Sample records for dilute polymer solutions

  1. Turbulence in dilute polymer solutions

    Liberzon, A.; Guala, M.; Lüthi, B.; Kinzelbach, W.; Tsinober, A.


    The work reported below is a comparative study of the properties of turbulence with weak mean flow in a Newtonian fluid and in a dilute polymer solution with an emphasis on the small scale phenomena. The main tool used is a three-dimensional particle tracking system allowing to measure and follow in a Lagrangian manner the field of velocities, as well as velocity derivatives, and thus vorticity, strain, and a variety of related and dynamically significant quantities. The comparison of data from the two flows allows to directly observe the influence of polymers on these quantities as well as the evolution of material elements in the presence of polymers.

  2. Turbulence of Dilute Polymer Solution

    Xi, Heng-Dong; Xu, Haitao


    In fully developed three dimensional fluid turbulence the fluctuating energy is supplied at large scales, cascades through intermediate scales, and dissipates at small scales. It is the hallmark of turbulence that for intermediate scales, in the so called inertial range, the average energy flux is constant and independent of viscosity [1-3]. One very important question is how this range is altered, when an additional agent that can also transport energy is added to the fluid. Long-chain polymers dissolved at very small concentrations in the fluid are such an agent [4,5]. Based on prior work by de Gennes and Tabor [6,7] we introduce a theory that balances the energy flux through the turbulent cascade with that of the energy flux into the elastic degrees of freedom of the dilute long-chain polymer solution. We propose a refined elastic length scale, $r_\\varepsilon$, which describes the effect of polymer elasticity on the turbulence energy cascade. Our experimental results agree excellently with this new energy ...


    Rong-shi Cheng; Yu-fang Shao; Ming-zhu Liu; Rong-qing Lu


    Careful measurements of the dilute solution viscosities of polyethylene glycol and polyvinyl alcohol in water were carried out. The reduced viscosities of both polymer solutions plot upward curves at extremely dilute concentration levels similar to the phenomena observed for many polymer solutions in the early 1950's. Upon observation of the changes of the flow times of pure water in and the wall surface wettability of the viscometer after measuring solution viscosity, a view was formed that the observed viscosity abnormality at extremely dilute concentration regions is solely due to the effect of adsorption of polymer chains onto the wall surface of viscometer. A theory of adsorption effect based on the Langmuir isotherms was proposed and a mathematical analysis for data treatment was performed. The theory could adequately describe the existing viscosity data. It seems necessary to correct the viscosity result of dilute polymer solutions measured by glass capillary viscometer by taking into account the effect of adsorption in all cases.

  4. Dynamic dilution exponent in monodisperse entangled polymer solutions

    Shahid, T.; Huang, Qian; Oosterlinck, F.


    We study and model the linear viscoelastic properties of several entangled semi-dilute and concentrated solutions of linear chains of different molar masses and at different concentrations dissolved in their oligomers. We discuss the dilution effect of the oligomers on the entangled long chains...... of the long chain extremities. Then we discuss the influence of the polymer concentration on the terminal relaxation time of the solutions and how this can be modelled by the enhanced contour length fluctuation process (CR-CLF). We point out that this larger dilution effect is not only a function...... of concentration but also depends on the molar mass of the chains. While the proposed approach successfully explains the viscoelastic properties of a large number of semi-dilute solutions of polymers in their own oligomers, important discrepancies are found for semi-dilute entangled polymers in small...

  5. Modeling of Dilute Polymer Solutions in Confined Space

    Wang, Yanwei


    by simple mathematical analyses. When the CABS method is applied to compute the equilibrium distribution (the equilibrium partition coefficient, Ko) of polymers between a dilute macroscopic solution phase and a solution confined by inert impenetrable boundaries, a sphere-like universal partitioning feature...... of polymers in SEC, one may reach a conclusion that SEC fractionates polymers based on the steric exclusion radius, Rs . The CABS method is further applied to determine the depletion profiles of dilute polymer solutions confined to a slit or near an inert wall. We show that the entire spatial density...... that (i) the depletion layer thickness, 6, is the same no matter which reference point is used to describe the depletion profile, and (ii) the value of 6 equals the steric exclusion radius, Rs , of the macromolecule in free solution. Both results hold not only for ideal polymers as has been noticed before...

  6. Entrainment Reduction and Additional Dissipation in Dilute Polymer Solutions

    Holzner, Markus; Lüthi, Beat; Liberzon, Alexander; Guala, Michele; Kinzelbach, Wolfgang

    We present a comparative experimental study of a turbulent flow developing in clear water and dilute polymer solutions (25 and 50 wppm polyethylene oxide). The flow is forced by a planar grid that oscillates vertically in a square container of initially still fluid. The two-component velocity fields are measured in a vertical plane passing through the center of the tank by using time resolved Particle Image Velocimetry (PIV).We obtain a lower entrainment rate for polymer solutions as compared to clear water. Extending arguments based on similarity and fractal theory to the case of dilute polymer solutions, we derive a relation between the entrainment rate and the fraction of input energy dissipated by the polymers.

  7. Turbulent drag reduction in dilute polymer solutions

    Sreenivasan, K. R.; White, Christopher M.


    It is well known that the addition of small amounts of flexible polymers reduces drag in turbulent pipe flows. However, the underlying physics is still poorly understood. This paper will consider two aspects: The dependence of the onset of drag reduction on polymer concentration, and the so-called maximum drag reduction asymptote. The latter defines the maximum drag reduction possible for any polymer at a given Reynolds number, independent of the polymer concentration and detailed polymeric structure [1]. It is shown tentatively that a modest reworking of de Gennes' theory [2] is compatible with available experimental data. The principal element of the theory is that the polymers do not get stretched fully, but that the partially extended polymers store elastic energy and interfere with cascade mechanisms in turbulence. A conclusive understanding requires experiments in which the polymer properties that go into the theory are directly measured. [1] P.S. Virk, AIChE J., 21, 625 (1975) [2] P.G. de Gennes, Introduction to Polymer Dynamics, University of Cambridge (1990)

  8. Modeling of Dilute Polymer Solutions in Confined Space

    Wang, Yanwei


    to macromolecules is critical to the design and application of those devices. Our primary interest is to provide an understanding of the separation principle of polymers in size exclusion chromatography (SEC), where under ideal conditions the polymer concentration is low, and detailed enthalpic interactions...... of polymers in SEC, one may reach a conclusion that SEC fractionates polymers based on the steric exclusion radius, Rs . The CABS method is further applied to determine the depletion profiles of dilute polymer solutions confined to a slit or near an inert wall. We show that the entire spatial density...... that (i) the depletion layer thickness, 6, is the same no matter which reference point is used to describe the depletion profile, and (ii) the value of 6 equals the steric exclusion radius, Rs , of the macromolecule in free solution. Both results hold not only for ideal polymers as has been noticed before...

  9. A lattice Boltzmann method for dilute polymer solutions.

    Singh, Shiwani; Subramanian, Ganesh; Ansumali, Santosh


    We present a lattice Boltzmann approach for the simulation of non-Newtonian fluids. The method is illustrated for the specific case of dilute polymer solutions. With the appropriate local equilibrium distribution, phase-space dynamics on a lattice, driven by a Bhatnagar-Gross-Krook (BGK) relaxation term, leads to a solution of the Fokker-Planck equation governing the probability density of polymer configurations. Results for the bulk rheological characteristics for steady and start-up shear flow are presented, and compare favourably with those obtained using Brownian dynamics simulations. The new method is less expensive than stochastic simulation techniques, particularly in the range of small to moderate Weissenberg numbers (Wi).

  10. On turbulent entrainment and dissipation in dilute polymer solutions

    Liberzon, A.; Holzner, M.; Lüthi, B.; Guala, M.; Kinzelbach, W.


    We present a comparative experimental study of a turbulent flow developing in clear water and dilute polymer solutions (25 and 50 wppm polyethylene oxide). The flow is forced by a planar grid that oscillates vertically with stroke S and frequency f in a square container of initially still fluid. Two-component velocity fields are measured in a vertical plane passing through the center of the tank by using time resolved particle image velocimetry. After the forcing is initiated, a turbulent layer develops that is separated from the initially irrotational fluid by a sharp interface, the so-called turbulent/nonturbulent interface (TNTI). The turbulent region grows in time through entrainment of surrounding fluid until the fluid in the whole container is in turbulent motion. From the comparison of the experiments in clear water and polymer solutions we conclude: (i) Polymer additives modify the large scale shape of the TNTI. (ii) Both, in water and in the polymer solution the mean depth of the turbulent layer, H(t ), follows the theoretical prediction for Newtonian fluids H(t )∝√Kt , where K ∝S2f is the "grid action." (iii) We find a larger grid action for dilute polymer solutions than for water. As a consequence, the turbulent kinetic energy of the flow increases and the rate of energy input becomes higher. (iv) The entrainment rate β =ve/vrms (where ve=dH/dt is the interface propagation velocity and vrms is the root mean square of the vertical velocity) is lower for polymers (βp≈0.7) than for water (βw≈0.8). The measured values for β are in good agreement with similarity arguments, from which we estimate that in our experiment about 28% of the input energy is dissipated by polymers.

  11. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M


    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.


    Yan Pan; Rong-shi Cheng


    The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.

  13. Elastic Energy Transfer in Turbulence of Dilute Polymer Solution

    Xi, Heng-Dong; Bodenschatz, Eberhard; Xu, Haitao


    We present an experimental study of the energy transfer in the bulk of a turbulent flow with small amount long-chain polymer additives. By varying the Reynolds numbers Rλ, Wissenberg number Wi and polymer concentration φ. We test quantitively the elastic theory proposed by de Gennes and Tabor (Europhys. Lett., 1986; Physica A, 1986). The rate of energy transfer by polymer elasticity as inferred from the theory is consistent with that measured from the second order Eulerian structure functions. The unknown parameter n in the theory, which represents the flow topology of the stretching field, is found to be nearly 1. Based on energy transfer rate balance, We propose an elastic length scale, rɛ, which describes the effect of polymer elasticity on turbulence energy cascade and captures the scale dependence of the elastic energy transfer rate. We are grateful to the Max Planck Society, the Alexander von Humboldt Foundation and the Deutsche Forschungsgemeinschaft for their support.

  14. Ultrafast photogeneration of charged polarons on conjugated polymer chains in dilute solution

    Miranda, Paulo B.; Moses, Daniel; Heeger, Alan J.


    Ultrafast photoinduced absorption by infrared-active vibrational modes is used to study the photogeneration of polarons on semiconducting polymer chains in dilute solutions and in solid films of a soluble derivative of poly(para-phenylene vinylene). In dilute solutions, polaron pairs are photogenerated on the conjugated polymer within less than 250fs with quantum efficiencies ϕch˜3% , about one-third of that for solid films of the same polymer. The excitation spectra of ϕch for both solutions and films show that ϕch is weakly dependent on photon energy between 2.2eV (the onset of absorption) and 4.7eV . The recombination dynamics of polarons is very fast and highly dependent on the excitation density for polymer films, but it is significantly slower and less sensitive to pump intensity for the semiconducting polymer in dilute solution. We conclude that the positive and negative polarons on a single chain in solution are typically separated by hundreds of monomer repeat units and that their one-dimensional diffusion along the chain is inhibited by the intervening excitons. This, together with the suppression of interchain recombination, explains the surprisingly slower polaron recombination in isolated chains.

  15. On turbulent kinetic energy production and dissipation in dilute polymer solutions

    Liberzon, A.; Guala, M.; Kinzelbach, W.; Tsinober, A.


    Drag reduction by dilute polymer solutions is the most recognized phenomenon in wall-bounded turbulent flows, which is associated with large scales (e.g., velocity scales) in spite of a consensus that polymers act mainly on much smaller scales of velocity derivatives. We demonstrate that drag reduction is only one sort of polymers' effect on a turbulent flow and show how turbulent velocity and velocity derivatives are altered in the presence of dilute polymers, irrespective of drag reduction phenomena. This is an experimental study on the interaction of dilute polymers with a complex three-dimensional turbulent flow with small mean velocity gradients. Lagrangian data (e.g., velocities and velocity gradients) of flow tracers were obtained by using three-dimensional particle tracking velocimetry in an observational volume in the turbulent bulk region, far from the boundaries. The focus is on aspects related to the turbulent kinetic energy (TKE) production, -⟨uiuj⟩Sij (ui is the fluctuating velocity, ⟨uiuj⟩ is the Reynolds stress tensor, and Sij is the mean rate-of-strain tensor), such as an anisotropy of Reynolds stresses and the alignment of the velocity vector field with respect to the eigenframe of Sij, among others. We base our study on the comparison of turbulent quantities in flows of water and of dilute polymer solution, forced in two distinct ways: frictional forcing by smooth rotating disks and inertial forcing by disks with baffles. The comparison of the results from the water and from the dilute polymer solution flows allows a critical examination of the influence of polymers on the TKE production, viscous dissipation, and the related turbulent properties. We conclude with (i) quantification of the direct effect of polymers on the small scales of velocity derivatives, (ii) evidence of an additional dissipation mechanism by the polymers, which is the main reason for the strong inhibition of the viscous dissipation, 2νs2, in a turbulent bulk, (iii

  16. Dynamics of single semiflexible polymers in dilute solution

    Nikoubashman, Arash; Milchev, Andrey; Binder, Kurt


    We study the dynamics of a single semiflexible chain in solution using computer simulations, where we systematically investigate the effect of excluded volume, chain stiffness, and hydrodynamic interactions. We achieve excellent agreement with previous theoretical considerations, but find that the crossover from the time τb, up to which free ballistic motion of the monomers describes the chain dynamics, to the times W-1 or τ0, where anomalous monomer diffusion described by Rouse-type and Zimm-type models sets in, requires two decades of time. While in the limit of fully flexible chains the visibility of the anomalous diffusion behavior is thus rather restricted, the t3/4 power law predicted for stiff chains without hydrodynamic interactions is verified. Including hydrodynamics, evidence for the predicted [tln (t ) ] 3 /4 behavior is obtained. Similar good agreement with previous theoretical predictions is found for the decay of the bond autocorrelation functions and the end-to-end vector correlation. Finally, several predictions on the variation of characteristic relaxation times with persistence length describing the chain stiffness are tested.



    The rheological behavior of polyvinyl acetate (PVAc) in N,N'-dimethylformamide (DMF), methyl ethyl ketone (MEK), 1,2-dichloroethane (DCE), tetrahydrofuran (THF) and toluene (TOL), polystyrene (PS) in DMF, MEK, DCE, THF and cyclohexane (CYH), and random ethylene-vinyl acetate (EVA) copolymer in DCE, TOL, CYH with and without surfactant of Span80 and in the DCE/CYH solvent mixtures with surfactant of Span80 was examined at high dilution. It was shown that the extent and type of the upsweep or downsweep (anomalous rheological behavior) of the reduced viscosity-concentration curves of these different polymers at high dilution are markedly dependent on the dielectric constant of the solvent and the polarity of the polymer used. The experimental results indicated that the anomalous rheological behavior of EVA copolymer, widely used as a flow improver, is related to its efficiency in reducing viscosity and depressing pour point of crude oil and waxy solvents.

  18. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi


    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  19. Interactions between ring polymers in dilute solution studied by Monte Carlo simulation

    Suzuki, Jiro; Takano, Atsushi; Matsushita, Yushu


    The second virial coefficient, A2, for trivial-ring polymers in dilute condition was estimated from a Metropolis Monte Carlo (MC) simulation, and the temperature dependence of A2 has been discussed with their Flory's scaling exponent, ν, in Rg ∝ Nν, where Rg is radius of gyration of a polymer molecule. A limited but not too small number of polymer molecules were employed in the simulation, and the A2 values at various temperatures were calculated from the molecular density fluctuation in the solution. In the simulation, the topology of ring polymers was kept, since chain crossing was prohibited. The excluded volume effects can be screened by the attractive force between segments, which depends on the temperature, Tα, defined in the Metropolis MC method. Linear and trivial-ring polymers have the ν value of 1/2 at Tα = 10.605 and 10.504. At Tα = 10.504, the excluded volume effects are screened by the attractive force generated between segments in a ring polymer, but the A2 value for ring polymers is positive. Thus, the temperature at A2 = 0 for a ring polymer is lower than that at ν = 1/2, and this fact can be explained with the following two reasons. (a) Rg value for a ring polymer is much smaller than that for a linear polymer at the same temperature and molecular weight, where interpenetration of a ring polymer chain into neighboring chains is apparently less than a linear chain. (b) The conformation of trivial rings can be statistically described as a closed random walk at ν = 1/2, but their topologies are kept, being produced topological constraints, which strongly relate not only to the long-distance interaction between segments in a molecule but also the inter-molecular interaction.

  20. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel

    Kim, Dong Young; Shim, Tae Soup; Kim, Ju Min


    Recently, two-phase flow in microfluidics has attracted much attention because of its importance in generating droplets or bubbles that can be used as building blocks for material synthesis and biological applications. However, there are many unresolved issues in understanding droplet and bubble generation processes, especially when complex fluids are involved. In this study, we investigated elastic effects on bubble generation processes in a flow-focusing geometry and the shapes of the produced bubbles flowing through a microchannel. We used dilute polymer solutions with nearly constant shear viscosities so that the shear-thinning effects on bubble generation could be precluded. We observed that a very small amount of polymer (poly(ethylene oxide) at O(10) ppm) significantly affects bubble generation. When the polymer was added to a Newtonian fluid, the fluctuation in bubble size increased notably, which was attributed to the chaotic flow dynamics in the flow-focusing region. In addition, it was demonstrated that the bubbles were thinner along the minor axis in the viscoelastic fluid than they were in the Newtonian fluid. We expect that the current results will contribute to understanding the dynamics of two-phase flow in microchannels and the design and operation of the microfluidic devices to generate microbubbles.

  1. Effect of added polymer in free jets of a dilute polymer solution

    Renoult, Marie-Charlotte; Charpentier, Jean-Baptiste; Crumeyrolle, Olivier; Mutabazi, Innocent


    The instability of a free viscoelastic jet is experimentally investigated by extruding an aqueous solution containing five parts per million of Poly(ethylene oxide) into air from a sixty micrometers orifice at relative low speeds. A method of image analysis was developed to quantify the effect of the added polymer on the morphology and the stability of the jet breakup. Three main representations were considered: the area versus perimeter relation for all liquid objects detected on the images, i.e. jets and jet fragments, the equivalent diameter distribution of jet fragments and the standard deviation curve of jets profiles. The former two provide information on the morphology of jet fragments: distinction of two classes, products and residues, and existence of coalescence. The latter gives information on the jet breakup stability: measurement of the growth rate and initial amplitude of the jet instability and detection of beads-on-a-string structures in the jet interface deformation. Experimental results will be presented and compared to theory.

  2. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    Budkov, Yu. A., E-mail: [G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universitat Leipzig, Leipzig (Germany); Kiselev, M. G. [G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, Ivanovo (Russian Federation)


    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  3. Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions

    Svaneborg, C.; Pedersen, J.S.


    Chain-chain interactions in a corona of polymers tethered to a spherical core under good solvent conditions are studied using Monte Carlo simulations. The total scattering function of the corona as well as different partial contributions are sampled. By combining the different contributions...... in a self-consistent approach, it is demonstrated that the corona can be regarded as a quasi-two-dimensional polymer solution, with a concentration dependence analogous to that of an ordinary polymer solution. Scattering due to the corona profile and density fluctuation correlations are separated...

  4. Removal of transition metals from dilute aqueous solution by carboxylic acid group containing absorbent polymers

    A new carboxylic acid group containing resin with cation exchange capacity, 12.67 meq/g has been used to remove Cu2+, Co2+ and Ni2+ ions from dilute aqueous solution. The resin has Cu2+, Co2+ and Ni2+ removal capacity, 216 mg/g, 154 mg/g and 180 mg/g, respectively. The selectivity of the resin to ...

  5. A Study of The Elongational Flow of Dilute Polymer Solutions : Estimation of The Elongational Stresses by Utilizing Pressure Drops with Orifice Flows

    福冨, 清; 長谷川, 富市; Fukutomi, Kiyoshi; Hasegawa, Tomiichi


    By assuming a uniformly converging radial flow on the upstream side of an orifice and integrating the equation of motion, an expression was derived to estimate elongational stresses for dilute polymer solutions at the orifice exit from pressure drops between the upstream and downstream of the orifice. The expression shown that the dilute polymer solutions usually give lower values of pressure drop than the solvent (water) does. An experiment was carried out to obtain the pressure drops for th...

  6. Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions

    Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek


    We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity ηsessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.

  7. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution

    Rai, Durgesh K.


    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(df=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  8. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution.

    Rai, Durgesh K; Beaucage, Gregory; Ratkanthwar, Kedar; Beaucage, Peter; Ramachandran, Ramnath; Hadjichristidis, Nikos


    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(d(f)=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  9. Extensional Rheology Experiment Developed to Investigate the Rheology of Dilute Polymer Solutions in Microgravity

    Logsdon, Kirk A.


    A fundamental characteristic of fluid is viscosity; that is, the fluid resists forces that cause it to flow. This characteristic, or parameter, is used by manufacturers and end-users to describe the physical properties of a specific material so that they know what to expect when a material, such as a polymer, is processed through an extruder, a film blower, or a fiber-spinning apparatus. Normally, researchers will report a shear viscosity that depends on the rate of an imposed shearing flow. Although this type of characterization is sufficient for some processes, simple shearing experiments do not provide a complete picture of what a processor may expect for all materials. Extensional stretching flows are common in many polymer-processing operations such as extrusion, blow molding, and fiber spinning. Therefore, knowledge of the complete rheological (ability to flow and be deformed) properties of the polymeric fluid being processed is required to accurately predict and account for the flow behavior. In addition, if numerical simulations are ever able to serve as a priori design tools for optimizing polymer processing operations such as those described above, an accurate knowledge of the extensional viscosity of a polymer system and its variation with temperature, concentration, molecular weight, and strain rate is critical.


    Jian-qiang Chen; Yu-fang Shao; Zhen Yang; Hu Yang; Rong-shi Cheng


    It was found that the interface effects in viscous capillary flow influenced the process of viscosity measurement greatly,and the abnormal viscosity behaviors of polyelectrolytes as well as neutral polymers in dilute solution region were ascribed to interface effect.According to this theory,we have reviewed the previous viscosity data of derivatives of poly-2-vinylpyridine reported by Maclay and Fuoss first.Then,the abnormal viscosity behaviors of a series of sodium polystyrene sulfonate samples with various molecular weights in dilute aqueous solutions were studied further.The solute adsorption behaviors and structural information of polymers have been discussed carefully.

  11. Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead-spring chain models for dilute polymers: The two-dimensional case

    Barrett, John W.; Süli, Endre


    We prove the existence of global-in-time weak solutions to a general class of models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The class of models under consideration involves the unsteady, compressible, isentropic, isothermal Navier-Stokes system in a bounded domain Ω in Rd, d = 2, for the density ρ, the velocity u ˜ and the pressure p of the fluid, with an equation of state of the form p (ρ) =cpργ, where cp is a positive constant and γ > 1. The right-hand side of the Navier-Stokes momentum equation includes an elastic extra-stress tensor, which is the classical Kramers expression. The elastic extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. This extends the result in our paper J.W. Barrett and E. Süli (2016) [9], which established the existence of global-in-time weak solutions to the system for d ∈ { 2 , 3 } and γ >3/2, but the elastic extra-stress tensor required there the addition of a quadratic interaction term to the classical Kramers expression to complete the compactness argument on which the proof was based. We show here that in the case of d = 2 and γ > 1 the existence of global-in-time weak solutions can be proved in the absence of the quadratic interaction term. Our results require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. With a nonnegative initial density ρ0 ∈L∞ (Ω) for the continuity equation; a square-integrable initial velocity datum u˜0 for the Navier-Stokes momentum equation; and a nonnegative initial probability density function ψ0

  12. Measurement of Infinite Diluted Activity Coefficient of Solvents in Polymer by Inverse Gas Chromatography Method


    @@1 INTRODUCTION Due to its short experimental time, little sample needed, suitable for broad temperature range, inverse gas chromatography (IGC) has been widely used to measure variety of properties of polymer systems, such as the intinite diluted activity coefficients of solvent in polymer, the glass transition temperature of polymer and the surface properties of polymer[1-5], etc. Those data have been used to develop the group contribution method for the prediction of thermodynamic proper-ties of polymer solution[6].




    Full Text Available An introduction is given to the crossover theory of the conformational and thermodynamic properties of star polymers in good solvents. The crossover theory is tested against Monte Carlo simulation data for the structure and thermodynamics of model star polymers. In good solvent conditions, star polymers approach a "universal" limit as N → ∞, however, there are two types of approach towards this limit. In the dilute regime, a critical degree of polymerization N* is found to play a similar role as the Ginzburg number in the crossover theory for critical phenomena in simple fluids. A rescaled penetration function is found to control the free energy of star polymer solutions in the dilute and semidilute regions. This equation of state captures the scaling behaviour of polymer solutions in the dilute/semidilute regimes and also performs well in the concentrated regimes, where the details of the monomer-monomer interactions become important.

  14. Physics of Spin Casting Dilute Solutions

    Karpitschka, Stefan; Riegler, Hans


    We analyze the spin casting of dilute (ideal) binary mixtures of non-volatile solutes in volatile solvents as a prototype for evaporation-controlled processes that are increasingly used to deposit specifically structured (sub)monolayers ("evaporation-induced self-assembly"). The first analytical description of the thinning of a volatile liquid film simultaneously subject to spinning and evaporation is presented. It shows, that the duration of a spin casting process is linked to the process parameters via power laws. A diffusion-advection model leads analytically to the equation governing the spatio-temporal evolution of the internal film composition. Its solution reveals that the solute concentration enrichment, its gradient, and its time evolution are related to the process parameters via power laws. The physics behind the power laws is uncovered and discussed. This reveales universal insights into the interplay between the control parameters and their impact on the spatiotemporal evolution of the film compo...


    DU Dengxue; ZUO Ju; CHEN Yu; NING Hui


    The influences of both the volume of PS/toluene solution in the Ubbelohde viscometer and the precision of the time measuring on the viscosity behavior in dilute and extremely diluteconcentration region are investigated It was found that the influence of the former can neglect, but that of the latter is so prominent that the data fluctuate bitterly and linearity of the curve of the reduced viscosity vs. Concentration (ηsp/c~c) becomes too bad to obey the Huggins equation down to the extremely dilute region, despite the error of the flow times △t ≤ 0.2s, which is permitted by the conventional method of viscosity measurement. Through strict mathematical analyses, it was found that thc error (E) of the reduced viscosity is in proportion and inverse proportion to △t and concentration c, respectively. So the less the concentration, the more the error is. Consequently, a lowest concentration limit cL corresponding to given experimental error may exist and it will be meaningless for further operation below cL because of the great fluctuation of the data. Therefore, itneeds to seriously reconsider the application of the conventional method of Ubbelohde viscosity measurement in the extremely dilute polymer solution under traditional conditions because of the great influence of the experimental error.


    潘雁; 程时


    The relative viscosities of polystyrene-poly(2,6-dimethyl-1,4-phenylene oxide) mixtures in toluene down to extremely dilute concentration region were measured in an attempt to get a more exact understanding of the effect of interchain interaction on the viscometrical behavior of polymer mixture solution. Regarding the polymer mixture as a single solute, the interference of wall effect on viscosity measurement was eliminated in a quantitative way first for getting reliable viscosity data of the mixture. The existence of special interaction between unlike polymers in the mixture could be detected by the deviation of the measured intrinsic viscosity and overall apparent association constant from the predicted values for ideal polymer mixture.%测量了聚苯乙烯-聚(2,6-二甲基-1,4苯醚)混合物低至极稀浓度区间的甲苯溶液的粘度,以求更深入地了解链间相互作用对高分子混合物溶液粘度行为的影响.将高分子混合物视为单一溶质,先定量消除粘度测量中器壁效应的干扰,可以得到可靠的混合物粘度数据.混合物中异种高分子间的特殊相互作用的存在,可以用测量得到的特性粘数和总表观缔合常数相对于高分子理想混合物的理论预测值的偏离来判定.

  17. Solution Processing - Rodlike Polymers


    side it necessary and identify by block number) Para-ordered Polymers High Modulus Fibers and Films Polybenzobisoxazoles Polybenzobisthiazoles 20...considerations important in solution processing are considered, with special emphasis on the dry-jet wet spinning process used to form fibers . Pertinent...Company, Summit, N.J. iii TABLE OF CONTENTS 1. INTRODUCTION ................ .......................... .. 1 2. REMARKS ON DRY-JET WET SPUN FIBER

  18. Constant force extensional rheometry of polymer solutions

    Szabo, Peter; McKinley, Gareth H.; Clasen, Christian


    We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...... filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment...


    WANG Wei; WANG Lihua; QIN Wen


    Dilute solution behavior of chitosan was studied in formic acid, acetic acid,lactic acid and hydrochloric acid aqueous solution under different pH values. The reduced viscosities, ηsp/C,of chitosan solutions were dependent on the properties of acid and pH value of solvents. For a given chitosan concentration, ηsp/C decreased with the increase of acid concentration, or decreasing pH of solvent, indicating shielding effect of excessive acid similar to adding salt into solution. The stabilities of dilute chitosan solution in formic acid and lactic acid were better than that in acetic acid and hydrochloric acid.

  20. The missing link between the extensional dynamics of polymer melts and solutions

    Rasmussen, Henrik K.; Huang, Qian


    Based on extensional viscosities measured on narrow molecular weight distributed (NMMD) polystyrenes and polystyrene oligomer dilutions thereof, we discuss the relation between the flow physics of polymer solutions and melts. A polymer solution is here characterized as a dilution where the diluen...

  1. Wang-Landau simulations of polymer adsorption on diluted surfaces

    Martins, Paulo; Vogel, Thomas; Landau, David


    We consider a single linear lattice homopolymer in three dimensions that interacts with a diluted planar surface. A fraction p of the total number of the sites on the substrate is attractive, while the remaining 1-p remains neutral. Our focus is on the conformational transitions the polymer can experience under different environmental conditions, for instance, the surface dilution and the strength of the substrate attraction, compared to the intensity of the monomer-monomer interactions. To get insights on the phase diagram we have performed extensive Monte Carlo simulations, by using the Wang-Landau sampling, for different values of the surface attraction ɛ and the concentration of attractive sites p, specially near the surface percolation threshold pc.

  2. [Formation of oxalate in oxaliplatin injection diluted with infusion solutions].

    Eto, Seiji; Yamamoto, Kie; Shimazu, Kounosuke; Sugiura, Toshimune; Baba, Kaori; Sato, Ayaka; Goromaru, Takeshi; Hagiwara, Yoshiaki; Hara, Keiko; Shinohara, Yoshitake; Takahashi, Kojiro


    Oxaliplatin use can cause acute peripheral neuropathy characterized by sensory paresthesias, which are markedly exacerbated by exposure to cold temperatures, and is a dose-limiting factor in the treatment of colorectal cancer.Oxalate is eliminated in a series of nonenzymatic conversions of oxaliplatin in infusion solutions or biological fluids.Elimination of oxalate from oxaliplatin has been suggested as one of the reasons for the development of acute neuropathy.In this study, we developed a high-performance liquid chromatography(HPLC)-based method to detect oxalate formation, and investigated the time dependent formation of oxalate in oxaliplatin diluted with infusion solutions.The results obtained showed that the amount of oxalate in the solution corresponded to 1.6% of oxaliplatin 8 h after oxaliplatin dilution with a 5% glucose solution. On the other hand, oxalate formation from oxaliplatin diluted with a saline solution was ten-fold higher than that from oxaliplatin diluted with the 5% glucose solution.Most patients who were intravenously injected with oxaliplatin experienced venous pain.As a preventive measure against venous pain, dexamethasone was added to the oxaliplatin injection.We measured the amount of oxalate formed in the dexamethasone-containing oxaliplatin injection diluted with a 5% glucose solution.The amount of oxalate formed when dexamethasone was added did not differ significantly from that formed when dexamethasone was not added.Thus, there are no clinical problems associated with the stability of oxaliplatin solutions.

  3. Soft Confinement for Polymer Solutions

    Oya, Yutaka


    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa, et al.

  4. Terahertz absorption of dilute aqueous solutions.

    Heyden, Matthias; Tobias, Douglas J; Matyushov, Dmitry V


    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  5. Hydrophobically modified polyelectrolytes I. Dilute solution properties of fluorocarbon-containingpoly(acrylic acid)

    ZHOU, Hui(周晖); SONG, Guo-Qiang(宋国强); ZHANG, Yun-Xiang(章云祥); DIEING, Reinhold; MA, Lian; HAEUSSLING, Lukas


    Dilute solution viscosity of fluorocarbon-containing hydrophobically modified poly(acrylic acid) was measured in aqueous solutions of various NaCl concentrations. The intrinsic viscosity ([η]) and Huggins coefficient (kH) were evaluated using Huggins equations. It is found that, at low NaCl concentration, the modified polymers exhibit values of intrinsic viscosity ( [η] ) and Huggins coefficient (kH) similar to those of unmodified polymers. For both of the modified and unmodified polymers, the intrinsic viscosity decreases with increase of NaCl concentration, while the Huggins coefficient increases upon addition of NaCl. But the variation of [η] and kH is more significant for the modified polymers, which reflects the enhanced intra- and intermolecular hydrophobic association at higher NaCl concentration.

  6. Dilute Bicellar Solutions for Structural NMR Work

    Struppe, Jochem; Vold, Regitze R.


    Deuterium NMR spectroscopy has been employed to characterize the concentration dependence of orientational order in DMPC/DHPC bicellar solutions with molar ratiosq= [DMPC]/[DHPC] = 3.3, 2.7, and 2.3. The stability of a discotic nematic phase can, in general, be predicted from a simple Onsager picture involving the size and concentration of the mesogenic unit, but for the bicellar solutions this model is not adequate. Specifically, macroscopic alignment is observed at total lipid concentrations well below that, 1-10% (w/w) predicted by Onsager's model. Thus the discotic nematic phase is stable to ≈3-5% (w/w) forq= 3.3-2.3, and the bicellar order is highest just before phase separation occurs at the minimum total phospholipid concentration. This implies the presence of a DHPCbic⇄ DHPCsolequilibrium in establishing bicellar size, thereby extending the range of concentrations for which alignment occurs. Bicellar morphology has been verified for a wide range of concentrations, temperatures, andq-values, but as viscosity measurements demonstrate, major morphological changes take place as the temperature is reduced below 30°C.

  7. Radiolysis of paracetamol in dilute aqueous solution

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László


    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  8. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

    Frenzel, Ines; Holdik, Hans; Barmashenko, Vladimir; Stamatialis, Dimitrios F.; Wessling, Matthias


    Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and once-throu

  9. Removal of Phenol from Dilute Solutions by Predispersed Solvent Extraction


    Predispersed solvent extraction (PDSE) is a new method for separating solutes from aqueous solution by solvent extraction and one which has shown promise for extraction from extremely dilute solution very efficient and very quick. The use of colloidal liquid aphrons in predispersed solvent extraction may ameliorate the problems such as emulsion formation, reduction of interfacial mass transfer and low interfacial mass transfer areas in solvent extraction process. In present paper, colloidal liquid aphrons are successfully generated using kerosene as a solvent, tributyl phosphate(TBP) as an extractant, sodium dodecyl benzene sulphate(SDBS) as surfactant in aqueous phase and Tween-80 in oil phase. Extraction of phenol from dilute solution was studied by using colloidal liquid aphrons and colloidal gas aphrons in a semi-batch extraction column. It has been found that the PDSE process is more suitable for extraction of dilute solutions. It has also been discovered that the PDSE process has a great advantage over traditional single-stage extraction process.

  10. Modeling of Pervaporation Separation Benzene from Dilute Aqueous Solutions Through Polydimethylsiloxane Membranes

    彭福兵; 姜忠义


    A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.

  11. High-throughput ab-initio dilute solute diffusion database

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane


    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  12. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Eliyan, Faysal Fayez; Alfantazi, Akram


    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  13. Planar contraction flow of diluted polymer solution. ; Experiment and numerical simulation considering inertia force. Kishaku kobunshi suiyoeki ni yoru kyu shukusho nagare. ; Kansei ko wo koryoshita suchi kaiseki to kashika jikken

    Kawabata, N.; Tachibana, M.; Yoshida, K. (Fukui Univ. (Japan). Faculty of Engineering); Fujita, K. (Fukui National College of Technology, Fukui (Japan)); Kimura, K. (Fukui Univ., Fukui (Japan). Graduate School)


    Studies on viscoelastic fluid flows have been carried out while focusing on cases of high viscosity fluid such as polymer solutions so as to meet industrial demand. In a viscoelastic fluid flow, inertia force, viscous force, and elastic force act on the flow field. As the velocity of the flow increases, the effects of the viscous force outgrow the others. The authors showed that stable calculations are possible even in a region where the inertia and elastic forces become important by applying Lax method to solving the constitutive equation. However, the Lax method has a drawback in that numerical viscosity is high. In this study, the CIP method is applied to solving the constitutive equation, and a comparison with respect to the two-dimensional planar contraction flow was made between the results from numerical calculation by means of this method and the results of visualizing experimentations using polymer solutions of relatively low concentration. As a result, it was confirmed by the visualizing experimentations that a flow pattern which is inherent in the viscoelastic fluid and which does not appear in the case of high viscosity fluid. Furthermore this characteristic pattern was also obtained by numerical calculations by this method. 9 refs., 10 figs.


    Rajai Baraka; Jamil K.J. Salem; Hani Hilles; Omar Melad


    The interaction between poly(methymethacrylate) (PMMA) and poly(vinyl chloride) (PVC) has been studied in dilute urea solutions of dimethylformamide (DMF) at 28℃ using a dilute solution viscometry method. The results show that the polymer mixtures are compatible in DMF solution in the absence of urea. The influence of urea addition on the degree of compatibility of the polymer mixtures has been studied in terms of the compatibility parameters (Abm and A[r]m). It was found that the compatibility of the polymer mixtures is decreased with increasing urea addition, passing through a minimum at 0.5 M urea.

  15. Stability of dilute solutions of uranium, lead, and thorium ions

    Milkey, R.G.


    Standard solutions and samples containing a few micrograms of metallic ions per milliliter are frequently used in determination of trace elements. It is important to know whether the concentrations of such solutions remain constant from day to day. The stability of dilute solutions of three metallic ions-uranium, lead, and thorium-has been investigated. Solutions containing concentrations of metallic ions, ranging from 1000 to 0.1 ?? per milliliter, were allowed to stand for approximately 2.5 months, and then the metallic ion content of those solutions that had lost strength was determined. Both adsorption and hydrolysis variously influenced the solute loss, but the minimum pH at which loss of concentration of lead and uranium occurred seemed to coincide with the pH at which the hydrolyzed metal ions began to precipitate. No increase in the stability of the solutions was obtained by substituting polyethylene containers for borosilicate glass. The solutions that lost strength could not be restored promptly to the original concentration by manual means, such as shaking them vigorously for several minutes.

  16. Monte Carlo Simulation of Aqueous Dilute Solutions of Polyhydric Alcohols

    Lilly, Arnys Clifton, Jr.

    In order to investigate the details of hydrogen bonding and solution molecular conformation of complex alcohols in water, isobaric-isothermal Monte Carlo simulations were carried out on several systems. The solutes investigated were ethanol, ethylene glycol, 1,2-propylene glycol, 1,3 -propylene glycol and glycerol. In addition, propane, which does not hydrogen bond but does form water hydrates, was simulated in aqueous solution. The complex alcohol-water systems are very nonideal in their behavior as a function of solute concentration down to very dilute solutions. The water model employed was TIP4P water^1 and the intermolecular potentials employed are of the Jorgensen type^2 in which the interactions between the molecules are represented by interaction sites usually located on nuclei. The interactions are represented by a sum of Coulomb and Lennard-Jones terms between all intermolecular pairs of sites. Intramolecular rotations in the solute are modeled by torsional potential energy functions taken from ethanol, 1-propanol and 2-propanol for C-O and C-C bond rotations. Quasi-component pair correlation functions were used to analyze the hydrogen bonding. Hydrogen bonds were classified as proton acceptor and proton donor bonds by analyzing the nearest neighbor pair correlation function between hydroxyl oxygen and hydrogen and between solvent-water hydrogen and oxygen. The results obtained for partial molar heats of solution are more negative than experimental values by 3.0 to 14 kcal/mol. In solution, all solutes reached a contracted molecular geometry with the OH groups generally on one side of the molecule. There is a tendency for the solute OH groups to hydrogen bond with water, with more proton acceptor bonds than proton donor bonds. The water -solute binding energies correlate with experimental measurements of the water-binding properties of the solute. ftn ^1Jorgensen, W. L. et al, J. Chem. Phys., 79, 926 (1983). ^2Jorgensen, W. L., J. Phys Chem., 87, 5304

  17. Room-Temperature Tensile Behavior of Oriented Tungsten Single Crystals with Rhenium in Dilute Solid Solution



  18. Conformation of Randomly Sulfonated Pentablock Ionomers in Dilute Solution: Molecular Dynamic Simulation Study

    Aryal, Dipak; Perahia, Dvora; Grest, Gary S.


    As part of our efforts to define the factors that control the structure and dynamics of structures ionic polymers, the conformation of a pentablock copolymer that consists of randomly sulfonated polystyrene, an ionomeric block, bound to poly-ethylene-r-propylene end caped by poly-t-butylstyrene has been studied in dilute solutions using molecular dynamic simulations. Multi-block copolymers offer a means to tailor several properties into one molecule, taking advantage of their rich phase diagram together with unique properties of specific blocks. We varied the solvent quality for the different blocks and followed the changes in conformation. The spatial configuration of the pentablock as well as the dynamics of the polymer was studied. We find that, independent on the solvent, the higher the sulfonation level, the lower Rg . The static and dynamic structure factors were calculated and compared in an implicit poor solvent, water and a common solvent. These data are compared with results obtained from neutron scattering.

  19. On the effects of dilute polymers on driven cavity turbulent flows

    Liberzon, Alex, E-mail: [School of Mechanical Engineering, Tel Aviv University, International Collaboration for Turbulence Research (ICTR), Ramat Aviv 69978 (Israel)] [International Collaboration for Turbulence Research (Netherlands)


    Highlights: Black-Right-Pointing-Pointer Dilute polymers alter genuine structure of turbulent lid-driven cavity flow. Black-Right-Pointing-Pointer Altered structure is identifiable via the mixed-type correlations of velocity and velocity derivatives. Black-Right-Pointing-Pointer Polymer effects 'propagate up-scale' from the smallest scales of velocity derivatives to the large velocity scales. Black-Right-Pointing-Pointer The revealed mechanism is observed in turbulent flows independently of forcing, homogeneity or presence of solid walls. - Abstract: Effects of dilute polymer solutions on a lid-driven cubical cavity turbulent flow are studied via particle image velocimetry (PIV). This canonical flow is a combination of a bounded shear flow, driven at constant velocity and vortices that change their spatial distribution as a function of the lid velocity. From the two-dimensional PIV data we estimate the time averaged spatial fields of key turbulent quantities. We evaluate a component of the vorticity-velocity correlation, namely Left-Pointing-Angle-Bracket {omega}{sub 3}v Right-Pointing-Angle-Bracket , which shows much weaker correlation, along with the reduced correlation of the fluctuating velocity components, u and v. There are two contributions to the reduced turbulent kinetic energy production - Left-Pointing-Angle-Bracket u v Right-Pointing-Angle-Bracket S{sub uv}, namely the reduced Reynolds stresses, - Left-Pointing-Angle-Bracket u v Right-Pointing-Angle-Bracket , and strongly modified pointwise correlation of the Reynolds stress and the mean rate-of-strain field, S{sub uv}. The Reynolds stresses are shown to be affected because of the derivatives of the Reynolds stresses, {partial_derivative} Left-Pointing-Angle-Bracket u v Right-Pointing-Angle-Bracket /{partial_derivative}y that are strongly reduced in the same regions as the vorticity-velocity correlation. The results, combined with the existing evidence, support the phenomenological model of



  1. Tricritical points in bimodal polymer solutions

    Szleifer, I.; ten Brinke, G.


    The tricritical point of polymer solutions composed by two polymer homologs of different molecular weight in a solvent is studied using the single-chain mean-field theory. The tricritical point is found for a ratio of molecular weights of the two polymers r=N-1/N-2, which decreases as a function of

  2. Dermal absorption of a dilute aqueous solution of malathion

    Scharf John


    Full Text Available Malathion is an organophosphate pesticide commonly used on field crops, fruit trees, livestock, agriculture, and for mosquito and medfly control. Aerial applications can result in solubilized malathion in swimming pools and other recreational waters that may come into contact with human skin. To evaluate the human skin absorption of malathion for the assessment of risk associated with human exposures to aqueous solutions, human volunteers were selected and exposed to aqueous solutions of malathion. Participants submerged their arms and hands in twenty liters of dilute malathion solution in either a stagnant or stirred state. The "disappearance method" was applied by measuring malathion concentrations in the water before and after human exposure for various periods of time. No measurable skin absorption was detected in 42% of the participants; the remaining 58% of participants measured minimal absorbed doses of malathion. Analyzing these results through the Hazard Index model for recreational swimmer and bather exposure levels typically measured in contaminated swimming pools and surface waters after bait application indicated that these exposures are an order of magnitude less than a minimal dose known to result in a measurable change in acetylcholinesterase activity. It is concluded that exposure to aqueous malathion in recreational waters following aerial bait applications is not appreciably absorbed, does not result in an effective dose, and therefore is not a public health hazard.

  3. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    He, Yanqing; Zhang, Jian; Bao, Jie


    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment.

  4. Synthesis and Solution Properties of Hydrophobic Associating Polymers

    任鲲; 姜桂元; 徐春明; 林梅钦


    Acrylamide/2-acrylamido alkane sulfonic acid hydrophobic associating copolymers were synthesized by micellar copolymerization. Effects of hydrophobe content, polymer concentration, salinity and surfactant on rheological behavior of copolymers were investigated and the conformation of polymers in solution was studied by means of environmental scanning electronic microscopy and dynamic light scattering. The experimental results showed that in the dilute regime the hydrophobic parts could interact intramolecularly, while in the regime where the polymer concentration was higher than the critical association concentration, intermolecular hydrophobic association became predominant. Within the limit of the solubility, the critical association concentration of the polymer decreased with the increase of the salinity. The experimental results of the solution conformation indicated the presence of the three-dimensional network structure in deionized water and the size of the mesh in the network varied with the polymer concentration. In NaG1 solution, above the critical association concentration, an increase in polymer concentration enhanced the intermolecular association and also enlarged the hydrodynamic radius. It would result in the imorovement of the thickening power of polvmers.

  5. Functionalized polymers for binding to solutes in aqueous solutions

    Smith, Barbara F.; Robison, Thomas W.


    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  6. Modeling the Rheology of Polymer Melts and Solutions

    Larson, R. G.; Desai, Priyanka S.


    We review constitutive modeling of solutions and melts of linear polymers, focusing on changes in rheological behavior in shear and extensional flow as the concentration increases from unentangled dilute, to entangled, to dense melt. The rheological changes are captured by constitutive equations, prototypes of which are the FENE-P model for unentangled solutions and the DEMG model for entangled solutions and melts. From these equations, and supporting experimental data, for dilute solutions, the extensional viscosity increases with the strain rate from the low-strain rate to the high-strain rate asymptote, but in the densely entangled state, the high-strain rate viscosity is lower than the low-shear rate value, especially when orientation-dependent friction is accounted for. In shearing flow, shear thinning increases dramatically as the entanglement density increases, which can eventually lead to a shear-banding inhomogeneity. Recent improvements in constitutive modeling are paving the way for robust and accurate numerical simulations of polymer fluid mechanics and industrial processing of polymers.

  7. Counterion condensation of differently flexible polyelectrolytes in aqueous solutions in the dilute and semidilute regime.

    Truzzolillo, D; Bordi, F; Cametti, C; Sennato, S


    The low-frequency limit of the electrical conductivity (dc conductivity) of differently flexible polyions in aqueous solutions has been measured over an extended polyion concentration range, covering both the dilute and semidilute (entangled and unentangled) regime, up to the concentrated regime. The data have been analyzed taking into account the different flexibility of the polymer chains according to the scaling theory of polyion solutions, in the case of flexible polyions, and according to the Manning model, in the case of rigid polyions. In both cases, the fraction f of free counterions, released into the aqueous phase from the ionizable polyion groups, has been evaluated and its dependence on the polyion concentration determined. Our results show that the counterion condensation follows at least three different regimes in dependence on the polyion concentration. The fraction f of free counterions remains constant only in the semidilute regime (a region that we have named the Manning regime), while there is a marked dependence on the polyion concentration both in the dilute and in the concentrated regime. These results are briefly discussed in the light of the scaling theory of polyelectrolyte aqueous solutions.

  8. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties.

    Hesarinejad, M A; Razavi, Seyed M A; Koocheki, A


    The objective of this study was to investigate the effect of various temperatures (25-65°C) on some dilute solution properties of Alyssum homolocarpum seed gum (AHSG) as a novel potential source of hydrocolloid. Monosaccharide composition, FTIR analysis and molecular parameters were determined to provide more structural information. The results indicated that AHSG had a low molecular weight (3.66×10(5)Da), medium intrinsic viscosity (18.34dl/g) at 25°C, relatively flexible chain with a chain flexibility parameter of 618.54, and activation energy of 0.51×10(7)J/kgmol. With rise in temperature from 25 to 55°C, the intrinsic viscosity decreased as well as coil radius and volume of AHSG. The shape factor of AHSG macromolecule was spherical at all temperatures. The electrostatic interaction and particle size of AHSG solution were -25.81mV (at neutral pH) and 225.36nm, respectively. The results revealed that AHSG had high total sugar content (85.33%), small amount of uronic acids (5.63%) and it is likely a galactan-type polysaccharide. The FTIR spectra showed that AHSG behaved like a typical polyelectrolyte because of the presence of carboxyl and hydroxyl groups.

  9. Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions

    Zhao, Tongyang; Wang, Xiaogong, E-mail: [Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Jiang, Lei [Department of Physics, University of Michigan, Ann Arbor, Michigan (United States); Larson, Ronald G., E-mail: [Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan (United States)


    We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.

  10. Foaming behaviour of polymer-surfactant solutions

    Cervantes-MartInez, Alfredo [Departamento de Investigacion en PolImeros y Materiales, Universidad de Sonora, Apartado Postal 130, 83000 Hermosillo, Sonora (Mexico); Maldonado, Amir [Departamento de Fisica, Universidad de Sonora, Apartado Postal 1626, 83000 Hermosillo, Sonora (Mexico)


    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  11. Coalescence of silver clusters by immersion in diluted HF solution

    Milazzo, R. G.; Mio, A. M.; D’Arrigo, G.; Spinella, C. [CNR-IMM Institute for Microelectronics and Microsystems, I-95121 Catania (Italy); Grimaldi, M. G. [Department of Physics and Astronomy, Università di Catania, I-95123 Catania (Italy); MATIS IMM-CNR, I-95123 Catania (Italy); Rimini, E. [CNR-IMM Institute for Microelectronics and Microsystems, I-95121 Catania (Italy); Department of Physics and Astronomy, Università di Catania, I-95123 Catania (Italy)


    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 10{sup 11}-10{sup 12} cm{sup −2}. The amount of deposited Ag follows a t{sup 1/2} dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag{sup +}. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/r{sub mean} follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H{sub 2}O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10{sup −13} cm{sup 2}/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.



    The statistical counting method for the computer simulation of the thermodynamic quantities of polymer solution has been reviewed. The calculating results for a single athermal chain confirm the theory of the renormalization group. The results for the athermal solution are consistent with the scaling law of the osmotic pressure with the exponent 2.25. The results for a single chain with the segmental interaction are in a good agreement with the exact results obtained by the direct counting method. The results for the polymer solution show us that the Flory-Huggins parameter is strongly dependent on both the polymer concentration and the interaction energy between segments.

  13. Chemically selective polymer substrate based direct isotope dilution alpha spectrometry of Pu.

    Paul, Sumana; Pandey, Ashok K; Shah, R V; Aggarwal, S K


    Quantification of actinides in the complex environmental, biological, process and waste streams samples requires multiple steps like selective preconcentration and matrix elimination, solid source preparations generally by evaporation or electrodeposition, and finally alpha spectrometry. To minimize the sample manipulation steps, a membrane based isotope dilution alpha spectrometry method was developed for the determination of plutonium concentrations in the complex aqueous solutions. The advantages of this method are that it is Pu(IV) selective at 3M HNO3, high preconcentration factor can be achieved, and obviates the need of solid source preparation. For this, a thin phosphate-sulfate bifunctional polymer layer was anchored on the surface of microporous poly(ethersulfone) membrane by UV induced surface grafting. The thickness of the bifunctional layer on one surface of the poly(ethersulfone) membrane was optimized. The thickness, physical and chemical structures of the bifunctional layer were studied by secondary ionization mass spectrometry (SIMS), scanning electron microscopy (SEM) and SEM-EDS (energy-dispersive spectroscopy). The optimized membrane was used for preconcentration of Pu(IV) from aqueous solutions having 3-4M HNO3, followed by direct quantification of the preconcentrated Pu(IV) by isotope dilution alpha spectrometry using (238)Pu spike. The chemical recovery efficiency of Pu(IV) was found to be 86±3% below Pu(IV) loading capacity (1.08 μg in 2×1 cm(2)) of the membrane sample. The experiments with single representative actinides indicated that Am(III) did not sorb to significant extent (7%) but U(VI) sorbed with 78±3% efficiency from the solutions having 3M HNO3 concentration. However, Pu(IV) chemical recovery in the membrane remained unaffected from the solution containing 1:1000 wt. proportion of Pu(IV) to U(VI). Pu concentrations in the (U, Pu)C samples and in the irradiated fuel dissolver solutions were determined. The results thus obtained

  14. Bridging the Gap between Polymer Melts and Solutions in Extensional Rheology

    Huang, Qian; Hengeller, Ludovica; Alvarez, Nicolas J.


    and polymer melts. We compare the nonlinear extensional rheology of a series of polystyrene solutions with wide concentration range between 10% and 100% (melt) in order to determine the key missing physics that can account for dilution effects. All the solutions studied have the same number of entanglements...

  15. Light scattering from polymer solutions and nanoparticle dispersions

    Schärtl, Wolfgang; Janca, Josef


    Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.

  16. Separation processes using expulsion from dilute supercritical solutions

    Cochran, Jr., Henry D.


    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  17. Recent progress of the characterization of oppositely charged polymer/surfactant complex in dilution deposition system.

    Miyake, M


    A mixture of oppositely charged polymer and surfactants changes the solubilized state, having a complex precipitation region at the composition of electric neutralization. This complex behavior has been applied to surface modification in the fields of health care and cosmetic products such as conditioning shampoos, as a dilution-deposition system in which the polymer/surfactant mixture at the higher surfactant concentration precipitates the insoluble complex by dilution. A large number of studies over many years have revealed the basic coacervation behavior and physicochemical properties of complexes. However, the mechanism by which a precipitated complex performs surface modification is not well understood. The precipitation region and the morphology of precipitated complex that are changed by molecular structure and additives affect the performance. Hydrophilic groups such as the EO unit in polymers and surfactants, the mixing of nonionic or amphoteric surfactant and nonionic polymer, and the addition of low polar solvent influence the complex precipitation region. Furthermore, the morphology of precipitated complex is formed by crosslinking and aggregating among polymers in the dilution process, and characterizes the performance of products. The polymer chain density in precipitated complex is determined by the charges of both the polymer and surfactant micelle and the conformation of polymer. As a result, the morphology of precipitated complexes is changed from a closely packed film to looser meshes, and/or to small particles, and it is possible for the morphology to control the rheological properties and the amount of adsorbed silicone. In the future, further investigation of the relationships between the morphology and performance is needed.

  18. Theory and Simulation of Cholesteric Film Formation Flows of Dilute Collagen Solutions.

    Aguilar Gutierrez, O F; Rey, Alejandro D


    Dilute isotropic collagen solutions are usually flow processed into monodomain chiral nematic thin films for obtaining highly ordered materials by a multistep process that starts with complex inhomogeneous flow kinematics. Here we present rigorous theory and simulation of the initial precursors during flow steps in cholesteric collagen film formation. We first extract the molecular shape parameter and rotational diffusivity from previously reported simple shear data of dilute collagen solutions, where the former leads the reactive parameter (tumbling function) which determines the net effect of vorticity and strain rate on the average orientation and where the latter establishes the intensity of strain required for flow-birefringence, both crucial quantities for controlled film formation flow. We find that the tumbling function is similar to those of rod-like lyotropic liquid crystalline polymers and hence it is predicted that they would tumble in the ordered high concentration state leading to flow-induced texturing. The previously reported experimental data is well fitted with rotational diffusivities whose order of magnitude is consistent to those of other biomacromolecules. We then investigate the response of the tensor order parameter to complex flow kinematics, ranging from pure vorticity, through simple shear, to extensional flow, as may arise in typical flow casting and film flows. The chosen control variable to produce precursor cholesteric films is the director or average orientation, since the nematic order is set close to typical values found in concentrated cholesteric type I collagen solutions. Using the efficient four-roll mill kinematics, we summarize the para-nematic structure-flow process diagram in terms of the director orientation and flow type. Using analysis and computation, we provide a parametric envelope that is necessary to eventually produce well-aligned cholesteric films. We conclude that extensional flow is an essential ingredient of

  19. Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability

    Tamano, Shinji; Ohashi, Yota; Morinishi, Yohei


    The dynamics of the falling droplet through a nozzle for dilute nonionic surfactant (oleyl-dimethylamine oxide, ODMAO) aqueous solutions with viscoelastic and drag-reducing properties were investigated at different concentrations of ODMAO solutions Cs = 500, 1000, and 1500 ppm by weight. The effects of the flow rate and tube outer diameter on the length of the filament, which was the distance between the tube exit and the lower end of a droplet at the instant when the droplet almost detached from the tube, were clarified by flow visualization measurements by a high-speed video camera. Two types of breaking-off processes near the base of the droplet and within the filament were classified by the Ohnesorge number Oh and the Weber number We. In the regime of the higher Oh and We, the length of the filament became drastically larger at Cs = 1000 and 1500 ppm, whose high spinnability represented the strong viscoelasticity of ODMAO solutions. In the case where the filament was broken up near the lower end of the neck and thinning in time, the thinning of the diameter of the filament was measured by a light-emitting diode micrometer. As for the elasto-capillary thinning of dilute nonionic surfactant solutions, the initial necking process was similar to that of Newtonian fluids and then followed the exponential thinning like polymer solutions. The apparent elongational viscosity of the dilute nonionic surfactant solution was evaluated in the elasto-capillary thinning regime, in which the elongation rate was almost constant. At Cs = 1000 and 1500 ppm, the Trouton ratio, which was the ratio of the apparent elongational viscosity to the shear viscosity, was found to be several orders of magnitude larger than that of Newtonian fluids, while the shear viscosity measured by the capillary viscometer was almost the same order of the Newtonian fluids. The higher elongational property would be closely related to the higher drag-reducing ability of dilute nonionic surfactant

  20. Flow of polymer solutions through porous media

    Denys, K.F.J.


    These days leading oil and gas producing companies are investing increasing amounts of money into the development of non-fossil energy sources like wind-, solar-, biomass energy and forestry. On the other hand these companies are persisting in developing techniques to make energy recovery more efficient intending to stretch the life span of fossil resources. One of the more mature techniques to improve recovery efficiency is polymer flooding. Herein polymer solutions are injected in injector ...

  1. Effect of stretching-induced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions

    Prabhakar, Ranganathan; Sasmal, Chandi; Nguyen, Duc At; Sridhar, Tam; Prakash, J. Ravi


    Extensional rheometry and Brownian dynamics simulations of flexible polymer solutions confirm predictions based on blob concepts that coil-stretch hysteresis in extensional flows increases with concentration, reaching a maximum at the critical overlap concentration c* before progressively vanishing in the semidilute regime. These observations demonstrate that chain stretching strengthens intermolecular hydrodynamic screening in dilute solutions, but weakens it in semidilute solutions. Flow can thus strongly modify the concentration dependence of viscoelastic properties of polymer solutions.

  2. Volatile release from aqueous solutions under dynamic headspace dilution conditions.

    Marin, M; Baek, I; Taylor, A J


    Static equilibrium was established between the gas phase (headspace) and an unstirred aqueous phase in a sealed vessel. The headspace was then diluted with air to mimic the situation when a container of food is opened and the volatiles are diluted by the surrounding air. Because this first volatile signal can influence overall flavor perception, the parameters controlling volatile release under these conditions are of interest. A mechanistic model was developed and validated experimentally. Release of compounds depended on the air-water partition coefficient (K(aw)) and the mass transport in both phases. For compounds with K(aw) values 10(-)(3), mass transport in the gas phase became significant and the Reynolds number played a role. Because release from packaged foods occurs at low Reynolds numbers, whereas most experiments are conducted at medium to high Reynolds numbers, the experimentally defined profile may not reflect the real situation.

  3. Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model

    Ganguly, Moumita; Chakraborty, Aniruddha


    A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.

  4. Polymer fractionation

    Hadermann, A. F.


    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  5. Brownian particles in supramolecular polymer solutions

    Gucht, van der J.; Besseling, N.A.M.; Knoben, W.; Bouteiller, L.; Cohen Stuart, M.A.


    The Brownian motion of colloidal particles embedded in solutions of hydrogen-bonded supramolecular polymers has been studied using dynamic light scattering. At short times, the motion of the probe particles is diffusive with a diffusion coefficient equal to that in pure solvent. At intermediate time

  6. Extensional properties of mobile polymer solutions

    Tirel, Christophe; Renoult, Marie-Charlotte; Dumouchel, Christophe; Crumeyrolle, Olivier; Lisiecki, Denis; Mutabazi, Innocent


    A deep understanding of the influence of viscoelasticity on the dynamics of liquid flows remains a challenge in the non-Newtonian fluid mechanics field. Previous work has revealed that the addition of minute amount (2.5 part per million) of high molecular weight polymer to water, forming a viscoelastic solution with strong extensional properties, modifies the fission process during droplet snap off with spectacular effects: inhibition of the singularity observed in the reference Newtonian case and formation of a long-lived (milli-second) filament. The measurement of the extensional properties for such mobile polymer solutions is one of the most pressing problem. Here, a global measurement technique, based on the multi-scale analysis of the capillary instability of a free falling jet of a mobile polymer solution, is introduced. The method of analysis allows the characterisation of the jet breakup mechanism from which the relaxation time of the polymer solution can be extracted. One of the advantages of the technique is the simple experiment it requires.

  7. A Polymer "Pollution Solution" Classroom Activity.

    Helser, Terry L.


    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  8. Brownian particles in supramolecular polymer solutions

    Gucht, van der J.; Besseling, N.A.M.; Knoben, W.; Bouteiller, L.; Cohen Stuart, M.A.


    The Brownian motion of colloidal particles embedded in solutions of hydrogen-bonded supramolecular polymers has been studied using dynamic light scattering. At short times, the motion of the probe particles is diffusive with a diffusion coefficient equal to that in pure solvent. At intermediate time

  9. Interactions between fluorinated cationic guar gum and surfactants in the dilute and semi-dilute solutions.

    Wang, Chen; Li, Xiaorui; Li, Peizhi; Niu, Yuhua


    The interactions between the fluorinated cationic guar gum (FCGG) and ionic surfactants including cetyl trimethyl ammonium bromide (CTAB) and sodium lauryl sulfate (SDS) were studied by light scattering, fluorescence spectroscopy, UV-spectrophotometer, (19)F NMR and dynamic rheometer, respectively. The FCGG is prepared with cationic guar gum, isophorone diisocyanate and 2,2,3,4,4,4-hexafluoro-1-butanol. The results show that, with the addition of the surfactants, the stretching degree of the FCGG chains is increased in the FCGG/CTAB solutions, while the dramatical shrinking of FCGG chain, the phase separation and the re-stretched macromolecules appear successively because of the electricity neutralization reaction in the FCGG/SDS system. The mixed hydrophobic domains in all solutions will be reinforced and then dismantled. The solution elasticity shows up the maximum value accordingly. The surfactants can be embedded in the micro-domains and then hinder the fluorinated segmental motions. The interactions between FCGG and SDS are much stronger than those between FCGG and CTAB.

  10. Radiation induced degradation of ketoprofen in dilute aqueous solution

    Illés, Erzsébet; Takács, Erzsébet; Dombi, András; Gajda-Schrantz, Krisztina; Gonter, Katalin; Wojnárovits, László


    The intermediates and final products of ketoprofen degradation were investigated in 0.4 mmol dm-3 solution by pulse radiolysis and gamma radiolysis. For observation of final products UV-vis spectrophotometry and HPLC separation with diode array detection were used, and for identification MS was used. The reactions of •OH lead to hydroxycyclohexadienyl type radical intermediates, in their further reactions hydroxylated derivatives of ketoprofen form as final products. The hydrated electron is scavenged by the carbonyl oxygen and the electron adduct protonates to ketyl radical •OH is more effective in decomposing ketoprofen than hydrated electron. Chemical oxygen demand and total organic carbon content measurements on irradiated aerated solutions showed that using irradiation technology ketoprofen can be mineralised. The initial toxicity of the solution monitored by the Daphnia magna test steadily decreases with irradiation. Using 5 kGy dose no toxicity of the solution was detected with this test.

  11. Thermodynamics of multisolute adsorption from dilute aqueous solutions

    Jossens, L. (Univ. Calif. Berkeley); Fritz, W.; Myers, A.L.; Prausnitz, J.M.; Schluender, E.U.


    Equilibrium adsorption data were obtained at 20/sup 0/C on activated carbon for six ternary aqueous systems simulating organic chemical wastewaters (phenol/p-nitrophenol, p-chlorophenol/p-nitrophenol, p-nitrophenol/benzoic acid, p-chlorophenol/phenyl acetic acid, o-phenylphenol/p-nitrophenol, and 2,4-dichlorophenol/dodecyl benzol sulfonic acid). The three-parameter Toth adsorption isotherm represented well the component single-solute data adsorption. With the thermodynamic ideal-adsorbed-solution method, total adsorptions were calculated from single-solute data predicted by the Toth equation and compared with experimental data. Prediction for total adsorption was within approx. 2-10Vertical Bar3<; for adsorption of individual components, within approx. 3-20Vertical Bar3<. A new three-parameter adsorption isotherm was derived, which also represented well the single-solute data. For bi-solute systems where dissociation is negligible, calculated individual adsorptions agreed with experiment within 2Vertical Bar3<. Systematic deviations between calculation and observed results may be due to the acidities of the solutes.

  12. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media.

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A


    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data.

  13. Solute dilution at the Borden and Cape Cod groundwater tracer tests

    Thierrin, Joseph; Kitanidis, Peter K.


    This study presents an analysis of the rate of dilution of a conservative nonreactive tracer in two well-known field experiments: The Borden (Ontario, Canada) experiment and the Cape Cod (Massachusetts) experiment. In evaluating the dilution of injected sodium bromide, in addition to computing the second spatial moments, we have used the dilution index and the reactor ratio. The dilution index is a measure of the formation volume occupied by the solute plume, and the reactor ratio is a shape factor, which measures how stretched and deformed the plume is. Unlike the second moments, which may go up or down during an experiment, the dilution index should increase monotonically. The results for both plumes were quite similar. After an initial period the dilution index increased linearly with time, which is macroscopically equivalent to transport in two-dimensional uniform flow. The reactor ratio was relatively constant during the period of the experiments. Their values, about 0.72 for the Borden test and 0.63 for the Cape Cod test, indicate that the Cape Cod plume was more stretched and deformed than the Borden plume. The maximum concentration, which is an alternative to the dilution index for quantifying dilution, was found to be more erratic and more susceptible to sampling error.

  14. The grand partition function of dilute biregular solutions

    Nagamori, Meguru; Ito, Kimihisa; Tokuda, Motonori


    It has been demonstrated that the grand partition function (GPF) of biregular solutions contains in one single equation such thermodynamic principles as Henry's law, Raoult's law, the Gibbs-Duhem relation, Raoultian activity coefficients and their finite power series, Wagner's rec-iprocity, Schenck-Frohberg-Steinmetz's interchange, Lupis-Elliott's additivity, Mori-Morooka's disparity, and Darken's quadratic formalism. The logarithm of the Raoultian activity coefficient of species i, In γi should not be expressed by the Taylor series expansion, lest its truncation infringe the Gibbs-Duhem equation. The GPF methodology establishes that In γi, is not a vector but a scalar point function, free from any path dependence. While Darken's quadratic formalism employs three parameters to describe a ternary solution, the present biregularity approximation offers an alternative using seven empirical parameters, in case better accuracy is needed.

  15. Form and stability of aluminum hydroxide complexes in dilute solution

    Hem, John David; Roberson, Charles Elmer


    Laboratory studies of solutions 4.53 x 10 -4 to 4.5 x 10 -5 molal (12.2-1.2 ppm) in aluminum, in 0.01 molal sodium perchlorate, were conducted to obtain information as to the probable behavior of aluminum in natural water. When the solutions were brought to pH 7.5-9.5 and allowed to stand for 24 hours, a precipitate was obtained which was virtually amorphous as shown by X-rays, and which had a solubility equivalent to that of boehmite. This precipitate had a hydrolysis constant (*Ks4) of 1.93 x 10 -13a. When solutions were allowed to stead at this pH range for 10 days, their precipitates gave the X-ray pattern of bayerite (*Ks4 = 1.11 > (10- 4). These hydrolysis constants were obtained at 25?C. and corrected to zero ionic strength and are in close agreement with other published values. The predominant dissolved form in this pH range is Al(OH) -4. Below neutral pH (7.0) the dissolved aluminum species consist of octahedral units in which each aluminum ion is surrounded by six water molecules or hydroxide ions. Single units such as Al(OH2)6 + 3 and AlOH(OH2)5+2 are most abundant below pH 5.0, and where the molar ratio (r) of combined hydroxide to total dissolved aluminum is low. When r is greater than 1.0, polymerization of the octahedral units occurs. When r is between 2.0 and 3.0, solutions aged for 10 days or more contained colloidal particles between 0.10 and 0.45 ? in diameter. Particles whose diameters were greater than 0.10 ? were identified by X-ray diffraction as gibbsite. Particles smaller than 0.10 ? were also present and were shown by means of the electron microscope to have a hexagonal crystal pattern. Structured material consisting of sheets of coalesced six-membered rings of aluminum ions held together by double OH bridges has a distinctive kinetic behavior. This property was used to determine amounts of polymerized material in solutions having r between 1.0 and 3.0 after aging times ranging from a few hours to more than 4 months. Aging increased the

  16. The corrosion of aluminum in dilute solutions: laboratory studies

    Draley, J.E.; Arendt, J.W.; English, G.C.; Story, E.F.; Wainscott, M.M.; Berger, R.W.


    After it had been decided that aluminum was to be used as a corrosion-resistant material with good heat transfer properties, it was desired to determine the operating conditions to be used in the water-cooled Handford plant in order to avoid danger of corrosion penetration of thin aluminum parts. The studies here reported were undertaken with the object of determining these conditions by investigating the effects of all the known variables which might influence the corrosion behavior of aluminum in a water-coolded plant at HEW. The addition of hydrogen peroxide to the testing solutions was the only effort made to simulate special conditions at the plant.

  17. The corrosion of aluminum in dilute solutions: laboratory studies

    Draley, J.E.; Arendt, J.W.; English, G.C.; Story, E.F.; Wainscott, M.M.; Berger, R.W.


    After it had been decided that aluminum was to be used as a corrosion-resistant material with good heat transfer properties, it was desired to determine the operating conditions to be used in the water-cooled Handford plant in order to avoid danger of corrosion penetration of thin aluminum parts. The studies here reported were undertaken with the object of determining these conditions by investigating the effects of all the known variables which might influence the corrosion behavior of aluminum in a water-coolded plant at HEW. The addition of hydrogen peroxide to the testing solutions was the only effort made to simulate special conditions at the plant.

  18. Semi-dilute galactomannan solutions: observations on viscosity scaling behavior of guar gum

    Pollard, Michael A.; Fischer, Peter


    Based on experimental work involving evaluation of viscosity enhancement of aqueous solutions by high molecular weight guar gum, we have observed that the shear viscosity scaling exponent b for semi-dilute solutions, ηsp ˜ (c[η])b, is sensitive to molecular weight, being approximately 4.7 for native samples and decreasing progressively as Mw is lowered. The critical overlap parameter demarcating the dilute and semi-dilute regimes also depends on the molecular weight as {{≤ft(c[η ]\\right)}*} ˜ Mw-0.82 . Consequently, viscosity-concentration plots fail to achieve overlap using only specific viscosity and overlap concentration as reducing variables, a commonly accepted empiricism for random-coil polysaccharides. To bridge the gap, we propose to account for water solubility, its temperature dependence and the resulting chain flexibility as additional factors to fully describe the solution behavior of these highly-important raw materials.

  19. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    Wang, S.W.


    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 313/sup 0/K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 298/sup 0/K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory.

  20. Hydration of Kr(aq) in dilute and concentrated solutions

    Chaudhari, M I; Pratt, L R; Rempe, S B


    Molecular dynamics simulations of water with both multi-Kr and single Kr atomic solutes are carried out to implement quasi-chemical theory evaluation of the hydration free energy of Kr(aq). This approach also obtains free energy differences reflecting Kr-Kr interactions at higher concentrations. Those differences are negative (though small) changes in hydration free energies with increasing concentrations at constant pressure. The changes are due to a slight reduction of packing contributions in the higher concentration case. The observed Kr-Kr distributions, analyzed through a delicate $k\\rightarrow 0$ extrapolation, yield positive (though small) values for the osmotic second virial coefficient, $B_2$. A standard thermodynamic analysis interconnecting these two approaches shows that they can be consistent with each other.

  1. Hydration of Kr(aq) in Dilute and Concentrated Solutions.

    Chaudhari, Mangesh I; Sabo, Dubravko; Pratt, Lawrence R; Rempe, Susan B


    Molecular dynamics simulations of water with both multi-Kr and single Kr atomic solutes are carried out to implement quasi-chemical theory evaluation of the hydration free energy of Kr(aq). This approach obtains free energy differences reflecting Kr-Kr interactions at higher concentrations. Those differences are negative changes in hydration free energies with increasing concentrations at constant pressure. The changes are due to a slight reduction of packing contributions in the higher concentration case. The observed Kr-Kr distributions, analyzed with the extrapolation procedure of Krüger et al., yield a modestly attractive osmotic second virial coefficient, B2 ≈ -60 cm(3)/mol. The thermodynamic analysis interconnecting these two approaches shows that they are closely consistent with each other, providing support for both approaches.

  2. Spin coating of an evaporating polymer solution

    Münch, Andreas


    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of a thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent mass fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system. The main practical interest is in controlling the appearance and development of a "skin" on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. In practice, a fast and uniform drying of the film is required. The critical parameters controlling this behaviour are found to be the ratio of the diffusion to advection time scales ε, the ratio of the evaporation to advection time scales δ and the ratio of the diffusivity of the pure polymer and the initial mixture exp(-1/γ). In particular, our analysis shows that for very small evaporation with δ

  3. Sonochemical degradation of organophosphorus pesticide in dilute aqueous solutions

    Robina Farooq; FENG Kai-lin; S. F. Shaukat; HUANG Jian-jun


    Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2-12. Process parameters studied include pH, steady-state temperature, concentration, and the type of gases. Greater than 96% hydrolysis was observed in 30 minutes through this process and the rate of destruction increased with the help of more soluble and low thermal inert gas. So with Krypton, omethoate was found to undergo rapid destruction as compared with Argon. In the presence of ultrasound, the observed first-order rate of hydrolysis of omethoate is found to be independent of pH. The formation of transient supercritical water(SCW) appears to be an important factor in the acceleration of chemical reactions in the presence of ultrasound. A detailed chemical reaction mechanism for omethoate destruction in water was formulated. Experimental results and theoretical kinetic mechanism demonstrated that the most of the omethoate undergo destruction inside the cavitating holes. A very less effect of temperature on the degradation of omethoate within a temperature range of 20-70℃ proves that a small quantity of omethoate undergoes secondary destruction in the bulk liquid.

  4. Numerical solution of the polymer system

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.


    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  5. Polymer solution phase separation: Microgravity simulation

    Cerny, Lawrence C.; Sutter, James K.


    In many multicomponent systems, a transition from a single phase of uniform composition to a multiphase state with separated regions of different composition can be induced by changes in temperature and shear. The density difference between the phase and thermal and/or shear gradients within the system results in buoyancy driven convection. These differences affect kinetics of the phase separation if the system has a sufficiently low viscosity. This investigation presents more preliminary developments of a theoretical model in order to describe effects of the buoyancy driven convection in phase separation kinetics. Polymer solutions were employed as model systems because of the ease with which density differences can be systematically varied and because of the importance of phase separation in the processing and properties of polymeric materials. The results indicate that the kinetics of the phase separation can be performed viscometrically using laser light scattering as a principle means of following the process quantitatively. Isopycnic polymer solutions were used to determine the viscosity and density difference limits for polymer phase separation.

  6. Irreversible adsorption from concentrated polymer solutions

    Auvray, Loïc; Cruz, Margerida; Auroy, Philippe


    We study the adsorption of concentrated Poly(dimethylsiloxane) (PDMS) solutions in Dichloromethane on porous silica. We vary the plymerization index N and the chain volume fraction Φ from the overlap concentration to the melt. The adsorption of PDMS on silica by hydrogen bonding is very strong and a large amount of polymer remains bound to the surface after the washing of the silica with a good solvent of the chains. We measure this quantity Γ by small angle neutron scattering. If there is no chain desorption, Γ represents the weight of polymer attached to the solid in the initial solution, which varies as the product N^{1/2} Φ^{7/8} according to a recent prediction. This relation of proportionality indeed interprets our experimental results. When the size of the chains is comparable to the pore diameter (either 500, 1 200, or 3 000 Å depending on the samples) we observe confinement effects which lower the adsorbed amount. Nous étudions d'adsorption de solutions concentrées de Poly(dimethylsiloxane) (PDMS) dans le chlorure de méthylène sur de la silice poreuse. Nous varions le degré de polymérisation N et la fraction volumique Φ des chaînes depuis la concentration de recouvrement jusqu'au fondu. L'adsorption de PDMS sur la silice par liaison hydrogène est très forte et une grande quantité de polymère reste liée à la surface après lavage de la silice par du bon solvant. Nous mesurons cette quantité Γ par diffusion centrale des neutrons. S'il n'y a pas eu désorption des chaînes, Γ représente le poids de polymère attaché au solide dans la solution initiale qui varie selon une prédiction récente comme le produit N^{1/2} Φ^{7/8}. Cette relation de proportionnalité rend effectivement compte de nos résultats. Quand la taille des chaînes est du même ordre de grandeur que le diamètre des pores (qui prend les valeurs 500, 1 200 et 3 000 Å selon les échantillons), nous observons des effets de confinement abaissant la quantité adsorbée.

  7. Solvent controlled ion association in structured copolymers: Molecular dynamics simulations in dilute solutions

    Aryal, Dipak; Perahia, Dvora; Grest, Gary S.


    Tailoring the nature of individual segments within ion containing block co-polymers is one critical design tool to achieve desired properties. The local structure including the size and distribution of the ionic blocks, as well as the long range correlations, are crucial for their transport ability. Here, we present molecular dynamics simulations on the effects of varying the concentrations of the ionizable groups on the conformations of pentablock ionomer that consist of a center block of ionic sulfonated styrene tethered to polyethylene and terminated by a bulky substituted styrene in dilute solutions. Sulfonation fractions f (0 ≤ f ≤ 0.55), spanning the range from ionomer to polyelectrolytes, were studied. Results for the equilibrium conformation of the chains in water and a 1:1 mixture of cyclohexane and heptane are compared to that in implicit poor solvents with dielectric constants ɛ = 1.0 and 77.73. In water, the pentablock collapses with the sulfonated groups on the outer surface. As f increases, the ionic, center block increasingly segregates from the hydrophobic regions. In the 1:1 mixture of cyclohexane and heptane, the flexible blocks swell, while the center ionic block collapses for f > 0. For f = 0, all blocks swell. In both implicit poor solvents, the pentablock collapses into a nearly spherical shape for all f. The sodium counterions disperse widely throughout the simulation cell for both water and ɛ = 77.73, whereas for ɛ = 1.0 and mixture of cyclohexane and heptane, the counterions largely condense onto the collapsed pentablock.

  8. Monte Carlo simulations of self-assembling star-block copolymers in dilute solutions

    patti, A


    Computer simulations have been performed to analyze the aggregation behavior in dilute solutions of star-block copolymers of the type (AB)n in a selective solvent for the B block. We found spontaneous aggregation of single stars and formation of roughly spherical aggregates. By changing the solvopho

  9. Thermodynamic and Hydrodynamic Properties of Dilute Solutions of Cyclic and Linear Polystyrenes

    Hadziioannou, G.; Cotts, P.M.; Brinke, G. ten; Han, C.C.; Lutz, P.; Strazielle, C.; Rempp, P.


    The thermodynamic and hydrodynamic properties of cyclic and linear polystyrenes, ranging from 10000 to 180000 molecular weight, in dilute solutions of cyclohexane have been measured by small-angle neutron scattering (SANS) and dynamic light scattering. The diffusion coefficient D(c) was measured at

  10. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  11. On the attenuation of x-rays and gamma-rays in dilute solutions

    Gerward, Leif


    The theory of X-ray and gamma-ray attenuation in solutions is developed. The rule of mixture for the calculation of mass and linear attenuation coefficients is elaborated in the general case as well as in the limit of extreme dilution. The validity of the latter approximation is illustrated...... by the attenuation of 17.443 keV X-rays in aqueous solutions of NaCl. Copyright (C) 1996 Elsevier Science Ltd...



    Hydrophobically modified poly(4-vinyl pyridines) by alkyl bromides are kinds of polysoap similar to the surfactant. Properties of dilute solutions were studied through the viscosity measurements in pure water and NaCl solutions. In aqueous solutions of polysoaps hydrophobic interaction can be attributed to aggregation of hydrophobic groups of the polysoap main chains. The hydrophobic groups of polysoap can aggregate to form hydrophobic microdomains (micelles) in aqueous solution. This is a compact conformation. The formation of such microdomains is a process of dynamic equilibrium.

  13. Stationary solutions of equations of incompressible viscoelastic polymer liquid

    Bambaeva, N. V.; Blokhin, A. M.


    The equations describing flows of an incompressible viscoelastic polymer liquid are studied. Stationary solutions similar to the Poiseuille and Couette solutions for the system of the Navier-Stokes equations are constructed. Stationary discontinuous solutions of the polymer liquid equation are also considered.

  14. The cluster structure of dilute aqueous-alcoholic solutions and molecular light scattering in them

    Malomuzh, N. P.; Slinchak, E. L.


    The structures, equations of state, and character of fluctuations of dilute water-glycerol solutions are discussed. Two or three glycerol and about ten water molecules were found to form a fairly stable molecular complex. We call this complex elementary cluster (pseudoparticle). In a certain region of state parameters, the system could be considered a solution of pseudoparticles (clusters). Its properties were modeled by the van der Waals equation. The character of interactions between clusters was analyzed. An anomalous increase in concentration and molecular light scattering fluctuations was caused by the approach to the solution “pseudospinodal.” The experimental data were found to be in quite satisfactory agreement with theoretical estimates.

  15. Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity

    Lin, Tong; Fang, Jian; Wang, Hongxia; Cheng, Tong; Wang, Xungai


    Chitosan was added to PVA aqueous solutions as a thickener to improve the electrospinning process. The presence of a small amount of chitosan considerably improved the uniformity of as-spun nanofibres. This improvement is attributed to its significant effect on the solution viscosity and conductivity, with only a slight impact on the surface tension. The concentration of the PVA required to produce bead-free and uniform nanofibres was reduced with the increase in chitosan concentration. The chitosan thickener suppressed the jet break-up and facilitated the jet stretching so that fine and uniform fibres could be electrospun even from a dilute PVA solution.

  16. Using chitosan as a thickener for electrospinning dilute PVA solutions to improve fibre uniformity

    Lin Tong; Fang Jian; Wang Hongxia; Cheng Tong; Wang Xungai [Centre for Material and Fibre Innovation, Faculty of Science and Technology, Deakin University, Geelong, VIC 3217 (Australia)


    Chitosan was added to PVA aqueous solutions as a thickener to improve the electrospinning process. The presence of a small amount of chitosan considerably improved the uniformity of as-spun nanofibres. This improvement is attributed to its significant effect on the solution viscosity and conductivity, with only a slight impact on the surface tension. The concentration of the PVA required to produce bead-free and uniform nanofibres was reduced with the increase in chitosan concentration. The chitosan thickener suppressed the jet break-up and facilitated the jet stretching so that fine and uniform fibres could be electrospun even from a dilute PVA solution.

  17. Deviations from a simple Debye relaxation in aqueous solutions of differently flexible polyions induced by polymer concentration.

    Cametti, C; Sennato, S; Truzzolillo, D


    The electrical conductivity of aqueous solutions of differently flexible polymers has been measured in the frequency range from 1 MHz to 2 GHz. This note evidences how the shape parameter alpha of the conductivity relaxation associated with the orientational polarization of the aqueous phase depends on the polymer concentration and, moreover, reflects the different concentration regimes of the polymer solution (dilute, semidilute entangled and nonentangled, and concentrated regimes). The relevance of this dependence, as far as the microscopic environment of water molecules is concerned, is briefly discussed.

  18. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol.

    Zhang, Jian; Zhang, Wen-Xue; Yang, Jian; Liu, Yue-Hong; Zhong, Xia; Wu, Zheng-Yun; Kida, Kenji; Deng, Yu


    Ethanol conversion from rice straw using butanone and acetaldehyde dilute solution explosions was evaluated based on the optimization of pure water explosion. To decrease residual inhibitor content, the exploded slurry was dried and investigated at different temperature. Using a 0.9-mol/L butanone solution explosion, with the explosion pressure set at 3.1 MPa, the residence time at 7 min, the dried rice straw-to-water ratio at 1:3 (w/w), and the exploded slurry drying temperuture at 90 °C for 8 h, the yields of total sugar, glucose, and xylose were 85%, 88%, 82% (w/w), respectively, and the ethanol productivity was 26.0 g/100 g rice straw dry matter. Moreover, 0.5-mol/L acetaldehyde dilute solution explosion improved the efficiency of enzymatic hydrolysis (EH) and simultaneous saccharification and co-fermentation (SSCF), and the residual inhibitors had negligible effects on EH and SSCF after detoxification by drying. The results suggested that compared with pure water explosions, the use of butanone and of acetaldehyde dilute solution explosions lowered the explosive temperature and improved the sugar yield, although relative crystallinity of the rice straw dry matter was increased after the explosion.

  19. Effect of temperature on the dilution enthalpies of {alpha},{omega}-amino acids in aqueous solutions

    Romero, C.M., E-mail: [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Cadena, J.C., E-mail: [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Lamprecht, I., E-mail: [Institut fuer Biologie, Freie Universitaet Berlin, Berlin (Germany)


    Highlights: > The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. > The limiting experimental slopes of the enthalpies of dilution with respect to the molality change {Delta}m, are negative suggesting that the solutes interact with water primarily through their alkyl groups. > The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. > The comparison between the pairwise interaction coefficients for {alpha},{omega}-amino acids and {alpha}-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of {alpha},{omega}-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  20. Electrostatics of polymer translocation events in electrolyte solutions.

    Buyukdagli, Sahin; Ala-Nissila, T


    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  1. Flow-induced phase separation in polymer solutions

    Moel, K. de; Flikkema, E.; Szleifer, I.; Brinke, G. ten


    A correct description of phase behaviour in polymer solutions requires a coupling between configurational statistics and thermodynamics. The effect of flow-induced chain deformation on the polymer-solvent interaction energy depends on the concentration and on the polymer architecture. It will be dem


    Ya-long Zhang; Min Yi; Jing Ren; Hong-fei Ha


    The effect of radiation on high-charge-density cationic polymer, polydiallyl-dimethyl ammonium chloride (polyDADMAC), in dilute aqueous solution was investigated. The irradiated samples were characterized in terms of reduced viscosity and electric conductivity. The crosslinking reaction of polyDADMAC chains occurs preferentially in the irradiated samples at a concentration of polyDADMAC higher than 1.3 g/100 mL that was induced indirectly by the OH radicals, one of the radiolysis products of water. In more dilute samples (less than 0.8 g/100 mL) the chain scission of macro radicals appears to be the main reaction. N2O atmosphere enhances the erosslinking due to the extra OH radicals produced by reaction between N2O and eaq, another radiolysis products of water. Methanol and some mineral salts such as KC1, KBr inhibit the crosslinking to a certain extent. The mechanism of sensitization and inhibition is discussed in detail.

  3. Gelation in Physically Associating Polymer Solutions

    Kumar, Sanat


    Macromolecules, which possess moieties capable of physical association, commonly form reversible gels when dissolved in solvents. This unusual state of matter, which displays weakly elastic character at short times, is ubiquitous in contexts ranging from foods, viscosity modifiers and the cytoskeleton of living organisms. Gel formation in these systems is currently modeled by assuming that the ``sticker" pairing times are long, thus suggesting a connection to percolation concepts developed in the 1940's. We have performed computer simulations on solutions of chains with ``weak" stickers, i.e., in a realistic limit where sticker pairing energies are comparable to thermal energy, and find that gelation is not synonymous with percolation. Rather, as the temperature is lowered below a threshold value, the stickers cluster into multiplets, thus dramatically slowing the relaxation processes in these materials. The similarity of polymer physical gelation to vitrification suggests that reversible gelation and the glass transition should be describable by a common language. This view accords with recent suggestions that gelation in colloid solutions is a nonergodicity transition, comparable to the glass transition.

  4. Polymer solutions in co-rotating Taylor-Couette flow without vorticity

    Zell, A.; Wagner, C.


    We present experimental results of the flow of dilute and semi-dilute polymer solutions in co-rotating Taylor-Couette cylinders. The experimental set-up consists of a modified Mars II rheometer (Thermo Scientific) with two drive units that are mounted opposite each other. The rotational velocities of the inner and outer cylinders are chosen in a way such that the angular velocity has a 1/r profile and the flow is free of vorticity, but the direction of elongation is not constant, but rotates with the flow. Our particle image velocimetry (PIV) measurements show that for polymer solutions without shear thinning the flow is indeed free of vorticity and is equal to a stagnation point flow at a given position and a given instant in time. In contrast, torque measurements reveal that the stresses are identical to the stresses that are present in a plane shear flow. Thus, we find that for polymer solutions a flow with vorticity and a constant direction of elongation is equal to a flow without vorticity in which the direction of elongation is rotating. Finally, we show that for shear thinning solutions the flow velocity becomes non-monotonic through the gap and resembles a pluglike profile which is known from the Poiseuille flow.

  5. Coarse-graining polymer solutions: A critical appraisal of single- and multi-site models

    D'Adamo, G.; Menichetti, R.; Pelissetto, A.; Pierleoni, C.


    We critically discuss and review the general ideas behind single- and multi-site coarse-grained (CG) models as applied to macromolecular solutions in the dilute and semi-dilute regime. We first consider single-site models with zero-density and density-dependent pair potentials. We highlight advantages and limitations of each option in reproducing the thermodynamic behavior and the large-scale structure of the underlying reference model. As a case study we consider solutions of linear homopolymers in a solvent of variable quality. Secondly, we extend the discussion to multi-component systems presenting, as a test case, results for mixtures of colloids and polymers. Specifically, we found the CG model with zero-density potentials to be unable to predict fluid-fluid demixing in a reasonable range of densities for mixtures of colloids and polymers of equal size. For larger colloids, the polymer volume fractions at which phase separation occurs are largely overestimated. CG models with density-dependent potentials are somewhat less accurate than models with zero-density potentials in reproducing the thermodynamics of the system and, although they present a phase separation, they significantly underestimate the polymer volume fractions along the binodal. Finally, we discuss a general multi-site strategy, which is thermodynamically consistent and fully transferable with the number of sites, and that allows us to overcome most of the limitations discussed for single-site models.

  6. Elasticity and Extensibility Determine Printability and Spinnability of Polymer Solutions

    Dinic, Jelena; Jimenez, Leidy; Sharma, Vivek

    Many advanced manufacturing technologies like inkjet and 3D printing, nano-fiber spinning involve complex free-surface flows, and the formation of columnar necks that undergo spontaneous capillary-driven thinning and pinch-off. The progressive self-thinning of neck is often characterized by self-similar profiles and scaling laws that depend on the relative magnitude of capillary, inertial and viscous stresses for simple (Newtonian and inelastic) fluids. Stream-wise velocity gradients that arise within the thinning columnar neck create an extensional flow field that can orient and stretch macromolecules, contributing extra elastic stresses and extensional viscosity that change thinning and pinch-off dynamics for polymeric complex fluids. Characterizing the filament thinning and break-up kinetics in jetting, dripping and stretching liquid bridge provides invaluable insight into the interplay of elastic, viscous, capillary and inertial stresses relevant for these applications. We elucidate how polymer composition, flexibility and molecular weight determine the thinning and pinch-off kinetics in our experiments. Both effective relaxation time and transient extensional viscosity are found to be strongly concentration dependent even for dilute solutions.

  7. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part ІІ

    I.A. Khattab


    Full Text Available Conversion of soluble precious copper ions into a solid form in dilute wastewater effluents for further reuse was studied by using a packed-bed cell. The cathode packing consisted of graphite particles that have an average particle size of 0.125 cm. The effects of electrolysis time and initial copper concentration were studied. The cell was found to be effective in reducing metal ion concentration to less than 0.05% of the initial concentration and maximum current efficiency reached upto 96.2% for dilute copper solution (100 mg/l. It was observed that using this cell was effective in reducing copper ion concentration from 100 mg/l to less than 4 mg/l.

  8. Some uses and misuses of thermodynamic models for dilute liquid solutions

    Cabezas, H. Jr. (Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemical Engineering); O' Connell, J.P. (Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemical Engineering)


    Polymer solubility, liquid-liquid solute partitioning, and electrolyte activities are examples of important thermodynamic properties of liquid systems where components are found at low concentrations in solvents. It is common to analyze solution composition data with expressions such as osmotic virial expansions and/or Debye-Hueckel electrostatic models without careful regard for the correct relationship of the coefficients to the molecular solute-solute interactions. The purpose of this work is to (1) note the different thermodynamic variables of solutions, (2) briefly summarize the connections of the coefficients to molecular interactions, (3) demonstrate how the differences are related to experimental values, and (4) illustrate practical cases in phase equilibria of polymeric and ionic solutes.


    Chi Wu


    Linear homopolymer chains in poor solvent exist either as individual crumpled single chain globules or as macroscopic precipitate, depending on whether the solution is in the one- or the two-phase region. However, linear heteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains if the degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate. The selfassembly of block copolymers in a selective solvent is typical of such examples. In practice, the formation of stable mesoglobules can be directly related to the formation of novel polymeric nanoparticles in solution. In this article, we will address the formation of mesoglobular phase not only on the basis of thermodynamics, but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanoparticles will be used to illustrate our discussion.




    Linear Homopolymer chains in poor solvent exist either as individual crumpled single chain globules or as macroscopic precipitate,depending on whether the solution is in the one- or the two-phase region.However,linear heteropolymer chains in dilute solution might be able to form stable mesoglobules made up of a limited number of chains if the degree of amphiphilicity of the chain is sufficiently high and the experimental conditions are appropriate.The selfassembly of block copolymers in a selective solvent is typical of such examples.In practice,the formation of stable mesoglobules can be directly related to the formation of novel polymeric nanoparticles in solution.In this article,we will address the formation of mesoglobular phase not only on the basis of thermodynamics,but also from a kinetic point of view,which leads to the discussion of how viscoelasticity can affect the phase behavior of heteropolymer chains in dilute solution.The formation and stabilization of several different kinds of novel polymeric nanoparticles will be used to illustrate our discussion.


    Yun-fei Yan; Hai-yang Yang; Wen-yong Liu; Ping-ping Zhu; Ping-sheng He


    The tetrahedral borate ion can crosslink with polymer guar gum in aqueous solutions. If the concentration of guar gum is less than 0.045 g/dL, the intramolecular interaction between guar gum and borate ion increases due to the formation of crosslinks. As a result, the polymer chains of guar gum in solution shrink in size and the reduced viscosity of polymer solution decreases accordingly. On the other hand, if the concentration of guar gum is greater than 0.045 g/dL, the intermolecular interaction becomes apparent due to the same reason. The polymer chains, therefore, associate together and the reduced viscosity of polymer solution increases considerably. According to this technique, the critical concentration c*,presented by de-Gennes[1], is determined successfully.

  12. How the World Changes By Going from One- to Two-Dimensional Polymers in Solution.

    Schlüter, A Dieter; Payamyar, Payam; Öttinger, Hans Christian


    Scaling behavior of one-dimensional (1D) and two-dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization-group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long-range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Porous polymers: enabling solutions for energy applications.

    Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus


    A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress.

  14. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann


    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch.

  15. Drag reduction in electro-osmosis of polymer solutions

    Chang, Feng-Ming; Tsao, Heng-Kwong


    Electro-osmosis is the preferred transport mechanism in microfluidic systems. Drag reduction in electro-osmosis of polymer solutions is observed due to polymer depletion in the electric double layer (EDL). The well-known Helmholtz-Smoluchowski (HS) equation indicates that the electro-osmosis mobility is inversely proportional to the solution viscosity. For low molecular weight the polymer size (R) is smaller than the EDL thickness (λ) and the HS equation is valid. For high molecular weight (R>λ) the chains in the EDL are partially sheared and the effective viscosity is smaller than the solution viscosity. Salt addition reduces λ and can enhance drag reduction substantially.

  16. Rheology of semi-dilute solutions of calf-thymus DNA

    Ranjini Bandyopadhyay; A K Sood


    We study the rheology of semi-dilute solutions of the sodium salt of calf-thymus DNA in the linear and nonlinear regimes. The frequency response data can be fitted very well to the hybrid model with two dominant relaxation times 0 and 1. The ratio (0/1)∼ 5 is seen to be fairly constant on changing the temperature from 20 to 30°C. The shear rate dependence of viscosity can be fitted to the Carreau model.

  17. Removal of β—Naphthalenesulfonic Acid from Aqueous Dilute Solution Using Bagasse Fly Ash

    LIChanghai; SHIPengfei


    Bagasse fly ash was converted into an inexpensive adsorbent and utilized for the removal of β-naphthalenesulfonic acid in dilute solution.The effect of pH,temperature,adsorbent concentration,and co-existed acids on the removal of β-naphthalenesulfonic acid was examined. The adsorption data have been correlated with both Lagnmuir and Freundlich adsorption models.Thermodynamic parameters obtained indicate the feasibility of the process,and kinetic studies provided the necessary mechanistic information of the removal process.

  18. Recovery of dilute acetone-butanol-ethanol (ABE) solvents from aqueous solutions via membrane distillation

    Banat, F.A.; Al-Shannag, M. [Jordan Univ. of Science and Technology, Irbid (Jordan). Dept. of Chemical Engineering


    The simultaneous recovery of dilute acetone-butanol-ethanol (ABE) solvents from aqueous solutions by air gap membrane distillation was theoretically assessed. A previously developed and validated Stefan-Maxwell based mathematical model was used for this purpose. It was found that membrane distillation could successfully be used for the recovery of these solvents. Interestingly it was found that butanol could be separated with the highest selectivity and flux though it has the highest boiling point. The effect of operating conditions such as feed and cooling surface temperatures, air gap width, and individual component concentration on the flux and selectivity of these solvents was examined and discussed in this paper. (orig.)

  19. Solution behaviors and microstructures of PNIPAm-P123-PNIPAm pentablock terpolymers in dilute and concentrated aqueous solutions.

    Lu, Yanping; Chen, Tongquan; Mei, Aixiong; Chen, Tianyou; Ding, Yanwei; Zhang, Xinghong; Xu, Junting; Fan, Zhiqiang; Du, Binyang


    The solution behaviors and microstructures of poly(N-isopropylacrylamide)x-poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20-poly(N-isopropylacrylamide)x (PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx or PNIPAmx-P123-PNIPAmx) pentablock terpolymers with various PNIPAm block lengths in dilute and concentrated aqueous solutions were investigated by micro-differential scanning calorimetry (micro-DSC), static and dynamic light scattering (SLS & DLS), and synchrotron small angle X-ray scattering (SAXS). Two lower critical solution temperatures (LCSTs) were observed for PNIPAmx-P123-PNIPAmx pentablock terpolymers in dilute solutions, which corresponded to LCSTs of PPO and PNIPAm blocks, respectively. The LCST of PPO block shifted from 24.4 °C to 29 °C when the length x of PNIPAm block increased from 10 to 97. The LCST of PNIPAm is around 34.5 °C-35.3 °C and less dependent on the block length x. The PNIPAmx-P123-PNIPAmx pentablock terpolymers formed "associate" structures and micelles with hydrophobic PNIPAm and PPO blocks as cores and soluble PEO blocks as coronas in dilute aqueous solutions at 20 °C and 40 °C, respectively, regardless of the relative lengths of PNIPAm, PPO and PEO blocks. The size of "associate" structures of PNIPAmx-P123-PNIPAmx pentablock terpolymers at 20 °C increased with increasing the length of PNIPAm block. The microstructures of PNIPAmx-P123-PNIPAmx hydrogels formed in concentrated aqueous solutions (40 wt%) were strongly dependent on the environmental temperatures and relative lengths of PNIPAm, PPO and PEO blocks as revealed by SAXS. Increasing the length of PNIPAm block weakened the order structures of PNIPAmx-P123-PNIPAmx hydrogels. The microstructures of PNIPAmx-P123-PNIPAmx hydrogels changed from mixed fcc and hex structures for PNIPAm10-P123-PNIPAm10 to isotropic structure for PNIPAm97-P123-PNIPAm97. Increasing temperature led to the transition from mixed hex and fcc structure to pure hex structure for PNIPAm10-P123-PNIPAm

  20. Phase Equilibria for Complex Polymer Solutions

    Lindvig, Thomas; Hestkjær, L. L.; Hansen, A. F.


    the content of organic solvents. This work presents an investigation of the three polymer models Entropic-FV (EFV). UNIFAC-FV (UFV) and GC-Flory (GCF) for their capability of predicting solvent activity coefficients in binary systems containing complex polymers. It is possible to obtain good predictions......Many commercially important mixtures contain complex polymers, e.g. paints and coatings. If a good thermodynamic description can be given of these systems it is possible to develop paints, which possess a certain set of properties and at the same time meet some basic requirement as, e.g. regarding...

  1. Influence of deacetylation on the rheological properties of xanthan-guar interactions in dilute aqueous solutions.

    Khouryieh, H A; Herald, T J; Aramouni, F; Bean, S; Alavi, S


    An oscillating capillary rheometer was used to investigate the effects of xanthan deacetylation on the viscoelastic properties and intrinsic viscosity of xanthan and guar mixtures in dilute aqueous solutions. Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native xanthan did due to the destabilized helical structure and increased chain flexibility of the deacetylated xanthan. No gels were observed for all xanthan-guar mixtures. Native xanthan-guar mixtures exhibited a liquid-like behavior, whereas deacetylated xanthan-guar mixtures exhibited a gel-like behavior. The relative viscosity and elasticity of deacetylated xanthan-guar mixtures were much stronger than those for native xanthan-guar mixtures. The intrinsic viscosities of deacetylated xanthan-guar mixtures were higher than the calculated values assuming no interaction, whereas the intrinsic viscosities of native xanthan-guar mixtures were lower than the calculated values assuming no interaction, demonstrating that intermolecular binding occurred between the disordered segments of xanthan and guar gum in dilute aqueous solutions.

  2. Crossover Leung-Griffiths model and the phase behavior of dilute aqueous ionic solutions

    Belyakov, M. Yu.; Kiselev, S. B.; Rainwater, J. C.


    A new parametric crossover model for the phase behavior of a binary mixture is presented that corresponds to the Leung-Griffiths model in the critical region and is transformed into the regular classical expansion far away from the critical point. The model is optimized to, and leads to excellent agreement with, isothermal vapor-liquid equilibrium data for dilute aqueous solutions of sodium chloride by Bischoff and co-workers. It then accurately predicts constant-composition phase equilibrium loci as measured by independent workers. This crossover model is therefore capable of representing the thermodynamic surface of ionic solutions in a large range of temperatures and densities around the critical points of vapor-liquid equilibrium.

  3. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Randel, L.A.; King, C.J.


    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  4. Polymer fullerene solution phase behaviour and film formation pathways.

    Dattani, Rajeev; Cabral, João T


    We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

  5. Nanostructure investigation of polymer solutions, polymer gels, and polymer thin films

    Lee, Wonjoo

    This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels. Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic

  6. Mechanism of sulfide effect on viscosity of HPAM polymer solution

    康万利; 周阳; 王志伟; 孟令伟; 刘述忍; 白宝君


    The effect of sulfide on HPAM solution viscosity was studied using BROOKFIELD DV-II viscometer,and the interaction mechanism was discussed.The HPAM solution viscosity was investigated through fully reducing sulfide by the addition of hydrogen peroxide oxidation,and the mechanism of increasing polymer viscosity was investigated.The experimental results also show that there is a critical concentration of 15 mg/L.Below it,the loss rate of HPAM solution viscosity increases more rapidly,but becomes slowly above the critical concentration.A theoretical guidance for oilfields to prepare polymer solution using sewage-water by eliminating sulfide,and it is also importance to prepare polymer solution using sewage-water and save fresh water.

  7. Sealing of underground workings and deep boreholes by polymer solutions

    Stryczek, S.; Postawa, J.; Capik, M.; Beres, J.


    Describes application and properties of Solakryl ASM 10 and Marwit S 50 polymers for rock sealing purposes in Polish underground black coal mines. Polymer powders are mixed with water and injected into boreholes to prevent spontaneous fire propagation, stop gas release from coal seams, improve mine ventilation and prevent water influx. Diagrams for gelation performance, polymerization time and solution viscosity are provided. Solutions are also mixed with filler (fly ash, gypsum) if voids and crevices are of larger volume. Density and viscosity values of polymer solution and filler mixtures relevant for pumping procedures are given. A time function for optimum Marwit concentration and volume swelling during water absorption is also derived. AzNII-cone analysis was applied for assessing solution pumpability. Examples of successful solution injection during shaft sinking by rock freezing and during fire fighting in an underground coal mine are given. 5 refs.

  8. The electroremoval of copper from dilute waste solutions using Swiss-roll electrode cell

    Saba, A. E.; El Sherif, A. E.; Elsayed, E. M.


    Copper is usually present in concentrations less than 5 g/L-1 in dilute waste solutions. The low concentrations make these solutions unsuitable for the electro-flow owinning processes via conventional electrolysis cells. Unconventional, two-and three-dimensional electrode cells with relatively large cathodic area are essential for such treatment. Different types of cells are mentioned in the literature. Among these cells, the two-dimensional Swiss-roll cell (SR) is considered in this study. The effects of cathodic current densities, initial copper concentrations, free sulfuric acid concentration, the presence of iron and zinc cations, and the rate of flow of the solution on both the cathodic current efficiency and power consumption were studied. Copper was removed from synthetic and industrial mixtures of Cu/Fe/Zn sulfate solutions to less than 5 ppm with power consumptions of 10.326 kWh/kg-1 and 8.61 kWh/kg-1, respectively. The correlation between the SR cell and packed-column cell on such treatment was also considered.


    Olga Lobacheva


    Full Text Available Yttrium (III and ytterbium (III cations ion flotation from diluted aqueous solutions in the presence of chloride ions using sodium dodecyl sulfate as collector agent were studied. Y (III and Yb (III distribution and recovery coefficients as a function of aqueous phase рН value at different sodium chloride concentrations were received. Yttrium (III and ytterbium (III chloro and hydroxo complexes instability constants were calculated. The calculation of separation coefficient at рН specified values depending on chloride ion concentration was conducted. Maximum separation coefficient was observed when chloride concentration of 0.01 M is 50 at рН 7.8. Ksep is minimal in nitrate medium ans is 3 at рН 7.0. At sodium chloride concentration of 0.05 М Ksep is 9 at рН 7.8.

  10. the shape and size of macromolecules of carboxymethyl starch in diluted solutions

    Stojanović Željko


    Full Text Available Carboxymethyl starch samples were prepared by etherification in heterogeneous media. Three samples were prepared from corn starch and three samples from potato starch. Degree of substitution of prepared samples ranged from 0.40 to 1.10. The samples were investigated by static and dynamic light scattering and viscosity of diluted solution in 0.10 M NaCl as solvent at 25 C. The values of molar mass, MW, radius of gyration, Rg, hydrodynamic radius, Rh, and limited viscosity number, [η] were determined. It was found that the samples are similar to each other regardless of the type of starch and the degree of substitution. Fractal dimension, df, was equal to 2.380 (Rg - MW and 2.406 (Rη - MW, while parameter was 1.195. The values of fractal dimension and parameter are characteristic values for the behavior of branched clusters in thermodynamically good solvents.

  11. Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid

    Frenzel, A.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T.

    The loss rates of PAN in several dilute aqueous salt solutions (NaBr, Na 2SO 3, KI, NaNO 2, FeCl 3, and FeSO 4) and in sulphuric acid were measured at 279 K with a simple bubbler experiment. They are little different from that in pure water. For 5 M sulphuric acid hydrolysis and solubility were determined in the temperature range of 243-293 K. The hydrolysis rate kh=3.2×10 -4 s -1 at 293 K is close to that in water. The observed temperature dependence of the Henry's Law constant H=10- 6.6±0.6exp((4780±420)/T) M atm -1 leads to enthalpy and entropy of solvation Δ Hsolv=-39.7±3.5 kJ mol -1 and Δ Ssolv=-126±11 J mol -1 K -1, respectively.

  12. Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions

    Fedorov, M. V.; Chuev, G. N.; Kuznetsov, Yu. A.; Timoshenko, E. G.


    Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approximation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in better agreement with those from recent renormalization group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.

  13. Impairment of Temperate Bacteriophage Adsorption by Brief Treatment of Escherichia coli with Dilute Solutions of Ethylenediaminetetraacetate

    Protass, Jay J.; Korn, David


    Protass, Jay J. (National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.), and David Korn. Impairment of temperate bacteriophage adsorption by brief treatment of Escherichia coli with dilute solutions of ethylenediaminetetraacetate. J. Bacteriol. 91:143–147. 1966.—Cells of Escherichia coli K-12 treated for 2 min with 2 × 10−4m ethylenediaminetetraacetate (EDTA) are unable to adsorb the temperate bacteriophages λvir and 434 but show no impairment of their ability to adsorb T-even phages or T5. This finding is consistent with the hypothesis that there are basic structural differences between the cell-wall receptors involved in the adsorption of the temperate and T classes of coliphages. PMID:16562097

  14. Thermal-diffusive behavior of a dilute solution of charged colloids.

    Ning, Hui; Dhont, Jan K G; Wiegand, Simone


    Thermal diffusion of a dilute solution of charged silica colloidal particles (Ludox) is studied by a holographic grating technique. The Soret coefficient of the charged colloids is measured as a function of the Debye screening length and the surface charge density of the colloids. The latter is varied by means of variation of the pH. The experimental Soret coefficients are compared with several theoretical predictions. The surface charge density is independently obtained from electrophoresis measurements, the size of the colloidal particles is obtained from electron microscopy, and the Debye length is calculated from ion concentrations. The only adjustable parameter in the comparison with theory is therefore the intercept at zero Debye length, which measures the contribution to the Soret coefficient of the solvation layer and possibly the colloid core material.

  15. Solution behavior of PEO : the ultimate biocompatible polymer.

    Curro, John G.; Frischknecht, Amalie Lucile


    Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water are very concentration dependent, unlike other polymer/solvent systems, due to water-water and water-PEO hydrogen bonds. An understanding of this anomalous behavior requires a careful examination of PEO liquids and solutions on the molecular level. We performed massively parallel molecular dynamics simulations and self-consistent Polymer Reference Interaction Site Model (PRISM) calculations on PEO liquids. We also initiated MD studies on PEO/water solutions with and without an applied electric field. This work is summarized in three parts devoted to: (1) A comparison of MD simulations, theory and experiment on PEO liquids; (2) The implementation of water potentials into the LAMMPS MD code; and (3) A theoretical analysis of the effect of an applied electric field on the phase diagram of polymer solutions.

  16. Controlling molecular ordering in solution-state conjugated polymers.

    Zhu, J; Han, Y; Kumar, R; He, Y; Hong, K; Bonnesen, P V; Sumpter, B G; Smith, S C; Smith, G S; Ivanov, I N; Do, C


    Rationally encoding molecular interactions that can control the assembly structure and functional expression in a solution of conjugated polymers hold great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with the desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution, we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.

  17. Versatile solution for growing thin films of conducting polymers.

    D'Arcy, Julio M; Tran, Henry D; Tung, Vincent C; Tucker-Schwartz, Alexander K; Wong, Rain P; Yang, Yang; Kaner, Richard B


    The method employed for depositing nanostructures of conducting polymers dictates potential uses in a variety of applications such as organic solar cells, light-emitting diodes, electrochromics, and sensors. A simple and scalable film fabrication technique that allows reproducible control of thickness, and morphological homogeneity at the nanoscale, is an attractive option for industrial applications. Here we demonstrate that under the proper conditions of volume, doping, and polymer concentration, films consisting of monolayers of conducting polymer nanofibers such as polyaniline, polythiophene, and poly(3-hexylthiophene) can be produced in a matter of seconds. A thermodynamically driven solution-based process leads to the growth of transparent thin films of interfacially adsorbed nanofibers. High quality transparent thin films are deposited at ambient conditions on virtually any substrate. This inexpensive process uses solutions that are recyclable and affords a new technique in the field of conducting polymers for coating large substrate areas.

  18. Submicron flow of polymer solutions: slippage reduction due to confinement.

    Cuenca, Amandine; Bodiguel, Hugues


    Pressure-driven flows of high molecular weight polyacrylamide solutions are examined in nanoslits using fluorescence photobleaching. The effective viscosity of polymer solutions decreases when the channel height decreases below the micron scale. In addition, the apparent slippage of the solutions is characterized macroscopically on similar surfaces. Though slippage can explain qualitatively the effective viscosity reduction, a quantitative comparison shows that the slip length is greatly reduced below the micron scale. This result indicates that chain migration is suppressed in confined geometries.

  19. Visibly transparent polymer solar cells produced by solution processing.

    Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang


    Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.

  20. A new method to determine the yield stress of diluted polymeric solutions

    Soto, Enrique; Ruiz, Servando; Cordova Aguilar, Maria Soledad


    A new method to measure the yield stress for diluted polymeric solutions is presented. The tested solutions exhibit shear thinning behavior a once the critical yield stress is overcame. In rheology, these fluids are known as Herschel-Buckley. The yield stress phenomenon and its relation with bubble motion is an important issue for different industries, for example, personal care, paints and some others. As a result of the yield stress, small bubbles remain trapped in the fluid bulk, but above a critical volume, which is related with the characteristic yield stress, the bubbles flow in the liquid. In order to change the bubble volume, the liquid is placed in a cylindrical container whose pressure is decreased by a vacuum pump. The bubble growths as the pressure decreases and keeps its position until it reaches the critical volume. The bubble shape changes with volume and velocity, and a competition among surface, gravitational, inertial and viscous forces is discussed. The yield stress determined value is higher than the obtained from simple shear measurements due to the complex flow around the bubble.

  1. An ab initio quantum mechanical charge field molecular dynamics simulation of a dilute aqueous HCl solution.

    Kritayakornupong, Chinapong; Vchirawongkwin, Viwat; Rode, Bernd M


    An ab initio quantum mechanical charge field (QMCF) molecular dynamics simulation has been performed to study the structural and dynamical properties of a dilute aqueous HCl solution. The solute molecule HCl and its surrounding water molecules were treated at Hartree-Fock level in conjunction with Dunning double-zeta plus polarization function basis sets. The simulation predicts an average H-Cl bond distance of 1.28 A, which is in good agreement with the experimental value. The H(HCl)...O(w) and Cl(HCl)...H(w) distances of 1.84 and 3.51 A were found for the first hydration shell. At the hydrogen site of HCl, a single water molecule is the most preferred coordination, whereas an average coordination number of 12 water molecules of the full first shell was observed for the chloride site. The hydrogen bonding at the hydrogen site of HCl is weakened by proton transfer reactions and an associated lability of ligand binding. Two proton transfer processes were observed in the QMCF MD simulation, demonstrating acid dissociation of HCl. A weak structure-making/breaking effect of HCl in water is recognized from the mean residence times of 2.1 and 0.8 ps for ligands in the neighborhood of Cl and H sites of HCl, respectively. Copyright 2009 Wiley Periodicals, Inc.

  2. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions


    In separation processes,hydrogen bonding has a very significant effect on the efficiency of isolation of acetic acid (HOAc) from HOAc/H2O mixtures. This intermolecular interaction on aggregates composed of a single HOAc molecule and varying numbers of H2O molecules has been examined by using ab initio molecular dynamics simulations (AIMD) and quantum chemical calculations (QCC). Thermodynamic data in aqueous solution were obtained through the self-consistent reaction field calculations and the polarizable continuum model. The aggregation free energy of the aggregates in gas phase as well as in aqueous system shows that the 6-membered ring is the most favorable structure in both states. The relative stability of the ring structures inferred from the thermodynamic properties of the QCC is consistent with the ring distributions of the AIMD simulation. The study shows that in dilute aqueous solution of HOAc the more favorable molecular interaction is the hydrogen bonding between HOAc and H2O molecules,resulting in the separation of acetic acid from the HOAc/H2O mixtures with more difficulty than usual.

  3. Radiation chemical studies on thermosensitive N-isopropylacrylamide and its polymer in aqueous solutions.

    Acharya, Anjali; Mohan, Hari; Sabharwal, S


    The pulse radiolysis technique has been employed to determine the initiation and propagation rates of different transient species involved in the polymerization of N-isopropylacrylamide (NIPA) in aqueous solutions. Polymerization by anionic mechanism has been observed to be faster than by the free-radical mechanism. The kinetic, spectroscopic and redox properties of the transient species formed upon reaction of primary radiolytic species of water radiolysis with NIPA have been evaluated. The one-electron oxidation potential for the formation of a radical cation is quite high (>2 V), but the one-electron reduction potential is low (in the range of -0.3 to -0.7 V). The radical anion of NIPA is able to undergo an electron-transfer reaction with MV(2+), and has a pK(a) value of 3.2. The tert-butyl alcohol radical was also able to initiate polymerization. Gamma radiation-induced polymerization studies showed that the reaction of H(.)/(.)OH/e(aq)(-)/tert-butyl alcohol radicals with NIPA results in a nearly equal yield of the gel fraction. The hydrogel is observed to have very little swelling below pH 3 and above pH 10. The linear polymer of NIPA formed by irradiating dilute aqueous solution is found to be a thermosensitive polymer with lower a critical solution temperature (LCST) of ~33 degrees C. The diameters of polymer molecules were 290 and 20 nm at temperature below and above LCST, respectively.

  4. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.


    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. Furthermore, the commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: fractional model description of physical gelation, high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 1000000 /s and the influence of transient extensional rheology in the jet breakup. We show that high deformation rates can be obtained in jetting flows, and the growth and evolution of instability during jetting and break-up of these viscoelastic fluids shows the influence of both elasticity and extensibility.

  5. Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS.

    Follens, L R A; Aerts, A; Haouas, M; Caremans, T P; Loppinet, B; Goderis, B; Vermant, J; Taulelle, F; Martens, J A; Kirschhock, C E A


    Clear solutions for colloidal Silicalite-1 synthesis were prepared by reacting tetraethylorthosilicate in aqueous tetrapropylammonium hydroxide solution. A dilution series with water resulting in clear solutions with a TEOS ratio TPAOH ratio H2O molar ratio of 25 : 9 : 152 up to 25 : 9 : 15,000 was analysed using liquid 29Si nuclear magnetic resonance (NMR), synchrotron small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Particle sizes were derived independently from DLS and from the combination of SAXS and NMR. NMR allowed quantitative characterization of silicon distributed over nanoparticles and dissolved oligomeric silicate polyanions. In all samples studied, the majority of silicon (78-90%) was incorporated in the nanoparticle fraction. In concentrated suspensions, silicate oligomers were mostly double-ring species (D3R, D4R, D5R, D6R). Dilution with water caused their depolymerisation. Contrarily, the internal condensation and size of nanoparticles increased with increasing dilution. SAXS revealed a decrease of effective nanoparticle surface charge upon dilution, reducing the effective particle interactions. With DLS, the reduction of nanoparticle interactions could be confirmed monitoring the collective diffusion mode. The observed evolution of nanoparticle characteristics provides insight in the acceleration of the Silicalite-1 crystallization upon dilution, in view of different crystallization models proposed in the literature.

  6. Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions.

    Tsachaki, Maroussa; Gady, Anne-Laure; Kalopesas, Michalis; Linforth, Robert S T; Athès, Violaine; Marin, Michele; Taylor, Andrew J


    On the basis of a mechanistic model, the overall and liquid mass transfer coefficients of aroma compounds were estimated during aroma release when an inert gas diluted the static headspace over simple ethanol/water solutions (ethanol concentration = 120 mL x L(-1)). Studied for a range of 17 compounds, they were both increased in the ethanol/water solution compared to the water solution, showing a better mass transfer due to the presence of ethanol, additively to partition coefficient variation. Thermal imaging results showed differences in convection of the two systems (water and ethanol/water) arguing for ethanol convection enhancement inside the liquid. The effect of ethanol in the solution on mass transfer coefficients at different temperatures was minor. On the contrary, at different headspace dilution rates, the effect of ethanol in the solution helped to maintain the volatile headspace concentration close to equilibrium concentration, when the headspace was replenished 1-3 times per minute.

  7. Comparison of the Molecular Interaction Volume Model with the Wagner Formulae in the Zn-Pb-In and Zn-Sn-Cd-Pb Dilute Solutions

    Dongping TAO; Zhuo CHEN; Dunfang LI; Yifeng GAO; Qianghua SHEN


    The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the common physical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the thermodynamic properties of solutes in the Zn-Pb-ln and Zn-Sn-Cd-Pb dilute solutions using only the binary infinite dilute activity coefficients, and the predicted values are in good agreement with the experimental data of the dilute solutions.

  8. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution.

    Liu, Xin; Pan, Haobo; Fu, Hailuo; Fu, Qiang; Rahaman, Mohamed N; Huang, Wenhai


    Porous scaffolds of a borate-based glass (composition in mol%: 6Na2O, 8K2O, 8MgO, 22CaO, 36B2O3, 18SiO2, 2P2O5), with interconnected porosity of approximately 70% and pores of size 200-500 microm, were prepared by a polymer foam replication technique. The degradation of the scaffolds and conversion to a hydroxyapatite-type material in a 0.02 M K2HPO4 solution (starting pH = 7.0) at 37 degrees C were studied by measuring the weight loss of the scaffolds, as well as the pH and the boron concentration of the solution. X-ray diffraction, scanning electronic microscopy and energy dispersive x-ray analysis showed that a hydroxyapatite-type material was formed on the glass surface within 7 days of immersion in the phosphate solution. Cellular response to the scaffolds was assessed using murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed that the scaffolds supported cell attachment and proliferation during the 6 day incubation. The results indicate that this borate-based glass could provide a promising degradable scaffold material for bone tissue engineering applications.

  9. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions.

    Budin, Itay; Prwyes, Noam; Zhang, Na; Szostak, Jack W


    A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes.

  10. Cu(II)effect on the conformation of regenerated silk fibroin in dilute aqueous solution

    ZONG Xiaohong; ZHOU Ping; SHAO Zhengzhong; WANG Honghai; CHUNYU Lijuan


    Much attention has been paid to the natural mechanism of silkworm spinning due to the impressive mechanical properties of the natural fibers. In this work, we studied the effect of Cu(II) ions on the secondary structure of Bombyx mori regenerated silk fibroin (SF) in dilute solution by circular dichroism (CD). The results indicate that a given amount of Cu(II) induces the SF conformational transition from random coil to β-sheet, however, further addition of Cu(II) is unfavorable for this conversion. Meanwhile, the conformational changes induced by Cu(II) follow a nucleation-dependent aggregation mechanism, which is similar to that found in Prion protein (PrP) denaturation and Aβ-pep- tide aggregations, leading to the neurodegenerative disease. This work would help one understand further the natural spinning process of silkworm. Additionally, it would be significant for the study of the nervous system diseases, because silk fibroin, extracted in large amounts from Bombyx mori silkworm gland, could be a proper model to study PrP denaturation and Aβ-peptide aggregations.

  11. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Jialei Su


    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  12. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    Sharma, Mona [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India); Kaushik, Anubha [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)], E-mail:; Somvir,; Bala, Kiran; Kamra, Anjana [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)


    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs.

  13. Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study

    Zhang, Zhigang; Duan, Zhenhao


    Constrained molecular dynamics simulations were carried out to investigate the lithium chloride ionic associations in dilute aqueous solutions over a wide temperature range. Solvent mediated potentials of mean force have been carefully calculated at different thermodynamic conditions. Two intermediate states of ionic association can be well identified with an energy barrier from the oscillatory free energy profile. Clear pictures for the microscopic association structures are presented with a remarkable feature of strong hydration effect of lithium ion and the bridging role of its hydrating complex. Experimental association constants have been reasonably reproduced and a general trend of the increasing ionic association at high temperatures and low densities was observed. Additional simulations with different numbers of water molecules have been performed to check the possible artifacts introducing from periodic and finite size effects and confirm the reliability of our simulation results. Marginal differences of the simulated curves are believed to result from the significant compensation and canceling effect between the bare ionic forces and solvent induced mean force. Finally we confirmed the importance of accurate descriptions of dielectric properties of solvent in the ionic association study.

  14. Fluoride removal from diluted solutions by Donnan dialysis using full factorial design

    Boubakri, Ali; Helali, Nawel; Tlili, Mohamed; Amor, Mohamed Ben [Center of Researches and Water Technologies, Soliman (Turkey)


    Excessive fluoride concentration in potable water can lead to fluorosis of teeth and bones. In the present study, Donnan dialysis (DD) is applied for the removal of fluoride ions from diluted sodium fluoride solutions. A four factor two level (2{sup 4}) full factorial design was used to investigate the influence of different physico-chemical parameters on fluoride removal efficiency (Y{sub F}) and fluoride flux (J{sub F}) through anion exchange membrane. The statistical design determines factors which have the important effects on Donnan dialysis performance and studies all interactions among the considered parameters. The four significant factors were initial fluoride concentration, feed flow rate, temperature and agitation speed. The experimental results and statistical analysis show that the temperature and agitation speed have positive effects on fluoride removal efficiency and the initial fluoride concentration has a negative effect. In the case of fluoride flux, feed flow rate and initial concentration are the main effect and all factors have a positive effect. The interaction between studied parameters was not negligible on two responses. A maximum fluoride removal of 75.52% was obtained under optimum conditions and the highest value of fluoride flux obtained was 2.4 mg/cm{sup 2}·h. Empirical regression models were also obtained and used to predict the flux and the fluoride removal profiles with satisfactory results.

  15. Enhancement of flagellated bacterial motility in polymer solutions

    Zhang, Wenyu; Sha, Sha; Pelcovits, Robert; Tang, Jay


    Measurements of the swimming speed of many species of flagellated bacteria in polymer solutions have shown that with the addition of high molecular weight polymers, the speed initially increases as a function of the kinematic viscosity. It peaks at around 1.5-2 cP with typically 10-30% higher values than in cell media without added polymers (~ 1 cP). Past the peak, the average speed gradually decreases as the solution becomes more viscous. Swimming motility persists until solution viscosity reaches 5-10 cP. Models have been proposed to account for this behavior, and the magnitude of the peak becomes a crucial test of theoretical predictions. The status of the field is complicated in light of a recent report (Martinez et al., PNAS, 2014), stressing that low-molecular weight impurities account for the peaked speed-viscosity curves in some cases. We measured the swimming speed of a uni-flagellated bacterium, caulobacter crescentus, in solutions of a number of polymers of several different sizes. Our findings confirm the peaked speed-viscosity curve, only as the molecular weight of the flexible polymers used surpassed ~ 50,000 da. The threshold molecular weight required to augment swimming speed varies somewhat with the polymer species, but it generally corresponds to radius of gyration over tens of nanometers. This general feature is consistent with the model of Powers et al. (Physics of Fluid, 2009), predicting that nonlinear viscoelasticity of the fluid enhances swimming motility. Work Supported by the NSF Fluid Physics Program (Award number CBET 1438033).

  16. Solution electrospinning of particle-polymer composite fibres

    Christiansen, Lasse; Fojan, Peter


    into scaffolds. The formation of a particle/polymer composite results in improved mechanical stability, without compromising the porosity. In the presented study, aerogel and poly(ethylene oxide) are mixed into a solution, and spun to thin fibres. Thereby a porous membrane, on the micro- and nano...

  17. Predicting morphologies of solution processed polymer: Fullerene blends

    Kouijzer, S.; Michels, J.J.; Berg, M. van den; Gevaerts, V.S.; Turbiez, M.; Wienk, M.M.; Janssen, R.A.J.


    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of

  18. Predicting morphologies of solution processed polymer: Fullerene blends

    Kouijzer, S.; Michels, J.J.; Berg, M. van den; Gevaerts, V.S.; Turbiez, M.; Wienk, M.M.; Janssen, R.A.J.


    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic

  19. Recovery of Cu(II from diluted aqueous solutions by non-dispersive solvent extraction

    Alguacil, E. J.


    Full Text Available The removal of copper from diluted aqueous solutions with ACORGA M5640 extractant using non-dispersive solvent extraction technology was studied. It was possible to remove Cu(II below the international standars from solutions having initially as low concentration as 0,01 g/l under various experimental conditions, i.e aqueous pH 4.0, 10 % v/v ACORGA M5640 in Exxol D100, an organic flow of 100 ml/min, and an aqueous flow 50ml/min. Since the removal occurs by chelating ion exchange between copper from solution and protons from the extractant, the former was stripped by using a 180 g/l sulphuric acid solution which flowed (50 ml/min through the tube side organic was passed (400 ml/min through the shell side of the fibers of the module

    Se estudia la eliminación del cobre presente en disoluciones acuosas diluidas empleando el agente de extracción ACORGA M5640 y la tecnología de extracción con disolventes no dispersiva. Bajo las condiciones experimentales estudiadas, pH de la fase acuosa 4,0 ±0,1, 10 % v/v ACORGA M5640 en Exxsol D100, flujo de la fase orgánica 100 ml/min, flujo de la fase acuosa 50 ml/min, es posible eliminar el Cu(II, por debajo de los límites marcados internacionalmente, en disoluciones con un contenido tan bajo como 0,01 g/1 del metal. Debido a que la extracción transcurre mediante un intercambio catiónico (y formación de un compuesto tipo quelato entre el cobre presente en el medio acuoso y los protones del agente de extracción, el metal se puede reextraer mediante la utilización de una disolución de 180 g/1 de ácido sulfúrico que fluye (50 ml/min a través de la parte interior de las fibras del módulo, mientras que la fase orgánica fluye (400 ml/min por la parte exterior de las mismas fibras.

  20. Measurement of solute transport in the endothelial glycocalyx using indicator dilution techniques.

    Gao, Lujia; Lipowsky, Herbert H


    A new method is presented to quantify changes in permeability of the endothelial glycocalyx to small solutes and fluid flow using techniques of indicator dilution. Following infusion of a bolus of fluorescent solutes (either FITC or FITC conjugated Dextran70) into the rat mesenteric circulation, its transient dispersion through post-capillary venules was recorded and analyzed offline. To represent dispersion of solute as a function of radial position in a microvessel, a virtual transit time (VTT) was calculated from the first moment of fluorescence intensity-time curves. Computer simulations and subsequent in vivo measurements showed that the radial gradient of VTT within the glycocalyx layer (Delta VTT/Delta r) may be related to the hydraulic resistance within the layer along the axial direction in a post-capillary venule and the effective diffusion coefficient within the glycocalyx. Modeling the inflammatory process by superfusion of the mesentery with 10(-7) M fMLP, Delta VTT/Delta r was found to decrease significantly from 0.23 +/- 0.08 SD s/microm to 0.18 +/- 0.09 SD s/microm. Computer simulations demonstrated that Delta VTT/Delta r is principally determined by three independent variables: glycocalyx thickness (delta), hydraulic resistivity (K(r)) and effective diffusion coefficient of the solute (D(eff)) within the glycocalyx. Based upon these simulations, the measured 20% decrease in Delta VTT/Delta r at the endothelial cell surface corresponds to a 20% increase in D(eff) over a broad range in K(r), assuming a constant thickness delta. The absolute magnitude of D(eff) required to match Delta VTT/Delta r between in vivo measurements and simulations was found to be on the order of 2.5 x 10(-3) x D(free), where D(free) is the diffusion coefficient of FITC in aqueous media. Thus the present method may provide a useful tool for elucidating structural and molecular alterations in the glycocalyx as occur with ischemia, metabolic and inflammatory events.


    Attila R.Imre


    In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negative pressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, thep = 0 point is not a special point for liquids, it can be "easily" crossed. We are going to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 gives us some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or the reason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibility island of aqueous polymer solutions when - reaching the critical molar mass - it "disappears".

  2. Cake Filtration in Viscoelastic Polymer Solutions

    Surý, Alexander; Machač, Ivan


    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  3. Viscosity solutions for a polymer crystal growth model

    Cardaliaguet, Pierre; Monteillet, Aurélien


    We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\\delta_\\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with H\\"{o}lder bounds in space. From this result, we deduce \\textit{a priori} regularity for the front. On the other hand, under this regularity assumption, we prove bounds and regularity estimates for the solution of the heat equation.

  4. Selective flotation of zinc(II) and silver(I) ions from dilute aqueous solutions

    Charewicz, W.A.; Holowiecka, B.A.; Walkowiak, W. [Wroclaw Univ. of Tech. (Poland)


    An experimental investigation is presented of the batch competitive flotation of zinc(II) and silver(I) ions from dilute aqueous solutions with sodium dodecylsulfate and ammonium tetradecysulfonate as anionic surfactants and with cetylpyridinium chloride as a cationic surfactant. The sequence of growing affinity of metal cations to anionic surfactants is the same as the sequence of ionic potential values of the studied cations: AG{sup +} < Zn{sup 2+}. The presence of potassium sulfate in aqueous solution has a negative influence of Zn{sup 2+} foam separation with a anionic surfactant which is due to competition for the surfactant between Zn{sup 2+} and K{sup +} cations. Also, the effect of inorganic ligands (i.e., thiosulfates, thiocyanates, and cyanides) on the selectivity of ion flotation of Zn(II) and Ag(I) is established. Results are discussed in terms of the complex species of zinc(II) and silver(I). At a total S{sub 2}O{sub 3}{sup 2{minus}} concentration of 3 {times} 10{sup {minus}6} M, the silver(I) is floated as a mixture of anions [Ag(S{sub 2}O{sub 3})]{sup {minus}} and [Ag(S{sub 2}O{sub 3}){sub 2}]{sup 3{minus}}, whereas zinc(II) remains in the aqueous phase as Zn{sup 2+}. At total concentrations of SCN{sup {minus}} from 1 {times} 10{sup {minus}4} to 2 {times} 10{sup {minus}3} M, silver(I) is floated as a mixture of [Ag(SCN){sub 2}]{sup {minus}} and AgSCN species. Partial separation of zinc(II) from silver(I) can be achieved in the presence of CN{sup {minus}} ligands at total concentrations varying from 2.5 {times} 10{sup {minus}4} to 1.0 {times} 10{sup {minus}3} M. The affinity of the studied cyanide complexes to cetylpyridinium chloride follows the order [Ag(CN){sub 2}]{sup {minus}} < [Zn(CN){sub 4}]{sup 2{minus}} + [Zn(CN){sub 3}]{sup {minus}}.

  5. PDMS渗透蒸发膜分离稀水溶液中苯的模型研究%Modeling of Pervaporation Separation Benzene from Dilute Aqueous Solutions Through Polydimethylsiloxane Membranes

    彭福兵; 姜忠义


    A modified solution-diffusion model was established based on Flory-Huggins thermodynamic theory and Fujita's free volume theory. This model was used for description of the mass transfer of removal benzene from dilute aqueous solutions through polydimethylsiloxane (PDMS) membranes. The effect of component concentration on the interaction parameter between components, that of the polymer membrane on the selectivity to benzene, and that of feed concentration and temperature on the permeation flux and separation factor of benzene/water through PDMS membranes were investigated. Calculated pervaporation fluxes of benzene and water were compared with the experimental results and were in good agreement with the experimental data.

  6. Pore-scale analysis on the effects of compound-specific dilution on transient transport and solute breakthrough

    Rolle, Massimo; Kitanidis, Peter

    Compound-specific diffusivities significantly impact solute transport and mixing at different scales. Although diffusive processes occur at the small pore scale, their effects propagate and remain important at larger macroscopic scales [1]. In this pore-scale modeling study in saturated porous...... media we show that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough [2]. We performed flow and transport simulations in two-dimensional pore-scale domains...... significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing...

  7. The Dynamics of Nanoparticles in Polymer Solutions and Melts

    Mukhopadhyay, Ashis; Alam, Sharmine; Kohli, Indermeet


    Polymer nanocomposites (PNCs) has received a lot of attention in the recent years because of their potential applications in fabricating materials with novel mechanical, electrical, and photonic properties. The mobility of nanoparticles (NPs) play crucial role in determining various properties of PNC systems. Computer simulations and recent experiments have suggested that properties such as the toughness of a composite depend upon particle mobility. Even nanocomposites with ``self-healing'' properties that can restore strength in damaged regions have been proposed and some early work of their feasibility has been demonstrated. In this talk I will present some of our experimental work on the diffusion of nano-sized gold particles in polymer solutions and melt. Unusually fast diffusion of NPs when their size is smaller than the tube diameter in an entangled polymer was observed. Comparison with current theories and simulations will be shown. If time permits, our recent results on gold nanorod diffusion in polymer solution using polarized fluorescence correlation spectroscopy will be presented. Acknowledgements are made to the Donors of the American Chemical Society Petroleum Research fund (PRF # 51694-ND10) for support of this research.

  8. Dynamic contact angles in oil-aqueous polymer solutions.

    Al-Shareef, Amer; Neogi, P; Bai, Baojun


    Polymer flooding is an important process in enhanced oil recovery. The displacement front is unstable when low viscosity brine displaces the heavy crude oil in the reservoir. Water-soluble polymers are added to the brine to increase its viscosity which stabilizes the displacement process. To analyze the displacement process at the micro-level, we have investigated the dynamic contact angles in silicone oil-polymer (polyethylene oxide) solution and for the first time. The dynamic contact angle is the apparent contact angle at the three-phase contact line which governs the capillary pressure, and thus is important for the displacement process. The data show no obvious signs of either shear thinning or elastic behavior, although for some systems with highest elastic effects some unexplained effects on dynamic contact angles are observed that correlate with elastic effects. Overall, dynamic contact angles are explained well using existing models for two Newtonian fluids, when the zero shear viscosity is used for the polymer solution.

  9. Instability and morphology of polymer solutions coating a fiber

    Boulogne, François; Giorgiutti-Dauphiné, Frédérique


    We report an experimental study on the dynamics of a thin film of polymer solution coating a vertical fiber. The liquid film has first a constant thickness and then undergoes the Rayleigh-Plateau instability which leads to the formation of sequences of drops, separated by a thin film, moving down at a constant velocity. Different polymer solutions are used, i.e. xanthan solutions and polyacrylamide (PAAm) solutions. These solutions both exhibit shear-rate dependence of the viscosity, but for PAAm solutions, there are strong normal stresses in addition of the shear-thinning effect. We characterize experimentally and separately the effects of these two non-Newtonian properties on the flow on the fiber. Thus, in the flat film observed before the emergence of the drops, only shear-thinning effect plays a role and tends to thin the film compared to the Newtonian case. The effect of the non-Newtonian rheology on the Rayleigh-Plateau instability is then investigated through the measurements of the growth rate and th...

  10. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)


    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  11. Modelling of solid polymer and direct methanol fuel cells: Phenomenological equations and analytical solutions

    Kauranen, P. S.


    In the solid state concept of a direct methanol fuel cell (DMFC), methanol is directly oxidized at the anode of a solid polymer electrolyte fuel cell (SPEFC). Mathematical modelling of the transport and reaction phenomena within the electrodes and the electrolyte membrane is needed in order to get a closer insight into the operation of the fuel cell. In the work, macro-homogenous porous electrode and dilute solution theories are used to derive the phenomenological equations describing the transport and reaction mechanisms in a SPEFC single cell. The equations are first derived for a conventional H2/air SPEFC, and then extended for a DMFC. The basic model is derived in a one dimensional form in which it is assumed that species transport take place only in the direction crossing the cell sandwich. In addition, two dimensional descriptions of the catalyst layer are reviewed.

  12. Measurement of cloud point temperature in polymer solutions.

    Mannella, G A; La Carrubba, V; Brucato, V


    A temperature-controlled turbidity measurement apparatus for the characterization of polymer solutions has been instrumented and set up. The main features are the coupled temperature-light transmittance measurement and the accurate temperature control, achieved by means of peltier cells. The apparatus allows to measure cloud point temperatures by adopting different cooling protocols: low rate for quasi-equilibrium measurements and high rate for detect kinetic effects. A ternary polymeric solution was adopted as case study system showing that cooling rate affects the measured cloud point temperature.

  13. Viscosity solutions for a polymer crystal growth model

    Cardaliaguet, Pierre; Ley, Olivier; Monteillet, Aurélien


    International audience; We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\\delta_\\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with H\\"{o}lder bounds in space. From this result, we deduce \\textit{a pri...

  14. Structure of polymer layers adsorbed from concentrated solutions

    Auvray, Loïc; Auroy, Philippe; Cruz, Margarida


    We study by neutron scattering the interfacial strucuture of poly(dimethylsiloxane) layers irreversibly adsorbed from concentrated solutions or melts. We first measure the thickness h of the layers swollen by a good solvent as a function of the chain polymerisation index N and of the polymer volume fraction in the initial solution Φ. The relation h ≈ N^{0.8}Φ^{0.3}, recently predicted from an analogy between irreversibly adsorbed layers and grafted polymer brushes, describes well our results. We can therefore deduce that there is at least one large loop of about N monomers per adsorbed chain. We also study the shape of the polymer concentration profile in the layers by measuring on two samples the polymer-solid partial structure factor, that is proportional to the Fourier transform of the profile. The model of pseudobrushes predicts a concentration decay varying with the distance of the wall z as z^{-2/5}. This power law profile accounts quantitatively for the angular variation of the polymer-solid cross structure factor but it is difficult to distinguish it without anbiguity from less singular profiles. It implies that the adsorption of PDMS onto silica is sufficiently strong and fast to quench completely the loop distribution in the initial layer. Nous étudions par diffusion de neutrons la structure interfaciale de couches de poly(diméthylsiloxane) irréversiblement adsorbées sur de la silice à partir de solutions semidiluées et de fondus. Nous mesurons d'abord l'épaisseur h des couches gonflées par un bon solvant en fonction du degré de polymérisation des chaînes N et de la fraction volumique dans la solution initiale Φ. La relation h≈ N^{0.8}Φ^{0.3} récemment prédite à partir de l'analogie entre couches irréversiblement adsorbées et brosses de polymères greffés décrit bien nos résultats. Nous en déduisons qu'il existe au moins une grande boucle d'environ N monomères par chaîne adsorbée. Nous étudions aussi la forme du profil de

  15. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network

    Nami, Faezeh [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of); Deyhimi, Farzad, E-mail: [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of)


    To our knowledge, this work illustrates for the first time the ability of artificial neural network (ANN) to predict activity coefficients at infinite dilution for organic solutes in ionic liquids (ILs). Activity coefficient at infinite dilution ({gamma}{sup {infinity}}) is a useful parameter which can be used for the selection of effective solvent in the separation processes. Using a multi-layer feed-forward network with Levenberg-Marquardt optimization algorithm, the resulting ANN model generated activity coefficient at infinite dilution data over a temperature range of 298 to 363 K. The unavailable input data concerning softness (S) of organic compounds (solutes) and dipole moment ({mu}) of ionic liquids were calculated using GAMESS suites of quantum chemistry programs. The resulting ANN model and its validation are based on the investigation of up to 24 structurally different organic compounds (alkanes, alkenes, alkynes, cycloalkanes, aromatics, and alcohols) in 16 common imidazolium-based ionic liquids, at different temperatures within the range of 298 to 363 K (i.e. a total number of 914 {gamma}{sub Solute}{sup {infinity}}for each IL data point). The results show a satisfactory agreement between the predicted ANN and experimental data, where, the root mean square error (RMSE) and the determination coefficient (R{sup 2}) of the designed neural network were found to be 0.103, 0.996 for training data and 0.128, 0.994 for testing data, respectively.

  16. Measurements of activity coefficients at infinite dilution of organic solutes and water on polar imidazolium-based ionic liquids

    Martins, Mónia A. R.; Coutinho, João A. P.; Pinho, Simão; Domańska, Urszula


    The activity coefficients at infinite dilution, gamma(infinity)(13), of 55 organic solutes and water in three ionic liquids with the common cation 1-butyl-3-methylimidazolium and the polar anions Cl--,Cl- [CH3SO3](-) and [(CH3)(2)PO4](-), were determined by (gas + liquid) chromatography at four temperatures in the range (358.15 to 388.15) K for alcohols and water, and T = (398.15 to 428.15) K for the other organic solutes including alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, ketone...

  17. Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents

    Kim, Do Hwan


    We demonstrate high-performance sequentially solution-processed organic photovoltaics (OPVs) with a power conversion efficiency (PCE) of 5% for blend films using a donor polymer based on the isoindigo-bithiophene repeat unit (PII2T-C10C8) and a fullerene derivative [6,6]-phenyl-C[71]-butyric acid methyl ester (PC71BM). This has been accomplished by systematically controlling the swelling and intermixing processes of the layer with various processing solvents during deposition of the fullerene. We find that among the solvents used for fullerene deposition that primarily swell but do not re-dissolve the polymer underlayer, there were significant microstructural differences between chloro and o-dichlorobenzene solvents (CB and ODCB, respectively). Specifically, we show that the polymer crystallite orientation distribution in films where ODCB was used to cast the fullerene is broad. This indicates that out-of-plane charge transport through a tortuous transport network is relatively efficient due to a large density of inter-grain connections. In contrast, using CB results in primarily edge-on oriented polymer crystallites, which leads to diminished out-of-plane charge transport. We correlate these microstructural differences with photocurrent measurements, which clearly show that casting the fullerene out of ODCB leads to significantly enhanced power conversion efficiencies. Thus, we believe that tuning the processing solvents used to cast the electron acceptor in sequentially-processed devices is a viable way to controllably tune the blend film microstructure. © 2014 The Royal Society of Chemistry.

  18. Predicting morphologies of solution processed polymer:fullerene blends.

    Kouijzer, Sandra; Michels, Jasper J; van den Berg, Mauricio; Gevaerts, Veronique S; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J


    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.

  19. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan


    Objectives This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Methods Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn...

  20. Tuning the critical solution temperature of polymers by copolymerization

    Schulz, Bernhard; Chudoba, Richard; Dzubiella, Joachim, E-mail: [Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)


    We study statistical copolymerization effects on the upper critical solution temperature (CST) of generic homopolymers by means of coarse-grained Langevin dynamics computer simulations and mean-field theory. Our systematic investigation reveals that the CST can change monotonically or non-monotonically with copolymerization, as observed in experimental studies, depending on the degree of non-additivity of the monomer (A-B) cross-interactions. The simulation findings are confirmed and qualitatively explained by a combination of a two-component Flory-de Gennes model for polymer collapse and a simple thermodynamic expansion approach. Our findings provide some rationale behind the effects of copolymerization and may be helpful for tuning CST behavior of polymers in soft material design.

  1. Microstructure of Sheared Entangled Solutions of Semiflexible Polymers

    Marc Lämmel


    Full Text Available We study the influence of finite shear deformations on the microstructure and rheology of solutions of entangled semiflexible polymers theoretically and by numerical simulations and experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict that large finite shear deformations strongly affect the average tube width and curvature, thereby exciting considerable restoring stresses. In contrast, the associated shear alignment is moderate, with little impact on the average tube parameters, and thus expected to be long-lived and detectable after cessation of shear. Similarly, topologically preserved hairpin configurations are predicted to leave a long-lived fingerprint in the shape of the distributions of tube widths and curvatures. Our numerical and experimental data support the theory.

  2. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers

    SUN Yue; LI Xiao-tao; XU Chao; CHEN Jin-long; LI Ai-min; ZHANG Quan-xing


    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1,AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition,thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  3. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge.

    Petkova, R; Tcholakova, S; Denkov, N D


    Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.

  4. Solution and Melt Rheology of Polypropylene Comb and Star Polymers

    Ghosh, Arnav; Colby, Ralph H.; Rose, Jeffrey M.; Cherian, Anna E.; Coates, Geoffrey W.


    Syndiotactic polypropylene macromonomer arms have been prepared by coordination-insertion polymerization. These arms have been made into polypropylene star polymers by the homopolymerization of the syndiotactic arms with a living alkene polymerization catalyst. The macromonomer arms have also been randomly copolymerized with propylene using rac-dimethylsilyl(2-methyl-4-phenylindenyl) zirconium dichloride catalysts to make polypropylene combs. Consequently we have star polymers and a series of comb polymers with different backbone lengths that are all made from the same macromonomer arms. We compare linear viscoelastic data on star and comb polypropylene melts and solutions in squalane to predictions of the tube dilation model and the tube model without tube dilation. The ratio of comb terminal relaxation time to star terminal relaxation time eliminates the friction coefficient and allows determination of the extent of tube dilation the backbone experiences when it relaxes. The concentration dependence of the comb/star terminal relaxation time ratio can be described by either model, owing to adjustable parameters that are not known apriori, so independent means to evaluate those parameters will be discussed.

  5. The Solidification Velocity of Undercooled Nickel and Titanium Alloys with Dilute Solute

    Algoso, Paul R.; Altgilbers, A. S.; Hofmeister, William H.; Bayuzick, Robert J.


    The study of solidification velocity is important for two reasons. First, understanding the manner in which the degree of undercooling of the liquid and solidification velocity affect the microstructure of the solid is fundamental. Second, there is disagreement between theoretical predictions of the relationship between undercooling and solidification velocity and experimental results. Thus, the objective of this research is to accurately and systematically quantify the solidification velocity as a function of undercooling for dilute nickel-and titanium-based alloys. The alloys chosen for study cover a wide range of equilibrium partition coefficients, and the results are compared to current theory.

  6. The Phase Transformations and Magnetoresistive Properties of Diluted Film Solid Solutions Based on Fe and Ge Atoms

    O.V. Vlasenko


    Full Text Available In the article, the structure, phase composition and magnetoresistive properties of single- and three-layer films based on Fe and Ge were studied. It is established that in such films eutectic is formed based on diluted solid solutions of Ge atoms in -Fe layers and of Fe atoms in -Ge layers at the total concentration of Ge atoms from 3 to 20 at.% in the temperature range of 300-870 K. It is shown that magnetoresistive properties of the films with eutectic composition are not significantly different from the properties of -Fe films.

  7. Perovskite/polymer solar cells prepared using solution process

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.


    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH3NH3PM3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH3NH3I (methyl ammonium iodide) with PbI2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm2 at 25 °C comprised of an open circuit voltage of 0.31 V, a short circuit current density of 2.53 mA/cm2, and a power conversion efficiency of 0.42%.


    ZHANG Li-juan; YUE Xiang-an


    The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Haring - Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.

  9. Theoretical analysis of microscopic oil displacement mechanism by viscoelastic polymer solution


    The microscopic oil displacement mechanism in viscoelastic polymer flooding is theoretically analyzed with mechanical method.The effects of viscoelasticity of polymer solution on such three kinds of residual oil as in pore throat,in sudden expansion pore path,and in dead end are analyzed.Results show that the critical radius of mobile residual oil for viscoelastic polymer solution is larger than that for viscous polymer solution,which makes the oil that is immobile in viscous polymer flooding displaced u...

  10. Study of diffusion in polymer solutions and networks by fluorescence correlation spectroscopy

    Chehreghanianzabi, Yasaman

    Diffusion in polymer solutions and networks is a topic of vast importance in many fields related to medical devices, tissue engineering, and drug delivery. Understanding diffusion in such environments is also essential for describing molecular transport through biological systems such as cells and tissues. Fluorescence correlation spectroscopy (FCS) is single molecule spectroscopic technique that measures the fluctuations of fluorescent probes in a defined confocal volume and correlates them in time to give information on diffusion times, concentrations, and interactions as well as indirectly, on macromolecular structure or conformation. In the first project we used diffusivity data obtained by FCS to develop a novel homogenization theory model to accurately predict solute diffusivity in polymer solutions. We focused on a setting where diffusivity was hindered by obstruction only. By choosing experimental conditions that satisfied the model assumptions, we were able to validate the homogenization theory model. While testing diffusivity in various polymer solutions, we also observed an unexpected phenomenon--a dramatic decrease in diffusivity of small fluorophores in dilute solutions of polyethylene glycol (PEG), which led to the second project. Here, we determined that the rapid drop was due to a complexation between the PEG and the fluorophore. We also determined that this complexation was highly specific and could be attributed to hydrogel bonding between the ether oxygen of PEG and the carboxylic hydrogen of the fluorophore. We then transitioned to a more complex hydrogel network environment, namely fluorophore diffusivity in various alginate hydrogels--varied by concentration and modifications with a cell adhesive ligand. Importantly, we were able to determine that while the fluorophore diffusivity was hindered due to electrostatic interactions, it was the same irrespective of the alginate concentration or modifications. The last part of this thesis was focused


    R.A. Reis


    Full Text Available The Vrentas/Duda proposal for the diffusion of polymer-solvent systems, which is based on the free-volume theory, was employed in correlating and predicting mutual diffusion coefficients in highly concentrated polymer solutions. It has been observed that the predictive version of the model is capable of qualitatively representing the experimental data, while the use of an adjustable parameter greatly improves the performance of the model. The systems studied were poly(vinyl acetate-toluene and Neoprene-acetone, and a comparison between experimental data and calculated values from the Vrentas/Duda model is reported. A new experimental apparatus based on the sorption technique was built to provide reliable diffusivity data on the Neoprene-acetone system.

  12. Molecular Dynamics Simulations of a Single Chain Pentablock Ionomer in Dilute Solutions

    Aryal, Dipak; Perahia, Dvora; Grest, Gary S.


    Co-polymers are in the core of many applications such as fuel cells, batteries and purification membranes that require transport across membranes. The challenge remains however that under the condition that transport is optimized, the stability of the membranes is compromised. To surmount this challenge, co-polymers with blocks targeting specific roles have been designed. Using molecular dynamics simulations we have studies the structure and dynamics of ionic single chain pentablock copolymer (A-B-C-B-A) containing randomly sulfonated polystyrene in the center, tethered to poly-ethylene-r-propylene end-capped by poly - t - butyl styrene. The ionic block facilitates transport while the A and B componenet are incorporated for mechanical stability. The conformation and dynamics of single pentablock ionomer of molecular weight Mw = 50,000g/mol in an implicit poor solvent with dielectric constant of 1 and 77 .7, water, and mixture (1:1) of cyclohexane and n-heptane at 300K and 500K will be presented. The effect of solvents on conformation of a single molecule of pentablock was determined and compared with experiment, providing a stepping stone to the understanding phase behavior of this polymer. This work is partially supported by DOE DE-FG02-12ER46843.

  13. Structural transformations, composition anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures.

    Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman


    Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes

  14. Method of solution preparation of polyolefin class polymers for electrospinning processing included

    Rabolt, John F. (Inventor); Lee, Keun-Hyung (Inventor); Givens, Steven R. (Inventor)


    A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.

  15. 疏水缔合聚合物的合成及溶液性质研究%Synthesis and Solution Properties of Hydrophobic Associating Polymers

    任鲲; 姜桂元; 徐春明; 林梅钦


    Acrylamide/2-acrylamido alkane sulfonic acid hydrophobic associating copolymers were synthesized by micellar copolymerization. Effects of hydrophobe content, polymer concentration, salinity and surfactant on rheological behavior of copolymers were investigated and the conformation of polymers in solution was studied by means of environmental scanning electronic microscopy and dynamic light scattering. The experimental results showed that in the dilute regime the hydrophobic parts could interact intramolecularly, while in the regime where the polymer concentration was higher than the critical association concentration, intermolecular hydrophobic association became predominant. Within the limit of the solubility, the critical association concentration of the polymer decreased with the increase of the salinity. The experimental results of the solution conformation indicated the presence of the three-dimensional network structure in deionized water and the size of the mesh in the network varied with the polymer concentration. In NaCl solution, above the critical association concentration, an increase in polymer concentration enhanced the intermolecular association and also enlarged the hydrodynamic radius. It would result in the improvement of the thickening power of polymers.

  16. Phosphorylcholine substituted polyolefins: New syntheses, solution assemblies, and polymer vesicles

    Kratz, Katrina A.

    This thesis describes the synthesis and applications of a new series of amphiphilic homopolymers and copolymers consisting of hydrophobic polyolefin backbone and hydrophilic phosphorylcholine (PC) pendant groups. These polymers are synthesized by ring opening metathesis polymerization (ROMP) of a novel PC- cyclooctene monomer, and copolymerization of various functionalized cyclooctene comonomers. Incorporation of different comonomers into the PC-polyolefin backbone affords copolymers with different functionalities, including crosslinkers, fluorophores, and other reactive groups, that tune the range of applications of these polymers, and their hydrophobic/hydrophilic balance. The amphiphilic nature of PC-polyolefins was exploited in oil-water interfacial assembly, providing robust polymer capsules to encapsulate and deliver nanoparticles to damaged regions of a substrate in a project termed `repair-and-go.' In repair-and-go, a flexible microcapsule filled with a solution of nanoparticles probes an imperfection-riddled substrate as it rolls over the surface. The thin capsule wall allows the nanoparticles to escape the capsules and enter into the cracks, driven in part by favorable interactions between the nanoparticle ligands and the cracked surface (i.e., hydrophobic-hydrophobic interactions). The capsules then continue their transport along the surface, filling more cracks and depositing particles into them. The amphiphilic nature of PC-polyolefins was also exploited in aqueous assembly, forming novel polymer vesicles in water. PC-polyolefin vesicles ranged in size from 50 nm to 30 µm. The mechanical properties of PC-polyolefin vesicles were measured by micropipette aspiration techniques, and found to be more robust than conventional liposomes or polymersomes prepared from block copolymers. PC-polyolefin vesicles have potential use in drug delivery; it was found that the cancer drug doxorubicin could be encapsulated efficiently in PC-polyolefin vesicles. In

  17. Method of forming a foamed thermoplastic polymer

    Duchane, D.V.; Cash, D.L.


    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  18. Dilute solution, flow behavior, thixotropy and viscoelastic characterization of cress seed (Lepidium sativum) gum fractions

    Razmkhah, Somayeh; Razavi, Seyed Mohammad Ali; Mohammadifar, Mohammad Amin


    In this study, rheological properties of cress seed gum (CSG) and its fractions (F1, F2, F3; fractionated using stepwise extraction with water) were investigated. Cress seed gum and its fractions revealed random coil conformation in dilute regimes; chain flexibility and intrinsic viscosity...... increased from F1 to F2 to F3. The mechanical spectra derived from strain sweep and frequency sweep measurements indicated that the gum dispersions had viscoelastic behavior; all of them were classified as weak gels and the gel network got stronger along the series of F1, F2 and F3. Arrhenius-type model...... was used to describe the effect of temperature; F2 and F1 showed the highest and the lowest activation energy, respectively. All gum dispersions displayed thixotropic behavior; hysteresis loop area and structural recovery increased significantly along the series of F1, F2 and F3. In general, the results...

  19. Highly charged ions in a dilute plasma: an exact asymptotic solution involving strong coupling.

    Brown, Lowell S; Dooling, David C; Preston, Dean L


    The ion sphere model introduced long ago by Salpeter is placed in a rigorous theoretical setting. The leading corrections to this model for very highly charged but dilute ions in thermal equilibrium with a weakly coupled, one-component background plasma are explicitly computed, and the subleading corrections shown to be negligibly small. This is done using the effective field theory methods advocated by Brown and Yaffe. Thus, corrections to nuclear reaction rates that such highly charged ions may undergo can be computed precisely. Moreover, their contribution to the equation of state can also be computed with precision. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models in this limit.

  20. Tracking alignment from the moment of inertia tensor (TRAMITE) of biomolecules in neutral dilute liquid crystal solutions.

    Azurmendi, Hugo F; Bush, C Allen


    NMR residual dipolar couplings between couple of nuclei PQ, (1)D(PQ), measured on neutral dilute liquid crystal solutions, provide valuable long-range structural information of biomolecules. An accurate and simple method for the prediction of the alignment produced as consequence of sterical interactions between the solute and the bicelles is proposed called TRacking Alignment from Moment of Inertia TEnsor--TRAMITE. The method use the information encoded in the moment of inertia of the molecules to calculate the orientation tensor and predict the (1)D(PQ) values. Examples on proteins and oligosaccharides are presented which cover a wide range of sizes and shapes, along with a scheme for the application of the method to the analysis of flexible molecules.

  1. On the internal field correction in far-infrared absorption of highly polar molecules in neat liquids and dilute solutions

    Vij, J. K.; Kalmykov, Yu P.


    Far-infrared absorption spectra for liquid acetone, methylene chloride, acetonitrile, methyl iodide, and their dilute solutions in cyclohexane at 20 °C are measured by molecular laser spectrometer. Measurements of dielectric loss of polar liquids and solutions in the frequency range 2-300 GHz are made using a number of different techniques. These two sets of measurements are combined with those made using a Fourier transform spectrometer in order to cover the frequency range up to 250 cm-1 and total integrated absorption intensities are calculated. It is shown that the discrepancy between experimental integrated absorption and the theoretical results given by Gordon's sum rule with the Polo-Wilson internal field factor can be explained in the context of Bossis' theory. This theory gives a better agreement with the experimental integrated absorption intensity for these liquids.

  2. Rapid recovery of dilute copper from a simulated Cu-SDS solution with low-cost steel wool cathode reactor

    Chang, S.-H. [Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan (China)], E-mail:; Wang, K.-S.; Hu, P.-I; Lui, I-C. [Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan (China)


    Copper-surfactant wastewaters are often encountered in electroplating, printed circuit boards manufacturing, and metal finishing industries, as well as in retentates from micellar-enhanced ultrafiltration process. A low-cost three-dimensional steel wool cathode reactor was evaluated for electrolytic recovery of Cu ion from dilute copper solution (0.2 mM) in the presence of sodium dodecyl sulfate (SDS), octylphenol poly (ethyleneglycol) 9.5 ether (TX), nonylphenol poly (oxyethylene) 9 ether (NP9) and polyoxyethylene (20) sorbitan monooleate (TW) and also mixed surfactants (anionic/nonionic). The reactor showed excellent copper recovery ability in comparison to a parallel-plate reactor. The reactor rapidly recovered copper with a reasonable current efficiency. 93% of copper was recovered at current density of 1 A m{sup -2} and pH 4 in the presence of 8.5 mM SDS. Initial solution pH, cathodic current density, solution mixing condition, SDS concentration, and initial copper concentrations significantly influenced copper recovery. The copper recovery rate increased with an increase in aqueous SDS concentrations between 5 and 8.5 mM. The influences of nonionic surfactants on Cu recovery from SDS-Cu solution depended not only on the type of surfactants used, but also on applied concentrations. From the copper recovery perspective, TX at 0.1 mM or NP should be selected rather than TW, because they did not inhibit copper recovery from SDS-Cu solution.

  3. Low-density, polymer foams as structural models for phase-separation in polymer solutions

    Beaucage, G. [Univ. of Cincinnati, OH (United States); Lagasse, R.R.; Aubert, J.H. [Sandia National Labs., Albuquerque, NM (United States)] [and others


    Low density polymer foams are produced through nano-scale phase separation of 5 to 15% solutions yielding gels. The gels are solvent exchanged and dried by supercritical extraction. We have found that the morphology of the phase separated gel, the intermediate solvent exchanged gels and the final foams are essentially identical over a wide range of size. Through the combination of several scattering techniques covering many decades of size we can distinguish structural levels in these low-density foams. The combined scattering data spans sizes ranging from 10{mu}m to 1{Angstrom}. A recently developed global fitting approach can describe the multiple levels of structure observed in these complex materials. Several morphological classes of foams are observed. A perplexing feature in the scattering patterns from all of the foams is a 3-dimensional structure with a radius of gyration from 40 to 100{Angstrom}. By variation of the polymer molecular-weight, scattering data supports a model describing this nano-scale structure as partially isolated, collapsed polymer coils. This model indicates that collapsed base structural unit in these morphologies.

  4. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan


    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  5. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    Snijkers, F.


    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  6. A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

    Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.


    We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and o

  7. A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

    Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.


    We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and

  8. A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

    Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.


    We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and o

  9. The adsorption of surfactant at the amorphous polymer solution interface

    Gilchrist, V A


    Adsorption of surfactants onto amorphous polymers at the solid-solution interface is of direct relevance to many industrial sectors ranging from food, pharmaceuticals, paints, paper and photographic colour films. Although it is widely accepted that surfactants play the underpinning role in these applications, little is currently understood about the interactions between surfactants and polymeric materials at the molecular level. This lack of progress is mainly due to the inability of most existing techniques in probing this type of structural information at the wet interface. Specular neutron reflection (SNR) is a recently developed technique capable of detecting structural information with resolution down to a few angstroms (A). When combined with deuterium labeling, it is possible to distinguish the surfactant from the polymeric species at the interface. The aim of this work is to explore the appropriate experimental approach that utilizes the potential of neutron reflection to unravel molecular information...

  10. Flow induced/ refined solution crystallization of a semiconducting polymer

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different


    SHI Lianghe; ZHANG Xinsheng; SI Yuandong; YE Meiling; LI Dingcai


    Solution properties of ladder-like polymer polyphenylsilsesquioxane (PPS) were studied by measurement of intrinsic viscosity, small angle laser light scattering and gel permeation chromatography. It was found that PPS can be modeled with a wormlike continuous cylinder rather than a wormlike coil. A plot of (M2/[η])1/3 vs. M1/2 was employed in obtaining the persistence length (2λ)-1 and effective hydrodynamic diameter. When MW≤5 × 105, Mark-Houwink equation is adequate in describing the relationship between MW and [η] with α about unity. This implies that PPS chain is semi-stiff. For GPC experiments, it was shown that universal calibration can be applied in PPS. When molecular weights of PPS are sufficiently high, their molecular weight distributions are often very broad.

  12. Ordering phenomena of star polymer solutions approaching the Θ state

    Likos, C. N.; Löwen, H.; Poppe, A.; Willner, L.; Roovers, J.; Cubitt, B.; Richter, D.


    The liquid-state ordering phenomena of a semidilute polybutadiene 64-arm star polymer solution were investigated by small-angle neutron scattering. For this purpose, we used deuterated 1,4-dioxane, which is a Θ solvent for the star at 31.5 °C. Its quality was modified by varying the temperature in the range between 40 °C and 80 °C. Besides a swelling of the star, with increasing temperature the development of a strong correlation peak was observed in the experiment. The experimental data were described theoretically by employing an effective pair potential between stars which was introduced earlier by Mewis et al. [J. Mewis, W. J. Frith, T. A. Strivens, and W. B. Russel, AIChE J. 35, 415 (1989)].

  13. Engineering solutions for polymer composites solar water heaters production

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.


    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  14. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions.

    Lascol, Manon; Bourgeois, Sandrine; Guillière, Florence; Hangouët, Marie; Raffin, Guy; Marote, Pedro; Lantéri, Pierre; Bordes, Claire


    Low methoxyl pectin is known to gel with divalent cations (e.g. Ca(2+), Zn(2+)). In this study, a new way of pectin gelation in the presence of an active pharmaceutical ingredient, chlorhexidine (CX), was highlighted. Thus chlorhexidine interactions with pectin were investigated and compared with the well-known pectin/Ca(2+) binding model. Gelation mechanisms were studied by several physico-chemical methods such as zeta potential, viscosity, size measurements and binding isotherm was determined by Proton Nuclear Magnetic Resonance Spectroscopy ((1)H NMR). The binding process exhibited similar first two steps for both divalent ions: a stoichiometric monocomplexation of the polymer followed by a dimerization step. However, stronger interactions were observed between pectin and chlorhexidine. Moreover, the dimerization step occurred under stoichiometric conditions with chlorhexidine whereas non-stoichiometric conditions were involved with calcium ions. In the case of chlorhexidine, an additional intermolecular binding occurred in a third step.

  15. Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate

    Chow, Tina Kuo Fung


    The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation with B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.

  16. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Szewczyk-Nykiel, Aneta; Kazior, Jan


    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  17. Dielectric analysis on phase transition and micelle shape of polyoxyethylene trisiloxane surfactant in dilute aqueous solution

    Ya Wen Zhou; Wei Zhou; Fu Han; Bao Cai Xu


    The cloudy Silwet L-77 aqueous solution on the concentration range from 0.5% to 50% was investigated by dielectric relaxation spectroscopy. The concentration dependence of phase microstructure was confirmed by means of analyzing the dielectric parameters of bulk solution. The relaxation behavior was assigned to the interfacial polarization between the micelle and the medium, and the relaxation distribution parameter was used to figure the shape transition from sphere to ellipsoid with the concentration increasing. The synchronous reduction of permittivity and conductivity indicated the formation of the lamellar phase. As compensation, the quantity of the surfactant liquid phase gradually decreased, whose shape constantly kept ellipsoidal.

  18. Solution and Diffusion Behavior of Pure Gases and Gas Mixtures in Glassy Polymer Membranes

    庄震万; 卫伟; 时钧


    A general model for the solution and diffusion behavior in pure gas-polymer membrane systems and gas mixture-polymer membrane systems has been developed. Proved by experiments on different glassy and rubbery polymer membranes at various temperatures and pressures, this model can achieve the prediction of permeation behavior of pure gases and gas mixtures in polymer membranes only using the model parameters obtained from experiments on pure gases. The calculated results are in good agreement with experimental.

  19. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery

    Pan-Sang Kang


    Full Text Available Polymer flooding is now considered a technically- and commercially-proven method for enhanced oil recovery (EOR. The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.

  20. Vapor-liquid equilibria of polymer solutions determined by molecular mechanics

    Jonsdottir, Svava Osk; Rasmussen, Kjeld; Rasmussen, Peter


    A method of calculating interaction parameters used in phaseequilibrium calculations has been extended for predicting solventactivities of polymer solutions. A pair of interaction parameters aredetermined by calculating interaction energies between all pairs ofmolecules in the solution of interest...

  1. Vapor-liquid equilibria of polymer solutions determined by molecular mechanics

    Jonsdottir, Svava Osk; Rasmussen, Kjeld; Rasmussen, Peter;


    A method of calculating interaction parameters used in phaseequilibrium calculations has been extended for predicting solventactivities of polymer solutions. A pair of interaction parameters aredetermined by calculating interaction energies between all pairs ofmolecules in the solution of interest...

  2. A prosposed mechanism for the inactivation of atopic allergens in dilute solution

    Berrens, L.

    A study has been made of the ultra-violet absorption spectra of purified atopic allergens at pH 2 and pH 12. The colour change of atopen solutions from deep brown in alakali to light brown or yellow in acid is reflected in the spectra by considerably higher extinction coefficients in alkali. By

  3. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.

    Modin, Oskar; Wang, Xiaofei; Wu, Xue; Rauch, Sebastien; Fedje, Karin Karlfeldt


    In a microbial bioelectrochemical system (BES) living microorganisms catalyze the anodic oxidation of organic matter at a low anode potential. We used a BES with a biological anode to power the cathodic recovery of Cu, Pb, Cd, and Zn from a simulated municipal solid waste incineration ash leachate. By varying the control of the BES, the four metals could sequentially be recovered from a mixed solution by reduction on a titanium cathode. First, the cell voltage was controlled at zero, which allowed recovery of Cu from the solution without an electrical energy input. Second, the cathode potential was controlled at -0.51 V to recover Pb, which required an applied voltage of about 0.34 V. Third, the cathode potential was controlled at -0.66 V to recover Cd, which required an applied voltage of 0.51 V. Finally, Zn was the only metal remaining in solution and was recovered by controlling the anode at +0.2V to maximize the generated current. The study is the first to demonstrate that a BES can be used for cathodic recovery of metals from a mixed solution, which potentially could be used not only for ash leachates but also for e.g. metallurgical wastewaters and landfill leachates.

  4. Linear polymer aqueous solutions in soft lubrication:From boundary to mixed lubrication

    LIU; ShuHai; TAN; GuiBin; WANG; DeGuo


    In order to better understand linear polymer aqueous solutions in soft lubrication from boundary to mixed lubrication,poly(ethylene glycol) and sodium hyaluronateare used as model polymers were investigated by using UMT-2 tribometer with the ball-on-disk mode. The relationship between the master Stribeck curves of the polymer aqueous solutions and the influence factors were investigated. Experimental results indicated that soft lubrication is determined by lubricant rheological properties and surface-lubricant interactions, e.g., wetting behavior of polymer aqueous solution on tribological surfaces.

  5. The effect of temperature on radiolysis of iodide ion diluted aqueous solutions

    Gorbovitskaya, T.; Tiliks, J. [Latvia Univ., Lab. of Radiation Chemistry, Riga (Latvia)


    To investigate the radiolysis of iodine containing aqueous solutions a flow type facility (ITF) has a possibility to irradiate aqueous solutions in the steel vessel with {sup 60}Co {gamma}-rays and continuously (on line) to analyze the products of radiolysis both in liquid and in gaseous phases. By means of ITF the formation of I{sub ox} (I{sub 2} + I{sub 3}{sup -} + HOI), IO{sub 3}{sup -}, H{sub 2}O{sub 2} was studied in 10{sup -5} - 10{sup -3} mol/dm{sup 3} CsI aqueous solutions by their radiolysis at dose rate 4.5 kGv/h for six hours in region of temperatures from 313 to 404 K. Some experiments in glass ampoules were also performed. The steady-state concentrations of I{sub ox} and IO{sub 3}{sup -} decreased with increasing temperature as linear function of inverted temperature. The effect decreased with decreasing concentration of iodide ion. As the result, at high temperatures (T{>=}380 K) the steady-state concentration of I{sub ox} does not depend essentially on the iodide ion initial concentration. Molecular iodine (I{sub 2}) released from the solution was the main radiolysis product in gaseous phase. Its steady-state concentration increased with increasing temperature because of iodine solubility in the water and decreased at the same time because the radiolytic iodine concentrations decreased. Therefore the most volatility of irradiated 10{sup -3} and 10{sup -4}M CsI solutions was observed at the temperature about 350 K. The volatility of 10{sup -5}M solutions gradually decreased with increasing temperature. The experimental data were explained on the base of the hypothesis that the reaction between I{sub 2} and radiolytic H{sub 2}O{sub 2} was the limit one determining the temperature dependence of I{sub ox} and IO{sub 3}{sup -}steady-state concentrations. Its activation energy was estimated to be 27,5 kcal.mol{sup -1}. The temperature dependence for reaction (IO{sup -} + H{sub 2}O{sub 2}) was also estimated. (author) 8 figs., 1 tab., 17 refs.

  6. Growth and Structure of Zirconium Hydrous Polymers in Aqueous Solutions

    Singhal; Toth; Beaucage; Lin; Peterson


    Zirconium oxychloride solutions prepared at different pH were heated at elevated temperatures for various aging periods to gain an understanding of the growth mechanism and structure of zirconium hydrous polymers. Small angle X-ray scattering (SAXS) measurements were made on these solutions. It was observed that shape of clusters at the earlier stages of growth is close to a rod rather than a sheet as suggested earlier. The scattering data indicate that a rod-shaped primary particle is formed at pH 1.2, and on an increase in the pH, the primary particles become more branched. On aging more than 1250 min at 92°C, these primary particles form large aggregates while retaining the primary particle structure. These aggregates, which are mass fractal in nature, restructure while growing in size and eventually transform into dense particles. Scattering data in this study were not enough to determine a specific kinetic growth model of the aggregates because the scattering intensity at low q constantly changes with time during the restructuring process. Copyright 1997 Academic Press. Copyright 1997Academic Press

  7. Growth and structure of zirconium hydrous polymers in aqueous solutions

    Singhal, A. [Oak Ridge National Lab., TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Toth, L.M.; Lin, J.S. [Oak Ridge National Lab., TN (United States); Beaucage, G. [Univ. of Cincinnati, OH (United States). Dept. of Materials Science and Engineering; Peterson, J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry


    Zirconium oxychloride solutions prepared at different pH were heated at elevated temperatures for various aging periods to gain an understanding of the growth mechanism and structure of zirconium hydrous polymers. Small angle X-ray scattering (SAXS) measurements were made on these solutions. It was observed that shape of clusters at the earlier stages of growth is close to a rod rather than a sheet as suggested earlier. The scattering data indicate that a rod-shaped primary particle is formed at pH 1.2, and on an increase in the pH, the primary particles become more branched. On aging more than 1,250 min at 92 C, these primary particles form large aggregates while retaining the primary particle structure. These aggregates, which are mass fractal in nature, restructure while growing in size and eventually transform into dense particles. Scattering data in this study were not enough to determine a specific kinetic growth model of the aggregates because the scattering intensity at low q constantly changes with time during the restructuring process.

  8. Prediction of infinite dilution activity coefficients of chlorinated organic compounds in aqueous solution from quantum-chemical descriptors.

    Delgado, Eduardo J.; Alderete, Joel B.


    A quantitative structure-property relationship (QSPR) model is developed to correlate the natural logarithm of infinite dilution activity coefficients, ln (gamma(infinity)), of 45 chlorinated organic compounds in aqueous solution from quantum-chemical descriptors. The best correlation equation contains five theoretical molecular descriptors. All descriptors were obtained from the chemical structure of the compounds and have definite physical meaning corresponding to different intermolecular interactions. The model predicts ln (gamma(infinity)) with a correlation coefficients of 0.949 and a standard error of 0.442 ln units. The obtained QSPR equation may be applied to the prediction of gamma(infinity) of other chlorinated organic compounds not present in the data set used for the development of the present model. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1851-1856, 2001

  9. Microcapsules containing ionic liquid [A336][P507] for La3+/Sm3+/Er3+recovery from dilute aqueous solution

    王月; 王运东; 靖宇; 陈继; 刘郁


    The efficacy of polysulfone microcapsules encapsulating ionic liquid [trialkylmethylammonium][di(2-ethylhelxyl) ortho-phosphinate] ([A336][P507]) for the extraction of La3+, Sm3+ and Er3+ from dilute aqueous solutions was investigated. Microcapsules were synthesized using coaxial microfluidic method, and subsequently encapsulated with extractant [A336][P507]. The kinetics data were fitted well by pseudo-second-order equation and Crank model, and the kinetics parameters were evaluated. The extraction rate had the order of Er3+>Sm3+>La3+. The isotherm data were analyzed by Langmuir model and shifted Langmuir model. The extraction capacities of La3+, Sm3+ and Er3+ were 58.4, 56.6 and 81.7 mg/g, respectively. The dependency of stripping performance on HNO3 concentration was measured. The regeneration of microcapsules was evaluated using cycling extraction experiments.

  10. Theoretical study of the Pb(II)-catechol system in dilute aqueous solution: Complex structure and metal coordination sphere determination

    Lapouge, Christine; Cornard, Jean-Paul


    We investigated the unknown interaction of Pb(II) with catechol ligand in diluted aqueous solution by electronic spectroscopies combined with quantum chemical calculations. The aim of this work is the determination of the complete structure of the complex formed and particularly the metal coordination sphere. Three successive steps have been necessary to reach this goal: (i) the comparison of the experimental electronic absorption spectrum with theoretical spectra calculated from various hypothetical structures, (ii) complexation reaction pathways calculations in vacuum and with taking into account the solvent effects and finally (iii) the fluorescence emission wavelength calculations. All these investigations led to identify a monodentate complex with the monodeprotonated ligand, in which the Pb atom presents a coordination number of five. The formula of the complex is [Pb(Hcat)(HO)4]mono+.

  11. CO2 switchable dual responsive polymers as draw solutes for forward osmosis desalination.

    Cai, Yufeng; Shen, Wenming; Wang, Rong; Krantz, William B; Fane, Anthony G; Hu, Xiao


    Low molecular weight dual responsive polymers, after purging with CO2, become polyelectrolytes with high osmolality, which can be used as draw solutes for seawater desalination. These polymers precipitate above their Lower Critical Solution Temperature (LCST) after removal of CO2 via purging with inert gas for ease of recovery and reuse.

  12. Hydroxyl radical-induced crosslinking and radiation-initiated hydrogel formation in dilute aqueous solutions of carboxymethylcellulose.

    Wach, Radoslaw A; Rokita, Bozena; Bartoszek, Nina; Katsumura, Yosuke; Ulanski, Piotr; Rosiak, Janusz M


    Ionizing radiation causes chain scission of polysaccharides in the absence of crosslinking agents. It has been demonstrated before that degradation of carboxyalkylated polysaccharides may be prevented, despite presence of strong electrostatic repulsing forces between chains, at very high polymer concentration in water (paste-like state) when physical proximity promotes recombination of radiation-generated polymer radicals. In such conditions, crosslinking dominates over chain scission and covalent, macroscopic gels can be formed. In an approach proposed in this work, neutralizing the charges on carboxymethylcellulose (CMC) by lowering the pH results in retracting the electrostatic repulsion between chain segments and thus allows for substantial reduction of polymer concentration required to achieve gelation due to domination of crosslinking reactions. Electron-beam irradiation of aqueous solutions of low pH containing 0.5-2% CMC results in hydrogel formation with 70% yield, while both concentration and dose determine their swelling properties. Time-resolved studies by laser flash photolysis clearly indicate strong pH influence on decay kinetics of CMC radicals.

  13. Simultaneous recovery of heavy metals (Pb, Cd, Zn from diluted solutions by electroextraction technique

    Smara A.


    Full Text Available Cadmium is mainly used in galvanoplasty and stabilisation of plastic materials. It accumulates continuously in soils. The analysis of soil samples gave concrete evidence of increase of concentration of this element during the past centunary [1]. Furthermore Cd and Pb attack selectively the kidneys and the liver with enzymatic troubles. The work has enabaled to put into evidence the contribution of the presence of resin to the conventional electrodialysis process. The optimal conditions for the elimination of Cd++, Zn++ and Pb++ ions were determined. These included influence of resin, imposed current density, flow rate of the feeding solution (diluat, different supporting electrolytes used during the electroextraction (HNO3, HCl and H2SO4 and concentration of the solution to be treated [2-3-4]. Furthermore the competition between the electroextraction of the metallic cations Cd++, Zn++and Pb++ was investigated for different mixtures.

  14. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    Philip E. Zapp; John W. Van Zee


    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation.

  15. The Interaction of Polycrystalline Copper Films with Dilute Aqueous Solutions of Cupric Chloride


    in atmosphere has always been of interest because of the extensive use of copper and brass in buildings and statues, for example. A study by Pinnel et...solution and the sample surface layer have been reported with no mention of the microstructure of the copper sample except for a few cases where chemical...used as a substrate when the deposited film will be removed for mechanical testing. In this case , the copper film was removed prior to characterization

  16. Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives

    Yang, Hanxi; Cao, Yuliang; Ai, Xinping; Xiao, Lifen

    The capacity utilization of zinc anode is usually very low in dilute alkaline solution or at high rate discharge because of the passivation of zinc surface. This problem can be considerably overcome by use of surfactant additive in electrolyte. In this work, it is found that with addition of 2% sodium dodecyl benzene sulfonate (SDBS) in 20% KOH solution, the discharge capacity of zinc anode increases from 360 to 490 mAh/g at moderate discharge rate of 40 mA/g, corresponding to a 35% increase in the capacity utilization. Based on the electrochemical and morphological observation of the anodic passivation behaviors of zinc electrode, this effect is revealed that due to the SDBS adsorption, the passive layer formed on the zinc surface has a loose and porous structure rather than a dense and compact film. This type of surface layer facilitates the diffusive exchange of the solution reactant and discharged product through the surface deposit layer and therefore effectively suppresses the surface passivation of zinc anode.

  17. Thermodynamic characteristics of the heparin-leucine-CaCl2 system in a diluted physiological solution

    Nikolaeva, L. S.; Belov, G. V.; Rulev, Yu. A.; Semenov, A. N.


    Chemical equilibria in aqueous solutions of high-molecular weight heparin (Na4hep) and leucine (HLeu) are calculated through the mathematical modeling of chemical equilibria based on representative experimental pH titration data. In addition, chemical equilibria in the CaCl2-Na4hep-HLeu-H2O-NaCl system in the presence of 0.154M NaCl background electrolyte at a temperature of 37°C in the range of 2.30 ≤ pH ≤ 10.50 and initial concentrations of basic components n × 10-3 M ( n ≤ 4).

  18. Effect of arsenic on the activity of oxygen dissolved in dilute liquid copper solutions

    Walqui, H.; Seetharaman, S.; Staffansson, L. I.


    The influence of arsenic additions on the activity of oxygen in liquid copper was studied by the solid-electrolyte galvanic cell (-) Pt, W/Cu-O-As ∥ ZrO2-CaO ∥ NiO-Ni/Pt (+) in the temperature range 1373 to 1473 K. The activity coefficient of oxygen in liquid copper was found to be unaffected by the addition of arsenic. The interaction parameter values for group V B elements in the periodic table with respect to oxygen are discussed in the light of the solute interactions in copper.

  19. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution.

    Kumar, Sugam; Ray, D; Aswal, V K; Kohlbrecher, J


    Small-angle neutron scattering (SANS) studies have been carried out to examine the evolution of interaction and structure in a nanoparticle (silica)-polymer (polyethylene glycol) system. The nanoparticle-polymer solution interestingly shows a reentrant phase behavior where the one-phase charged stabilized nanoparticles go through a two-phase system (nanoparticle aggregation) and back to one-phase as a function of polymer concentration. Such phase behavior arises because of the nonadsorption of polymer on nanoparticles and is governed by the interplay of polymer-induced attractive depletion with repulsive nanoparticle-nanoparticle electrostatic and polymer-polymer interactions in different polymer concentration regimes. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. However, the increase in polymer concentration enhances the depletion attraction to give rise to the nanoparticle aggregation in the two-phase system. Further, the polymer-polymer repulsion at high polymer concentrations is believed to be responsible for the reentrance to one-phase behavior. The SANS data in polymer contrast-matched conditions have been modeled by a two-Yukawa potential accounting for both repulsive and attractive parts of total interaction potential between nanoparticles. Both of these interactions (repulsive and attractive) are found to be long range. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the depletion interaction leading to reentrant phase behavior. The nanoparticle clusters in the two-phase system are characterized by the surface fractal with simple cubic packing of nanoparticles within the clusters. The effect of varying ionic strength and polymer size in tuning the interaction has also been examined.

  20. Electrochemical Behavior of Nano-grained Pure Copper in Dilute Alkaline Solution with Chloride Ion Trace

    Fattah-Alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza


    Effect of nano-grained structure on the interface behavior of pure copper in 0.01M KOH solution with chloride ion trace is investigated by various electrochemical techniques. Nano-grained structure was achieved by accumulative roll bonding (ARB) technique. Before any electrochemical measurements, microstructure was evaluated by means of optical microscopy and transmission electron microscopy (TEM). TEM observations showed that nano-grains (with an average size of below 100 nm) appeared after eight passes of ARB. Polarization curves revealed that increasing chloride ion concentration leads to a decrease in the corrosion and pitting potentials of both annealed and nano-grained pure copper samples. Electrochemical impedance spectroscopy revealed that chloride ion trace lowers passive film resistance and charge-transfer resistance in both annealed and nano-grained samples. Mott-Schottky analysis showed that the surface films formed on annealed and nano-grained samples in KOH solution with and without NaCl addition are of p-type semiconducting behavior. Moreover, this analysis showed that the acceptor density increases by increasing chloride ion concentration.

  1. Transport properties in dilute UN (X ) solid solutions (X =Xe ,Kr )

    Claisse, Antoine; Schuler, Thomas; Lopes, Denise Adorno; Olsson, Pär


    Uranium nitride (UN) is a candidate fuel for current GEN III fission reactors, for which it is investigated as an accident-tolerant fuel, as well as for future GEN IV reactors. In this study, we investigate the kinetic properties of gas fission products (Xe and Kr) in UN. Binding and migration energies are obtained using density functional theory, with an added Hubbard correlation to model f electrons, and the occupation matrix control scheme to avoid metastable states. These energies are then used as input for the self-consistent mean field method which enables to determine transport coefficients for vacancy-mediated diffusion of Xe and Kr on the U sublattice. The magnetic ordering of the UN structure is explicitly taken into account, for both energetic and transport properties. Solute diffusivities are compared with experimental measurements and the effect of various parameters on the theoretical model is carefully investigated. We find that kinetic correlations are very strong in this system, and that despite atomic migration anisotropy, macroscopic solute diffusivities show limited anisotropy. Our model indicates that the discrepancy between experimental measurements probably results from different irradiation conditions, and hence different defect concentrations.

  2. The aggregation behavior of native collagen in dilute solution studied by intrinsic fluorescence and external probing

    Wu, Kun; Liu, Wentao; Li, Guoying


    The aggregation behavior of type I collagen in acid solutions with the concentrations covering a range of 0.06-1.50 mg/mL was studied utilizing both of the fluorescence resonance energy transfer (FRET) between the phenylalanine and tyrosine residues and the external probing of 1,8-anilinonaphthalene sulfonate (ANS). FRET at 0.30 mg/mL showed the distance among collagen monomers was within 10 nm without the obvious aggregates formed. The predominance of tyrosine fluorescence in FRET in the range of 0.45-0.75 mg/mL identified the existence of collagen aggregates companied with the formation of hydrophobic microdomains revealed by the change of the fluorescence of ANS. The blue-shift of tyrosine fluorescence from 303 to 293 nm for 0.90-1.50 mg/mL dedicated the formation of high order aggregates. The results from the two-phase diagrams of the intrinsic fluorescence for the guanidine hydrochloride-induced unfolding of collagen confirmed these conclusions. By the two-dimensional correlation analysis for the intrinsic fluorescence of collagen solutions of 0.45, 0.75 and 1.05 mg/mL, the probable characteristic fluorescence peaks for the interactions of proline-aromatic (CH ˜ π) among the collagen molecules were found at 298 and 316 nm.

  3. Single chains of strong polyelectrolytes in aqueous solutions at extreme dilution: Conformation and counterion distribution

    Xu, Guofeng; Luo, Shuangjiang; Yang, Qingbo; Yang, Jingfa; Zhao, Jiang


    The molecular conformation of two typical polyelectrolytes, sodium polystyrene sulfonate (NaPSS) and quarternized poly-4-vinylpyridine (QP4VP), was studied in aqueous solutions without salt addition at the single molecular level. By fluorescence correlation spectroscopy, the hydrodynamic radius (Rh) of NaPSS and QP4VP with the molecular weight ranging more than one order of magnitude was measured. The scaling analysis of Rh exhibits scaling exponent of 0.70 and 0.86 for NaPSS and QP4VP in solutions without added salts, respectively, showing the conformation is much more expanded than random coil. Numerical fittings using the model of diffusion of a rod molecule agree with the data well, indicating that the polyelectrolyte chains take the rod-like conformation under the condition without salt addition. Further investigations by determining the electric potential of single PSS- chains using the photon counting histogram technique demonstrate the enhanced counterion adsorption to the charged chain at higher molecular weight.

  4. Separation of Indium and Iron from Dilute Sulphate Solutions with a Phosphorous Mixer Extractant


    The phosphorous mixer introduced could replace D2EHPA as an extractant applied in the extraction of indium. The extraction properties of the phosphorous mixer were studied. The influences of extractant concentration, organic/aqueous (O/A) phase ratio, equilibrium time, and pH value of the feed solutions on the extraction of indium and separation of indium-iron were investigated experimentally. Under the best operating conditions, more than 98% of indium was extracted through two-stage counter-current extraction. The optimizing condition of indium extraction is determined as follows: O/A = 1∶(9€?2) in volume ratio; 30% PPD in sulphonated kerosene; pH of the feed, about 0.6; equilibrium time, 3€? min. The extractant has good reusing and anti-aging properties.

  5. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part І

    I.A. Khattab


    Full Text Available Removal of some hazardous waste like copper from effluent streams has an industrial importance. In this field, this paper is directed towards electrochemical removal of copper ions from sulfate solution using packed bed electrode. The cathode packing is in static mode, consisted of graphite particles, with mean particle size equal to 0.125 cm. The high surface area of this cell is expected to give high current efficiency and removal percent. The effect of current density and liquid flow rate were tested. Experimental results obtained indicate that the efficiencies are in direct proportional with current density while inversely proportional with liquid flow rate. It was observed that, using this cell was effective in reducing copper concentration to less than 4 mg/l with R.E of 96.2% during 30 min electrolysis time.

  6. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy


    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations.

  7. "Structure-making" ability of Na+ in dilute aqueous solution: an ONIOM-XS MD simulation study.

    Sripa, Pattrawan; Tongraar, Anan; Kerdcharoen, Teerakiat


    An ONIOM-XS MD simulation has been performed to characterize the "structure-making" ability of Na(+) in dilute aqueous solution. The region of most interest, i.e., a sphere that includes Na(+) and its surrounding water molecules, was treated at the HF level of accuracy using LANL2DZ and DZP basis sets for the ion and waters, respectively, whereas the rest of the system was described by classical pair potentials. Detailed analyzes of the ONIOM-XS MD trajectories clearly show that Na(+) is able to order the structure of waters in its surroundings, forming two prevalent Na(+)(H(2)O)(5) and Na(+)(H(2)O)(6) species. Interestingly, it is observed that these 5-fold and 6-fold coordinated complexes can convert back and forth with some degrees of flexibility, leading to frequent rearrangements of the Na(+) hydrates as well as numerous attempts of inner-shell water molecules to interchange with waters in the outer region. Such a phenomenon clearly demonstrates the weak "structure-making" ability of Na(+) in aqueous solution.

  8. Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles

    Gentile, Francesco T.


    Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids. © 2014 the Partner Organisations.

  9. Side Chain Engineering in Solution-Processable Conjugated Polymers

    Mei, Jianguo


    Side chains in conjugated polymers have been primarily utilized as solubilizing groups. However, these side chains have roles that are far beyond. We advocate using side chain engineering to tune a polymer\\'s physical properties, including absorption, emission, energy level, molecular packing, and charge transport. To date, numerous flexible substituents suitable for constructing side chains have been reported. In this Perspective article, we advocate that the side chain engineering approach can advance better designs for next-generation conjugated polymers. © 2013 American Chemical Society.

  10. Aspects récents de la thermodynamique des solutions de polymères Recent Aspects of the Thermodynamics of Polymer Solutions

    Dayantis J.


    Full Text Available On examine dans cet article différentes approches de la thermodynamique des solutions de polymères placées dans leur contexte historique. On rappelle d'abord le modèle du réseau de Flory-Huggins et on en souligne les déficiences. On traite ensuite brièvement de la mécanique statistique des solutions de polymères introduite par Prigogine en 1957 et on montre qu'elle constitue un progrès qualitatif par rapport à la théorie du réseau, mais qu'elle ne prévoit cependant pas de manière quantitative les propriétés de ces solutions. On montre ensuite que le concept de volume libre, qui permet un traitement simplifié de certaines quantités, permet également d'expliquer tout naturellement l'existence d'une deuxième température de séparation en phase lorsque l'on élève la température, propriété qui différencie les solutions de polymères des mélanges de liquidés simples. Enfin, dans une dernière partie, on mentionne brièvement les travaux récents de l'École de Paris, qui traite les solutions de polymères par analogie avec les transitions magnétiques. This article examines différent approaches ta the thermodynamics of polymer solutions set in their historical context. First of all, the Flory-Huggins network model is described and ifs deficiencies are pointed out. Then attention is briefly drawn to the statistical mechanics of polymer solutions as introduced by Prigogine in 1957, and this mechanics is shown to be a qualitative advance compared with the network theory, but it nonetheless does not quantitatively predict the properties of such solutions. It is then shown that the concept of free volume, enabling some quantifies to be treated in a simplified way, also serves to provide a quite natural explanation for the existence of a second phase separation temperature when the temperature is raised, i. e. a property that differentiates polymer solutions from simple liquid mixtures. In the final part, brief mention is made

  11. Variation of persistence length with concentration in a hydrogen bonding polymer solution

    Sukumaran, S.; Beaucage, G.


    Miscibility of some polymers in water is usually attributed to the ability of the polymer to hydrogen bond with water. Hydrogen bonding contributes a strong interaction component to the free energy that enhances mixing between the polymer and water. It is widely known that certain conformations of the polymer have significantly higher dipole moment and consequently higher affinity for water. If the solvent alters the bond rotation energetics of the polymer it is natural to expect the average local structure of the chain to be affected leading to a change in the persistence length. Small angle neutron scattering experiments were performed on aqueous (D2O) solutions of a polymer (PEO or PVME) at different concentrations to investigate the microscopic structure of these solutions. The persistence length was strongly dependent on concentration. A simple physical explanation for this phenomenon will be provided. Possible ramifications of such a phenomenon in understanding phase behavior will be indicated.

  12. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai


    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  13. Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts

    Rasmussen, Henrik K.; Huang, Qian


    We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the ...

  14. Coil size oscillatory packing in polymer solutions near a surface

    Gucht, van der J.; Besseling, N.A.M.; Male, van J.; Cohen Stuart, M.A.


    The theory developed by Scheutjens and Fleer to describe polymer adsorption and depletion is used to calculate the density profile of nonadsorbing polymers near a surface. The theory predicts damped oscillations in the segment density profile with a wavelength of about the coil size. As a consequenc

  15. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    Miller, G H; Trebotich, D


    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.


    Xiao-ming Chen; Hai-yang Yang; Xian You; Ping-ping Zhu; Ping-sheng Hea


    The reduced viscosity of polymer guar gum solutions containing a certain concentration of sodium dodecyl benzene sulfonate (SDBS) was measured. It has been found that the Huggins coefficient kH of polymer solutions is verysensitive to the concentration of the surfactant, cSDBS, in solutions. If cSDBS is lower than CMC, the critical micelle concentration of SDBS, kH increases rapidly with cSDBS. On the other hand, if cSDBS is larger than CMC, kH decreases rapidly with cSDBS. Comparatively, the intrinsic viscosity of polymer solution does not show a notable change with cSDBS. The experimental results indicate that the interchain association of polymer guar gum in solution is greatly associated with SDBS interacted with polymer chains through hydrogen bonds. However, the effect of SDBS upon the intrachain association of polymer guar gum solution is negligible, presumably due to the fact that guar gum is a slightly stiffened random-coil chain polymer.

  17. Adsorption of small biological molecules on silica from diluted aqueous solutions: Quantitative characterization and implications to the Bernal's hypothesis

    Basiuk, Vladimir A.; Gromovoy, Taras Yu.; Khil'Chevskaya, Elena G.


    To describe quantitatively the adsorption of prebiotically important compounds of low molecular weight (amino acids, short linear peptides, cyclic dipeptides, the Krebs's cycle and other carboxylic acids, nucleosides and related phosphates) on silica surface from diluted neutral aqueous solutions, equilibrium constants (K) and free energies (-ΔG) of adsorption were determined from the retention values measured by means of high-performance liquid chromatography on a silica gel column and from the isotherms measured under static conditions. For most carboxylic acids (including amino acids and linear peptides) -ΔG values were negative and K0 and K>1 were found for most of them. Influence of the structure of α-substituent on the adsorbability is analyzed. A linear dependence of -ΔG on the number of aliphatic carbon atoms in a sorbate molecule was found for the series of aliphatic bifunctional amino acids, related dipeptides and 2,5-piperazinediones, as well as for the row from glycine to triglycyl glycine. The adsorption of nucleosides and their phosphates is characterized by much higherK and -ΔG values (of the order of 102 and 104, respectively). The adsorption data available from our work and literature are summarized and discussed with implications to the Bernal's hypothesis on the roles of solid surfaces in the prebiotic formation of biopolymers from monomeric ‘building blocks’.

  18. β-1,3-D-glucan schizophyllan/poly(dA) triple-helical complex in dilute solution.

    Sanada, Yusuke; Matsuzaki, Tsubasa; Mochizuki, Shinichi; Okobira, Tadashi; Uezu, Kazuya; Sakurai, Kazuo


    A certain length of poly(deoxyadenylic acid) (dA(X)) can form a novel complex with β-1,3-D-glucan schizophyllan (SPG) with a stoichiometric composition of one dA binding two main chain glucoses. We measured dilute solution properties for the complex with light and small-angle X-ray scattering as well as intrinsic viscosity and found that the complex behaves as a semiflexible rod without branching or cross-linking. We analyzed the data with the wormlike cylinder model, and the chain dimensions and the persistence length for the complexes were consistently determined. The chain flexibility was reduced to almost 25% upon complexation for dA/SPG and to 15% for S-dA/SPG, where S-dA denotes the phosphorothioated DNA analogue. The changes in the molar mass per unit length and the diameter indicated that the helix was elongated or stretched along the axis direction upon the complexation.

  19. Rheology of Biopolymer Solutions and Gels

    David R. Picout


    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  20. Polymers for enhanced oil recovery : A paradigm for structure-property relationship in aqueous solution

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.


    Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on th

  1. Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...

  2. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng


    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution

    Fathi, Marziyeh; Reza Farajollahi, Ali; Akbar Entezami, Ali


    Nanohydrogels of poly(vinyl alcohol)-g-N-isopropylacrylamide (PVA-g-NIPAAm) are synthesized by PVA and NIPAAm dilute aqueous solution using much less radiation dose of 1-20 Gy via intramolecular crosslinking at ambient temperature. The radiation synthesis of nanohydrogels is performed in the presence of tetrakis (hydroxymethyl) phosphonium chloride (THPC) due to its rapid oxygen scavenging abilities and hydrogen peroxide (H2O2) as a source of hydroxyl radicals. The effect of radiation dose, feed composition ratio of PVA and H2O2 is investigated on swelling properties such as temperature and pH dependence of equilibrium swelling ratio as well as deswelling kinetics. Experimental data exhibit high equilibrium swelling ratio and fast response time for the synthesized nanohydrogels. The average molecular weight between crosslinks (Mc) and crosslinking density (ρx) of the obtained nanohydrogels are calculated from swelling data as a function of radiation dose, H2O2 and PVA amount. Fourier transform infrared spectroscopy (FT-IR), elemental analysis of nitrogen content and thermogravimetric analysis (TGA) are used to confirm the grafting reaction. Lower critical solution temperature (LCST) is measured around 33 °C by differential scanning calorimetry (DSC) for PVA-g-NIPAAm nanohydrogels. Dynamic light scattering (DLS) data demonstrate that the increase of radiation dose leads to the decreasing in dimension of nanohydrogels. Also, rheological studies are confirmed an improvement in the mechanical properties of the nanohydrogels with increasing the radiation dose. A cytotoxicity study exhibits a good biocompatibility for the obtained nanohydrogels. The prepared nanohydrogels show fast swelling/deswelling behavior, high swelling ratio, dual sensitivity and good cytocompatibility, which may find potential applications as biomaterial.


    Hui-dan Liu; Takahiro Sato


    The polyelectrolyte complex formed from the polyanion and polycation was studied by turbidimetry,static and electrophoretic light scattering,and elementary analysis.Sodium salts of polyacrylate (PA) and heparin (Hep) were chosen as the polyanion,and hydrochloric salts of poly(vinyl amine) (PVA) and chitosan (Chts) as the polycation.Although these vinyl polymers and polysaccharides have remarkably different backbone chemical structures and linear charge densities,all the four combinations PA-PVA,PA-Chts,Hep-PVA,and Hep-Chts provide almost stoichiometric polyelectrolyte complexes which are slightly charged owing to the adsorption of the excess polyelectrolyte component onto the neutral complex.The charges stabilize the complex colloids in aqueous solution of a non-stoichiometric mixture,and the aggregation number of the complex colloids increases with approaching to the stoichiometric mixing ratio.The mixing ratio dependence of the aggregation number for the four complexes is explained by the model proposed in the previous study.

  5. Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.


    We develop a statistical mechanical lattice theory for polymer solvation by a pair of relatively low molar mass solvents that compete for binding to the polymer backbone. A theory for the equilibrium mixture of solvated polymer clusters {AiBCj} and free unassociated molecules A, B, and C is formulated in the spirit of Flory-Huggins mean-field approximation. This theoretical framework enables us to derive expressions for the boundaries for phase stability (spinodals) and other basic properties of these polymer solutions: the internal energy U, entropy S, specific heat CV, extent of solvation Φsolv, average degree of solvation , and second osmotic virial coefficient B 2 as functions of temperature and the composition of the mixture. Our theory predicts many new phenomena, but the current paper applies the theory to describe the entropy-enthalpy compensation in the free energy of polymer solvation, a phenomenon observed for many years without theoretical explanation and with significant relevance to liquid chromatography and other polymer separation methods.

  6. Mathematical modeling of methoxyanabasine C11H16N2O polymer solution ultrafiltration

    Satayev, Marat; Shakirov, Birzhan; Mutaliyeva, Botagoz; Satayeva, Lazzat; Altynbekov, Rustem; Baiysbay, Omirbek; Alibekov, Ravshanbek


    This work covers the mathematical modeling of ultrafiltration with immobile membranes for physiologically-active of methoxyanabasine C11H16N2O polymer solution. Methoxyanabasine is used as low toxic antineoplastic drug. On the basis of theoretical and experimental analysis of mass transfer and hydrodynamics, it is offered the mathematical model of permeability of membranes at an ultrafiltration of polymer solutions. Further the formulas for determination of factor of concentration polarization and ultrafiltration selectivity are calculated.

  7. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    Mhd Radzi Bin Abas; Sharifah Mohamad; Yuk Ping Chin


    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were ...

  8. Exact Solution of the Cluster Size Distribution for Multi-polymer Coagulation Process

    KE Jian-Hong; LIN Zhen-Quan; WANG Xiang-Hong


    We propose a simple irreversible multi-polymer coagulation model in which m polymers consist of multiple components bond spontaneously to form a larger cluster. We solve the generalized Smoluchowski rate equation with constant reaction rates to obtain the exact solution of the cluster size distribution. The results indicate that the evolution behaviour of the system depends crucially on the polymer number m of the coagulation reaction. The cluster concentrations decay as t~m/(m~l) ; anc; tne typical size S(t) of the m-polymer coagulation system grows as t /'m~1'. On the other hand, the cluster size distribution may approach unusual scaling form in some cases.

  9. Experimental investigations and numerical simulations for an open channel flow of a weak elastic polymer solution around a T-profile

    Balan, C.; Neagoe, A.; Nistoran, D. [Hydraulics and Hydraulic Machinery Department - REOROM Group, University ' ' Politehnica' ' of Bucharest, Splaiul Independentei 313, 79590, Bucharest (Romania); Legat, V. [University of Louvain-la-Neuve - Center for Systems Engineering Applied Mechanics (CESAME), Batiment Euler, Av. Georges Lemaitre 4, 1348, Louvain-la-Neuve (Belgium)


    The present paper is concerned with experimental and numerical investigations of planar complex flows of ''weak'' elastic polymer solutions (whose concentration are below the critical overlap concentration), characterised by small relaxation times ({lambda}<0.1 s) and almost constant shear viscosities for small and medium shear rates. The main aim of the study is to detect to what extent a very small amount of elasticity present in a viscous fluid can influence its behaviour in complex flows, without introducing major modifications of classical rheological tests. The samples are polymer solutions of low PIB molecular weight dissolved in highly viscous Newtonian mineral oil. The analysed motion is steady, and takes place in an open channel around a ''T'' profile. Maximum values of the characteristic parameters for the experiments, the Reynolds and Weissenberg numbers, were 45 and 0.1, respectively. The experiments show a decrease of the wake length downstream the profile for weak elastic solutions in comparison to the Newtonian solvent. Actually, the same wake length as in the Newtonian case was obtained for tested polymer solutions, but at higher Re numbers. Numerical simulations using the Giesekus model predict the same behaviour and are consistent with experiments from both qualitative and quantitative point of views. The results of research conclude that, even in small amounts, the presence of elasticity in pure viscous liquids induces quantitative changes from Newtonian flow in complex dominant elongational flows, at elongational rates for which the sudden thickening of extensional viscosity is remarkable. The study is important, since it should enable better understanding and modelling of viscoelastic flows that involve dilute polymer solutions, or fluids with similar rheology; biofluid mechanics being one area of application of this research. Corroboration of experimental flow visualization with numerical simulation is

  10. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.


    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...... of state parameters for the solvent are estimated via the classical Soave method, i.e. using the critical properties and a generalized equation for the energy parameter. When extended to mixtures, the van der Waals one-fluid mixing rules along with the Berthelot combining rule for the molecular cross...... energy parameter are used. The arithmetic mean combining rule is used for the cross co-volume parameter. The deviations from the Berthelot combining rule are taken into account via a simple expression which has been previously obtained from vapor-liquid equilibrium data of athermal polymer solutions...

  11. Study on the sound absorption mechanism in gradient water-soluble polymer solution

    WANG Yuansheng; YANG Xue; ZHU Jinhua; YAO Shuren


    Attention was paid to the study on the sound absorption mechanism of watersoluble polymer during dissolving. A specially designed water-soluble polymer coating was synthesized in our lab. The sound attenuation property was measured in sound tube. The results showed that the sound attenuation of the gradient polymer solution was larger than that of the uniform. Depending on the experimental result and the theory of sound wave propagation in layered medium, a mechanism of gradient water-soluble polymer solution was developed. This mechanism can be described as follows: a water-soluble polymer coating formed a concentration gradient layer when it was dissolved in water. This gradient layer led to multiple reflection and absorption of sound. Finally the sound energy was transferred into heat.

  12. Phases of polymer systems in solution studied via molecular dynamics

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)


    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  13. Evaluations about the physico-chemical stability of docetaxel and irinotecan pre-diluted and diluted solutions: pharmaco-economic perspectives

    Mariarita Laforgia


    Full Text Available Several clinically used anticancer drugs are well-known as far as their pharmacologic properties are concerned, but scarcely ever the interest towards their physico-chemical characteristics in solution led to practical acknowledgement in their management. Thanks to the Units for Centralized Anticancer Drug Handling, the importance to evaluate the concentration of saturation (physical stability or the possible transformations undergone by a drug in solution (chemical stability has become the starting point for avoiding useless wasting drugs and economic resources. By HPLC experiments we have demonstrated that the solutions of two drugs, docetaxel and irinotecan, are particularly stable at different concentrations and times of analyses in our experimental conditions. The best mobile phase for docetaxel was water/methanol/acetonitrile in 42/32/26 volumetric ratio: for halving concentrations (0.72-0.36-0.18-0.09 mg/mL in NaCl 0.9%, the highest value gave a six-day and the three lower concentrations a fourteen-day stability, when storage occurred at room temperature and light protected. Elution of irinotecan was possible through an analysis in mobile phase gradient: at t0 a 20% ammonium acetate 10 mM and 80% methanol mixture, and after 5 min, a 80% ammonium acetate 10 mM and 20% methanol mixture. The physico-chemical stability was showed for five days, for any concentration of analysis when storage occurred at 2-8°C and light protected.

  14. Hybrid light emitting diodes based on solution processed polymers, colloidal quantum dots, and colloidal metal nanoparticles

    Ma, Xin

    This dissertation focuses on solution-processed light-emitting devices based on polymer, polymer/PbS quantum dot, and polymer/silver nanoparticle hybrid materials. Solution based materials and organic/inorganic hybrid light emitting diodes attracted significant interest recently due to many of their advantages over conventional light emitting diodes (LEDs) including low fabrication cost, flexible, high substrate compatibility, as well as tunable emission wavelength of the quantum dot materials. However, the application of these novel solution processed materials based devices is still limited due to their low performances. Material properties and fabrication parameters need to be carefully examined and understood for further device improvement. This thesis first investigates the impact of solvent property and evaporation rate on the polymer molecular chain morphology and packaging in device structures. Solvent is a key component to make the active material solution for spin coating fabrication process. Their impacts are observed and examined on both polymer blend system and mono-polymer device. Secondly, PbS colloidal quantum dot are introduced to form hybrid device with polymer and to migrate the device emission into near-IR range. As we show, the dithiol molecules used to cross-link quantum dots determine the optical and electrical property of the resulting thin films. By choosing a proper ligand for quantum dot ligand exchange, a high performance polymer/quantum dot hybrid LED is fabricated. In the end, the interaction of polymer exciton with surface plasmon mode in colloidal silver nanoparticles and the use of this effect to enhance solution processed LEDs' performances are investigated.

  15. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    Smith, B.F. [Los Alamos National Lab., NM (United States)


    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  16. Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions

    Bonn, D.; Ingremeau, F.; Amarouchene, Y.; Kellay, H.


    The flow of polymer solutions is examined in a flow geometry where a jet is used to inject the viscoelastic solution into a cylindrical tube. We show that this geometry allows for the generation of a "turbulentlike" flow at very low Reynolds numbers with a fluctuation level which can be as high as 3

  17. Investigation of the in-solution relaxation of polymer optical fibre Bragg gratings

    Fasano, Andrea; Woyessa, Getinet; Janting, Jakob


    We investigate the response of PMMA microstructured polymer optical fibre Bragg gratings whenimmersed in methanol/water solutions. Overall we observe a permanent blue-shift in Bragg gratingwavelength after solvent evaporation. The main contribution in the resonance wavelength shift probably...... arisesfrom a permanent change in the size of the fibre, as already reported for high-temperature annealing ofpolymer optical fibres. As a consequence of the solution concentration dependence of the glass transitiontemperature of polymers, different methanol/water solutions lead to various degrees of frozen...

  18. Solution electrospinning of particle-polymer composite fibres

    Christiansen, Lasse; Fojan, Peter


    Electrospinning is a fast, simple way to produce nano/microfibers, resulting in porous mats with a high surface to volume ratio. Another material with high surface to volume ratio is aerogel. A drawback of aerogels is its inherent mechanical weakness. To counteract this, aerogels can be embedded......-supporting abilities of these fibres are discussed. It is concluded that selfsupporting polymer/aerogel composites can be made by electrospinning....

  19. Elastic turbulence in a shell model of polymer solution

    Ray, Samriddhi Sankar


    We show that, at low inertia and large elasticity, shell models of viscoelastic fluids develop a chaotic behaviour with properties similar to those of elastic turbulence. The low dimensionality of shell models allows us to explore a wide range both in polymer concentration and in Weissenberg number. Our results demonstrate that the physical mechanisms at the origin of elastic turbulence do not rely on the boundary conditions or on the geometry of the mean flow.

  20. SANS structural characterization of fullerenol-derived star polymers in solutions

    Jeng, U S; Wang, L Y; Chiang, L Y; Ho, D L; Han, C C


    We have studied the chain conformations of fullerenol-derived star polymers in two organic solvents using small-angle neutron scattering (SANS). The SANS results indicate that the six poly(urethane-ether) arms, chemically bonded on the fullerenol of the C sub 6 sub 0 -based star polymer, have a Gaussian chain conformation in toluene. However, these arms exhibit a pronounced excluded-volume effect in dimethylformamide solutions. We use a scattering model, with the polydispersity of the polymer taken into account, and a fractal model to extract the radius of gyration R sub g values and the persistence lengths of the C sub 6 sub 0 -star polymers in these two organic solutions. (orig.)

  1. Serial dilution microchip for cytotoxicity test

    Bang, Hyunwoo; Lim, Sun Hee; Lee, Young Kyung; Chung, Seok; Chung, Chanil; Han, Dong-Chul; Chang, Jun Keun


    Today's pharmaceutical industry is facing challenges resulting from the vast increases in sample numbers produced by high-throughput screening (HTS). In addition, the bottlenecks created by increased demand for cytotoxicity testing (required to assess compound safety) are becoming a serious problem. We have developed a polymer PDMS (polydimethylsiloxane) based microfluidic device that can perform a cytotoxicity test in a rapid and reproducible manner. The concept that the device includes is well adjustable to automated robots in huge HTS systems, so we can think of it as a potential dilution and delivery module. Cytotoxicity testing is all about the dilution and dispensing of a drug sample. Previously, we made a PDMS based microfluidic device which automatically and precisely diluted drugs with a buffer solution with serially increasing concentrations. This time, the serially diluted drug solution was directly delivered to 96 well plates for cytotoxicity testing. Cytotoxic paclitaxel solution with 2% RPMI 1640 has been used while carrying out cancerous cell based cytotoxicity tests. We believe that this rapid and robust use of the PDMS microchip will overcome the growing problem in cytotoxicity testing for HTS.

  2. A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution


    Full Text Available A new process technology modified from conventional coaxial electrospinning process has been developed to prepare polymer fibers from a high concentration solution. This process involves a pure solvent concentrically surrounding polymer fluid in the spinneret. The concentric spinneret was constructed simply by inserting a metal needle through a high elastic silica gel tube. Two syringe pumps were used to drive the core polymer solution and the sheath solvent. Using polyvinylpyrrolidone (PVP as the polymer model, which normally has an electrospinnable concentration of 10% w/v in ethanol, it was possible to electrospin 35% w/v of PVP in the same solvent, when pure N, N-dimethylacetamide (DMAc was used as sheath fluid. The resultant fibers have a smooth surface morphology and good structural uniformity. The diameter of the fibers was 2.0±0.25 µm when the DMAc-to-polymer-solution flow rate ratio was set as 0.1. The process technology reported here opens a new window to tune the polymer fibers obtained by the electrospinning, and is useful for improving productivity of the electrospinning process.

  3. Recovery of nickel ions from dilute solutions by electrodeionization process%用电去离子过程从稀溶液中回收镍离子并制备纯水

    卢会霞; 闫博; 王建友; 傅学起


    The recovery of nickel ions and pure water production from dilute nickel-containing solution was achieved simultaneously only within one process by using electrodeionization (EDI) system. With a 55 mgtherefore the nickel rejection was higher than 99.9 %, and the dilute product resistivity was in the range of water production from dilute industrial heavy metal wastewater was demonstrated in this study, cleaner production and closed circuit circulation can be realized in some industries such as electroplating.

  4. Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin-polyurethane polymer.

    Appell, Michael; Jackson, Michael A


    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions was examined by batch rebinding assays. The results from the aqueous binding studies were fit to two parameter models to gain insight into the interaction of ochratoxin A with the nanosponge material. The ochratoxin A sorption data fit well to the heterogeneous Freundlich isotherm model. The polymer was less effective at binding ochratoxin A in high pH buffer (9.5) under conditions where ochratoxin A exists predominantly in the dianionic state. Batch rebinding assays in red wine indicate the polymer is able to remove significant levels of ochratoxin A from spiked solutions between 1-10 μg·L(-1). These results suggest cyclodextrin nanosponge materials are suitable to reduce levels of ochratoxin A from spiked aqueous solutions and red wine samples.

  5. Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions

    Fatma Yalcinkaya


    Full Text Available A roller electrospinning system was used to produce nanofibres by using different solution systems. Although the process of electrospinning has been known for over half a century, knowledge about spinning behaviour is still lacking. In this work, we investigated the effects of salt for two solution systems on spinning performance, fibre diameter, and web structure. Polyurethane (PU and polyethylene oxide (PEO were used as polymer, and tetraethylammonium bromide and lithium chloride were used as salt. Both polymer and salt concentrations had a noteworthy influence on the spinning performance, morphology, and diameter of the nanofibres. Results indicated that adding salt increased the spinnability of PU. Salt created complex bonding with dimethylformamide solvent and PU polymer. Salt added to PEO solution decreased the spinning performance of fibres while creating thin nanofibres, as explained by the leaky dielectric model.

  6. Effect of diamagnetic contribution of water on harmonics distribution in a dilute solution of iron oxide nanoparticles measured using high-T{sub c} SQUID magnetometer

    Saari, Mohd Mawardi, E-mail:; Tsukamoto, Yuya; Kusaka, Toki; Ishihara, Yuichi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji


    The magnetization curve of iron oxide nanoparticles in low-concentration solutions was investigated by a highly sensitive high-T{sub c} superconducting quantum interference device (SQUID) magnetometer. The diamagnetic contribution of water that was used as the carrier liquid was observed in the measured magnetization curves in the high magnetic field region over 100 mT. The effect of the diamagnetic contribution of water on the generation of harmonics during the application of AC and DC magnetic fields was simulated on the basis of measured magnetization curves. Although the diamagnetic effect depends on concentration, a linear relation was observed between the detected harmonics and concentration in the simulated and measured results. The simulation results suggested that improvement could be expected in harmonics generation because of the diamagnetic effect when the iron concentration was lower than 72 μg/ml. The use of second harmonics with an appropriate bias of the DC magnetic field could be utilized for realization of a fast and highly sensitive detection of magnetic nanoparticles in a low-concentration solution. - Highlights: • We measured iron oxide nanoparticles solutions using a high-T{sub c} SQUID magnetometer. • Diamagnetic contribution of water in diluted solutions was observed. • Improvement in harmonics generation due to diamagnetism of water could be expected. • Linear relation between harmonics and concentration in diluted solutions was shown. • Detection using second harmonics showed high sensitivity.

  7. Comparison of viscous fingering patterns in polymer and newtonian solutions

    Kawaguchi, Masami; Makino, Kyoko; Kato, Tadaya


    Viscous fingering patterns of aqueous glycerol and hydroxypropyl methyl cellulose (HPMC) solutions pushed by air in the Hele-Shaw cell were observed as a function of isopropyl alcohol. An increase in isopropyl alcohol led to a decrease in surface tension as well as an increase in viscosity of the respective solutions. For the glycerol solutions, namely Newtonian fluids, only the tip splitting pattern was observed, where the fingers were indeed narrower and the number of the fingers increased with increasing isopropyl alcohol content. These morphological changes in the patterns for the glycerol solutions were in agreement with the computer simulations based on the diffusion limited aggregation model. The finger tip velocity is proportional to the ratio of the injection pressure to viscosity according to Darcy's law prediction. In contrast, for HPMC solutions, which show shear-thinning, highly branched pattern only appeared when the injection pressure was changed. When isopropyl alcohol was added to HPMC solutions, a morphological transition from highly branched pattern to tip splitting one was observed. The transition in the pattern would be related to changes in both elastic properties and surface tension. The finger tip velocity of HPMC solutions is scaled with 1.5 power of the ratio of injection pressure to viscosity.

  8. All solution processed tandem polymer solar cells based on thermocleavable materials

    Hagemann, Ole; Bjerring, Morten; Nielsen, Niels Chr.


    Multilayer tandem polymer solar cells were prepared by solution processing using thermocleavable polymer materials that allow for conversion to an insoluble state through a short thermal treatment. The problems associated with solubility during application of subsequent layers in the stack were...... efficiently solved. Devices comprised a transparent front cathode based on solution processed zinc oxide nanoparticles, a large band gap active layer based on a bulk heterojunction between zinc oxide and poly(3-carboxydithiophene) (P3CT) followed by a layer of PEDOT:PSS processed from water. The second cell...

  9. CISM Course on Fluid Mechanics of Surfactant and Polymer Solutions

    Ivanov, Ivan


    Colloidal systems and dispersions are of great importance in oil recovery, waist water treatment, coating, food and beverage industry, pharmaceutical industry, medicine, environmental protection etc. Colloidal systems and dispersions are always multi-component and multiphase systems. In these systems at least one dimension is in a range of colloidal forces action: colloidal dispersions/emulsions are examples of three dimensional colloidal systems, while thin liquid films are examples of one dimensional colloidal systems. The contribution presented in this issue deals with flow, distribution and redistribution, coating and deposition of surfactant and polymer molecules in colloidal systems. The book presents reviews of recent advances and trends by well-know scientists and engineers in this area.

  10. Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: a molecular dynamics simulation of a three-phase system.

    Nada, Hiroki


    A molecular dynamics simulation of a three-phase system including a gas clathrate, liquid water, and a gas was carried out at 298 K and high pressure in order to investigate the growth mechanism of the clathrate from a dilute aqueous gas solution. The simulation indicated that the clathrate grew on interfaces between the clathrate and the liquid water, after transfer of the gas molecules from the gas phase to the interfaces. The results suggest a two-step process for growth: first, gas molecules are arranged at cage sites, and second, H(2)O molecules are ordered near the gas molecules. The results also suggest that only the H(2)O molecules, which are surrounded or sandwiched by the gas molecules, form the stable polygons that constitute the cages of the clathrate. In addition, the growth of the clathrate from a concentrated aqueous gas solution was also simulated, and the results suggested a growth mechanism in which many H(2)O and gas molecules correctively form the structure of the clathrate. The clathrate grown from the concentrated solution contained some empty cages, whereas the formation of empty cages was not observed during the growth from the dilute solution. The results obtained by both simulations are compared with the results of an experimental study, and the growth mechanism of the clathrate in a real system is discussed.

  11. Dilution of a mepivacaine-adrenaline solution in isotonic sodium bicarbonate for reducing subcutaneous infiltration pain in ambulatory phlebectomy procedures: a randomized, double-blind, controlled trial.

    Moro, Leo; Serino, Francesco-Maria; Ricci, Stefano; Abbruzzese, Gloria; Antonelli-Incalzi, Raffaele


    Varicose veins are treated under local infiltration anesthesia. Literature shows that adding sodium bicarbonate reduces the pain associated with local infiltration anesthesia. Nonetheless, sodium bicarbonate is underused. We sought to assess if the use of a solution of mepivacaine 2% plus adrenaline with sodium bicarbonate 1.4% results in less pain associated with local infiltration anesthesia preceding ambulatory phlebectomies, compared with standard preparation diluted with normal saline. In all, 100 adult patients undergoing scheduled ambulatory phlebectomy were randomized to receive either a solution of mepivacaine chlorhydrate 2% plus adrenaline in sodium bicarbonate 1.4% or a similar solution diluted in normal saline 0.9%. Median pain scores associated with local infiltration anesthesia reported in the intervention and control groups were 2 (SD=1.6) and 5 (SD=2.0) (P<.0001), respectively. A general linear model with bootstrapped confidence intervals showed that using the alkalinized solution would lead to a reduction in pain rating of about 3 points. Patients were not asked to distinguish the pain of the needle stick from the pain of the infiltration. Moreover, a complete clinical study of sensitivity on the infiltrated area was not conducted. Data obtained from this study may contribute to improve local infiltration anesthesia in ambulatory phlebectomy and other phlebologic procedures. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Modeling lower critical solution temperature behavior of associating polymer brushes with classical density functional theory.

    Gong, Kai; Marshall, Bennett D; Chapman, Walter G


    We study the lower critical solution temperature (LCST) behavior of associating polymer brushes (i.e., poly(N-isopropylacrylamide)) using classical density functional theory. Without using any empirical or temperature-dependent parameters, we find the phase transition of polymer brushes from extended to collapsed structure with increasing temperature, indicating the LCST behavior of polymer brushes. The LCST behavior of associating polymer brushes is attributed to the interplay of hydrogen bonding interactions and Lennard-Jones attractions in the system. The effect of grafting density and molecular weight on the phase behavior of associating polymer brushes has been also investigated. We find no LCST behavior at low grafting density or molecular weight. Moreover, increasing grafting density decreases the LCST and swelling ratio of polymer brushes. Similarly, increasing molecular weight decreases the LCST but increases the swelling ratio. At very high grafting density, a partial collapsed structure appears near the LCST. Qualitatively consistent with experiments, our results provide insight into the molecular mechanism of LCST behavior of associating polymer brushes.

  13. Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology

    Hietala, Sami; Strandman, Satu; Jarvi, Paula


    interaction. Polymers bearing shorter PS blocks gave gels with relatively long linear response followed by strain hardening before shear thinning while the longer PS blocks lead to formation of elastic but brittle gels with limited linear regime before shear thinning. Star-block copolymers showed more elastic...... that the thermal properties of the gels are changed by increasing the PS block lengths. Gels with short PS blocks soften upon heating at lower temperatures compared with the gels with longer PS blocks....

  14. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution.

    Ramírez, Elizabeth; Burillo, S Guillermina; Barrera-Díaz, C; Roa, Gabriela; Bilyeu, Bryan


    Three gamma crosslinked polymeric hydrogels were synthesized and evaluated as lead ion sorbents. A crosslinked poly(acrylic acid) hydrogel was compared with two 4-vinylpiridine-grafted poly(acrylic acid) hydrogels (26.74 and 48.1% 4-vinylpiridine). The retention properties for Pb(II) from aqueous solutions of these three polymers were investigated by batch equilibrium procedure. The effects of pH, contact time and Pb(II) concentration were evaluated. The optimal pH range for all polymers was 4-6. The lightly grafted polymer (PAAc-g-4VP at 26.74%) exhibited a Pb(II) removal close to 80% at 5h and above 90% at 24h. The maximum Pb(II) removal was 117.9mg g(-1) of polymer and followed the Freundlich adsorption model. XPS characterization indicates that the carboxyl groups are involved in the Pb(II) removal.

  15. Quasi-elastic neutron scattering study on water and polymer dynamics in thermo/pressure sensitive polymer solutions.

    Osaka, Noboru; Shibayama, Mitsuhiro; Kikuchi, Tatsuya; Yamamuro, Osamu


    Dynamics of water and poly(N-isopropylacrylamide) (PNIPA) in concentrated aqueous solutions, where the majority of water molecules are attached to polymer chains, has been investigated with use of incoherent quasi-elastic neutron scattering (QENS) and dynamic light scattering (DLS) measurements as functions of temperature, T, and hydrostatic pressure, P. It was observed by QENS that the self-diffusion coefficient, D(water), of water in PNIPA/H(2)O solutions increased by P at temperatures below the lower critical solution temperature (LCST) of PNIPA aqueous solutions. However, above the LCST, D(water) decreased by P, as is often reported in non-hydrogen bonding solutions. In isobaric heating runs, therefore, the jump in D(water) at LCST decreased with increasing pressure. On the other hand, the mean-square displacement, , of the local vibrational motion of PNIPA in PNIPA/D(2)O solutions, where the incoherent scattering signal of PNIPA was predominantly observed, was reduced due to the aggregation behavior of PNIPA by pressurizing, which was also confirmed by using DLS. The jump in at the LCST became gradual by pressurizing, which was consistent with the changes of the dynamics of water obtained in PNIPA/H(2)O solutions.

  16. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio


    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  17. Flow-enhanced solution printing of all-polymer solar cells.

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C K; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F; Mannsfeld, Stefan C B; Bao, Zhenan


    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  18. Direct Uniaxial Alignment of a Donor-Acceptor Semiconducting Polymer Using Single-Step Solution Shearing.

    Shaw, Leo; Hayoz, Pascal; Diao, Ying; Reinspach, Julia Antonia; To, John W F; Toney, Michael F; Weitz, R Thomas; Bao, Zhenan


    The alignment of organic semiconductors (OSCs) in the active layers of electronic devices can confer desirable properties, such as enhanced charge transport properties due to better ordering, charge transport anisotropy for reduced device cross-talk, and polarized light emission or absorption. The solution-based deposition of highly aligned small molecule OSCs has been widely demonstrated, but the alignment of polymeric OSCs in thin films deposited directly from solution has typically required surface templating or complex pre- or postdeposition processing. Therefore, single-step solution processing and the charge transport enhancement afforded by alignment continue to be attractive. We report here the use of solution shearing to tune the degree of alignment in poly(diketopyrrolopyrrole-terthiophene) thin films by controlling the coating speed. A maximum dichroic ratio of ∼7 was achieved on unpatterned substrates without any additional pre- or postdeposition processing. The degree of polymer alignment was found to be a competition between the shear alignment of polymer chains in solution and the complex thin film drying process. Contrary to previous reports, no charge transport anisotropy was observed because of the small crystallite size relative to the channel length, a meshlike morphology, and the likelihood of increased grain boundaries in the direction transverse to coating. In fact, the lack of aligned morphological structures, coupled with observed anisotropy in X-ray diffraction data, suggests the alignment of polymer molecules in both the crystalline and the amorphous regions of the films. The shear speed at which maximum dichroism is achieved can be controlled by altering deposition parameters such as temperature and substrate treatment. Modest changes in molecular weight showed negligible effects on alignment, while longer polymer alkyl side chains were found to reduce the degree of alignment. This work demonstrates that solution shearing can be used

  19. Prediction of the Conductance of Strong Electrolytes and the Calculation of the Ionization Constant of Weak Electrolytes in a Dilute Solution by a New Equation


    In order to predict the conductance for dilute 1-1 valent electrolyte solutions,a new conductance equation was proposed based on the Onsager and Onsagar-Fuoss-Chen conductance equation.It has only one parameter A,which can be obtained directly from the data of ionic limiting molar conductivity Λ∞m,and its expression is very simple.The new equation has been verified by the experimental molar conductivities of some single strong electrolyte and mixed electrolyte solutions at 298.15 K reported in literatures.The results are in good agreement with the experimental data.Meanwhile the ionization constants of some weak electrolyte solutions were calculated by a modified equation of this new equation,and it was also found that the calculation results are in good agreement with the data in the literature.

  20. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios


    Two algorithms for evaluating liquid-liquid equilibria (LLE) for binary and ternary polymer solutions are presented. The binary algorithm provides the temperature versus concentration cloud-point curve at fixed pressure, whereas the ternary algorithm provides component 1 versus component 2...

  1. Prediction of Solution Properties of Flexible-Chain Polymers: A Computer Simulation Undergraduate Experiment

    de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez


    This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…

  2. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.


    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  3. Tension, rigidity and preferential curvature of interfaces between coexisting polymer solutions

    Tromp, R.H.; Blokhuis, E.M.


    The properties of the interface in a phase-separated solution of polymers with different degrees of polymerization and Kuhn segment lengths are calculated. The starting point is the planar interface, the profile of which is calculated in the so-called “blob model”, which incorporates the solvent in

  4. Flow of Viscoelastic Polymer Solutions through Filter Screens

    Machač, Ivan; Surý, Alexander; Šiška, Bedřich


    In this contribution, the measurements are presented of the pressure drop in the creeping flow of viscoelastic solution of polyacrylamides through metal wire screens, differing in wire diameter, aperture dimension, and type of weaving. In this flow, a strong elastic pressure drop excess manifest itself. Analysing the extensive set of experimental data, it was verified that for engineering estimation of the pressure drop excess, a simple form of the corrective Deborah number function can be used.

  5. Skin formation and bubble growth during drying process of polymer solution.

    Arai, S; Doi, M


    When a polymer solution with volatile solvent is dried, skins are often formed at the surface of the solution. It has been observed that after the skin is formed, bubbles often appear in the solution. We conducted experiments to clarify the relation between the skin formation and the bubble formation. We measured the time dependence of the thickness of the skin layer, the size of the bubbles, and the pressure in the solution. From our experiments, we concluded that i) the gas in the bubble is a mixture of solvent vapor and air dissolved in the solution, ii) the bubble nucleation is assisted by the pressure decrease in the solution covered by the skin layer, and iii) the growth of the bubbles is diffusion limited, mainly limited by the diffusion of air molecules dissolved in the solution.

  6. Effect of some anionic polymers on pH of triethanolamine aqueous solutions.

    Musiał, Witold; Kubis, Aleksander


    One of the suggested approaches in the management and prophylaxis of acne involves binding of free fatty acids in the form of soap with alcoholamines. Due to a possible irritating effect of alcoholamines associated with a relatively high pH of their aqueous solutions, complexation of alcoholamines with acid polymers is advocated. Triethanolamine is one of the best recognized alcoholamines. It was conventionally neutralized with Carbopols, Eudragits, alginic acid and pectin. During neutralization of polymer dispersions with triethanolamine, variations in the course of the neutralization curve have been observed among individual macromolecular compounds. The pH of 0.1 mol/l triethanolamine solution reaches 10.51, while following a complete neutralization with anionic polymers, such as Carbopols, Eudragits, alginic acid and pectin, pH ranges from 3.88 for systems neutralized with alginic acid to 8.50 for the system neutralized with Eudragit S-100. Complexation of triethanolamine with anionic polymers decreases its pH, and it is possible to find such pH range in which pH of the preparation containing the polymer and triethanolamine will correspond to the physiological pH of the skin.

  7. Phase behavior and second osmotic virial coefficient for competitive polymer solvation in mixed solvent solutions.

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F


    We apply our recently developed generalized Flory-Huggins (FH) type theory for the competitive solvation of polymers by two mixed solvents to explain general trends in the variation of phase boundaries and solvent quality (quantified by the second osmotic virial coefficient B2) with solvent composition. The complexity of the theoretically predicted miscibility patterns for these ternary mixtures arises from the competitive association between the polymer and the solvents and from the interplay of these associative interactions with the weak van der Waals interactions between all components of the mixture. The main focus here lies in determining the influence of the free energy parameters for polymer-solvent association (solvation) and the effective FH interaction parameters {χαβ} (driving phase separation) on the phase boundaries (specifically the spinodals), the second osmotic virial coefficient B2, and the relation between the positions of the spinodal curves and the theta temperatures at which B2 vanishes. Our classification of the predicted miscibility patterns is relevant to numerous applications of ternary polymer solutions in industrial formulations and the use of mixed solvent systems for polymer characterization, such as chromatographic separation where mixed solvents are commonly employed. A favorable comparison of B2 with experimental data for poly(methyl methacrylate)/acetonitrile/methanol (or 1-propanol) solutions only partially supports the validity of our theoretical predictions due to the lack of enough experimental data and the neglect of the self and mutual association of the solvents.

  8. Current applications of foams formed from mixed surfactant-polymer solutions.

    Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor


    Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry.

  9. Physical chemical and citotoxic evaluation of highly diluted solutions of Euphorbia tirucalli L. prepared through the fifty milesimal homeopathic method

    Carlos Renato Zacharias


    Full Text Available Background: although Hahnemann described the fifty-milesimal (LM method in the 6th edition of the Organon of the Medical Art, very little research has been carried out on the physical chemical properties of these homeopathic preparations. Furthermore, there is still no evidence allowing for the correlation between the alleged physical chemical properties and the biological effects of high dilutions. Aims: to evaluate physical chemical characteristics of LM preparations including electrical conductivity, pH and refraction index, and their effect on biological experimental models. Materials and methods: preparations tested for physical chemical analysis were dilutions 1 lm to 10 lm of Euphorbia tirucalli L. prepared from the latex and the juice of the plant. To rule the seasonal characteristics of this plant, 2 different populations were used, one collected in June 2007 and the other in May 2008. Furthermore, the cytotoxic effect of Euphorbia tirucalli 5 lm was tested on human breast cancer cells (MCF7 through MTT assay. Some differences among the two collections were observed. However, any clear correlation could be observed between physical chemical properties and biological activity.

  10. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    Chin, Yuk Ping; Mohamad, Sharifah; Abas, Mhd Radzi Bin


    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results. PMID:20957106

  11. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    Mhd Radzi Bin Abas


    Full Text Available The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI and toluene-2,6-diisocyanate (TDI, with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.

  12. Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer.

    Chin, Yuk Ping; Mohamad, Sharifah; Abas, Mhd Radzi Bin


    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.

  13. Preparation of Laminin-apatite-polymer Composites Using Metastable Calcium Phosphate Solutions


    A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly ( ethylene terephthalate ) (PET) and polyethylene ( PE ) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable ealcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin- apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite composite coating.

  14. Solution Behavior of Modified Polyethylenimine (PEI) Polymers by Light Scattering Investigations

    Sonny A. Ekhorutomwen; Samuel P. Sawan; Barbara F. Smith; Thomas W. Robison; Kennard V. Wilson


    The eight average molecular weights, as well as other characteristics such as the second virial coefficients and root-mean-square (RMS) radii of gyration of poly (ethyleneimine) (PEI) and various derivatives, have been determined in solution light scattering studies. The solution dynamics of PEI and carboxylated and phosphorylated derivatives were studied a pH of 3.3, 7.0 and 10.0. Measurements were made in freshly distilled and de-ionized water as well as in 0.1 M, 1 M and 5-M solutions of sodium chloride in water. Molecular weights were calculated from Berry plots. The purified polymer, PEI-1, gave a molecular weight of 39,600 g/mol., while the same polymer, which was not purified, PEI-2, has MW of 43,100 g/mol.

  15. A solution state diode using semiconductor polymer nanorods with nanogap electrodes.

    Mutlu, Senol; Sonmez, Bedri Gurkan


    A solution state polymer diode, which uses regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT):dichlorobenzene solution as the semiconductor between highly doped p-type silicon and aluminum electrodes has been built. Electrodes separated by a 40 nm gap enable intra-chain charge carrier transfer through the lengths of single polymer chains. This prevents chain to chain hopping and chain entanglements, increasing carrier mobility. The degradation with time and hysteresis effects of the diodes are measured. An optimal P3HT solution concentration of 6 mg ml(-1) is found. A current density of at least 300 mA cm(-2) is achieved, indicating at least a six-fold improvement in carrier mobility compared to previously fabricated solid state P3HT diodes.

  16. Diffusion in Evaporating Polymer Solutions: A Model in the Dissipative Formalism of Nonequilibrium Thermodynamics

    Es-haghi, Siamak Shams


    In this paper, diffusion in polymer solutions undergoing evaporation of solvent is modeled as a coupled heat and mass transfer problem with moving boundary condition within the framework of nonequilibrium thermodynamics. The proposed governing equations derived from the fundamental equation of classical thermodynamics using the local equilibrium hypothesis display more complex connection between heat and non-convective mass fluxes than what has been presented in the previous research works. Numerical computations, performed using an explicit finite difference scheme, indicate that the model is able to capture the effect of thermal diffusion in polymer solutions. This effect manifests itself as an increase in local concentration of solvent near warm substrates during solution casting process.

  17. Displacement of polymer solution on residual oil trapped in dead ends

    张立娟; 岳湘安


    For waterflooding reservoir,oil trapped in pore’s dead ends is hardly flushed out,and usually becomes one typical type of residual oil.The microscopic displacement characteristics of polymer solution with varied viscoelastic property were studied by numerical and experimental method.According to main pore structure characteristics and rheological property of polymer solution through porous media,displacement models for residual oil trapped in dead ends were proposed,and upper-convected Maxwell rheological model was used as polymer solution’s constitutive equation.The flow and stress field was given and displacement characteristic was quantified by introducing a parameter of micro swept coefficient.The calculated and experimental results show that micro swept coefficient rises with the increase of viscoelasticity;for greater viscoelasticity of polymer solution,vortices in the dead end have greater swept volume and displacing force on oil,and consequently entraining the swept oil in time.In addition,micro swept coefficient in dead end is function of the inclination angle(θ) between pore and dead end.The smaller of θ and 180-θ,the flow field of viscoelastic fluid is developed in dead ends more deeply,resulting in more contact with oil and larger swept coefficient.

  18. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo


    The surface characteristics of molybdenite (MoS2) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer depressants

  19. Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells

    Biao Xiao


    Full Text Available Polymer solar cells (PSCs are a new type of renewable energy source currently being extensively investigated due to perceived advantages; such as being lightweight, low-cost and because of the unlimited materials resource. The power conversion efficiency of state-of-the-art PSCs has increased dramatically in the past few years, obtained mainly through the development of new electron donor polymers, acceptors, and novel device structures through the use of various electrode interfacial materials. In this short review, recent progress in solution-processed cathode interfacial layers that could significantly improve device performances is summarized and highlighted.


    YIN Hong-jun; FU Chun-quan; LV Yan-ping


    With the consideration of the visco-elasticity,the adsorption effect and the variation of rheological parameters, a seepage flow model of visco-elastic polymer solutions was established. The model was numerically treated with the finite difference method. Then curves of Bottom Hole Pressure (BHP) and formation pressure were drawn. The influences of the relaxation time, the injection rate, the permeability reduction co efficient, the consistency coefficient and the power-law exponent of the injected fluid on pressure performance were analyzed. This study shows that it is necessary to consider the visco-elasticity of non-Newtonian fluid in analyzing of pressure performance in the polymer flooding.

  1. Molecular properties and intermolecular forces--factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions.

    Terzyk, Artur P


    Presented paper recapitulates the results of 6 years' study concerning the effect of carbon surface chemical composition on adsorption of paracetamol, phenol, acetanilide, and aniline from dilute aqueous solutions on carbons. Adsorption-desorption isotherms, enthalpy, and kinetics of adsorption data are shown for the measurements performed at three temperatures (300, 310, and 320 K) at two pH levels (1.5 and 7) on commercial activated carbons. The data were obtained for four carbons: the initial carbon D43/1 and forms modified by applying concentrated HNO3, fuming H2SO4, and gaseous NH3. The modification procedures do not change the porosity in a drastic way, but lead to drastic changes of the composition of carbon surface layer. By applying MOPAC (a general-purpose semiempirical molecular orbital package), the physicochemical constants characterizing the molecules of adsorbates are calculated, including the distribution of the Mulliken charges, the dipole moments and ionization potentials, and the energies of interaction with the unique positive and negative charges. They are correlated with the parameters characterizing the adsorption (and kinetics) process of studied molecules on the mentioned above carbons. The mechanisms proposed in the literature for the description of adsorption from dilute aqueous solutions are verified, and a general mechanism of adsorption is proposed.

  2. Solvent Property Induced Morphological Changes of ABA Amphiphilic Triblock Copolymer Micelles in Dilute Solution: A Self-consistent Field Simulation Study

    Juan-juan Fan; Yuan-yuan Han; Jie Cui


    The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation.The solvent property was tuned by changing the Flory-Huggins interaction parameters between each type of blocks and solvent,respectively.The simulation results show that by changing the solvent properties,a series of micelle morphologies such as vesicle,cage-like,ring-shaped,rod-like and spherical micelle morphologies can be obtained.Variations of the free energy of the solution system and the surface area of micelles with the Flory-Huggins interaction parameters were calculated to better understand the effect of solvent property on micelle morphologies.In addition,a phase diagram showing the morphological changes of micelles with the Flory-Huggins interaction parameters is provided.

  3. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms.

    Paduszyński, Kamil


    The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem

  4. Biodegradable Polycaprolactone as Ion Solvating Polymer for Solution-Processed Light-Emitting Electrochemical Cells

    Jürgensen, Nils; Zimmermann, Johannes; Morfa, Anthony John; Hernandez-Sosa, Gerardo


    In this work, we demonstrate the use of the biodegradable polymer polycaprolactone (PCL) as the ion solvating polymer in solution-processed light-emitting electrochemical cells (LEC). We show that the inclusion of PCL in the active layer yields higher ionic conductivities and thus contributes to a rapid formation of the dynamic p-i-n junction and reduction of operating voltages. PCL shows no phase separation with the emitter polymer and reduces film roughness. The devices show light-emission at voltages as low as 3.2 V and lifetimes on the order of 30 h operating above 150 cd m‑2 with turn-on times <20 s and current and luminous efficacies of 3.2 Cd A‑1 and 1.5 lm W‑1 respectively.

  5. Henry constants in polymer solutions with the van der Waals equation of state

    Bithas, Sotiris; Kalospiros, Nikolaos; Kontogeorgis, Georgios


    The simple der Waals equation of state, as extended to polymer systems, is applied to the correlation and prediction of Henry constants in polymer solutions comprising five polymers and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with one adjustable...... parameter is satisfactory, with typical errors within the experimental uncertainty and comparable to those with the more complex Perturbed Hard Chain Theory-based equations of state with the same number of adjustable parameters. A predictive scheme for calculating Henry constants is also presented, which...... is a corresponding-states correlation for a dimensionless Henry constant defined based on the van der Waals equation of state. Satisfactory results-often close to the ones from the one-parameter correlation-are obtained for all systems investigated in this work. Compared with literature models that have been applied...

  6. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng


    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  7. SCC of X-52 and X-60 weldements in diluted NaHCO{sub 3} solutions with chloride and sulfate ions

    Gonzalez-Rodriguez, J.G.; Zeferino-Rodriguez, T. [UAEM-Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa 62210, Cuernavaca, Morelos (Mexico); Espinosa-Medina, M.A.; Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)


    Stress corrosion cracking tests were performed in both X-52 and X-60 weldments in sodium bicarbonate (NaHCO{sub 3}) solutions at 50 C using the Slow Strain Rate Testing (SSRT) technique. Solution concentrations varied between 0.1 to 0.0001 M, and to simulate the NS-4 solution, chloride (Cl{sup -}) and/or sulfate (SO{sub 4}{sup 2-}) ions were added to the 0.01 M solution. Tests were complemented with hydrogen permeation measurements and polarization curves. It was found that the corrosion rate, taken as the corrosion current, I{sub corr}, was maximum in 0.01 M NaHCO{sub 3} and with additions of SO{sub 4}{sup 2-} ions. Higher or lower solution concentrations or additions of Cl{sup -} alone decreased the corrosion rate of the weldment. The SSC susceptibility, measured as the percentage reduction in area, was maximum in 0.01M NaHCO{sub 3}. Higher or lower solution concentrations of additions of Cl{sup -} or SO{sub 4}{sup 2-} decreased the SCC susceptibility of the weldment. The amount of hydrogen uptake for the weldment was also highest in 0.01 M NaHCO{sub 3} solution, but it was minimum with the addition of Cl{sup -} or SO{sub 4}{sup 2-} ions. Thus, the most likely mechanism for the cracking susceptibility of X-52 and X-60 weldments in diluted NaHCO{sub 3} solutions seems to be hydrogen-assisted anodic dissolution. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Selective intercalation of polymers in carbon nanotubes.

    Bazilevsky, Alexander V; Sun, Kexia; Yarin, Alexander L; Megaridis, Constantine M


    A room-temperature, open-air method is devised to selectively intercalate relatively low-molecular-weight polymers (approximately 10-100 kDa) from dilute, volatile solutions into open-end, as-grown, wettable carbon nanotubes with 50-100 nm diameters. The method relies on a novel self-sustained diffusion mechanism driving polymers from dilute volatile solutions into carbon nanotubes and concentrating them there. Relatively low-molecular-weight polymers, such as poly(ethylene oxide) (PEO, 600 kDa) and poly(caprolactone) (PCL, 80 kDa), were encapsulated in graphitic nanotubes as confirmed by transmission electron microscopy, which revealed morphologies characteristic of mixtures in nanoconfinements affected by intermolecular forces. Whereas relatively small, flexible polymer molecules can conform to enter these nanotubes, larger macromolecules (approximately 1000 kDa) remain outside. The selective nature of this process is useful for filling nanotubes with polymers and could also be valuable in capping nanotubes.

  9. Gate-induced superconductivity in a solution-processed organic polymer film.

    Schön, J H; Dodabalapur, A; Bao, Z; Kloc, C; Schenker, O; Batlogg, B


    The electrical and optical properties of conjugated polymers have received considerable attention in the context of potentially low-cost replacements for conventional metals and inorganic semiconductors. Charge transport in these organic materials has been characterized in both the doped-metallic and the semiconducting state, but superconductivity has not hitherto been observed in these polymers. Here we report a distinct metal-insulator transition and metallic levels of conductivity in a polymer field-effect transistor. The active material is solution-cast regioregular poly(3-hexylthiophene), which forms relatively well ordered films owing to self-organization, and which yields a high charge carrier mobility (0.05-0.1 cm2 V(-1) s(-1)) at room temperature. At temperatures below approximately 2.35 K with sheet carrier densities exceeding 2.5 x 10(14) cm(-2), the polythiophene film becomes superconducting. The appearance of superconductivity seems to be closely related to the self-assembly properties of the polymer, as the introduction of additional disorder is found to suppress superconductivity. Our findings therefore demonstrate the feasibility of tuning the electrical properties of conjugated polymers over the largest range possible-from insulating to superconducting.

  10. Brushes and soap : Grafted polymers and their interactions with nanocolloids

    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the grafting, howev

  11. Brushes and soap : grafted polymers and their interactions with nanocolloids

    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the grafti

  12. Brushes and soap : grafted polymers and their interactions with nanocolloids

    Currie, E.P.K.


    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the

  13. Polymer dynamics in semidilute solution during electrospinning: A simple model and experimental observations

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam H.; Zussman, Eyal


    Electrospun polymer nanofibers demonstrate outstanding mechanical and thermodynamic properties as compared to macroscopic-scale structures. Our previous work has demonstrated that these features are attributed to nanofiber microstructure [Nat. Nanotechnol.1748-338710.1038/nnano.2006.172 2, 59 (2007)]. It is clear that this microstructure is formed during the electrospinning process, characterized by a high stretching rate and rapid evaporation. Thus, when studying microstructure formation, its fast evolution must be taken into account. This study focuses on the dynamics of a highly entangled semidilute polymer solution under extreme longitudinal acceleration. The theoretical modeling predicts substantial longitudinal stretching and transversal contraction of the polymer network caused by the jet hydrodynamic forces, transforming the network to an almost fully stretched state. This prediction was verified by x-ray phase-contrast imaging of electrospinning jets of poly(ethylene oxide) and poly(methyl methacrylate) semidilute solutions, which revealed a noticeable increase in polymer concentration at the jet center, within less than 1 mm from the jet start. Thus, the proposed mechanism is applicable to the initial stage of the microstructure formation.

  14. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution.

    Bleek, Katrin; Taubert, Andreas


    The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.

  15. Polymer-Controlled Growth of CuO Nanodiscs in the Mild Aqueous Solution

    PENG Yin; LIU Zhengyin; YANG Zihui


    CuO nanodiscs have been synthesized on a large scale by a facile solution-based method using polymers as crystal growth modifiers. X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high resolu-tion transmission electron microscopy (HRTEM) were carded out to characterize the structures and morphologies of the obtained products. The effects of reaction temperature, concentrations of polyacrylamide (PAM) and reac-tants on the morphology and size of the product were studied. The results revealed that the CuO nanodisc had sin-gle-crystal monoclinic structures, and grew along (002) and (110) planes. Experimental conditions had all influence on the shape and size of the final products, but polymer PAM played the key role in formation of the CuO nanodisc.A possible growth mechanism of the CuO nanostructures based on typical polymer-crystal interactions in a mild aqueous solution was given. Polymer-directed crystal growth may provide promising routes to rational synthesis of various ordered inorganic and inorganic-organic hybrid materials with complex forms and structural specialization.

  16. "JCE" Classroom Activity #106. Sequestration of Divalent Metal Ion by Superabsorbent Polymer in Diapers

    Chen, Yueh-Huey; Lin, Jia-Ying; Lin, Li-Pin; Liang, Han; Yaung, Jing-Fun


    This activity explores an alternative use of a superabsorbent polymer known as a water absorbing material. A dilute solution of CuCl[subscript 2] is treated with a small piece of unused disposable diaper containing superabsorbent sodium polyacrylates. The polymer is used for the removal of Cu[superscript 2+] ions from the solution. The…

  17. D{sub 2}O−H{sub 2}O solvent isotope effects on the enthalpies of bicaret hydration and dilution of its aqueous solutions at different temperatures

    Ivanov, Evgeniy V., E-mail: [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo (Russian Federation); Batov, Dmitriy V. [Incorporated Physicochemical Center of Solution Researches, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045, Ivanovo (Russian Federation); Ivanovo' s State University of Chemistry and Technology, 7 Sheremetevsky Ave, 153000 Ivanovo (Russian Federation); Gazieva, Galina A.; Kravchenko, Angelina N. [Laboratory of Nitrogen-containing Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 199119 Moscow (Russian Federation); Abrosimov, Vladimir K. [Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo (Russian Federation)


    Graphical abstract: - Highlights: • Enthalpies of solution of bicaret (tetraethylglycoluril) in H{sub 2}O and D{sub 2}O were measured. • D{sub 2}O–H{sub 2}O enthalpy-isotopic effect is negative and decreasing with temperature. • Enthalpic coefficients h{sub 22} for pairwise solute–solute interactions were derived. • Quantity of h{sub 22} is negative and becoming the more negative in heavy water. • Prevailingly hydrophobic hydration of bicaret is weakened with rising temperature. - Abstract: The molar enthalpies of solution of bicaret or 2,4,6,8-tetraethyl-2,4,6,8-tatraazabicyclo[3.3.0]octane-3,7-dione in ordinary (H{sub 2}O) and heavy (D{sub 2}O) water at (278.15, 288.15, 298.15, 308.15, and 318.15) K as well as the enthalpies for dilution of its H/D isotopically distinguishable aqueous solutions at 298.15 K were measured calorimetrically. The standard (at infinite dilution) molar enthalpies and heat capacities of solution, and the enthalpic coefficients for pair (h{sub 22}) and triplet (h{sub 222}) interactions between hydrated solute molecules, along with D{sub 2}O–H{sub 2}O solvent isotope effects (IEs) on the studied quantities were computed. The enthalpic effects of bicaret dissolution and corresponding IEs were found to be negative and decreasing in magnitude with increasing temperature. On the contrary, the h{sub 22} and h{sub 222} values as well as IEs on them were found to be positive. These facts indicate that the bicaret hydration being predominantly hydrophobic is enhanced in the D{sub 2}O medium. The hydration behavior of the solute considered was discussed in comparison with that for mebicar or 2,4,6,8-tetramethyl-2,4,6,8-tatraazabicyclo[3.3.0]octane-3,7-dione using the previously obtained data.

  18. Polymer Conformation near the Critical Demixing Point of a Binary Solution

    He, Lilin; Cheng, Gang; Melnichenko, Yuri


    We have used Contrast Matching Small Angle Neutron Scattering (CMSANS) to probe directly the conformation change of polyethylene glycerol (PEO) chains in the critical demixing region of Acetonitrile-d3 in (D2O + H2O) at concentration of the components corresponding to zero-average contrast condition. The d-PEO and h-PEO were mixed to match the scattering length density (SLD) of the critical liquid solution, which allowed us to extract single-chain dimension of polymer molecules in the aggregates near the critical point of the solvent. A non-monotonic variation of Rg was detected as temperature approached the critical temperature of phase demixing of acetonitrile- water solution, which was attributed to the interaction asymmetry of the solvent molecules with polymers predicted by Brochard and de Gennes two decades ago. To our best knowledge, this is the first direct experimental evidence supporting this prediction.

  19. Correlation between thermal diffusion and solvent self-diffusion in semidilute and concentrated polymer solutions.

    Rauch, J; Hartung, M; Privalov, A F; Köhler, W


    We have performed measurements of thermal diffusion coefficients DT and solvent self-diffusion coefficients Dss in semidilute to concentrated polymer solutions. Solutes of different glass transition temperatures and solvents of different solvent qualities have been used. The investigated systems are in detail: poly(dimethyl-siloxane) in toluene, tristyrene in toluene, polystyrene in toluene, polystyrene in tetrahydrofuran, polystyrene in benzene, and polystyrene in cyclohexane. The thermal diffusion data are compared to our data and literature data for solvent self-diffusion coefficients. In all systems the concentration dependence of DT closely parallels the one of Dss which may be viewed as a local probe for friction on a length scale of the size of one polymer segment. This identifies local friction as the dominating parameter determining the concentration dependence of DT. Solvent quality, in contrast, has no influence on DT.

  20. Light scattering experiments on aqueous solutions of selected cellulose ethers: contribution to the study of polymer-mineral interactions in a new injectable biomaterial

    Bohic, Sylvain; Weiss, Pierre; Roger, Philippe; Daculsi, Guy


    Hydroxypropylmethylcellulose (HPMC) is used as a ligand for a bioactive calcium phosphate ceramic (the filler) in a ready-to-use injectable sterilized biomaterial for bone and dental surgery. Light scattering experiments were usually used to study high water-soluble polymers and to determine the basic macromolecular parameters. In order to gain a deeper understanding of polymer/mineral interactions in this type of material, we have investigated the effect of divalent and trivalent ions (Ca2+, PO43−) and steam sterilization on dilute solutions of HPMC and HEC. The sterilization process may cause some degradation of HEC taking into account its high molecular weight and some rigidity of the polymer chain. Moreover, in the case of HPMC, the changes in the conformations rather than degradation process are supposed. These effects of degradation and flocculation are strengthened in alkaline medium. Experimental data suggested the formation of chelate complexes between Ca2+ and HPMC which improve its affinity to the mineral blend and consolidate the injectable biomaterial even in the case of its hydration by biological fluid. PMID:15348303

  1. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    Minelli, Matteo; Doghieri, Ferruccio [Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Centro Interdipartimentale per la Ricerca Industriale - Meccanica Avanzata e Materiali (CIRI-MAM), Alma Mater Studiorum - Università di Bologna, via Terracini 28 - (Italy)


    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.

  2. Efficient inverted tandem polymer solar cells with a solution-processed recombination layer

    Kouijzer, Sandra; Esiner, Serkan; Frijters, Corne H.; Wienk, Martijn M.; Janssen, Rene A.J. [Molecular Materials and Nanosystems, Eindhoven University of Technology (Netherlands); Turbiez, Mathieu [BASF Schweiz AG, Basel (Switzerland)


    Solution-processed tandem polymer solar cells with an inverted polarity configuration provide a power conversion efficiency of 5.8%. The tandem cells use an almost loss-free recombination layer and two photoactive layers, with wide and small bandgaps, to increase the power conversion efficiency beyond that of the corresponding single-layer cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Phase separation in dilute LiCl-H2O solution related to the polyamorphism of liquid water.

    Mishima, Osamu


    When an emulsified 4.8 mol % LiCl-H2O solution was cooled under a pressure of 0.35 or 0.45 GPa and decompressed to 0.1 GPa at 142 K, slightly above its glass transition temperature (approximately 140 K at 0.1 GPa), its volume increased suddenly. This was regarded as an appearance of the low-density amorphous ice in the liquid solution as suggested by x-ray and Raman measurements, and this appearance corresponded to the high-to-low-density polyamorphic transition of pure H2O. Hysteresis was considered to accompany this volumetric change. The hysteresis of the liquid transition proves its first-order nature and, as for the solution, this suggests that the transition is a polyamorphic phase separation.

  4. Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate. [1,2-propanediol

    Chow, Tina Kuo Fung.


    The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation with B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.

  5. Impact of Polymer Conformation on the Crystal Growth Inhibition of a Poorly Water-Soluble Drug in Aqueous Solution

    Schram, Caitlin J.; Beaudoin, Stephen P.; Taylor, Lynne S.


    Poor aqueous solubility is a major hindrance to oral delivery of many emerging drugs. Supersaturated drug solutions can improve passive absorption across the gastrointestinal tract membrane as long as crystallization can be inhibited, enhancing the delivery of such poorly soluble therapeutics. Polymers can inhibit crystallization and prolong supersaturation; therefore, it is desirable to understand the attributes which render a polymer effective. In this study, the conformation of a polymer a...

  6. Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A 57Co emission Mössbauer spectroscopic study

    Kamnev, Alexander A.; Tugarova, Anna V.; Kovács, Krisztina; Homonnay, Zoltan; Kuzmann, Erno; Vértes, Attila


    Emission (57Co) Mössbauer spectra of the aspartic acid—57CoCl2 system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Mössbauer spectra, besides a weak contribution from after-effects, showed two Fe2 + /Co2 + components which were ascribed to octahedrally and tetrahedrally coordinated 57CoII microenvironments in the Asp-cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

  7. Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A {sup 57}Co emission Moessbauer spectroscopic study

    Kamnev, Alexander A.; Tugarova, Anna V. [Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (Russian Federation); Kovacs, Krisztina; Homonnay, Zoltan, E-mail:; Kuzmann, Erno; Vertes, Attila [Eoetvoes Lorand University, Institute of Chemistry (Hungary)


    Emission ({sup 57}Co) Moessbauer spectra of the aspartic acid-{sup 57}CoCl{sub 2} system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Moessbauer spectra, besides a weak contribution from after-effects, showed two Fe{sup 2 + }/Co{sup 2 + } components which were ascribed to octahedrally and tetrahedrally coordinated {sup 57}Co{sup II} microenvironments in the Asp-cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

  8. Concurrent solution-like decoloration rate and high mechanical strength from polymer-dispersed photochromic organogel.

    Long, Shijun; Bi, Shuguang; Liao, Yonggui; Xue, Zhigang; Xie, Xiaolin


    To achieve a fast photochromic response in solid matrix, photochromic molecules/segments have been either dispersed into elastomers via physical doping or linked to glassy polymers by soft units through covalent bonding. However, the former is lack of high mechanical strength and the latter owes the drawback of time-consumption of synthesis. Here, we propose a facile strategy of co-solvent evaporation to prepare polymer-dispersed photochromic organogel where both high mechanical strength of the glassy polymer matrix and solution-like fast photochromism of the photochromic molecule within organogel can be retained concurrently. Glassy PVA matrix and dispersed organogel of 1,3:2,4-di-O-benzylidene-d-sorbitol/poly(propylene glycol) (DBS/PPG) provide high mechanical strength and sufficient free volume for intramolecular rotation of photochromic spiropyran (SP), respectively. Interestingly, these thin films behave a solution-like decoloration the decay rate of which is 65-70 fold faster than that in the SP-directly doped PVA film and only slightly slower than those in their corresponding PPG solutions.

  9. Theory of DNA electrophoresis in physical gels and entangled polymer solutions

    Duke, Thomas; Viovy, Jean Louis


    A scaling theory is presented for the electrophoretic mobility of DNA in sieving media that form dynamically evolving meshworks, such as physical gels and solutions of entangled polymers. In such media, the topological constraints on the DNA's motion are perpetually changing as cross links break and rejoin or as the polymers diffuse. It is shown that if the rate of constraint release falls within a certain range (which depends on the field strength), fractionation can be extended to higher molecular weights than would be feasible using a permanent gel of equivalent pore size. This improvement is a consequence of the disruptive effect that constraint release has on the mechanism of molecular orientation. Numerical simulations support the predictions of the theory. The possibility of realizing such a system in practice, with the aim of improving on current electrophoresis methods, is commented upon. It is suggested that semidilute polymer solutions may be a versatile medium for the rapid separation of long single-stranded DNA molecules, and the particular quality of solution required is identified.

  10. Solution-based single molecule imaging of surface-immobilized conjugated polymers.

    Dalgarno, Paul A; Traina, Christopher A; Penedo, J Carlos; Bazan, Guillermo C; Samuel, Ifor D W


    The photophysical behavior of conjugated polymers used in modern optoelectronic devices is strongly influenced by their structural dynamics and conformational heterogeneity, both of which are dependent on solvent properties. Single molecule studies of these polymer systems embedded in a host matrix have proven to be very powerful to investigate the fundamental fluorescent properties. However, such studies lack the possibility of examining the relationship between conformational dynamics and photophysical response in solution, which is the phase from which films for devices are deposited. By developing a synthetic strategy to incorporate a biotin moiety as a surface attachment point at one end of a polyalkylthiophene, we immobilize it, enabling us to make the first single molecule fluorescence measurements of conjugated polymers for long periods of time in solution. We identify fluctuation patterns in the fluorescence signal that can be rationalized in terms of photobleaching and stochastic transitions to reversible dark states. Moreover, by using the advantages of solution-based imaging, we demonstrate that the addition of oxygen scavengers improves optical stability by significantly decreasing the photobleaching rates.

  11. Scale-up of osmotic membrane bioreactors by modeling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions.

    Kim, Suhan


    A full-scale osmotic membrane bioreactor (OMBR) model was developed to simulate salt accumulation, draw solution (DS) dilution, and water flux over the hollow-fiber membrane length. The model uses the OMBR design parameters, DS properties, and forward osmosis (FO) membrane characteristics obtained from lab-scale tests. The modeling results revealed a tremendous water flux decline (10→0.82LMH) and short solids retention time (SRT: 5days) due to salt accumulation and DS dilution when OMBR is scaled up using commercially available DS and FO membrane. Simulated water flux is a result of interplay among reverse salt flux, internal and external concentration polarization (ICP and ECP). ECP adversely impacts water flux considerably in full-scale OMBR although it is often ignored in previous works. The OMBR model makes it possible to select better DS properties (higher flow rate and salt concentration) and FO membranes with higher water flux propensity in full-scale operation. Copyright © 2014 Elsevier Ltd. All rights reserved.


    YAN Xin; WANG Dehua; QIAN Baogong


    An intermolecular 13C{1H} NOE of CCl4 in the solutions of polystyrene and polybutadiene and their copolymers was observed. The results show that the defined polymer-CCl4 interaction variable has a linear relation with the polymer composition and the difference of solubility parameters and exponentially depends on the reciprocal of temperature.

  13. PIM-1 as a Solution-Processable “Molecular Basket” for CO 2 Capture from Dilute Sources

    Pang, Simon H.; Jue, Melinda L.; Leisen, Johannes; Jones, Christopher W.; Lively, Ryan P.


    Rising atmospheric CO2 levels have triggered recent research into the science of amine materials supported on hard, porous materials such as mesoporous silica or alumina. While such materials can give high CO2 uptakes and good sorption kinetics, they are difficult to utilize in practical applications due to difficulty in contacting large volumes of CO2-laden gases with powder materials without significant pressure drops or sorbent attrition. Here, we describe a simple approach based on the impregnation of a permanently microporous polymer, PIM-1, with poly(ethylene imine) (PEI), removing the need for use of the hard oxide. PEI/PIM-1 composites demonstrate comparable performance to more traditionally studied oxide sorbents, with the benefit that PIM-1 is soluble in common solvents, making it eminently more viable for processing into morphologies that can facilitate heat and mass transfer and fabrication into low pressure drop contactors. In addition to adsorption studies performed on a variety of PEI/PIM-1 architectures, spin diffusion NMR studies were performed to suggest that PEI is well-dispersed within the PIM-1, allowing for rapid CO2 adsorption.

  14. Inhibition effect of 2-amino-5-ethyl-1, 3, 4-thiadiazole on corrosion behaviour of austenitic stainless steel type 304 in dilute HCl solution

    Roland T Loto; Cleophas A Loto; Abimbola P Popoola; Tatiana Fedotova


    The corrosion inhibition of type 304 austenitic stainless steel by 2-amino-5-ethyl-1, 3, 4-thiadiazole (TTD) compound and the electrochemical behaviour in dilute HCl solution were investigated through potentiodynamic polarization test, mass loss techniques and potential measurements. The results show that the organic derivative is highly effective with a maximum inhibition efficiency of 70.22% from mass loss analysis, while 74.2% is obtained from polarization tests. Observation of the scanning electron micrographs shows the absence of corrosion products due to electrochemical influence of TTD on the surface morphology of the steel. X-ray diffractometry reveals the absence of phase compounds and complexes on the steel samples after exposure. TTD adsorption on the steel surface obeys the Langmuir, Frumkin and Freundlich adsorption isotherms. Corrosion thermodynamic calculations reveal the inhibition mechanism occurs through chemisorption process and results from statistical analysis depict the strong influence of inhibitor concentration on the electrochemical performance of the TTD.

  15. Activity coefficients at infinite dilution for solutes in the trioctylmethylammonium bis(trifluoromethylsulfonyl)imide ionic liquid using gas-liquid chromatography

    Gwala, Nobuhle V. [Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000 (South Africa); Deenadayalu, Nirmala, E-mail: [Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000 (South Africa); Tumba, Kaniki; Ramjugernath, Deresh [Thermodynamics Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001 (South Africa)


    The activity coefficient at infinite dilution (gamma{sub 13}{sup i}nfinity) for 30 solutes: alkanes, alkenes, cycloalkanes, alkynes, ketones, alcohols, and aromatic compounds was determined from gas-liquid chromatography (glc) measurements at three temperatures (303.15, 313.15, and 323.15) K. The ionic liquid: trioctylmethylammonium bis(trifluoromethylsulfonyl)imide, was used as the stationary phase. For each temperature, gamma{sub 13}{sup i}nfinity values were determined using two columns with different mass percent packing of the ionic liquid. The selectivity (S{sub 12}{sup i}nfinity) value was calculated from the gamma{sub 13}{sup i}nfinity to determine the suitability of the solvent as a potential entrainer for extractive distillation in the separation of an hexane/benzene mixture, indicative of a typical industrial separation problem for benchmarking purposes.

  16. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P


    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  17. Thermodynamic properties of dilute Co-Fe solid solutions studied by 57Fe Mössbauer spectroscopy

    Konieczny Robert


    Full Text Available The Co1-xFex alloys where x ranges from 0.01 to 0.06 were measured at room temperature using transmission Mössbauer spectroscopy (TMS. The analysis of the obtained data allowed the determination of the short-range order (SRO, the binding energy Eb between two iron atoms in the studied materials using the extended Hrynkiewicz-Królas idea and the enthalpy of solution HCo-Fe of Fe in Co. The results showed that the Fe atoms dissolved in a Co matrix interact repulsively and the estimated value of HCo-Fe = -0.166(33 eV/atom. Finally, values of the enthalpy of solution were used to predict the enthalpy of mixing for the Co-Fe system. These findings were compared with corresponding data given in the literature, which were derived from calorimetric experiments and from the cellular atomic model of alloys described by Miedema.

  18. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    Jagadamma, Lethy Krishnan


    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  19. Continuum theory of critical phenomena in polymer solutions: Formalism and mean field approximation

    Goldstein, Raymond E.; Cherayil, Binny J.


    A theoretical description of the critical point of a polymer solution is formulated directly from the Edwards continuum model of polymers with two- and three-body excluded-volume interactions. A Hubbard-Stratonovich transformation analogous to that used in recent work on the liquid-vapor critical point of simple fluids is used to recast the grand partition function of the polymer solution as a functional integral over continuous fields. The resulting Landau-Ginzburg-Wilson (LGW) Hamiltonian is of the form of a generalized nonsymmetric n=1 component vector model, with operators directly related to certain connected correlation functions of a reference system. The latter is taken to be an ensemble of Gaussian chains with three-body excluded-volume repulsions, and the operators are computed in three dimensions by means of a perturbation theory that is rapidly convergent for long chains. A mean field theory of the functional integral yields a description of the critical point in which the power-law variations of the critical polymer volume fraction φc, critical temperature Tc, and critical amplitudes on polymerization index N are essentially identical to those found in the Flory-Huggins theory. In particular, we find φc ˜N-1/2, Tθ-Tc˜N-1/2 with (Tθ the theta temperature), and that the composition difference between coexisting phases varies with reduced temperature t as N-1/4t1/2. The mean field theory of the interfacial tension σ between coexisting phases near the critical point, developed by considering the LGW Hamiltonian for a weakly inhomogeneous solution, yields σ˜N-1/4t3/2, with the correlation length diverging as ξ˜N1/4t-1/2 within the same approximation, consistent with the mean field limit of de Gennes' scaling form. Generalizations to polydisperse systems are discussed.

  20. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    Hu, Hanlin


    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  1. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    Zhao, Kui


    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  2. Chemically sprayed ZnO:F thin films deposited from diluted solutions: Effect of the time of aging on physical characteristics

    Tirado-Guerra, S. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Apdo. Postal 75-544, Mexico D. F., 07300 (Mexico); de la L. Olvera, M.; Maldonado, A. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D. F., 07000 (Mexico); Castaneda, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, 04510, D.F. (Mexico)


    Transparent and conductive fluorine-doped zinc oxide (ZnO:F) thin films were deposited on glass substrates by the chemical-spray technique starting from a diluted solution of zinc acetate and hydrofluoric acid. The effect of the aging time of the starting solution on the electrical, structural, morphological and optical characteristics of ZnO:F thin films was observed and analyzed. The resistivity of the ZnO:F thin films decreases as a more aged solution is used, reaching a saturation value of 6x10{sup -2}{omega}cm. X-ray diffraction reveals that the films are polycrystalline in nature with a (100) preferential growth in almost all the cases. High-resolution scanning electron microscopy clearly reveals that the films are composed of nanoparticles of spherical shape, whose average diameter is in the order of 15nm that matches well with the crystallite size calculated from X-ray diffraction. This result shows that fluorine incorporation effectively inhibits grain growth. This, in turn, produces a porous structure. Also, the increase in the time of aging enhances slightly the transmittance of the films. (author)

  3. An approach by using near-infrared diffuse reflectance spectroscopy and resin adsorption for the determination of copper, cobalt and nickel ions in dilute solution.

    Sheng, Nan; Cai, Wensheng; Shao, Xueguang


    Near-infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool and used in various fields, it is seldom, however, used in the analysis of metal ions in solutions. A method for quantitative determination of metal ions in solution is developed by using resin adsorption and near-infrared diffuse reflectance spectroscopy (NIRDRS). The method makes use of the resin adsorption for gathering the analytes from a dilute solution, and then NIRDRS of the adsorbate is measured. Because both the information of the metal ions and their interaction with the functional group of resin can be reflected in the spectrum, quantitative determination is achieved by using multivariate calibration technique. Taking copper (Cu(2+)), cobalt (Co(2+)) and nickel (Ni(2+)) as the analyzing targets and D401 resin as the adsorbent, partial least squares (PLS) model is built from the NIRDRS of the adsorbates. The results show that the concentrations that can be quantitatively detected are as low as 1.00, 1.98 and 1.00 mg L(-1) for Cu(2+), Co(2+) and Ni(2+), respectively, and the coexistent ions do not influence the determination.

  4. Surface tension of dilute alcohol-aqueous binary fluids: n-Butanol/water, n-Pentanol/water, and n-Hexanol/water solutions

    Cheng, Kuok Kong; Park, Chanwoo


    Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.

  5. Rheology of Biopolymer Solutions and Gels

    David R. Picout; Ross-Murphy, Simon B.


    Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio) polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi...

  6. Effects of cooling rate on solidification behavior of dilute Al-Sc and Al-Sc-Zr solid solution

    金头男; 聂祚仁; 徐国富; 阮海琼; 杨军军; 付静波; 左铁镛


    Six alloys with different compositions of Al-0.1%Sc, Al-0.3%Sc, Al-0.3%Zr, Al-0.1% Sc-0. 1%Zr,Al-0.3%Sc-0.1%Zr and Al-0.3%Sc-0.3%Zr were prepared by casting in a wedge shaped copper mould. The hardness test, microstructure observation, and DSC thermal analysis were applied to fully investigate the solidification behavior of the wedge tip (whose cooling rate is 1 000 K/s) and the top surface (cooling rate 100 K/s) of each casting. The results show that the cast structures in the hypoeutectic region of Al-Sc alloys are slightly affected by cooling rates during the solidification. In the case of hypereutectic alloy of Al-0.3%Sc-0.3%Zr , the cast grains were remarkably refined under the condition of a 100 K/s cooling rate, however, under a 1 000 K/s cooling rate condition,solute atoms contribute nothing to the grain-refinement, due to the eutectic concentration becomes higher. The hardness can be improved to a greater degree by Sc single addition, compared to single Zr addition, but it can be improved even greater when Sc added together with Zr. It is sensitive to cooling rate, the higher the cooling rate, the greater the hardness. By combining the results of TEM examination and DSC analysis, it can be seen that a supersaturated Al solid solution forms during the solidification, and the solubility of Sc in Al solution can be improved by increasing the cooling rate.

  7. Electrophoretic Migration Behavior of Deoxyribonucleic Acid Fragments in Three Polymer Solution Concentration Regions%脱氧核糖核酸分子在高分子溶液3个不同浓度区间的电泳迁移行为

    靳艳; 林炳承; 冯应升


    The theory of polymer coils shrinking in semi-dilute solu tionhas recent ly been developed on polymer solution. The polymer solution from coils s hrinki ng concentration CS to uniform entangled concentration C+ has been d efined as semi-dilute solution. We experimentally investigated the electrophoretic migration behavio r of 100 bp deoxyribonucleic acid (DNA) Ladder in hydroxypropyl methyl cellulose (HPMC) concentration ran ging from 1.25 g/L to 16.06 g/L. The friction force mobility μf is used to expr ess the friction force that DNA will encounter in capillary electrophoresis. Our results indicate the division of polymer solution into three regions depending on the relationship of μf and HPMC concentration and Ferguson plot. Resolutions of 200 bp/300 bp and 700 bp/800 bp show semi-dilute polymer solution suits large fragments and small fragments DNA separation r espectively. The result s confirm that the current polymer theory is valid under actual CE condition.%借鉴高分子亚浓溶液线团收缩理论,研究了脱氧核糖核酸(DNA)片段在高分子溶液全浓度区间的电泳迁移行为。结果表明,在高分子稀溶液、亚浓溶液和浓溶液3个不同浓度区间,DNA的电泳迁移行为各不同,DNA片段的分离在这3个浓度区间也存在差异。

  8. Statistical mechanics of sum frequency generation spectroscopy for the liquid-vapor interface of dilute aqueous salt solutions

    Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.


    We demonstrate a theoretical description of vibrational sum frequency generation (SFG) at the boundary of aqueous electrolyte solutions. This approach identifies and exploits a simple relationship between SFG lineshapes and the statistics of molecular orientation and electric field. Our computer simulations indicate that orientational averages governing SFG susceptibility do not manifest ion-specific shifts in local electric field, but instead, ion-induced polarization of subsurface layers. Counterbalancing effects are obtained for monovalent anions and cations at the same depth. Ions held at different depths induce an imbalanced polarization, suggesting that ion-specific effects can arise from weak, long ranged influence on solvent organization.

  9. Statistical mechanics of sum frequency generation spectroscopy for the liquid-vapor interface of dilute aqueous salt solutions

    Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.


    We demonstrate a theoretical description of vibrational sum frequency generation (SFG) at the boundary of aqueous electrolyte solutions. This approach identifies and exploits a simple relationship between SFG lineshapes and the statistics of molecular orientation and electric field. Our computer simulations indicate that orientational averages governing SFG susceptibility do not manifest ion-specific shifts in local electric field, but instead, ion-induced polarization of subsurface layers. Counterbalancing effects are obtained for monovalent anions and cations at the same depth. Ions held at different depths induce an imbalanced polarization, suggesting that ion-specific effects can arise from weak, long-ranged influence on solvent organization.

  10. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    Olanrewaju, Kayode O.; Breedveld, Victor


    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  11. Thermally cross-linkable hole transport polymers for solution-based organic light-emitting diodes.

    Cha, Seung Ji; Cho, Se-Na; Lee, Woo-Hyung; Chung, Ha-Seul; Kang, In-Nam; Suh, Min Chul


    Two thermally cross-linkable hole transport polymers that contain phenoxazine and triphenylamine moieties, X-P1 and X-P2, are developed for use in solution-processed multi-stack organic light-emitting diodes (OLEDs). Both X-P1 and X-P2 exhibit satisfactory cross-linking and optoelectronic properties. The highest occupied molecular orbital (HOMO) levels of X-P1 and X-P2 are -5.24 and -5.16 eV, respectively. Solution-processed super yellow polymer devices (ITO/X-P1 or X-P2/PDY-132/LiF/Al) with X-P1 or X-P2 hole transport layers of various thicknesses are fabricated with the aim of optimizing the device characteristics. The fabricated multi-stack yellow devices containing the newly synthesized hole transport polymers exhibit satisfactory currents and power efficiencies. The optimized X-P2 device exhibits a device efficiency that is dramatically improved by more than 66% over that of a reference device without an HTL.

  12. Solution-Processed p-Dopant as Interlayer in Polymer Solar Cells.

    Guillain, F; Endres, J; Bourgeois, L; Kahn, A; Vignau, L; Wantz, G


    We report here an original approach to dope the semiconducting polymer-metal interface in an inverted bulk-heterojunction (BHJ) organic solar cell. Solution-processed 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is deposited on top of a P3HT:PC61BM layer before deposition of the top electrode. Doping of P3HT by F4-TCNQ occurs after thermally induced diffusion at 100 °C of the latter into the BHJ. Diffusion and doping are evidenced by XPS and UV-vis-NIR absorption. XPS highlights the decrease in Fluorine concentration on top of the BHJ after annealing. In the same time, a charge transfer band attributed to doping is observed in the UV-vis-NIR absorption spectrum. Inverted polymer solar cells using solution-processed F4-TCNQ exhibit power conversion efficiency of nearly 3.5% after annealing. This simple and efficient approach, together with the low annealing temperature required to allow diffusion and doping, leads to standard efficiency P3HT:PC61BM polymer solar cells, which are suitable for printing on plastic flexible substrate.

  13. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N


    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process.

  14. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction.

    Chauhan, Harsh; Kuldipkumar, Anuj; Barder, Timothy; Medek, Ales; Gu, Chong-Hui; Atef, Eman


    To correlate the polymer's degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state. Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers. PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90 > Eudragit E100 > HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers. Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.

  15. Polymer-clay nanocomposites obtained by solution polymerization of vinyl benzyl triammonium chloride in the presence of advanced functionalized clay

    Raluca Ianchis; Dan Donescu; Ludmila Otilia Cinteza; Violeta Purcar; Cristina Lavinia Nistor; Critian Petcu; Cristian Andi Nicolae; Raluca Gabor; Silviu Preda


    Polymer-clay nanocomposites were synthesized by solution polymerization method using advanced functionalized clay and vinyl benzyl trimethyl ammonium chloride as monomer. First stage consisted in the silylation of a commercial organo-modified clay-Cl 20A using alkoxysilanes with different chain lengths. In the second step, the synthesis and characterization of polymer-nanocomposites were followed. To evaluate the clay functionalization process as well as the final polymer-clay products, thermogravimetric,X-ray diffraction, dynamic light scattering, Fourier transform infrared spectroscopy and three test liquid contact angles analyses were used. The loss of ammonium ions from commercial clay, the grafting degree, the lengths and the nature of alkyl chain influence the dispersion of the advanced modified clay into the polymer solution and, furthermore, the properties of the final polymer-clay nanocomposite film.

  16. Interpolymer reactions of nonionic polymers with polyacrylic acid in aqueous solutions

    E. Shaikhutdinov


    Full Text Available Results of fundamental investigations in the intermacromolecular reactions and interpolymer complexes to be performed by authors with co-workes within last 20 years have been intergrated and summarized in the present review. The raw of fundamental regularities in the effect of factors of different nature (pH, ionic strength, temperature, hydrophilic-hydrophobic balance of macrochain, etc. on the complexation of nonionic polymers with polycarboxylic acids in aqueous solutions has been revealed. Critical pH upon complexation (pHcrit. has been used for evaluation of the complexing ability of the polymers. It was shown tha tdepending on pHcrit. all systems can be divided into 2 groups, namely, weak complexing and strongly complexing. The existence of two critical pH upon complexation responsible for formation typical interpolymer complexes and hydrophilic associations has been demonstrated by the method of luminescence spectroscopy.

  17. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    Kiefer, David


    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  18. Propiedades de Superficie en Soluciones Acuosas Diluidas de Alcoholes con Tres Carbonos Surface Properties of Aqueous Dilute Solutions of Alcohols with Three Carbons

    Manuel S Páez


    Full Text Available Se determinó la tensión superficial de soluciones acuosas diluidas de alcoholes mono y polihidroxílicos a varias temperaturas usando el método de ascenso capilar. Los datos experimentales fueron usados para evaluar la entropía, la entalpía y la concentración superficial, la constante de enlazamiento y la pendiente límite. Se analizan el efecto de la temperatura, del tamaño de la cadena alquílica y de la posición de los grupos hidroxilos en el soluto expuestos al solvente. Los resultados muestran que la tensión superficial de las soluciones varía linealmente con la temperatura y que el carácter hidrofóbico de estos solutos, aumenta según el orden: 123PT, 13PD, 12PD y 1P. Adicionalmente se detectaron procesos de rompimiento de enlaces de las esferas de hidratación (entalpías positivas y aumento del desorden molecular (entropías positivas, en la región superficial.Surface tension of diluted aqueous solutions of mono and polyhydroxilic alcohols was determined at various temperatures using the method of capillary rising. The experimental data were used to evaluate surface entropies, enthalpies, and concentration, binding constants and the limiting slope. The effect of temperature, of the alkyl chain size and of the position of the hydroxyl groups in the solute that were exposed to the solvent are analyzed. The results show that the surface tension of the solutions varies lineally with the temperature and that the hydrophobic character of these solutes rises according to the order: 123PT, 13PD, 12PD y 1P. Additionally, bond breaking processes of the hydration spheres (positive enthalpies and molecular disorder increase (positive entropies in the surface region were detected.

  19. Microchip-based 3D-Cell Culture Using Polymer Nanofibers Generated by Solution Blow Spinning.

    Chen, Chengpeng; Townsend, Alexandra D; Sell, Scott A; Martin, R Scott


    Polymer nano/micro fibers have found many applications including 3D cell culture and the creation of wound dressings. The fibers can be produced by a variety of techniques that include electrospinning, the primary disadvantage of which include the requirement for a high voltage supply (which may cause issues such as polymer denaturation) and lack of portability. More recently, solution blow spinning, where a high velocity sheath gas is used instead of high voltage, has been used to generate polymer fibers. In this work, we used blow spinning to create nano/microfibers for microchip-based 3D cell culture. First, we thoroughly investigated fiber generation from a 3D printed gas sheath device using two polymers that are amenable to cell culture (polycaprolactone, PCL and polystyrene, PS) as well as the parameters that can affect PCL and PS fiber quality. Using the 3D printed sheath device, it was found that the pressure of the sheath N2 and the concentration of polymer solutions determine if fibers can be produced as well as the resulting fiber morphology. In addition, we showed how these fibers can be used for 3D cell culture by directly depositing PCL fibers in petri dishes and well plates. It is shown the fibers have good compatibility with RAW 264.7 macrophages and the PCL fiber scaffold can be as thick as 178 ± 14 μm. PCL fibers created from solution blow spinning (with the 3D printed sheath device) were then integrated with a microfluidic device for the first time to fabricate a 3D cell culture scaffold with a flow component. After culturing and stimulating macrophages on the fluidic device, it was found that the integrated 3D fibrous scaffold is a better mimic of the extracellular matrix (as opposed to a flat, 2D substrate), with enhanced nitrite accumulation (product of nitric oxide release) from macrophages stimulated with lipopolysaccharide. PS fibers were also made and integrated in a microfluidic device for 3D culture of endothelial cells, which stayed

  20. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)


    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  1. Removal of Chloroform from Hydrochloride Acid Solution Using Fine Powder of Polymer as Adsorbent

    LU,Yingzhou; QUE,Yong; LI,Chunxi; MENG,Hong; WANG,Zihao


    In order to choose a suitable adsorbent for the removal of chloroform from its hydrochloric acid solution,the adsorptive ability of some polymer adsorbents was investigated in terms of their adsorption curves in water and 20% hydrochloric acid solutions at 298.15 K,and compared with that of active carbon (AC) and solid paraffin (SP).The adsorbents studied include the fine powders of chlorinated rubber (CR),polypropylene (PP),chlorinated polypropylene (CPP) and polyvinylchloride (PVC).The results showed that the adsorption behavior followed the Langmuir equation and the adsorption ability of these adsorbents followed the order AC > PVC > CR > PP > CPP> SP.This order is basically in line with the decrease of chloro-content of the adsorbents from PVC to SP.The adsorptivity of PVC and CR was nearly equivalent to that of AC with their saturated adsorption being about 1.4 g-CHCl3 (g-absorbent) -1.For all adsorbents studied,the adsorption capacity always decreases with the increase of hydrochloric acid concentration.It is showed that the commercial polymer powder of PVC or CR can be used as an efficient absorbent for the removal of chloroform from its aqueous solution for its low cost,good adsorption ability and ease of thermal desorption for recycling.

  2. Cyclic Polymer with Alternating Monomer Sequence.

    Zhu, Wen; Li, Zi; Zhao, Youliang; Zhang, Ke


    Cyclic polymers with alternating monomer sequence are synthesized for the first time based on the ring-closure strategy. Well-defined telechelic alternating polymers are synthesized by reversible addition-fragmentation chain transfer polymerization by copolymerizing the electron acceptor monomer of N-benzylmaleimide and donor monomer of styrene with a feed ratio of 1 between them. The corresponding cyclic alternating polymers are then produced by the UV-induced Diels-Alder click reaction to ring-close the linear alternating polymer precursors under highly diluted reaction solution.

  3. Mannitol influence on the separation of DNA fragments by capillary electrophoresis in entangled polymer solutions.

    Han, F; Xue, J; Lin, B


    A new kind of sieving matrix is presented in this paper to allow satisfactory separation of DNA fragments in a relatively low viscous solution. When a certain amount of mannitol was added to cellulose solution not concentrated enough to separate PGEM-3Zf(+)/HaeIII standards well, a polymer solution with low viscosity but with very good separation effects was obtained. The separation result of this sieving buffer was comparable with those using highly concentrated cellulose solutions. The sieving ability of solutions with different cellulose concentrations and different amounts of mannitol has been investigated. It was proved that 0.5% was the minimum hydroxypropylmethylcellulose (HPMC) concentration that could be used to separate DNA fragments satisfactorily. HPMC solutions with a concentration of less than 0.5% could not separate the standard DNA fragments even in the presence of mannitol. It was found that 6% was the optimized mannitol concentration because either more or less mannitol will lead a decrease of resolution. The principle of the positive influence of mannitol has also been discussed.

  4. Polymer-based oral rehydration solution for treating acute watery diarrhoea.

    Gregorio, Germana V; Gonzales, Maria Liza M; Dans, Leonila F; Martinez, Elizabeth G


    Acute diarrhoea is one of the main causes of morbidity and mortality among children in low-income countries. Glucose-based oral rehydration solution (ORS) helps replace fluid and prevent further dehydration from acute diarrhoea. Since 2004, the World Health Organization (WHO) has recommended the osmolarity of less than 270 mOsm/L (ORS ≤ 270) versus greater than 310 mOsm/L formulation (ORS ≥ 310). Polymer-based ORS (for example, prepared using rice or wheat) slowly releases glucose and may be superior to glucose-based ORS. To compare polymer-based oral rehydration solution (polymer-based ORS) with glucose-based oral rehydration solution (glucose-based ORS) for treating acute watery diarrhoea. We searched the following sources up to 5 September 2016: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (1966 to 5 September 2016), EMBASE (1974 to 5 September 2016), LILACS (1982 to 5 September 2016), and mRCT (2007 to 5 September 2016). We also contacted researchers, organizations, and pharmaceutical companies, and searched reference lists. We included randomized controlled trials (RCTs) of people with acute watery diarrhoea (cholera and non-cholera associated) that compared polymer-based and glucose-based ORS (with identical electrolyte contents). Two review authors independently assessed the search results and risk of bias, and extracted data. In multiple-treatment arms with two or more treatment groups, we combined outcomes as appropriate and compared collectively with the control group. Thirty-five trials that included 4284 participants met the inclusion criteria: 28 trials exclusively included children, five included adults, and two included both adults and children. Polymer-based ORS versus glucose-based ORS (osmolarity ≤ 270) Eight trials (752 participants) evaluated this comparison, and seven trials used rice as a polymer source

  5. Electron magnetic resonance of diluted solid solutions of Gd{sup 3+} in SrTiO{sub 3}

    Biasi, R.S. de, E-mail: [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)


    Highlights: {yields} EMR is an effective method to study the range of the exchange interaction in solid solutions. {yields} The range of the exchange interaction between Gd{sup 3+} ions in SrTiO{sub 3} is about 0.96 nm. {yields} The linewidth increases faster with Gd concentration in SrTiO{sub 3} than in other host lattices, such as CeO{sub 2}, SrO, CaO and ZrSiO{sub 4}. - Abstract: Electron magnetic resonance (EMR) spectra of gadolinium-doped strontium titanate (SrTiO{sub 3}) have been studied at room temperature for gadolinium concentrations between 0.20 and 1.20 mol%. The results suggest that the Gd{sup 3+} ions occupy substitutional sites, replacing the Sr{sup 2+} ion, that the electron magnetic resonance linewidth increases with increasing gadolinium concentration and that the range of the exchange interaction between Gd{sup 3+} ions is about 0.96 nm, of the same order as that of the same ion in other host lattices, such as ceria (CeO{sub 2}), quicklime (CaO), strontia (SrO) and zircon (ZrSiO{sub 4}). The fact that the electron magnetic resonance linewidth of the Gd{sup 3+} ion increases, regularly and predictably, with Gd concentration, shows that the Gd{sup 3+} ion can be used as a probe to study, rapidly and non-destructively, the crystallinity and degradation of SrTiO{sub 3}.

  6. Thermoresponsive Polymers with Lower Critical Solution Temperature- or Upper Critical Solution Temperature-Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells.

    Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi


    Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications.

  7. Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues.

    Marcotullio, G; Krisanti, E; Giuntoli, J; de Jong, W


    The present work explores the combined production of hemicellulose-derived carbohydrates and an upgraded solid residue from wheat straw using a dilute-acid pretreatment at mild temperature. Dilute aqueous HCl solutions were studied at temperatures of 100 and 120°C, and they were compared to dilute FeCl(3) under the same conditions. Comparable yields of soluble sugars and acetic acid were obtained, affording an almost complete removal of pentoses when using 200 mM aqueous solutions at 120°C. The solid residues of pretreatment were characterized showing a preserved crystallinity of the cellulose, and a almost complete removal of ash forming matter other than Si. Results showed upgraded characteristic of the residues for thermal conversion applications compared to the untreated wheat straw.

  8. Reduction in Friction and Wear of Alumina Surfaces as Assisted with Surface-Adsorbing Polymers in Aqueous Solutions

    Røn, Troels; Lee, Seunghwan


    electrostatic attraction and form a protective layer. For example, polyacrylic acid (PAA) showed a reduction in coefficient of friction by ca. 28% and wear rate by 50% at a concentration of 10 mg/mL in PBS solution compared to polymer-free buffer solution. This effect was comparable to reported lubricating...

  9. Adsorption and desorption of reversible supramolecular polymers

    Zweistra, H.J.A.; Besseling, N.A.M.


    We report numerical mean-field results on the quasichemical level of approximation that describe adsorption of reversible supramolecular polymers at a flat interface. Emphasis is laid on the regime of strong adsorption from a dilute solution. There are two differences with respect to macromolecular

  10. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M.


    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m-1 range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  11. Mixing and structural properties of model polymer solutions: Molecular theory and simulation

    McDaniels, Brian S.


    Recent advances in new single-site catalysts continue to fuel an already growing polymer market. As the market increases, a better understanding of polymers becomes critical. The majority of this understanding has been acquired through experimentation. While important, experimentation may be expensive and time consuming. Thus, it is desirable to predict polymer properties from molecular level characteristics. While a large amount of work has been performed in the area of overall properties of pure and mixture fluids, little work has been done in the area of mixing properties. Our initial effort into this area includes investigating the ability of the compressible Flory, generalized Flory dimer, and interpolating equations of state to predict mixing properties of a model polymer system. In determining the accuracy of the equations, Monte Carlo simulations have been performed in the Gibbs ensemble. A problem in the simulation of these systems, limited access to sampling space, has occurred and an established remedy has been discussed. We have determined that the most effective solution to the problem is a combination of conventional moves and the established correction. Predictions of the overall pressure, osmotic pressure, activity coefficient and Flory Chi parameter have been compared with simulation results, good agreement occurs at high densities, long chain lengths, and high chain concentrations except for the compressible Flory equation of state which only provides qualitatively correct predictions for the mixing properties. The structure of the fluid also is discussed. An increase in the packing fraction results in chain contraction. The addition of a monomeric solvent causes solvation in low to medium packing fraction fluids. Because the addition of solvent increases the packing fraction, the chains also contract. The effect of increasing packing fraction is stronger than the addition of solvent. The monomeric solvent forms clusters over the range of

  12. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M


    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  13. Chemical solution deposition of YBCO thin film by different polymer additives

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail:


    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  14. Chemical solution deposition of YBCO thin film by different polymer additives

    Wang, W. T.; Li, G.; Pu, M. H.; Sun, R. P.; Zhou, H. M.; Zhang, Y.; Zhang, H.; Yang, Y.; Cheng, C. H.; Zhao, Y.


    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around Tc = 90 K as well as high Jc (0 T, 77 K) over 3 MA/cm 2.

  15. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J


    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  16. The corrosion effect of ozonated seawater solution on titanium in polymer generated crevice environments

    Leveillee, S.Y.


    Two different tests were designed to evaluate the reaction of various polymers and grade-2 titanium in ozonated seawater in conjunction with a comparative analysis in an aerated seawater solution. The first was a weight loss test measuring the weight change of Polyvinyl chloride (PVC), Polyethylene and Teflon{trademark} in both ozonated and aerated artificial seawater baths. The second test was designed to induce crevice corrosion on the titanium test samples using various crevice generating materials in both ozonated and aerated solutions. The materials used to create the crevices were grade-2 titanium washers, PVC, Polyethylene, Saran and Teflon{trademark}. The weight loss test showed that all three polymers lost weight in the ozonated bath. The results of the titanium washer crevice test provided no indication of corrosion or surface discoloration in either the ozonated or aerated solutions. Energy dispersive spectrometry (EDS) analysis found no fluorine, chlorine or other corrosion product. The PVC samples in the aerated bath also showed no signs of corrosion, but the PVC samples in the ozonated tank had light brown rings of surface discoloration. One of the ozonated PVC samples did show evidence of chlorine in the corrosion product. The outer circumference of the ozonated PVC washers exhibited the same type bleaching effect as in the weight loss samples, but the whitening of these samples were more pronounced. The polyethylene samples under aeration showed no discoloration or presence of fluorine or chlorine. The polyethylene crevice samples in the ozonated solution all exhibited the distinct brilliant blue color of titanium oxide. Fluorine was found in the corrosion product on only one of the samples. Chlorine was found on the surface of one of the other corrosion coupons. The results of the Teflon{trademark} crevice samples substantiated the previous Rensselaer study.


    A. G. Savvina


    Full Text Available The widespread use of aromatic acids (benzoic acid, salicylic as preservatives necessitates their qualitative and quantitative determination in food. Effective and common way to separation and concentration of aromatic acids liquid extraction. Biphasic system of water-soluble polymers based on (poly-N-vinyl pyrrolidone, and poly-N-vinylcaprolactam satisfy the requirements of the extraction system. When sorption concentration improved definition of the metrological characteristics, comply with the requirements for sensitivity and selectivity definition appears possible, use of inexpensive and readily available analytical equipment. When studying the adsorption of benzoic acid used as a sorbent crosslinked polymer based on N-vinyl pyrrolidone, obtained by radical polymerisation of a functional monomer and crosslinker. In the extraction of benzoic acid to maximize the allocation of water and the organic phase of the polymer used salt solutions with concentrations close to saturation. Regardless of the nature of the anion salt is used as salting-out agent, aromatic acids sorption increases with the size of the cations. In the experiment the maximum recovery rate (80% benzoic acid obtained in the PVP (0.2 weight%. Ammonium sulphate. The dependence stepepni benzoic acid extraction from time sorption sorbent mass and the pH of the aqueous phase. To establish equilibrium in the system, for 20 minutes. The dependence of the degree of extraction of the acid pH indicates that the acid is extracted into the molecular form. The maximum adsorption is reached at pH 3,5, with its efficiency decreases symbatically reduce the amount of undissociated acid molecules in solution.

  18. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.


    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  19. Viscoelastic rheological property of different types of polymer solutions for enhanced oil recovery

    孟令伟; 康万利; 周阳; 王志伟; 刘述忍; 白宝君


    The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymers was measured using Physica MCR301 rheometer and was compared.The five polymers include three HAPAMs with relative molecular mass of 1 248×104(TypeⅠ),750×104(TypeⅡ),and 571×104(Type Ⅲ) separately and two HPAMs with relative molecular mass of 1 200×104 and 3 800×104 respectively.The experiment results indicate that the viscoelasticity of HAPAM is better than that of HPAM.The storage modulus G’ and the loss modulus G″ for HAPAM solutions are also larger than those for HPAM.Comparing the rheological curves of different HAPAM types,it is found that the viscosity of typeⅡ and type Ⅲ is almost same at different shear rates while the viscosity of type I is the lower than that of Types Ⅱ and Ⅲ.The storage modulus G’ and the loss modulus G″ for three types of HAPAM were measured in low oscillation frequency range,and the results show that G’ is greater than G″ for all three different types of HAPAM,but their loss modulus is almost same,and the G’ is in the order of type Ⅱ>type Ⅲ>type I.In addition,the G’ and G″ increase with aging time for all three HAPAM solutions were stayed at different days.The viscoelasticity of type Ⅰ reaches the highest value when aging time is 9 d at 45 ℃,but it is 7 d for type Ⅱ and type Ⅲ.The different viscoelasticity properties can be attributed to self-organization supermolecule networks which is formed by hydrophobic association of HAPAM molecular and molecular chain entanglement.

  20. Nano Copper Powders Synthesized by a Polymer Solution Method at Low Temperature.

    Han, Young-Min; Jung, Choong-Hwan; Lee, Sang-Jin


    Copper (Cu) nano particles were successfully fabricated at a significantly low temperature through a simple polymer solution route. In the process, the organic-inorganic precursor sols were turned to porous gels exhibiting volume expansion during the drying process. The PVA polymer, as an organic carrier, contributed to make an atom-scale homogeneous copper precursor gel, which resulted in fully crystallized, nano-sized copper powders through a low calcination temperature of 300 °C under Ar-4%H2 atmosphere. Variations in the processing technique, such as the content of PVA and calcination temperature, affected the microstructure and crystallization behavior of the synthesized powders. The copper powder synthesized with the PVA content of 4:1 ratio showed a crystallite size of about 10 nm or less with a high surface area. In this paper, the PVA solution technique for the fabrication of a nano-sized copper powder is introduced. The effects of the PVA content and calcination conditions on the powder morphology and crystallization are also studied. The characterization of the synthesized powders is conducted by using XRD, DTA/TG, SEM and TEM.

  1. Pore scale mixing and macroscopic solute dispersion regimes in polymer flows inside 2D model networks

    D'Angelo, M V; Allain, C; Hulin, J P; Angelo, Maria Veronica D'; Auradou, Harold; Allain, Catherine; Hulin, Jean-Pierre


    A change of solute dispersion regime with the flow velocity has been studied both at the macroscopic and pore scales in a transparent array of capillary channels using an optical technique allowing for simultaneous local and global concentration mappings. Two solutions of different polymer concentrations (500 and 1000 ppm) have been used at different P\\'eclet numbers. At the macroscopic scale, the displacement front displays a diffusive spreading: for $Pe \\leq 10$, the dispersivity $l\\_d$ is constant with $Pe$ and increases with the polymer concentration; for $Pe > 10$, $l\\_d$ increases as $Pe^{1.35}$ and is similar for the two concentrations. At the local scale, a time lag between the saturations of channels parallel and perpendicular to the mean flow has been observed and studied as a function of the flow rate. These local measurements suggest that the change of dispersion regime is related to variations of the degree of mixing at the junctions. For $Pe \\leq 10$, complete mixing leads to pure geometrical di...

  2. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR Methodology

    Run-Cang Sun


    Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.

  3. Fully solution-processing route toward highly transparent polymer solar cells.

    Guo, Fei; Kubis, Peter; Stubhan, Tobias; Li, Ning; Baran, Derya; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J


    We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.

  4. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu


    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.


    Jun-fang Li; Yi-jie Lu; Guang-zhao Zhang; Wei Li; Chi Wu


    Dust-free semidilute and concentrated polystyrene (PS) solutions in different solvents were prepared by slow evaporation and in situ anionic polymerization, which removes the effects of troublesome artifacts such as dust contamination and concentration gradient. The dynamics was reexamined by a combination of static and dynamic laser light scattering. In benzene and toluene (good solvents for PS), only one fast diffusive mode of polymer chains can be observed when the concentration (c) is up to 20%, which is attributed to thermally agitated fluctuation of "blobs" or chain segments.Static and dynamic correlation lengths (ξS and ξD) are scaled with c as ξSS(or ξD)~c-0.72±0.02. In cyclohexane, whose quality decreases with temperature in the range 32-50℃, an additional slow mode of polymer chains can be observed. Such a slow mode is viewed more obviously at a large scattering angle even in a concentrated solution with high chain entanglement. The present study indicates that the slow mode is due to the solvent quality.

  6. Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model.

    Robert, Thomas; Martel, Richard; Conrad, Stephen H; Lefebvre, René; Gabriel, Uta


    This research focused on the optimization of TCE dissolution in a physical two-dimensional model providing a realistic representation of a heterogeneous granular aquifer. TCE was infiltrated in the sand pack where it resided both in pools and in zones of residual saturation. Surfactant was initially injected at low concentration to minimize TCE remobilization at first contact but was incrementally increased later during the experiment. Xanthan gum was added to the injected surfactant solution to optimize the sweep efficiency through the heterogeneous medium. Photographs and digital image analysis illustrated the interactions between TCE and the injected fluids. During the polymer flood, the effects of heterogeneities inside the sand pack were greatly reduced by the increased fluid viscosity and the shear-thinning effects of the polymer. The polymer also improved the contact between the TCE ganglia and the surfactant-polymer solution, thereby promoting dissolution. Surfactants interacted with the polymer reducing the overall viscosity of the solution. At first contact with a 0.5%(mass) surfactant solution, the TCE pools drained and some remobilization occurred. However, no TCE bank was formed and TCE did not penetrate into any previously uncontaminated areas. As a result, TCE surface area was increased. Subsequent surfactant floods at higher surfactant concentrations did not trigger more remobilization. TCE was mainly dissolved by the solution with the highest surfactant concentration. Plugging from bacterial growth or microgel formation associated to the polymer at the inflow screen prevented the full completion of the experiment. However, more than 90% of TCE was recovered with the circulation of less than 6 pore volumes of surfactant-polymer solution.

  7. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells

    Bartelt, Jonathan A.


    The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2-ethylhexyloxy)benzo[1,2-b:4,5-b\\']dithiophene-co- octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene-rich domains, which cause extensive charge-carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene-rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin-casting and this network acts as a template that prevents large-scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene-rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells. The performance of poly(di(2-ethylhexyloxy) benzo[1,2-b:4,5-b\\']dithiophene-co-octylthieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) bulk heterojunction solar cells strongly depends on the polymer molecular weight, and processing these bulk heterojunctions with a solvent additive preferentially improves the performance of low molecular weight devices. It is demonstrated that polymer aggregation in solution significantly impacts the thin-film bulk heterojunction morphology and is vital for high device performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure

    Nguyen, Ngoc N.; Nguyen, Anh V.; Nguyen, Khoi T.; Rintoul, Llew; Dang, Liem X.


    Gas hydrates formed under moderated conditions open up novel approaches to tackling issues related to energy supply, gas separation, and CO2 sequestration. Several additives like tetra-n-butylammonium bromide (TBAB) have been empirically developed and used to promote gas hydrate formation. Here we report unexpected experimental results which show that TBAB inhibits CO2 gas hydrate formation when used at minuscule concentration. We also used spectroscopic techniques and molecular dynamics simulation to gain further insights and explain the experimental results. They have revealed the critical role of water alignment at the gas-water interface induced by surface adsorption of tetra-n-butylammonium cation (TBA+) which gives rise to the unexpected inhibition of dilute TBAB solution. The water perturbation by TBA+ in the bulk is attributed to the promotion effect of high TBAB concentration on gas hydrate formation. We explain our finding using the concept of activation energy of gas hydrate formation. Our results provide a step toward to mastering the control of gas hydrate formation.

  9. Chain length effect on dynamical structure of poly(vinyl pyrrolidone)–polar solvent mixtures in dilute solution of dioxane studied by microwave dielectric relaxation measurement

    R J Sengwa; Sonu Sankhila


    Dielectric relaxation study of the binary mixtures of poly(vinyl pyrrolidone) (PVP) (Mw = 24000, 40000 and 360000 g mol-1) with ethyl alcohol (EA) and poly(ethylene glycol)s (PEGs) (Mw = 200 and 400 g mol-1) in dilute solutions of dioxane were carried out at 10.1 GHz and 35°} C. The relaxation time of PVP–EA mixtures was interpreted by the consideration of a wait-and-switch model in the local structure of self-associated ethyl alcohol molecules and also the PVP chain length as a geometric constraint for the reorientational motion of ethyl alcohol molecules. The formation of complexes and effect of PVP chain length on the molecular dynamics, chain flexibility and stretching of PEG molecules in PVP–PEG mixtures were explored from the comparative values of dielectric relaxation time. Further, relaxation time values in dioxane and benzene solvent confirm the viscosity independent molecular dynamics in PVP–EA mixtures but the values vary significantly with the non-polar solvent environment.

  10. A Mathematical Model of Repeated Impregnation of Porous Bodies with Solutions of Polymers

    I. V. Glebov


    Full Text Available The paper describes basic methods of impregnating porous bodies with solutions of polymers and their use to manufacture prepregs. It also describes the existing methods of manufacturing multilayer prepregs to produce aerospace coating of the spacecraft "Soyuz". It is shown that these prepregs have to meet high requirements for the content of the polymer, as compared with other composite materials, about 35 - 40% of the mass. Methods used for their manufacturing are long-term and non-controllable. The assumption is made that using the vacuum impregnation technology of a woven material will allow to accelerate the manufacturing process of these prepregs and improve their quality.In reviewing the technical literature have been found works on modeling the processes of impregnation, but they are aimed only at studying the speed of the woven material impregnation by various fluids and determining the time of impregnation. There were no models found to define prepreg parameters during the process of multiple impregnations. The aim of this work is to develop the simple mathematical model, which enables us to predict the polymer content of volatile products in the prepreg after each cycle of multiple impregnation of woven material with a solution of the polymer.To consider the vacuum impregnation method are used the prepregs based on silica and silica-nylon stitch-bonding fabric and bakelite varnish LBS-4 containing 50 - 60% of phenol resin and the solvent with minor impurities of pure phenol and water, as an example. To describe the process of vacuum impregnation of the porous work-piece is developed a mathematical description of the process of filling the porous space of the material with a varnish. It is assumed that the varnish components fill the porous space of the material in the same proportion as they are contained in the varnish.It is shown that a single impregnation cannot ensure the content of phenol resin in the prepreg over 32%, which does

  11. From the dilute solution to the pure compound:Extraction strategy based on a multi-stage process of phase separation

    GOUTAUDIER; Christelle; TENU; Richard; COUNIOUX; Jean-Jacques


    It is very rare that a one-step process of extraction leads to the pure compound with a high degree of purity specified by an industrial application.The various stages of a synthesis process and possible secondary reactions may lead to the synthesis of more or less complex and highly diluted solutions.In this work,the rationale and strategy for extraction and purification of a high added value compound are discussed.All the thinking is based on the knowledge and the exploitation of phase diagrams and then developed for different unit operations of the process.The most significant research tools are the experimental data and the modelling of phase equilibrium to estimate the yield of each step of extraction.The significant example chosen involves all the basic methods of phase separation,starting with liquid-vapour equilibrium:stripping of high volatility components and then more or less complex distillation are classically employed.The theoretical plateau number can be deduced from the equilibrium equation curves.The second step is based on the study of the liquid-liquid equilibrium and is an intermediate step for enrichment of the solution when distillation is not possible.A final step based on solid-liquid equilibrium consists of the selective crystallization of the pure product at low temperature,in order to satisfy the requirements of purity and safety imposed by industrial use.The conclusion includes all isolation operations in the form of a general extraction and purification scheme.

  12. Separation of Zinc and Cobalt from Dilute Sulfate Solution by Oxidation Precipitation%氧化沉淀法从稀溶液中分离锌钴

    徐晓辉; 常耀超; 王云; 靳冉公


    以过硫酸钠为氧化剂,采用氧化沉淀法从除铁后液中分离锌钴,探讨了各因素对氧化沉淀的影响.结果表明,在过硫酸钠用量为钴理论耗量4倍、温度80℃、pH4.8~5.0、氧化时间3h的最佳条件下,钴完全氧化沉淀,酸洗后渣中钴含量达15.6%,钴富集了近9倍.沉钴后液用碳酸钠中和沉淀可得到含锌51.78%的碱式碳酸锌.%A new process of oxidation precipitation was developed to separate cobalt from dilute zinc-bearing deironing solution with sodium persulfate as oxidant.The effects of parameters on oxidative precipitation rate of metals were investigated.The results show that after acid washing cobalt content in residue is 15.6% which is nearly 9 times to that in existing residue under the optimum conditions including dosage of sodium persulfate of 4 times of theoretical cobalt consumptions,temperature of 80 ℃,pH of 4.8~5.0,and oxidation time of 3 h.Post-precipitation solution containing exclusively zinc can be neutralized by sodium carbonate to precipitate basic zinc carbonate product with zinc content of 51.78 %.

  13. Optical Nonlinear Properties of Gold Nanoparticles Synthesized by Laser Ablation in Polymer Solution

    M. Tajdidzadeh


    Full Text Available In the present study, gold nanoparticles were synthesized in various polymer solutions by means of employing laser ablation technique at the same ablation time. Specifically, gold nanoparticles were synthesized in polyethylene glycol and chitosan solutions, in order to compare the effects of the liquid media which served as stabilizers for particle size and volume fraction of nanoparticles. In addition, this experiment was repeated in distilled water for reference purposes. As the findings indicated, the particle size which was obtained in polyethylene glycol was about 7.49 nm, that is, smaller than those of chitosan solution and distilled water, respectively. In contrast, it was observed that the volume fraction of gold nanoparticles increased in polyethylene glycol in comparison with the other media which indicated an effect on the formation of NPs. On the other hand, Z-scan technique was employed to measure the nonlinear refractive index and nonlinear absorption coefficient of nanofluids containing gold nanoparticles. Consequently, the nonlinear properties of nanofluids pointed to a significant contribution with the number of nanoparticles observed in fluids and both optical nonlinear parameters were observed to increase by means of a prior increase in the volume fraction of Au-NPs in polyethylene glycol solution.

  14. Solvent-dependent self-assembly and ordering in slow-drying semi-crystalline conjugated polymer solutions

    Zhao, Kui


    The mechanistic understanding of the intrinsic molecular self-assembly of conjugated polymers is of immense importance to controlling the microstructure development in organic semiconducting thin films, with meaningful impact on charge transport and optoelectronic properties. Yet, to date the vast majority of studies have focused on the fast solution process itself, with studies of slower intrinsic molecular self-assembly in formulations lagging behind. Here we have investigated molecular self-assembly during spontaneous organization and uncovered how changes in formulation influence the microstructure, morphology and transport properties of conjugated polymer thin films. Our results suggest that the polymer-solvent interaction is the key factor for the molecular self-assembly and changes in macroscopic charge transport, which is in contrast with most solution processes, such as spin-coating and blade coating, where solvent drying kinetics dominates the aggregation and crystallization processes. Energetically favourable interactions between the polymer and its solvent are shown to cause chain expansion, resulting in a large hydrodynamic volume and few chain entanglements in solution. This provides molecular freedom for self-assembly and is shown to greatly enhance the local and long range order of the polymer, intra-chain backbone planarity and crystallite size. These improvements, in turn, are shown to endow the conjugated polymer with high carrier transport, as demonstrated by organic thin film transistors.

  15. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp


    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  16. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele


    The downstream processing of therapeutic proteins is a challenging task. Key information needed to estimate applicable workup strategies (e.g. crystallization) are the interactions of the proteins with other components in solution. This information can be deduced from the second osmotic virial coefficient B22 , measurable by static light scattering. Thermodynamic models are very valuable for predicting B22 data for different process conditions and thus decrease the experimental effort. Available B22 models consider aqueous salt solutions but fail for the prediction of B22 if an additional polymer is present in solution. This is due to the fact that depending on the polymer concentration protein-protein interactions are not rectified as assumed within these models. In this work, we developed an extension of the xDLVO model to predict B22 data of proteins in aqueous polymer-salt solutions. To show the broad applicability of the model, lysozyme, γ-globulin and D-xylose ketol isomerase in aqueous salt solution containing polyethylene glycol were considered. For all proteins considered, the modified xDLVO model was able to predict the experimentally observed non-monotonical course in B22 data with high accuracy. When used in an early stage in process development, the model will contribute to an efficient and cost effective downstream processing development.

  17. Molecular Dynamics Simulations of Polyelectrolyte Solutions

    Dobrynin, Andrey


    Polyelectrolytes are polymers with ionizable groups. In polar solvents, these groups dissociate releasing counterions into solution and leaving uncompensated charges on the polymer backbone. Examples of polyelectrolytes include biopolymers such as DNA and RNA, and synthetic polymers such as poly(styrene sulfonate) and poly(acrylic acids). In this talk I will discuss recent molecular dynamics simulations of static and dynamic properties of polyelectrolyte solutions. These simulations show that in dilute and semidilute polyelectrolyte solutions the electrostatic induced chain persistence length scales with the solution ionic strength as I - 1 / 2. This dependence of the chain persistence length is due to counterion condensation on the polymer backbone. In dilute polyelectrolyte solutions the chain size decreases with increasing the salt concentration as R ~ I- 1 / 5. This is in agreement with the scaling of the chain persistence length on the solution ionic strength, lp ~ I- 1 / 2. In semidilute solution regime at low salt concentrations the chain size decreases with increasing polymer concentration, R ~ cp-1 / 4 . While at high salt concentrations one observes a weaker dependence of the chain size on the solution ionic strength, R ~ I- 1 / 8. Analysis of the simulation data throughout the studied salt and polymer concentration ranges shows that there exist general scaling relations between multiple quantities X (I) in salt solutions and corresponding quantities X (I0) in salt-free solutions, X (I) = X (I0) (I /I0) β . The exponent β = -1/2 for chain persistence length lp , β = 1/4 for solution correlation length, β = -1/5 and β = -1/8 for chain size R in dilute and semidilute solution regimes respectively. Furthermore, the analysis of the spectrum and of the relaxation times of Rouse modes confirms existence of the single length scale (correlation length) that controls both static and dynamic properties of semidilute polyelectrolyte solutions. These findings

  18. 2010 POLYMER PHYSICS - JUNE 27 - JULY 2, 2010

    Karen Winey


    The 2010 Gordon Research Conference on Polymer Physics will provide outstanding lectures and discussions in this critical field that impacts every industrial sector from electronics to transportation to medicine to textiles to energy generation and storage. Fundamental topics range from mechanical properties of soft gels to new understanding in polymer crystallization to energy conversion and transmission to simulating polymer dynamics at the nanoscale. This international conference will feature 22 invited lectures, wherein the opening 10 minutes are specifically designed for a general polymer physics audience. In addition, poster sessions and informal activities provide ample opportunity to discuss the latest advances in polymer physics. The technical content of the meeting will include new twists on traditional polymer physics topics, recent advances in previously underrepresented topics, and emerging technologies enabled by polymer physics. Here is a partially listing of targeted topics: (1) electrically-active and light-responsive polymers and polymer-based materials used in energy conversion and storage; (2) polymers with hierarchical structures including supramolecular assemblies, ion-containing polymers, and self-assembled block polymers; (3) mechanical and rheological properties of soft materials, such as hydrogels, and of heterogeneous materials, particularly microphase separated polymers and polymer nanocomposites; and (4) crystallization of polymers in dilute solutions, polymer melts, and miscible polymer blends.

  19. Mimicking conjugated polymer thin-film photophysics with a well-defined triblock copolymer in solution.

    Brazard, Johanna; Ono, Robert J; Bielawski, Christopher W; Barbara, Paul F; Vanden Bout, David A


    Conjugated polymers (CPs) are promising materials for use in electronic applications, such as low-cost, easily processed organic photovoltaic (OPV) devices. Improving OPV efficiencies is hindered by a lack of a fundamental understanding of the photophysics in CP-based thin films that is complicated by their heterogeneous nanoscale morphologies. Here, we report on a poly(3-hexylthiophene)-block-poly(tert-butyl acrylate)-block-poly(3-hexylthiophene) rod-coil-rod triblock copolymer. In good solvents, this polymer resembles solutions of P3HT; however, upon the addition of a poor solvent, the two P3HT chains within the triblock copolymer collapse, affording a material with electronic spectra identical to those of a thin film of P3HT. Using this new system as a model for thin films of P3HT, we can attribute the low fluorescence quantum yield of films to the presence of a charge-transfer state, providing fundamental insights into the condensed phase photophysics that will help to guide the development of the next generation of materials for OPVs.

  20. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    Gao, Hejun [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China); Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000 (China); Kan, Taotao [CNOOC Energy Technology and Services-oilfield Technology Services Co., Tanggu, Tianjin 300452 (China); Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaodong [Shandong Provincial Analysis and Test Center, Jinan 250100 (China); Zheng, Liqiang, E-mail: [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China)


    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent.

  1. A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions.

    Gherasim, Cristina-Veronica; Bourceanu, Gelu; Olariu, Romeo-Iulian; Arsene, Cecilia


    In the present work, we analyze the transport properties of a novel polymer inclusion membrane (PIM) containing a poly-vinyl chloride (PVC) polymer matrix and the organic anion exchanger Aliquat 336 as a specific carrier, without addition of plasticizers. The study was specifically focused on the transport properties of Cr(VI) in conditions simulating industrial wastewaters. We analyzed the impact of several parameters on the Cr(VI) transport process such as: the carrier content of the PIM, the pH, and the phases' composition. We concluded that efficient transport processes occur through a PIM containing 40% Aliquat 336/60% PVC (w/w). The process is very fast and efficient for solutions of initial Cr(VI) concentration smaller than 10(-3)mol/L, in which nearly all of Cr(VI) is removed within 3h. The performed experiments prove that Cr(VI) transport through the membrane is a facilitated counter-transport process. The obtained results sustain that this novel non-plasticized membrane possesses enhanced transport properties towards other liquid membranes and plasticized PIMs previously reported as used for Cr(VI) transport. Additionally, it possesses an excellent reliability and a high selectivity for Cr(VI) from mixtures with other metal ions and anions existing in the real industrial effluents. The PIM characterization highlights the plasticizing role of the carrier Aliquat 336.

  2. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)


    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  3. Ring polymers in confined geometries

    Usatenko, Z; Kuterba, P


    The investigation of a dilute solution of phantom ideal ring polymers and ring polymers with excluded volume interactions (EVI) in a good solvent confined in a slit geometry of two parallel repulsive walls and in a solution of colloidal particles of big size were performed. Taking into account the correspondence between the field theoretical $\\phi^4$ $O(n)$-vector model in the limit $n\\to 0$ and the behavior of long-flexible polymer chains in a good solvent the correspondent depletion interaction potentials, depletion forces and the forces which exert phantom ideal ring and ring polymer chains with EVI on the walls were obtained in the framework of the massive field theory approach at fixed space dimensions d=3 up to one-loop order. Additionally, the investigation of a dilute solution of phantom ideal ring polymers in a slit geometry of two inert walls and mixed walls with one repulsive and other one inert wall were performed and correspondent depletion interaction potentials and the depletion forces were cal...

  4. Synthesis and Rheological Properties of an Associative Star Polymer in Aqueous Solutions

    Hietala, Sami; Mononen, Pekka; Strandman, Satu


    synthesised by atom transfer radical. polymerization (ATRP) was found to fonn hydrogels at room temperature at polymer concentrations. Cp, over 22 gIL due to the interpolymer drophobic association of the PS blocks. Increasing Cp leads to stronger elastic networks at room temperature that show a gel......-to-solution transition with increasing temperature. Increase of ionic strength decreases the moduli compared with the pure hydrogel but did not affect the gel-sol transition temperature significantly. Small-angle X-ray experiments showed two distinct scattering correlation peaks for samples above the gelling Cp, which...... indicates the aggregates fonmed due to hydrophobic association. Upon heating the intensity of the scattering correlation peaks was found to decrease indicating the loss of the network structure due to thermal motion....

  5. Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer-Nanoparticle Composite Layers.

    Preinfalk, Jan B; Schackmar, Fabian R; Lampe, Thomas; Egel, Amos; Schmidt, Tobias D; Brütting, Wolfgang; Gomard, Guillaume; Lemmer, Uli


    In this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique. Moreover, it is shown that the optoelectronic device parameters are in good agreement with transfer matrix simulations of the corresponding layer stack, which offers the possibility to numerically design devices based on such composite layers. Lastly, it could be shown that the introduction of nanoparticles leads to an improved charge injection, which combined with an optimized microcavity resulted in a maximum luminous efficacy increase of 85% compared to a nanoparticle-free reference device.

  6. A simple derivation of the critical condition for the ultrasonic atomization of polymer solutions.

    Kim, Hyungsu; Lee, Jaegeun; Won, You-Yeon


    A simple model is proposed for the ultrasonic atomization of polymer solutions. In this model, the atomization process is approximated as an equilibrium process. It is shown that the minimum attainable droplet size is determined by two parameters, the (Rayleigh) acoustic pressure acting on the surface of the liquid, and the surface tension of the liquid. Increasing the viscosity of the liquid suppresses the formation of small-sized droplets because of increased attenuation of the sound wave and thus decreased acoustic pressure. Lowering the surface tension of the liquid (e.g., by spreading a surfactant film on the liquid surface) has the opposite effect of enhancing the formation of smaller droplets. Also, there exists a maximum limit for the droplet size, because when the produced droplet is too large, the aspiration flow is unable to carry the droplet against sedimentation. These predictions are supported by experimental observations.

  7. Correlation between wetting, adhesion and adsorption in the polymer-aqueous solutions of ternary surfactant mixtures-air systems

    Szymczyk, Katarzyna; Zdziennicka, Anna; Krawczyk, Joanna; Jańczuk, Bronisław


    The correlation between the wettability of polymers and adsorption of ternary mixtures including CTAB, TX-100 and TX-114 at the polymer-aqueous solution interface as well as the adhesion of aqueous solution of these mixtures to apolar polytetrafluoroethylene (PTFE), monopolar polymethyl methacrylate (PMMA) and nylon 6 was considered on the basis of the contact angle measurements and the literature data of the solutions surface tension. From these considerations it appeared that the efficiency and effectiveness of the adsorption at the PTFE-water interface are comparable to those at the water-air one, but for the PMMA-water and nylon 6-water interfaces they are lower than those for the water-air one for a given series of solutions. The efficiency and effectiveness are reflected in the composition of the mixed monolayer at the polymer-solution interface which even for the PTFE-solution interface is somewhat different from the water-air interface. The properties of the mixed monolayer at these interfaces influence the critical surface tension of polymer wetting which for PTFE is somewhat higher but for PMMA and nylon 6 considerably lower than their surface tension. From these considerations it also appeared that the work of adhesion of aqueous solutions of ternary mixtures of surfactants to the PTFE surface does not depend on the composition and concentration of solution contrary to PMMA and nylon 6. The adhesion work of these solutions to the PMMA and nylon 6 surface can be determined on the basis of van Oss et al. and Neumann et al. equations.

  8. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu


    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.

  9. One-Dimensional Modelling of Polymer Flood Performance. Analytical and Graphical Solutions Modélisation de l'efficacité du déplacement unidimensionnel par injection de polymères. Solutions analytiques et graphiques

    Grattoni C. A.


    Full Text Available A graphical method for simulating linear polymer flooding is proposed. The method is based upon the analytical solution of Darcy's law and continuity equation which describe the two-phase, one-dimensional, incompressible flow of oil and polymer solution through the reservoir rock. Continuous polymer injection and polymer slug injection are considered. Several physical mechanisms determining microscopic displacement efficiency are taken into account: resistance factor, residual resistance factor, retention composed by adsorption and mechanical entrapment, and inaccessible pore volume. Other properties are not considered: mixing and dispersion, shear and thermal degradation. This analytical-graphical model closely reproduces linear laboratory oil displacement experiments. Consequently, it can be used by the Field Engineer to rapidly estimate the additional oil recoverable by a linear polymer flood. On propose dans cet article une méthode graphique de simulation de l'injection de polymères dans le cas unidimensionnel. Cette méthode est basée sur la solution analytique de la loi de Darcy et de l'équation de continuité qui décrivent l'écoulement diphasique incompressible unidimen-sionnel d'huile et d'une solution de polymères à travers la roche réservoir. On examine l'injection continue et l'injection de bouchons de polymères. On prend en compte plusieurs mécanismes physiques qui déterminent l'efficacité du déplacement microscopique : facteur de ré-sistance, facteur de résistance résiduel, rétention due à l'adsorption et au piégeage mécanique et, enfin, volume des pores inacessibles. On ne tient pas compte des autres propriétés : mélange et dispersion, dégradation mécanique et thermique. Ce modèle analytique et graphique reproduit très directement les expériences de laboratoire de déplacement d'huile en milieu unidimensionnel. II peut donc être utilisé par l'ingénieur de chantier pour une estimation rapide de l

  10. Undulatory swimming in fluids with polymer networks

    Gagnon, D A; Arratia, P E


    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.

  11. Undulatory Swimming in Fluids with Polymer Networks

    Gagnon, David; Shen, Xiaoning; Arratia, Paulo


    In this talk, we systematically investigate the motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentration using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65 percent in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed. This work was supported by NSF CAREER (CBET) 0954084.

  12. Activity coefficients at infinite dilution of organic solutes in the ionic liquid trihexyl(tetradecyl)phosphonium tetrafluoroborate using gas-liquid chromatography at T = (313.15, 333.15, 353.15, and 373.15) K

    Tumba, Kaniki; Reddy, Prashant; Naidoo, Paramespri [Thermodynamics Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041 (South Africa); Ramjugernath, Deresh, E-mail: [Thermodynamics Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041 (South Africa)


    Research highlights: Activity coefficients at infinite dilution in the ionic liquid [3C{sub 6}C{sub 14}P][BF{sub 4}]. Twenty-seven solutes investigated at T = (313.15, 333.15, 353.15, and 373.15) K. [3C{sub 6}C{sub 14}P][BF{sub 4}] shows promise for the separation of aromatic and alcohol mixtures. - Abstract: Activity coefficients at infinite dilution have been measured by gas-liquid chromatography for 27 organic solutes (n-alkanes, 1-alkenes, 1-alkynes, cycloalkanes, aromatics, alcohols, and ketones) in the ionic liquid trihexyl(tetradecyl)phosphonium tetrafluoroborate [3C{sub 6}C{sub 14}P][BF{sub 4}]. The measurements were carried out at four different temperatures viz.T = (313.15, 333.15, 353.15, and 373.15) K. From the experimental data, partial molar excess enthalpy values at infinite dilution were calculated for the experimental temperature range. The selectivity values for the separation of n-hexane/benzene, cyclohexane/benzene, and methanol/benzene mixtures were determined from the experimental infinite dilution activity coefficient values. These values were compared to those available in the literature for other ionic liquids and commercial solvents, so as to assess the feasibility of employing [3C{sub 6}C{sub 14}P][BF{sub 4}] in solvent-enhanced industrial separations.

  13. A light review on Polymer and CO2 Flooding (With Suggestion Combination of CO2 into Polymer Solution to Superior Flooding

    O. Arjmand


    Full Text Available Today carbon dioxide (CO2 is one of displacing fluids that is used in Enhanced Oil Recovery (EOR process. However the low viscosity of CO2 causes it to finger towards the production well and bypassed large amounts of oil. Because of during flooding of CO2 its mobility is very less than crude oil into reservoir that causes to leave a great amount of oil, so a reduction in CO2 mobility would be inclined to mitigate. We in this review study state that could increase CO2 viscosity with dissolving it into polymer solution, that it can delay breakthrough time of CO2 during EOR process. In addition with making of such solution can decrease oil viscosity during flooding process into reservoir simultaneously. In actual with mixing of CO2 gas at high pressure into Partial Hydrolyzed Polyacrylamide solution (HPAM as an anionic polymer can increase the viscosity of CO2 with a concentration optimum of polymer and improve the sweep efficiency of oil during EOR process using this method.

  14. Polymer assisted solution processing of Ti-doped indium oxide transparent conducting thin films for organic solar cells

    Vishwanath, Sujaya Kumar [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of); Jin, Won-Yong [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jihoon, E-mail: [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of)


    Highlights: • Polymer assisted solution process. • Ti-doped indium oxide (TIO) transparent conducting films. • Replacement of sputtered ITO with polymer-assisted-solution-coated TIO films. • High mobility transparent conducting films. • Application of polymer-assisted-solution-coated TIO films to organic solar cells. - Abstract: We report the preparation and evaluation of Ti-doped indium oxide (TIO) transparent conducting films by a polymer-assisted solution (PAS) process, as well as the evaluation of this type of film as a transparent cathode in an inverted organic solar cell (IOCS). Both Ti- and In-PASs have been synthesized by coordinating Ti- and In-anionic complexes with polyethyleneimine. The final TIO–PAS was formed by mixing Ti-PAS into In-PAS with a Ti concentration between 1 at.% and 7 at.%. The TIO–PAS was spin-coated onto glass substrates to form uniform thin films of Ti-doped indium oxide, which were then annealed at high temperature. The optimum Ti concentration to achieve the best electrical and optical properties of PAS–TIO films was found to be 3 at.%. With the film thickness of 650 nm, PAS–TIO films had a sheet resistance of 65 Ω/sq and an optical transmittance greater than 85%. The feasibility of PAS-coated TIO thin film as a transparent electrode was evaluated by applying it to the fabrication of IOSCs, which showed the energy conversion efficiency of 4.60%.

  15. Investigation of optical spacer layers from solution based precursors for polymer solar cells using X-ray reflectometry

    Andersen, Philip Hvidthøft Delff; Skårhøj, Jakob; Andreasen, Jens Wenzel


    Optical spacer layers based on titaniumalkoxide precursor solutions were prepared by spin-coating on top of bulk heterojunction layers based on poly-3-hexylthiophene (P3HT) and phenyl-C61-butyric acid methylester (PCBM). Models and experiment have shown that the performance of polymer solar cells...

  16. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes.

    Kozlowski, Cezary A; Walkowiak, Wladyslaw


    The transport through polymer inclusion membranes (PIMs) was found as the effective and selective method of chromium(VI) anions removal from chloride acidic aqueous solutions. The optimal PIMs content was as follows: 41 wt% of cellulose triacetate as the support, 23 wt% of tri-n-octylamine as the ionic carrier, and 36 wt% of o-nitrophenyl pentyl ether as the plasticizer. The results obtained show a linear decrease of permeability coefficient and initial flux values with source phase pH increase. Also linear decrease of initial flux in log-log scale with chromium(VI) concentration increase was observed. Value of slope of this relationship was found to be 0.96 which indicates a first order of chromium(VI) reaction with tri-n-octylamine at membrane/aqueous source interface. Transport of chromium(VI) through PIMs reduces the concentration of chromium(VI) in source aqueous phase from 1.0 to 0.0028 ppm, which is below permissible limit in drinking water in Poland. Competitive transport of chromium(VI), cadmium(II), zinc(II), and iron(III) from acidic aqueous solution across PIMs was found to be efficient for chromium(VI) (99%), and cadmium(II) (99%).

  17. Polymer-based adsorbent for heavy metals removal from aqueous solution

    Mahmud, H. N. M. E.; Huq, A. K. O.; Yahya, R.


    A novel conducting polymer-based adsorbent, polypyrrole (PPy) fine powder has successfully been prepared as a new adsorbent and utilized in the adsorption of heavy metal ions like arsenic, zinc and cadmium ions from aqueous solution. PPy was chemically synthesized by using FeCl3.6H2O as an oxidant. The prepared PPy adsorbent was characterized by Brunauer-Emmet-Teller (BET) surface analysis, field emission scanning electron microscopy (FESEM) and attenuated total reflectance fourier transform infrared ATR-(FTIR) spectroscopy. The adsorption was conducted by varying different parameters such as, contact time, pH and adsorbent dosage. The concentrations of metal ions were measured by inductively coupled plasma mass spectroscopy (ICP-MS). The results show that PPy acts as an effective sorbent for the removal of arsenic, zinc and cadmium ions from aqueous solution. The as-prepared PPy fine powder is easy to prepare and appeared as an effective adsorbent for heavy metal ions particularly arsenic in wastewater treatment.


    LIU Zhong-chun; YUE Xiang-an; HOU Ji-rui; ZHANG Li-juan


    The flow performances of water, white oil and Hydrolyzing Polyacrylamide (HPAM) solution in fused quartz channels and the effect of wettability on the microscale flows have been studied respectively in this paper. The adaptability of classical fluid mechanics in channels with different sizes has been discussed. The results show that water flows in channels of 2μm diameter also have few size effects and white oil flow accord with classical fluid mechanics theory in channels of 25μm diameter too, but polymer solution appears an obvious size effect as diameters of channels decrease to 16μm. The wettability does not produce any influences on the water or white oil flows in channels of 25μm or 50μm diameter. The experimental technology of microscale flows has been first applied for studying the flow performances of pores in low permeability reservoir. This study found a base for deep investigating the percolation mechanism in low permeability reservoirs.

  19. Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution

    Ji-Hua Zhu


    Full Text Available The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.

  20. Solution-phase laser processing of π-conjugated polymers: Switching between different molecular states

    Takada, K.; Tomioka, A.


    Liquid-phase laser processing, where the laser-irradiated target material is immersed in water for cooling, has been reported as a promising processing technique for thermally fragile organic materials. Although nanometer-sized particles have been reported to be obtained with the liquid-phase laser processing, the physical property did not change because quantum-mechanical size effect does not exhibit itself in the zero-radius Frenkel excitons. In the present study, we step further to use solution droplets as a target material, where organic molecules are molecularly dispersed in organic solvent and, therefore, expected to easily alter the conformation and the energy state upon laser irradiation. Small volume organic solvent is quickly evaporated upon laser irradiation, letting the bare organic molecule placed in water and rapidly cooled. To prevent the chemical decomposition of the target π-conjugated molecule, the specimen was resonantly irradiated by a ns-pulse green laser, not by a conventional UV laser. When the solid state spin-coat film made from MEH-PPV chloroform solution was used as a irradiation target immersed in water, resulting MEH-PPV particles showed similar photoluminescence (PL) like the PL of the spin-coat film and PL of the chloroform solution, including the 0→1, 0→2 vibrational transitions: this indicates that the energy levels were not modified from the spin-coat film. In comparison, when tiny droplets of MEH-PPV chloroform solution (orange color) were suspended in water, laser irradiation gave rise to yellow MEH-PPV particles which showed 550 nm and 530 nm PL (type B), blue-shifted from the spin-coat film PL 580 nm (type A), suggesting a successful phase transition of MEH-PPV polymer to type B. Further solution-phase laser processing left the type B state unchanged. The irreversible phase transition from type A to type B suggests that the type B ground state has lower energy than type A, which is consistent with the blue-shifted PL of

  1. 以蔗糖飞灰吸附剂分离废水中的β-萘磺酸%Removal ofβ-Naphthalenesulfonic Acid from Aqueous Dilute Solution Using Bagasse Fly Ash

    李长海; 史鹏飞


    Bagasse fly ash was converted into an inexpensive adsorbent and utilized for the removal of β-naphthalenesulfonic acid in dilute solution. The effect of pH, temperature, adsorbent concentration, and co-existed acids on the removal ofβ-naphthalenesulfonic acid was examined. The adsorption data have been correlated with both Langmuir and Freundlich adsorption models. Thermodynamic parameters obtained indicate the feasibility of the process, and kinetic studies provided the necessary mechanistic information of the removal process.

  2. Separation and quantification of viral double-stranded RNA fragments by capillary electrophoresis in hydroxyethylcellulose polymer solutions.

    Shambaugh, C L; Bodmer, J L; Hsu, D; Ranucci, C S


    Capillary electrophoresis (CE) is an analytical technique widely utilized to resolve complex mixtures of nucleic acids. CE uses a variety of polymers in solution that act as a molecular sieve to separate nucleic acid fragments according to size. It has been shown previously that purified dsDNA can be resolved efficiently by solutions of hydroxyethylcellulose (HEC) polymer, providing a rapid and high resolution method of separation. We have applied this separation technique to viral double-stranded (ds) RNA segments derived from rotavirus process samples. HEC polymers of various molecular masses and concentrations were identified and compared for their ability to separate dsRNA based on the extent of expected polymer network formation. The HEC polymer exhibiting the most desirable separation characteristics was then used for subsequent optimization of various method parameters, such as, injection time, electric field strength, dye concentration and capillary equilibration. The optimized method was then applied to the quantification of genome concentration based on a representative segment of the rotavirus genome. This study demonstrated that purified viral dsRNA material of known concentration could be used to generate an external standard curve relating concentration to peak area. This standard curve was used to determine the concentration of unknown samples by interpolation. This novel RNA quantification assay is likely to be applicable to other types of virus, including those containing dsDNA.

  3. Enthalpy of dilution of polystyrene in trichloromethane

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  4. Enthalpy of dilution of maltodextrin in water

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  5. Solution-processed low dimensional nanomaterials with self-assembled polymers for flexible photo-electronic devices (Presentation Recording)

    Park, Cheolmin


    Self assembly driven by complicated but systematic hierarchical interactions offers a qualified alternative for fabricating functional micron or nanometer scale pattern structures that have been potentially useful for various organic and nanotechnological devices. Self assembled nanostructures generated from synthetic polymer systems such as controlled polymer blends, semi-crystalline polymers and block copolymers have gained a great attention not only because of the variety of nanostructures they can evolve but also because of the controllability of these structures by external stimuli. In this presentation, various novel photo-electronic materials and devices are introduced based on the solution-processed low dimensional nanomaterials such as networked carbon nanotubes (CNTs), reduced graphene oxides (rGOs) and 2 dimensional transition metal dichalcogenides (TMDs) with self assembled polymers including field effect transistor, electroluminescent device, non-volatile memory and photodetector. For instance, a nanocomposite of networked CNTs and a fluorescent polymer turned out an efficient field induced electroluminescent layer under alternating current (AC) as a potential candidate for next generation displays and lightings. Furthermore, scalable and simple strategies employed for fabricating rGO as well as TMD nanohybrid films allowed for high performance and mechanically flexible non-volatile resistive polymer memory devices and broad band photo-detectors, respectively.

  6. Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions

    Huang, Qian; Javier Alvarez, Nicolas; Matsumiya, Yumi

    polymer solutions in extensional flow. We prepared three polystyrene (PS) solutions with identical concentrations of the same PS sample (with the molecular weight M = 545k), but diluted with three different solvents, oligomeric styrene (OS) with M = 1k, 2k, and 4k. The three solutions have exactly...

  7. Polymer electronics

    Hsin-Fei, Meng


    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  8. A simple experiment to determine the activation energy of the viscous flow of polymer solutions using a glass capillary viscometer

    Rohindra, D. R.; Lata, R. A.; Coll, R. K.


    A simple viscometry experiment undertaken by an undergraduate polymer class as a research project is described. Viscosity is a measure of a fluid's resistance to flow and is affected by several factors, such as concentration and temperature. In this experiment, the viscosities of polyvinylpyrrolidone solutions (a polymeric material) of different concentrations were prepared in water and measured at various temperatures. The solution viscosity was found to increase gradually with increasing concentration up to ∼5 mass%, with a dramatic increase after this. The calculated viscosity of water at different temperatures was comparable to reported values. The activation energy of viscous flow (Ea) of the different solutions was calculated and followed a similar trend as that for the viscosities of solutions of various concentrations. This experiment allowed students to better understand and explain the behaviour of macromolecules with respect to changing concentration and temperature. Furthermore, students correlated the viscosity and Ea results to understand how an increase in the concentration of a polymer solution resulted in increased entanglement of the polymer chains, consequently leading to an increase in viscosity and an increase in the activation energy of viscous flow. This experiment is safe, low cost, simple and requires only readily available apparatus.

  9. Orientation and Relaxation of Polymer-clay Solutions Studied by Rheology and Small-angle Neutron Scattering

    Malwitz, M. M. [Louisiana State University; Butler, Paul D [ORNL; Porcar, L. [National Institute of Standards and Technology (NIST); Angelette, D. P. [Louisiana State University; Schmidt, G. [National Institute of Standards and Technology (NIST)


    The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO-CNA networklike solutions were compared with previously reported PEO-LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer-clay interactions, were examined.

  10. Effect of plasticizer on surface of free films prepared from aqueous solutions of salts of cationic polymers with different plasticizers

    Bajdik, János; Fehér, Máté; Pintye-Hódi, Klára


    Acquisition of a more detailed understanding of all technological processes is currently a relevant tendency in pharmaceutical technology and hence in industry. A knowledge of film formation from dispersion of polymers is very important during the coating of solid dosage forms. This process and the structure of the film can be influenced by different additives. In the present study, taste-masking films were prepared from aqueous citric acid solutions of a cationic polymer (Eudragit ® E PO) with various hydrophilic plasticizers (glycerol, propylene glycol and different poly(ethylene glycols)). The mechanical properties, film thickness, wetting properties and surface free energy of the free films were studied. The aim was to evaluate the properties of surface of free films to predict the arrangement of macromolecules in films formed from aqueous solutions of salts of cationic polymers. A high molecular weight of the plasticizer decreased the work of deformation. The surface free energy and the polarity were highest for the film without plasticizer; the hydrophilic additives decreased these parameters. The direction of the change in polarity (a hydrophilic component caused a decrease in the polarity) was unexpected. It can be explained by the change in orientation of the macromolecules, a hydrophobic surface being formed. Examination of the mechanical properties and film thickness can furnish additional results towards a knowledge of film formation by this not frequently applied type of polymer from aqueous solution.

  11. Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution

    Husain, O.; Lau, W.; Edirisinghe, M.; Parhizkar, M., E-mail:


    Electrohydrodynamic atomization (EHDA) is a key research area for producing micro and nano-sized structures. This process can be categorized into two main operating regimes: electrospraying for particle generation and electrospinning for fibre production. Producing particles/fibres of the desired size or morphology depends on two main factors; properties of the polymeric solution used and the processing conditions including flow rate, applied voltage and collection distance. In this work the particle-fibre transition region was analyzed by changing the polymer concentration of PLGA poly (lactic-co-glycolic acid) in acetone between 2 and 25 wt%. Subsequently the processing conditions were adjusted to study the optimum transition parameters. Additionally the EHDA configuration was also modified by adding a metallic plate to observe the deposition area. The diameter and the distance of the plate from the capillary tip were adjusted to investigate variations in particle and fibre morphologies as well. It was found that complete transition from particles to fibres occurs at 20 wt% indicating concentration to be the dominant criterion. Low flow rates yielded fibres without beads. However the applied voltage and distance between the tip of the nozzle jetting the polymer solution and collector (working distance) did not yield definitive results. Reducing the collector distance and increasing applied voltages produces smooth as well as beaded fibres. Addition of a metal plate reduces particle size by ~ 1 μm; the fibre size increases especially with increasing plate diameter while bead density and size reduces when the disc is fixed closer to the capillary tip. Additionally, the deposition area is reduced by 70% and 57% with the addition of metal plates of 30 mm and 60 mm, respectively. The results indicate that a metal plate can be utilized further to tune the particle/fibre size and morphology and this also significantly increases the yield of EHDA process which is

  12. Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol-water mixtures

    Bertrand, Olivier; Vlad, Alexandru; Hoogenboom, Richard; Gohy, Jean-François


    Research on stimuli responsive polymers builds momentum as nature-inspired applications using man-made materials are increasingly sought. Here, we show for the first time the thermo-responsive upper critical solution temperature (UCST) behaviour of a nitroxide containing polymer based on (2,6,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). It is demonstrated that poly(TEMPO methacrylate) (PTMA) exhibits a UCST-type cloud point temperature in alcohol-water mixtures that can be tuned by an external...

  13. Solution processing of polymer semiconductor: Insulator blends-Tailored optical properties through liquid-liquid phase separation control

    Hellmann, Christoph


    © 2014 Wiley Periodicals, Inc. It has been demonstrated that the 0-0 absorption transition of poly(3-hexylthiophene) (P3HT) in blends with poly(ethylene oxide) (PEO) could be rationally tuned through the control of the liquid-liquid phase separation process during solution deposition. Pronounced J-like aggregation behavior, characteristic for systems of a low exciton band width, was found for blends where the most pronounced liquid-liquid phase separation occurred in solution, leading to domains of P3HT and PEO of high phase purity. Since liquid-liquid phase separation could be readily manipulated either by the solution temperature, solute concentration, or deposition temperature, to name a few parameters, our findings promise the design from the out-set of semiconductor:insulator architectures of pre-defined properties by manipulation of the interaction parameter between the solutes as well as the respective solute:solvent system using classical polymer science principles.

  14. 利用DMO-M离子交换树脂除去稀溶液中的汞%Removal of Mercury from Dilute Aqueous Solution Using Mercaptoacetimide of Aminophenol Resin Duolite A-7

    C.S.Zhu(朱长生); Z.K.Duan(段正康); Z.S.Liu; G.L.Rempel


    A mercaptan - containing resin, DMO- M, with high redox capacity- 6.00 mequiv / g, prepared by reacting mercaptoacetyl chloride with the aminophenol resin Duolite A-7 in free-base form has been used to remove mercury in dilute aqueous solution. The resin has high mercury removal capacity; 1200mg/g. Sodium chloride affects the equilibrium sorption of mercury on the resin. At lower pH values, below 1.76, mercury sorption of the resin was greatly reduced. The sorbed mercury is partially removed by 2 mol/L HCl solution containing 5 % thiourea.

  15. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells

    Sun, Liang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Institute of Hybrid Materials, Laboratory of New Fiber Materials and Modern Textile—The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Wang, Ning; Dou, Xiaowei; Han, Liangliang; Wen, Shuguang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)


    Titanium oxide (TiO{sub X}) is an effective electron transport layer (ETL) in polymer solar cells (PSCs). We report efficient inverted PSCs with a simple solution-processed amorphous TiO{sub X} (s-TiO{sub X}) film as an ETL. The s-TiO{sub X} film with high light transmittance was prepared by spin-coating titanium (IV) isopropoxide isopropanol solution on indium tin oxide coated glass in inert and then placed in air under room temperature for 60 min. The introduction of s-TiO{sub X} ETL greatly improved the short circuit current density of the devices. PSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester and poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl -thieno[3,4-b]thiophene):[6,6]-phenyl- C71-butyric acid methyl ester using s-TiO{sub X} film as ETL shows high power conversion efficiency of 4.29% and 6.7% under the illumination of AM 1.5G, 100 mW/cm{sup 2}, which shows enhancements compared to the conventional PSCs with poly(styrenesulfonate)-doped poly(ethylenedioxythiophene) as anode buffer layer. In addition, the device exhibits good stability in a humid ambient atmosphere without capsulation. The results indicate that the annealing-free, simple solution processed s-TiO{sub X} film is an efficient ETL for high-performance PSCs. - Highlights: • High quality s-TiO{sub X} films were prepared by a simple, solution method without thermal treatment. • The s-TiO{sub X} films with high transmittance are very smooth. • The organic photovoltaic performance with s-TiO{sub X} film improved greatly and exhibited good stability. • The annealing-free, simple prepared s-TiO{sub X} film will be much compatible with flexible substrates.

  16. Polymères hydrosolubles d'origine naturelle et synthétique Relation structure/propriétés en solution Water-Soluble Polymers of Natural and Synthetic Origin. Structure/Property Relations in Solution

    Muller G.


    Full Text Available Les polymères hydrosolubles utilisés dans les opérations pétrolières (forage, cimentation, stimulation, récupération assistée peuvent être d'origine très variée (polymères naturels, de fermentation, semi-synthétiques et synthétiques. Leur utilisation et leur efficacité sont directement liées à la connaissance de la relation existant entre leur structure chimique (macrostructure et microstructure et leurs propriétés en solution. Ce rapport fait la synthèse des divers types de polymères hydrosolubles qui ont un intérêt pratique et définit les paramètres structuraux et fonctionnels gouvernant leur efficacité en fonction d'un certain nombre de paramètres extérieurs (pH, salinité, température. The capacity of water-soluble polymers to modify the rheology of aqueous solutions explains their importance for various oil-recovery operations. The choice of the most appropriate polymer depends on its molecular and macromolecular properties in solution, which are closely related to the nature of their primary, secondary and tertiary structures and of their microstructure. This article describes the different types of water-soluble polymers that are of practical interest, and it defines the structural and functional parameters that govern their efficacy as a function of external parameters (pH, salinity and temperature. There are four main types of polymers, depending on their origin. They are :(a Natural biopolymers (of vegetable origin and biotechnological biopolymers (produced by microorganisms, i. e. neutral and/or charged polysaccharides. (b Modified biopolymers having synthetic side chains. (c Polyvinylsaccharides (synthetic side chains. (d Synthetic polymers. For all of them, it is indispensable to know the relationship between structure, conformation and functional properties. The solubility in water and the properties in solution of polysaccharides depend on four main factors: (i the presence of branched chains, (ii the

  17. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    Rim, Jung H.

    Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important

  18. ``Living polymers'' in organic solvents : stress relaxation in bicopper tetracarboxylate/tert-butyl cyclohexane solutions

    Terech, P.; Maldivi, P.; Dammer, C.


    Viscoelastic solutions of a bicopper tetracarboxylate complex in tert-butylcyclohexane have been studied by dynamic rheology in a wide range of concentrations (0.5-1.5 % volume fraction). The zero shear viscosity, the elastic modulus, the terminal stress relaxation time and the height of the high-frequency dip, in a Cole-Cole representation of the complex elastic modulus, follow scaling laws. The related exponents are discussed in the context of the physics of “living polymers” : a term used to describe worm-like species undergoing scission/recombination reactions competing mainly with the reptation motions of the chains. The current system, made up of molecular threads (17.5 Å diameter) of Cu2(O2C-CH(C2H5)C4H9)4 in the apolar solvent, is representative of a “living polymer” where, instead of mechanisms involving transient star polymeric crosslinks, a reversible scission mechanism prevails. The dynamics in the high-frequency range evolves from a regime where reptation is the dominant relaxation mechanism to a cross-over regime where “breathing” fluctuations and Rouse motions become important. Large modifications of the stress relaxation function occur for more concentrated systems. The binary system is the first example of a “living polymer” in an organic solvent and exhibits elastic moduli (G ≈ ca. 120 Pa à φ = 1 %) which are at least 20 times larger than those found for the aqueous “living polymer” systems. Les solutions viscoélastiques d'un tétracarboxylate binucléaire de cuivre dans le tert-butylcyclohexane sont étudiées par rhéologie en mode dynamique dans une gamme étendue de concentrations (0,5 %-15,5 %). La viscosité à gradient nul, le module élastique, le temps terminal de relaxation et la hauteur du puits à haute fréquence, dans une représentation Cole-Cole du module élastique complexe, suivent des lois d'échelles. Les exposants correspondants sont discutés dans le contexte de la physique des “polymères vivants

  19. Polymer network stretching during electrospinning

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam; Zussman, Eyal


    Fast X-ray phase contrast imaging is used to observe the flow of a semi-dilute polyethylene oxide solution during electrospinning. Micron-size glass particles mixed in the polymer solution allow viewing of the jet flow field, and reveal a high-gradient flow that has both longitudinal and radial components that grow rapidly along the jet. The resulting hydrodynamic forces cause substantial longitudinal stretching and transversal contraction of the polymer network within the jet, as confirmed by random walk simulation and theoretical modeling. The polymer network therefore concentrates towards the jet center, and its conformation may transform from a free state to a fully-stretched state within a short distance from the jet start. We acknowledge the financial support of the United States - Israel Bi-National Science Foundation (grant 2006061).

  20. Mechanism of dialkyl phthalates removal from aqueous solution using γ-cyclodextrin and starch based polyurethane polymer adsorbents.

    Okoli, Chukwunonso Peter; Adewuyi, Gregory Olufemi; Zhang, Qian; Diagboya, Paul N; Guo, Qingjun


    Phthalate esters have been known as potent endocrine disruptors and carcinogens; and their removal from water have been of considerable concern recently. In the present study, γ-cyclodextrin polyurethane polymer (GPP), γ-cyclodextrin/starch polyurethane copolymer (GSP), and starch polyurethane polymer (SPP) have been synthesized and characterized. Their adsorption efficiencies for the removal of dimethyl phthalate (DMP) and diethyl phthalate (DEP) from aqueous solutions were investigated. The characterization results showed the success of the synthesis. The isotherms were L-type, and both the Langmuir and Freundlich adsorption isotherm gave good fittings to the adsorption data. Adsorption mechanisms suggested that these adsorbents spontaneously adsorb phthalate molecules driven mainly by enthalpy change, and the adsorption process was attributed to multiple adsorbent-adsorbate interactions such as hydrogen bonding, π-π stacking, and pore filling. The results showed that starch and γ-cyclodextrin polyurethane polymer adsorbents have excellent potential as adsorbent materials for the removal of phthalates from the contaminated water.

  1. Solution-processed ultrasensitive polymer photodetectors with high external quantum efficiency and detectivity.

    Liu, Xilan; Wang, Hangxing; Yang, Tingbin; Zhang, Wei; Gong, Xiong


    Operating at room temperature, polymer photodetectors (PDs) with external quantum efficiency approximately 80%, detectivity over 10(13) Jones, linear dynamic range over 120 dB, and dark current a few decades of nA/cm(2) were demonstrated. All these performance parameters were achieved by combined treatment of active layer with solvent vapor annealing and of polymer PDs with postproduction thermal annealing. These high performance parameters demonstrated that polymer PDs is comparable to or better than inorganic counterparts.

  2. Rheological Properties and Molecular Configuration of Polymer Solution in Planar Couette Flow%平板Couette流场中聚合物流变性质及分子构象的数值模拟

    代向艳; 欧阳洁


    通过耦合Brown构形场的有限体积法,对基于FENE(Finite Extension Non-linear Elastic)殊一簧链分子模型的平板Couette流动进行了模拟.不但得到了流动过程中的速度、应力等宏观信息,还得到了分子链的位形、分子链的取向角以及拉伸量等微观信息.另外,还研究了弹簧的最大拉伸长度b和weissenberg数We对聚合物稀溶液流变性质及分子构象的影响.模拟结果表明,随着b和We增大,代表弹性的第一法向应力差增大,分子链的拉伸量增大,取向角减小.但是,6和We对剪切应力的影响相反,即b增大,剪切应力增大;We增大,剪切应力则减小.%Brownian configuration field coupled with finite volume method was used to capture the most important features of dynamics of dilute polymer solution. The efficiency of numerical schemes was evaluated by performing FENE bead-spring chain models in transient planar Couette flow. The velocity and stress also the orientation and stretch of polymer molecule were captured. Additionally, the influences of the dimensionless finite extersibility parameter of spring b and Weissenberg number We on rheological properties and molecular configuration of dilute polymer solution were analyzed. The results of simulation show that the increment of b and We makes the first normal stress difference and the polymer molecular extension increase, but the orientation angle of polymer molecule decrease. However, considering the shear stress, the influence of b and We are opposite. Namely, the shear stress increases with increasing b, while the shear stress decreases with increasing We.

  3. Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow.

    Sozański, Krzysztof; Wiśniewska, Agnieszka; Kalwarczyk, Tomasz; Hołyst, Robert


    We measure the activation energy Ea for the diffusion of molecular probes (dyes and proteins of radii from 0.52 to 6.9 nm) and for macroscopic flow in a model complex liquid-aqueous solutions of polyethylene glycol. We cover a broad range of polymer molecular weights, concentrations, and temperatures. Fluorescence correlation spectroscopy and rheometry experiments reveal a relationship between the excess of the activation energy in polymer solutions over the one in pure solvent ΔEa and simple parameters describing the structure of the system: probe radius, polymer hydrodynamic radius, and correlation length. ΔEa varies by more than an order of magnitude in the investigated systems (in the range of ca. 1-15 kJ/mol) and for probes significantly larger than the polymer hydrodynamic radius approaches the value measured for macroscopic flow. We develop an explicit formula describing the smooth transition of ΔEa from the diffusion of molecular probes to macroscopic flow. This formula is a reference for the quantitative analysis of specific interactions of moving nano-objects with their environment as well as active transport. For instance, the power developed by a molecular motor moving at constant velocity u is proportional to u2exp(Ea/RT).

  4. A Modified Mixing Rule for PSRK Model and Application for the Prediction of Vapor-Liquid Equilibria of Polymer Solutions

    李敏; 王利生; J.Gmehling


    To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑xiln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied [bij1/2=1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters of i3 - 2- pure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.

  5. Spinning process variables and polymer solution effects in the die-swell phenomenon during hollow fiber membranes formation

    Pereira C.C.


    Full Text Available During hollow fiber spinning many variables are involved whose effects are still not completely clear. However, its understanding is of great interest because the control of these variables may originate membranes with the desired morphologies and physical properties. In this work, the phase inversion process induced by the immersion precipitation technique was applied to prepare hollow fibers membranes. It was verified that some of the variables involved, can promote a visco-elastic polymer solution expansion, called die-swell phenomenon, which is undesired since it may lead to low reproducibility of the permeation properties. The effects of the distance between spinneret and precipitation bath, the bore liquid composition, and the polymer solution composition were analyzed and discussed in order to avoid this phenomenon. According to the results, it was verified that the parameters investigated might promote a delay precipitation, which restrained the visco-elastic expansion.

  6. Imprinting of Phenylalanine ethyl ester in cyclodextrin polymers in aqueous solution

    Detcheva, Anna Hr.; Yu, Donghong; Larsen, Kim Lambertsen

    During the last decades there has been a wide interest of developing molecularly imprinted polymers, which selectively can recognize small molecules. Cyclodextrins offer relatively strong binding site of a wide range of small molecules in water and molecular imprinted polymers of these have previ...

  7. Imprinting of Phenylalanine ethyl ester in cyclodextrin polymers in aqueous solution

    Detcheva, Anna Hr.; Yu, Donghong; Larsen, Kim Lambertsen

    During the last decades there has been a wide interest of developing molecularly imprinted polymers, which selectively can recognize small molecules. Cyclodextrins offer relatively strong binding site of a wide range of small molecules in water and molecular imprinted polymers of these have previ...

  8. Polymers and surfactants in solution and at interfaces : a model study on detergency

    Torn, L.H.


    This thesis deals with detergency-related adsorption phenomena of (mixtures of) polymers and surfactants. Both types of molecules play an important role in the removal and subsequent stabilization of soil from a substrate. Starting with a model detergency system consisting of polymers, surfactants,

  9. Sorption of 2-Chlorophenol from aqueous solutions by functionalized cross-linked polymers

    Rodrigo Martins Fráguas


    Full Text Available This manuscript describes the synthesis of three polymers based on styrene (STY, divinylbenzene (DVB and two different vinyl monomers: methyl methacrylate (MMA and acrylonitrile (AN. The STY-DVB, STY-DVB-MMA and STY-DVB-AN polymers were synthesized employing the aqueous suspension technique. Reaction yields were 73%, 81% and 75%, respectively. They were morphological and chemically characterized using different techniques. The extraction capacity of the polymers was evaluated using 2-chlorophenol. The polymer extraction capacities were evaluated varying contact time the (1 h, 3 h and 5 h, temperature (30 °C, 35 °C and 40 °C, and pH (3, 5.6 and 8. The STY-DVB-AN polymer was the most efficient; it removed around 95% of the analyte using a contact time 50 h.

  10. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan


    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  11. Rapid prototyping of all-solution-processed multi-lengthscale electrodes using polymer-induced thin film wrinkling

    Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla


    Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.

  12. A unifying model for elongational flow of polymer melts and solutions based on the interchain tube pressure concept

    Wagner, Manfred Hermann; Rolón-Garrido, Víctor Hugo


    An extended interchain tube pressure model for polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τR, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube, which is proportional to the 3rd power of stretch (G. Marrucci and G. Ianniruberto. Macromolecules 37, 3934-3942, 2004). In the extended interchain tube pressure (EIP) model, it is assumed that chain stretch is balanced by interchain tube pressure in the lateral direction, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. The scaling relations established for the relaxation modulus of concentrated solutions of polystyrene in oligomeric styrene (M. H. Wagner, Rheol. Acta 53, 765-777, 2014, M. H. Wagner, J. Non-Newtonian Fluid Mech., 2014) are applied to the solutions of polystyrene (PS) in diethyl phthalate (DEP) investigated by Bhattacharjee et al. (P. K. Bhattacharjee et al., Macromolecules 35, 10131-10148, 2002) and Acharya et al. (M. V. Acharya et al. AIP Conference Proceedings 1027, 391-393, 2008). The scaling relies on the difference ΔTg between the glass-transition temperatures of the melt and the glass-transition temperatures of the solutions. ΔTg can be inferred from the reported zero-shear viscosities, and the BSW spectra of the solutions are obtained from the BSW spectrum of the reference melt with good accuracy. Predictions of the EIP model are compared to the steady-state elongational viscosity data of PS

  13. Surface segregation of fluorinated moieties on random copolymer films controlled by random-coil conformation of polymer chains in solution.

    Xue, Dongwu; Wang, Xinping; Ni, Huagang; Zhang, Wei; Xue, Gi


    The relationship between solution properties, film-forming methods, and the solid surface structures of random copolymers composed of butyl methacrylate and dodecafluorheptyl methylacrylate (DFHMA) was investigated by contact angle measurements, X-ray photoelectron spectroscopy, sum frequency generation vibrational spectroscopy, and surface tension measurements. The results, based on thermodynamic considerations, demonstrated that the random copolymer chain conformation at the solution/air interface greatly affected the surface structure of the resulting film, thereby determining the surface segregation of fluorinated moieties on films obtained by various film-forming techniques. When the fluorinated monomer content of the copolymer solution was low, entropic forces dominated the interfacial structure, with the perfluoroalkyl groups unable to migrate to the solution/air interface and thus becoming buried in a random-coil chain conformation. When employing this copolymer solution for film preparation by spin-coating, the copolymer chains in solution were likely extended due to centrifugal forces, thereby weakening the entropy effect of the polymer chains. Consequently, this resulted in the segregation of the fluorinated moieties on the film surface. For the films prepared by casting, the perfluoroalkyl groups were, similar to those in solution, incapable of segregating at the film surface and were thus buried in the random-coil chains. When the copolymers contained a high content of DFHMA, the migration of perfluoroalkyl groups at the solution/air interface was controlled by enthalpic forces, and the perfluoroalkyl groups segregated at the surface of the film regardless of the film-forming technique. The aim of the present work was to obtain an enhanced understanding of the formation mechanism of the chemical structure on the surface of the polymer film, while demonstrating that film-forming methods may be used in practice to promote the segregation of fluorinated

  14. Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers

    Wang, Suhao; Sun, Hengda; Ail, Ujwala;


    Ladder-type "torsion-free" conducting polymers (e.g., polybenzimidazobenzophenanthroline (BBL)) can outperform "structurally distorted" donor-acceptor polymers (e.g., P(NDI2OD-T2)), in terms of conductivity and thermoelectric power factor. The polaron delocalization length is larger in BBL than...... in P(NDI2OD-T2), resulting in a higher measured polaron mobility. Structure-function relationships are drawn, setting material-design guidelines for the next generation of conducting thermoelectric polymers....

  15. Comparison of Methods for Determination of Tylosin Concentrated Solution by Several Common Acid Dilution%几种常用酸稀释液测定泰乐菌素精制液效价的方法比较

    张金霞; 张萍; 包洁华; 郭强功


    The method used three diluted solutions, such as 0. 1 mol/L hydrochloric acid solution, 0. 05 mol/L sulfuric acid solution, 0. 033 mol/L phosphoric acid solution, Determining of tylosin concentrated solution chemical titer for comparison respectively, from the curve of the linear relationship, accuracy and contrast test results were analyzed and compared.The results showed that three kinds of solution had a good linear relationship between absorbance and concentration.(RH2=0.9997,RS2=1.0000,RP2=1.0000;n=5); and high accuracy;Results had no significant difference. We can choose different acid dilutions for determination in quality control.%分别采用0.1 mol/L盐酸溶液、0.05 mol/L硫酸溶液、0.033 mol/L磷酸溶液作稀释液测定泰乐菌素精制液化学效价,从曲线线性关系、准确度及检验结果对比方面进行分析比较。结果显示:三种溶液吸收度与浓度均呈良好的线性关系( R盐酸2=0.9997, R硫酸2=1.0000, R磷酸2=1.0000;n=5),准确度高,测定结果无明显差异,在质量控制中可以选择不同的酸稀释液进行测定。

  16. Extra dissipation and flow uniformization due to elastic instabilities of shear-thinning polymer solutions in model porous media

    Machado, Anaïs; Bodiguel, Hugues; Beaumont, Julien; Clisson, Gérald; Colin, Annie


    We study flows of hydrolized polyacrylamide solutions in two dimensional porous media made using microfluidics, for which elastic effects are dominant. We focus on semi-dilute solutions (0.1%–0.4%) which exhibit a strong shear thinning behavior. We systematically measure the pressure drop and find that the effective permeability is dramatically higher than predicted when the Weissenberg number is greater than about 10. Observations of the streamlines of the flow reveal that this effect coincides with the onset of elastic instabilities. Moreover, and importantly for applications, we show using local measurements that the mean flow is modified: it appears to be more uniform at high Weissenberg number than for Newtonian fluids. These observations are compared and discussed using pore network simulations, which account for the effect of disorder and shear thinning on the flow properties. PMID:27478522

  17. Nature Inspired Solutions for Polymers: Will Cutinase Enzymes Make Polyesters and Polyamides Greener?

    Valerio Ferrario


    Full Text Available The polymer and plastic sectors are under the urge of mitigating their environmental impact. The need for novel and more benign catalysts for polyester synthesis or targeted functionalization led, in recent years, to an increasing interest towards cutinases due to their natural ability to hydrolyze ester bonds in cutin, a natural polymer. In this review, the most recent advances in the synthesis and hydrolysis of various classes of polyesters and polyamides are discussed with a critical focus on the actual perspectives of applying enzymatic technologies for practical industrial purposes. More specifically, cutinase enzymes are compared to lipases and, in particular, to lipase B from Candida antarctica, the biocatalyst most widely employed in polymer chemistry so far. Computational and bioinformatics studies suggest that the natural role of cutinases in attacking natural polymers confer some essential features for processing also synthetic polyesters and polyamides.

  18. Investigation of ring polymers in confined geometries

    Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Halun, Joanna


    The investigation of a dilute solution of phantom ideal ring polymers and ring polymers with excluded volume interaction (EVI) in a good solvent confined in a slit geometry of two parallel repulsive walls and in a solution of colloidal particles of big size were performed. Taking into account the correspondence between the field theoretical ϕ4 O(n)-vector model in the limit n → 0 and the behavior of long-flexible polymers, the depletion forces and the forces which exert phantom ideal ring and ring polymer with EVI on the walls were obtained in the framework of the massive field theory approach at fixed space dimensions d=3 up to one-loop order. Additionally, the investigation of a dilute solution of phantom ideal ring polymers in the slit geometry of two inert walls and mixed walls with one repulsive and one inert wall were performed. Taking into account the Derjaguin approximation the depletion forces between big colloidal particle and a wall as well as between two big colloidal particles were calculated. The obtained results give possibility to understand the complexity of physical effects arising from confinement and chain topology and can find practical application in new types of micro- and nano-electromechanical devices.

  19. Reexamination of the Classical View of how Drag-Reducing Polymer Solutions Modify the Mean Velocity Profile: Baseline Results

    Farsiani, Yasaman; Baade, Jacquelyne; Elbing, Brian


    Recent numerical and experimental data have shown that the classical view of how drag-reducing polymer solutions modify the mean turbulent velocity profile is incorrect. The classical view is that the log-region is unmodified from the traditional law-of-the-wall for Newtonian fluids, though shifted outward. Thus the current study reexamines the modified velocity distribution and its dependence on flow and polymer properties. Based on previous work it is expected that the behavior will depend on the Reynolds number, Weissenberg number, ratio of solvent viscosity to the zero-shear viscosity, and the ratio between the coiled and fully extended polymer chain lengths. The long-term objective for this study includes a parametric study to assess the velocity profile sensitivity to each of these parameters. This study will be performed using a custom design water tunnel, which has a test section that is 1 m long with a 15.2 cm square cross section and a nominal speed range of 1 to 10 m/s. The current presentation focuses on baseline (non-polymeric) measurements of the velocity distribution using PIV, which will be used for comparison of the polymer modified results. Preliminary polymeric results will also be presented. This work was supported by NSF Grant 1604978.

  20. Extensional Rheology of Entangled Polystyrene Solutions Suggests Importance of Nematic Interactions

    Huang, Qian; Javier Alvarez, Nicolas; Matsumiya, Yumi


    We compare the linear and nonlinear rheological response of three entangled polystyrene solutions with the same concentration of polymer, but diluted using different solvents. The three solutions have exactly the same physical tube model parameters when normalized to the same time scale. Although...