups-tlse.fr [Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, F-31062 Toulouse Cédex (France); Physics Department, University at Buffalo, The State University New York, Buffalo, NY 14260 (United States)

    2015-04-15

    We present a formalism to describe collisional correlations responsible for thermalization effects in finite quantum systems. The approach consists in a stochastic extension of time dependent mean field theory. Correlations are treated in time dependent perturbation theory and loss of coherence is assumed at some time intervals allowing a stochastic reduction of the correlated dynamics in terms of a stochastic ensemble of time dependent mean-fields. This theory was formulated long ago in terms of density matrices but never applied in practical cases because of its complexity. We propose here a reformulation of the theory in terms of wave functions and use a simplified 1D model of cluster and molecules allowing to test the theory in a schematic but realistic manner. We illustrate the performance in terms of several observables, in particular global moments of the density matrix and single particle entropy built on occupation numbers. The occupation numbers remain fixed in time dependent mean-field propagation and change when evaluating the correlations, then taking fractional values. They converge asymptotically towards Fermi distributions which is a clear indication of thermalization.

  16. An Axiomatic, Unified Representation of Biosystems and Quantum Dynamics

    CERN Document Server

    Baianu, I

    2004-01-01

    An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.

  17. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham

    2011-01-01

    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  18. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas

    2011-01-01

    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  19. Two-dimensional turbulence in three-dimensional flows

    Science.gov (United States)

    Xia, H.; Francois, N.

    2017-11-01

    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  20. On the dimensional reduction procedure

    Science.gov (United States)

    Cognola, Guido; Zerbini, Sergio

    2001-05-01

    The issue related to the so-called dimensional reduction procedure is revisited within the Euclidean formalism. First, it is shown that for symmetric spaces, the local exact heat-kernel density is equal to the reduced one, once the harmonic sum has been successfully performed. In the general case, due to the impossibility to deal with exact results, the short t heat-kernel asymptotics is considered. It is found that the exact heat-kernel and the dimensionally reduced one coincide up to two non-trivial leading contributions in the short t expansion. Implications of these results with regard to dimensional-reduction anomaly are discussed.

  1. 17 CFR 240.15d-15 - Controls and procedures.

    Science.gov (United States)

    2010-04-01

    ... materially affect, the issuer's internal control over financial reporting. (e) For purposes of this section... of financial statements for external purposes in accordance with generally accepted accounting... (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under the...

  2. 17 CFR 240.15d-10 - Transition reports.

    Science.gov (United States)

    2010-04-01

    ... information or trends reflected, an assessment of the comparability of the data, and a representation as to... the fiscal year. (h) The provisions of this rule shall not apply to investment companies required to file reports pursuant to Rule 30b1-1 (§ 270.30b1-1 of this chapter) under the Investment Company Act of...

  3. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    International Nuclear Information System (INIS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-01-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B ~ 1 A ′ ←X ~ 1 A ′ UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation

  4. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    Science.gov (United States)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical tilde{B}{}^1A^' }leftarrow tilde{X}{}^1A^' } UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  5. Physical model of dimensional regularization

    Energy Technology Data Exchange (ETDEWEB)

    Schonfeld, Jonathan F.

    2016-12-15

    We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)

  6. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  7. Myth and One-Dimensionality

    Directory of Open Access Journals (Sweden)

    William Hansen

    2017-12-01

    Full Text Available A striking difference between the folk-narrative genres of legend and folktale is how the human characters respond to supernatural, otherworldly, or uncanny beings such as ghosts, gods, dwarves, giants, trolls, talking animals, witches, and fairies. In legend the human actors respond with fear and awe, whereas in folktale they treat such beings as if they were ordinary and unremarkable. Since folktale humans treat all characters as belonging to a single realm, folklorists have described the world of the folktale as one-dimensional, in contrast to the two-dimensionality of the legend. The present investigation examines dimensionality in the third major genre of folk narrative: myth. Using the Greek and Hebrew myths of primordial paradise as sample narratives, the present essay finds—surprisingly—that the humans in these stories respond to the otherworldly one-dimensionally, as folktale characters do, and suggests an explanation for their behavior that is peculiar to the world of myth.

  8. Many Faces of Dimensional Reduction

    Science.gov (United States)

    Filippov, A. T.

    2006-06-01

    After a brief discussion of dimensional reductions leading to the 1+1 dimensional dilaton gravity theory we consider general properties of these theories and identify problems that arise in its further reductions to one dimensional theories - cosmological models, static states (in particular, black holes) and gravity-matter waves. To bypass shortcomings of the standard ('naive') reduction we propose to exploit more general ideas: 1. separating the space and time variables in generic models, 2. reductions of the moduli spaces in integrable models that may also be viewed as dimensional reductions. This allows us to clearly see a duality between static and cosmological solutions (that we call 'SC-duality') and to demonstrate a close relation of these objects to gravity-matter waves.

  9. Fermion masses from dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)

  10. Fermion masses from dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).

  11. Dimensionality Reduction with Adaptive Approximation

    OpenAIRE

    Kokiopoulou, Effrosyni; Frossard, Pascal

    2007-01-01

    In this paper, we propose the use of (adaptive) nonlinear approximation for dimensionality reduction. In particular, we propose a dimensionality reduction method for learning a parts based representation of signals using redundant dictionaries. A redundant dictionary is an overcomplete set of basis vectors that spans the signal space. The signals are jointly represented in a common subspace extracted from the redundant dictionary, using greedy pursuit algorithms for simultaneous sparse approx...

  12. Dimensionality reduction in complex models

    OpenAIRE

    Boukouvalas, Alexis; Maniyar, Dharmesh M.; Cornford, Dan

    2007-01-01

    As a part of the Managing Uncertainty in Complex Models (MUCM) project, research at Aston University will develop methods for dimensionality reduction of the input and/or output spaces of models, as seen within the emulator framework. Towards this end this report describes a framework for generating toy datasets, whose underlying structure is understood, to facilitate early investigations of dimensionality reduction methods and to gain a deeper understanding of the algorithms employed, both i...

  13. Reduction of Dimensionality for Classification

    OpenAIRE

    Cuevas-Covarrubias, Carlos; Riccomagno, Eva

    2017-01-01

    We present an algorithm for the reduction of dimensionality useful in statistical classification problems where observations from two multivariate normal distributions are discriminated. It is based on Principal Components Analysis and consists of a simultaneous diagonalization of two covariance matrices. The criterion for reduction of dimensionality is given by the contribution of each principal component to the area under the ROC curve of a discriminant function. Linear and quadratic scores...

  14. Characterization of La1-xSrxMnO3±d (x = 0.15, d 0) and La1-xSrxCrO3±d (x = 0.2, d 0) Powders by X-ray Powder Diffraction

    DEFF Research Database (Denmark)

    Berg, Rolf; Andersen, Mette M.; Bjerrum, Niels

    1996-01-01

    C, resulting in homogeneous single phased ceramic powders. X-ray diffraction diagrams were taken using copper Ka radiation with a Bragg-Brentano diffractometer. The obtained X-ray diagrams of the synthesised La0.85Sr0.15MnO3±d and La0.8Sr0.2CrO3±d (d 0) powders were compared to data in the literature which......La1-xSrxMnO3 ± d (x = 0.15, d 0) and La1-xSrxCrO3 ± d (x= 0.2, d 0) powders were synthesized by drip/spray pyrolysis of solutions of analysed metal nitrate mixtures, with added chelating ligands and solvents. The solutions were dripped or sprayed into a rotating tube furnace at 600-700 o...

  15. Dimensional crossover and deconfinement in Bechgaard salts

    NARCIS (Netherlands)

    Giamarchi, T.; Biermann, S.; Georges, A.; Lichtenstein, A.I.

    2004-01-01

    The Bechgaard salts are made of weakly coupled one dimensional chains. This particular structure gives the possibility to observe in these systems a dimensional crossover between a high temperature (or high energy) one dimensional phase and a two or three dimensional system. Since the filling of the

  16. Dimensionality Reduction by Weighted Connections between Neighborhoods

    Directory of Open Access Journals (Sweden)

    Fuding Xie

    2014-01-01

    Full Text Available Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality. This paper introduces a dimensionality reduction technique by weighted connections between neighborhoods to improve K-Isomap method, attempting to preserve perfectly the relationships between neighborhoods in the process of dimensionality reduction. The validity of the proposal is tested by three typical examples which are widely employed in the algorithms based on manifold. The experimental results show that the local topology nature of dataset is preserved well while transforming dataset in high-dimensional space into a new dataset in low-dimensionality by the proposed method.

  17. Dimensionality Reduction by Weighted Connections between Neighborhoods

    OpenAIRE

    Xie, Fuding; Fan, Yutao; Zhou, Ming

    2014-01-01

    Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality. This paper introduces a dimensionality reduction technique by weighted connections between neighborhoods to improve $K$ -Isomap method, attempting to preserve perfectly the relationships between neighborhoods in the process of dimensionality reduction. The validity of the proposal is tested by three typical examples which are widely employed in the algorithms bas...

  18. Real three-dimensional biquadrics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)

    2010-09-07

    We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real GM-varieties and the other contains no GM-varieties. We also study the sets of real lines on real biquadrics.

  19. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  20. Reduction of infinite dimensional equations

    Directory of Open Access Journals (Sweden)

    Zhongding Li

    2006-02-01

    Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.

  1. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  2. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  3. Negative dimensional integrals. Pt. 1

    International Nuclear Information System (INIS)

    Halliday, I.G.; Ricotta, R.M.

    1987-01-01

    We propose a new method of evaluating integrals based on negative dimensional integration. We compute Feynman graphs by considering analytic extensions. Propagators are raised to negative integer powers and integrated over negative integer dimensions. We are left with the problem of computing polynomial integrals and summing finite series. (orig.)

  4. dimensional KdV equation

    Indian Academy of Sciences (India)

    is to study the interaction properties between the periodic waves. Here, we take the (2+1)-dimensional KdV equation .... In fact, such limit for the present family of doubly periodic waves is especially rich, since one can proceed with the long .... ematical Society, Providence, 1997). [11] K Chandrasekharan, Elliptic functions ...

  5. Dimensionality reduction with image data

    OpenAIRE

    Peña, Daniel; Benito, Mónica

    2004-01-01

    A common objective in image analysis is dimensionality reduction. The most common often used data-exploratory technique with this objective is principal component analysis. We propose a new method based on the projection of the images as matrices after a Procrustes rotation and show that it leads to a better reconstruction of images.

  6. Dimensional Reduction and Hadronic Processes

    Science.gov (United States)

    Signer, Adrian; Stöckinger, Dominik

    2008-11-01

    We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.

  7. Two dimensional plasma simulation code

    International Nuclear Information System (INIS)

    Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.

    1977-03-01

    An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run

  8. One-dimensional photonic crystals

    NARCIS (Netherlands)

    Shen, Huaizhong; Wang, Zhanhua; Wu, Yuxin; Yang, Bai

    2016-01-01

    A one-dimensional photonic crystal (1DPC), which is a periodic nanostructure with a refractive index distribution along one direction, has been widely studied by scientists. In this review, materials and methods for 1DPC fabrication are summarized. Applications are listed, with a special emphasis

  9. Higher dimensional discrete Cheeger inequalities

    Directory of Open Access Journals (Sweden)

    Anna Gundert

    2015-01-01

    Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.

  10. Aspects of seven dimensional relativity

    International Nuclear Information System (INIS)

    Mecklenburg, W.

    1979-07-01

    Two versions of a Kaluza-Klein model of seven dimensional relativity are discussed. These models are characterized by having a fixed geometry for the internal parts of their manifolds. In version (1) the internal part is flat (T 3 ) and in version (2) it is curved (S 3 ). The physical interpretation of the internal coordinates is given in both versions. Main differences are: in version (2) the model features a cosmological constant given by the curvature constant of the sphere and the gauge fields depend in a definite way on the internal coordinates (they do not in version (2)). These gauge fields appear as part of the metric tensor in seven dimensions. The result by Kerner and Cho which states that seven dimensional relativity contains as a special case four dimensional gravity coupled to Yang-Mills fields is re-derived. The Dirac-Lagrangian is given for both versions. It is defined to be the free field Lagrangian in seven dimensions, i.e., it contains spinors coupled to seven dimensional ''gravity'' only. Again as a special case it contains a gauge invariant Lagrangian featuring a minimal coupling and a Fierz-Pauli term. The latter can be eliminated by chosing a particular way for the dimensional reduction procedure. Spinors carry an internal degree of freedom originating in the use of higher dimensions. For both versions this internal degree of freedom may be identified with the gauge degree of freedom. For version (1), scalar fields are also discussed and some restrictions concerning the inclusion of higher groups are given. (author)

  11. Dimensional regularization and dimensional reduction in the light cone

    Science.gov (United States)

    Qiu, J.

    2008-06-01

    We calculate all of the 2 to 2 scattering process in Yang-Mills theory in the light cone gauge, with the dimensional regulator as the UV regulator. The IR is regulated with a cutoff in q+. It supplements our earlier work, where a Lorentz noncovariant regulator was used, and the final results bear some problems in gauge fixing. Supersymmetry relations among various amplitudes are checked by using the light cone superfields.

  12. High-dimensional covariance estimation with high-dimensional data

    CERN Document Server

    Pourahmadi, Mohsen

    2013-01-01

    Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and mac

  13. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  14. Discriminative Dimensionality Reduction for Multi-Dimensional Sequences.

    Science.gov (United States)

    Su, Bing; Ding, Xiaoqing; Wang, Hao; Wu, Ying

    2018-01-01

    Since the observables at particular time instants in a temporal sequence exhibit dependencies, they are not independent samples. Thus, it is not plausible to apply i.i.d. assumption-based dimensionality reduction methods to sequence data. This paper presents a novel supervised dimensionality reduction approach for sequence data, called Linear Sequence Discriminant Analysis (LSDA). It learns a linear discriminative projection of the feature vectors in sequences to a lower-dimensional subspace by maximizing the separability of the sequence classes such that the entire sequences are holistically discriminated. The sequence class separability is constructed based on the sequence statistics, and the use of different statistics produces different LSDA methods. This paper presents and compares two novel LSDA methods, namely M-LSDA and D-LSDA. M-LSDA extracts model-based statistics by exploiting the dynamical structure of the sequence classes, and D-LSDA extracts the distance-based statistics by computing the pairwise similarity of samples from the same sequence class. Extensive experiments on several different tasks have demonstrated the effectiveness and the general applicability of the proposed methods.

  15. Las cinco grandes dimensiones de la personalidad

    Directory of Open Access Journals (Sweden)

    Jan ter Laak

    1996-12-01

    Full Text Available Este artículo revisa las distintas posiciones teóricas sobre las cinco grandes dimensiones de la personalidad, mostrando las semejanzas y diferencias entre las posturas teóricas. Esta contribución presenta lo siguiente: (a la génesis del contenido y la estructura de las cinco dimensiones; (b la fortaleza de las cinco dimensiones; (e la relación de las cinco grandes dimensiones con otros constructos de personalidad; (d discute el valor predictivo de las puntuaciones del perfil de las cinco dimensiones para criterios pertinentes; (e analiza el estatus teórico de las cinco dimensiones; (f discute críticas históricas sobre las cinco grandes dimensiones y se formulan respuestas a estas críticas; (g hace conjeturas para el futuro de las cinco grandes dimensiones; y (h concluye con algunas conclusiones y comentarios.

  16. Visualizing the quality of dimensionality reduction

    NARCIS (Netherlands)

    Mokbel, Bassam; Lueks, Wouter; Gisbrecht, Andrej; Hammer, Barbara

    2013-01-01

    The growing number of dimensionality reduction methods available for data visualization has recently inspired the development of formal measures to evaluate the resulting low-dimensional representation independently from the methods' inherent criteria. Many evaluation measures can be summarized

  17. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  18. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  19. Dimensional reduction in anomaly mediation

    Science.gov (United States)

    Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-04-01

    We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking. Evanescent operators proportional to ɛ arise in the bare Lagrangian when it is reduced from d=4 to d=4-2ɛ dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.

  20. Dimensionality reduction in hyperspectral imagery

    Science.gov (United States)

    Gillis, David; Bowles, Jeffrey H.; Winter, Michael E.

    2003-09-01

    In this paper we examine how the projection of hyperspectral data into smaller dimensional subspaces can effect the propagation of error. In particular, we show that the nonorthogonality of endmembers in the linear mixing model can cause small changes in band space (as, for example, from the addition of noise) to lead to relatively large changes in the estimated abundance coefficients. We also show that increasing the number of endmembers can actually lead to an increase in the amount of possible error.

  1. Dimensional crossover in directed percolation

    International Nuclear Information System (INIS)

    Chame, A.M.N.; Queiroz, S.L.A. de; Santos, Raimundo R. dos.

    1984-04-01

    We study the dimensional crossover in directed percolation in three dimensions. Bonds are allowed to have different concentrations along the three cartesian axes of the lattice. Through a Position Space Renormalization Group we obtain the phase-diagrama where non-percolating, 1-D, 2-D and 3-D percolating phases are present. We find that the isotropic fixed points are unstable with respect to anisotropy, thus driving the system into a different universality class. (author) [pt

  2. Information visualization by dimensionality reduction: a review

    OpenAIRE

    Safa Najim

    2014-01-01

    Information visualization can be considered a process of transforming similarity relationships between data points to a geometric representation in order to see unseen information. High-dimensionality data sets are one of the main problems of information visualization. Dimensionality Reduction (DR) is therefore a useful strategy to project high-dimensional space onto low-dimensional space, which it can be visualized directly. The application of this technique has several benefits. First, DR c...

  3. Efficient Kernelization of Discriminative Dimensionality Reduction

    OpenAIRE

    Schulz, Alexander; Brinkrolf, Johannes; Hammer, Barbara

    2017-01-01

    Modern nonlinear dimensionality reduction (DR) techniques project high dimensional data to low dimensions for their visual inspection. Provided the intrinsic data dimensionality is larger than two, DR nec- essarily faces information loss and the problem becomes ill-posed. Dis- criminative dimensionality reduction (DiDi) offers one intuitive way to reduce this ambiguity: it allows a practitioner to identify what is relevant and what should be regarded as noise by means of int...

  4. Sparse High Dimensional Models in Economics.

    Science.gov (United States)

    Fan, Jianqing; Lv, Jinchi; Qi, Lei

    2011-09-01

    This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed.

  5. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  6. Rotational Invariant Dimensionality Reduction Algorithms.

    Science.gov (United States)

    Lai, Zhihui; Xu, Yong; Yang, Jian; Shen, Linlin; Zhang, David

    2017-11-01

    A common intrinsic limitation of the traditional subspace learning methods is the sensitivity to the outliers and the image variations of the object since they use the norm as the metric. In this paper, a series of methods based on the -norm are proposed for linear dimensionality reduction. Since the -norm based objective function is robust to the image variations, the proposed algorithms can perform robust image feature extraction for classification. We use different ideas to design different algorithms and obtain a unified rotational invariant (RI) dimensionality reduction framework, which extends the well-known graph embedding algorithm framework to a more generalized form. We provide the comprehensive analyses to show the essential properties of the proposed algorithm framework. This paper indicates that the optimization problems have global optimal solutions when all the orthogonal projections of the data space are computed and used. Experimental results on popular image datasets indicate that the proposed RI dimensionality reduction algorithms can obtain competitive performance compared with the previous norm based subspace learning algorithms.

  7. Dimensional stability of natural fibers

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott

    2013-01-01

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  8. Universal spaces for almost n-dimensionality

    NARCIS (Netherlands)

    Abry, M.; Dijkstra, J.J.

    2007-01-01

    We find universal functions for the class of lower semi-continuous (LSC) functions with at most n-dimensional domain. In an earlier paper we proved that a space is almost n-dimensional if and only if it is homeomorphic to the graph of an LSC function with an at most n-dimensional domain. We conclude

  9. Assessment of Dimensionality in Social Science Subtest

    Science.gov (United States)

    Ozbek Bastug, Ozlem Yesim

    2012-01-01

    Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…

  10. Holography, Dimensional Reduction and the Bekenstein Bound

    Science.gov (United States)

    Bak, Dongsu; Yee, Ho-Ung

    2004-04-01

    We consider dimensional reduction of the lightlike holography of the covariant entropy bound from D+1 dimensional geometry of M × S1 to the D dimensional geometry M. With a warping factor, the local Bekenstein bound in D+1 dimensions leads to a more refined form of the bound from the D dimensional view point. With this new local Bekenstein bound, it is quite possible to saturate the lightlike holography even with nonvanishing expansion rate. With a Kaluza-Klein gauge field, the dimensional reduction implies a stronger bound where the energy momentum tensor contribution is replaced by the energy momentum tensor with the electromagnetic contribution subtracted.

  11. Dimensional reduction at a quantum critical point

    Science.gov (United States)

    Sebastian, S. E.; Harrison, N.; Batista, C. D.; Balicas, L.; Jaime, M.; Sharma, P. A.; Kawashima, N.; Fisher, I. R.

    2006-06-01

    Competition between electronic ground states near a quantum critical point (QCP)-the location of a zero-temperature phase transition driven solely by quantum-mechanical fluctuations-is expected to lead to unconventional behaviour in low-dimensional systems. New electronic phases of matter have been predicted to occur in the vicinity of a QCP by two-dimensional theories, and explanations based on these ideas have been proposed for significant unsolved problems in condensed-matter physics, such as non-Fermi-liquid behaviour and high-temperature superconductivity. But the real materials to which these ideas have been applied are usually rendered three-dimensional by a finite electronic coupling between their component layers; a two-dimensional QCP has not been experimentally observed in any bulk three-dimensional system, and mechanisms for dimensional reduction have remained the subject of theoretical conjecture. Here we show evidence that the Bose-Einstein condensate of spin triplets in the three-dimensional Mott insulator BaCuSi2O6 (refs 12-16) provides an experimentally verifiable example of dimensional reduction at a QCP. The interplay of correlations on a geometrically frustrated lattice causes the individual two-dimensional layers of spin-½ Cu2+ pairs (spin dimers) to become decoupled at the QCP, giving rise to a two-dimensional QCP characterized by linear power law scaling distinctly different from that of its three-dimensional counterpart. Thus the very notion of dimensionality can be said to acquire an `emergent' nature: although the individual particles move on a three-dimensional lattice, their collective behaviour occurs in lower-dimensional space.

  12. Dimensional regularization in configuration space

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1995-09-01

    Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs

  13. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    that connects a pair of paths. A path expression is a function that maps a set of path sets into a path set. Path sets can be joined, filtering conditions can restrict the set of qualifying paths, and aggregation functions can be applied to path elements. In particular, the aggregation function SET can be used...... to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments...

  14. Dimensional reduction and moment maps

    Science.gov (United States)

    Nagatomo, Yasuyuki

    2002-03-01

    We give a unified viewpoint of moment maps in the case of symplectic, hyper-Kähler, quaternion-Kähler and holomorphic contact manifolds. The Higgs field can be regarded as a moment map under some additional conditions in each case. Using dimensional reductions and moment maps, we reduce the standard 1 instanton on HP 1≅S 4 to an SO(3) instanton on CP 1× CP 1 and the standard 1 instanton on HP n to the standard 1 instanton on Gr 2( Cn+1) .

  15. Low dimensional worm-holes

    Science.gov (United States)

    Samardzija, Nikola

    1995-01-01

    A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.

  16. Stochastic and infinite dimensional analysis

    CERN Document Server

    Carpio-Bernido, Maria; Grothaus, Martin; Kuna, Tobias; Oliveira, Maria; Silva, José

    2016-01-01

    This volume presents a collection of papers covering applications from a wide range of systems with infinitely many degrees of freedom studied using techniques from stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the statistical mechanics of polymer chains, complex networks, and quantum field theory. Systems of infinitely many degrees of freedom create their particular mathematical challenges which have been addressed by different mathematical theories, namely in the theories of stochastic processes, Malliavin calculus, and especially white noise analysis. These proceedings are inspired by a conference held on the occasion of Prof. Ludwig Streit’s 75th birthday and celebrate his pioneering and ongoing work in these fields.

  17. Dimensionality Reduction Through Classifier Ensembles

    Science.gov (United States)

    Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)

    1999-01-01

    In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.

  18. Confining membranes and dimensional reduction

    Science.gov (United States)

    Antonov, Dmitri

    2001-11-01

    The dual theory describing the 4D Coulomb gas of point-like magnetically charged objects, which confines closed electric strings, is considered. The respective generalization of the theory of confining strings to confining membranes is further constructed. The same is done for the analogous SU(3)-inspired model. We then consider a combined model which confines both electric charges and closed strings. Such a model is a mixture of the above-mentioned Coulomb gas with the condensate of the dual Higgs field, where the latter one is described by the dual abelian Higgs model. It is demonstrated that in a certain limit of this dual abelian Higgs model, the system under study undergoes naively the dimensional reduction and becomes described by the (completely integrable) 2D sine-Gordon theory. In particular, at finite temperature, this fact leads to the phase transition of the Berezinskii-Kosterlitz-Thouless type with the respective critical temperature expressed in terms of the parameters of the dual abelian Higgs model. However, it is finally discussed that the dimensional reduction is rigorously valid only in the strong coupling limit of the original 4D Coulomb gas. In such a limit, this reduction transforms the combined model into the 2D free bosonic theory.

  19. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  20. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  1. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  2. Nonlinear dimensionality reduction by locally linear embedding.

    Science.gov (United States)

    Roweis, S T; Saul, L K

    2000-12-22

    Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.

  3. D-dimensional energies for sodium dimer

    International Nuclear Information System (INIS)

    Zhang, Guang-Dong; Zhou, Wen; Liu, Jian-Yi; Zhang, Lie-Hui; Jia, Chun-Sheng

    2014-01-01

    Highlights: • We explore the D-dimensional Schrödinger equation with improved Tietz potential model. • Energies in higher dimensions remain similar behaviors to the 3-dimensional system. • D-dimensional scaling method resembles a translation transformation. - Abstract: We solve the Schrödinger equation with the improved Tietz potential energy model in D spatial dimensions. The D-dimensional rotation–vibrational energy spectra have been obtained by using the supersymmetric shape invariance approach. The rotation–vibrational energies for the A 1 ∑ u + and C 1 Π u states of the Na 2 molecule increase as D increases in the presence of a fixed vibrational quantum number and rotational quantum number. It is observed that the behavior of the vibrational energies in higher dimensions remains similar to that of the three-dimensional system. We find that the D-dimensional scaling method resembles a translation transformation from the higher dimensions to the three dimensions

  4. Cascade Support Vector Machines with Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Oliver Kramer

    2015-01-01

    Full Text Available Cascade support vector machines have been introduced as extension of classic support vector machines that allow a fast training on large data sets. In this work, we combine cascade support vector machines with dimensionality reduction based preprocessing. The cascade principle allows fast learning based on the division of the training set into subsets and the union of cascade learning results based on support vectors in each cascade level. The combination with dimensionality reduction as preprocessing results in a significant speedup, often without loss of classifier accuracies, while considering the high-dimensional pendants of the low-dimensional support vectors in each new cascade level. We analyze and compare various instantiations of dimensionality reduction preprocessing and cascade SVMs with principal component analysis, locally linear embedding, and isometric mapping. The experimental analysis on various artificial and real-world benchmark problems includes various cascade specific parameters like intermediate training set sizes and dimensionalities.

  5. Nonlinear dimensionality reduction in climate data

    Directory of Open Access Journals (Sweden)

    A. J. Gámez

    2004-01-01

    Full Text Available Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Niño-Southern Oscillation (ENSO phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO.

  6. Nonlinear Dimensionality Reduction by Locally Linear Embedding

    Science.gov (United States)

    Roweis, Sam T.; Saul, Lawrence K.

    2000-12-01

    Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.

  7. Nonlinear dimensionality reduction in climate data

    Science.gov (United States)

    Gámez, A. J.; Zhou, C. S.; Timmermann, A.; Kurths, J.

    2004-09-01

    Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower dimensional manifolds. In this article, a nonlinear method for dimensionality reduction, Isomap, is applied to the sea surface temperature and thermocline data in the tropical Pacific Ocean, where the El Niño-Southern Oscillation (ENSO) phenomenon and the annual cycle phenomena interact. Isomap gives a more accurate description of the manifold dimensionality of the physical system. The knowledge of the minimum number of dimensions is expected to improve the development of low dimensional models for understanding and predicting ENSO.

  8. Dynamic dimensionality reduction for hyperspectral imagery

    Science.gov (United States)

    Safavi, Haleh; Liu, Keng-Hao; Chang, Chein-I.

    2011-06-01

    Data dimensionality (DR) is generally performed by first fixing size of DR at a certain number, say p and then finding a technique to reduce an original data space to a low dimensional data space with dimensionality specified by p. This paper introduces a new concept of dynamic dimensionality reduction (DDR) which considers the parameter p as a variable by varying the value of p to make p adaptive compared to the commonly used DR, referred to as static dimensionality reduction (SDR) with the parameter p fixed at a constant value. In order to materialize the DDR another new concept, referred to as progressive DR (PDR) is also developed so that the DR can be performed progressively to adapt the variable size of data dimensionality determined by varying the value of p. The advantages of the DDR over SDR are demonstrated through experiments conducted for hyperspectral image classification.

  9. Dimensional Reduction for Generalized Continuum Polymers

    Science.gov (United States)

    Helmuth, Tyler

    2016-10-01

    The Brydges-Imbrie dimensional reduction formula relates the pressure of a d-dimensional gas of hard spheres to a model of (d+2)-dimensional branched polymers. Brydges and Imbrie's proof was non-constructive and relied on a supersymmetric localization lemma. The main result of this article is a constructive proof of a more general dimensional reduction formula that contains the Brydges-Imbrie formula as a special case. Central to the proof are invariance lemmas, which were first introduced by Kenyon and Winkler for branched polymers. The new dimensional reduction formulas rely on invariance lemmas for central hyperplane arrangements that are due to Mészáros and Postnikov. Several applications are presented, notably dimensional reduction formulas for (i) non-spherical bodies and (ii) for corrections to the pressure due to symmetry effects.

  10. Multi-dimensional Fuzzy Euler Approximation

    Directory of Open Access Journals (Sweden)

    Yangyang Hao

    2017-05-01

    Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.

  11. Topics in low-dimensional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Crescimanno, M.J.

    1991-04-30

    Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.

  12. High Temperature Dimensional Reduction and Parity Violation

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Shaposhnikov, Mikhail E

    1998-01-01

    The effective super-renormalizable 3-dimensional Lagrangian, describing the high temperature limit of chiral gauge theories, has more symmetry than the original 4d Lagrangian: parity violation is absent. Parity violation appears in the 3d theory only through higher-dimensional operators. We compute the coefficients of dominant P-odd operators in the Standard Electroweak theory and discuss their implications. We also clarify the parametric accuracy obtained with dimensional reduction.

  13. Algorithmic dimensionality reduction for molecular structure analysis

    OpenAIRE

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated alg...

  14. An Information Geometric Framework for Dimensionality Reduction

    OpenAIRE

    Carter, Kevin M.; Raich, Raviv; Hero III, Alfred O.

    2008-01-01

    This report concerns the problem of dimensionality reduction through information geometric methods on statistical manifolds. While there has been considerable work recently presented regarding dimensionality reduction for the purposes of learning tasks such as classification, clustering, and visualization, these methods have focused primarily on Riemannian manifolds in Euclidean space. While sufficient for many applications, there are many high-dimensional signals which have no straightforwar...

  15. Dimensionality Reduction by Local Discriminative Gaussians

    OpenAIRE

    Parrish, Nathan; Gupta, Maya

    2012-01-01

    We present local discriminative Gaussian (LDG) dimensionality reduction, a supervised dimensionality reduction technique for classification. The LDG objective function is an approximation to the leave-one-out training error of a local quadratic discriminant analysis classifier, and thus acts locally to each training point in order to find a mapping where similar data can be discriminated from dissimilar data. While other state-of-the-art linear dimensionality reduction methods require gradien...

  16. Sufficient Dimensionality Reduction with Irrelevant Statistics

    OpenAIRE

    Globerson, Amir; Chechik, Gal; Tishby, Naftali

    2012-01-01

    The problem of finding a reduced dimensionality representation of categorical variables while preserving their most relevant characteristics is fundamental for the analysis of complex data. Specifically, given a co-occurrence matrix of two variables, one often seeks a compact representation of one variable which preserves information about the other variable. We have recently introduced ``Sufficient Dimensionality Reduction' [GT-2003], a method that extracts continuous reduced dimensional fea...

  17. On nonlinear dimensionality reduction for face recognition

    OpenAIRE

    Huang, Weilin; Yin, Hujun

    2012-01-01

    The curse of dimensionality has prompted intensive research in effective methods of mapping high dimensional data. Dimensionality reduction and subspace learning have been studied extensively and widely applied to feature extraction and pattern representation in image and vision applications. Although PCA has long been regarded as a simple, efficient linear subspace technique, many nonlinear methods such as kernel PCA, local linear embedding, and self-organizing networks have been proposed re...

  18. Ensembles of Classifiers based on Dimensionality Reduction

    OpenAIRE

    Schclar, Alon; Rokach, Lior; Amit, Amir

    2013-01-01

    We present a novel approach for the construction of ensemble classifiers based on dimensionality reduction. Dimensionality reduction methods represent datasets using a small number of attributes while preserving the information conveyed by the original dataset. The ensemble members are trained based on dimension-reduced versions of the training set. These versions are obtained by applying dimensionality reduction to the original training set using different values of the input parameters. Thi...

  19. Incomplete Pivoted QR-based Dimensionality Reduction

    OpenAIRE

    Bermanis, Amit; Rotbart, Aviv; Salhov, Moshe; Averbuch, Amir

    2016-01-01

    High-dimensional big data appears in many research fields such as image recognition, biology and collaborative filtering. Often, the exploration of such data by classic algorithms is encountered with difficulties due to `curse of dimensionality' phenomenon. Therefore, dimensionality reduction methods are applied to the data prior to its analysis. Many of these methods are based on principal components analysis, which is statistically driven, namely they map the data into a low-dimension subsp...

  20. Probabilistic Dimensionality Reduction via Structure Learning

    OpenAIRE

    Wang, Li

    2016-01-01

    We propose a novel probabilistic dimensionality reduction framework that can naturally integrate the generative model and the locality information of data. Based on this framework, we present a new model, which is able to learn a smooth skeleton of embedding points in a low-dimensional space from high-dimensional noisy data. The formulation of the new model can be equivalently interpreted as two coupled learning problem, i.e., structure learning and the learning of projection matrix. This int...

  1. DROP: Dimensionality Reduction Optimization for Time Series

    OpenAIRE

    Suri, Sahaana; Bailis, Peter

    2017-01-01

    Dimensionality reduction is critical in analyzing increasingly high-volume, high-dimensional time series. In this paper, we revisit a now-classic study of time series dimensionality reduction operators and find that for a given quality constraint, Principal Component Analysis (PCA) uncovers representations that are over 2x smaller than those obtained via alternative techniques favored in the literature. However, as classically implemented via Singular Value Decomposition (SVD), PCA is incredi...

  2. Dimensionality reduction methods for molecular simulations

    OpenAIRE

    Doerr, Stefan; Ariz-Extreme, Igor; Harvey, Matthew J.; De Fabritiis, Gianni

    2017-01-01

    Molecular simulations produce very high-dimensional data-sets with millions of data points. As analysis methods are often unable to cope with so many dimensions, it is common to use dimensionality reduction and clustering methods to reach a reduced representation of the data. Yet these methods often fail to capture the most important features necessary for the construction of a Markov model. Here we demonstrate the results of various dimensionality reduction methods on two simulation data-set...

  3. Coset space dimensional reduction of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Zoupanos, G. (CERN, Geneva (Switzerland))

    1992-10-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.).

  4. Discrete symmetries and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  5. Coset space dimensional reduction of gauge theories

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1992-01-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.)

  6. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    (chapter 5), and in manuscript A, a method is presented for a more targeted approach to choosing column combinations. This approach uses the properties of the analytes to scale the importance of the selectivity properties of the columns. This method significantly increases the effective use of the two...... thousands of compounds. As the column-technology and pressure capabilities in (U)HPLC has been pushed to the limit, attention has shifted towards further development of the basic concept of HPLC - with multi-dimensional separation receiving a significant interest within the last few years. The focus......, higher grade HPLC systems are preferable – especially in the second dimension. The choice of column combination in online RP×RP is an important one, and previous methods for column selections have been focused on choosing columns with different selectivity for a wide range of compounds. In this thesis...

  7. Dynamics of coset dimensional reduction

    Science.gov (United States)

    Karthauser, Josef L. P.; Saffin, P. M.

    2006-04-01

    The evolution of multiple scalar fields in cosmology has been much studied, particularly when the potential is formed from a series of exponentials. For a certain subclass of such systems it is possible to get “assisted“ behavior, where the presence of multiple terms in the potential effectively makes it shallower than the individual terms indicate. It is also known that when compactifying on coset spaces one can achieve a consistent truncation to an effective theory which contains many exponential terms; however, if there are too many exponentials then exact scaling solutions do not exist. In this paper we study the potentials arising from such compactifications of eleven-dimensional supergravity and analyze the regions of parameter space which could lead to scaling behavior.

  8. Stochastic inflation and dimensional reduction

    Science.gov (United States)

    Kühnel, Florian; Schwarz, Dominik J.

    2008-11-01

    We adopt methods that are well-known in statistical physics to the problem of stochastic inflation. The effective power spectrum for the classical, stochastic long-wavelength fluctuations is calculated for free scalar fields in a de Sitter background. For a smooth separation into long and short wavelengths, we identify an infrared divergence of the effective power spectrum, which has its correspondence in statistical physics in the phenomenon of dimensional reduction. The inflationary dynamics pushes the affected scales exponentially fast to large superhorizon scales, and establishes scale-invariant behavior for smaller scales (for massless fields). In the limit of a sharp separation of wavelengths, the scale of the infrared divergence is pushed to infinity.

  9. Limitations on quantum dimensionality reduction

    Science.gov (United States)

    Harrow, Aram W.; Montanaro, Ashley; Short, Anthony J.

    2015-06-01

    The Johnson-Lindenstrauss Lemma is a classic result which implies that any set of n real vectors can be compressed to O(logn) dimensions while only distorting pairwise Euclidean distances by a constant factor. Here we consider potential extensions of this result to the compression of quantum states. We show that, by contrast with the classical case, there does not exist any distribution over quantum channels that significantly reduces the dimension of quantum states while preserving the 2-norm distance with high probability. We discuss two tasks for which the 2-norm distance is indeed the correct figure of merit. In the case of the trace norm, we show that the dimension of low-rank mixed states can be reduced by up to a square root, but that essentially no dimensionality reduction is possible for highly mixed states.

  10. Three Dimensional Tropical Correspondence Formula

    Science.gov (United States)

    Parker, Brett

    2017-07-01

    A tropical curve in R3 contributes to Gromov-Witten invariants in all genus. Nevertheless, we present a simple formula for how a given tropical curve contributes to Gromov-Witten invariants when we encode these invariants in a generating function with exponents of {λ} recording Euler characteristic. Our main modification from the known tropical correspondence formula for rational curves is as follows: a trivalent vertex, which before contributed a factor of n to the count of zero-genus holomorphic curves, contributes a factor of {2sin(nλ/2)}. We explain how to calculate relative Gromov-Witten invariants using this tropical correspondence formula, and how to obtain the absolute Gromov-Witten and Donaldson-Thomas invariants of some 3-dimensional toric manifolds including {CP3}. The tropical correspondence formula counting Donaldson-Thomas invariants replaces n by {i^{-(1+n)}q^{n/2}+i^{1+n}q^{-n/2}}.

  11. Nose burns: 4-dimensional analysis.

    Science.gov (United States)

    Bouguila, J; Ho Quoc, C; Viard, R; Brun, A; Voulliaume, D; Comparin, J-P; Foyatier, J-L

    2017-10-01

    The nose is the central organ of the face. It has two essential roles, aesthetic and breathing. It is often seriously damaged in the context of facial burns, causing grotesque facial disfigurement. As this disfigurement is visible on frontal and profile views, the patient suffers both socially and psychologically. The nose is a three-dimensional organ. Reconstruction is therefore more difficult and needs to be more precise than in other parts of the face. Maintaining symmetry, contour and function are essential for successful nasal reconstruction. Multiple factors determine the optimal method of reconstruction, including the size of the defect, its depth and its site. Satisfactory social life is recovered only after multiple surgical procedures and long-term rehabilitation and physiotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Dimensionality Reduction Library v 0.2

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-12

    Dimensionality Reduction Library is a C++ library for dimensionality reduction. In the context of this library, dimensionality reduction is considered to consist of 1)estimation of the intrinsic dimensionality using sampled data, 2) Finding maps that reduce the diemsionality of data (forward map) or increase the dimensionality of data (reverse map) and 3) mapping arbitray coordiantes to high and low dimensionalities. The library is intended toprovide a consistent interface to multiple dimensionality reduction algorithms with an efficient C++ interface that runs efficiently on multicore architectures. A few routines have been optimized with an option for GPU acceleration or distributed computation. Currently the library offers intrinsic dimensionality estimation using point-PCA reconstruction error and/ residual variance. The following dimensionality reduction methods have been implemented: Principal Component Analysis Multidimensional Scaling Locally Linear Embedding IsoMap Autoencoder Neutral Networks An executable is also supplied that can be built to allow for command-line access to the library routines. A description for an applciation of the library for molecular structure analysis has been published.

  13. Ultrahigh Resolution 3-Dimensional Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  14. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.

    1991-01-01

    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  15. Using dimensional reduction for hadronic collisions

    Science.gov (United States)

    Signer, Adrian; Stöckinger, Dominik

    2009-02-01

    We discuss how to apply regularization by dimensional reduction for computing hadronic cross sections at next-to-leading order. We analyze the infrared singularity structure, demonstrate that there are no problems with factorization, and show how to use dimensional reduction in conjunction with standard parton distribution functions. We clarify that different versions of dimensional reduction with different infrared and factorization behaviour have been used in the literature. Finally, we give transition rules for translating the various parts of next-to-leading order cross sections from dimensional reduction to other regularization schemes.

  16. Equivariant dimensional reduction and quiver gauge theories

    Science.gov (United States)

    Dolan, Brian P.; Szabo, Richard J.

    2011-09-01

    We review recent applications of equivariant dimensional reduction techniques to the construction of Yang-Mills-Higgs-Dirac theories with dynamical mass generation and exactly massless chiral fermions.

  17. Dimensional analysis and group theory in astrophysics

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

  18. ANÁLISIS DIMENSIONAL GENERALIZADO

    Directory of Open Access Journals (Sweden)

    Gabriel Poveda Ramos

    Full Text Available El artículo comienza por definir los conceptos de medición, medida, magnitud, dimensión, ilustrándolos con ejemplos. Además se mencionan magnitudes así definidas que se pueden identificar en el mundo de las Ciencias Sociales, las Ciencias Naturales, las Ciencias Humanas, además de las magnitudes que usualmente se aceptan en las Ciencias Físicas. Se corrigen conceptos equivocados sobre las dimensiones de magnitudes físicas como Fuerza, Ángulo plano, Magnetismo y Entropía, y se presentan otros conceptos que suelen ser ignorados en los libros de Física y las muchas magnitudes que son simplemente ignoradas en Ciencias Sociales y en Ciencias Naturales. Se pone de presente la naturaleza de Espacio Vectorial que tiene la clase de las magnitudes que aparecen en todas estas ciencias frente a la operación de composición interna entre magnitudes, y la de composición externa con la clase de los números racionales, y con un ejemplo tomado de la teoría de la Evaluación de Proyectos, se muestra la gran utilidad que aportan estos conceptos a la disciplina del Análisis Dimensional, como ocurre con el algoritmo de Lord Kelvin para la deducción de leyes cuantitativas para los fenómenos físicos, sociales, económicos y otros que son susceptibles de analizar con el Teorema Pi de Buckingham-Varschy y Ostrogradsky.

  19. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  20. Three-dimensional laparoscopy vs 2-dimensional laparoscopy with high-definition technology for abdominal surgery

    DEFF Research Database (Denmark)

    Fergo, Charlotte; Burcharth, Jakob; Pommergaard, Hans-Christian

    2017-01-01

    BACKGROUND: This systematic review investigates newer generation 3-dimensional (3D) laparoscopy vs 2-dimensional (2D) laparoscopy in terms of error rating, performance time, and subjective assessment as early comparisons have shown contradictory results due to technological shortcomings. DATA...

  1. Dimensional reduction, gauged /D=5 supergravity and brane solutions

    Science.gov (United States)

    Chamseddine, A. H.; Sabra, W. A.

    2000-06-01

    The /U(1) gauged version of the Strominger-Vafa five dimensional /N=2 supergravity with one vector multiplet is obtained via dimensional reduction from the /N=1 ten dimensional supergravity. Using such explicit relation between the gauged supergravity theory and ten dimensional supergravity, all known solutions of the five dimensional theory can be lifted up to ten-dimensions. The eleven dimensional solutions can also obtained by lifting the ten-dimensional solutions.

  2. Spinor calculus on 5-dimensional spacetimes

    International Nuclear Information System (INIS)

    Gomez-Lobo, Alfonso Garcia-Parrado; Martin-Garcia, Jose M

    2010-01-01

    We explain how Penrose's spinor calculus of 4-dimensional Lorentzian geometry is implemented in a 5-dimensional Lorentzian manifold. A number of issues, such as the essential spin algebra, the spin covariant derivative and the algebro-differential properties of the curvature spinors are discussed.

  3. Local duality for 2-dimensional local ring

    Indian Academy of Sciences (India)

    We prove a local duality for some schemes associated to a 2-dimensional complete local ring whose residue field is an -dimensional local field in the sense of Kato–Parshin. Our results generalize the Saito works in the case =0 and are applied to study the Bloch–Ogus complex for such rings in various cases.

  4. Basic physics of one-dimensional metals

    International Nuclear Information System (INIS)

    Emery, V.J.

    1976-01-01

    Largely nonmathematical qualitative lectures are given on the basic physics of nearly one-dimensional conductors. The main emphasis is placed on the properties of a purely one-dimensional electron gas. The effects of a real system having interchain coupling, impurities, a compressible lattice, lattice distortions and phonon anomalies are discussed

  5. Effects of phosphoramides on wood dimensional stability

    Science.gov (United States)

    Hong-Lin. Lee; George C. Chen; Roger M. Rowell

    2000-01-01

    To evaluate the dimensional stability of phosphoramide-reacted wood, wood was reacted with a mixture which was derived from compounding phosphorus pentoxide and each of 12 amines including alkyl, halophenyl, and phenyl amines in N,N-dimethylformamide. Dimensional stability of such reacted wood was analyzed by antishrink efficiency (ASE) using the water-soak method....

  6. Local duality for 2-dimensional local ring

    Indian Academy of Sciences (India)

    dimensional complete local ring whose residue field is an n-dimensional local field in the sense of. Kato–Parshin. Our results generalize the Saito works in the case n = 0 and are applied to study the Bloch–Ogus complex for such rings in various cases.

  7. Teleportation schemes in infinite dimensional Hilbert spaces

    International Nuclear Information System (INIS)

    Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori

    2005-01-01

    The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples

  8. Microlaser-based three-dimensional display

    Science.gov (United States)

    Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.

    1999-08-01

    Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.

  9. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  10. Multi-Dimensional Aggregation for Temporal Data

    DEFF Research Database (Denmark)

    Böhlen, M. H.; Gamper, J.; Jensen, Christian Søndergaard

    2006-01-01

    Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture...... sets and is competitive with respect to other temporal aggregation algorithms....

  11. Algorithmic dimensionality reduction for molecular structure analysis.

    Science.gov (United States)

    Brown, W Michael; Martin, Shawn; Pollock, Sara N; Coutsias, Evangelos A; Watson, Jean-Paul

    2008-08-14

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation--a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation.

  12. Algorithmic dimensionality reduction for molecular structure analysis

    Science.gov (United States)

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation. PMID:18715062

  13. Dimension and dimensional reduction in quantum gravity

    Science.gov (United States)

    Carlip, S.

    2017-10-01

    A number of very different approaches to quantum gravity contain a common thread, a hint that spacetime at very short distances becomes effectively two dimensional. I review this evidence, starting with a discussion of the physical meaning of ‘dimension’ and concluding with some speculative ideas of what dimensional reduction might mean for physics.

  14. Dictionary Learning Based Dimensionality Reduction for Classification

    OpenAIRE

    Schnass, Karin; Vandergheynst, Pierre

    2008-01-01

    In this article we present a signal model for classification based on a low dimensional dictionary embedded into the high dimensional signal space. We develop an alternate projection algorithm to find the embedding and the dictionary and finally test the classification performance of our scheme in comparison to Fisher’s LDA.

  15. Algorithmic dimensionality reduction for molecular structure analysis

    Science.gov (United States)

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-08-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation-a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation.

  16. Dimensional reduction for generalized Poisson brackets

    Science.gov (United States)

    Acatrinei, Ciprian Sorin

    2008-02-01

    We discuss dimensional reduction for Hamiltonian systems which possess nonconstant Poisson brackets between pairs of coordinates and between pairs of momenta. The associated Jacobi identities imply that the dimensionally reduced brackets are always constant. Some examples are given alongside the general theory.

  17. Dimensionality reduction in epidemic spreading models

    Science.gov (United States)

    Frasca, M.; Rizzo, A.; Gallo, L.; Fortuna, L.; Porfiri, M.

    2015-09-01

    Complex dynamical systems often exhibit collective dynamics that are well described by a reduced set of key variables in a low-dimensional space. Such a low-dimensional description offers a privileged perspective to understand the system behavior across temporal and spatial scales. In this work, we propose a data-driven approach to establish low-dimensional representations of large epidemic datasets by using a dimensionality reduction algorithm based on isometric features mapping (ISOMAP). We demonstrate our approach on synthetic data for epidemic spreading in a population of mobile individuals. We find that ISOMAP is successful in embedding high-dimensional data into a low-dimensional manifold, whose topological features are associated with the epidemic outbreak. Across a range of simulation parameters and model instances, we observe that epidemic outbreaks are embedded into a family of closed curves in a three-dimensional space, in which neighboring points pertain to instants that are close in time. The orientation of each curve is unique to a specific outbreak, and the coordinates correlate with the number of infected individuals. A low-dimensional description of epidemic spreading is expected to improve our understanding of the role of individual response on the outbreak dynamics, inform the selection of meaningful global observables, and, possibly, aid in the design of control and quarantine procedures.

  18. Spontaneous dimensional reduction in quantum gravity

    Science.gov (United States)

    Carlip, S.

    2016-07-01

    Hints from a number of different approaches to quantum gravity point to a phenomenon of “spontaneous dimensional reduction” to two spacetime dimensions near the Planck scale. I examine the physical meaning of the term “dimension” in this context, summarize the evidence for dimensional reduction, and discuss possible physical explanations.

  19. Assembling one-dimensional coordination polymers into ...

    Indian Academy of Sciences (India)

    ... analyses of these complexes reveal that the one-dimensional networks observed here are of three types: simple linear chain, chains with wavy nature and chains containing cavities. The self-complementary amide groups of the ligands assembled these coordination networks into higher dimensional architectures via N-H ...

  20. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  1. On dimensional reduction over coset spaces

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    Gauge theories defined in higher dimensions can be dimensionally reduced over coset spaces giving definite predictions for the resulting four-dimensional theory. We present the most interesting features of these theories as well as an attempt to construct a model with realistic low energy behaviour within this framework. (author)

  2. Continuous Dimensionality Characterization of Image Structures

    DEFF Research Database (Denmark)

    Felsberg, Michael; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its...

  3. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2010-01-01

    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  4. 3-Dimensional Right Ventricular Volume Assessment

    NARCIS (Netherlands)

    Jainandunsing, Jayant S.; Matyal, Robina; Shahul, Sajid S.; Wang, Angela; Woltersom, Bozena; Mahmood, Feroze

    Purpose: The purpose of this review was to evaluate new computer software available for 3-dimensional right ventricular (RV) volume estimation. Description: Based on 2-dimensional echocardiography, various algorithms have been used for RV volume estimation. These are complex, time-consuming

  5. Dimensional-duality and Its Lie Groups

    Science.gov (United States)

    Sinha, Nilotpal

    2009-01-01

    For a claim to a dimensional duality, we consider here that, the relativity is depending on a "double-fold" complex number for locally dense fourth axis within an enveloping 3D-space. This dimensional duality has been made here for locally dense m-dimensional geometry within n-space, for m > n, if every axis of m-space is dimensional-dual to its enveloping n-space. This locally dense m-dimensional geometry describes a reflexive complex function, viz., "transfusion" transformation, which establishes that, Lie group U(2) is the simply connected 1 to 2 enveloping group of SO(3, 1) within D-dual spaces only. Again, using the weight vectors, it is found that, there exists a SU(4) group, which may be a symmetry group for gravitons.

  6. Dimensional degression in AdSd

    International Nuclear Information System (INIS)

    Artsukevich, A. Yu.; Vasiliev, M. A.

    2009-01-01

    We analyze the pattern of fields in (d+1)-dimensional anti-de Sitter space in terms of those in d-dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS d+d ' and massless spin-one-half, spin-one, and spin-two fields in AdS d+1 . The mass spectra of the resulting towers of fields in AdS d are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev [Nucl. Phys. B, Proc. Suppl. 102, 100 (2001)] by a different method.

  7. Killing reduction of 5-dimensional spacetimes

    Science.gov (United States)

    Yang, Xuejun; Ma, Yongge; Shao, Jianbing; Zhou, Wei

    2003-07-01

    In a 5-dimensional spacetime (M,gab) with a Killing vector field ξa which is either everywhere time like or everywhere space like, the collection of all trajectories of ξa gives a 4-dimensional space S. The reduction of (M,gab) is studied in the geometric language, which is a generalization of Geroch’s method for the reduction of 4-dimensional spacetime. A 4-dimensional gravity coupled to a vector field and a scalar field on S is obtained by the reduction of vacuum Einstein’s equations on M, which gives also an alternative description of the 5-dimensional Kaluza-Klein theory. In addition to the symmetry-reduced action from the Hilbert action on M, an alternative action of the fields on S is also obtained, the variations of which lead to the same fields equations as those reduced from the vacuum Einstein equation on M.

  8. Multi-dimensional model order selection

    Directory of Open Access Journals (Sweden)

    Roemer Florian

    2011-01-01

    Full Text Available Abstract Multi-dimensional model order selection (MOS techniques achieve an improved accuracy, reliability, and robustness, since they consider all dimensions jointly during the estimation of parameters. Additionally, from fundamental identifiability results of multi-dimensional decompositions, it is known that the number of main components can be larger when compared to matrix-based decompositions. In this article, we show how to use tensor calculus to extend matrix-based MOS schemes and we also present our proposed multi-dimensional model order selection scheme based on the closed-form PARAFAC algorithm, which is only applicable to multi-dimensional data. In general, as shown by means of simulations, the Probability of correct Detection (PoD of our proposed multi-dimensional MOS schemes is much better than the PoD of matrix-based schemes.

  9. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    Science.gov (United States)

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  10. Four-dimensional electron microscopy.

    Science.gov (United States)

    Zewail, Ahmed H

    2010-04-09

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  11. Three dimensional magnetic abacus memory.

    Science.gov (United States)

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-08-22

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  12. Three-Dimensional Laser Microvision

    Science.gov (United States)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo

    2001-04-01

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  13. Four-Dimensional Electron Microscopy

    Science.gov (United States)

    Zewail, Ahmed H.

    2010-04-01

    The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope’s ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.

  14. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.

    2008-01-01

    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  15. Three dimensional magnetic abacus memory

    Science.gov (United States)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  16. Two-dimensional Quantum Gravity

    Science.gov (United States)

    Rolf, Juri

    1998-10-01

    This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).

  17. Dimensional-reduction anomaly in spherically symmetric spacetimes

    Science.gov (United States)

    Sutton, P.

    2000-08-01

    In D-dimensional spacetimes which can be foliated by n-dimensional homogeneous subspaces, a quantum field can be decomposed in terms of modes on the subspaces, reducing the system to a collection of (D-n)-dimensional fields. This allows one to write bare D-dimensional field quantities like the Green function and the effective action as sums of their (D-n)-dimensional counterparts in the dimensionally reduced theory. It has been shown, however, that renormalization breaks this relationship between the original and dimensionally reduced theories, an effect called the dimensional-reduction anomaly. We examine the dimensional-reduction anomaly for the important case of spherically symmetric spaces.

  18. Computational Dimensionalities of Global Supercomputing

    Directory of Open Access Journals (Sweden)

    Richard S. Segall

    2013-12-01

    Full Text Available This Invited Paper pertains to subject of my Plenary Keynote Speech at the 17th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2013 held in Orlando, Florida on July 9-12, 2013. The title of my Plenary Keynote Speech was: "Dimensionalities of Computation: from Global Supercomputing to Data, Text and Web Mining" but this Invited Paper will focus only on the "Computational Dimensionalities of Global Supercomputing" and is based upon a summary of the contents of several individual articles that have been previously written with myself as lead author and published in [75], [76], [77], [78], [79], [80] and [11]. The topics of these of the Plenary Speech included Overview of Current Research in Global Supercomputing [75], Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing [76], Data Mining Supercomputing with SAS™ JMP® Genomics ([77], [79], [80], and Visualization by Supercomputing Data Mining [81]. ______________________ [11.] Committee on the Future of Supercomputing, National Research Council (2003, The Future of Supercomputing: An Interim Report, ISBN-13: 978-0-309-09016- 2, http://www.nap.edu/catalog/10784.html [75.] Segall, Richard S.; Zhang, Qingyu and Cook, Jeffrey S.(2013, "Overview of Current Research in Global Supercomputing", Proceedings of Forty- Fourth Meeting of Southwest Decision Sciences Institute (SWDSI, Albuquerque, NM, March 12-16, 2013. [76.] Segall, Richard S. and Zhang, Qingyu (2010, "Open-Source Software Tools for Data Mining Analysis of Genomic and Spatial Images using High Performance Computing", Proceedings of 5th INFORMS Workshop on Data Mining and Health Informatics, Austin, TX, November 6, 2010. [77.] Segall, Richard S., Zhang, Qingyu and Pierce, Ryan M.(2010, "Data Mining Supercomputing with SAS™ JMP®; Genomics: Research-in-Progress, Proceedings of 2010 Conference on Applied Research in Information Technology, sponsored by

  19. 4+ Dimensional nuclear systems engineering

    International Nuclear Information System (INIS)

    Suh, Kune Y.

    2009-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully integrated way of managing the information flow spanning their life cycle. This paper proposes digital systems engineering anchored in three dimensional (3D) computer aided design (CAD) models. The signature in the proposal lies with the four plus dimensional (4 + D) Technology TM , a critical know how for digital management. ESSE (Engineering Super Simulation Emulation) features a 4 + D Technology TM for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Dased on an integrated 3D configuration management system, ESSE consists of solutions JANUS (Junctional Analysis Neodynamic Unit SoftPower), EURUS (Engineering Utilities Research Unit SoftPower), NOTUS (Neosystemic Optimization Technical Unit SoftPower), VENUS (Virtual Engineering Neocybernetic Unit SoftPower) and INUUS (Informative Neographic Utilities Unit SoftPower). NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4 + D system. Problems with equipment positioning and manpower congestion in certain areas can be visualized prior to the actual operation, thus preventing accidents and safety problems such as collision between two machines and losses in

  20. Dimensional analysis, scaling and fractals

    International Nuclear Information System (INIS)

    Timm, L.C.; Reichardt, K.; Oliveira Santos Bacchi, O.

    2004-01-01

    Dimensional analysis refers to the study of the dimensions that characterize physical entities, like mass, force and energy. Classical mechanics is based on three fundamental entities, with dimensions MLT, the mass M, the length L and the time T. The combination of these entities gives rise to derived entities, like volume, speed and force, of dimensions L 3 , LT -1 , MLT -2 , respectively. In other areas of physics, four other fundamental entities are defined, among them the temperature θ and the electrical current I. The parameters that characterize physical phenomena are related among themselves by laws, in general of quantitative nature, in which they appear as measures of the considered physical entities. The measure of an entity is the result of its comparison with another one, of the same type, called unit. Maps are also drawn in scale, for example, in a scale of 1:10,000, 1 cm 2 of paper can represent 10,000 m 2 in the field. Entities that differ in scale cannot be compared in a simple way. Fractal geometry, in contrast to the Euclidean geometry, admits fractional dimensions. The term fractal is defined in Mandelbrot (1982) as coming from the Latin fractus, derived from frangere which signifies to break, to form irregular fragments. The term fractal is opposite to the term algebra (from the Arabic: jabara) which means to join, to put together the parts. For Mandelbrot, fractals are non topologic objects, that is, objects which have as their dimension a real, non integer number, which exceeds the topologic dimension. For the topologic objects, or Euclidean forms, the dimension is an integer (0 for the point, 1 for a line, 2 for a surface, and 3 for a volume). The fractal dimension of Mandelbrot is a measure of the degree of irregularity of the object under consideration. It is related to the speed by which the estimate of the measure of an object increases as the measurement scale decreases. An object normally taken as uni-dimensional, like a piece of a

  1. Four-Dimensional Graded Consciousness

    Science.gov (United States)

    Jonkisz, Jakub; Wierzchoń, Michał; Binder, Marek

    2017-01-01

    Both the multidimensional phenomenon and the polysemous notion of consciousness continue to prove resistant to consistent measurement and unambiguous definition. This is hardly surprising, given that there is no agreement even as regards the most fundamental issues they involve. One of the basic disagreements present in the continuing debate about consciousness pertains to its gradational nature. The general aim of this article is to show how consciousness might be graded and multidimensional at the same time. We therefore focus on the question of what it is, exactly, that is or could be graded in cases of consciousness, and how we can measure it. Ultimately, four different gradable aspects of consciousness will be described: quality, abstractness, complexity and usefulness, which belong to four different dimensions, these being understood, respectively, as phenomenal, semantic, physiological, and functional. Consequently, consciousness may be said to vary with respect to phenomenal quality, semantic abstraction, physiological complexity, and functional usefulness. It is hoped that such a four-dimensional approach will help to clarify and justify claims about the hierarchical nature of consciousness. The approach also proves explanatorily advantageous, as it enables us not only to draw attention to certain new and important differences in respect of subjective measures of awareness and to justify how a given creature may be ranked higher in one dimension of consciousness and lower in terms of another, but also allows for innovative explanations of a variety of well-known phenomena (amongst these, the interpretations of blindsight and locked-in syndrome will be briefly outlined here). Moreover, a 4D framework makes possible many predictions and hypotheses that may be experimentally tested (We point out a few such possibilities pertaining to interdimensional dependencies). PMID:28377738

  2. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  3. Alternative dimensional models of personality disorder

    DEFF Research Database (Denmark)

    Widiger, Thomas A; Simonsen, Erik

    2005-01-01

    The recognition of the many limitations of the categorical model of personality disorder classification has led to the development of quite a number of alternative proposals for a dimensional classification. The purpose of this article is to suggest that future research work toward the integration...... of these alternative proposals within a common hierarchical structure. An illustration of a potential integration is provided using the constructs assessed within existing dimensional models. Suggestions for future research that will help lead toward a common, integrative dimensional model of personality disorder...

  4. CLASSIFICATION OF 4-DIMENSIONAL GRADED ALGEBRAS

    OpenAIRE

    Armour, Aaron; Chen, Hui-Xiang; ZHANG, Yinhuo

    2009-01-01

    Let k be an algebraically closed field. The algebraic and geometric classification of finite dimensional algebras over k with ch(k) not equal 2 was initiated by Gabriel in [6], where a complete list of nonisomorphic 4-dimensional k-algebras was given and the number of irreducible components of the variety Alg(4) was discovered to be 5. The classification of 5-dimensional k-algebras was done by Mazzola in [10]. The number of irreducible components of the variety Alg(5) is 10. With the dimensio...

  5. Factorization and regularization by dimensional reduction

    Science.gov (United States)

    Signer, Adrian; Stöckinger, Dominik

    2005-10-01

    Since an old observation by Beenakker et al., the evaluation of QCD processes in dimensional reduction has repeatedly led to terms that seem to violate the QCD factorization theorem. We reconsider the example of the process gg → ttbar and show that the factorization problem can be completely resolved. A natural interpretation of the seemingly non-factorizing terms is found, and they are rewritten in a systematic and factorized form. The key to the solution is that the D- and (4 - D)-dimensional parts of the 4-dimensional gluon have to be regarded as independent partons.

  6. Dimensionality reduction for dimension-specific search

    OpenAIRE

    Huang, Zi; Hengtao, Shen; Zhou, Xiaofang; Song, Dawei; Rüger, Stefan

    2007-01-01

    Dimensionality reduction plays an important role in efficient similarity search, which is often based on k-nearest neighbor (k-NN) queries over a high-dimensional feature space. In this paper, we introduce a novel type of k-NN query, namely conditional k-NN (ck-NN), which considers dimension-specific constraint in addition to the inter-point distances. However, existing dimensionality reduction methods are not applicable to this new type of queries. We propose a novel Mean-Std (standard devia...

  7. On dimensional reduction of magical supergravity theories

    Science.gov (United States)

    Kan, Naoto; Mizoguchi, Shun'ya

    2016-11-01

    We prove, by a direct dimensional reduction and an explicit construction of the group manifold, that the nonlinear sigma model of the dimensionally reduced three-dimensional A = R magical supergravity is F 4 (+ 4) / (USp (6) × SU (2)). This serves as a basis for the solution generating technique in this supergravity as well as allows to give the Lie algebraic characterizations to some of the parameters and functions in the original D = 5 Lagrangian. Generalizations to other magical supergravities are also discussed.

  8. Dimensiones de personalidad y potencial evocado cerebral

    OpenAIRE

    Camposano, S.; Lolas, C. Alvarez F.

    1994-01-01

    La teoría de la personalidad de Eysenck postula 3 dimensiones ortogonales de personalidad: extraversión (E), neuroticismo (N), psicoticismo (P). Formula predicciones conductuales y fisiológicas relacionándolas a la predisposición a ciertos trastornos. La base biológica de las dimensiones E y N se ha evidenciado en diferencias electrofisiológicas. La dimensión P, agregada posteriormente, ha sido más controvertida, postulándose que no es independiente de las dimensiones antes descritas. Con obj...

  9. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  10. Asymptotically Honest Confidence Regions for High Dimensional

    DEFF Research Database (Denmark)

    Caner, Mehmet; Kock, Anders Bredahl

    While variable selection and oracle inequalities for the estimation and prediction error have received considerable attention in the literature on high-dimensional models, very little work has been done in the area of testing and construction of confidence bands in high-dimensional models. However...... of the asymptotic covariance matrix of an increasing number of parameters which is robust against conditional heteroskedasticity. To our knowledge we are the first to do so. Next, we show that our confidence bands are honest over sparse high-dimensional sub vectors of the parameter space and that they contract...

  11. Three-dimensional patterning methods and related devices

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.

    2016-12-27

    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  12. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  13. Information modeling for interoperable dimensional metrology

    CERN Document Server

    Zhao, Y; Brown, Robert; Xu, Xun

    2014-01-01

    This book analyzes interoperability issues in dimensional metrology systems and describes information modeling techniques. Coverage includes theory, techniques and key technologies, and explores new approaches for solving real-world interoperability problems.

  14. Detection and Prognostics on Low Dimensional Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes the application of known and novel prognostic algorithms on systems that can be described by low dimensional, potentially nonlinear dynamics....

  15. Conoscopic holography: two-dimensional numerical reconstructions.

    Science.gov (United States)

    Mugnier, L M; Sirat, G Y; Charlot, D

    1993-01-01

    Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

  16. Eight dimensional QCD at one loop

    Science.gov (United States)

    Gracey, J. A.

    2018-01-01

    The Lagrangian for a non-Abelian gauge theory with an S U (Nc) symmetry and a linear covariant gauge fixing is constructed in eight dimensions. The renormalization group functions are computed at one loop with the special cases of Nc=2 and 3 treated separately. By computing the critical exponents derived from these in the large Nf expansion at the Wilson-Fisher fixed point it is shown that the Lagrangian is in the same universality class as the two dimensional non-Abelian Thirring model and quantum chromodynamics (QCD). As the eight dimensional Lagrangian contains new quartic gluon operators not present in four dimensional QCD, we compute in parallel the mixing matrix of four dimensional dimension 8 operators in pure Yang-Mills theory.

  17. Exploring Dimensionality Reduction for Text Mining

    National Research Council Canada - National Science Library

    Underhill, David G

    2007-01-01

    .... Both of these challenges can be addressed with "dimensionality reduction" (DR). DR is the process of transforming a large amount of data into a much smaller, less noisy representation that preserves...

  18. Incremental nonlinear dimensionality reduction by manifold learning.

    Science.gov (United States)

    Law, Martin H C; Jain, Anil K

    2006-03-01

    Understanding the structure of multidimensional patterns, especially in unsupervised cases, is of fundamental importance in data mining, pattern recognition, and machine learning. Several algorithms have been proposed to analyze the structure of high-dimensional data based on the notion of manifold learning. These algorithms have been used to extract the intrinsic characteristics of different types of high-dimensional data by performing nonlinear dimensionality reduction. Most of these algorithms operate in a "batch" mode and cannot be efficiently applied when data are collected sequentially. In this paper, we describe an incremental version of ISOMAP, one of the key manifold learning algorithms. Our experiments on synthetic data as well as real world images demonstrate that our modified algorithm can maintain an accurate low-dimensional representation of the data in an efficient manner.

  19. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  20. A student's guide to dimensional analysis

    CERN Document Server

    Lemons, Don S

    2017-01-01

    This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals.

  1. Dimensional reduction for a SIR type model

    Science.gov (United States)

    Cahyono, Edi; Soeharyadi, Yudi; Mukhsar

    2018-03-01

    Epidemic phenomena are often modeled in the form of dynamical systems. Such model has also been used to model spread of rumor, spread of extreme ideology, and dissemination of knowledge. Among the simplest is SIR (susceptible, infected and recovered) model, a model that consists of three compartments, and hence three variables. The variables are functions of time which represent the number of subpopulations, namely suspect, infected and recovery. The sum of the three is assumed to be constant. Hence, the model is actually two dimensional which sits in three-dimensional ambient space. This paper deals with the reduction of a SIR type model into two variables in two-dimensional ambient space to understand the geometry and dynamics better. The dynamics is studied, and the phase portrait is presented. The two dimensional model preserves the equilibrium and the stability. The model has been applied for knowledge dissemination, which has been the interest of knowledge management.

  2. High dimensional neurocomputing growth, appraisal and applications

    CERN Document Server

    Tripathi, Bipin Kumar

    2015-01-01

    The book presents a coherent understanding of computational intelligence from the perspective of what is known as "intelligent computing" with high-dimensional parameters. It critically discusses the central issue of high-dimensional neurocomputing, such as quantitative representation of signals, extending the dimensionality of neuron, supervised and unsupervised learning and design of higher order neurons. The strong point of the book is its clarity and ability of the underlying theory to unify our understanding of high-dimensional computing where conventional methods fail. The plenty of application oriented problems are presented for evaluating, monitoring and maintaining the stability of adaptive learning machine. Author has taken care to cover the breadth and depth of the subject, both in the qualitative as well as quantitative way. The book is intended to enlighten the scientific community, ranging from advanced undergraduates to engineers, scientists and seasoned researchers in computational intelligenc...

  3. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  4. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  5. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  6. Some problems of low-dimensional physics

    OpenAIRE

    Kornyushin, Yuri

    2007-01-01

    Fermi and kinetic energy are usually calculated in periodic boundary conditions model, which is not self-consistent for low-dimensional problems, where particles are confined. Thus for confined particles the potential box model was used self-consistently to calculate Fermi and kinetic energies in 3-, 2-, and 1-dimensional cases. This approach is much more logical and self-consistent. Then the conditions for neglecting dimensions, that is conditions under which the movement of particles in the...

  7. Stochastic confinement and dimensional reduction. 1

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.; Peterson, C.

    1984-03-01

    By Monte Carlo calculations on a 16 4 lattice the authors investigate four dimensional SU(2) lattice guage theory with respect to the conjecture that at large distances this theory reduces approximately to two dimensional SU(2) lattice gauge theory. Good numerical evidence is found for this conjecture. As a by-product the SU(2) string tension is also measured and good agreement is found with scaling. The 'adjoint string tension' is also found to have a reasonable scaling behaviour. (Auth.)

  8. Dimensional Reduction over Fuzzy Coset Spaces

    CERN Document Server

    Aschieri, P; Manousselis, P; Madore, J

    2004-01-01

    We examine gauge theories on Minkowski space-time times fuzzy coset spaces. This means that the extra space dimensions instead of being a continuous coset space S/R are a corresponding finite matrix approximation. The gauge theory defined on this non-commutative setup is reduced to four dimensions and the rules of the corresponding dimensional reduction are established. We investigate in particular the case of the fuzzy sphere including the dimensional reduction of fermion fields.

  9. High Temperature QCD and Dimensional Reduction

    Science.gov (United States)

    Petersson, Bengt

    2001-04-01

    In this talk I will first give a short discussion of some lattice results for QCD at finite temperature. I will then describe in some detail the technique of dimensional reduction, which in principle is a powerful technique to obtain results on the long distance properties of the quark-gluon plasma. Finally I will describe some new results, which test the technique in a simpler model, namely three dimensional gauge theory.

  10. Dimensional Reduction over Fuzzy Coset Spaces

    Science.gov (United States)

    Aschieri, P.; Madore, J.; Manousselis, P.; Zoupanos, G.

    2004-04-01

    We examine gauge theories on Minkowski space-time times fuzzy coset spaces. This means that the extra space dimensions instead of being a continuous coset space S/R are a corresponding finite matrix approximation. The gauge theory defined on this non-commutative setup is reduced to four dimensions and the rules of the corresponding dimensional reduction are established. We investigate in particular the case of the fuzzy sphere including the dimensional reduction of fermion fields.

  11. Nonlinear dimensionality reduction in climate data

    OpenAIRE

    Gámez, A. J.; Zhou, C. S.; Timmermann, A.; Kurths, J.

    2004-01-01

    International audience; Linear methods of dimensionality reduction are useful tools for handling and interpreting high dimensional data. However, the cumulative variance explained by each of the subspaces in which the data space is decomposed may show a slow convergence that makes the selection of a proper minimum number of subspaces for successfully representing the variability of the process ambiguous. The use of nonlinear methods can improve the embedding of multivariate data into lower di...

  12. Quantization as a dimensional reduction phenomenon

    Science.gov (United States)

    Gozzi, E.; Mauro, D.

    2006-06-01

    Classical mechanics, in the operatorial formulation of Koopman and von Neumann, can be written also in a functional form. In this form two Grassmann partners of time make their natural appearance extending in this manner time to a three dimensional supermanifold. Quantization is then achieved by a process of dimensional reduction of this supermanifold. We prove that this procedure is equivalent to the well-known method of geometric quantization.

  13. Dimensionality reduction in translational noninvariant wave guides

    OpenAIRE

    Voo, Khee-Kyun

    2008-01-01

    A scheme to reduce translational noninvariant quasi-one-dimensional wave guides into singly or multiply connected one-dimensional (1D) lines is proposed. It is meant to simplify the analysis of wave guides, with the low-energy properties of the guides preserved. Guides comprising uniform-cross-sectional sections and discontinuities such as bends and branching junctions are considered. The uniform sections are treated as 1D lines, and the discontinuities are described by equations sets connect...

  14. Dimensionality reduction when data are density functions

    OpenAIRE

    Delicado Useros, Pedro Francisco

    2011-01-01

    Functional Data Analysis deals with samples where a whole function is observed for each individual. A relevant case of FDA is when the observed functions are density functions. Among the particular characteristics of density functions, the most of the fact that they are an example of infinite dimensional compositional data (parts of some whole which only carry relative information) is made. Several dimensionality reduction methods for this particular type of data are compared: fun...

  15. Outlier preservation by dimensionality reduction techniques

    OpenAIRE

    Onderwater, Martijn

    2015-01-01

    htmlabstractSensors are increasingly part of our daily lives: motion detection, lighting control, and energy consumption all rely on sensors. Combining this information into, for instance, simple and comprehensive graphs can be quite challenging. Dimensionality reduction is often used to address this problem, by decreasing the number of variables in the data and looking for shorter representations. However, dimensionality reduction is often aimed at normal daily data, and applying it to event...

  16. Joint Dimensionality Reduction for Two Feature Vectors

    OpenAIRE

    Li, Yanjun; Bresler, Yoram

    2016-01-01

    Many machine learning problems, especially multi-modal learning problems, have two sets of distinct features (e.g., image and text features in news story classification, or neuroimaging data and neurocognitive data in cognitive science research). This paper addresses the joint dimensionality reduction of two feature vectors in supervised learning problems. In particular, we assume a discriminative model where low-dimensional linear embeddings of the two feature vectors are sufficient statisti...

  17. Discriminative dimensionality reduction: variations, applications, interpretations

    OpenAIRE

    Schulz, Alexander

    2017-01-01

    The amount of digital data increases rapidly as a result of advances in information and sensor technology. Because the data sets grow with respect to their size, complexity and dimensionality, they are no longer easily accessible to a human user. The framework of dimensionality reduction addresses this problem by aiming to visualize complex data sets in two dimensions while preserving the relevant structure. While these methods can provide significant insights, the problem formulation of str...

  18. Fractional supersymmetry and infinite dimensional lie algebras

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  19. Stochastic confinement and dimensional reduction. Pt. 1

    International Nuclear Information System (INIS)

    Ambjoern, J.; Olesen, P.; Peterson, C.

    1984-01-01

    By Monte Carlo calculations on a 12 4 lattice we investigate four-dimensional SU(2) lattice gauge theory with respect to the conjecture that at large distances this theory reduces approximately to two-dimensional SU(2) lattice gauge theory. We find good numerical evidence for this conjecture. As a by-product we also measure the SU(2) string tension and find reasonable agreement with scaling. The 'adjoint string tension' is also found to have a reasonable scaling behaviour. (orig.)

  20. Parallelization method for three dimensional MOC calculation

    International Nuclear Information System (INIS)

    Zhang Zhizhu; Li Qing; Wang Kan

    2013-01-01

    A parallelization method based on angular decomposition for the three dimensional MOC was designed. To improve the parallel efficiency, the directions were pre-grouped and the groups were assembled to minimize the communication. The improved parallelization method was applied to the three dimensional MOC code TCM. The numerical results show that the calculation results of parallelization method are agreed with serial calculation results. The parallel efficiency gets obvious increase after the communication optimized and load balance. (authors)

  1. Three-dimensional accelerating electromagnetic waves.

    Science.gov (United States)

    Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai

    2013-06-17

    We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  2. Multi-Dimensional Games (MD-Games)

    OpenAIRE

    Ruiz Estrada, M.A.

    2009-01-01

    This paper introduces the concept of Multi-Dimensional games (MD-games) based on the application of an alternative mathematical and graphical modeling approach to study the game theory from a multi-dimensional perspective. In fact, the MD-Games request the application of the mega-space coordinate system to visualize a large number of games, players, strategies and pay-offs functions into the same graphical space.

  3. Model Building by Coset Space Dimensional Reduction Scheme Using Ten-Dimensional Coset Spaces

    Science.gov (United States)

    Jittoh, T.; Koike, M.; Nomura, T.; Sato, J.; Shimomura, T.

    2008-12-01

    We investigate the gauge-Higgs unification models within the scheme of the coset space dimensional reduction, beginning with a gauge theory in a fourteen-dimensional spacetime where extra-dimensional space has the structure of a ten-dimensional compact coset space. We found seventeen phenomenologically acceptable models through an exhaustive search for the candidates of the coset spaces, the gauge group in fourteen dimension, and fermion representation. Of the seventeen, ten models led to {SO}(10) (× {U}(1)) GUT-like models after dimensional reduction, three models led to {SU}(5) × {U}(1) GUT-like models, and four to {SU}(3) × {SU}(2) × {U}(1) × {U}(1) Standard-Model-like models. The combinations of the coset space, the gauge group in the fourteen-dimensional spacetime, and the representation of the fermion contents of such models are listed.

  4. Building a model by coset space dimensional reduction using 10 dimensional coset spaces

    Science.gov (United States)

    Jittoh, Toshifumi; Koike, Masafumi; Nomura, Takaaki; Sato, Joe; Shimomura, Takashi

    2008-05-01

    We investigate gauge-Higgs unification models within the scheme of the coset space dimensional reduction, beginning with a gauge theory in a fourteen-dimensional spacetime whose extra-dimensional space has a structure of a ten-dimensional compact coset space. We found seventeen phenomenologically acceptable models through an exhaustive search for the candidates of the coset spaces, the gauge group in fourteen dimension, and fermion representation. Of the seventeen, ten models led to SO(10)(×U(1)) GUT-like models after dimensional reduction, three models led to SU(5)×U(l) GUT-like models, and four to SU(3)×SU(2)×U(1)×U(1) Standard-Model-like models. The combinations of the coset space, the gauge group in the fourteen-dimensional spacetime, and the representation of the fermion contents of such models are listed.

  5. Central subspace dimensionality reduction using covariance operators.

    Science.gov (United States)

    Kim, Minyoung; Pavlovic, Vladimir

    2011-04-01

    We consider the task of dimensionality reduction informed by real-valued multivariate labels. The problem is often treated as Dimensionality Reduction for Regression (DRR), whose goal is to find a low-dimensional representation, the central subspace, of the input data that preserves the statistical correlation with the targets. A class of DRR methods exploits the notion of inverse regression (IR) to discover central subspaces. Whereas most existing IR techniques rely on explicit output space slicing, we propose a novel method called the Covariance Operator Inverse Regression (COIR) that generalizes IR to nonlinear input/output spaces without explicit target slicing. COIR's unique properties make DRR applicable to problem domains with high-dimensional output data corrupted by potentially significant amounts of noise. Unlike recent kernel dimensionality reduction methods that employ iterative nonconvex optimization, COIR yields a closed-form solution. We also establish the link between COIR, other DRR techniques, and popular supervised dimensionality reduction methods, including canonical correlation analysis and linear discriminant analysis. We then extend COIR to semi-supervised settings where many of the input points lack their labels. We demonstrate the benefits of COIR on several important regression problems in both fully supervised and semi-supervised settings.

  6. Relativity and the dimensionality of the world

    CERN Document Server

    2007-01-01

    All physicists would agree that one of the most fundamental problems of the 21st century physics is the dimensionality of the world. In the four-dimensional world of Minkowski (or Minkowski spacetime) the most challenging problem is the nature of the temporal dimension. In Minkowski spacetime it is merely one of the four dimensions, which means that it is entirely given like the other three spacial dimensions. If the temporal dimension were not given in its entirety and only one constantly changing moment of it existed, Minkowski spacetime would be reduced to the ordinary three-dimensional space. But if the physical world, represented by Minkowski spacetime, is indeed four-dimensional with time being the fourth dimension, then such a world is drastically different from its image based on our perceptions. Minkowski four-dimensional world is a block Universe, a frozen world in which nothing happens since all moments of time are given ‘at once', which means that physical bodies are four-dimensional worldtubes ...

  7. Regularization, Renormalization, and Dimensional Analysis: Dimensional Regularization meets Freshman E&M

    OpenAIRE

    Olness, Fredrick; Scalise, Randall

    2008-01-01

    We illustrate the dimensional regularization technique using a simple problem from elementary electrostatics. We contrast this approach with the cutoff regularization approach, and demonstrate that dimensional regularization preserves the translational symmetry. We then introduce a Minimal Subtraction (MS) and a Modified Minimal Subtraction (MS-Bar) scheme to renormalize the result. Finally, we consider dimensional transmutation as encountered in the case of compact extra-dimensions.

  8. Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction.

    Science.gov (United States)

    Yang, Li

    2004-09-01

    A distance-preserving method is presented to map high-dimensional data sequentially to low-dimensional space. It preserves exact distances of each data point to its nearest neighbor and to some other near neighbors. Intrinsic dimensionality of data is estimated by examining the preservation of interpoint distances. The method has no user-selectable parameter. It can successfully project data when the data points are spread among multiple clusters. Results of experiments show its usefulness in projecting high-dimensional data.

  9. Consistent dimensional reduction of five-dimensional off-shell supergravity

    Science.gov (United States)

    Abe, Hiroyuki; Sakamura, Yutaka

    2006-06-01

    There are some points to notice in the dimensional reduction of off-shell supergravity. We discuss a consistent way of dimensional reduction of five-dimensional off-shell supergravity compactified on S1/Z2. There are two approaches to the four-dimensional effective action, which are complementary to each other. Their essential difference is the treatment of the compensator and the radion superfields. We explain these approaches in detail and examine their consistency. Comments on related works are also provided.

  10. High dimensional feature reduction via projection pursuit

    Science.gov (United States)

    Jimenez, Luis; Landgrebe, David

    1994-01-01

    The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.

  11. Multichannel transfer function with dimensionality reduction

    Science.gov (United States)

    Kim, Han Suk; Schulze, Jürgen P.; Cone, Angela C.; Sosinsky, Gina E.; Martone, Maryann E.

    2010-01-01

    The design of transfer functions for volume rendering is a difficult task. This is particularly true for multichannel data sets, where multiple data values exist for each voxel. In this paper, we propose a new method for transfer function design. Our new method provides a framework to combine multiple approaches and pushes the boundary of gradient-based transfer functions to multiple channels, while still keeping the dimensionality of transfer functions to a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. The high-dimensional data of the domain is reduced by applying recently developed nonlinear dimensionality reduction algorithms. In this paper, we used Isomap as well as a traditional algorithm, Principle Component Analysis (PCA). Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. In this publication we report on the impact of the dimensionality reduction algorithms on transfer function design for confocal microscopy data.

  12. Self-completeness and spontaneous dimensional reduction

    Science.gov (United States)

    Mureika, Jonas; Nicolini, Piero

    2013-07-01

    A viable quantum theory of gravity is one of the biggest challenges physicists are facing. We discuss the confluence of two highly expected features which might be instrumental in the quest of a finite and renormalizable quantum gravity —spontaneous dimensional reduction and self-completeness. The former suggests the spacetime background at the Planck scale may be effectively two-dimensional, while the latter implies a condition of maximal compression of matter by the formation of an event horizon for Planckian scattering. We generalize such a result to an arbitrary number of dimensions, and show that gravity in higher than four dimensions remains self-complete, but in lower dimensions it does not. In such a way we established an "exclusive disjunction" or "exclusive or" (XOR) between the occurrence of self-completeness and dimensional reduction, with the goal of actually reducing the unknowns for the scenario of the physics at the Planck scale. Potential phenomenological implications of this result are considered by studying the case of a two-dimensional dilaton gravity model resulting from dimensional reduction of the Einstein gravity.

  13. Multichannel transfer function with dimensionality reduction

    KAUST Repository

    Kim, Han Suk

    2010-01-17

    The design of transfer functions for volume rendering is a difficult task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel. In this paper, we propose a new method for transfer function design. Our new method provides a framework to combine multiple approaches and pushes the boundary of gradient-based transfer functions to multiple channels, while still keeping the dimensionality of transfer functions to a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. The high-dimensional data of the domain is reduced by applying recently developed nonlinear dimensionality reduction algorithms. In this paper, we used Isomap as well as a traditional algorithm, Principle Component Analysis (PCA). Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. In this publication we report on the impact of the dimensionality reduction algorithms on transfer function design for confocal microscopy data.

  14. Interobserver reliability of coronoid fracture classification: two-dimensional versus three-dimensional computed tomography

    NARCIS (Netherlands)

    Lindenhovius, Anneluuk; Karanicolas, Paul Jack; Bhandari, Mohit; van Dijk, Niek; Ring, David; Allan, Christopher; Anglen, Jeffrey; Axelrod, Terry; Baratz, Mark; Beingessner, Daphne; Brink, Peter; Cassidy, Charles; Coles, Chad; Conflitti, Joe; Crist, Brett; Della Rocca, Gregory; Dijkstra, Sander; Elmans, L. H. G. J.; Feibel, Roger; Flores, Luis; Frihagen, Frede; Gosens, Taco; Goslings, J. C.; Greenberg, Jeffrey; Grosso, Elena; Harness, Neil; van der Heide, Huub; Jeray, Kyle; Kalainov, David; van Kampen, Albert; Kawamura, Sumito; Kloen, Peter; McKee, Michael; Nork, Sean; Page, Richard; Pesantez, Rodrigo; Peters, Anil; Poolman, Rudolf; Prayson, Michael; Richardson, Martin; Seiler, John; Swiontkowski, Marc; Thomas, George; Trumble, Tom; van Vugt, Arie; Wright, Thomas; Zalavras, Charalampos; Zura, Robert

    2009-01-01

    This study tests the hypothesis that 3-dimensional computed tomography (CT) reconstructions improve interobserver agreement on classification and treatment of coronoid fractures compared with 2-dimensional CT. A total of 29 orthopedic surgeons evaluated 10 coronoid fractures on 2 occasions (first

  15. Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets

    Science.gov (United States)

    Kim, Han Suk; Schulze, Jürgen P.; Cone, Angela C.; Sosinsky, Gina E.; Martone, Maryann E.

    2011-01-01

    The design of transfer functions for volume rendering is a non-trivial task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-dimensional transfer functions. In this paper, we propose a new method for multi-dimensional transfer function design. Our new method provides a framework to combine multiple computational approaches and pushes the boundary of gradient-based multi-dimensional transfer functions to multiple channels, while keeping the dimensionality of transfer functions at a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. Applying recently developed nonlinear dimensionality reduction algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. We demonstrate the effectiveness of our new dimensionality reduction algorithms with two volumetric confocal microscopy data sets. PMID:21841914

  16. Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets.

    Science.gov (United States)

    Kim, Han Suk; Schulze, Jürgen P; Cone, Angela C; Sosinsky, Gina E; Martone, Maryann E

    2010-09-21

    The design of transfer functions for volume rendering is a non-trivial task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-dimensional transfer functions. In this paper, we propose a new method for multi-dimensional transfer function design. Our new method provides a framework to combine multiple computational approaches and pushes the boundary of gradient-based multi-dimensional transfer functions to multiple channels, while keeping the dimensionality of transfer functions at a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. Applying recently developed nonlinear dimensionality reduction algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. We demonstrate the effectiveness of our new dimensionality reduction algorithms with two volumetric confocal microscopy data sets.

  17. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell...

  18. Remarks on Dimensional Reduction of Multidimensional Cosmological Models

    Science.gov (United States)

    Günther, Uwe; Zhuk, Alexander

    2006-02-01

    Multidimensional cosmological models with factorizable geometry and their dimensional reduction to effective four-dimensional theories are analyzed on sensitivity to different scalings. It is shown that a non-correct gauging of the effective four-dimensional gravitational constant within the dimensional reduction results in a non-correct rescaling of the cosmological constant and the gravexciton/radion masses. The relationship between the effective gravitational constants of theories with different dimensions is discussed for setups where the lower dimensional theory results via dimensional reduction from the higher dimensional one and where the compactified space components vary dynamically.

  19. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy

    2009-03-01

    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  20. Two-Dimensional and Three-Dimensional Cephalometry Using Cone Beam Computed Tomography Scans.

    Science.gov (United States)

    Cassetta, Michele; Michele, Cassetta; Altieri, Federica; Federica, Altieri; Di Giorgio, Roberto; Roberto, Di Giorgio; Silvestri, Alessandro; Alessandro, Silvestri

    2015-06-01

    Lateral cephalometric radiograph produces a two-dimensional image with several drawbacks. Cone beam computed tomography (CBCT) allows obtaining a three-dimensional representation of the craniofacial structures and seems to overcome the problems of superimposition and magnification, providing more precision than two-dimensional methods. The aim of the current study was to test the intraobserver and interobserver reliability of linear and angular measurements performed on two-dimensional conventional cephalometric images and CBCT-generated cephalograms, and to evaluate if there is a statistically significant difference between the 2 methods of measurements. The sample group consisted of 24 adolescents with a pretreatment digital lateral radiograph and a corresponding CBCT image. A total of 16 cephalometric landmarks were identified and 17 widely used measurements (9 angular and 8 linear) were recorded by 2 independent observers. Intraobserver and interobserver reliability were assessed by calculating Pearson correlation coefficient. Student t-test was used to compare the 2 methods. The threshold for significance was set at P ≤ 0.05.Concerning the intraobserver and interobserver reliability, data showed a statistically significant correlation between all two-dimensional and three-dimensional measurements. The linear and angular measurements of two-dimensional and three-dimensional cephalometry were not statistically different. The results of the current study showed the reliability of both conventional two-dimensional and three-dimensional cephalometry. Linear and angular measurements from CBCT were found also to be similar to conventional measurements. Considering that conventional images deliver the lowest radiation doses to patients, the use of CBCT for orthodontic purposes should be limited.

  1. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  2. Spinors in Four-Dimensional Spaces

    CERN Document Server

    Torres del Castillo, Gerardo F

    2010-01-01

    Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang–Mills theory, are derived in detail using illustrative examples. Key topics and features: • Uniform treatment of the spinor formalism for four-dimensional spaces of any signature, not only the usual signature (+ + + −) employed in relativity • Examples taken from Riemannian geometry and special or general relativity are discussed in detail, emphasizing the usefulness of the two-component spinor formalism • Exercises in each chapter • The relationship of Clifford algebras and Dirac four-component spinors is established • Applications of the two-component formalism, focusing mainly on general relativity, are presented in the context of actual computations Spinors in Four-Dim...

  3. Dimensional analysis beyond the Pi theorem

    CERN Document Server

    Zohuri, Bahman

    2017-01-01

    Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...

  4. Ligand-Stabilized Reduced-Dimensionality Perovskites

    KAUST Repository

    Quan, Li Na

    2016-02-03

    Metal halide perovskites have rapidly advanced thin film photovoltaic performance; as a result, the materials’ observed instabilities urgently require a solution. Using density functional theory (DFT), we show that a low energy of formation, exacerbated in the presence of humidity, explains the propensity of perovskites to decompose back into their precursors. We find, also using DFT, that intercalation of phenylethylammonium between perovskite layers introduces quantitatively appreciable van der Waals interactions; and these drive an increased formation energy and should therefore improve material stability. Here we report the reduced-dimensionality (quasi-2D) perovskite films that exhibit improved stability while retaining the high performance of conventional three-dimensional perovskites. Continuous tuning of the dimensionality, as assessed using photophysical studies, is achieved by the choice of stoichiometry in materials synthesis. We achieved the first certified hysteresis-free solar power conversion in a planar perovskite solar cell, obtaining a 15.3% certified PCE, and observe greatly improved performance longevity.

  5. Arching in three-dimensional clogging

    Directory of Open Access Journals (Sweden)

    Török János

    2017-01-01

    Full Text Available Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based. The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  6. The bane of low-dimensionality clustering

    DEFF Research Database (Denmark)

    Cohen-Addad, Vincent; de Mesmay, Arnaud; Rotenberg, Eva

    2018-01-01

    In this paper, we give a conditional lower bound of nω(k) on running time for the classic k-median and k-means clustering objectives (where n is the size of the input), even in low-dimensional Euclidean space of dimension four, assuming the Exponential...... Time Hypothesis (ETH). We also consider k-median (and k-means) with penalties where each point need not be assigned to a center, in which case it must pay a penalty, and extend our lower bound to at least three-dimensional Euclidean space. This stands in stark contrast to many other......>n1--1/d in d dimensions, our work shows that widely-used clustering objectives have a lower bound of nω(k), even in dimension four. We complete the picture by considering the two-dimensional case: we show that there is no algorithm that solves...

  7. Effective Image Database Search via Dimensionality Reduction

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Aanæs, Henrik

    2008-01-01

    of the visual vocabulary is typically done using k-means. We investigate a clustering algorithm based on the leader follower principle (LF-clustering), in which the number of clusters is not fixed. The adaptive nature of LF-clustering is shown to improve the quality of the visual vocabulary using this...... results compared to the traditional bag-of-words approach based on 128 dimensional SIFT feature and k-means clustering........ In the query step, features from the query image are assigned to the visual vocabulary. The dimensionality reduction enables us to do exact feature labeling using kD-tree, instead of approximate approaches normally used. Despite the dimensionality reduction to between 6 and 15 dimensions we obtain improved...

  8. 7th High Dimensional Probability Meeting

    CERN Document Server

    Mason, David; Reynaud-Bouret, Patricia; Rosinski, Jan

    2016-01-01

    This volume collects selected papers from the 7th High Dimensional Probability meeting held at the Institut d'Études Scientifiques de Cargèse (IESC) in Corsica, France. High Dimensional Probability (HDP) is an area of mathematics that includes the study of probability distributions and limit theorems in infinite-dimensional spaces such as Hilbert spaces and Banach spaces. The most remarkable feature of this area is that it has resulted in the creation of powerful new tools and perspectives, whose range of application has led to interactions with other subfields of mathematics, statistics, and computer science. These include random matrices, nonparametric statistics, empirical processes, statistical learning theory, concentration of measure phenomena, strong and weak approximations, functional estimation, combinatorial optimization, and random graphs. The contributions in this volume show that HDP theory continues to thrive and develop new tools, methods, techniques and perspectives to analyze random phenome...

  9. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    International Nuclear Information System (INIS)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array

  10. Dirac cones in two-dimensional borane

    Science.gov (United States)

    Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.

    2017-11-01

    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.

  11. Arching in three-dimensional clogging

    Science.gov (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás

    2017-06-01

    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  12. Dimensional reduction from entanglement in Minkowski space

    Science.gov (United States)

    Brustein, Ram; yarom, Amos

    2005-01-01

    Using a quantum field theoretic setting, we present evidence for dimensional reduction of any sub-volume of Minkowksi space. First, we show that correlation functions of a class of operators restricted to a sub-volume of D-dimensional Minkowski space scale as its surface area. A simple example of such area scaling is provided by the energy fluctuations of a free massless quantum field in its vacuum state. This is reminiscent of area scaling of entanglement entropy but applies to quantum expectation values in a pure state, rather than to statistical averages over a mixed state. We then show, in a specific case, that fluctuations in the bulk have a lower-dimensional representation in terms of a boundary theory at high temperature.

  13. Dimensionality reduction via locally reconstructive patch alignment

    Science.gov (United States)

    Chen, Yi; Yin, Jun; Zhu, Jie; Jin, Zhong

    2012-07-01

    Based on the local patch concept, we proposed locally reconstructive patch alignment (LRPA) for dimensionality reduction. For each patch, LRPA aims to find the low-dimensional subspace in which the reconstruction error of the within-class nearest neighbors is minimized and the reconstruction error of the between-class nearest neighbors is maximized. LRPA preserves the local structure hidden in the high-dimensional space. More importantly, LRPA has natural connections with linear regression classification (LRC). While LRC uses reconstruction errors as the classification rule, a sample can be classified correctly when the within-class reconstruction error is minimal. The goal of LRPA makes it cooperate well with LRC. The experimental results on the extended Yale B (YALE-B), AR, PolyU finger knuckle print, and the palm print databases demonstrate LRPA plus LRC is an effective and robust pattern-recognition system.

  14. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  15. Three-dimensional imaging modalities in endodontics

    Science.gov (United States)

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  16. Super integrable four-dimensional autonomous mappings

    International Nuclear Information System (INIS)

    Capel, H W; Sahadevan, R; Rajakumar, S

    2007-01-01

    A systematic investigation of the complete integrability of a fourth-order autonomous difference equation of the type w(n + 4) = w(n)F(w(n + 1), w(n + 2), w(n + 3)) is presented. We identify seven distinct families of four-dimensional mappings which are super integrable and have three (independent) integrals via a duality relation as introduced in a recent paper by Quispel, Capel and Roberts (2005 J. Phys. A: Math. Gen. 38 3965-80). It is observed that these seven families can be related to the four-dimensional symplectic mappings with two integrals including all the four-dimensional periodic reductions of the integrable double-discrete modified Korteweg-deVries and sine-Gordon equations treated in an earlier paper by two of us (Capel and Sahadevan 2001 Physica A 289 86-106)

  17. One-dimensional Gromov minimal filling problem

    International Nuclear Information System (INIS)

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-01-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  18. Plasmonics with two-dimensional conductors

    Science.gov (United States)

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  19. Haptic object perception: spatial dimensionality and relation to vision

    OpenAIRE

    Klatzky, Roberta L.; Lederman, Susan J.

    2011-01-01

    Enabled by the remarkable dexterity of the human hand, specialized haptic exploration is a hallmark of object perception by touch. Haptic exploration normally takes place in a spatial world that is three-dimensional; nevertheless, stimuli of reduced spatial dimensionality are also used to display spatial information. This paper examines the consequences of full (three-dimensional) versus reduced (two-dimensional) spatial dimensionality for object processing by touch, particularly in compariso...

  20. Finite-dimensional division algebras over fields

    CERN Document Server

    Jacobson, Nathan

    2009-01-01

    Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti

  1. Heredity in one-dimensional quadratic maps

    Science.gov (United States)

    Romera, M.; Pastor, G.; Alvarez, G.; Montoya, F.

    1998-12-01

    In an iterative process, as is the case of a one-dimensional quadratic map, heredity has never been mentioned. In this paper we show that the pattern of a superstable orbit of a one-dimensional quadratic map can be expressed as the sum of the gene of the chaotic band where the pattern is to be found, and the ancestral path that joins all its ancestors. The ancestral path holds all the needed genetic information to calculate the descendants of the pattern. The ancestral path and successive descendant generations of the pattern constitute the family tree of the pattern, which is important to study and understand the orbit's ordering.

  2. Towards three-dimensional optical metamaterials

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-12-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  3. Towards three-dimensional optical metamaterials.

    Science.gov (United States)

    Tanaka, Takuo; Ishikawa, Atsushi

    2017-01-01

    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  4. A NEW APPROACH FOR TEACHING DIMENSIONAL METROLOGY

    OpenAIRE

    ROBERTO LESSA FIGUEIREDO

    2003-01-01

    A presente Dissertação de Mestrado Uma nova abordagem para o ensino de metrologia dimensional, propõe uma alternativa de utilização de tecnologia da informação e de internet como ferramenta educacional, focando, sobretudo, um novo conceito de sistema educacional interativo orientado para o treinamento de profissionais em metrologia dimensional. O sistema implementado, cujo o acesso foi facultado à comunidade universitária da Pontifícia Universidade Católi...

  5. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  6. Screening in two-dimensional gauge theories

    International Nuclear Information System (INIS)

    Korcyl, Piotr; Deutsches Elektronen-Synchrotron; Koren, Mateusz

    2012-12-01

    We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED 2 as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.

  7. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.

    1990-01-01

    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  8. Improving dimensionality reduction with spectral gradient descent.

    Science.gov (United States)

    Memisevic, Roland; Hinton, Geoffrey

    2005-01-01

    We introduce spectral gradient descent, a way of improving iterative dimensionality reduction techniques. The method uses information contained in the leading eigenvalues of a data affinity matrix to modify the steps taken during a gradient-based optimization procedure. We show that the approach is able to speed up the optimization and to help dimensionality reduction methods find better local minima of their objective functions. We also provide an interpretation of our approach in terms of the power method for finding the leading eigenvalues of a symmetric matrix and verify the usefulness of the approach in some simple experiments.

  9. Random Projections for Dimensionality Reduction in ICA

    OpenAIRE

    Sabrina Gaito; Andrea Greppi; Giuliano Grossi

    2008-01-01

    In this paper we present a technique to speed up ICA based on the idea of reducing the dimensionality of the data set preserving the quality of the results. In particular we refer to FastICA algorithm which uses the Kurtosis as statistical property to be maximized. By performing a particular Johnson-Lindenstrauss like projection of the data set, we find the minimum dimensionality reduction rate ¤ü, defined as the ratio between the size k of the reduced space and the origi...

  10. Dimensional reduction of the ABJM model

    Science.gov (United States)

    Nastase, Horatiu; Papageorgakis, Constantinos

    2011-03-01

    We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a `master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, tilde{v} , and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1thereisamaptoa Green-Schwarz string wrapping a nontrivial circle in {{{{mathbb{C}^4}}} left/ {{{mathbb{Z}_k}}} right.}.

  11. Dimensionality reduction for probabilistic movement primitives

    OpenAIRE

    Colome, A.; Neumann, G.; Peters, J.; Torras, C.

    2014-01-01

    Humans as well as humanoid robots can use a large number of degrees of freedom to solve very complex motor tasks. The high-dimensionality of these motor tasks adds difficulties to the control problem and machine learning algorithms. However, it is well known that the intrinsic dimensionality of many human movements is small in comparison to the number of employed DoFs, and hence, the movements can be represented by a small number of synergies encoding the couplings between DoFs. In this paper...

  12. Dimensiones de la responsabilidad social del marketing

    OpenAIRE

    María Matilde Schwalb Helguero; Iñaki García Arrizabalaga

    2013-01-01

    La creciente desconfianza ciudadana y las demandas del movimiento de defensa del consumidor presionan al marketing para que amplíe su función más allá del diseño de un buen marketing mix y para que las empresas se comprometan con la responsabilidad social (RS). Sin embargo, no se sabe cuáles son las dimensiones que comprende esta función ampliada del marketing. Por eso, este artículo tiene por objetivo identificar y validar las dimensiones que conforman el nuevo constructo Responsabilidad Soc...

  13. Dimensional reduction of a generalized flux problem

    International Nuclear Information System (INIS)

    Moroz, A.

    1992-01-01

    In this paper, a generalized flux problem with Abelian and non-Abelian fluxes is considered. In the Abelian case we shall show that the generalized flux problem for tight-binding models of noninteracting electrons on either 2n- or (2n + 1)-dimensional lattice can always be reduced to an n-dimensional hopping problem. A residual freedom in this reduction enables one to identify equivalence classes of hopping Hamiltonians which have the same spectrum. In the non-Abelian case, the reduction is not possible in general unless the flux tensor factorizes into an Abelian one times are element of the corresponding algebra

  14. Execution spaces for simple higher dimensional automata

    DEFF Research Database (Denmark)

    Raussen, Martin

    2012-01-01

    Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowa......Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2): 168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions...

  15. Three-dimensional Technologies in Orthopedics.

    Science.gov (United States)

    Papagelopoulos, Panayiotis J; Savvidou, Olga D; Koutsouradis, Panagiotis; Chloros, George D; Bolia, Ioanna K; Sakellariou, Vasileios I; Kontogeorgakos, Vasileios A; Mavrodontis, Ioannis I; Mavrogenis, Andreas F; Diamantopoulos, Panos

    2018-01-01

    New 3-dimensional digital technologies are revolutionizing orthopedic clinical practice, allowing structures of any complexity to be manufactured in just hours. Such technologies can make surgery for complex cases more precise, more cost-effective, and possibly easier to perform. Applications include pre-operative planning, surgical simulation, patient-specific instrumentation and implants, bioprinting, prosthetics, and orthotics. The basic principles of 3- dimensional technologies, including imaging, design, numerical simulation, and printing, and their current applications in orthopedics are reviewed. [Orthopedics. 2018; 41(1):12-20.]. Copyright 2018, SLACK Incorporated.

  16. Continuous Dimensionality Characterization of Image Structures

    DEFF Research Database (Denmark)

    Felsberg, Michael; Kalkan, Sinan; Krüger, Norbert

    2009-01-01

    Intrinsic dimensionality is a concept introduced by statistics and later used in image processing to measure the dimensionality of a data set. In this paper, we introduce a continuous representation of the intrinsic dimension of an image patch in terms of its local spectrum or, equivalently, its...... is the representation of confidences as prior probabilities which can be used within a probabilistic framework. To show the potential of our continuous representation, we highlight applications in various contexts such as image structure classification, feature detection and localisation, visual scene statistics...... and optic flow evaluation....

  17. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  18. Weak three-dimensional mediators of two-dimensional triplet pairing

    Science.gov (United States)

    Kelly, Shane; Tsai, S.-W.

    2018-01-01

    Recent experiments demonstrate the ability to construct cold-atom mixtures with species-selective optical lattices. This allows for the possibility of a mixed-dimension system, where one fermionic atomic species is confined to a two-dimensional lattice, while another species is confined to a three-dimensional lattice that contains the two-dimensional one. We show that by tuning the density of an arbitrary number of three-dimensional atomic species, we can engineer an arbitrary, rotationally symmetric, density-density, effective interaction for the two-dimensional particles. This possibility allows for an effective interaction that favors triplet pairing for two-dimensional, SU(2 ) symmetric particles. Using a functional renormalization-group analysis for the two-dimensional particles, we derive and numerically confirm that the critical temperature for triplet pairing depends exponentially on the effective interaction strength. We then analyze how the stability of this phase is affected by the particle densities and the fine tuning of interaction parameters. We conclude by briefly discussing experimental considerations and the potential to study triplet-pairing physics, including Majorana fermions and spin textures, with cold atoms on optical lattices.

  19. Dipolar vortices in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter

    1996-01-01

    The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...

  20. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...