WorldWideScience

Sample records for dilute acid pretreatment

  1. Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water.

    Science.gov (United States)

    Zhang, Taiying; Kumar, Rajeev; Wyman, Charles E

    2013-01-30

    Dilute oxalic acid pretreatment was applied to maple wood to improve compatibility with downstream operations, and its performance in pretreatment and subsequent enzymatic hydrolysis was compared to results for hydrothermal and dilute hydrochloric and sulfuric acid pretreatments. The highest total xylose yield of ∼84% of the theoretical maximum was for both 0.5% oxalic and sulfuric acid pretreatment at 160 °C, compared to ∼81% yield for hydrothermal pretreatment at 200 °C and for 0.5% hydrochloric acid pretreatment at 140 °C. The xylooligomer fraction from dilute oxalic acid pretreatment was only 6.3% of the total xylose in solution, similar to results with dilute hydrochloric and sulfuric acids but much lower than the ∼70% value for hydrothermal pretreatment. Combining any of the four pretreatments with enzymatic hydrolysis with 60 FPU cellulase/g of glucan plus xylan in the pretreated maple wood resulted in virtually the same total glucose plus xylose yields of ∼85% of the maximum possible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk

    Directory of Open Access Journals (Sweden)

    Rudy Agustriyanto

    2012-12-01

    Full Text Available Coconut husk is classified as complex lignocellulosic material that contains cellulose, hemicellulose, lignin, and some other extractive compounds. Cellulose from coconut husk can be used as fermentation substrate after enzymatic hydrolysis. In contrary, lignin content from the coconut husk will act as an inhibitor in this hydrolysis process. Therefore, a pretreatment process is needed to enhance the hydrolysis of cellulose. The objective of this research is to investigate the production of the glucose through dilute acid pretreatment and to obtain its optimum operating conditions. In this study, the pretreatment was done using dilute sulfuric acid in an autoclave reactor. The pretreatment condition were varied at 80°C, 100°C, 120°C and 0.9%, 1.2%, 1.5% for temperature and acid concentration respectively. The acid pretreated coconut husk was then hydrolyzed using commercial cellulase (celluclast and β-glucosidase (Novozyme 188. The hydrolysis time was 72 hours and the operating conditions were varied at several temperature and pH. From the experimental results it can be concluded that the delignification temperature variation has greater influence than the acid concentration. The optimum operating condition was obtained at pH 4 and 50°C which was pretreated at 100°C using 1.5% acid concentration. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012, Revised: 2nd October 2012, Accepted: 4th October 2012[How to Cite: R. Agustriyanto, A. Fatmawati, Y. Liasari. (2012. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 137-141. doi:10.9767/bcrec.7.2.4046.137-141] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4046.137-141 ] | View in 

  3. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment

    Directory of Open Access Journals (Sweden)

    Dale Bruce E

    2009-12-01

    Full Text Available Abstract Background Pretreatment chemistry is of central importance due to its impacts on cellulosic biomass processing and biofuels conversion. Ammonia fiber expansion (AFEX and dilute acid are two promising pretreatments using alkaline and acidic pH that have distinctive differences in pretreatment chemistries. Results Comparative evaluation on these two pretreatments reveal that (i AFEX-pretreated corn stover is significantly more fermentable with respect to cell growth and sugar consumption, (ii both pretreatments can achieve more than 80% of total sugar yield in the enzymatic hydrolysis of washed pretreated solids, and (iii while AFEX completely preserves plant carbohydrates, dilute acid pretreatment at 5% solids loading degrades 13% of xylose to byproducts. Conclusion The selection of pretreatment will determine the biomass-processing configuration, requirements for hydrolysate conditioning (if any and fermentation strategy. Through dilute acid pretreatment, the need for hemicellulase in biomass processing is negligible. AFEX-centered cellulosic technology can alleviate fermentation costs through reducing inoculum size and practically eliminating nutrient costs during bioconversion. However, AFEX requires supplemental xylanases as well as cellulase activity. As for long-term sustainability, AFEX has greater potential to diversify products from a cellulosic biorefinery due to lower levels of inhibitor generation and lignin loss.

  4. Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.)

    Science.gov (United States)

    Danilo Scordia; Salvatore L. Cosentino; Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Biomass pretreatment is essential to overcome recalcitrance of lignocellulose for ethanol production. In the present study we pretreated giant reed (Arundo donax L.), a perennial, rhizomatous lignocellulosic grass with dilute oxalic acid. The effects of temperature (170-190 ºC), acid loading (2-10% w/w) and reaction time (15-40 min) were handled as a single...

  5. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2011-11-01

    Full Text Available Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1 acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2 this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  6. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    Science.gov (United States)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  7. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Zhang, Ruihong [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Pan, Zhongli [Biological and Agricultural Engineering Department, University of California, Davis One Shields Avenue, Davis, CA 95616 (United States); Processed Foods Research Unit, USDA-ARS-WRRC, 800 Buchanan Street, Albany, CA 94710 (United States); Wang, Donghai [Biological and Agricultural Engineering Department, Kansas State University, Manhattan, KS 66506 (United States)

    2009-11-15

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol production because they don't take a large number of arable lands. Dilute sulfuric acid pretreatment and enzymatic hydrolysis were conducted to select the optimum pretreatment conditions and the best saline crop for further enzymatic hydrolysis research. The optimum dilute acid pretreatment conditions included T = 165 C, t = 8 min, and sulfuric acid concentration 1.4% (w/w). Creeping Wild Ryegrass was decided to be the best saline crop. Solid loading, cellulase and {beta}-glucosidase concentrations had significant effects on the enzymatic hydrolysis of dilute acid pretreated Creeping Wild Ryegrass. Glucose concentration increased by 36 mg/mL and enzymatic digestibility decreased by 20% when the solid loading increased from 4 to 12%. With 8% solid loading, enzymatic digestibility increased by over 30% with the increase of cellulase concentration from 5 to 15 FPU/g-cellulose. Under given cellulase concentration of 15 FPU/g-cellulose, 60% increase of enzymatic digestibility of pretreated Creeping Wild Ryegrass was obtained with the increase of {beta}-glucosidase concentration up to 15 CBU/g-cellulose. With a high solid loading of 10%, fed-batch operation generated 12% and 18% higher enzymatic digestibility and glucose concentration, respectively, than batch process. (author)

  8. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    Science.gov (United States)

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Optimisation of dilute acid pre-treatment of artisan rice hulls for ethanol production

    International Nuclear Information System (INIS)

    Lopez, Yoney; Martin, Carlos; Gullon, Beatriz; Parajo, Juan Carlos

    2011-01-01

    Rice hulls are potential low-cost feedstocks for fuel ethanol production in many countries. In this work, the dilute-acid pre-treatment of artisan rice hulls was investigated using a central composite rotatable experimental design. The experimental variables were temperature (140-210 C), biomass load (5-20%) and sulphuric acid concentration (0.5-1.5 g per 100 g of reaction mixture). A total of 16 experimental runs, including a 23-plan, two replicates at the central point and six star points, were carried out. Low temperatures were found to be favourable for the hydrolysis of xylan and of the easily hydrolyzable glucan fraction. High glucose formation (up to 15.3 g/100 g), attributable to starch hydrolysis, was detected in the hydrolysates obtained under the least severe pre-treatment conditions. Using the experimental results, several models for predicting the effect of the operational conditions on the yield of pretreated solids, xylan and glucan conversion upon pre-treatment, and on enzymatic convertibility of cellulose were developed. Optimum results were predicted for the conversion of easily-hydrolyzable glucan in the material pretreated at 140.7 C, and for the enzymatic saccharification of cellulose in the material pretreated at 169 C. These results suggested the use of two-step acid hydrolysis as future pre-treatment strategy for artisan rice hulls. Key words: Dilute acid hydrolysis, enzymatic hydrolysis, pre-treatment, rice hulls. (author)

  10. Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Svensson, Sven-Erik; Prade, Thomas

    2014-01-01

    In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and etha......In the present study, combined steam (140-180 °C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis...... pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment and subsequent enzymatic hydrolysis and ethanol fermentation....

  11. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.

    Science.gov (United States)

    Li, Xinping; Luo, Xiaolin; Li, Kecheng; Zhu, J Y; Fougere, J Dennis; Clarke, Kimberley

    2012-11-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL pretreatment resulted in fiber separation, where SPORL high pH (4.2) pretreatment exhibited better fiber separation than SPORL low pH (1.9) pretreatment. Dilute acid pretreatment produced very poor fiber separation, consisting mostly of fiber bundles. The removal of almost all hemicelluloses in the dilute acid pretreated substrate did not overcome recalcitrance to achieve a high cellulose conversion when lignin removal was limited. SPORL high pH pretreatment removed more lignin but less hemicellulose, while SPORL low pH pretreatment removed about the same amount of lignin and hemicelluloses in lodgepole pine substrates when compared with dilute acid pretreatment. Substrates pretreated with either SPORL process had a much higher cellulose conversion than those produced with dilute acid pretreatment. Lignin removal in addition to removal of hemicellulose in SPORL pretreatment plays an important role in improving the cellulose hydrolysis of the substrate.

  12. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ye Sun; Jay J Cheng [North Carolina State Univ., Dept. of Biological and Agricultural Engineering, Raleigh, NC (United States)

    2005-09-01

    Ethanol production from lignocellulosic materials provides an alternative energy production system. Rye and bermudagrass that are used in hog farms for nutrient uptake from swine wastewater have the potential for fuel ethanol production because they have a relative high cellulose and hemicellulose content. Dilute sulfuric acid pretreatment of rye straw and bermudagrass before enzymatic hydrolysis of cellulose was investigated in this study. The biomass at a solid loading rate of 10% was pretreated at 121 deg C with different sulfuric acid concentrations (0.6, 0.9, 1.2 and 1.5%, w/w) and residence times (30, 60, and 90 min). Total reducing sugars, arabinose, galactose, glucose, and xylose in the prehydrolyzate were analyzed. In addition, the solid residues were hydrolyzed by cellulases to investigate the enzymatic digestibility. With the increasing acid concentration and residence time, the amount of arabinose and galactose in the filtrates increased. The glucose concentration in the prehydrolyzate of rye straw was not significantly influenced by the sulfuric acid concentration and residence time, but it increased in the prehydrolyzate of bermudagrass with the increase of pretreatment severity. The xylose concentration in the filtrates increased with the increase of sulfuric acid concentration and residence time. Most of the arabinan, galactan and xylan in the biomass were hydrolyzed during the acid pretreatment. Cellulose remaining in the pretreated feedstock was highly digestible by cellulases from Trichoderma reesei. (Author)

  13. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa

    Energy Technology Data Exchange (ETDEWEB)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris [National Technical Univ. of Athens, Zografou (Greece). Biotechnology Lab.

    2012-07-15

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and {beta}-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively. (orig.)

  14. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble

  15. Revealing the Molecular Structural Transformation of Hardwood and Softwood in Dilute Acid Flowthrough Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Libing; Pu, Yunqiao; Cort, John R.; Ragauskas, Arthur J.; Yang, Bin

    2016-12-05

    To better understand the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g. poplar wood) and softwood (e.g. lodgepole pine wood) were investigated at temperatures of 200 °C to 270 °C and a flow rate of 25 mL/minute with 0.05% (w/w) H2SO4. Results suggested that the softwood cellulose was more readily to be degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C-C5). Unique molecular structural features that pronounced the specific recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.

  16. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.

    Science.gov (United States)

    Dogaris, Ioannis; Gkounta, Olga; Mamma, Diomi; Kekos, Dimitris

    2012-07-01

    Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16 % at pretreatment and 8 % at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2 g/100 g SB; 210 °C; 10 min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6 g/l or 84.7 % of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3 % and 89.6 %, respectively.

  17. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  18. Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass

    International Nuclear Information System (INIS)

    Foston, Marcus; Ragauskas, Art J.

    2010-01-01

    Dilute acid pretreatment (DAP) is commonly employed prior to enzymatic deconstruction of cellulose to increase overall sugar and subsequent ethanol yields from downstream bioconversion processes. Typically optimization of pretreatment is evaluated by determining hemicellulose removal, subsequent reactivity towards enzymatic deconstruction, and recoverable polysaccharide yields. In this study, the affect of DAP on the supramolecular and ultrastructure of lignocellulosic biomass was evaluated. A series of dilute acidic pretreatments, employing ∼0.10-0.20 mol/m 3 H 2 SO 4 at ∼160-180 o C, for varying residence times were conducted on both Populus and switchgrass samples. The untreated and pretreated biomass samples were characterized by carbohydrate and lignin analysis, gel permeation chromatography (GPC) and 13 C cross polarization magic angle spinning (CPMAS) NMR spectroscopy. GPC analysis shows a reduction in the molecular weight of cellulose and change in its polydispersity index (PDI) with increasing residence time, indicating that pretreatment is actually degrading the cellulose chains. 13 C CPMAS and non-linear line-fitting of the C 4 region in the carbon spectrum of the isolated cellulose not only showed that the crystallinity index increases with residence time, but that the lateral fibril dimension (LFD) and lateral fibril aggregate dimension (LFAD) increase as well.

  19. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Science.gov (United States)

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  20. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.

    Science.gov (United States)

    Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2017-12-01

    The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis.

    Science.gov (United States)

    Kapoor, Manali; Raj, Tirath; Vijayaraj, M; Chopra, Anju; Gupta, Ravi P; Tuli, Deepak K; Kumar, Ravindra

    2015-06-25

    To overcome the recalcitrant nature of biomass several pretreatment methodologies have been explored to make it amenable to enzymatic hydrolysis. These methodologies alter cell wall structure primarily by removing/altering hemicelluloses and lignin. In this work, alkali, dilute acid, steam explosion pretreatment are systematically studied for mustard stalk. To assess the structural variability after pretreatment, chemical analysis, surface area, crystallinity index, accessibility of cellulose, FT-IR and thermal analysis are conducted. Although the extent of enzymatic hydrolysis varies upon the methodologies used, nevertheless, cellulose conversion increases from adsorption capacity. However, no such relationship is observed for xylose yield. Mass balance of the process is also studied. Dilute acid pretreatment is the best methodology in terms of maximum sugar yield at lower enzyme loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.

    Science.gov (United States)

    Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Science.gov (United States)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  4. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.

    Science.gov (United States)

    Mathew, Anil Kuruvilla; Parameshwaran, Binod; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-01-01

    The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification

    Science.gov (United States)

    The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatme...

  6. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  7. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.

    Science.gov (United States)

    Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie

    2017-08-01

    Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis.

    Science.gov (United States)

    Xin, Donglin; Yang, Zhong; Liu, Feng; Xu, Xueru; Zhang, Junhua

    2015-01-01

    The effect of two pretreatments methods, aqueous ammonia (SAA) and dilute acid (DA), on the chemical compositions, cellulose crystallinity, morphologic change, and enzymatic hydrolysis of bamboo fractions (bamboo yellow, timber, green, and knot) was compared. Bamboo fractions with SAA pretreatment had better hydrolysability than those with DA pretreatment. High crystallinity index resulted in low hydrolysis yield in the conversion of SAA pretreated bamboo fractions, not DA pretreated fractions. The increase of cellulase loading had modestly positive effect in the hydrolysis of both SAA and DA pretreated bamboo fractions, while supplement of xylanase significantly increased the hydrolysis of the pretreated bamboo fractions, especially after SAA pretreatment. The results indicated that SAA pretreatment was more effective than DA pretreatment in conversion of bamboo fractions, and supplementation of xylanase was necessary in effective conversion of the SAA pretreated fractions into fermentable sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Application of a continuous twin screw-driven process for dilute acid pretreatment of rape straw.

    Science.gov (United States)

    Choi, Chang Ho; Oh, Kyeong Keun

    2012-04-01

    Rape straw, a processing residue generated from the bio-oil industry, was used as a model biomass for application of continuous twin screw-driven dilute acid pretreatment. The screw rotation speed and feeding rate were adjusted to 19.7rpm and 0.5g/min, respectively to maintain a residence time of 7.2min in the reaction zone, respectively. The sulfuric acid concentration was 3.5wt% and the reaction temperature was 165°C. The enzymatic digestibility of the glucan in the pretreated solids was 70.9%. The continuous process routinely gave around 28.8% higher yield for glucan digestibility than did the batch processing method. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.

  11. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Tu, Yi-Jian; Sheen, Herng-Kuang

    2011-01-01

    Highlights: → Pretreatment of dilute sulfuric acid on bagasse using microwave heating. → An increase in reaction temperature destroyed bagasse significantly. → Pretreated bagasse particles were characterized by fragmentation and swelling. → When the temperature was 190 o C, the fragmentation of particles became pronounced. → The influence of heating time on bagasse structure was not significant. - Abstract: Disruption of lignocellulosic structure of biomass plays a key role in producing bioethanol from lignocelluloses. This study investigated the impact of dilute sulfuric acid pretreatment on bagasse structure using microwave heating. Three reaction temperatures of 130, 160 and 190 o C with two heating times of 5 and 10 min were considered and a number of instruments were employed to analyze the properties of the bagasse particles. On account of microwave irradiation into the solution with dielectric heating, the experiments indicated that an increase in reaction temperature destroyed the lignocellulosic structure of bagasse in a significant way. The pretreated bagasse particles were simultaneously characterized by fragmentation and swelling. When the reaction temperature was as high as 190 o C, the fragmentation of particles became fairly pronounced so that the specific surface area of the pretreated material grew substantially. Meanwhile, almost all hemicellulose was removed from bagasse and the crystalline structure of cellulose disappeared. In contrast, the feature of lignin was remained clearly. However, a comparison between the heating times of 5 and 10 min revealed that the influence of the heating time on the lignocellulosic structure was not significant, indicating that the pretreatment with 5 min was sufficiently long.

  12. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    Science.gov (United States)

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  13. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  14. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis

    Science.gov (United States)

    Jijiao Zeng; Zhaohui Tong; Letian Wang; J.Y. Zhu; Lonnie Ingram

    2014-01-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation...

  15. One-step pretreatment of yellow poplar biomass using peracetic acid to enhance enzymatic digestibility.

    Science.gov (United States)

    Lee, Hyeong Rae; Kazlauskas, Romas J; Park, Tai Hyun

    2017-09-22

    Pretreatment of biomass with dilute acid requires high temperatures of >160 °C to remove xylan and does not remove lignin. Here we report that the addition of peracetic acid, a strong oxidant, to mild dilute acid pretreatment reduces the temperature requirement to only 120 °C. Pretreatment of yellow poplar with peracetic acid (300 mM, 2.3 wt%) and dilute sulfuric acid (100 mM, 1.0 wt%) at 120 °C for 5 min removed 85.7% of the xylan and 90.4% of the lignin leaving a solid consisting of 75.6% glucan, 6.0% xylan and 4.7% lignin. Low enzyme loadings of 5 FPU/g glucan and 10 pNPGU/g glucan converted this solid to glucose with an 84.0% yield. This amount of glucose was 2.5 times higher than with dilute acid-pretreated solid and 13.8 times higher than with untreated yellow poplar. Thus, the addition of peracetic acid, easily generated from acetic acid and hydrogen peroxide, dramatically increases the effectiveness of dilute acid pretreatment of biomass.

  16. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    Science.gov (United States)

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  17. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Science.gov (United States)

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  18. Characteristics of Lignin Fractions from Dilute Acid Pretreated Switchgrass and Their Effect on Cellobiohydrolase from Trichoderma longibrachiatum

    Directory of Open Access Journals (Sweden)

    Lan Yao

    2018-02-01

    Full Text Available To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH, three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i ethanol extraction, followed by (ii dioxane/H2O extraction, and (iii cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S and guaiacyl (G units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acid (pCA unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.

  19. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  20. Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production

    Science.gov (United States)

    Martin, Carlos; Alriksson, Björn; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122°C during 20, 40, or 60 min using 2% H2SO4 at a solid-to-liquid ratio of 1∶10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26-33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7-to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

  1. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optimization of dilute sulfuric acid pretreatment to maximize combined sugar yield from sugarcane bagasse for ethanol production.

    Science.gov (United States)

    Benjamin, Y; Cheng, H; Görgens, J F

    2014-01-01

    Increasing fermentable sugar yields per gram of biomass depends strongly on optimal selection of varieties and optimization of pretreatment conditions. In this study, dilute acid pretreatment of bagasse from six varieties of sugarcane was investigated in connection with enzymatic hydrolysis for maximum combined sugar yield (CSY). The CSY from the varieties were also compared with the results from industrial bagasse. The results revealed considerable differences in CSY between the varieties. Up to 22.7 % differences in CSY at the optimal conditions was observed. The combined sugar yield difference between the best performing variety and the industrial bagasse was 34.1 %. High ratio of carbohydrates to lignin and low ash content favored the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe condition. This observation suggests that under less severe conditions the glucose recovery was largely determined by chemical composition of biomass. The results from this study support the possibility of increasing sugar yields or improving the conversion efficiency when pretreatment optimization is performed on varieties with improved properties.

  3. Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Lignos, G.D.; Bakker, R.R.C.; Koukios, E.G.

    2012-01-01

    The objective of this work was to investigate the feasibility of combining low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis for the high production of fermentable substrates and the low release of inhibitory compounds. For most of the pretreatments at 160

  4. Structural changes of corn stover lignin during acid pretreatment.

    Science.gov (United States)

    Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui

    2012-09-01

    In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.

  5. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  6. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enzymatic saccharification of liquid hot water and dilute sulfuric acid pretreated oil palm empty fruit bunch and sugarcane bagasse

    Science.gov (United States)

    Risanto, L.; Fitria; Fajriutami, T.; Hermiati, E.

    2018-03-01

    Oil palm empty fruit bunch (OPEFB) and sugarcane bagasse (SB) are potential feedstocks for the production of bioethanol. In this study OPEFB and SB were pretreated by liquid hot water and dilute sulfuric acid (3% H2SO4), and continued with enzymatic saccharification. Heating treatment for both methods was conducted in an autoclave at 121 °C for 1 hr. The saccharification was performed up to 72 hours with cellulase enzyme loading of 10, 20, and 30 FPU per g biomass. Results showed that OPEFB and SB pretreated with H2SO4 produced higher reducing sugars than those pretreated by liquid hot water. Higher enzyme loading also resulted in higher reducing sugars. Reducing sugars obtained from enzymatic saccharification of OPEFB were higher than those obtained from SB. The highest total reducing sugars (50.48 g/100 g biomass) was obtained from OPEFB pretreated with 3% H2SO4 at enzyme loading of 30 FPU per g biomass.

  8. Simultaneous saccharification and co-fermentation of peracetic acid pretreated sugar cane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.C. [Fundacao Centro Tecnologico de Minas Gerais, Belo Horizonte (Brazil); Linden, J.C.; Schroeder, H.A. [Colorado State University, Fort Collins, CO (United States)

    1999-07-01

    Previous work in our laboratory has demonstrated that peracetic acid improves the enzymatic digestibility of lignocellulosic materials. From the same studies, use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increases sugar conversion yields in a synergistic, not additive, manner. Deacetylation of xylan is conducted easily by use of dilute alkali solutions at mild conditions. In this paper, the effectiveness of peracetic acid pretreatment of sugar cane bagasse combined with an alkaline pre-pretreatment, is evaluated through simultaneous saccharification and co-fermentation (SSCF) procedures. A practical 92% of theoretical ethanol yield using recombinant Zymomonas mobilis CP4/pZB5 is achieved using 6% NaOH/I5% peracetic acid pretreated substrate. No sugar accumulation is observed during SSCF; the recombinant microorganism exhibits greater glucose utilization rates than those of xylose. Acetate levels at the end of the co-fermentations are less than 0.2% (w/v). Based on demonstrated reduction of acetyl groups of the biomass, alkaline pre-pretreatments help to reduce peracetic acid requirements. The influence of deacetylation is more pronounced in combined pretreatments using lower peracetic acid loadings. Stereochemical impediments of the acetyl groups in hemicellulase on the activity of specific enzymes may be involved. (author)

  9. SBR treatment of olive mill wastewaters: dilution or pre-treatment?

    Science.gov (United States)

    Farabegoli, G; Chiavola, A; Rolle, E

    2012-01-01

    The olive-oil extraction industry is an economically important activity for many countries of the Mediterranean Sea area, with Spain, Greece and Italy being the major producers. This activity, however, may represent a serious environmental problem due to the discharge of highly polluted effluents, usually referred to as 'olive mill wastewaters' (OMWs). They are characterized by high values of chemical oxygen demand (COD) (80-300 g/L), lipids, total polyphenols (TPP), tannins and other substances difficult to degrade. An adequate treatment before discharging is therefore required to reduce the pollutant load. The aim of the present paper was to evaluate performances of a biological process in a sequencing batch reactor (SBR) fed with pre-treated OMWs. Pre-treatment consisted of a combined acid cracking (AC) and granular activated carbon (GAC) adsorption process. The efficiency of the system was compared with that of an identical SBR fed with the raw wastewater only diluted. Combined AC and GAC adsorption was chosen to be used prior to the following biological process due to its capability of providing high removal efficiencies of COD and TPP and also appreciable improvement of biodegradability. Comparing results obtained with different influents showed that best performances of the SBR were obtained by feeding it with raw diluted OMWs (dOMWs) and at the lowest dilution ratio (1:25): in this case, the removal efficiencies were 90 and 76%, as average, for COD and TPP, respectively. Feeding the SBR with either the pre-treated or the raw dOMWs at 1:50 gave very similar values of COD reduction (74%); however, an improvement of the TPP removal was observed in the former case.

  10. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 Experimental

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-08-01

    and mechanical refining. The new process shows improved overall ethanol yields compared to traditional dilute acid pretreatment. The experimental results from this work support the techno-economic analysis and calculation of Minimum Ethanol Selling Price (MESP detailed in our companion paper.

  12. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1.

    Science.gov (United States)

    Hu, Bin-Bin; Zhu, Ming-Jun

    2017-05-03

    Energy shortage and environmental pollution are two severe global problems, and biological hydrogen production from lignocellulose shows great potential as a promising alternative biofuel to replace the fossil fuels. Currently, most studies on hydrogen production from lignocellulose concentrate on cellulolytic microbe, pretreatment method, process optimization and development of new raw materials. Due to no effective approaches to relieve the inhibiting effect of inhibitors, the acid pretreated lignocellulose hydrolysate was directly discarded and caused environmental problems, suggesting that isolation of inhibitor-tolerant strains may facilitate the utilization of acid pretreated lignocellulose hydrolysate. Thermophilic bacteria for producing hydrogen from various kinds of sugars were screened, and the new strain named MJ1 was isolated from paper sludge, with 99% identity to Thermoanaerobacterium thermosaccharolyticum by 16S rRNA gene analysis. The hydrogen yields of 11.18, 4.25 and 2.15 mol-H 2 /mol sugar can be reached at an initial concentration of 5 g/L cellobiose, glucose and xylose, respectively. The main metabolites were acetate and butyrate. More important, MJ1 had an excellent tolerance to inhibitors of dilute-acid (1%, g/v) pretreated sugarcane bagasse hydrolysate (DAPSBH) and could efficiently utilize DAPSBH for hydrogen production without detoxication, with a production higher than that of pure sugars. The hydrogen could be quickly produced with the maximum hydrogen production reached at 24 h. The hydrogen production reached 39.64, 105.42, 111.75 and 110.44 mM at 20, 40, 60 and 80% of DAPSBH, respectively. Supplementation of CaCO 3 enhanced the hydrogen production by 21.32% versus the control. These results demonstrate that MJ1 could directly utilize DAPSBH for biohydrogen production without detoxication and can serve as an excellent candidate for industrialization of hydrogen production from DAPSBH. The results also suggest that isolating unique

  13. Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass

    DEFF Research Database (Denmark)

    Rodrigues Gurgel da Silva, Andrè; Errico, Massimiliano; Rong, Ben-Guang

    2018-01-01

    data, we propose a feasible process flowsheet for organosolv pretreatment. Simulation of the pretreatment process provided mass and energy balances for a techno-economic analysis, and the values were compared with the most prevalent and mature pretreatment method: diluted acid. Organosolv pretreatment...... required more energy, 578.1 versus 213.8 MW for diluted acid pretreatment, but resulted in a higher ethanol concentration after the biomass fermentation, 11.1% compared to 5.4%. Total annual costs (TACs) calculations showed advantages for diluted acid pretreatment, but future improvements explored...

  14. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production.

    Science.gov (United States)

    Qi, Benkun; Chen, Xiangrong; Wan, Yinhua

    2010-07-01

    Pretreating wheat straw (WS) with combined use of varied sulfuric acid concentration (0-3%, w/v) and Tween 20 concentration (0-1%) was investigated in an attempt to enhance the hydrolysis and fermentability of pretreated WS. Enzymatic hydrolysis yield of glucan and xylan and ethanol production by simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) were significantly affected by the amount of Tween 20 added during acid pretreatment. Any further addition of Tween 20 in either hydrolysis stage or fermentation stage only led to small increase in glucan conversion and ethanol production. Determination of adsorption of cellulases during hydrolysis showed that Tween 20-assisted acid treated straw solution contained more free cellulases than individual acid treated straw solution, indicating that modification of lignin surface by Tween 20 added during pretreatment likely occurred. In addition, the effects of pretreatment conditions on overall recovery of glucose and xylose after pretreatment and enzymatic hydrolysis were also investigated. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    Science.gov (United States)

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  16. Dilute alkali pretreatment of softwood pine: A biorefinery approach.

    Science.gov (United States)

    Safari, Ali; Karimi, Keikhosro; Shafiei, Marzieh

    2017-06-01

    Dilute alkali pretreatment was performed on softwood pine to maximize ethanol and biogas production via a biorefinery approach. Alkali pretreatments were performed with 0-2% w/v NaOH at 100-180°C for 1-5h. The liquid fraction of the pretreated substrates was subjected to anaerobic digestion. The solid fraction of the pretreatment was used for separate enzymatic hydrolysis and fermentation. High ethanol yields of 76.9‒78.0% were achieved by pretreatment with 2% (w/v) NaOH at 180°C. The highest biogas yield of 244mL/g volatile solid (at 25°C, 1bar) was achieved by the pretreatment with 1% (w/v) NaOH at 180°C. The highest gasoline equivalent (sum of ethanol and methane) of 197L per ton of pinewood and the lowest ethanol manufacturing cost of 0.75€/L was obtained after pretreatment with 1% NaOH at 180°C for 5h. The manufacturing cost of ethanol from untreated wood was 4.12€/L. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR

    Science.gov (United States)

    Teramura, Hiroshi; Sasaki, Kengo; Oshima, Tomoko; Aikawa, Shimpei; Matsuda, Fumio; Okamoto, Mami; Shirai, Tomokazu; Kawaguchi, Hideo; Ogino, Chiaki; Yamasaki, Masanori; Kikuchi, Jun; Kondo, Akihiko

    2015-01-01

    A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate. PMID:26083431

  18. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    Science.gov (United States)

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  19. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment.

    Science.gov (United States)

    Qiao, Jian-Jun; Zhang, Yan-Fei; Sun, Li-Fan; Liu, Wei-Wei; Zhu, Hong-Ji; Zhang, Zhijun

    2011-09-01

    Spent mushroom substrate (SMS) was treated with dilute sulfuric acid followed by cellulase and xylanase treatment to produce hydrolysates that could be used as the basis for media for the production of value added products. A L9 (3(4)) orthogonal experiment was performed to optimize the acid treatment process. Pretreatment with 6% (w/w) dilute sulfuric acid at 120°C for 120 min provided the highest reducing sugar yield of 267.57 g/kg SMS. No furfural was detected in the hydrolysates. Exposure to 20PFU of cellulase and 200 XU of xylanase per gram of pretreated SMS at 40°C resulted in the release of 79.85 g/kg or reducing sugars per kg acid pretreated SMS. The dilute sulfuric acid could be recycled to process fresh SMS four times. SMS hydrolysates neutralized with ammonium hydroxide, sodium hydroxide, or calcium hydroxide could be used as the carbon source for cultivation of Lactococcus lactis subsp. lactis W28 and a cell density of 2.9×10(11)CFU/mL could be obtained. The results provide a foundation for the development of value-added products based on SMS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  1. Biohydrogen Production from Pineapple Waste: Effect of Substrate Concentration and Acid Pretreatment

    Science.gov (United States)

    Cahyari, K.; Putri, A. M.; Oktaviani, E. D.; Hidayat, M. A.; Norajsha, J. D.

    2018-05-01

    Biohydrogen is the ultimate choice of energy carrier in future due to its superior qualities such as fewer greenhouse gases emission, high energy density (142 kJ/gram), and high energy conversion using a fuel cell. Production of biohydrogen from organic waste e.g. pineapple waste offers a simultaneous solution for renewable energy production and waste management. It is estimated that pineapple cultivation in Indonesia generated more than 1 million ton/year comprising of rotten pineapple fruit, leaves, and stems. Majority of this waste is dumped into landfill area without any treatments which lead to many environmental problems. This research was meant to investigate the utilization of pineapple waste i.e. peel and the core of pineapple fruit and leaves to produce biohydrogen through mesophilic dark fermentation (30°C, 1 atm, pH 5.0). Effect of dilute acid treatment and substrate concentration was particularly investigated in these experiments. Peel and core of pineapple waste were subjected to fermentation at 3 various substrate concentration i.e. 8.8, 17.6 and 26.4-gram VS/liter. Meanwhile, pineapple leaves were pretreated using dilute acid (H2SO4) at 0.2, 0.3 and 0.4 N and followed by dark fermentation. Results show that the highest yield of biohydrogen was obtained at a substrate concentration of 26.4-gram VS/liter both for peel and core of the waste. Pretreatment using dilute acid (H2SO4) 0.3 N might improve fermentation process with a higher yield at 0.8 ml/gram VS. Hydrogen percentage in biogas produced during fermentation process was in the range between 5 – 32% of volume ratio. In summary, it is possible to utilize pineapple waste for production of biohydrogen at an optimum substrate concentration of 26.4-gram VS/liter and acid pretreatment (H2SO4) of 0.3 N.

  2. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  3. Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation

    NARCIS (Netherlands)

    Marasabessy, Ahmad; Kootstra, Maarten; Sanders, Johan P.M.; Weusthuis, Ruud A.

    2012-01-01

    Dilute sulfuric acid pretreatment of the Jatropha curcas fruit hull at high temperatures (140°C to 180°C) performed in a 110-mL stainless steel reactor was investigated to enhance the enzymatic digestibility of its lignocellulosic components. Carbohydrates accounted for 43% of the dry matter of

  4. Dilute H{sub 2}SO{sub 4}-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Marasabessy, Ahmad [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group; Rijksuniversiteit Groningen (Netherlands). Dept. of Chemical Engineering; Agency for the Assessment and Application of Technology (BPPT), Jakarta (Indonesia); Kootstra, A. Maarten J. [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group; Wageningen Univ. (Netherlands). Bioprocess Engineering Group; Sanders, Johan P.M.; Westhuis, Ruud A. [Wageningen Univ. (Netherlands). Agrotechnology and Food Sciences Group

    2012-11-01

    Dilute sulfuric acid pretreatment of the Jatropha curcas fruit hull at high temperatures (140 C to 180 C) performed in a 110-mL stainless steel reactor was investigated to enhance the enzymatic digestibility of its lignocellulosic components. Carbohydrates accounted for 43% of the dry matter of the J. curcas fruit hull biomass. The goal of the study was to optimize the pretreatment conditions (acid concentration, time, and temperature) in order to obtain the highest sugar yield after subsequent enzymatic hydrolysis. A Box-Behnken design was applied to the experimental setup in order to reduce the number of experiments. The optimal pretreatment conditions are 30-min incubations at a temperature of 178 C with a sulfuric acid concentration of 0.9% (w/v). Using these pretreatment conditions for a fruit solid loading of 9.52% followed by a 24-h enzymatic hydrolysis resulted in a liberation of 100% of all pentoses present (71% yield and 29% degradation to furfural) and 83% of the hexoses (78% yield and 5% degradation to 5-hydroxymethylfurfural). The simultaneous saccharification and fermentation experiment showed that acid-pretreated fruit hull can be used as a substrate for Saccharomyces cerevisiae to produce ethanol. (orig.)

  5. Spectroscopic analysis of hot-water- and dilute-acid-extracted hardwood and softwood chips

    Science.gov (United States)

    Lehto, Joni; Louhelainen, Jarmo; Huttunen, Marko; Alén, Raimo

    2017-09-01

    Hot-water and dilute sulfuric acid pretreatments were performed prior to chemical pulping for silver/white birch (Betula pendula/B. pubescens) and Scots pine (Pinus sylvestris) chips to determine if varying pretreatment conditions on the original wood material were detectable via attenuated total reflectance (ATR) infrared spectroscopy. Pretreatment conditions varied with respect to temperature (130 °C and 150 °C) and treatment time (from 30 min to 120 min). The effects of the pretreatments on the composition of wood chips were determined by ATR infrared spectroscopy. The spectral data were compared to those determined by common wood chemistry analyses to evaluate the suitability of ATR spectroscopy method for rapid detection of changes in the wood chemical composition caused by different pretreatment conditions. In addition to determining wood species-dependent differences in the wood chemical composition, analytical results indicated that most essential lignin- and carbohydrates-related phenomena taking place during hot-water and acidic pretreatments could be described by applying this simple spectral method requiring only a small sample amount and sample preparation. Such information included, for example, the cleavage of essential lignin bonds (i.e., mainly β-O-4 linkages in guaiacyl and syringyl lignin) and formation of newly condensed lignin structures under different pretreatment conditions. Carbohydrate analyses indicated significant removal of hemicelluloses (especially hardwood xylan) and hemicelluloses-derived acetyl groups during the pretreatments, but they also confirmed the highly resistant nature of cellulose towards mild pretreatments.

  6. Improving bioavailability of fruit wastes using organic acid: An exploratory study of biomass pretreatment for fermentation

    International Nuclear Information System (INIS)

    Saha, Shouvik; Kurade, Mayur B.; El-Dalatony, Marwa M.; Chatterjee, Pradip K.; Lee, Dae Sung; Jeon, Byong-Hun

    2016-01-01

    Highlights: • Maximum sugar recovery was achieved with 100 °C/1 h treatment in 0.2 M acetic acid. • C/N ratios (41–47) were retained in all FPWs after the acetic acid treatment. • Combined severity (−0.83) of acetic acid enhanced the bioavailability of the FPWs. • Acetic acid pretreatment is advantageous over mineral acid to curtail sugar loss. • Estimated methane yields are promising for the industrial feasibility. - Abstract: Maximizing the bioavailability of fermentable biomass components is a key challenge in biomass pretreatment due to the loss of sugars during conventional pretreatment approaches. Pretreatment of fruit peels and wastes (FPWs) with dilute acetic acid assisted in maximizing sugar recovery. Optimized conditions (0.2 M acetic acid, 100 °C, 1 h) at 10% substrate loading resulted in enhanced sugar recovery from banana peels (99.9%), pineapple wastes (99.1%), grape pomace (98.8%), and orange peels (97.9%). These high sugar recoveries retained the high C/N ratios (41–47) suitable for effective bioenergy production through the fermentation of these pretreated biomasses. Scanning electron microscopy (SEM) indicated considerable disruption of biomass structural integrity during acetic acid treatment, enhancing the surface area available for better microbial attachment. Fourier transform infrared spectroscopy (FTIR) showed that the acetic acid pretreatment yielded only minor changes to the functional groups in the biomasses, strongly suggesting minimal loss of fermentable sugars. Thus, acetic acid pretreatment aids in enhancing the bioavailability of fermentable sugars from these FPWs biomass, enabling improvements in bioenergy production.

  7. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Murthy Ganti S

    2011-09-01

    Full Text Available Abstract Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for

  8. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis

    Science.gov (United States)

    Yanlin Qin; Xueqing Qiu; Junyong Zhu

    2016-01-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...

  9. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Selig, Michael J; Viamajala, Sridhar; Decker, Stephen R; Tucker, Melvin P; Himmel, Michael E; Vinzant, Todd B

    2007-01-01

    Electron microscopy of lignocellulosic biomass following high-temperature pretreatment revealed the presence of spherical formations on the surface of the residual biomass. The hypothesis that these droplet formations are composed of lignins and possible lignin carbohydrate complexes is being explored. Experiments were conducted to better understand the formation of these "lignin" droplets and the possible implications they might have on the enzymatic saccharification of pretreated biomass. It was demonstrated that these droplets are produced from corn stover during pretreatment under neutral and acidic pH at and above 130 degrees C, and that they can deposit back onto the surface of residual biomass. The deposition of droplets produced under certain pretreatment conditions (acidic pH; T > 150 degrees C) and captured onto pure cellulose was shown to have a negative effect (5-20%) on the enzymatic saccharification of this substrate. It was noted that droplet density (per unit area) was greater and droplet size more variable under conditions where the greatest impact on enzymatic cellulose conversion was observed. These results indicate that this phenomenon has the potential to adversely affect the efficiency of enzymatic conversion in a lignocellulosic biorefinery.

  10. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    Science.gov (United States)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  11. Dilute acid/metal salt hydrolysis of lignocellulosics

    Science.gov (United States)

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  12. Conditioning of dilute-acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol.

    Science.gov (United States)

    Jennings, Edward W; Schell, Daniel J

    2011-01-01

    Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  14. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...

  15. Microstructural study of pre-treated and enzymatic hydrolyzed bamboo

    Directory of Open Access Journals (Sweden)

    Funsho O. KOLAWOLE

    2016-07-01

    Full Text Available Bamboo was used as biomass feedstock which was pre-treated using dilute acid hydrolysis followed by enzymatic hydrolysis. The bamboo was mechanical ground to particle sizes 212–500µm, followed by pre-treatment with dilute sulfuric acid at a concentration of 0.5 and 1.0 (%v/v at temperatures of 25, 110, 120, 150 and 200°C with time intervals of 2 and 4 hours. Pre-hydrolyzate was later analyzed for reducing sugar using UV-Vis spectrophotometry. Under the above conditions, a maximum glucose yield of 153.1 mg/g was obtained at 200°C and acid concentrations of 1% for 4 hours. Water insoluble solids obtained were subsequently hydrolyzed with Celluclast (Trichoderma reesi and β-glucosidase (Novozyme 188 for 72 hours. Optical Microscope and ESEM images of bamboo samples were obtained at various stages of pre-treatment and enzymatic hydrolysis. Result reveals a breakdown in the ligno-cellulosic structure of the bamboo during exposure to dilute acid and enzymatic hydrolysis.

  16. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah

    2017-09-01

    In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.

  17. Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system.

    Science.gov (United States)

    Chong, Gang-Gang; He, Yu-Cai; Liu, Qiu-Xiang; Kou, Xiao-Qin; Huang, Xiao-Jun; Di, Jun-Hua; Ma, Cui-Luan

    2017-10-01

    In this study, dilute alkali salts (0.6% NaClO, 0.067% Na 2 S) pretreatment at 10% sulfidity under the autoclave system at 120°C for 40min was used for pretreating bamboo shoot shell (BSS). Furthermore, FT-IR, XRD and SEM were employed to characterize the changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated BSS solid residue. After 72h, the reducing sugars and glucose from the enzymatic in situ hydrolysis of 50g/L pretreated BSS in dilute NaClO/Na 2 S media could be obtained at 31.11 and 20.32g/L, respectively. Finally, the obtained BSS-hydrolysates containing alkalic salt NaClO/Na 2 S resulted in slightly negative effects on the ethanol production. Glucose in BSS-hydrolysates was fermented from 20.0 to 0.17g/L within 48h, and an ethanol yield of 0.41g/g glucose, which represents 80.1% of the theoretical yield, was obtained. This study provided an effective strategy for potential utilization of BSS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Conversion of rice straw to sugars by dilute-acid hydrolysis

    International Nuclear Information System (INIS)

    Karimi, Keikhosro; Kheradmandinia, Shauker; Taherzadeh, Mohammad J.

    2006-01-01

    Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3-10 min), pressure (10-35 bar) and acid concentration (0-1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min

  19. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2013-12-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae  for 5 days produce 0,69% of bioethanol.

  20. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    Directory of Open Access Journals (Sweden)

    Lucy Arianie

    2014-06-01

    Full Text Available Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl- 3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux method. The characterization of synthesized product using FTIR, 1H-NMR, 13C-NMR and LC-MS showed that these reactions have been carried out successfully. Scanning electron microscope figure out changes morphological surface of palm empty bunch caused by ionic liquid pretreatment. Crystallinity index of PEB milled and cellulose of PEFB after [BMIM]bromide dissolution were identified using comparison of PEB FTIR spectrum. Cellulose without dilute [BMIM]bromide have higher LOI number than cellulose after [BMIM]bromide dissolution. It indicated that a large part of cellulose after dissolution has been changed into amorf. Hydrolysis residue of palm empty bunch hydrolyzed by sulfuric acids 5%, 100 0C for 5 hours and produce 685 ppm of reducing sugar. Simultaneous Saccharification and Fermentation using Trichoderma viride and Saccharomyce cerevisiae for 5 days produce 0,69% of bioethanol.

  1. Comparison of Dilution, Filtration, and Microwave Digestion Sample Pretreatments in Elemental Profiling of Wine by ICP-MS.

    Science.gov (United States)

    Godshaw, Joshua; Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E

    2017-09-25

    Wine elemental composition varies by cultivar, geographic origin, viticultural and enological practices, and is often used for authenticity validation. Elemental analysis of wine by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is challenging due to the potential for non-spectral interferences and plasma instability arising from organic matrix components. Sample preparation mitigates these interferences, however, conflicting recommendations of best practices in ICP-MS analysis of wine have been reported. This study compared direct dilution, microwave-assisted acid digestion, and two filtration sample pretreatments, acidification prior to filtration and filtration followed by acidification, in elemental profiling of one white and three red table wines by ICP-MS. Of 43 monitored isotopes, 37 varied by sample preparation method, with significantly higher results of 17 isotopes in the microwave-digested samples. Both filtration treatments resulted in lower results for 11 isotopes compared to the other methods. Finally, isotope dilution determination of copper based on natural abundances and the 63 Cu: 65 Cu instrument response ratio agreed with external calibration and confirmed a significant sample preparation effect. Overall, microwave digestion did not compare favorably, and direct dilution was found to provide the best compromise between ease of use and result accuracy and precision, although all preparation strategies were able to differentiate the wines.

  2. Butanol production from sweet sorghum bagasse (SSB) with high solids content: part I – comparison of liquid hot water pretreatment with dilute sulfuric acid

    Science.gov (United States)

    In these studies we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g·L-1) at 190 deg C for zero min (as soon as temperature reached 190 deg C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and ...

  3. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries.

    Science.gov (United States)

    Godin, Bruno; Nagle, Nick; Sattler, Scott; Agneessens, Richard; Delcarte, Jérôme; Wolfrum, Edward

    2016-01-01

    For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In this work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib ( bmr ) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system. After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger. Sorghum bmr mutants, which have a reduced lignin content showed

  4. Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions

    International Nuclear Information System (INIS)

    Jin, Qiang; Zhang, Hongman; Yan, Lishi; Qu, Liang; Huang, He

    2011-01-01

    The kinetic characterization of hemicellulose hydrolysis of corn stover was investigated using a new reactor of dilute acid cycle spray flow-through (DCF) pretreatment. The primary purpose was to obtain kinetic data for hemicellulose hydrolysis with sulfuric acid concentrations (10-30 kg m -3 ) at relatively low temperatures (90-100 o C). A simplified kinetic model was used to describe its performance at moderate conditions. The results indicate that the rates of xylose formation and degradation are sensitive to flow rate, temperature and acid concentration. Moreover, the kinetic data of hemicellulose hydrolysis fit a first-order reaction model and the experimental data with actual acid concentration after accounting for the neutralization effect of the substrates at different temperatures. Over 90% of the xylose monomer yield and below 5.5% of degradation product (furfural) yield were observed in this reactor. Kinetic constants for hemicellulose hydrolysis models were analyzed by an Arrhenius-type equation, and the activation energy of xylose formation were 111.6 kJ mol -1 , and 95.7 kJ mol -1 for xylose degradation, respectively. -- Highlights: → Investigating a novel pretreatment reactor of dilute acid cycle spray flow-through. → Xylose yield is sensitive to flow rate, temperature and acid concentration. → Obtaining relatively higher xylose monomer yield and lower fermentation inhibitor. → Lumping hemicellulose and xylan oligmers together in the model is a valid way. → The kinetic model as a guide for reactor design, and operation strategy optimization.

  5. Effect of Hot water and dilute acid pretreatment on the chemical properties of liquorice root

    Directory of Open Access Journals (Sweden)

    zahra takzare

    2016-06-01

    Full Text Available Abstract In this study, the liquorice root (Glycyrrhiza glabra that was extracted in the factory in Kerman province, pre-hydrolyzed and then chemical compositions (Extractives, Lignin content, Holocellulose percent, the hydrolysis process yield and weight loss of the waste was measured. Pre-hydrolysis process was done on the above mentioned waste by hot water, hot water followed by 0.5 percent sulfuric acid and also alone sulfuric acid with different concentrations (0.5, 1, 1.5 and 2 percent The samples were pre-hydrolyzed in hot water at 150 °C and 30, 60 and 90 minutes as well as in the mixture of hot water and 0.5 % sulfuric acid at 150 °C and 60 minutes and also in pure sulfuric acid, at 130 °C and at 60 minutes. The results showed that the pre-hydrolyzed treatment with hot water in 60 minutes had been favorable performance in the respect of weight loss, lignin content and holocellulose percent. Also, in the case of pre-treatment including sulfuric acid, 2% dose can be good selected option in term of maximum holocellulose percent and minimum lignin content so that it can be suggested to produce higher value-added products such as bioethanol from licorice root bid.

  6. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  7. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment.

    Science.gov (United States)

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao

    2018-01-01

    Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1  >  L 3  >  L 2 for the low recalcitrance poplar and H 1  >  H 2  >  H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption

  8. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    Directory of Open Access Journals (Sweden)

    Klement Tobias

    2012-04-01

    Full Text Available Abstract Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on

  9. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Doan Thai Hoa

    2017-11-01

    Full Text Available The cost of raw materials continues to be a limiting factor in the production of bio-ethanol from traditional raw materials, such as sugar and starch. At the same time, there are large amount of agricultural residues as well as industrial wastes that are of low or negative value (due to costs of current effluent disposal methods. Dilute sulfuric acid pretreatment of elephant grass and wood residues for the enzymatic hydrolysis of cellulose has been investigated in this study.    Elephant grass (agricultural residue and sawdust (Pulp and Paper Industry waste with a small particulate size were treated using different dilute sulfuric acid concentrations at a temperature  of 140-170°C within 0.5-3 hours. The appropriate pretreatment conditions give the highest yield of soluble saccharides and total reducing sugars.

  10. Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production

    OpenAIRE

    Jhalique Jane R. Fojas; Ernesto J. Del Rosario

    2013-01-01

    The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretr...

  11. Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II

    International Nuclear Information System (INIS)

    Gonzalez, R.; Treasure, T.; Phillips, R.; Jameel, H.; Saloni, D.; Wright, J.; Abt, R.

    2011-01-01

    The technical and financial performance of high yield Eucalyptus biomass in a co-current dilute acid pretreatment followed by enzymatic hydrolysis process was simulated using WinGEMS registered and Excel registered . Average ethanol yield per dry Mg of Eucalyptus biomass was approximately 347.6 L of ethanol (with average carbohydrate content in the biomass around 66.1%) at a cost of 0.49 L -1 of ethanol, cash cost of ∝0.46 L -1 and CAPEX of 1.03 L -1 of ethanol. The main cost drivers are: biomass, enzyme, tax, fuel (gasoline), depreciation and labor. Profitability of the process is very sensitive to biomass cost, carbohydrate content (%) in biomass and enzyme cost. Biomass delivered cost was simulated and financially evaluated in Part I; here in Part II the conversion of this raw material into cellulosic ethanol using the dilute acid process is evaluated. (author)

  12. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    Science.gov (United States)

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  13. Towards integrated biorefinery from dried distillers grains: Selective extraction of pentoses using dilute acid hydrolysis

    International Nuclear Information System (INIS)

    Fonseca, Dania A.; Lupitskyy, Robert; Timmons, David; Gupta, Mayank; Satyavolu, Jagannadh

    2014-01-01

    The abundant availability and high level of hemicellulose content make dried distillers grains (DDG) an attractive feedstock for production of pentoses (C5) and conversion of C5 to bioproducts. One target of this work was to produce a C5 extract (hydrolyzate) with high yield and purity with a low concentration of C5 degradation products. A high selectivity towards pentoses was achieved using dilute acid hydrolysis of DDG in a percolation reactor with liquid recirculation. Pretreatment of starting material using screening and ultrasonication resulted in fractional increase of the pentose yield by 42%. A 94% yield of pentoses on the DDG (280.9 g kg −1 ) was obtained. Selective extraction of individual pentoses has been achieved by using a 2-stage hydrolysis process, resulting in arabinose-rich (arabinose 81.5%) and xylose-rich (xylose 85.2%) streams. A broader impact of this work is towards an Integrated Bio-Refinery based on DDG – for production of biofuels, biochemical intermediates, and other bioproducts. - Highlights: • A process for selective extraction of pentoses from DDG was presented as a part of integrated biorefinery approach. • The selectivity for pentoses was high using dilute acid hydrolysis in a percolation reactor with liquid recirculation. • Pretreatment of DDG using screening and ultrasonication resulted in fractional increase of the pentose yield by 42 %. • A 94% yield in pentoses (280.9 g kg −1 of DDG) was obtained. • A 2-stage hydrolysis process, developed to extract individual pentoses, resulted in arabinose and xylose rich streams

  14. Pretreatment on Corn Stover with Low Concentration of Formic Acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at 195 degrees for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid...... pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical...

  15. Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.

    Science.gov (United States)

    Yin, DeLu Tyler; Jing, Qing; AlDajani, Waleed Wafa; Duncan, Shona; Tschirner, Ulrike; Schilling, Jonathan; Kazlauskas, Romas J

    2011-04-01

    Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [Pretreatment of oil palm residues by dilute alkali for cellulosic ethanol production].

    Science.gov (United States)

    Zhang, Haiyan; Zhou, Yujie; Li, Jinping; Dai, Lingmei; Liu, Dehua; Zhang, Jian'an; Choo, Yuen May; Loh, Soh Kheang

    2013-04-01

    In the study, we used oil palm residues (empty fruit bunch, EFB) as raw material to produce cellulosic ethanol by pretreatment, enzymatic hydrolysis and fermentation. Firstly, the pretreatment of EFB with alkali, alkali/hydrogen peroxide and the effects on the components and enzymatic hydrolysis of cellulose were studied. The results show that dilute alkali was the suitable pretreatment method and the conditions were first to soak the substrate with 1% sodium hydroxide with a solid-liquid ratio of 1:10 at 40 degrees C for 24 h, and then subjected to 121 degrees C for 30 min. Under the conditions, EFB solid recovery was 74.09%, and glucan, xylan and lignin content were 44.08%, 25.74% and 13.89%, respectively. After separated with alkali solution, the pretreated EFB was washed and hydrolyzed for 72 h with 5% substrate concentration and 30 FPU/g dry mass (DM) enzyme loading, and the conversion of glucan and xylan reached 84.44% and 89.28%, respectively. We further investigated the effects of substrate concentration and enzyme loading on enzymatic hydrolysis and ethanol batch simultaneous saccharification and fermentation (SSF). The results show that when enzyme loading was 30 FPU/g DM and substrate concentration was increased from 5% to 25%, ethanol concentration were 9.76 g/L and 35.25 g/L after 72 h fermentation with Saccharomyces cerevisiae (inoculum size 5%, V/V), which was 79.09% and 56.96% of ethanol theory yield.

  17. Bioethanol production by cashew apple bagasse (Anacardium occidentale L.): comparison of acid diluted and alkali pre-treatments; Producao de bioetanol a partir da fibra do caju (Anacardium occidentale L.): comparacao entre o pre-tratamento acido e alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Tigressa H.S.; Pinheiro, Alvaro D.T.; Goncalves, Luciana R.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Rocha, Maria V.P.; Macedo, Gorete R. de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Due to the growing environmental awareness on the negative impact resulting from utilization of fossil fuels, and in the search for renewable energy sources, biofuels' interest as Bioethanol has rapidly expanded recently. In this context, lignocellulosic compounds have become center of attention as an abundant and economic alternative source of carbohydrates for ethanol production. In this study, cashew's bagasse acid hydrolysis was initially studied for glucose synthesis and its fermentation towards ethanol production. Sulfuric acid concentration, solids concentration and time were some of the factors evaluated. The highest glucose productivity value (162,9 mg.g de bagaco{sup -1}) , was obtained for 0,6 mol.L{sup -1} of sulfuric acid in an autoclave at 121 deg C for 15 min. For the fermentation of the hydrolyzed material by S. cerevisiae containing 16 {+-} 2,0 g.L{sup -1} of glucose metabolic, the yield and productivity obtained were 0,63 g-g glucose{sup -1} and 1,43 g.L{sup -1}h{sup -1} respectively. Ethanol concentration after 6 h of fermentation of this hydrolyzed was 11 g.L{sup -1}. In the best conditions of acid hydrolysis, a second pre-treatment with diluted sulfuric acid was performed to evaluate availability of hemicelluloses at 160 deg C and 180 deg C. For comparative purposes, alkali pre-treatment was evaluated under the conditions of 0,6 mol.L{sup -1}, 30% p/v of bagasse thermically treated at 121 deg C for 15 minutes. However, concentration of sugars was not sufficient for fermentation. Also, nitrogen supplementation of the hydrolyzed fraction did not influence significantly ethanol production. The results demonstrate that the hydrolyzed fraction from the acid pre-treatment of cashew's bagasse could be utilized for ethanol production. (author)

  18. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  19. Comparison of bile acid synthesis determined by isotope dilution versus fecal acidic sterol output in human subjects

    International Nuclear Information System (INIS)

    Duane, W.C.; Holloway, D.E.; Hutton, S.W.; Corcoran, P.J.; Haas, N.A.

    1982-01-01

    Fecal acidic sterol output has been found to be much lower than bile acid synthesis determined by isotope dilution. Because of this confusing discrepancy, we compared these 2 measurements done simultaneously on 13 occasions in 5 normal volunteers. In contrast to previous findings, bile acid synthesis by the Lindstedt isotope dilution method averaged 16.3% lower than synthesis simultaneously determined by fecal acidic sterol output (95% confidence limit for the difference - 22.2 to -10.4%). When one-sample determinations of bile acid pools were substituted for Lindstedt pools, bile acid synthesis by isotope dilution averaged 5.6% higher than synthesis by fecal acidic sterol output (95% confidence limits -4.9 to 16.1%). These data indicate that the 2 methods yield values in reasonably close agreement with one another. If anything, fecal acidic sterol outputs are slightly higher than synthesis by isotope dilution

  20. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  1. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li,

    2012-06-01

    Full Text Available Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the treated substrate. The cellulose conversion to glucose yield reached 77.1 to 83.4% after enzymatic hydrolysis of the solids fraction for 48 h at an enzyme loading of 15 FPU cellulase/g cellulose and 30 IU β-glucosidase/g cellulose. The enzymatic hydrolysis rate was significantly accelerated as the ethanol organosolv pretreatment time increased, reaching the highest enzymatic glucose yield of 83.4% after 48 h at 50 °C. The concentrations of fermentation inhibitors such as HMF (5-hydroxy-2-methyl furfural and furfural were 0.96 g/L and 4.38 g/L in the spent liquor after the ethanol organosolv pretreatment, which were slightly lower than the concentrations quantified during H2SO4-water treatment. Spent liquor was diluted with water, and more than 87.2% of lignin in raw bamboo was recovered as ethanol organosolv lignin through the filtration process.

  2. Effect of acid, steam explosion, and size reduction pretreatments on bio-oil production from sweetgum, switchgrass, and corn stover.

    Science.gov (United States)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya

    2012-05-01

    Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

  3. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Tan, E. C. D.; Biddy, M. J.; Beckham, G. T.; Scarlata, C.; Jacobson, J.; Cafferty, K.; Ross, J.; Lukas, J.; Knorr, D.; Schoen, P.

    2013-10-01

    This report describes one potential conversion process to hydrocarbon products by way of biological conversion of lingnocellulosic-dervied sugars. The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, using dilute-acid pretreatement, enzymatic saccharification, and bioconversion. Ancillary areas--feed handling, hydrolysate conditioning, product recovery and upgrading (hydrotreating) to a final blendstock material, wastewater treatment, lignin combusion, and utilities--are also included in the design.

  4. Corn fiber, cobs and stover: Enzyme-aided saccharification and co-fermentation after dilute acid pretreatment

    NARCIS (Netherlands)

    Eylen, van D.; Dongen, van F.E.M.; Kabel, M.A.; Bont, de J.A.M.

    2011-01-01

    Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and

  5. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment.

    Science.gov (United States)

    Wu, Liang; Zhang, Cheng; Hu, Hui; Liu, Jianyong; Duan, Tengfei; Luo, Jinghuan; Qian, Guangren

    2017-09-01

    Waste activated sludge (WAS) was pretreated by acid or alkali to enhance the anaerobic fermentation (AF) for phosphorus (P) and short-chain fatty acids (SCFAs) release into the liquid simultaneously. With acid pretreatment, the released total P concentration achieved 120mg/L, which was 71.4% higher than that with alkali pretreatment. In addition, alkali pretreatment enhanced organic P release with about 35.3% of organic P in the solid being converted to inorganic P, while little had changed with acid pretreatment. The results also showed that acid and alkali pretreatment enhanced SCFAs production by 15.3 and 12.5times, respectively. Acid pretreatment could be preferred for simultaneous recovery of P and SCFAs by AF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Efficacy of pretreating oil palm fronds with an acid-base mixture catalyst.

    Science.gov (United States)

    Jung, Young Hoon; Park, Hyun Min; Park, Yong-Cheol; Park, Kyungmoon; Kim, Kyoung Heon

    2017-07-01

    Oil palm fronds are abundant but recalcitrant to chemical pretreatment. Herein, an acid-base mixture was applied as a catalyst to efficiently pretreat oil palm fronds. Optimized conditions for the pretreatment were a 0.1M acidic acid-base mixture and 3min ramping to 190°C and 12min holding. The oil palm fronds pretreated and washed with the acid-base mixture exhibited an enzymatic digestibility of 85% by 15 FPU Accellerase 1000/g glucan after 72h hydrolysis, which was significantly higher than the enzymatic digestibilities obtained by acid or alkali pretreatment alone. This could be attributed to the synergistic actions of the acid and base, producing an 87% glucose recovery with 100% and 40.3% removal of xylan and lignin, respectively, from the solids. Therefore, an acid-base mixture can be a feasible catalyst to deconstruct oil palm fronds for sugar production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    Science.gov (United States)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  8. Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2018-01-01

    Full Text Available High-temperature (150–170 °C pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorily modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 °C/30 min with 0.75 mM Fe2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 °C with 0.75 mM Fe2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II increased the glucose production to 56.3% from 46.3% in the control (iron-free acid. The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C

  9. Acid Pretreatment of Sago Wastewater for Biohydrogen Production

    Science.gov (United States)

    Illi Mohamad Puad, Noor; Rahim, Nurainin Farhan Abd; Suhaida Azmi, Azlin

    2018-03-01

    Biohydrogen has been recognized to be one of the future renewable energy sources and has the potential in solving the greenhouse effects. In this study, Enterobacter aerogenes (E. aerogenes) was used as the biohydrogen producer via dark fermentation process using sago wastewater as the substrate. However, pretreatment of sago wastewater is required since it consists of complex sugars that cannot be utilized directly by the bacteria. This study aimed to use acid pretreatment method to produce high amount of glucose from sago wastewater. Three different types of acid: sulfuric acid (H2SO4); hydrochloric acid (HCl) and nitric acid (HNO3) were screened for the best acid in producing a maximum amount of glucose. H2SO4 gave the highest amount of glucose which was 9.406 g/L. Design of experiment was done using Face-centred Central Composite Design (FCCCD) tool under Response Surface Methodology (RSM) in Design Expert 9 software. The maximum glucose (9.138 g/L) was recorded using 1 M H2SO4 at 100 °C for 60 min. A batch dark fermentation using E. aerogenes was carried out and it was found that pretreated sago wastewater gave a higher hydrogen concentration (1700 ppm) compared to the raw wastewater (410 ppm).

  10. Interaction Studies of Dilute Aqueous Oxalic Acid

    Directory of Open Access Journals (Sweden)

    Kiran Kandpal

    2007-01-01

    Full Text Available Molecular conductance λm, relative viscosity and density of oxalicacid at different concentration in dilute aqueous solution were measured at 293 K.The conductance data were used to calculate the value association constant.Viscosity and density data were used to calculate the A and B coefficient ofJone-Dole equation and apparent molar volume respectively. The viscosityresults were utilized for the applicability of Modified Jone-Dole equation andStaurdinger equations. Mono oxalate anion acts, as structure maker and thesolute-solvent interaction were present in the dilute aqueous oxalic acid.

  11. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic a...... material was obtained following pretreatment at 195 °C for 15 min with acetic acid employed. The estimated total ethanol production was 241.1 kg/ton raw material by assuming fermentation of both C-6 and C-5, and 0.51 g ethanol/g sugar....... were performed on liquors obtained from all pretreatments and there were no inhibition effect found in any of the liquors. Simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) showed that a high ethanol yield of 88.7% of the theoretical based on glucose in the raw...

  12. Optimisation of Dilute Sulphuric Acid Hydrolysis of Waste ...

    African Journals Online (AJOL)

    Dilute sulphuric acid hydrolysis of waste paper was investigated in this study. The effects of acid concentration, time, temperature and liquid to solid ratio on the total reducing sugar concentration were studied over three levels using a four variable Box-Behnken design (BBD). A statistical model was developed for the ...

  13. Kinetic and Modeling Investigation to Provide Design Guidelines for the NREL Dilute-Acid Process Aimed at Total Hydrolysis/Fractionation of Lignocellulosic Biomass: July 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Iyer, P.; Xiang, Q.; Hayes, J.

    2004-08-01

    Following up on previous work, subcontractor investigated three aspects of using NREL ''pretreatment'' technology for total hydrolysis (cellulose as well as hemicellulose) of biomass. Whereas historic hydrolysis of biomass used either dilute acid or concentrated acid technology for hydrolysis of both hemicellulose and cellulose, NREL has been pursuing very dilute acid hydrolysis of hemicellulose followed by enzymatic hydrolysis of cellulose. NREL's countercurrent shrinking-bed reactor design for hemicellulose hydrolysis (pretreatment) has, however, shown promise for total hydrolysis. For the first task, subcontractor developed a mathematical model of the countercurrent shrinking bed reactor operation and, using yellow poplar sawdust as a feedstock, analyzed the effect of: initial solid feeding rate, temperature, acid concentration, acid flow rate, Peclet number (a measure of backmixing in liquid flow), and bed shrinking. For the second task, subcontractor used laboratory trials, with yellow poplar sawdust and 0.07 wt% sulfuric acid at various temperatures, to verify the hydrolysis of cellulose to glucose (desired) and decomposition of glucose (undesired) and determine appropriate parameters for use in kinetic models. Unlike cellulose and hemicellulose, lignins, the third major component of biomass, are not carbohydrates that can be broken down into component sugars. They are, however, aromatic complex amorphous phenolic polymers that can likely be converted into low-molecular weight compounds suitable for production of fuels and chemicals. Oxidative degradation is one pathway for such conversion and hydrogen peroxide would be an attractive reagent for this, as it would leave no residuals. For the third task, subcontractor reacted lignin with hydrogen peroxide under various conditions and analyzed the resulting product mix.

  14. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues

    International Nuclear Information System (INIS)

    Wang, Ke-qin; Xiong, Xing-yao; Chen, Jing-ping; Chen, Liang; Su, Xiaojun; Liu, Yun

    2012-01-01

    It was evaluated the influence of gamma irradiation and steam explosion pretreatment on the components and the water-soluble sugars of rice straw. Compared with the steam explosion pretreated rice straw, cellucose, hemicellucose and lignin for irradiation pretreated rice sample were much more greatly degraded and the relative content of glucose was significantly enhanced from 6.58% to 47.44%. Interestingly, no glucuronide acid was detected in irradiation pretreated rice straw, while glucuronide acid with the content from 8.5 mg/g to 9.2 mg/g was obtained in steam explosion pretreated sample. Followed by enzymatic hydrolysis, higher concentration of reducing sugars (including glucose and xylose) of irradiation pretreated rice sample (90.3 mg/g) was obtained, which was approximately 2.4- and 1.1- fold higher of the unpretreated (37.2 mg/g) and of steam explosion pretreated sample (85.4 mg/g). To further verify the effectiveness of irradiation pretreatment, characterizations of rice straw, corn stalk and bagasse by an integrated process of dilute acid/enzymatic hydrolysis and irradiation pretreatment were also investigated. -- Highlights: ► We compare irradiation and steam explosion pretreatments for bioethanol production. ► We examine changes in compositions of the components and the water-soluble sugars. ► No glucuronide acid was detected in gamma irradiation pretreated rice straw. ► We evaluate an integrated method of acid/enzyme-hydrolyzed irradiation pretreatment.

  15. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Acetic acid (AA)-catalyzed liquid hot water (LHW) pretreatments on raw corn stover (RCS) were carried out at 195 °C at 15 min with the acetic acid concentrations between 0 and 400 g/kg RCS. After pretreatment, the liquor fractions and water-insoluble solids (WIS) were collected separately...

  16. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth

    Science.gov (United States)

    Furfural (furan-2-carboxaldehyde), formed during dilute acid hydrolysis of biomass, is an inhibitor of growth and ethanol production by Zymomonas mobilis. The present study used a biological pre-treatment to reduce that amount of furfural in a model biofuel fermentation broth. The pre-treatment in...

  17. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine

    Science.gov (United States)

    W. Zhu; Junyong Zhu; Roland Gleisner; X.J. Pan

    2010-01-01

    This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite...

  18. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine.

    Science.gov (United States)

    Zhu, W; Zhu, J Y; Gleisner, R; Pan, X J

    2010-04-01

    This study investigated the effects of chemical pretreatment and disk-milling conditions on energy consumption for size-reduction and the efficiency of enzymatic cellulose saccharification of a softwood. Lodgepole pine wood chips produced from thinnings of a 100-year-old unmanaged forest were pretreated by hot-water, dilute-acid, and two SPORL processes (Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose) at acid charge on oven dry (od) wood of 0% and 2.21%. The pretreated wood chips were then milled using a laboratory disk mill under various solids-loadings and disk-plate gaps to produce substrates for enzymatic hydrolysis. We found that post-chemical-pretreatment size-reduction of forest biomass can decrease size-reduction energy consumption by 20-80% depending on the pretreatment applied under 20% solids-loading and a disk-plate gap of 0.76 mm in milling. SPORL with a sodium bisulfite charge of 8% and sulfuric acid charge of 2.21% on wood was the most effective in decreasing size-reduction energy consumption. Solids-loading had the most significant effect on disk-milling energy. When solids-loading was reduced from 30% to 3%, disk-milling energy could be decreased by more than a factor of 10 for wood chips pretreated by both SPORL and dilute-acid at an acid charge of 2.21%. The enzymatic hydrolysis glucose yields (EHGY) from the substrates produced by all pretreatments were independent of the solids-loading in milling, indicating that these energy savings in size-reduction can be realized without affecting EHGY. When wood chips were pretreated by SPORL with 2.21% acid charge, size-reduction energy consumption was decreased to less than 50 Wh/kg od wood at a practical solids-loading of approximately 10-20%, equivalent to that used in size-reduction of agriculture biomass, with excellent EHGY of about 370 g per kg od wood. Similar effects on size-reduction energy savings and excellent EHGY were also achieved when large disk-plate gaps (up to 1.52 mm

  19. Ethanol Production from Brewers’ Spent Grain Pretreated by Dilute Phosphoric Acid

    DEFF Research Database (Denmark)

    Rojas-Chamorro, José A.; Cara, Cristóbal; Romero, Inmaculada

    2018-01-01

    of both pretreatment and enzymatic hydrolysis together recovered 92% of total sugars in BSG, mainly solubilized in the prehydrolysate (63%). Escherichia coli SL100 fermented this mixed sugar solution containing hemicellulosic sugars and starchy glucose without previous detoxification with an ethanol yield...... in this work allowed 69% of the total sugars in the BSG to be converted to ethanol....... of 0.40 g/g. Considering also the glucose released from the cellulosic structure and converted to ethanol by a simultaneous saccharification and fermentation process, an overall ethanol yield of 17.9 g of ethanol per 100 g of raw BSG was achieved. Thereby, the process configuration proposed...

  20. Testing of Candidate Polymeric Materials for Compatibility with Pure Alternate Pretreat as Part of the Universal Waste Management System (UWMS)

    Science.gov (United States)

    Wingard, C. D.

    2018-01-01

    The Universal Waste Management System (UWMS) is an improved Waste Collection System for astronauts living and working in low Earth orbit spacecraft. Polymeric materials used in water recovery on International Space Station are regularly exposed to phosphoric acid-treated 'pretreated' urine. Polymeric materials used in UWMS are not only exposed to pretreated urine, but also to concentrated phosphoric acid with oxidizer before dilution known as 'pure pretreat.' Samples of five different polymeric materials immersed in pure pretreat for 1 year were tested for liquid compatibility by measuring changes in storage modulus with a dynamic mechanical analyzer.

  1. Calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid

    International Nuclear Information System (INIS)

    Kurbanov, A.R.; Sharipov, D.Sh.

    1993-01-01

    Present article is devoted to calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid. The calorimetric study of interaction of barium hydroxide with diluted solutions of hydrofluoric acid was carried out in order to determine the thermal effects of reactions. The results of interaction of Ba(OH) 4 ·8H 2 O with 5, 10, and 20% solution of hydrofluoric acid were considered.

  2. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    Science.gov (United States)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  3. Relationship to reducing sugar production and scanning electron microscope structure to pretreated hemp hurd biomass (Cannabis sativa)

    International Nuclear Information System (INIS)

    Abraham, Reinu E.; Barrow, Colin J.; Puri, Munish

    2013-01-01

    Lignocellulosic biomass is a highly rigid and recalcitrant structure which requires pretreatment to loosen chemical bonds to make accessible monomeric sugars for biofuel production. In this study, locally available biomass, that is hemp (Cannabis sativa), a low cost feedstock for ethanol production, has been used for the production of fermentable sugars. Hemp hurd biomass (HHB) was exposed to five different pretreatments which included dilute acid (H 2 SO 4 ), alkaline (NaOH), alkaline peroxide, hot water and one stage dilute acid (H 2 SO 4 ). Different pretreatments resulted in loosening and degradation of HHB structure thus facilitating enzymatic saccharification at optimized parameters (pH–4.8 and 50 °C). The changes in the reactive groups (hydroxyl or acetyl) of the HHB were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Scanning electron microscopy (SEM) was employed to characterize the surface morphology of untreated and treated HHB. Finally, enzymatic saccharification demonstrated maximum yield of total sugars (743 mg g −1 ) that are suitable for biofuel production. -- Highlights: • Hemp hurd biomass (HHB) was used for producing fermentable sugars. • Alkaline pretreatment resulted in loosening and degradation of hemp structure. • Pretreated HHB was characterized using FTIR studies. • SEM studies evaluated the opening of fiber bundles in pretreatment, thereby increasing cellulose access to enzymes. • Enzymatic saccharification of pretreated HHB demonstrated maximum yield of reducing sugars

  4. Microwave-assisted acid pretreatment of alkali lignin: Effect on characteristics and pyrolysis behavior.

    Science.gov (United States)

    Duan, Dengle; Ruan, Roger; Wang, Yunpu; Liu, Yuhuan; Dai, Leilei; Zhao, Yunfeng; Zhou, Yue; Wu, Qiuhao

    2018-03-01

    This study performed microwave-assisted acid pretreatment on pure lignin. The effects of microwave temperature, microwave time, and hydrochloric acid concentration on characteristics and pyrolysis behavior of lignin were examined. Results of ultimate analysis revealed better properties of all pretreated samples than those of raw lignin. Fourier transform infrared spectroscopy analysis showed breakage of βO4 bond and aliphatic side chain, decrease in OH groups, and formation of CO groups in pretreatment. Microwave temperature exerted more significant influence on lignin structure. Thermal stability of treated lignin was improved and insensitive to short microwave time and acid concentration under mild conditions. Resulting from improved alkyl-phenols and decreased alkoxy-phenols, microwave-assisted acid pretreatment of lignin yielded bio-oil with excellent quality. Total yield of phenols in pyrolysis vapors (200 °C) improved to 14.15%, whereas that of guaiacols decreased to 22.36%. This study shows that microwave-assisted acid pretreatment is a promising technology for lignin conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS...... and liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors...... was not covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used...

  6. Pretreatment of macroalgae for volatile fatty acid production.

    Science.gov (United States)

    Pham, Thi Nhan; Um, Youngsoon; Yoon, Hyon Hee

    2013-10-01

    In this study, a novel method was proposed for the biological pretreatment of macroalgae (Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinita) for production of volatile fatty acid (VFA) by anaerobic fermentation. The amount of VFA produced from 40 g/L of L. japonica increased from 8.3 g/L (control) to 15.6 g/L when it was biologically pretreated with Vibrio harveyi. The biological treatment of L. japonica with Vibrio spp. was most effective likely due to the alginate lyase activity of Vibrio spp. However, a considerable effect was also observed after biological pretreatment of P. elliptica and E. crinita, which are red and green algae, respectively. Alkaline pretreatment of 40 g/L of L. japonica with 0.5 N NaOH resulted in an increase of VFA production to 12.2 g/L. These results indicate that VFA production from macroalgae can be significantly enhanced using the proposed biological pretreatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...... in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid....

  8. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    Science.gov (United States)

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid. Copyright © 2015. Published by Elsevier Ltd.

  11. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    Directory of Open Access Journals (Sweden)

    Hamzeh Hoseinpour

    2010-11-01

    Full Text Available Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v acid concentration and 5-15% (w/v solids concentration for 0-40 minutes. Under the optimum conditions, obtained at 130°C, 1% acid, and 7.5% solids loading for 30 min, the starch was almost completely converted to glucose. However, the acid treatment was not successful for efficient hydrolysis of pure cellulose. A mixture of pine softwood and potato as representatives of lignocellulosic and starch components, respectively, were treated at the optimum conditions for acid hydrolysis of starch. The dilute-acid treatment resulted in 1.2, 60.5, and 23.6% hydrolysis of glucan, xylan, and mannan of pine wood and 67% of potato starch to fermentable sugars. After the acid treatment, the solid residue of the mixture was subjected to enzymatic hydrolysis. The enzymatic hydrolysis under the optimum conditions resulted in conversion of 76% of the glucan in the treated softwood. Therefore, using acid treatment of the mixture is a promising process for pretreatment of wood in addition to the hydrolysis of starch.

  12. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic

  13. Physicochemical Properties of Gelatin Extracted from Buffalo Hide Pretreated with Different Acids.

    Science.gov (United States)

    Mulyani, Sri; Setyabudi, Francis M C Sigit; Pranoto, Yudi; Santoso, Umar

    2017-01-01

    The acid pretreatment of collagen molecules disrupts their crosslinks and assists in the release of acid-soluble proteins, fats, and other components. Generally, to achieve optimum extraction efficiency, strong acids may be used at a lower acid concentration compared to weak acids. This study aimed to determine the yield and physicochemical properties of gelatins extracted from buffalo hides pretreated with different acids. Hides were extracted with hydrochloric, citric, and acetic acids at concentrations of 0.3, 0.6, 0.9, 1.2, and 1.5 M. A completely randomized design and the least significant difference test were used in the experimental design, and all measurements were performed in triplicate. The highest yield (29.17%) was obtained from pretreatment with 0.9 M HCl. The gel strength did not differ significantly ( p >0.05) according to acid type (280.26-259.62 g Bloom), and the highest viscosity was obtained from the 0.6 M citric acid pretreatment. All the gelatins contained α- and β-chain components and several degraded peptides (24-66 kDa). The color and Fourier-transform infrared spectrum of the gelatin extracted using 0.9 M HCl were similar to those of commercial bovine skin gelatin. In general, the physicochemical properties of the gelatin complied with the industry standard set by the Gelatin Manufacturers Institute of America, revealing that buffalo hide could serve as a potential alternative source of gelatin.

  14. Relationship to reducing sugar production and scanning electron microscope structure to pretreated hemp hurd biomass (Cannabis sativa)

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Reinu E.; Barrow, Colin J.; Puri, Munish

    2013-11-15

    Lignocellulosic biomass is a highly rigid and recalcitrant structure which requires pretreatment to loosen chemical bonds to make accessible monomeric sugars for biofuel production. In this study, locally available biomass, that is hemp (Cannabis sativa), a low cost feedstock for ethanol production, has been used for the production of fermentable sugars. Hemp hurd biomass (HHB) was exposed to five different pretreatments which included dilute acid (H{sub 2}SO{sub 4}), alkaline (NaOH), alkaline peroxide, hot water and one stage dilute acid (H{sub 2}SO{sub 4}). Different pretreatments resulted in loosening and degradation of HHB structure thus facilitating enzymatic saccharification at optimized parameters (pH–4.8 and 50 °C). The changes in the reactive groups (hydroxyl or acetyl) of the HHB were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Scanning electron microscopy (SEM) was employed to characterize the surface morphology of untreated and treated HHB. Finally, enzymatic saccharification demonstrated maximum yield of total sugars (743 mg g{sup −1}) that are suitable for biofuel production. -- Highlights: • Hemp hurd biomass (HHB) was used for producing fermentable sugars. • Alkaline pretreatment resulted in loosening and degradation of hemp structure. • Pretreated HHB was characterized using FTIR studies. • SEM studies evaluated the opening of fiber bundles in pretreatment, thereby increasing cellulose access to enzymes. • Enzymatic saccharification of pretreated HHB demonstrated maximum yield of reducing sugars.

  15. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    OpenAIRE

    Hamzeh Hoseinpour; Keikhosro Karimi; Hamid Zilouei; Mohammad J. Taherzadeh

    2010-01-01

    Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v) acid concentration and 5-15% (w/v) solids concentration for 0-40 minutes. Under the ...

  16. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tao, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scarlata, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, E. C. D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ross, J. [Harris Group Inc., New York, NY (United States); Lukas, J. [Harris Group Inc., New York, NY (United States); Sexton, D. [Harris Group Inc., New York, NY (United States)

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  17. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    International Nuclear Information System (INIS)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-01-01

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO 3 ) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  18. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    Energy Technology Data Exchange (ETDEWEB)

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the

  19. Anaerobic detoxification fermentation by Rhodospirillum rubrum for rice straw as feed with moderate pretreatment.

    Science.gov (United States)

    Zhang, Jian; Yuan, Jie; Zhang, Wen-Xue; Tu, Fang; Jiang, Ya; Sun, Chuan-Ze

    2018-01-02

    A novel and effective process was put forward for converting rice straw into feed by combining diluted acid hydrolysis and ammonization with Rhodospirillum rubrum fermentation. After pretreatment with dilute sulfuric or phosphoric acid (1%, w/w) at 100°C, materials were subjected to fermentation under several gases (N 2 , CO 2 , and air) and different light intensities in a 2-L fermentor. The key indexes of feed for fermented materials were estimated and several toxic substances were investigated during the fermentation. Following sulfuric acid treatment, the true protein of rice straw increased from 29 to 143 g kg -1 and the crude fiber decreased from 359 to 136 g kg -1 after fermentation at 0.3 L min -1  L -1 of N 2 flow and a light intensity of 3400 lux; and following phosphoric acid treatment, the true protein increased by 286% and the crude fiber decreased by 52% after fermentation at 0.4 L min -1  L -1 of N 2 flow and a light intensity of 3000 lux. Other key contents were also improved for use as feed, and some toxic substances (i.e., furfural, hydroxymethylfurfural, acetic acid, phenol, cresol) produced by the pretreatments could be removed at low levels during the fermentations.

  20. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    International Nuclear Information System (INIS)

    Oji, L.

    2014-01-01

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min -1 and 1.07E-03 ± 7.51E-05 min -1 . Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours

  1. Isotope dilution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fudge, A.

    1978-12-15

    The following aspects of isotope dilution analysis are covered in this report: fundamental aspects of the technique; elements of interest in the nuclear field, choice and standardization of spike nuclide; pre-treatment to achieve isotopic exchange and chemical separation; sensitivity; selectivity; and accuracy.

  2. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Science.gov (United States)

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  3. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-12-03

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  4. Recycling of Dilute Deacetylation Black Liquor to Enable Efficient Recovery and Reuse of Spent Chemicals and Biomass Pretreatment Waste

    Directory of Open Access Journals (Sweden)

    Xiaowen Chen

    2018-06-01

    Full Text Available Deacetylation/dilute alkaline pretreatment followed by mechanical refining (DMR has been proven as an effective process for biomass sugar liberation without severe chemical modification to lignin. Previous research has been focused on optimizing deacetylation conditions, reducing energy consumptions in mechanical refining, and improving sugar yields and titers in enzymatic hydrolysis. To successfully commercialize this process, another critical challenge is to develop a robust process to balance water usage, recover spent chemicals, and utilize waste carbons from the dilute deacetylation waste liquor. In this work, a new process modification and strategy is pioneered to recycle and reuse the weak black liquor (WBL in order to reduce water, chemical, and energy usage while increasing both inorganic and organic contents in the WBLto facilitate downstream processing. Results suggest that the accumulation did not lower acetyl and lignin removal in alkaline pretreatment, resulting in comparable sugar yields in enzymatic hydrolysis. Sodium and potassium were found to be the two most important inorganic compounds in the recycled WBL. Moreover, the accumulated sodium and phenolic compounds did not inhibit the downstream ethanol fermentation processes. Finally, techno-economic analysis (TEA showed a decrease in the minimum ethanol selling price (MESP by ~5 to 15 cents per gallon of ethanol resulting from the inclusion of the recycling of weak black liquor when compared to a conventional non-recycling process.

  5. Effect of temperature on the dilution enthalpies of α,ω-amino acids in aqueous solutions

    International Nuclear Information System (INIS)

    Romero, C.M.; Cadena, J.C.; Lamprecht, I.

    2011-01-01

    Highlights: → The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. → The limiting experimental slopes of the enthalpies of dilution with respect to the molality change Δm, are negative suggesting that the solutes interact with water primarily through their alkyl groups. → The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. → The comparison between the pairwise interaction coefficients for α,ω-amino acids and α-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of α,ω-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  6. Tailoring Wet Explosion Process Parameters for the Pretreatment of Cocksfoot Grass for High Sugar Yields

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    The pretreatment of lignocellulosic biomass is crucial for efficient subsequent enzymatic hydrolysis and ethanol fermentation. In this study, wet explosion (WEx) pretreatment was applied to cocksfoot grass and pretreatment conditions were tailored for maximizing the sugar yields using response...... glucose release with low formation of by-products. Under these conditions, the cellulose and hemicellulose sugar recovery was 94 % and 70 %, respectively. The efficiency of the enzymatic hydrolysis of cellulose under these conditions was 91 %. On the other hand, the release of pentose sugars was higher...... when applying less severe pretreatment conditions C (160 °C, 5 min, 0.2 % dilute sulfuric acid). Therefore, the choice of the most suitable pretreatment conditions is depending on the main target product, i.e., hexose or pentose sugars....

  7. Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification

    NARCIS (Netherlands)

    Torres Salvador, A.F.; Weijde, van der R.T.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into

  8. Optimization on Pretreatment Conditions of Seaweed Liquid Waste for Bio ethanol Production

    International Nuclear Information System (INIS)

    Nur Zatul-Iffah Zakaria; Dachyar Arbain; Mohd Noor Ahmad; Mohd Irfan Hatim Mohamed Dzahir

    2015-01-01

    Seaweed liquid waste (SLW) from a non-conventional seaweed (Gracilaria sp.) drying process where the seaweed is ruptured and filter-squeezed has been investigated. The liquid contains proteins and minerals which potentially pollute the environment if it is not been properly treated. For that reason, this paper deals with study on the feasibility of SLW utilization as a feedstock for bio ethanol production. The fermentation of bio ethanol production was carried out by Saccharomyces cerevisiae in which ethanol produced was measured by gas chromatography. In order to increase its fermentable sugar content, the SLW was treated with dilute acid. Center composite design of response surface methodology (RSM) had been used to optimize the sugar content by varying the parameters involved in the dilute acid pretreatment conditions. These are sulphuric acid concentration (M), temperature (degree Celsius) and seaweed waste concentration (g/ ml). It was obtained that the R 2 value reached 0.97 indicating that the model is acceptable. The three parameters showed p-value less than 0.05 suggesting their significance interactions. The optimization resulted 25 times improvement of reducing sugar concentration. The reducing sugar resulting from the optimized pretreatment was later used as fermentation medium to produce ethanol up to 123.197 mg/ l. (author)

  9. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    Directory of Open Access Journals (Sweden)

    Li-Hong Deng

    2014-01-01

    Full Text Available Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification.

  10. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2008-09-01

    Full Text Available Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX, supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute- and concentrated-acid hydrolyses, and biological pretreatments.

  11. UTILIZATION OF OIL PALM EMPTY FRUIT BUNCH (OPEFB FOR BIOETHANOL PRODUCTION THROUGH ALKALI AND DILUTE ACID PRETREATMENT AND SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

    Directory of Open Access Journals (Sweden)

    Yanni Sudiyani

    2010-07-01

    Full Text Available Lignocellulosic biomass is a potential alternative source of bioethanol for energy. The lignocellulosics are abundantly available in Indonesia. Most of them are wastes of agriculture, plantation and forestry. Among those wastes, oil palm empty fruit bunch (OP EFB is one of a potential lignocellulosics to be converted to bioethanol. This EFB, which is wastes in oil palm factories, is quite abundant (around 25 million tons/year and also has high content of cellulose (41-47%. The conversion of OPEFB to ethanol basically consists of three steps which are pretreatment, hydrolysis of cellulose and hemicellulose to simple sugars (hexoses and pentoses, and fermentation of simple sugars to ethanol. Acid and alkali pretreatments are considered the simplest methods and are potentially could be applied in the next couple of years. However, there are still some problems that have to be overcome to make the methods economically feasible. The high price of cellulose enzyme that is needed in the hydrolysis step is one of factors that cause the cost of EFB conversion is still high. Thus, the search of potential local microbes that could produce cellulase is crucial. Besides that, it is also important to explore fermenting microbes that could ferment six carbon sugars from cellulose as well as five carbon sugars from hemicellulose, so that the conversion of lignocellulosics, particularly EFB, would be more efficient. Keywords: OPEFB, lignocellulosics, pretreatment, fermentation, ethanol

  12. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  13. Conversion of SPORL pretreated Douglas fir forest residues into microbial lipids with oleaginous yeasts

    Science.gov (United States)

    Bruce S. Dien; Junyong Zhu; Patricia J. Slininger; Cletus P. Kurtzman; Bryan R. Moser; Patricia J. O' Bryan; Roland Gleisner; Michael A. Cotta

    2016-01-01

    Douglas fir is the dominant commercial tree grown in the United States. In this study Douglas fir residue was converted to single cell oils (SCO) using oleaginous yeasts. Monosaccharides were extracted from the woody biomass by pretreating with sulfite and dilute sulfuric acid (SPORL process) and hydrolyzing using commercial cellulases. A new SPORL process that uses pH...

  14. Automated gravimetric sample pretreatment using an industrial robot for the high-precision determination of plutonium by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Surugaya, Naoki; Hiyama, Toshiaki; Watahiki, Masaru

    2008-01-01

    A robotized sample-preparation method for the determination of Pu, which is recovered by extraction reprocessing of spent nuclear fuel, by isotope dilution mass spectrometry (IDMS) is described. The automated system uses a six-axis industrial robot, whose motility is very fast, accurate, and flexible, installed in a glove box. The automation of the weighing and dilution steps enables operator-unattended sample pretreatment for the high-precision analysis of Pu in aqueous solutions. Using the developed system, the Pu concentration in a HNO 3 medium was successfully determined using a set of subsequent mass spectrometric measurements. The relative uncertainty in determining the Pu concentration by IDMS using this system was estimated to be less than 0.1% (k=2), which is equal to that expected of a talented analysis. The operation time required was the same as that for a skilled operator. (author)

  15. Efficient saccharification by pretreatment of bagasse pith with ionic liquid and acid solutions simultaneously

    International Nuclear Information System (INIS)

    Wang, Gang; Zhang, Suping; Xu, Wenjuan; Qi, Wei; Yan, Yongjie; Xu, Qingli

    2015-01-01

    Highlights: • Bagasse pith was pretreated by BMIMCl solution containing HCl and water. • Hemicellulose was hydrolyzed to reducing sugars by HCl to maximize total sugar yield. • Cellulose was dissolved by BMIMCl and 95% of cellulose recovery was obtained. • The recovered cellulose was disrupted which is conducive to cellulase hydrolysis. • The total sugars yield is 89.9% obtained from pretreatment and cellulase hydrolysis. - Abstract: Hydrolysis of hemicellulose and disruption of cellulose during pretreatment process are conducive to the following cellulase hydrolysis performance. In this work, bagasse pith was first pretreated by 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) solution containing 0–1.2% hydrochloric acid (HCl) and 30% water. The water (30%) added into the acidic ionic liquid (IL) solutions led to an increase in the biomass loading up to a biomass/IL solutions ratio of 1:10 (wt.%). Hemicellulose was hydrolyzed to reducing sugars by HCl and cellulose was dissolved by [BMIM]Cl. In this process, 76.9% of hemicellulose conversion and 95% of cellulose recovery were obtained. The pretreated bagasse pith was then followed by hydrolysis with commercially available enzymes. The effects of pretreatment temperature, reaction time and acid concentration on cellulase hydrolysis of pretreated bagasse pith were investigated. Pretreatment of bagasse pith with [BMIM]Cl solutions containing 1.0% HCl at 120 °C for 30 min resulted in the glucose concentration of 92.3 g/l and yield of 94.5% after 72 h of cellulase hydrolysis. The maximum total reducing sugars yield reached to 89.9% after pretreatment and cellulase hydrolysis

  16. Evaluation of various techniques for the pretreatment of sewage sludges prior to trace metal analysis by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    Six techniques were evaluated for their suitability for the pretreatment of dried sewage sludge prior to trace metal analysis by atomic absorption spectrophotometry. The evaluation comprised analysis of two prepared samples of dried sludge for aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel and zinc, after the following pretreatment: dry ashing at 500 degrees Celsius followed by extraction with dilute hydrochloric acid; dry ashing at 500 degrees Celsius followed by extraction with aqua regia; nitric acid digestion followed by extraction with hydrochloric acid; extraction with aqua regia; ashing with magnesium nitrate solution at 550 degrees Celsius followed by digestion with hydrochloric acid and extraction with nitric acid; extraction with nitric acid. Procedures involving the use of perchloric acid, hydrofluoric acid and hydrogen peroxide were not considered for reasons of safety. Except in the case of aluminium the direct mineral acid digestion and/or extraction methods generally gave higher recoveries than the procedures incorporating an ashing step. Direct extraction of the sample with aqua regia was recommended as a rapid and simple general method of sample pretreatment prior to analysis for all the metals investigated except aluminium. For this metal, more drastic sample pretreatment will be required, for example fusion or hydrofluoric acid digestion

  17. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation.

    Science.gov (United States)

    Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N

    2018-01-01

    The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

  18. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  19. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-01-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  20. Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production.

    Science.gov (United States)

    Yang, Guang; Wang, Jianlong

    2018-05-01

    In this study, the combined ionizing radiation-acid pretreatment process was firstly applied to enhance hydrogen fermentation of grass waste. Results showed that the combined pretreatment synergistically enhanced hydrogen fermentation of grass waste. The SCOD and soluble polysaccharide contents of grass waste increased by 1.6 and 2.91 times after the combined pretreatment, respectively. SEM observation and crystallinity test showed the combined pretreatment effectively disrupted the grass structure. Owing to the more favorable substrate conditions, the hydrogen yield achieved 68 mL/g-dry grass added after the combined pretreatment, which was 161.5%, 112.5% and 28.3% higher than those from raw, ionizing radiation pretreated and acid pretreated grass waste, respectively. The VS removal also increased from 13.9% to 25.6% by the combined pretreatment. Microbial community analysis showed that the abundance of dominant hydrogen producing genus Clostridium sensu stricto 1 increased from 37.9% to 69.4% after the combined pretreatment, which contributed to more efficient hydrogen fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Wei eWang

    2014-05-01

    Full Text Available To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose and lignin, through pretreatment and hydrolysis (both enzymatic and chemical, and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pretreatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB, a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pretreated corn stover slurry as well as individually in the presence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pretreated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF, benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  2. Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, Charles [Univ. of California, Riverside, CA (United States); Balan, Venkatech [Michigan State Univ., East Lansing, MI (United States); Dale, Bruce E. [Michigan State Univ., East Lansing, MI (United States); Elander, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Falls, Matthew [Texas A & M Univ., College Station, TX (United States); Hames, Bonnie [Ceres Corporation, Thousand Oaks, CA (United States); Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States); Ladisch, Michael R. [Purdue Univ., West Lafayette, IN (United States); Lee, Y. Y. [Auburn Univ., AL (United States); Mosier, Nathan [Purdue Univ., West Lafayette, IN (United States); Pallapolu, Venkata R. [Auburn Univ., AL (United States); Shi, Jian [Univ. of California, Riverside, CA (United States); Warner, Ryan E. [Genencor, Palo Alto, CA (United States)

    2011-06-16

    Dilute sulfuric acid (DA), sulfur dioxide (SO2), liquid hot water (LHW), soaking in aqueous ammonia (SAA), ammonia fiber expansion (AFEX), and lime pretreatments were applied to Alamo, Dacotah, and Shawnee switchgrass. Application of the same analytical methods and material balance approaches facil-itated meaningful comparisons of glucose and xylose yields from combined pretreatment and enzymatic hydrolysis. Use of a common supply of cellulase, beta-glucosidase, and xylanase also eased comparisons. All pretreatments enhanced sugar recovery from pretreatment and subsequent enzymatic hydrolysis substantially compared to untreated switchgrass. Adding beta-glucosidase was effective early in enzy-matic hydrolysis while cellobiose levels were high but had limited effect on longer term yields at the enzyme loadings applied. Adding xylanase improved yields most for higher pH pretreatments where more xylan was left in the solids. Harvest time had more impact on performance than switchgrass variety, and microscopy showed changes in different features could impact performance by different pretreatments.

  3. Pretreatment of various feedstocks for lactic acid production: detection of sugars, organic acids and furanics in liquid fractions

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Lips, S.J.J.; Bakker, R.R.C.

    2012-01-01

    Barley straw, sugarcane bagasse and empty fruit bunches were pretreated under acid- and alkaline conditions. Solid phase was separated from the liquid phase and the concentration of dissolved monomeric sugars, organic acids and furanics was determined. Acid hydrolysis yielded monomeric xylose

  4. Kinetics of leather dyeing pretreated with enzymes: role of acid protease.

    Science.gov (United States)

    Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan

    2009-04-01

    In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.

  5. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  6. Kinetic study of dilute nitric acid treatment of corn stover at relatively high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Lu, X.; Liu, Y.; Wang, X.; Zhang, S. [Tianjin University, School of Environmental Science and Technology, Tianjin (China)

    2011-03-15

    Corn stover was hydrolyzed using dilute nitric acid at 150 C. Several concentrations of HNO{sub 3} (0.2, 0.4 and 0.6 wt-%) and reaction times (0-60 min) were evaluated. The kinetic parameters of mathematical models for predicting the concentrations of xylose, glucose, arabinose, acetic acid, and furfural in the hydrolysates were determined. The hydrolysates obtained from corn stover can be used to produce methane by an anaerobic fermentation process. Thus, the hydrolysis process of corn stover using dilute nitric acid can be conceived as the first stage of an integrated strategy for corn stover utilization. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Connecting Lignin-Degradation Pathway with Pre-Treatment Inhibitor Sensitivity of Cupriavidus necator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Yang, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hunsinger, G. B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, P. T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, D. K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-05-27

    In order to produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.

  8. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment.

    Science.gov (United States)

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Yin, Ren-Li; Feng, Xiao-Chi; Zheng, He-Shan; Luo, Hai-Chao; Ren, Nan-Qi

    2017-09-01

    A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently. Copyright © 2017. Published by Elsevier Ltd.

  9. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  10. Enzymatic conversion of pretreated biomass into fermentable sugars for biorefinery operation

    Science.gov (United States)

    Gao, Dahai

    2011-12-01

    formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput Fast Protein Liquid Chromatography (HT-FPLC) based method has been developed to quantify CBH I, CBH II and EG I present in hydrolyzates of untreated, AFEX, and dilute-acid pretreated corn stover. This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall derived components. The binding characteristics of CBH I, CBH II and EG I during 48 hours hydrolysis were studied on different cellulose allomorphs: microcrystalline cellulose Avicel (cellulose Ibeta), liquid ammonia treated cellulose (cellulose III), sodium hydroxide treated cellulose (cellulose II) and phosphoric acid swollen amorphous cellulose (AC). The digestibility ranking is AC>cellulose III>cellulose II>cellulose I. However, AC has the highest initial enzyme binding capacity while cellulose III had the lowest. CBH II is less stable during hydrolysis. Time course binding studies were also performed for pretreated biomass. Ammonia Fiber Expansion (AFEX) treated corn stover (CS), dilute acid (ACID) treated CS and ionic liquid (IL) pretreated CS were compared. The results indicate that presence of lignin is responsible for significant unproductive cellulase binding. These results are critical for improving our understanding of enzyme synergism, productive/unproductive enzyme binding and the role of pretreatment on enzyme accessibility to lignocellulosic plant cell walls. The results also assist in engineering novel low unproductive binding enzyme systems and developing economic enzyme recycle options.

  11. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

    Science.gov (United States)

    Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    He Pinjing; Qu Xian; Shao Liming; Li Guojian; Lee Duujong

    2007-01-01

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l -1 , but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  13. Ethanol production from rape straw by a two-stage pretreatment under mild conditions.

    Science.gov (United States)

    Romero, Inmaculada; López-Linares, Juan C; Delgado, Yaimé; Cara, Cristóbal; Castro, Eulogio

    2015-08-01

    The growing interest on rape oil as raw material for biodiesel production has resulted in an increasing availability of rape straw, an agricultural residue that is an attractive renewable source for the production of second-generation bioethanol. Pretreatment is one of the key steps in such a conversion process. In this work, a sequential two-stage pretreatment with dilute sulfuric acid (130 °C, 60 min, 2% w/v H2SO4) followed by H2O2 (1-5% w/v) in alkaline medium (NaOH) at low temperature (60, 90 °C) and at different pretreatment times (30-90 min) was investigated. The first-acid stage allows the solubilisation of hemicellulose fraction into fermentable sugars. The second-alkaline peroxide stage allows the delignification of the solid material whilst the cellulose remaining in rape straw turned highly digestible by cellulases. Simultaneous saccharification and fermentation with 15% (w/v) delignified substrate at 90 °C, 5% H2O2 for 60 min, led to a maximum ethanol production of 53 g/L and a yield of 85% of the theoretical.

  14. Improvement of Haramay Fiber by Pre-treatment of Retting Process withPhosphoric Acid

    International Nuclear Information System (INIS)

    Kuntari-Sasas; Neni-Rustini Eriawati

    2000-01-01

    Haramay as bast fiber contains of cellulose fiber as the main part, mixedwith hemi cellulose, pectin, and lignin as binding material for cellulosefiber to keep it together in the bundle form. For textile material, this bastfiber has to be freed from its binding material, called as retting process,before subjecting to scouring, dyeing and finishing process in textileindustry. In the retting process the dissolve of binding material can be doneeither by using enzyme in bio technology or extraction with strong alkalinecondition in common technology. Using sodium hydroxide for dissolving thebinding material can be carried out easily with good dissolving ability, butcan render the strength retention of the cellulose fiber. Pre-treatment ofthe bast fiber with phosphoric acid (H 3 PO 4 ), is expected to hydrolyze someof the binding materials that can not be dissolved in alkaline condition,including natural pigment that colored the fiber with creamy white. In thisstudy, the pre-treatment process before retting with phosphoric acid wascarried out in various condition, such as concentration of phosphoric acid (5ml/l- 25 ml/l), time and temperature of pre-treatment (1-3 hours at 50 o C or12-24 hours at room temperature), followed by neutralization in dilutealkaline. The retting process was carried out by means of scouring in variousconcentration of sodium hydroxide (NaOH 38 o Be, 10 ml/l-30 m/l), and then wascontinued with bleaching process in hydrogen peroxide solution. Aftercarrying out those experiment, the bast fiber that called haramay wassubjected to testing for weight reduction, strength retention and degree ofwhiteness. From the testing results it is concluded that pre-treatment withphosphoric acid can increase the weight reduction, strength retention ortenacity and degree of whiteness of haramay fiber compared to the oneswithout pre-treatment with phosphoric acid. The best result was obtained bypre-treatment with 5 ml/l H 3 PO 4 at 50 o C for 2 hours, continued by

  15. Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of pretreatment by radiation and acids—sulfuric, hydrochloric and acetic—on the enzymatic hydrolysis of chaff was studied. The combination of radiation and acids accelerates subsequent crushing and enzymatic hydrolysis. The percentage of fine powder below 115 mesh, after the crushing and the glucose yield on subsequent enzymatic hydrolysis, increased with increasing acid concentration, treatment time and irradiation dose. Radiation and hydrochloric acid pretreatment was the most effective in giving a high glucose conversion yield (about 90%). Irradiation dose, acid concentration, treatment temperature and treatment time were 20 Mrad, 0·5%, 70°C, and 5 h, respectively

  16. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    Science.gov (United States)

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  17. A dilute chemical decontaminant formulation containing gallic acid as a reductant

    International Nuclear Information System (INIS)

    Kishore, K.; Rajesh, P.; Kumbhar, A.G.

    2001-01-01

    Gallic acid (GA) was tried as a reductant in place of ascorbic acid in dilute chemical decontaminant (DCD) formulations. Dissolution of magnetite in GA based DCD formulations was studied at 50 C as well as 80 C. It was found to be a good substitute for ascorbic acid in EDTA/ascorbic acid/citric acid, i.e., EAC formulation. The efficiency of EDTA/GA/CA formulation was as good as that of EAC formulation. 2.8 was found to be the optimum pH for this formulation and dissolution decreased at lower as well as higher pHs. The ion exchange behaviour of GA is also appropriate for using it in a regenerating type of formulation. Being an aromatic compound, Gallic acid has inherent stability against radiation degradation. (orig.)

  18. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    Science.gov (United States)

    Muirhead, Dean; Carrier, Christopher

    2012-01-01

    In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines

  19. The separation and determination of fatty acids by isotopic dilution and radiogas-liquid chromatography

    International Nuclear Information System (INIS)

    Beardsley, D.A.

    1981-01-01

    A number of static phases have been evaluated for the GLC separation of fatty acids. Of those investigated, only AT 1200 was capable of resolving the isomeric forms of the acids. A radiogas-liquid chromatographic method incorporating isotopic dilution analysis has been developed for the determination of n-butyric acid. The proposed method has been applied to the determination of the acid in hydrolysed butter fat and milk chocolate extracts. (author)

  20. Production of l(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy.

    Science.gov (United States)

    van der Pol, Edwin C; Eggink, Gerrit; Weusthuis, Ruud A

    2016-01-01

    Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of l(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate thermophilic bacterium Bacillus coagulans DSM2314. Saccharification and fermentation were performed simultaneously (SSF), adding acid-pretreated bagasse either in one batch or in two stages. SSF was performed at low enzyme dosages of 10.5-15.8 FPU/g DW bagasse. The first batch SSF resulted in an average productivity of 0.78 g/l/h, which is not sufficient to compete with lactic acid production processes using high-grade sugars. Addition of 1 g/l furfural to precultures can increase B. coagulans resistance towards by-products present in pretreated lignocellulose. Using furfural-containing precultures, productivity increased to 0.92 g/l/h, with a total lactic acid production of 91.7 g in a 1-l reactor containing 20% W/W DW bagasse. To increase sugar concentrations, bagasse was solubilized with a liquid fraction, obtained directly after acid pretreatment. Solubilizing the bagasse fibres with water increased the average productivity to 1.14 g/l/h, with a total lactic acid production of 84.2 g in a 1-l reactor. Addition of bagasse in two stages reduced viscosity during SSF, resulting in an average productivity in the first 23 h of 2.54 g/l/h, similar to productivities obtained in fermentations using high-grade sugars. Due to fast accumulation of lactic acid, enzyme activity was repressed during two-stage SSF, resulting in a decrease in productivity and a slightly lower total lactic acid production of 75.6 g. In this study, it is shown that an adequate production of lactic acid from lignocellulose was successfully accomplished by a two-stage SSF process, which combines acid-pretreated bagasse, B. coagulans precultivated in the presence of furfural as microorganism, and GC220 as enzyme

  1. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  2. Characterization of Cellulase Enzyme Inhibitors Formed During the Chemical Pretreatments of Rice Straw

    Science.gov (United States)

    Rajan, Kalavathy

    Production of fuels and chemicals from a renewable and inexpensive resource such as lignocellulosic biomass is a lucrative and sustainable option for the advanced biofuel and bio-based chemical platform. Agricultural residues constitute the bulk of potential feedstock available for cellulosic fuel production. On a global scale, rice straw is the largest source of agricultural residues and is therefore an ideal crop model for biomass deconstruction studies. Lignocellulosic biofuel production involves the processes of biomass conditioning, enzymatic saccharification, microbial fermentation and ethanol distillation, and one of the major factors affecting its techno-economic feasibility is the biomass recalcitrance to enzymatic saccharification. Preconditioning of lignocellulosic biomass, using chemical, physico-chemical, mechanical and biological pretreatments, is often practiced such that biomass becomes available to downstream processing. Pretreatments, such as dilute acid and hot water, are effective means of biomass conversion. However, despite their processing importance, preconditioning biomass also results in the production of carbohydrate and lignin degradation products that are inhibitory to downstream saccharification enzymes. The saccharification enzyme cocktail is made up of endo-cellulase, exo-cellulase and beta-glucosidase enzymes, whose role is to cleave cellulose polymers into glucose monomers. Specifically, endo-cellulase and exo-cellulase enzymes cleave cellulose chains in the middle and at the end, resulting in cellobiose molecules, which are hydrolyzed into glucose by beta-glucosidase. Unfortunately, degradation compounds generated during pretreatment inhibit the saccharification enzyme cocktail. Various research groups have identified specific classes of inhibitors formed during biomass pretreatment and have studied their inhibitory effect on the saccharification cocktail. These various research groups prepared surrogate solutions in an attempt to

  3. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis

    International Nuclear Information System (INIS)

    Yuan, Zhengqiu; Long, Jinxing; Wang, Tiejun; Shu, Riyang; Zhang, Qi; Ma, Longlong

    2015-01-01

    Highlights: • Novel pretreatment of ball milling combined with hydrothermal method was presented. • Intensification effect of ball milling was significant for corn straw enzymolysis. • Ball milling destroyed the physical structure of corn straw. • Chemical (liquid mixture) method removed lignin and hemicellulose. • Glucose yield increased from 0.41 to 13.86 mg mL −1 under the optimized condition. - Abstract: Enhancement of the cellulose accessibility is significant for biomass enzymatic hydrolysis. Here, we reported an efficient combined pretreatment for corn straw enzymolysis using ball milling and dilute acid hydrothermal method (a mixture solvent of H 2 O/ethanol/sulfuric acid/hydrogen peroxide liquid). The process intensification effect of ball milling on the pretreatment of the corn straw was studied through the comparative characterization of the physical–chemical properties of the raw and pretreated corn straw using FT-IR, BET, XRD, SEM, and HPLC analysis. The effect of the pretreatment temperature was also investigated. Furthermore, various pretreatment methods were compared as well. Moreover, the pretreatment performance was measured by enzymolysis. The results showed that ball milling had a significant process intensification effect on the corn straw enzymolysis. The glucose concentration was dramatically increased from 0.41 to 13.86 mg mL −1 after the combined treatment of ball milling and hydrothermal. The efficient removal of lignin and hemicellulose and the enlargement of the surface area were considered to be responsible for this significant increase based on the intensive analysis on the main components and the physical–chemical properties of the raw and pretreated corn straw

  4. Brewer’s Spent Grain Valorization Using Phosphoric Acid Pretreatment for Second Generation Bioethanol Production

    DEFF Research Database (Denmark)

    Romero, I.; Ruiz, E.; Cara, C.

    the effect of phosphoric acid concentration (2-6% w/v) and pretreatment temperature (140-180ºC). The influence of these factors on the hemicellulosic sugar solubilisation and the subsequent enzymatic hydrolysis was evaluated. Optimal pretreatment conditions were determined by maximizing both...... hemicellulosic sugar recovery in liquids and enzymatic hydrolysis yield....

  5. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries

    Directory of Open Access Journals (Sweden)

    Zongyuan Zhu

    2015-10-01

    Full Text Available Miscanthus is a major bioenergy crop in Europe and a potential feedstock for second generation biofuels. Thermochemical pretreatment is a significant step in the process of converting lignocellulosic biomass into fermentable sugars. In this work, microwave energy was applied to facilitate NaOH and H2SO4 pretreatments of Miscanthus. This was carried out at 180 ℃ in a monomode microwave cavity at 300 W. Our results show that H2SO4 pretreatment contributes to the breakdown of hemicelluloses and cellulose, leading to a high glucose yield. The maximum sugar yield from available carbohydrates during pretreatment is 75.3% (0.2 M H2SO4 20 Min, and glucose yield is 46.7% under these conditions. NaOH and water pretreatments tend to break down only hemicellulose in preference to cellulose, contributing to high xylose yield. Compared to conventional heating NaOH/H2SO4 pretreatment, 12 times higher sugar yield was obtained by using microwave assisted pretreatment within half the time. NaOH pretreatments lead to a significantly enhanced digestibility of the residue, because the effective removal of lignin and hemicellulose makes cellulose fibres more accessible to cellulases. Morphological study of biomass shows that the tightly packed fibres in the Miscanthus were dismantled and exposed under NaOH condition. We studied sugar degradation under microwave assisted H2SO4 conditions. The results shows that 6-8% biomass was converted into levulinic acid (LA during pretreatment, showing the possibility of using microwave technology to produce LA from biomass. The outcome of this work shows great potential for using microwave in the thermo-chemical pretreatment for biomass and also selective production of LA from biomass.

  6. Enhanced bioreduction synthesis of ethyl (R)-4-chloro-3-hydroybutanoate by alkalic salt pretreatment.

    Science.gov (United States)

    Chong, Ganggang; Di, Junhua; Ma, Cuiluan; Wang, Dajing; Wang, Chu; Wang, Lingling; Zhang, Pengqi; Zhu, Jun; He, Yucai

    2018-08-01

    In this study, biomass-hydrolysate was used for enhancing the bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE). Firstly, dilute alkalic salt pretreatment was attempted to pretreat bamboo shoot shell (BSS). It was found that enzymatic in situ hydrolysis of 20-50 g/L BSS pretreated with dilute alkalic salts (0.4% Na 2 CO 3 , 0.032% Na 2 S) at 7.5% sulfidity by autoclaving at 110 °C for 40 min gave sugar yields at 59.9%-73.5%. Moreover, linear relationships were corrected on solid recovery-total delignification-sugar yield. In BSS-hydrolysates, xylose and glucose could promote the reductase activity of recombinant E. coli CCZU-A13. Compared with glucose, hydrolysate could increase the reductase activity by 1.35-folds. Furthermore, the cyclohexane-hydrolysate (10:90, v/v) biphasic media containing ethylene diamine tetraacetic acid (EDTA, 40 mM) and l-glutamine (150 mM) was built for the effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (94.6% yield) from 500 mM COBE. In conclusion, this strategy has high potential for the effective biosynthesis of (R)-CHBE (>99% e.e.). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Effect of EDTA and phosphoric Acid pretreatment on the bonding effectiveness of self-etch adhesives to ground enamel.

    Science.gov (United States)

    Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M

    2010-10-01

    This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.

  8. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production.

    Science.gov (United States)

    Zhu, Hong-Ji; Liu, Jia-Heng; Sun, Li-Fan; Hu, Zong-Fu; Qiao, Jian-Jun

    2013-05-01

    Spent mushroom substrate (SMS) was pretreated with alkaline reagents including potassium hydroxide, lime and ammonia to enhance enzymatic saccharification. Under the best pretreatment conditions (1M KOH, 80 °C, 90 min; 1M lime, 80 °C, 120 min; 10 M ammonia, 70 °C, 120 min), the total reducing sugar (TRS) yield reached 258.6, 204.2 and 251.2 mg/g raw SMS, which were respectively 6.15, 4.86, and 5.98 times of untreated SMS. The effects of pretreatment by above alkaline reagents and sulfuric acid on the composition and structure of SMS were evaluated to provide comparative performance data. A new process, combined alkali and acid (CAA) pretreatment followed by enzymatic hydrolysis, was innovatively proposed to improve the cost-effectiveness and avoid environmental problems. The SMS residue after CAA pretreatment-enzymatic hydrolysis process was converted to biofertilizer with Pichia farinose FL7 and a cell density of 3.0×10(8) cfu/g in biomass was attained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions

    International Nuclear Information System (INIS)

    Liu Yang; Sun Changbin; Xu Jin; Li Youzhi

    2009-01-01

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO 4 .5H 2 O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 deg. C to 40 deg. C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca 2+ from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S=O) of

  10. The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions.

    Science.gov (United States)

    Liu, Yang; Sun, Changbin; Xu, Jin; Li, Youzhi

    2009-08-30

    Heavy metal removal from industrial wastewater is not only to protect living organisms in the environment but also to conserve resources such as metals and water by enabling their reuse. To overcome the disadvantage of high cost and secondary pollution by the conventional physico-chemical treatment techniques, environmentally benign and low-cost adsorbents are in demand. In this study, the use of raw and acid-pretreated bivalve mollusk shells (BMSs) to remove metals from aqueous solutions with single or mixed metal was evaluated at different BMSs doses, pH and temperatures in batch shaking experiments in laboratory conditions. When the BMSs were used to treat CuSO(4)x5H(2)O solution, the copper sorption capacities of the raw and acid-pretreated BMSs were approximately 38.93 mg/g and 138.95 mg/g, respectively. The copper removal efficiency (CRE) of the raw BMSs became greatly enhanced with increasing initial pH, reaching 99.51% at the initial pH 5. Conversely, the CRE of the acid-pretreated BMSs was maintained at 99.48-99.52% throughout the pH range of 1-5. Furthermore, the CRE values of the raw and acid-pretreated BMSs were not greatly changed when the temperature was varied from 15 degrees C to 40 degrees C. In addition, the CRE value of the raw BMSs was maintained for 12 cycles of sorption-desorption with a CRE of 98.4% being observed in the final cycle. Finally, when the BMSs were used to treat electroplating wastewater, the removal efficiencies (REs) of the raw BMSs were 99.97%, 98.99% and 87% for Fe, Zn and Cu, respectively, whereas the REs of the acid-pretreated BMSs were 99.98%, 99.43% and 92.13%, respectively. Ion exchange experiments revealed that one of mechanisms for metal sorption by the BMSs from aqueous solution is related to ion exchange, especially between the metal ions in the treated solution and Ca(2+) from BMSs. Infrared absorbance spectra analysis indicated that the acid pretreatment led to occurrence of the groups (i.e. -OH, -NH, C=O and S

  11. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation

    Science.gov (United States)

    Jae-Won Lee; Rita C.L.B. Rodrigues; Hyun Joo Kim; In-Gyu Choi; Thomas W. Jeffries

    2010-01-01

    High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 23 full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment...

  12. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether...... dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD......) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total...

  13. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids

    NARCIS (Netherlands)

    van den Bruinhorst, A.; Kouris, P.; Timmer, J.M.K.; de Croon, M.H.J.M.; Kroon, M.C.

    2016-01-01

    The disintegration of orange peel waste in deep eutectic solvents and diluted organic acids is presented in this work. The albedo and flavedo layers of the peel were studied separately, showing faster disintegration of the latter. Addition of water to the deep eutectic solvents lowered the amount of

  14. Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Barakat, Abdellatif; Chuetor, Santi; Monlau, Florian; Solhy, Abderrahim; Rouau, Xavier

    2014-01-01

    Highlights: • Innovative dry NaOH chemo-mechanical pretreatment was developed. • Dry (TS dry ) and dilute (TS dilute ) NaOH chemo-mechanical pretreatment were compared. • TS dilute consumed higher amounts of water and energy compared to TS dry . • Energy efficiency obtained for TS dilute was 0.417 kg glucose kW h −1 and 0.888 for TS dry . - Abstract: In this study, we developed an eco-friendly dry alkaline chemomechanical pretreatment of wheat straw without production of waste and liquid fractions with objective to save energy input, to decrease the environmental impact and to increase enzymatic hydrolysis. Wheat straw was pretreated with NH 3 , NaOH-H 2 O 2 , NH 3 -H 2 O 2 and NaOH at high materials concentration (5 kg/L) equivalent to biomass/liquid ratio of 1/5 (dry chemomechanical) and at low materials concentration (0.2 kg/L) equivalent to biomass/liquid ratio of 5/1 (dilute chemomechanical). Untreated and chemical treated wheat straw samples were subjected to grinding and milling following by enzymatic hydrolysis with commercial cellulases. NaOH and NaOH-H 2 O 2 dry chemomechanical pretreatments were found to be more effective in decreasing the particle size and energy consumption and increasing the surface area. However, alkaline dilute-chemomechanical treatments consumed higher amounts of water (5 L water/1 kg biomass) and energy compared to dry-chemomechanical treatments. In point of fact, the lowest energy efficiency obtained was 0.417 kg glucose kW h −1 for dilute-chemomechanical treatments compared to 0.888 kg glucose kW h −1 glucose kW h −1 for dry-chemomechanical treatments. Alkaline dry-chemomechanical pretreatments approach appears more attractive and efficient in terms of glucose, energy efficiency and environmental impact, compared to conventional alkaline chemomechanical pretreatments

  15. Pretreatment with ascorbic acid prevents lethal gastrointestinal syndrome in mice receiving a massive amount of radiation

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Kinoshita, Manabu; Shinomiya, Nariyoshi; Hiroi, Sadayuki; Sugasawa, Hidekazu; Majima, Takashi; Seki, Shuhji; Matsushita, Yoshitaro; Saitoh, Daizoh

    2010-01-01

    While bone marrow or stem cell transplantation can rescue bone marrow aplasia in patients accidentally exposed to a lethal radiation dose, radiation-induced irreversible gastrointestinal damage (GI syndrome) is fatal. We investigated the effects of ascorbic acid on radiation-induced GI syndrome in mice. Ascorbic acid (150 mg/kg/day) was orally administered to mice for 3 days, and then the mice underwent whole body irradiation (WBI). Bone marrow transplantation (BMT) 24 h after irradiation rescued mice receiving a WBI dose of less than 12 Gy. No mice receiving 14 Gy-WBI survived, because of radiation-induced GI syndrome, even if they received BMT. However, pretreatment with ascorbic acid significantly suppressed radiation-induced DNA damage in the crypt cells and prevented denudation of intestinal mucosa; therefore, ascorbic acid in combination with BMT rescued mice after 14 Gy-WBI. DNA microarray analysis demonstrated that irradiation up-regulated expressions of apoptosis-related genes in the small intestine, including those related to the caspase-9-mediated intrinsic pathway as well as the caspase-8-mediated extrinsic pathway, and down-regulated expressions of these genes in ascorbic acid-pretreated mice. Thus, pretreatment with ascorbic acid may effectively prevent radiation-induced GI syndrome. (author)

  16. Pretreatment of phosphoric acid of Annaba

    International Nuclear Information System (INIS)

    Kada, R.

    1990-03-01

    The most important step in the process of uranium recovery from phosphoric acid is the pretreatment operation. In this study, the adsorption of organic matters on activated carbon was carried out in a batch process and in a fixed bed column. First, the chemical and physical characterization of phosphoric acid, activated carbon and gypsum were performed. In addition, the organic matters were qualitatively analysed and a new and original quantitative method was experimented. Next, the various operating parameters such as agitation speed, granulometry, temperature, solid/liquid ratio, initial concentration, acid flowrate, and bed height were optimized. The experimental equilibrium isotherm was compared to the Langmuir, Freundlich, and Redlich-Peterson theoretical isotherms. It was noticed that the three models did not fit the experimental isotherm in the total concentration range. Thus, an original bilinear model was proposed. The influence of the operating conditions on the adsorption kinetics was also investigated. As a result of that, a new mathematical model was proposed to determine both the liquid and solid phases mass transfer and the solid phase diffusion coefficient. Finally, adsorption of organic matters on a fixed bed process allowed computation of the number of transfer units (NTU), the height of adsorption zone and the degree of saturation of activated carbon

  17. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste.

    Science.gov (United States)

    Yousuf, Ahasa; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2018-04-28

    Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 g lactic /g totalacids . The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Pretreatment with oleic acid accelerates the entrance into the mitotic cycle of EGF-stimulated fibroblasts.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Eiras, A; Beiras, A; Casanueva, F F

    1995-07-01

    We have previously demonstrated that pretreatment of several cell lines with cis-unsaturated fatty acids, like oleic acid, blocks epidermal growth factor (EGF)-induced early ionic signals, and in particular the [Ca2+]i rise. In the present work we show that this blockade does not alter EGF-stimulated cellular proliferation evaluated by direct cell counting, but induces a powerful enhancement in the pulsed thymidine incorporation assay. The lack of effect of oleic acid on EGF-stimulated cellular proliferation was confirmed by repeated cell counts, cumulative thymidine incorporation, and protein synthesis, but a clear synergistic effect between oleic acid and EGF was again obtained by means of time course experiments with pulsed thymidine. Combined flow cytometry analysis and cell counts at earlier times in EGF-stimulated cells showed that oleic acids accelerates the entrance of cells into the replicative cycle leading to an earlier cell division. Afterward, these oleic acid-pretreated cells became delayed by an unknown compensatory mechanism in such a way that at 48 h post-EGF, the cell count in control and oleic acid-pretreated cells was equal. In conclusion (a) oleic acid accelerates or enhances the EGF mitogenic action and (b) in the long term cells compensate the initial perturbation with respect to untreated cells. As a side observation, the widely employed pulsed thymidine incorporation method as a measure of cell division could be extremely misleading unless experimental conditions are well controlled.

  19. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation.

    Science.gov (United States)

    Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Crestana, Silvio; Farinas, Cristiane Sanchez

    2014-03-01

    The enzymatic cocktail of cellulases is one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels and other chemicals. Here, the influence of liquid hot water, dilute acid, alkali, and combined acid/alkali pretreatments on sugarcane bagasse (SCB) used for cellulase production was investigated by means of spectroscopic and imaging techniques. Chemical composition and structural characteristics, such as crystallinity (determined by X-ray diffraction), functional groups (Fourier transform infrared spectroscopy), and microstructure (scanning electron microscopy), were used to correlate SCB pretreatments with enzymatic biosynthesis by a strain of the filamentous fungus Aspergillus niger under solid-state fermentation. The combined acid/alkali pretreatment resulted in a SCB with higher cellulose content (86.7%). However, the high crystallinity (74%) of the resulting biomass was detrimental to microbial uptake and enzyme production. SCB pretreated with liquid hot water yielded the highest filter paper cellulase (FPase), carboxymethyl cellulase (CMCase), and xylanase activities (0.4, 14.9, and 26.1 U g(-1), respectively). The results showed that a suitable pretreatment for SCB to be used as a substrate for cellulase production should avoid severe conditions in order to preserve amorphous cellulose and to enhance the physical properties that assist microbial access.

  20. Reactivities of acid and/or tetralin pretreated Wandoan coal for a Curie point flash pyrolysis; Sanzen shori, tetralin yobaimae shori Wandoan tan no kyusoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Discussions were given on effects of acid pretreatment and tetralin swelling in Wandoan coal on a Curie point flash pyrolysis (which used a Curie point pyrolyzer). Residue yield loss effects were obtained at 3.9% in hydrochloric acid pretreatment, and 6.2% in acetic acid pretreatment. The effects of tetralin swelling pretreatment were compared in the similar manner in terms of the residue yield loss. The effects were 4.0% in untreated coal, 2.0% in the hydrochloric acid pretreatment, and 0.6% in the acetic acid pretreatment. It is thought that components that can be activated by acetic acid have already been activated, but the remaining components would not be activated by tetralin. Average microporosity (area) in the remaining particle as a whole shows very little difference both in acetic acid pretreated coal and untreated coal. However, with the acetic acid pretreatment, pores smaller than 4{mu}m{sup 2} disappeared, and pores as large as 205 to 411{mu}m{sup 2} increased largely. This phenomenon was observed as an increase in foaming degree under microscopic observation, even if the average microporosity remains equal. Thermoplasticity of the coal increased, and so did volatilization reactivity as a result of the acetic acid pretreatment, resulting in appearance of a large number of large pores. 6 refs., 2 figs., 2 tabs.

  1. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  3. Surfactant-assisted pretreatment and enzymatic hydrolysis of spent mushroom compost for the production of sugars.

    Science.gov (United States)

    Kapu, N U S; Manning, M; Hurley, T B; Voigt, J; Cosgrove, D J; Romaine, C P

    2012-06-01

    Spent mushroom compost (SMC), a byproduct of commercial mushroom cultivation, poses serious environmental problems that have hampered the growth of this important agro-industry. In an effort to develop new applications for SMC, we explored its use as a feedstock for bioethanol production. SMC constitutes approximately 30%w/w polysaccharides, 66% of which is glucan. Following dilute-acid pretreatment and enzymatic hydrolysis, both in the presence of PEG 6000, 97% of glucan and 44% of xylan in SMC were converted into the corresponding monosaccharides. Incorporation of PEG 6000 reduced the cellulase requirement by 77%. Zwittergent 3-12 and 3-14 also significantly increased the efficacy of acid pretreatment and enzymatic hydrolysis. The use of SMC in bioethanol production represents a potential mitigation solution for the critical environmental issues associated with the stockpiling of the major byproduct of the mushroom industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, H.H.; Yu, E.K.C.; Saddler, J.N.

    1986-06-01

    Material balances for pentosan, lignin, and hexosan, during steam-explosion pretreatment of aspenwood, showed almost quantitative recovery of cellulose in the water-insoluble fraction. Dilute acid impregnation resulted in more selective hydrolysis of pentosan relative to undesirable pyrolysis, and gave a more accessible substrate for enzymatic hydrolysis. Thermocouple probes, located inside simulated aspenwood chips heated in 240 degrees C-saturated steam, showed rapid heating of air-dry wood, whereas green or impregnated wood heated slowly. Small chips, 3.2 mm in the fiber direction, whether green or air dry gave approximately equal rates of pentosan destruction and solubilization, and similar yields of glucose and of total reducing sugars on enzmatic hydrolysis with Trichoderma harzianum. Partial pyrolysis, destroying one-third of the pentosan of aspenwood at atmospheric pressure by dry steam at 276 degrees C, gave little increase in yield of reducing sugars on enzymatic hydrolysis. Treatment with saturated steam at 240 degrees C gave essentially the same yields of butanediol and ethanol on fermentation with Klebsiella pneumoniae, whether or not 80% of the steam was bled off before explosion and even if the chips remained intact, showing that explosion was unnecessary. 17 references.

  5. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  6. Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation.

    Science.gov (United States)

    Devendra, Leena P; Pandey, Ashok

    2017-11-01

    Acid pretreatment is the most common method employed in the lignocellulosic biorefinery leading to the separation of pentose and hexose sugar. The liquor obtained after pretreatment (acid pretreatment liquor or APL) needs to be detoxified prior to fermentation. The aim of this study was to design functional groups on a polymer matrix which are selective in their interaction to inhibitors with little or no specificity to sugars. Molecular modeling was used as a tool to design a suitable adsorbent for selective adsorption of inhibitors from a complex mixture of APL. Phenyl glycine-p-sulfonic acid loaded on chloromethylated polystyrene polymer was designed as an adsorbent for selective interaction with inhibitors. Experimental verification of the selectivity was successfully achieved. The current study provides insights on the adsorptive separation processes at the molecular level by design of specific adsorbent which can be tailor made for the better selectivity of the desired component.

  7. Effect of copper surface pre-treatment on the properties of CVD grown graphene

    Directory of Open Access Journals (Sweden)

    Min-Sik Kim

    2014-12-01

    Full Text Available Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consisted of ∼98% a monolayer graphene with as compared to 75 % for the graphene grown on untreated Cu foil. A high hydrogen flow rate during the pre-annealing process resulted in an increased I2D/IG ratio of graphene up to 3.55. Uniform monolayer graphene was obtained with a I2D/IG ratio and sheet resistance varying from 1.84 – 3.39 and 1110 – 1290 Ω/□, respectively.

  8. Comparison of Pretreatment Methods on Vetiver Leaves for Efficient Processes of Simultaneous Saccharification and Fermentation by Neurospora sp.

    Science.gov (United States)

    Restiawaty, E.; Dewi, A.

    2017-07-01

    Lignocellulosic biomass is a potential raw material for bioethanol production. Neurospora sp. can be used to convert lignocellulosic biomass into bioethanol because of its ability to perform simultaneous saccharification and fermentation. However, lignin content, degree of polymerization, and crystallinity of cellulose contained in lignocellulosic biomass can inhibit cellulosic-biomass digestion by Neurospora sp, so that a suitable pretreatment method of lignocellulosic biomass is needed. The focus of this research was to investigate the suitable pretreatment method for vetiver leaves (Vetiveria zizanioides L. Nash) used as a raw material producing bioethanol in the process of simultaneous saccharification and fermentation (SSF) by Neurospora sp.. Vetiver plants obtained from Garut are deliberately cultivated to produce essential oils extracted from the roots of this plant. Since the vetiver leaves do not contain oil, some of harvested leaves are usually used for crafts and cattle feed, and the rest are burned. This study intended to look at other potential of vetiver leaves as a source of renewable energy. Pretreatments of the vetiver leaves were conducted using hot water, dilute acid, alkaline & dilute acid, and alkaline peroxide, in which each method was accompanied by thermal treatment. The results showed that the alkaline peroxide treatment is a suitable for vetiver leaves as indicated by the increase of cellulose content up to 65.1%, while the contents of hot water soluble, hemicellulose, lignin, and ash are 8.7%, 18.3%, 6.8%, and 1.1%, respectively. Using this pretreatment method, the vetiver leaves can be converted into bioethanol by SSF process using Neurospora sp. with a concentration of bioethanol of 6.7 g/L operated at room temperature.

  9. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  10. Oxalic acid pretreatment of rice straw particles and loblolly pine chips : release of hemicellulosic carbohydrates

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    This study was conducted to evaluate the effect of oxalic acid (OA) pretreatment on carbohydrates released from rice straw particles and wood chips. The results showed that OA treatment accelerated carbohydrates extraction from rice straw particles and wood chips. OA pretreatment dramatically increased the amount of carbohydrates extracted, up to 24 times for wood...

  11. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Science.gov (United States)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  12. Lignite pre-treatment and its effect on bio-stimulative properties of respective lignite humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Vlckova, Z.; Grasset, L.; Antosova, B.; Pekar, M.; Kucerik, J. [Brno University of Technology, Brno (Czech Republic). Faculty of Chemistry

    2009-09-15

    Humic acids originating from South-Moravian lignite were subjected to a comparative study with the aim to assess the alteration of their physico-chemical properties after various lignite pre-treatments. Physical modification was achieved with two organic acids, such as acetic acid and citric acid and chemical modification by nitric acid and hydrogene peroxide in various concentrations. Elemental analysis, solid-state NMR, GC-MS analysis of polyols and size exclusion chromatography were carried out for chemical-physical characterization of obtained humic acids. Their biological effect, in form of potassium and ammonium humates, was tested on maize (Zea mays) seedlings. In these tests, potassium humates achieved far better overall results than ammonium humates. Results were inter-correlated in order to appraise the influence of humic acids physical and chemical properties on biological activity. Surprisingly, fractions with the lowest molecular size (0-35 kDa) showed no correlation with bioactivity results (Pearson coefficient from 0.05 to -0.4). On the contrary, middle-sized fractions (35-175 kDa) showed highly significant positive correlation (Pearson coefficient up to 0.92) and the highest molecular-size-fractions (275-350 kDa) showed negative correlation (Pearson coefficient up to -0.75). These findings were identical for both potassium and ammonium humates. No connection was found between bioactivity of humates and polyols content which was remarkably high; it reached 150 mg per g of humic acids in the most extreme case of 5% hydrogene peroxide pre-treatment. In the final analysis, the preparation mode bore pivotal responsibility for the control of humic acids biological effect and showed the best results for potassium humates obtained from lignite pre-treated by acetic acid and by 2% hydrogen peroxide.

  13. Nicotinic acid as a nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings on steels in diluted hydrochloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Ju Hong [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Li Yan [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)], E-mail: yanlee@ms.qdio.ac.cn

    2007-11-15

    The inhibition effect of nicotinic acid for corrosion of hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid was investigated using quantum chemistry analysis, weight loss test, electrochemical measurement, and scanning electronic microscope (SEM) analysis. Quantum chemistry calculation results showed that nicotinic acid possessed planar structure with a number of active centers, and the populations of the Mulliken charge, the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) were found mainly focused around oxygen and nitrogen atoms, and the cyclic of the benzene as well. The results of weight loss test and electrochemical measurement indicated that inhibition efficiency (IE%) increased with inhibitor concentration, and the highest inhibition efficiency was up to 96.7%. The corrosion inhibition of these coatings was discussed in terms of blocking the electrode reaction by adsorption of the molecules at the active centers on the electrode surface. It was found that the adsorption of nicotinic acid on coating surface followed Langmuir adsorption isotherm with single molecular layer, and nicotinic acid adsorbed on the coating surface probably by chemisorption. Nicotinic acid, therefore, can act as a good nontoxic corrosion inhibitor for hot dipped Zn and Zn-Al alloy coatings in diluted hydrochloric acid solution.

  14. The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid

    International Nuclear Information System (INIS)

    Barbosa, M.A.

    1983-01-01

    The pitting resistance of AISI 316 stainless steel after passivation in diluted nitric acid was studied in comparison with that of non-passivated specimens. The passivation treatment increased the pitting potential but decreased the resistance to crevice corrosion under open circuit conditions in aerated sea water. Immersion in the nitric acid solution was found to remove the sulphide inclusions from the metal surface, thus eliminating the most susceptible sites for attack. In the absence of sulphide particles pitting nucleated at aluminium-rich oxides. (author)

  15. Enzymatic hydrolsis of pretreated rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  16. Primary properties of MDF using thermomechanical pulp made from oxalic acid pretreated rice straw particles

    Science.gov (United States)

    Xianjun Li; Yiqiang Wu; Zhiyong Cai; Jerrold E. Winandy

    2013-01-01

    The main objective of this study is to evaluate the effect the oxalic acid (OA) and steam pretreatment on the primary properties of rice straw medium-density fiberboard (MDF). The results show the IB strength increased about 9.6% and 13.4% for steam-treated MDF (PC) and OA-treated MDF compared with raw control panels, while OA pretreatment has a slight negative effect...

  17. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    International Nuclear Information System (INIS)

    Azbar, N.; Tuba, F.; Dokgoz, C.

    2009-01-01

    In this study, H 2 was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31 o C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121 o C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H 2 / g COD fed ). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H 2 / g COD fed ). It was found that, undiluted raw cheese whey wastewater effluent from dark hydrogen

  18. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol

    Science.gov (United States)

    Jae-Won Lee; Carl J. Houtman; Hye-Yun Kim; In-Gyu Choi; Thomas W. Jeffries

    2011-01-01

    Building on our laboratory-scale optimization, oxalic acid was used to pretreat corncobs on the pilotscale. The hydrolysate obtained after washing the pretreated biomass contained 32.55 g/l of xylose, 2.74 g/l of glucose and low concentrations of inhibitors. Ethanol production, using Scheffersomyces stipitis, from this hydrolysate was 10.3 g/l, which approached the...

  19. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    Science.gov (United States)

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (ppotassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.

    Science.gov (United States)

    Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong

    2017-07-01

    Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phosphoric acid based pretreatment of switchgrass and fermentation of entire slurry to ethanol using a simplified process.

    Science.gov (United States)

    Wu, Wei; Rondon, Vanessa; Weeks, Kalvin; Pullammanappallil, Pratap; Ingram, Lonnie O; Shanmugam, K T

    2018-03-01

    Switchgrass (Alamo) was pretreated with phosphoric acid (0.75 and 1%, w/w) at three temperatures (160, 175 and 190 °C) and time (5, 7.5 and 10 min) using a steam gun. The slurry after pretreatment was liquefied by enzymes and the released sugars were fermented in a simultaneous saccharification and co-fermentation process to ethanol using ethanologenic Escherichia coli strain SL100. Among the three variables in pretreatment, temperature and time were critical in supporting ethanol titer and yield. Enzyme hydrolysis significantly increased the concentration of furans in slurries, apparently due to release of furans bound to the solids. The highest ethanol titer of 21.2 ± 0.3 g/L ethanol obtained at the pretreatment condition of 190-1-7.5 (temperature-acid concentration-time) and 10% solids loading accounted for 190 ± 2.9 g ethanol/kg of raw switch grass. This converts to 61.7 gallons of ethanol per ton of dry switchgrass, a value that is comparable to other published pretreatment conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Production of L(+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy

    NARCIS (Netherlands)

    Pol, van der Edwin C.; Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    Background: Sugars derived from lignocellulose-rich sugarcane bagasse can be used as feedstock for production of L(+)-lactic acid, a precursor for renewable bioplastics. In our research, acid-pretreated bagasse was hydrolysed with the enzyme cocktail GC220 and fermented by the moderate

  3. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  4. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.

    Science.gov (United States)

    Qin, Lizhen; Qian, Hanyu; He, Yucai

    2017-12-01

    Biodiesel is a fuel composed of monoalkyl esters of long-chain fatty acids derived from renewable biomass sources. In this study, biomass waste pecan nutshell (PS) was attempted to be converted into microbial oil. For effective utilization of PS, sequential pretreatment with ethylene glycol-H 2 SO 4 -water (78:2:20, wt:wt:wt) at 130 °C for 30 min and aqueous ammonia (25 wt%) at 50 °C for 24 h was used to enhance its enzymatic saccharification. Significant linear correlation was obtained about delignification-saccharification (R 2  = 0.9507). SEM and FTIR results indicated that combination pretreatment could effectively remove lignin and xylan in PS for promoting its enzymatic saccharification. After 72 h, the reducing sugars from the hydrolysis of 50 g/L pretreated PS by combination pretreatment could be obtained at 73.6% yield. Using the recovered PS hydrolysates containing 20 g/L glucose as carbon source, microbial lipids produced from the PS hydrolysates by Rhodococcus opacus ACCC41043. Four fatty acids including palmitic acid (C16:0; 23.1%), palmitoleic acid (C16:1; 22.4%), stearic acid (C18:0; 15.3%), and oleic acid (C18:1; 23.9%) were distributed in total fatty acids. In conclusion, this strategy has potential application in the future.

  5. Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Yang, Ming; Zhang, Junhua; Kuittinen, Suvi; Vepsäläinen, Jouko; Soininen, Pasi; Keinänen, Markku; Pappinen, Ari

    2015-01-01

    This study aims to improve enzymatic sugar production from dilute sulfuric acid-pretreated barley straw for acetone-butanol-ethanol (ABE) fermentation. The effects of additive xylanase and surfactants (polyethylene glycol [PEG] and Tween) in an enzymatic reaction system on straw hydrolysis yields were investigated. By combined application of 2g/100g dry-matter (DM) xylanase and PEG 4000, the glucose yield was increased from 53.2% to 86.9% and the xylose yield was increased from 36.2% to 70.2%, which were considerably higher than results obtained with xylanase or surfactant alone. The ABE fermentation of enzymatic hydrolysate produced 10.8 g/L ABE, in which 7.9 g/L was butanol. The enhanced sugar production increased the ABE yield from 93.8 to 135.0 g/kg pretreated straw. The combined application of xylanase and surfactants has a large potential to improve sugar production from barley straw pretreated with a mild acid and that the hydrolysate showed good fermentability in ABE production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Test plan for tank 241-AN-104 dilution studies

    International Nuclear Information System (INIS)

    Herting, D.L.

    1998-01-01

    Tank 241-AN-104 (104-AN) has been identified as the one of the first tanks to be retrieved for low level waste pretreatment and immobilization. Retrieval of the tank waste will require dilution. Laboratory tests are needed to determine the amount and type of dilution required for safe retrieval and transfer of feed and to re-dissolve major soluble sodium salts while not precipitating out other salts. The proposed laboratory tests are described in this document. Tank 241-AN-104 is on the Hydrogen Watch List

  7. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, N.; Tuba, F.; Dokgoz, C. [Bioengineering Dept., Faculty of Engineering, Ege Univ., Izmir (Turkey)], E-mail: nuri.azbar@ege.edu.tr

    2009-07-01

    In this study, H{sub 2} was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31{sup o}C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121{sup o}C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H{sub 2}/ g COD{sub fed}). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H{sub 2} / g COD{sub fed}). It was found that, undiluted raw cheese whey wastewater

  8. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

    Science.gov (United States)

    Yang, Bin; Wyman, Charles E

    2004-04-05

    Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lignin removal and enzymatic digestibility of cellulose for corn stover pretreated in batch and flowthrough reactors over a range of flow rates between 160 degrees and 220 degrees C, with water only and also with 0.1 wt% sulfuric acid. Increasing flow with just water enhanced the xylan dissolution rate, more than doubled total lignin removal, and increased cellulose digestibility. Furthermore, adding dilute sulfuric acid increased the rate of xylan removal for both batch and flowthrough systems. Interestingly, adding acid also increased the lignin removal rate with flow, but less lignin was left in solution when acid was added in batch. Although the enzymatic hydrolysis of pretreated cellulose was related to xylan removal, as others have shown, the digestibility was much better for flowthrough compared with batch systems, for the same degree of xylan removal. Cellulose digestibility for flowthrough reactors was related to lignin removal as well. These results suggest that altering lignin also affects the enzymatic digestibility of corn stover. Copyright 2004 Wiley Periodicals, Inc.

  9. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  10. Improvement Enzymatic Hydrolysis of Wheat Straw for Bioethanol Production by Combined Treatment of Radiation and Acid

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Bai, Hyoung Woo; Chung, Byung Yeoup

    2012-01-01

    The cost of ethanol production from starch and sucrose for use as a vehicle fuel is ultimately high. Consequently, it has been suggested that the large-scale use of ethanol as a fuel will require the utilization of cellulosic feedstock. Lignocellulosic biomass has the potential to serve as a low cost and renewable feedstock for bioconversion into fermentable sugars, which can be further utilized for biofuel production. It is estimated that there is over one billion tons of biomass available for conversion into biofuels on a renewable basis to displace a substantial portion of the fossil fuels currently consumed within the transportation sector. Among different pretreatment methods such as biological, physical, chemical, and physic-chemical pretreatments, chemical pretreatment using dilute acid as catalyst, which has been extensively evaluated for treating a variety of lignocellulosic feedstocks, is reported as one of the leading pretreatment technologies. Ionizing radiation can easily penetrate lignocellulosic structure and undoubtedly produce free radicals useful in modification of lignin structure as well as breakdown cellulose crystal regions. Phenoxy radicals appeared to be important radical intermediates that ultimately transformed into o-quinonoid structures in lignin. Therefore, ionizing radiation such as gamma ray and electron beam can be a great alternative. In this study, the effect of ionizing irradiation of wheat straw prior to dilute sulfuric acid treatment is investigated. The combined pretreatment for wheat straw was performed to evaluate the efficiency of enzymatic hydrolysis and compared with that of the effect of enzymatic hydrolysis by individual pretreatment

  11. The effect of pretreatment using sodium hydroxide and acetic acid to biogas production from rice straw waste

    Directory of Open Access Journals (Sweden)

    Budiyono

    2017-01-01

    Full Text Available Rice straw is agricultural waste containing high potency to be treated to biogas. However, the usage of rice straw is still limited due to high lignin content that will cause low biodegradability. The aim of this research was to study the effect of pretreatment using NaOH and acetic acid to biogas production from rice straw. NaOH was varied from 2%w, 4%w, and 6%w; and acetic acid was varied from 0,075 M, 0,15 M dan 0,75 M. The rice straw was cut into 1 cm size and submerged for 30 minutes in NaOH and acetic acid solution. The rice straw then filtered and neutralized before sending to anaerobic digestion process using rumen fluid bacteria. Biogas produced was measured using water displacement method. The result showed that the optimum concentration of NaOH solution was 4%w that resulted in biogas volume of 21,1 ml/gTS. Meanwhile, the optimum concentration of acetic acid pretreatment was 0,075 M that produced biogas volume of 14,5 ml/gTS. These results suggest that pretreatment using NaOH solution is more effective for decreasing the lignin content from rice straw.

  12. Effectiveness of Alkaline Pretreatment and Acetic Acid Hydrolysis on the Characteristics of Collagen from Fish Skin of Snakehead

    Directory of Open Access Journals (Sweden)

    Wulandari

    2015-12-01

    Full Text Available Fish skin is one of marine byproducts potential for alternative source of collagen. This study investigated the effectiveness of alkaline and acetic acid pretreatment on the characteristics of collagen from skin snakehead fish. The concentrations of alkaline pretreatment were 0.05; 0.1; 0.15 and 0.2 M for 2, 4, 6, 8, 10 and 12 hours, acetic acid concentrations were 0.05 M, 0.1 M, 0.15 M and 0.2 M for 1 and 2 hours. The experimental design used for alkaline and acetic acid pretreatment was factorial completely randomized design. The result showed that the concentration of alkaline 0.05 M for 6 hours have significant effect on the elimination of non-collagen protein (p<0.05, whereas for the optimum acetic acid at a concentration 0.1 M for 2 hours significantly different on solubility and swelling. Extraction yields of collagen was 16%, with characteristics of whiteness 66.67%, protein content 96.21%, viscosity 10 cP, Tmax 159.9oC and glass transition temperature 78.55oC. The dominant amino acid composition were glycine (27.11%, proline (13.87% and alanine (12.58%. Functional groups collagen from skin snakehead fish has β-sheet structure which is a characteristic of collagen.

  13. Impact of acid and alkaline pretreatments on the molecular network of wheat gluten and on the mechanical properties of compression-molded glassy wheat gluten bioplastics.

    Science.gov (United States)

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-10-02

    Wheat gluten can be converted into rigid biobased materials by high-temperature compression molding at low moisture contents. During molding, a cross-linked protein network is formed. This study investigated the effect of mixing gluten with acid/alkali in 70% ethanol at ambient temperature for 16 h followed by ethanol removal, freeze-drying, and compression molding at 130 and 150 °C on network formation and on types of cross-links formed. Alkaline pretreatment (0-100 mmol/L sodium hydroxide or 25 mmol/L potassium hydroxide) strongly affected gluten cross-linking, whereas acid pretreatment (0-25 mmol/L sulfuric acid or 25 mmol/L hydrochloric acid) had limited effect on the gluten network. Molded alkaline-treated gluten showed enhanced cross-linking but also degradation when treated with high alkali concentrations, whereas acid treatment reduced gluten cross-linking. β-Elimination of cystine and lanthionine formation occurred more pronouncedly at higher alkali concentrations. In contrast, formation of disulfide and nondisulfide cross-links during molding was hindered in acid-pretreated gluten. Bioplastic strength was higher for alkali than for acid-pretreated samples, whereas the flexural modulus was only slightly affected by either alkaline or acid pretreatment. Apparently, the ratio of disulfide to nondisulfide cross-links did not affect the mechanical properties of rigid gluten materials.

  14. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation

    Directory of Open Access Journals (Sweden)

    Rafał Łukajtis

    2018-03-01

    Full Text Available This paper concerns the comparison of the efficiency of two-stage hydrolysis processes, i.e., alkaline pre-treatment and acid hydrolysis, as well as alkaline pre-treatment followed by enzymatic hydrolysis, carried out in order to obtain reducing sugars from triticale straw. For each of the analyzed systems, the optimization of the processing conditions was carried out with respect to the glucose yield. For the alkaline pre-treatment, an optimal catalyst concentration was selected for constant values of temperature and pre-treatment time. For enzymatic hydrolysis, optimal process time and concentration of the enzyme preparation were determined. For the acidic hydrolysis, performed with 85% phosphoric acid, the optimum temperature and hydrolysis time were determined. In the hydrolysates obtained after the two-stage treatment, the concentration of reducing sugars was determined using HPLC. The obtained hydrolysates were subjected to ethanol fermentation. The concentrations of fermentation inhibitors are given and their effects on the alcoholic fermentation efficiency are discussed.

  15. Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Lincoln C. [Fundacao Centro Tecnologico de Minas Gerais, Setor de Biotecnologia e Tecnologia Quimica, Minas Geraid (Brazil); Linden, James C.; Schroeder, Herbert A. [Colorado State Univ., Dept. of Chemical and Bioresource Engineering, Fort Collins, CO (United States)

    1999-01-01

    The use of several lignocellulosic materials for ethanol fuel production has been studied exhaustively in the U.S.A. Strong environmental legislation has been driving efforts by enterprise, state agencies, and universities to make ethanol from biomass economically viable. Production costs for ethanol from biomass have been decreasing year by year as a consequence of this massive effort. Pretreatment, enzyme recovery, and development of efficient microorganisms are some promising areas of study for reducing process costs. Sugar cane bagasse constitutes the most important lignocellulosic material to be considered in Brazil as new technology such as the production of ethanol fuel. At present, most bagasse is burned, and because of its moisture content, has a low value fuel. Ethanol production would result in a value-added product. The bagasse is available at the sugar mill site at no additional cost because harvesting, transportation and storage costs are borne by the sugar production. The present paper presents an alternative pretreatment with low energy input where biomass is treated in a silo type system without need for expensive capitalisation. Experimentally, ground sugar cane bagasse is placed in plastic bags and a peracetic acid solution is added to the biomass at concetrations of 0, 6, 9, 15, 21, 30 and 60% w/w of peracetic acid based on over dried biomass. The ratio of solution to wood is 6:1; a seven day storage period had been used. Tests using hydrolysing enzymes as an indicator for SSCF have been performed to evaluated the pretreatment efficiency. As an auxiliary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetate content in the sugar cane bagasse have been performed before addition of peracetic acid. The alkaline solutions are added to the raw bagasse in a ratio of 17:1 solution to biomass and mixed for 24 hours at room temperature. Biomass is filled

  16. Dilute-acid hydrolysis of apple, orange, apricot and peach pomaces as potential candidates for bioethanol production

    OpenAIRE

    Üçüncü, Can; Tarı, Canan; Demir, Hande; Büyükkileci, Ali Oğuz; Özen, Banu

    2013-01-01

    Chemical composition of four selected fruit pomaces (agro-industrial wastes) was evaluated. The effect of temperature, time, acid concentration and solid:liquid (S:L) ratio on dilute-acid hydrolysis of selected pomaces were investigated using 24 factorial and central composite design and optimum hydrolysis conditions were determined. A preliminary study was initiated using apple hydrolysate and the fungus Tricoderma harzianum in order to explore and demonstrate their potential uses in bioetha...

  17. Dissolution of magnetite in a dilute chemical decontaminant formulation containing gallic acid as a reductant

    International Nuclear Information System (INIS)

    Kishore, Kamal; Rajesh, Puspalata; Dey, G.R.

    2000-01-01

    Gallic acid (GA) was tried as a reductant in place of ascorbic acid in dilute chemical decontaminant (DCD) formulations. Dissolution of magnetite in GA based DCD formulations was studied at 50 deg as well as 80 degC. It was found to be a good substitute for ascorbic acid in EDTA/ascorbic acid/citric acid i.e. EAC formulation. The efficiency of EDTA/GA/CA formulation was as good as that of EAC formulation. 2.8 was found to be the optimum pH for this formulation and dissolution decreased at lower as well as higher pHs. The ion-exchange behaviour of GA is also appropriate for using it in a regenerating type of formulation. Being an aromatic compound, gallic acid has inherent stability against radiation degradation. (author)

  18. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Energy Technology Data Exchange (ETDEWEB)

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  19. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure

    International Nuclear Information System (INIS)

    Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P.E.; Markopoulos, Ch.

    2008-01-01

    Laboratory-scale research has focused on the recovery of titanium from red mud, which is obtained from bauxite during the Bayer process for alumina production. The leaching process is based on the extraction of this element with diluted sulfuric acid from red mud under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The titanium recovery efficiency on the basis of red mud weight reached 64.5%. The characterization of the initial red mud, as well as this of the leached residues was carried out by X-ray diffraction, TG-DTA and scanning electron microscopy

  20. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    Science.gov (United States)

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    Science.gov (United States)

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    Science.gov (United States)

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions

    International Nuclear Information System (INIS)

    Asadieraghi, Masoud; Wan Daud, Wan Mohd Ashri

    2014-01-01

    Highlights: • HF showed interesting results on EFB (empty fruit bunches) and PMF (palm mesocarp fibre) deashing. • HCl indicated maximum ash removal from PKS (palm kernel shell). • Significant pyrolysis reactions took place at ∼250 °C to ∼400 °C. • Inorganics played a considerable catalytic role during the biomasses pyrolysis. • Acid pretreatment introduced some impacts on the biomasses structure. - Abstract: To eliminate the negative impacts of inorganic constituents during biomass thermochemical processes, leaching method by different diluted acid solutions was chosen. The different palm oil biomass samples (palm kernel shell (PKS), empty fruit bunches (EFB) and palm mesocarp fiber (PMF)) were pretreated by various diluted acid solutions (H 2 SO 4 , HClO 4 , HF, HNO 3 , HCl). Acids with the highest degrees of demineralization were selected to investigate the dematerialization impacts on the biomass thermal characteristics and physiochemical structure. Thermogravimetric analysis coupled with mass spectroscopy (TGA-MS) and Fourier transform infrared spectroscopy (TGA-FTIR) were employed to examine the biomass thermal degradation. TGA and DTG (Derivative thermogravimetry) indicated that the maximum degradation temperatures increased after acid pretreatment due to the minerals catalytic effects. The main permanent evolved gases comprising H 2 , CO 2 , CO were detected online during analysis. The major permanent gases produced at the temperature range of 250–750 °C were attributed to the condensable vapors cracking and probably some secondary reactions. The physiochemical structure change of the acid-treated biomass samples was examined by using Brunauer Emmett Teller (BET) method, Scanning Electron Microscope (SEM) and FTIR. The pyrolysis kinetics of the different palm oil biomasses were investigated using first order reaction model

  4. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter

    Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development...... strain could grow in up to 80% pre-treated wheat straw and can ferment both glucose and xylose. The yield of butyric acid without optimization was 0,37±0,051 g butyric acid/g sugar monomers and the acetate yield was 0,06±0,021 g acetic acid/g sugar monomers. Moreover, the strain could grow without...... addition of yeast extract. Further optimization of yield and productivity is under investigation....

  6. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin.

    Science.gov (United States)

    Xu, Qiuxiang; Liu, Xuran; Zhao, Jianwei; Wang, Dongbo; Wang, Qilin; Li, Xiaoming; Yang, Qi; Zeng, Guangming

    2018-04-01

    Short-chain fatty acids (SCFA), raw substrates for biodegradable plastic production and preferred carbon source for biological nutrients removal, can be produced from anaerobic fermentation of waste activated sludge (WAS). This paper reports a new, high-efficient and eco-friendly strategy, i.e., using free nitrous acid (FNA) pretreatment combined with Tea saponin (TS), to enhance SCFA production. Experimental results showed 0.90 mg/L FNA pretreatment and 0.05 g/g total suspended solids TS addition (FNA + TS) not only significantly increased SCFA production to 315.3 ± 8.8 mg COD/g VSS (5.52, 1.76 and 1.93 times higher than that from blank, solo FNA and solo TS, respectively) but also shortened fermentation time to 4 days. Mechanism investigations revealed that FNA pretreatment combined with TS cause a positive synergetic effect on sludge solubilization, resulting in more release of organics. It was also found that the combination benefited hydrolysis and acidogenesis processes but inhibited the methanogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Citric acid production from hydrolysate of pretreated straw cellulose by Yarrowia lipolytica SWJ-1b using batch and fed-batch cultivation.

    Science.gov (United States)

    Liu, Xiaoyan; Lv, Jinshun; Zhang, Tong; Deng, Yuanfang

    2015-01-01

    In this study, crude cellulase produced by Trichoderma reesei Rut-30 was used to hydrolyze pretreated straw. After the compositions of the hydrolysate of pretreated straw were optimized, the study showed that natural components of pretreated straw without addition of any other components such as (NH4)2SO4, KH2PO4, or Mg(2+) were suitable for citric acid production by Yarrowia lipolytica SWJ-1b, and the optimal ventilatory capacity was 10.0 L/min/L medium. Batch and fed-batch production of citric acid from the hydrolysate of pretreated straw by Yarrowia lipolytica SWJ-1b has been investigated. In the batch cultivation, 25.4 g/L and 26.7 g/L citric acid were yields from glucose and hydrolysate of straw cellulose, respectively, while the cultivation time was 120 hr. In the three-cycle fed-batch cultivation, citric acid (CA) production was increased to 42.4 g/L and the cultivation time was extended to 240 hr. However, iso-citric acid (ICA) yield in fed-batch cultivation (4.0 g/L) was similar to that during the batch cultivation (3.9 g/L), and only 1.6 g/L of reducing sugar was left in the medium at the end of fed-batch cultivation, suggesting that most of the added carbon was used in the cultivation.

  9. Recovery of acids from dilute streams : A review of process technologies

    International Nuclear Information System (INIS)

    Talnikar, Vivek Digambar; Mahajan, Yogesh Shankar

    2014-01-01

    Chemical process industries convert raw materials into useful products. Acids, among other chemicals, are used in many industries as reactants, solvents and also as catalysts in a few instances as well. Resulting streams are dilute, from which the acids must be recovered. For recovery, many technologies can be used by which acids can be regained as such or can be converted into other value-added products like esters. Membrane processes and biological processes are being researched academically and practiced industrially. These have their own advantages and disadvantages in view of conversion, energy consumption etc. These are not always advantageous and hence an alternate process technology is necessary like reactive separation (RS). RS is advantageous especially when the acid is to be converted to other useful products by reaction, due to additional advantages or because no other technology is well suited or due to cost considerations alone. Conventional process technologies use the reactor configuration followed by the subsequent separation sequence. This approach can sometimes suffer from lesser conversion, difficulties in separation etc. To overcome these problems, RS has an edge over other processes in terms of the recovery of the useful compounds. Reactive distillation (RD), reactive extraction (RE) and reactive chromatography (RC) are the separation technologies that can be useful for acid recovery in an economically feasible way. This review covers the various processes of acid recovery along with the recent work in the field of reactive separations

  10. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Eric Horn; Jerrold E. Winandy

    2011-01-01

    The main objective of this study was to evaluate the effect of oxalic acid (OA) wood chips pretreatment prior to refining, which is done to reduce energy used during the refining process. Selected mechanical and physical performances of medium-density fiberboard (MDF) – internal bonding (IB), modulus of elasticity (MOE), modulus of rupture (MOR), water absorption (WA)...

  11. Effects of Pretreatment with Salicylic Acid on Growth and Nutrient Uptake of Sesame Seedlings under Salt Stress

    Directory of Open Access Journals (Sweden)

    H Safari

    2018-02-01

    Full Text Available Introduction Salinity stress is regarded as one of the most important abiotic factors limiting plant growth and agricultural products, particularly in arid and semi-arid regions. Sesame (Sesamum indicum L. is an important oilseed crop rated moderately salt tolerant and capable of producing profitable crops in saline conditions. Germination and seedling establishment are critical stages in the life cycle of plants especially under stress conditions. Different methodologies have been adopted by plant physiologists in different crops to alleviate salt stress. Seed priming has proven beneficial in this regard in many important agricultural crops. Salicylic acid is one of the physiological processes regulators that it increases resistant of plants to environmental stresses such as salinity stress. Materials and Methods To evaluate the effect of different levels of salinity and seed pretreatment with salicylic acid (SA, on some growth indices and nutrient uptake of sesame (Sesamum indicum L. seedling, a factorial experiment with completely randomized design and four replicates was conducted in Department of Agronomy, Rafsanjan University of Vali-e- Asr. Factors were seed pretreatment with three levels including, distilled water, 1 mM salicylic acid and 2.5 Mm salicylic acid and salinity at three levels: control (Hoagland standard solution, 2.5 dS.m-1, 6 and 9 dS.m-1. A dry seed treatment (no pretreatment was also added and considered as control. Results and Discussion Results showed that at 9 dS/m-1both SA concentrations caused significant increase in emergence percentage compared to dry seed and distilled water. Plant leaf area and SPAD values decreased along with salinity in dry seed and distilled water, nevertheless, at 2.5 mM SA, values were not significantly different between 6 and 9 dS.m-1. On the other hand, SA seed pretreatment decreased shoot Na and increased K content, although shoot Mg and P contents were the highest at 1 and 2.5 mM SA

  12. The urinary excretion of orotic acid and orotidine, measured by an isotope dilution assay

    International Nuclear Information System (INIS)

    Tax, W.J.M.; Veerkamp, J.H.; Schretlen, E.D.A.M.

    1978-01-01

    Unknown concentrations of orotic acid can be measured by competition with a known amount of [carboxyl- 14 C]orotic acid for reaction with a limiting amount of phosphoribosylpyrophosphate in the presence of orotate phosphoribosyltransferase and orotidine monophosphate decarboxylase. The dilution of the specific radioactivity in the product 14 CO 2 is a sensitive and accurate measure of the amount of orotic acid present in the sample. Orotidine can also be determined after hydrolytic cleavage to orotic acid. The method was used to measure orotic acid and orotidine in urine samples from newborns, healthy controls and patients with gout or deficiency of hypoxanthine-guanine phosphoribosyltransferase receiving allopurinol. Urinary excretion of orotic acid and orotidine in newborns was similar whether the infants were breast-fed or received milk powder. The excretion of orotidine was increased in all patients receiving allopurinol. After allopurinol administration orotic acid excretion was increased in gouty patients but close to normal values in patients with deficiency of hypoxanthine-guanine phosphoribosyltransferase. The results are discussed in relation to the mechanism by which allopurinol inhibits pyrimidine metabolism. (Auth.)

  13. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  14. Dilute chemical decontamination program review

    International Nuclear Information System (INIS)

    Anstine, L.D.; Blomgren, J.C.; Pettit, P.J.

    1980-01-01

    The objective of the Dilute Chemical Decontamination Program is to develop and evaluate a process which utilizes reagents in dilute concentrations for the decontamination of BWR primary systems and for the maintenance of dose rates on the out-of-core surfaces at acceptable levels. A discussion is presented of the process concept, solvent development, advantages and disadvantages of reagent systems, and VNC loop tests. Based on the work completed to date it is concluded that (1) rapid decontamination of BWRs using dilute reagents is feasible; (2) reasonable reagent conditions for rapid chemical decontamination are: 0.01M oxalic acid + 0.005M citric acid, pH3.0, 90/degree/C, 0.5 to 1.0 ppm dissolved oxygen; (3) control of dissolved oxygen concentration is important, since high levels suppress the rate of decontamination and low levels allow precipitation of ferrous oxalate. 4 refs

  15. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors

    International Nuclear Information System (INIS)

    Qureshi, Nasib; Saha, Badal C.; Hector, Ronald E.; Cotta, Michael A.

    2008-01-01

    In these studies, alkaline peroxide pretreatment of wheat straw was investigated. Pretreated wheat straw was hydrolyzed using cellulolytic and xylanolytic enzymes, and the hydrolysate was used to produce butanol using Clostridium beijerinckii P260. The culture produced less than 2.59 g L -1 acetone-butanol-ethanol (ABE) from alkaline peroxide wheat straw hydrolysate (APWSH) that had not been treated to reduce salt concentration (a neutralization product). However, fermentation was successful after inhibitors (salts) were removed from the hydrolysate by electrodialysis. A control glucose fermentation resulted in the production of 21.37 g L -1 ABE, while salt removed APWSH resulted in the production of 22.17 g L -1 ABE. In the two fermentations, reactor productivities were 0.30 and 0.55 g L -1 h -1 , respectively. A comparison of use of different substrates (corn fiber, wheat straw) and different pretreatment techniques (dilute sulfuric acid, alkaline peroxide) suggests that generation of inhibitors is substrate and pretreatment specific

  16. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    Science.gov (United States)

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    Science.gov (United States)

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  19. 4-Hydroxybenzoic acid from hydrothermal pretreatment of oil palm empty fruit bunches - Its origin and influence on biomass conversion

    DEFF Research Database (Denmark)

    Rasmussen, Helena; Mogensen, Kit H.; Jeppesen, Martin D.

    2016-01-01

    An unknown major compound, characteristically occurring during processing of oil palm empty fruit bunches was identified with LC-DAD-ESI-MS/MS to be 4-hydroxybenzoic acid. Lignin from oil palm empty fruit bunches contains 4-hydroxybenzoic acid so a tempting conclusion was that the 4-hydroxybenzoic...... biomass hydrothermal pretreatment conditions. 5-methylfuran-2-carbaldehyde only differs from furfural by having an extra methyl group and the degradation route indicates that it may be a new important degradation compound to consider in other biomass feedstocks rich in deoxysugars such as rhamnose...... or fucose, e.g. pectin rich biomasses. Assessment of the influence of 4-hydroxybenzoic acid in the enzymatic hydrolysis of pretreated oil palm empty fruit bunches as well as its presence during fermentation showed that 4-hydroxybenzoic acid is not inhibiting or mediating neither on the enzymatic hydrolysis...

  20. PRETREATING THORIUM FOR ELECTROPLATING

    Science.gov (United States)

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  1. Dairy Manure as a Potential Feedstock for Cost-Effective Cellulosic Bioethanol

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2015-12-01

    Full Text Available This study investigated sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL pretreatment and subsequent enzymatic digestibility of undigested dairy manure to preliminarily assess its potential use as an inexpensive feedstock for cellulosic bioethanol production. The sulfite pretreatment was carried out in a factorial analysis using 163 to 197 °C for 3 to 37 min with 0.8% to 4.2% sulfuric acid combined with 2.6% to 9.4% sodium sulfite. These treatments were compared with other standard pretreatments of dilute acid, and hot and cold alkali pretreatments. This comparative study showed that the sulfite pretreatment, through its combined effects of hemicellulose and lignin removal and lignin sulfonation, is more effective than the diluted acid and alkali pretreatments to improve the enzymatic digestibility of dairy manure.

  2. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments.

    Science.gov (United States)

    Wang, Wen; Luo, Gang; Xie, Li; Zhou, Qi

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon production from cassava stillage. Acid pretreatment thereby has higher capacity to promote hydrogen production compared with alkaline pretreatment. Effects of pretreatment temperature, time and acid concentration on hydrogen production were also revealed by response surface methodology. The results showed that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen production of 434 mL, 67% higher than raw cassava stillage.

  3. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda

    2011-01-01

    (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... carboxylic acids and phenolic compounds were found, e.g., vanillic acid, acetic acid, and formic acid. Some components had the highest concentration at the beginning of the ozonisation process (0.5, 1 h), e.g., 4-hydroxybenzladehyde, while the concentration of others increased during the entire pretreatment...

  5. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    Science.gov (United States)

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Amr, Salem S Abu

    2015-09-15

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  6. Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure

    International Nuclear Information System (INIS)

    Singh, Seema; Cheng, Gang; Sathitsuksanoh, Noppadon; Wu, Dong; Varanasi, Patanjali; George, Anthe; Balan, Venkatesh; Gao, Xiadi; Kumar, Rajeev; Dale, Bruce E.; Wyman, Charles E.; Simmons, Blake A.

    2015-01-01

    Pretreatment of lignocellulosic biomass is a prerequisite to overcome recalcitrance and allow enzyme accessibility to cellulose and maximize product recovery for improved economics of second-generation lignocellulosic bio-refineries. Recently, the three US-DOE funded Bioenergy Research Centers [Joint Bioenergy Institute (JBEI), Great Lakes Bioenergy Research Center (GLBRC), and BioEnergy Science Center (BESC)] compared ionic liquid (IL), dilute sulfuric acid (DA), and ammonia fiber expansion (AFEX TM ) pretreatments and published comparative data on mass balance, total sugar yields, substrate accessibility, and microbial fermentation [Biotechnology for Biofuels 7: 71; 72 (2014)]. In this study, corn stover solids from IL, DA, and AFEX pretreatments were compared to gain comprehensive, in-depth understanding of induced morphological and chemical changes incorporated to corn stover, and how they overcome the biomass recalcitrance. These studies reveal that biomass recalcitrance is overcome by combination of structural and chemical changes to carbohydrates and lignin after pretreatment. Thermal analysis indicates that AFEX and IL pretreated corn stover showed a lower thermal stability while DA pretreated corn stover showed the opposite. The surface roughness variations measured by small-angle neutron scattering were correlated to the removal and redistribution of biomass components and was consistent with compositional analysis, atomic force microscopy (AFM) and confocal fluorescence imaging results. With AFM and confocal fluorescent microscopy, lignin was found to be re-deposited on cellulose surface with average cellulose fiber width significantly decreased for DA pretreated corn stover (one-third of IL and AFEX). HSQC NMR spectra revealed a ~17.9% reduction of β-aryl ether units after AFEX, ~59.8% reduction after DA, and >98% reduction after IL. Both NMR and size exclusion chromatography showed similar patterns of lignin de-polymerization with highest degree of de

  7. Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Seema, E-mail: seesing@sandia.gov; Cheng, Gang; Sathitsuksanoh, Noppadon; Wu, Dong; Varanasi, Patanjali; George, Anthe [Deconstruction Division, Joint BioEnergy Institute (JBEI), Emeryville, CA (United States); Sandia National Laboratories, Biological and Materials Sciences Center, Livermore, CA (United States); Balan, Venkatesh [Department of Chemical Engineering and Materials Science, DOE Great Lakes BioEnergy Research Center (GLBRC), Michigan State University, Lansing, MI (United States); Gao, Xiadi [Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN (United States); Department of Chemical and Environmental Engineering, Bourns College of Engineering, Riverside, CA (United States); Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA (United States); Kumar, Rajeev [Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN (United States); Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA (United States); Dale, Bruce E. [Department of Chemical Engineering and Materials Science, DOE Great Lakes BioEnergy Research Center (GLBRC), Michigan State University, Lansing, MI (United States); Wyman, Charles E. [Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN (United States); Department of Chemical and Environmental Engineering, Bourns College of Engineering, Riverside, CA (United States); Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, Riverside, CA (United States); Simmons, Blake A. [Deconstruction Division, Joint BioEnergy Institute (JBEI), Emeryville, CA (United States); Sandia National Laboratories, Biological and Materials Sciences Center, Livermore, CA (United States)

    2015-02-06

    Pretreatment of lignocellulosic biomass is a prerequisite to overcome recalcitrance and allow enzyme accessibility to cellulose and maximize product recovery for improved economics of second-generation lignocellulosic bio-refineries. Recently, the three US-DOE funded Bioenergy Research Centers [Joint Bioenergy Institute (JBEI), Great Lakes Bioenergy Research Center (GLBRC), and BioEnergy Science Center (BESC)] compared ionic liquid (IL), dilute sulfuric acid (DA), and ammonia fiber expansion (AFEX{sup TM}) pretreatments and published comparative data on mass balance, total sugar yields, substrate accessibility, and microbial fermentation [Biotechnology for Biofuels 7: 71; 72 (2014)]. In this study, corn stover solids from IL, DA, and AFEX pretreatments were compared to gain comprehensive, in-depth understanding of induced morphological and chemical changes incorporated to corn stover, and how they overcome the biomass recalcitrance. These studies reveal that biomass recalcitrance is overcome by combination of structural and chemical changes to carbohydrates and lignin after pretreatment. Thermal analysis indicates that AFEX and IL pretreated corn stover showed a lower thermal stability while DA pretreated corn stover showed the opposite. The surface roughness variations measured by small-angle neutron scattering were correlated to the removal and redistribution of biomass components and was consistent with compositional analysis, atomic force microscopy (AFM) and confocal fluorescence imaging results. With AFM and confocal fluorescent microscopy, lignin was found to be re-deposited on cellulose surface with average cellulose fiber width significantly decreased for DA pretreated corn stover (one-third of IL and AFEX). HSQC NMR spectra revealed a ~17.9% reduction of β-aryl ether units after AFEX, ~59.8% reduction after DA, and >98% reduction after IL. Both NMR and size exclusion chromatography showed similar patterns of lignin de-polymerization with highest degree

  8. Comparison of Different Biomass Pretreatment Techniques and their Impact on Chemistry and Structure

    Directory of Open Access Journals (Sweden)

    Seema eSingh

    2015-02-01

    Full Text Available Pretreatment of lignocellulosic biomass is a prerequisite to overcome recalcitrance and allow enzyme accessibility to cellulose and maximize product recovery for improved economics of second-generation lignocellulosic bio-refineries. Recently, the three US-DOE funded Bioenergy Research Centers (Joint Bioenergy Institute (JBEI, Great Lakes Bioenergy Research Center (GLBRC, and BioEnergy Science Center (BESC compared ionic liquid (IL, dilute sulfuric acid (DA, and ammonia fiber expansion (AFEXTM pretreatments and published comparative data on mass balance, total sugar yields, substrate accessibility, and microbial fermentation (Biotechnology for Biofuels 7: 71; 72 (2014. In this study, corn stover solids from IL, DA, and AFEX pretreatments were compared to gain comprehensive, in-depth understanding of induced morphological and chemical changes incorporated to corn stover, and how they overcome the biomass recalcitrance. These studies reveal that biomass recalcitrance is overcome by combination of structural and chemical changes to carbohydrates and lignin after pretreatment. Thermal analysis indicates that AFEX and IL pretreated corn stover showed a lower thermal stability while DA pretreated corn stover showed the opposite. The surface roughness variations measured by SANS were correlated to the removal and redistribution of biomass components and was consistent with compositional analysis, AFM and confocal fluorescence imaging results. With AFM and confocal fluorescent microscopy, lignin was found to be re-deposited on cellulose surface with average cellulose fiber width significantly decreased for DA pretreated corn stover (one third of IL and AFEX. HSQC NMR spectra revealed a ~17.9% reduction of β-aryl ether units after AFEX, ~59.8% reduction after DA and >98% reduction after IL. Both NMR and SEC showed similar patterns of lignin depolymerization with highest degree of depolymerization observed for IL followed with DA and AFEX.

  9. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Compositional and structural changes in Phoenix canariensis and Opuntia ficus-indica with pretreatment: Effects on enzymatic hydrolysis and second generation ethanol production.

    Science.gov (United States)

    Udeh, Benard Anayo; Erkurt, Emrah Ahmet

    2017-01-01

    Two different plants namely Phoenix canariensis and Opuntia ficus-indica were used as substrate for reducing sugar generation and ethanol production. Dilute acid, alkaline and steam explosion were used as pretreatment methods in order to depolymerize lignin and/or hemicellulose and recover cellulose. By using alkaline pretreatment with 2.5% NaOH 71.08% for P. canariensis and 74.61% for O. ficus-indica lignin removal and 81.84% for P. canariensis and 72.66% for O. ficus-indica cellulose recovery yields were obtained. Pretreated materials were hydrolyzed by cellulase with high efficiency (87.0% and 84.5% cellulose conversion yields for P. canariensis and O. ficus-indica) and used as substrate for fermentation. Maximum ethanol production of 15.75g/L and 14.71g/L were achieved from P. canariensis and O. ficus-indica respectively. Structural differences were observed by XRD, FTIR and SEM for untreated, pretreated, hydrolyzed and fermented samples and were highly correlated with compositional analysis results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effect of wastewater pretreatment on nanofiltration membrane performance

    Directory of Open Access Journals (Sweden)

    Ali Hashlamon

    2017-03-01

    Full Text Available Membrane fouling is considered a serious obstacle for operation and cost efficiency in wastewater treatment using nanofiltration (NF. However, pretreatment is the most practical way to reduce this prior to NF. In this research, two types of wastewaters were pretreated with different methods prior to NF to examine the effect of pretreatment on membrane fouling in terms of turbidity, chemical oxygen demand (COD and permeate flux. Turbidity and COD were measured to assess solid foulants and organic species in the wastewater, respectively. The first sample was secondary treated sewage, which was pretreated using coagulation-flocculation-sedimentation (CFS only. Steady flux was increased from 24 L/m2h for wastewater without pretreatment to 32.1 L/m2h with pretreatment. COD was also eliminated after CFS/NF, and turbidity was reduced to 0.6 NTU. The second sample was diluted biodiesel wastewater, which was pretreated using a combination of powdered-activated carbon (PAC adsorption and CFS (PAC/CFS. Steady flux was increased from 22.3 L/m2h for wastewater without pretreatment to 28.7 L/m2h with pretreatment; biodiesel wastewater quality also improved. Turbidity was reduced from 12 to 0.6 NTU, and COD was reduced from 526 to 4 mg/L after NF with PAC/CFS pretreatment, while COD was reduced from 526 to 95 mg/L using NF without pretreatment.

  12. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    Science.gov (United States)

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  13. Comparative biochemical analysis after steam pretreatment of lignocellulosic agricultural waste biomass from Williams Cavendish banana plant (Triploid Musa AAA group).

    Science.gov (United States)

    Kamdem, Irénée; Jacquet, Nicolas; Tiappi, Florian Mathias; Hiligsmann, Serge; Vanderghem, Caroline; Richel, Aurore; Jacques, Philippe; Thonart, Philippe

    2015-11-01

    The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.82 ± 3.51 and 49.78 ± 1.39%w/w WCLB dry matter (DM), respectively. The highest proportions of glucose were found in SFSC210 (53.56 ± 1.33%w/w DM) and SFSC180 (44.47 ± 0.00%w/w DM), while the lowest was found in unpretreated WCLB (22.70 ± 0.71%w/w DM). Total NS content assessed in each LF immediately after SC and SE pretreatments was less than 2%w/w of the LF DM, thus revealing minor acid autohydrolysis consequently leading to minor NS production during the steam pretreatment. WCLB subjected to SC at 210 °C (SC210) generated up to 2.7-fold bioaccessible glucan and xylan. SC and SE pretreatments showed potential for the deconstruction of WCLB (delignification, depolymerization, decrystallization and deacetylation), enhancing its enzymatic hydrolysis. The concentrations of enzymatic inhibitors, such as 2-furfuraldehyde and 5-(hydroxymethyl)furfural from LFSC210, were the highest (41 and 21 µg ml(-1), respectively). This study shows that steam pretreatments in general and SC210 in particular are required for efficient bioconversion of WCLB. Yet, biotransformation through biochemical processes (e.g., anaerobic digestion) must be performed to assess the efficiency of these pretreatments. © The Author(s) 2015.

  14. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  15. Mechanistic study on ultrasound assisted pretreatment of sugarcane bagasse using metal salt with hydrogen peroxide for bioethanol production.

    Science.gov (United States)

    Ramadoss, Govindarajan; Muthukumar, Karuppan

    2016-01-01

    This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75°C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography-mass spectrometry (GC-MS) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    Science.gov (United States)

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  17. Haematological and physiological responses of brook charr, to untreated and limestone-neutralized acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Cole, M.B.; Arnold, D.E.; Watten, B.J.; Krise, W.F. [ABR Inc, Forest Grove, OR (USA). Environmental Research and Services

    2001-07-01

    Brook charr, Salvelinus fontinalis, exhibited depressed plasma sodium and elevated plasma glucose concentrations in untreated acid mine drainage effluent (AMD), at two dilutions. Plasma sodium and glucose concentrations remained stable in treated AMD, pulsed, fluidized beds of limestone and carbon-dioxide pre-treatment of influent, and in AMD-free water. Results indicate that effluents produced by this treatment system were not toxic to these fish, despite still containing moderate concentrations of manganese (3-4 mg l{sup 1} following dilution in exposure systems), and provide justification for field deployment and further biological testing of this treatment in the field.

  18. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production.

    Science.gov (United States)

    Qin, Lei; Li, Xia; Liu, Li; Zhu, Jia-Qing; Guan, Qi-Man; Zhang, Man-Tong; Li, Wen-Chao; Li, Bing-Zhi; Yuan, Ying-Jin

    2017-01-01

    In this study, wash liquors isolated from ethylenediamine and dry dilute acid pretreated corn stover were used to evaluate the effect of soluble materials in pretreated biomass on simultaneous saccharification and co-fermentation (SSCF) for ethanol production, respectively. Both of the wash liquors had different impacts on enzymatic hydrolysis and fermentation. Enzymatic conversions of glucan and xylan monotonically decreased as wash liquor concentration increased. Whereas, with low wash liquor concentrations, xylose consumption rate, cell viability and ethanol yield were maximally stimulated in fermentation without nutrient supplementary. Soluble lignins were found as the key composition which promoted sugars utilization and cell viability without nutrient supplementary. The dual effects of soluble materials on enzymatic hydrolysis and fermentation resulted in the reduction of ethanol yield as soluble materials increased in SSCF. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Bioethanol production from microwave-assisted acid or alkali-pretreated agricultural residues of cassava using separate hydrolysis and fermentation (SHF).

    Science.gov (United States)

    Pooja, N S; Sajeev, M S; Jeeva, M L; Padmaja, G

    2018-01-01

    The effect of microwave (MW)-assisted acid or alkali pretreatment (300 W, 7 min) followed by saccharification with a triple enzyme cocktail (Cellic, Optimash BG and Stargen) with or without detoxification mix on ethanol production from three cassava residues (stems, leaves and peels) by Saccharomyces cerevisiae was investigated. Significantly higher fermentable sugar yields (54.58, 47.39 and 64.06 g/L from stems, leaves and peels, respectively) were obtained after 120 h saccharification from MW-assisted alkali-pretreated systems supplemented (D+) with detoxification chemicals (Tween 20 + polyethylene glycol 4000 + sodium borohydride) compared to the non-supplemented (D0) or MW-assisted acid-pretreated systems. The percentage utilization of reducing sugars during fermentation (48 h) was also the highest (91.02, 87.16 and 89.71%, respectively, for stems, leaves and peels) for the MW-assisted alkali-pretreated (D+) systems. HPLC sugar profile indicated that glucose was the predominant monosaccharide in the hydrolysates from this system. Highest ethanol yields ( Y E , g/g), fermentation efficiency (%) and volumetric ethanol productivity (g/L/h) of 0.401, 78.49 and 0.449 (stems), 0.397, 77.71 and 0.341 (leaves) and 0.433, 84.65 and 0.518 (peels) were also obtained for this system. The highest ethanol yields (ml/kg dry biomass) of ca. 263, 200 and 303, respectively, for stems, leaves and peels from the MW-assisted alkali pretreatment (D+) indicated that this was the most effective pretreatment for cassava residues.

  20. An overview the boron dilution issue in PWRs

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1994-01-01

    The presentation is an overview of boron (boric acid) dilution in pressurized water reactors (PWRs). Boric acid has been widely used in PWRs as a dissolved poison, as one of the main reactivity controlling means, for a long time, from nearly but not quite from the beginning of the design, construction and operation of PWRs in the present-day sense. The specific safety issue, namely the risk of uncontrolled reactivity insertion due to inadvertent boron dilution, is discussed first, followed by a brief look on the history of boron usage in PWRs. A discussion of boron dilution phenomenology is presented next in general terms. Some particular concerns that boron dilution phenomena arouse in the minds of a regulator will also be presented before concluding with a brief look on the future of dissolved poisons. (11 refs.)

  1. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Christos Nitsos

    2015-01-01

    Full Text Available Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  2. Selective pyrolysis of paper mill sludge by using pretreatment processes to enhance the quality of bio-oil and biochar products

    International Nuclear Information System (INIS)

    Reckamp, Joseph M.; Garrido, Rene A.; Satrio, Justinus A.

    2014-01-01

    Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process. - Highlights: • Acid hydrolysis and torrefaction reduce bio-oil yield, but improve quality. • Dilute acid conditions provide optimal treatment for bio-oil quality and yield. • Pyrolysis of treated PMS produces high selectivity to levoglucosenone formation. • Treated PMS produces bio-oil with reduced acid, ketone, and aldehyde content. • Pyrolysis of treated PMS produces biochar with low volatile matter in high yield

  3. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-09-20

    Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60-days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively. The proximal composition of chia seeds consisted of 6.16 ± 0.24 % moisture, 34.84 ± 0.62 % oil, 18.21 ± 0.45 % protein, 4.16 ± 0.37 % ash, 23.12 ± 0.29 % fiber, and 14.18 ± 0.23 % nitrogen contents. The oil yield as a result of seed pre-treatments was found in the range of 3.43 ± 0.22 % (water boiled samples) to 32.18 ± 0.34 % (autoclaved samples). The oil samples at day 0 indicated the

  4. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Guo, Wan-Qian; Liu, Bing-Feng; Wang, Xing-Zu; Ding, Jie; Chen, Zhao-Bo [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang (China); Wang, Xiang-Jing; Xiang, Wen-Sheng [Research Center of Life Science and Biotechnology, Northeast Agricultural University, Harbin 150030 (China)

    2008-08-15

    In order to enrich hydrogen producing bacteria and to establish high-efficient communities of the mixed microbial cultures, inoculum needs to be pretreated before the cultivation. Four pretreatment methods including heat-shock pretreatment, acid pretreatment, alkaline pretreatment and repeated-aeration pretreatment were performed on the seed sludge which was collected from a secondary settling tank of a municipal wastewater treatment plant. In contrast to the control test without any pretreatment, the heat-shock pretreatment, acid pretreatment and repeated-aeration pretreatment completely suppressed the methanogenic activity of the seed sludge, but the alkaline pretreatment did not. Employing different pretreatment methods resulted in the change in fermentation types as butyric-acid type fermentation was achieved by the heat-shock and alkaline pretreatments, mixed-acid type fermentation was achieved by acid pretreatment and the control, and ethanol-type fermentation was observed by repeated-aeration pretreatment. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that pretreatment method substantially affected the species composition of microbial communities. The highest hydrogen yield of 1.96 mol/mol-glucose was observed with the repeated-aeration pretreatment method, while the lowest was obtained as the seed sludge was acidified. It is concluded that the pretreatment methods led to the difference in the initial microbial communities which might be directly responsible for different fermentation types and hydrogen yields. (author)

  5. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp....... Results obtained in this study clearly document the potential of industrial hemp for a biorefinery....

  6. Short-term chemical pretreatment cannot replace curettage in photodynamic therapy

    DEFF Research Database (Denmark)

    Nissen, Christoffer V; Wiegell, Stine Regin; Philipsen, Peter Alshede

    2016-01-01

    pretreatment with curettage and two combination ointments containing calcipotriol/betamethasone and salicylic acid/betamethasone affect PpIX fluorescence after the application of methyl aminolevulinate MAL and 5-aminolevulinic acid (BF-200 ALA). METHODS: Four fields on the forearms of 30 healthy volunteers...... were pretreated with curettage or short-term application of calcipotriol/betamethasone or salicylic acid/betamethasone for 20 min. Two fields were not pretreated, thus serving as reference. After pretreatment, MAL or BF-200 ALA was applied for 24 h, and PpIX fluorescence was measured hourly from 1 to 5...... h and after 18, 21 and 24 h. RESULTS: Curettage significantly enhanced PpIX fluorescence for MAL from 1 to 21 h (P salicylic acid...

  7. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  8. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology

    Science.gov (United States)

    Jae-Won Lee; Rita C.L.B. Rodrigues; Thomas W. Jeffries

    2009-01-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180º...

  9. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    Science.gov (United States)

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  10. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

    Science.gov (United States)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  11. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

    Science.gov (United States)

    Yi Ding; Bo Du; Xuebing Zhao; J.Y. Zhu; Dehua Liu

    2017-01-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12...

  12. An aerobic detoxification photofermentation by Rhodospirillum rubrum for converting soy sauce residue into feed with moderate pretreatment.

    Science.gov (United States)

    Zhang, Jian; Yuan, Jie; Zhang, Wen-Xue; Zhu, Wen-You; Tu, Fang; Jiang, Ya; Sun, Chuan-Ze

    2017-09-25

    This paper reports an effective process for converting soy sauce residue into feeds by combining moderate acid hydrolysis and ammonization with Rhodospirillum rubrum fermentation. After pretreatment with dilute sulfuric or phosphoric acid (1%, w/w) at 100 °C, materials were subjected to fermentation under several gases (N 2 , CO 2 , and air) and different light intensities in a 2-L fermentor. Following sulfuric acid treatment, the true protein increased from 188 to 362 g kg -1 and the crude fiber decreased from 226 to 66 g kg -1 after fermentation at 0.5 L min -1  L -1 of air flow and a light intensity of 750 lx and following phosphoric acid treatment, the true protein increased by 90% and the crude fiber decreased by 67% after fermentation at 0.6 L min -1  L -1 of air flow and a light intensity of 600 lx Other contents, including crude fat, crude ash, phosphorus, sulfur, sulfur-containing amino acids, sodium chloride, and calcium, were also improved for use as feed. Meantime, some toxic substances, including furfural, hydroxymethylfurfural (5-HMF), acetic acid, phenol, and cresol, which were produced by the pretreatments, could be removed by 12-32, 5-8, 49-53, 7-8, and 7-8%, respectively; and total sugars, glucose, and xylose could be utilized by 68-69, 71-72, and 63-67% respectively. The quality of soy sauce residue is improved for use as feed and some toxic substances can be decreased via the R. rubrum fermentation.

  13. Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.

    Science.gov (United States)

    Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco

    2014-02-01

    The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.

  14. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  15. Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: Application to almond (Prunus dulcis) shell

    International Nuclear Information System (INIS)

    Gong, Dachun; Holtman, Kevin M.; Franqui-Espiet, Diana; Orts, William J.; Zhao, Ruming

    2011-01-01

    An environmentally friendly pretreatment process was developed to fractionate cellulose, hemicellulose and lignin from almond (Prunus dulcis) shells, consisting of hot water pretreatment (HWP) coupled with organic solvent (organosolv) pretreatment of water/ethanol (OWEP). This integrated pretreatment process proved more effective on the basis of yield of fermentable sugar and lignin separation compared with HWP alone, dilute acid pretreatment (DAP), ammonia pretreatment (AP), lime pretreatment LP, organosolv water/ethanol pretreatment (OWEP), and organosolv water/acetone pretreatment (OWAP). In the coupled hot water-organosolv process, hemicellulose sugars were recovered in the first residual liquid while varying amounts of cellulose was retained in the residual solid. The lignin fraction was obtained by simply adjusting the pH from the second liquid. The optimal two-stage process consisted of first HWP stage at 195 o C for 30 min, resulting in w glucose = 95.4% glucose recovery yield and w xylose = 92.2% xylose removal. The second organosolv OWEP stage was operated at 195 o C for 20 min, in ethanol in water mixtures of ethanol = 50% and resulted in nearly w glucose = 100% glucose recovery yield, w xylose = 90% xylose and w lignin = 61% lignin removal. After enzymatic hydrolysis, glucose yield was up to w glucose = 95%, compared to 61% yield from untreated almond. Images obtained via scanning electron microscopy (SEM) highlighted the differences in almond structure from the varying pretreatment methods during biomass fractionation. -- Highlights: → Almond shells are an under-utilized agriculture byproduct available in the world. → Almond shells are particularly attractive as bioenergy feedstock. → We have developed a new fractionation process for the almond shell. → The new process combined the HWP with OWEP. → The fractionation process has potential in the utilization of almond shell.

  16. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPARα deterioration

    International Nuclear Information System (INIS)

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-01-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPARα), suggesting the benefit of PPARα activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPARα agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPARα agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPARα deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NFκB activation. These effects are common to other fibrates and dependent on PPARα function. Interestingly, however, clofibrate pretreatment also exerted PPARα-independent tubular toxicities in PPARα-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPARα-dependent tubular protective effects outweigh their PPARα-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPARα activator that has a steady serum concentration regardless of

  17. Biomass Deconstruction and Pretreatment | Bioenergy | NREL

    Science.gov (United States)

    Deconstruction and Pretreatment Biomass Deconstruction and Pretreatment Our mission is to transform -cyclohexane hydrocarbons were produced by noble metal and acid zeoloite catalytic upgrading of biomass-derived by mechanical refining process. The left side shows biomass feedstock (represented by brown spheres

  18. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A pretreatment method for grain size analysis of red mudstones

    Science.gov (United States)

    Jiang, Zaixing; Liu, Li'an

    2011-11-01

    Traditional sediment disaggregation methods work well for loose mud sediments, but not for tightly cemented mudstones by ferric oxide minerals. In this paper, a new pretreatment method for analyzing the grain size of red mudstones is presented. The experimental samples are Eocene red mudstones from the Dongying Depression, Bohai Bay Basin. The red mudstones are composed mainly of clay minerals, clastic sediments and ferric oxides that make the mudstones red and tightly compacted. The procedure of the method is as follows. Firstly, samples of the red mudstones were crushed into fragments with a diameter of 0.6-0.8 mm in size; secondly, the CBD (citrate-bicarbonate-dithionite) treatment was used to remove ferric oxides so that the cementation of intra-aggregates and inter-aggregates became weakened, and then 5% dilute hydrochloric acid was added to further remove the cements; thirdly, the fragments were further ground with a rubber pestle; lastly, an ultrasonicator was used to disaggregate the samples. After the treatment, the samples could then be used for grain size analysis or for other geological analyses of sedimentary grains. Compared with other pretreatment methods for size analysis of mudstones, this proposed method is more effective and has higher repeatability.

  20. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine

    Science.gov (United States)

    2014-01-01

    Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769

  1. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  2. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  3. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    Science.gov (United States)

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. Georg Thieme Verlag KG Stuttgart · New York.

  4. Complex effect of lignocellulosic biomass pretreatment with 1-butyl-3-methylimidazolium chloride ionic liquid on various aspects of ethanol and fumaric acid production by immobilized cells within SSF.

    Science.gov (United States)

    Dotsenko, Anna S; Dotsenko, Gleb S; Senko, Olga V; Stepanov, Nikolay A; Lyagin, Ilya V; Efremenko, Elena N; Gusakov, Alexander V; Zorov, Ivan N; Rubtsova, Ekaterina A

    2018-02-01

    The pretreatment of softwood and hardwood samples (spruce and hornbeam wood) with 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was undertaken for further simultaneous enzymatic saccharification of renewable non-food lignocellulosic biomass and microbial fermentation of obtained sugars to ethanol and fumaric acid. A multienzyme cocktail based on cellulases and yeast or fungus cells producing ethanol and fumaric acid were the main objects of [Bmim]Cl influence studies. A complex effect of lignocellulosic biomass pretreatment with [Bmim]Cl on various aspects of the process (both action of cellulases and microbial conversion of hydrolysates to target products) was revealed. Positive effects of the pretreatment with [Bmim]Cl included decreasing the lignin content in the biomass, and increasing the effectiveness of enzymatic hydrolysis and microbial transformation of pretreated biomass. Immobilized cells of both yeasts and fungi possessed improved productive characteristics in the biotransformation of biomass pretreated with [Bmim]Cl to ethanol and fumaric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effectiveness of Alkaline Pretreatment and Acetic Acid Hydrolysis on the Characteristics of Collagen from Fish Skin of Snakehead

    Directory of Open Access Journals (Sweden)

    Wulandari Wulandari

    2015-12-01

    Full Text Available Fish skin is one of marine byproducts potential for alternative source of collagen. This studyinvestigated the effectiveness of alkaline and acetic acid pretreatment on the characteristics ofcollagen from skin snakehead fish. The concentrations of alkaline pretreatment were 0.05; 0.1; 0.15and 0.2 M for 2, 4, 6, 8, 10 and 12 hours, acetic acid concentrations were 0.05 M, 0.1 M, 0.15 M and0.2 M for 1 and 2 hours. The experimental design used for alkaline and acetic acid pretreatmentwas factorial completely randomized design. The result showed that the concentration of alkaline0.05 M for 6 hours have significant effect on the elimination of non-collagen protein (p<0.05,whereas for the optimum acetic acid at a concentration 0.1 M for 2 hours significantly differenton solubility and swelling. Extraction yields of collagen was 16%, with characteristics of whiteness66.67%, protein content 96.21%, viscosity 10 cP, Tmax 159.9oC and glass transition temperature78.55oC. The dominant amino acid composition were glycine (27.11%, proline (13.87% andalanine (12.58%. Functional groups collagen from skin snakehead fish has β-sheet structurewhich is a characteristic of collagen.

  6. Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery

    International Nuclear Information System (INIS)

    Motte, Jean-Charles; Sambusiti, Cecilia; Dumas, Claire; Barakat, Abdellatif

    2015-01-01

    Highlights: • A novel combination of solid-state fermentation and fine milling was developed. • Biological pretreatment produces valuable bioproducts (VFA and biohydrogen). • Solid-state dark fermentation improves considerably the milling efficiency. • Bioethanol yield was higher after a strong particle size reduction. • Substrate conversion was two times higher than conventional processes. - Abstract: In the present study, the feasibility of combining dry dark fermentation and mechanical pretreatment of wheat straw was studied in order to improve substrate valorization, save energy input, decrease the environmental impact and diversify biofuels and volatile fatty acids production. To this end, dark fermentation of wheat straw was performed at 55 °C and 35 °C under solid-state conditions (23% of total solid content) and it was considered as a biological pretreatment. Both biologically treated and raw straws were reduced at four particles size to cover the range of fine (50 < X < 500 μm) and ultrafine milling (<50 μm). Biological pretreatment led to a substrate conversion of 16% and 14%, mainly into volatile fatty acids and biohydrogen. Biological pretreatment improved the substrate grindability with a reduction of mean particle size up to 31% and a reduction of the milling specific energy consumption up to 35% compared to untreated straw. Finally, related to untreated straw, this combination of biological and mechanical treatments improved the bioethanol yield up to 83%, which leads to an enhancement of the overall substrate conversion up to 131%. Based on these high yields, this combination of dry biological–mechanical pretreatments appears more attractive and efficient in terms of bioproducts production, energy efficiency and environmental impact, compared to conventional pretreatments

  7. Microwave pretreatment of switchgrass for bioethanol production

    Science.gov (United States)

    Keshwani, Deepak Radhakrishin

    Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment

  8. In vivo synthesized 34S enriched amino acid standards for species specific isotope dilution of proteins

    DEFF Research Database (Denmark)

    Hermann, Gerrit; Moller, Laura Hyrup; Gammelgaard, Bente

    2016-01-01

    (ICP-MS) combined to anion exchange showed that very high concentrated spike material could be produced with [small mu ]mol amounts of proteinogenic sulfur containing amino acids per g cell dry weight. An enrichment of 34S to 96.3 +/- 0.4% (n = 3) and 98.5 +/- 0.4% (n = 3) for cysteic acid...... with the concept of species specific isotope dilution analysis (IDA). The method relies on the determination of the two sulfur containing amino acids, cysteine and methionine by sulfur speciation analysis and is hence applicable to any protein containing sulfur. In vivo synthesis using 34S as sulfur source...... and methionine sulfone, respectively, was assessed. The established IDA method was validated for the absolute quantification of commercially available lysozyme and ceruloplasmin standards including the calculation of a total combined uncertainty budget....

  9. Effects of L-carnitine pretreatment in methamphetamine and 3-nitropropionic acid-induced neurotoxicity.

    Science.gov (United States)

    Binienda, Zbigniew K; Przybyla, Beata D; Robinson, Bonnie L; Salem, Nadia; Virmani, Ashraf; Amato, Antonino; Ali, Syed F

    2006-08-01

    Adult, male Sprague-Dawley rats were injected with 3-ni-tropropionic acid (3-NPA) at 30 mg/kg or methamphetamine (METH) at 20 mg/kg alone or following pretreatment with L-cartnitine (LC) at 100 mg/kg. Rectal temperature was measured before and 4 h following treatment. Animals were sacrificed at 4 h posttreatment. Monoamine neurotransmitters, dopamine (DA) and serotonin (5-HT), and their metabolites were analyzed in the striatum using high-performance liquid chromatography method coupled with electrochemical detection (HPLC/ED). Transcripts of several genes related to DA metabolism were quantified using real time reverse transciption polymerase chain reaction (RT-PCR). Core temperature decreased significantly after 3-NPA acid and increased in METH-treated rats (P protection against METH toxicity.

  10. Topical methotrexate pretreatment enhances the therapeutic effect of topical 5-aminolevulinic acid-mediated photodynamic therapy on hamster buccal pouch precancers

    OpenAIRE

    Deng-Fu Yang; Jeng-Woei Lee; Hsin-Ming Chen; Yih-Chih Hsu

    2014-01-01

    Topical 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is effective for treatment of human oral precancerous lesions. This animal study aimed to assess whether topical methotrexate (MTX) pretreatment could enhance the therapeutic effect of topical ALA-PDT on hamster buccal pouch precancerous lesions. Methods: Twenty hamster buccal pouch precancerous lesions were treated with either topical ALA-PDT with topical MTX pretreatment (topical MTX-ALA-PDT group, n = 10) or topical A...

  11. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    for subsequent enzymatic saccharification of cellulose and hemicellulose, by using the temperate grass Festulolium Hykor. The method was additionally combined with hydrothermal treatment, in order to decrease the required severity of an industrial applied pretreatment method. The first part of the project...... conditions providing the best possible pretreatment effect. The parameters were biomass composition, varied by ensiling of four seasonal cuts of grass, different dry matter (DM) content at ensiling, and an addition of different lactic acid bacteria species. First of all, the study confirmed that ensiling can...... act as a method of pretreatment and improve the enzymatic cellulose convertibility of grass. Furthermore, low DM ensiling was found to improve the effects of pretreatment due to a higher production of organic acids in the silage. The effect of applied lactic acid bacteria species was, however...

  12. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Johansen, Katja S.; Meyer, Anne S.

    2011-01-01

    Background: The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic...... alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin. Conclusions: Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T...... glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments. Results: The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140 degrees...

  13. Biologically Pre-Treated Habitation Waste Water as a Sustainable Green Urine Pre-Treat Solution

    Science.gov (United States)

    Jackson, W. Andrew; Thompson, Bret; Sevanthi, Ritesh; Morse, Audra; Meyer, Caitlin; Callahan, Michael

    2017-01-01

    The ability to recover water from urine and flush water is a critical process to allow long term sustainable human habitation in space or bases on the moon or mars. Organic N present as urea or similar compounds can hydrolyze producing free ammonia. This reaction results in an increase in the pH converting ammonium to ammonia which is volatile and not removed by distillation. The increase in pH will also cause precipitation reactions to occur. In order to prevent this, urine on ISS is combined with a pretreat solution. While use of a pretreatment solution has been successful, there are numerous draw backs including: storage and use of highly hazardous solutions, limitations on water recovery (less than 85%), and production of brine with pore dewatering characteristics. We evaluated the use of biologically treated habitation wastewaters (ISS and early planetary base) to replace the current pretreat solution. We evaluated both amended and un-amended bioreactor effluent. For the amended effluent, we evaluated "green" pretreat chemicals including citric acid and citric acid amended with benzoic acid. We used a mock urine/air separator modeled after the urine collection assembly on ISS. The urine/air separator was challenged continually for >6 months. Depending on the test point, the separator was challenged daily with donated urine and flushed with amended or un-amended reactor effluent. We monitored the pH of the urine, flush solution and residual pH in the urine/air separator after each urine event. We also evaluated solids production and biological growth. Our results support the use of both un-amended and amended bioreactor effluent to maintain the operability of the urine /air separator. The ability to use bioreactor effluent could decrease consumable cost, reduce hazards associated with current pre-treat chemicals, allow other membrane based desalination processes to be utilized, and improve brine characteristics.

  14. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhanced thermophilic fermentative hydrogen production from cassava stillage by chemical pretreatments

    DEFF Research Database (Denmark)

    Wang, Wen; Luo, Gang; Xie, Li

    2013-01-01

    Acid and alkaline pretreatments for enhanced hydrogen production from cassava stillage were investigated in the present study. The result showed that acid pretreatment was suitable for enhancement of soluble carbohydrate while alkaline pretreatment stimulated more soluble total organic carbon...... that the increase of all factors increased the soluble carbohydrate production, whereas hydrogen production was inhibited when the factors exceeded their optimal values. The optimal conditions for hydrogen production were pretreatment temperature 89.5 °C, concentration 1.4% and time 69 min for the highest hydrogen...

  16. pH effect on the enthalpy of dilution and volumetric properties of protocatechuic acid at T = 298.15 K

    International Nuclear Information System (INIS)

    Zheng, Yan; Liu, Min; Wang, Yong; Wang, Chunmei; Sun, Dezhi; Wang, Bingquan

    2014-01-01

    Graphical abstract: The dilution thermal power of PCA in potassium phosphate buffer solutions at different pHs and apparent molar volumes were determined in order to investigate the interactions of PCA with the coexistent spicies. - Highlights: • Enthalpies of dilution and apparent molar volumes of PCA in PBS at different pHs were measured. • Enthalpic interaction coefficients, limiting partial molar volumes and experimental slopes of PCA were determined. • The pH dependence of the weak interactions in the investigated system was obtained. • (Solute + solvent) interactions and structure making/breaking ability of solutes in the given system were discussed. - Abstract: The enthalpies of dilution of protocatechuic acid, a natural anti-cancer substance, in sodium phosphate and potassium phosphate buffer solutions with different pH values were measured by using a mixing-flow microcalorimeter at T = 298.15 K. Densities of the pseudo binary system (phosphate buffer + protocatechuic acid) were also measured with a quartz vibrating-tube densimeter. The enthalpic interaction coefficients (h 2 , h 3 and h 4 ) were computed according to the McMillan–Mayer model. Apparent molar volumes of the system were calculated from the data of densities, which have been used to deduce limiting partial molar volumes (V ϕ 0 ) of protocatechuic acid at different pH values. The aim of the experiments and data process is to investigate the interaction between the molecules of the important drug and that of the drug molecule with coexistent species in aqueous solutions as well as the influences on these interactions of such factors as pH and ion strength. Change trends of the enthalpic pair wise interaction coefficient h 2 and V ϕ 0 of protocatechuic acid with pH increasing in the both phosphate buffer solutions were obtained. The thermodynamic properties, h 2 and V ϕ 0 in potassium phosphate buffer solutions were compared with those in sodium phosphate buffer solutions at

  17. Dilution Confusion: Conventions for Defining a Dilution

    Science.gov (United States)

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  18. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    Science.gov (United States)

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rapid and Precise Measurement of Serum Branched-Chain and Aromatic Amino Acids by Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry

    OpenAIRE

    Yang, Ruiyue; Dong, Jun; Guo, Hanbang; Li, Hongxia; Wang, Shu; Zhao, Haijian; Zhou, Weiyan; Yu, Songlin; Wang, Mo; Chen, Wenxiang

    2013-01-01

    BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs) have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS) method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standar...

  20. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem.

    Science.gov (United States)

    Li, Meng; Wang, Jun; Yang, Yuezhou; Xie, Guanghui

    2016-05-01

    Jerusalem artichoke (JA) has been known as a potential nonfood feedstock for biofuels. Based on systems analysis of total 59 accessions, both soluble sugar and ash could positively affect biomass digestibility after dilute sodium hydroxide pretreatment (A). In this study, one representative accession (HEN-3) was used to illustrate its enzymatic digestibility with pretreatments of ultrasonic-assisted dilute sodium hydroxide (B), alkaline peroxide (C), and ultrasonic-assisted alkaline peroxide (D). Pretreatment D exhibited the highest hexose release rate (79.4%) and total sugar yield (10.4 g/L), which were 2.4 and 2.6 times higher, respectively, than those of the control. The analysis of cellulose crystalline index (CrI), cellulose degree of polymerization (DP), thermal behavior and SEM suggested that alkali-based pretreatments could distinctively extract lignin and pectin polymers, leading to significant alterations of cellulose CrI and DP for high biomass saccharification. Additionally, hydrogen peroxide (H2O2) could significant reduce the generation of fermentation inhibitors during alkali-based pretreatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: A fast growing tree legume.

    Science.gov (United States)

    Mund, Nitesh K; Dash, Debabrata; Barik, Chitta R; Goud, Vaibhav V; Sahoo, Lingaraj; Mishra, Prasannajit; Nayak, Nihar R

    2017-07-01

    Sesbania grandiflora (L.) Pers. is one of the fast growing tree legumes having the efficiency to produce around 50tha -1 above ground dry matters in a year. In this study, biomass of 2years old S. grandiflora was selected for the chemical composition, pretreatments and enzymatic hydrolysis studies. The stem biomass with a wood density of 3.89±0.01gmcm -3 contains about 38% cellulose, 12% hemicellulose and 28% lignin. Enzymatic hydrolysis of pretreated biomass revealed that phosphoric acid (H 3 PO 4 ) pretreated samples even at lower cellulase loadings [1 Filter Paper Units (FPU)], could efficiently convert about 86% glucose, while, even at higher cellulase loadings (60FPU) alkali pretreated biomass could convert only about 58% glucose. The effectiveness of phosphoric acid pretreatment was also supported by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Ding, Lingkan; Lin, Richen; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2013-10-01

    The effects of pre-treatment methods on saccharification and hydrogen fermentation of Chlorella pyrenoidosa biomass were investigated. When raw biomass and biomass pre-treated by steam heating, by microwave heating, and by ultrasonication were used as feedstock, the hydrogen yields were only 8.8-12.7 ml/g total volatile solids (TVS) during dark fermentation. When biomass was pre-treated by steam heating with diluted acid and by microwave heating with diluted acid, the dark hydrogen yields significantly increased to 75.6 ml/g TVS and 83.3 ml/g TVS, respectively. Steam heating with diluted acid is the preferred pre-treatment method of C. pyrenoidosa biomass to improve hydrogen yield during dark fermentation and photofermentation, which is followed by methanogenesis to increase energy conversion efficiency (ECE). A total hydrogen yield of 198.3 ml/g TVS and a methane yield of 186.2 ml/g TVS corresponding to an overall ECE of 34.0% were obtained through the three-stage process (dark fermentation, photofermentation, and methanogenesis). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A comparative evaluation of a dipicolinic acid based dilute chemical decontaminant formulation with respect to its efficacy for dissolution of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kamal Kishore; Dey, G.R.; Naik, D.B.; Moorthy, P.N. [Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India)

    1998-12-31

    A dilute chemical decontamination formulation containing dipicolinic acid (2,6-pyridine dicarboxylic acid PDCA) and ascorbic acid (AA) has been found to be effective in dissolving magnetite, nickel ferrite and haemetite. Its main advantages arise because of (i) good solubility of the two constituents (ii) lack of absorption on the cation exchanger from acidic media during regenerative decontamination process (iii) stability to ionizing radiation and (iv) low corrosion rate for carbon steel. Dissolution rates of iron oxides in this formulation are as good as or better than in other well known formulations. (author)

  4. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.

    2015-01-01

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  5. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Biological Systems Engineering, Washington State University, Pullman 99164-6120, WA (United States); Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. - Highlights: • Pre-treatments reduce ash, extractives, alkalines and hemicellulose from biomass. • Torrefaction of Douglas fir yields more solid product than hybrid poplar. • Salt pretreatment significantly increases the activation energy of biomass. • Acid and salt pretreatment bestows thermal stability in biomass.

  6. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2011-01-01

    The objective is to evaluate the effect of oxalic acid (OA) and steam-pretreatment on the primary performance of rice straw particleboards. In addition, the effect of various treatment conditions on carbohydrates released from rice straw particles was investigated. The results show that steam- and short durations of OA-treatment significantly improved the mechanical...

  7. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process.

    Science.gov (United States)

    Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-01-01

    To solve the pollution problem of extraction wastewater in citric acid production, an integrated citric acid-methane production process was proposed. Extraction wastewater was treated through anaerobic digestion and the anaerobic digestion effluent (ADE) was recycled for the next batch of citric acid fermentation, thus eliminating wastewater discharge and reducing water consumption. Excessive Na(+) contained in ADE could significantly inhibit citric acid fermentation in recycling and was removed by electrodialysis in this paper. Electrodialysis performance was improved after pretreatment of ADE with air stripping and activated carbon adsorption to remove precipitable metal ions and pigments. Moreover, the concentrate water was recycled and mixed with feed to improve the water recovery rate above 95% in electrodialysis treatment, while the dilute water was collected for citric acid fermentation. The removal rate of Na(+) in ADE was above 95% and the citric acid production was even higher than that with tap water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Volumetric properties of ascorbic acid (vitamin C) and thiamine hydrochloride (vitamin B1) in dilute HCl and in aqueous NaCl solutions at (283.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K

    International Nuclear Information System (INIS)

    Ayranci, Guler; Sahin, Melike; Ayranci, Erol

    2007-01-01

    Apparent molar volumes and apparent molar isentropic compressibilities of ascorbic acid (vitamin C) and thiamine hydrochloride (vitamin B 1 ) were determined from accurately measured density and sound velocity data in water and in aqueous NaCl solutions at (283.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K. These volume and compressibility data were extrapolated to zero concentration using suitable empirical or theoretical equations to determine the corresponding infinite dilution values. Apparent molar expansibilities at infinite dilution were determined from slopes of apparent molar volume vs. temperature plots. Ionization of both ascorbic acid and thiamine hydrochloride were suppressed using sufficiently acidic solutions. Apparent molar volumes at infinite dilution for ascorbic acid and thiamine hydrochloride were found to increase with temperature in acidic solutions and in the presence of co-solute, NaCl. Apparent molar expansibility at infinite dilution were found to be constant over the temperature range studied and were all positive, indicating the hydrophilic character of the two vitamins studied in water and in the presence of co-solute, NaCl. Apparent molar isentropic compressibilities of ascorbic acid at infinite dilution were positive in water and in the presence of co-solute, NaCl, at low molalities. Those of thiamine hydrochloride at infinitive dilution were all negative, consistent with its ionic nature. Transfer apparent molar volumes of vitamins at infinite dilution from water solutions to NaCl solutions at various temperatures were determined. The results were interpreted in terms of complex vitamin-water-co-solute (NaCl) interactions

  9. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  10. 3-D Topo Surface Visualization of Acid-Base Species Distributions: Corner Buttes, Corner Pits, Curving Ridge Crests, and Dilution Plains

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul

    2017-01-01

    Species TOPOS is a free software package for generating three-dimensional (3-D) topographic surfaces ("topos") for acid-base equilibrium studies. This upgrade adds 3-D species distribution topos to earlier surfaces that showed pH and buffer capacity behavior during titration and dilution procedures. It constructs topos by plotting…

  11. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Jerico Alcantara

    2017-06-01

    Full Text Available Conventional bio-based succinic acid production involves anaerobic bacterial fermentation of pure sugars. This study explored a new route for directly producing succinic acid from minimally-pretreated lignocellulosic biomass via a consolidated bioprocessing technology employing a mixed lignocellulolytic and acidogenic fungal co-culture. The process involved a solid-state pre-fermentation stage followed by a two-phase slurry fermentation stage. During the solid-state pre-fermentation stage, Aspergillus niger and Trichoderma reesei were co-cultured in a nitrogen-rich substrate (e.g., soybean hull to induce cellulolytic enzyme activity. The ligninolytic fungus Phanerochaete chrysosporium was grown separately on carbon-rich birch wood chips to induce ligninolytic enzymes, rendering the biomass more susceptible to cellulase attack. The solid-state pre-cultures were then combined in a slurry fermentation culture to achieve simultaneous enzymatic cellulolysis and succinic acid production. This approach generated succinic acid at maximum titers of 32.43 g/L after 72 h of batch slurry fermentation (~10 g/L production, and 61.12 g/L after 36 h of addition of fresh birch wood chips at the onset of the slurry fermentation stage (~26 g/L production. Based on this result, this approach is a promising alternative to current bacterial succinic acid production due to its minimal substrate pretreatment requirements, which could reduce production costs.

  12. Use of chemical pre-treatment based chromic acid; Uso de pre-tratamento quimico a base de acido cromico. Beneficios versus desvantagens

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Paulo Henrique Leite [TENARIS CONFAB S.A., Pindamonhangaba, SP (Brazil); Bibiano, Paulo de Tarso [SOCO-RIL do Brasil S.A., Pindamonhangaba, SP (Brazil); Koebsch, Andre; Mollica, Eduardo de Oliveira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In this work were going compared the polyethylene and FBE coatings performances in triple layer for tubes done with and without the presence of the pre-treatment chemist with chromic acid of the tube surface. The performance test chosen for accomplishes the comparison was the cathodic disbondment and hot water soak, for being this the test that has objective to improve the performance with the chromic acid application. The obtained results were going extracted of a factory database of TENARIS CONFAB S.A. in Pindamonhangaba - Sao Paulo. The adopted technical specification like reference for the tried coatings belonged to PETROBRAS S.A. Were compared also tests results of jobs using chromate and jobs that were not used pre-treatment. (author)

  13. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  14. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment.

    Science.gov (United States)

    Wang, Dongbo; Shuai, Kun; Xu, Qiuxiang; Liu, Xuran; Li, Yifu; Liu, Yiwen; Wang, Qilin; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2018-08-01

    This study reported a new low-cost and high-efficient combined method of CaO 2  + free ammonia (FA) pretreatment for sludge anaerobic fermentation. Experimental results showed that the optimal short-chain fatty acids (SCFA) yield of 338.6 mg COD/g VSS was achieved when waste activated sludge (WAS) was pretreated with 0.05 g/g VSS of CaO 2  + 180 mg/L of FA for 3 d, which was 2.5-fold of that from CaO 2 pretreatment and 1.5-fold of that from FA pretreatment. The mechanism investigations exhibited that the CaO 2  + FA could provided more biodegradable substrates, this combination accelerated the disintegration of sludge cells, which thereby providing more organics for subsequent SCFA production. It was also found that the combination of CaO 2 and FA inhibited the specific activities of hydrolytic microbes, SCFA producers, and methanogens to some extents, but its inhibition to methanogens was much severer than that to the other two types of microbes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Digestibility of Betung Bamboo Fiber Following Fungal Pretreatment

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2014-10-01

    Full Text Available This research evaluated the effect of fungal pretreatment of betung bamboo fibers and enzymatic- and microwave-assisted hydrolysis on the reducing sugar yield. The enzymatic hydrolysis of the pretreated biomass was carried out with cellulase and 10 and 20 FPU/g of substrate in a shaking incubator at 50 °C and 150 rpm for 48 h. The sulfuric acid concentration used in the microwave-assisted acid hydrolysis was 1.0, 2.5, and 5%, either with or without the addition of activated carbon. Microwave irradiation (330 Watt was applied for 5–12.5 min. The yield of reducing sugar was better with the microwave-assisted acid hydrolysis, and the yield tended to increase with an increase in the irradiation time. Based on the dry weight of the initial biomass (bamboo, pretreatment with 5% inoculum loading resulted in a higher reducing sugar yield (17.06% than with 10% inoculum loading (14.54%. At a 1% acid concentration, the formation of brown compounds decreased, followed by a reduction in the reducing sugar yield. The addition of activated carbon at a 1% acid concentration seemed to be of no benefit with respect to the yield in the microwave-assisted acid hydrolysis. The pretreatment with the 5% inoculum loading for 12.5 min at 1% acid concentration resulted in the highest reducing sugar yield. Under these conditions, the yield was 6.3-fold that of the reducing sugar yield using 20 FPU/g of cellulase. The rate of bamboo hollocellulose hydrolysis reached 22.75% of the maximum theoretical reducing sugar reducing sugar of dry biomass.

  16. Formic acid hydrolysis/liquid chromatography isotope dilution mass spectrometry: An accurate method for large DNA quantification.

    Science.gov (United States)

    Shibayama, Sachie; Fujii, Shin-Ichiro; Inagaki, Kazumi; Yamazaki, Taichi; Takatsu, Akiko

    2016-10-14

    Liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) with formic acid hydrolysis was established for the accurate quantification of λDNA. The over-decomposition of nucleobases in formic acid hydrolysis was restricted by optimizing the reaction temperature and the reaction time, and accurately corrected by using deoxynucleotides (dNMPs) and isotope-labeled dNMPs as the calibrator and the internal standard, respectively. The present method could quantify λDNA with an expanded uncertainty of 4.6% using 10fmol of λDNA. The analytical results obtained with the present method were validated by comparing with the results of phosphate-base quantification by inductively coupled plasma-mass spectrometry (ICP-MS). The results showed good agreement with each other. We conclude that the formic acid hydrolysis/LC-IDMS method can quantify λDNA accurately and is promising as the primary method for the certification of DNA as reference material. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay

    International Nuclear Information System (INIS)

    Krishania, M.; Vijay, V.K.; Chandra, R.

    2013-01-01

    Lignocellulosic biomass contains high percentages of lignin, which is hard to biodegrade and therefore, pretreatment is required to enhance energy recovery yield. In this study, five types of pretreatments, i.e., dilute acid, alkali, acid–alkali combination and calcium hydroxide–sodium carbonate combination, and grinding were applied on wheat straw to enhance the efficiency of methane fermentation. Methane fermentation of untreated and pretreated substrates was evaluated at 35 °C temperature in 5 L glass bottle reactors. Cumulative CH 4 yields of these pretreated substrates were found as 0.125 ± 0.002, 0.370 ± 0.02, 0.003 ± 0.005, 0.380 ± 0.017 and 0.241 ± 0.005 m 3 /kg of VS (volatile solids), respectively for, T1, T2, T3, T4 and T5 treatments compared to that of untreated treatment T0 as 0.191 ± 0.004 m 3 /kg of VS. Alkali (2% NaOH on weight/volume ratio basis) and calcium hydroxide–sodium carbonate combination (3% Ca(OH) 2 + 3% Na 2 CO 3 on weight/volume ratio basis) pretreatments have been found to improve biogas and CH 4 production yields by 94.0% and 99.0%, respectively, in comparison to the untreated wheat straw substrate. Gompertz model used to analyze the kinetic behavior of anaerobic digestion process in present study. Kinetic study indicates that Gompertz equation best describe the cumulative gas production as a function of the digestion time. - Highlights: • H 2 SO 4 , NaOH, H 2 SO 4 + NaOH, Ca(OH) 2 + Na 2 CO 3 , grinding pretreatments were studied on wheat straw. • Wheat straw co-digestion with cattle manure in 40:60 ratio provided maximum methane yield. • 2% NaOH pretreated substrate found to increase biogas and CH 4 production yields by 94.0%. • 3% Ca(OH) 2 + 3% Na 2 CO 3 pretreatment found to improve biogas and CH 4 production yields by 99.0%

  18. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, P.; Bakker, R. [Wageningen University and Research centre WUR, Food and Biobased Research WUR-FBR, Wageningen (Netherlands); Huijgen, W.J.J. [ECN Biomass, Coal and Environment, Petten (Netherlands); Bermudez Lopez, L. [Abengoa Bioenergia Nuevas Tecnologias ABNT (Spain)

    2010-09-15

    This literature review was performed within the BioSynergy project (2007-2010). BioSynergy is a European Integrated Project supported through the Sixth Framework Programme for Research and Technological Development (038994-SES6). BioSynergy stands for 'BIOmass for the market competitive and environmentally friendly SYNthesis of bio-products together with the production of secondary enERGY carriers through the biorefinery approach'. Within the BioSynergy project the overall goal of the pretreatment routes being developed is to convert raw lignocellulosic biomass into its composing sugars and lignin in a market competitive and environmentally sustainable way. This report reviews lignocellulose pretreatment in general as well as specific pretreatment technologies that are developed within the BioSynergy project including steam explosion (ABNT), mechanical/alkaline fractionation (WUR) and organosolv fractionation (ECN). In addition to these pretreatment technologies, other pretreatment technologies are studied within the BioSynergy project such as acetic/formic acid pretreatment and mild- and strong acid pretreatment.

  19. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVE HIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    International Nuclear Information System (INIS)

    Ketusky, E

    2008-01-01

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned

  20. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  1. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongyan [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Wang, Guangce [Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan District, Qingdao 266071, Shandong (China); College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China); Zhu, Daling; Pan, Guanghua [College of Marine Science and Engineering, University of Science and Technology, Tianjin 300457 (China)

    2009-12-15

    To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 {+-} 0.07 mol H{sub 2}/mol glucose (mean {+-} S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 {+-} 0.03 mol H{sub 2}/mol glucose, 0.17 {+-} 0.01 mol H{sub 2}/mol glucose, 0.11 {+-} 0.01 mol H{sub 2}/mol glucose and 0.20 {+-} 0.04 mol H{sub 2}/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp. However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (author)

  2. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    Science.gov (United States)

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  3. Innovative pretreatment strategies for biogas production.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Chandolias, Konstantinos; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    Biogas or biomethane is traditionally produced via anaerobic digestion, or recently by thermochemical or a combination of thermochemical and biological processes via syngas (CO and H 2 ) fermentation. However, many of the feedstocks have recalcitrant structure and are difficult to digest (e.g., lignocelluloses or keratins), or they have toxic compounds (such as fruit flavors or high ammonia content), or not digestible at all (e.g., plastics). To overcome these challenges, innovative strategies for enhanced and economically favorable biogas production were proposed in this review. The strategies considered are commonly known physical pretreatment, rapid decompression, autohydrolysis, acid- or alkali pretreatments, solvents (e.g. for lignin or cellulose) pretreatments or leaching, supercritical, oxidative or biological pretreatments, as well as combined gasification and fermentation, integrated biogas production and pretreatment, innovative biogas digester design, co-digestion, and bio-augmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals

    Directory of Open Access Journals (Sweden)

    M.G. Mithra

    2017-08-01

    Full Text Available Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS during 24–120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose along with half dose each of xylanase (1.5 mg protein/g hemicelluloses and Stargen (12.5 μl/g biomass was used to saccharify conventional dilute sulphuric acid (DSA pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3–4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing

  5. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  6. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  7. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  8. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations

    Directory of Open Access Journals (Sweden)

    Walton Jonathan D

    2010-10-01

    Full Text Available Abstract Background Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]. A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP at the same protein loadings. Results When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3 and a lower proportion of endo-β1,4-glucanase (EG1 compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase,

  9. Effect of pretreatment on purple-fleshed sweet potato flour for cake making

    Science.gov (United States)

    Hutasoit, M. S.; Julianti, E.; Lubis, Z.

    2018-02-01

    The purple-fleshed sweet-potato (PFSP) flour was produced by varying pretreatment of washed chips: dipping in 0.5 and 1.0% (w/v) citric acid solution for 30 min, dipping in 0.5 and 1.0% (w/v) citric acid solution for 30 min and followed by steam blanching for 5 min. The pretreatment effect on cake quality was investigated. The results showed that PFSP flour produced from pretreatment with dipping in 0.5% citric acid for 30 min followed by steam blanching for 5 min had higher lightness (L*) value and lower browning index, higher hedonic value of color and aroma and baking expansion. The specific volume of cake from pretreated flour, untreated flour and wheat flour were 44.87, 43.83, and 50.43cm3/g, respectively. The sensory evaluation of cake indicated that cake from pretreated PFSP flour was acceptable compare to those of cake from wheat flour.

  10. Biosorption of heavy metals by pretreated biomass of aspergillus niger

    International Nuclear Information System (INIS)

    Javaid, A.; Bajwa, R.; Manzoor, T.

    2011-01-01

    The present study reports the bio sorption potential of chemically pretreated mycelial biomass of fungus Aspergillus niger van. Tieghem for Cu(II) and Ni(II) ions from aqueous phase. Fungal biomass was pretreated with different types of alkaline/salts (NaOH, NaHCO/sub 3/, Na/sub 2/CO/sub 3/, NaCl and CaCl/sub 2/), acids (HCl and H/sub 2/SO/sub 4/) and detergent. Pretreatment of biomass with Na/sub 2/CO/sub 3/ and NaOH were proved to increase or maintain adsorption efficiency and capacity in comparison to untreated biomass. Pretreatment with NaHCO/sub 3/, detergent, NaCl and CaCl/sub 2/ significantly reduce (10-40%) metal sequestering efficiency of the adsorbent. Whereas, acid treatments resulted in drastic loss (80%) in metal uptake efficiency of the biomass. Amongst various pretreatments, Na/sub 2/CO/sub 3/ could be use efficiently for the removal of Ni(II) and Cu(II) ions from aqueous solution using A. niger. (author)

  11. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P < 0.05) by SFCU and followed by HT. Values of the Michaelis-Menten constant (K M ) of SFCU and HT were 0.0212 and 0.0250, respectively. HT and SFCU increased (P < 0.05) the reaction rate constant (k) by 38.64 and 90.91%, respectively at 298 K. k values decreased with increasing temperature. The initial activation energy (46.39 kJ mol -1 ) reduced (P < 0.05) by HT (39.66 kJ mol -1 ) and further by SFCU (33.42 kJ mol -1 ). SFCU-pretreated NaCas hydrolysates had the highest contents of hydrophobic, aromatic, positively and negatively charged amino acids. Medium-sized peptides (5000-1000 Da) are higher in SFCU (78.11%) than HT and the control. SFCU induced molecular unfolding of NaCas proteins. Accordingly, SFCU-pretreated NaCas hydrolysate exhibited the highest scavenging activity on DPPH and hydroxyl radicals, reducing power, and iron chelating ability. SFCU pretreatment would be a useful tool for production of bioactive peptides from NaCas hydrolysate. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Ultrasonic pretreatment of woodchips for the conversion of cellulose to glucose for bioethanol production

    International Nuclear Information System (INIS)

    Tutun Nugraha; Rettyana Ayuputri; Mohammad Ihsan

    2010-01-01

    In this study, lignocellulosic biomass i.e. the woodchips of Albacia tree (Paraserianthes falcataria) were given different pretreatment methods, i.e. chemical (acid) and physical (ultrasonic). The pretreatment was given in order to convert the cellulose to glucose for the production of bioethanol. 1 % H_2SO_4 was applied for the acid pretreatment. Ultrasound pretreatment was carried out at varied time (10, 20 and 30 minutes) at 600 W, 20 khz before or after the acid pretreatment. Enzymatic attack of the pretreated sample was also applied to enhance the saccharification process of cellulose. The objective of the research was to determine the most effective ultrasonic duration and the best combination of method for enzymatic hydrolysis of the woodchips. The data showed that the highest yield of glucose was achieved at 20 minutes ultrasonic time. It was also found that substantial amount of hydrolysis of cellulose to glucose occur during the ultrasonic stage even without the presence of acid or cellulose enzyme. It is likely that the highly energetic ultrasonic process alone could assist in enhancing rate of hydrolysis of lignocellulosic cellulose into glucose. (author)

  13. Gluconeogenesis from labeled carbon: estimating isotope dilution

    International Nuclear Information System (INIS)

    Kelleher, J.K.

    1986-01-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA

  14. Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin

    Science.gov (United States)

    Haifeng Zhou; Hongming Lou; Dongjie Yang; J.Y. Zhu; Xueqing Qiu

    2013-01-01

    This study conducted an investigation of the effect of lignosulfonate (LS) on enzymatic saccharification of lignocelluloses. Two commercial LSs and one laboratory sulfonated kraft lignin were applied to Whatman paper, dilute acid and SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses) pretreated aspen, and kraft alkaline and SPORL pretreated...

  15. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes.

    Science.gov (United States)

    Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati

    2011-07-01

    Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.

  16. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    Science.gov (United States)

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    Directory of Open Access Journals (Sweden)

    Lingli Deng

    Full Text Available Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.. The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase ( 45% water along the dilution line.

  18. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    Science.gov (United States)

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (pbiogas and methane compared with the untreated one (control reactor). The

  19. Production of fuel ethanol from steam-explosion pretreated olive tree pruning

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal Cara; Encarnacion Ruiz; Mercedes Ballesteros; Paloma Manzanares; Ma Jose Negro; Eulogio Castro [University of Jaen, Jaen (Spain). Department of Chemical, Environmental and Materials Engineering

    2008-05-15

    This work deals with the production of fuel ethanol from olive tree pruning. This raw material is a renewable, low cost, largely available, and lacking of economic alternatives agricultural residue. Olive tree pruning was submitted to steam explosion pre-treatment in the temperature range 190-240{sup o}C, with or without previous impregnation by water or sulphuric acid solutions. The influence of both pre-treatment temperature and impregnation conditions on sugar and ethanol yields was investigated by enzymatic hydrolysis and simultaneous saccharification and fermentation on the pretreated solids. Results show that the maximum ethanol yield (7.2 g ethanol/100 g raw material) is obtained from water impregnated, steam pretreated residue at 240{sup o}C. Nevertheless if all sugars solubilized during pre-treatment are taken into account, up to 15.9 g ethanol/100 g raw material may be obtained (pre-treatment conditions: 230{sup o}C and impregnation with 1% w/w sulphuric acid concentration), assuming theoretical conversion of these sugars to ethanol. 29 refs., 2 figs., 5 tabs.

  20. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Feng-Qin; Xie, Hui; Chen, Wei; Wang, En-Tao; Du, Feng-Guang; Song, An-Dong

    2013-09-01

    Aiming at increasing the efficiency of transferring corn stover into sugars, a biological pretreatment was developed and investigated in this study. The protocol was characterized by the pretreatment with crude ligninolytic enzymes from Phanerochete chrysosporium and Coridus versicolor to break the lignin structure in corn stover, followed by a washing procedure to eliminate the inhibition of ligninolytic enzyme on cellulase. By a 2 d-pretreatment, sugar yield from corn stover hydrolysis could be increased by 50.2% (up to 323 mg/g) compared with that of the control. X-ray diffractometry and FT-IR analysis revealed that biological pretreatment could partially remove the lignin of corn stover, and consequently enhance the enzymatic hydrolysis efficiency of cellulose and hemeicellulose. In addition, the amount of microbial inhibitors, such as acetic acid and furfural, were much lower in biological pretreatment than that in acid pretreatment. This study provided a promising pretreatment method for biotransformation of corn stovers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Direct determination of mercury in cosmetic samples by isotope dilution inductively coupled plasma mass spectrometry after dissolution with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ying; Shi, Zeming; Zong, Qinxia; Wu, Peng; Su, Jing [Sichuan Provincial Key Laboratory of Nuclear Technology in Geology, College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Liu, Rui, E-mail: liur.ray@gmail.com [Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •Simple, sensitive, and accurate method is established for mercury determination in cosmetics. •The sample preparation procedure is highly simplified. •Isotope dilution efficiently eliminates matrix effect. •First report of using formic acid based method in combination with PVG-ID-ICP MS for mercury quantitation in cosmetics. -- Abstract: A new method was proposed for the accurate determination of mercury in cosmetic samples based on isotopic dilution (ID)-photochemical vapor generation (PVG)-inductively coupled plasma mass spectrometry (ICP MS) measurement. Cosmetic samples were directly dissolved in formic acid solution and subsequently subjected to PVG for the reduction of mercury into vapor species following by ICP MS detection. Therefore, the risks of analyte contamination and loss were avoided. Highly enriched {sup 201}Hg isotopic spike is added to cosmetics and the isotope ratios of {sup 201}Hg/{sup 202}Hg were measured for the quantitation of mercury. With ID calibration, the influences originating from sample matrixes for the determination of mercury in cosmetic samples have been efficiently eliminated. The effects of several experimental parameters, such as the concentration of the formic acid, and the flow rates of carrier gas and sample were investigated. The method provided good reproducibility and the detection limits were found to be 0.6 pg mL{sup −1}. Finally, the developed method was successfully applied for the determination of mercury in six cosmetic samples and a spike test was performed to verify the accuracy of the method.

  2. Determination of acoustic fields in acidic suspensions of peanut shell during pretreatment with high-intensity ultrasound

    Directory of Open Access Journals (Sweden)

    Tiago Carregari Polachini

    Full Text Available Abstract The benefits of high-intensity ultrasound in diverse processes have stimulated many studies based on biomass pretreatment. In order to improve processes involving ultrasound, a calorimetric method has been widely used to measure the real power absorbed by the material as well as the cavitation effects. Peanut shells, a byproduct of peanut processing, were immersed in acidified aqueous solutions and submitted to an ultrasonic field. Acoustic power absorbed, acoustic intensity and power yield were obtained through specific heat determination and experimental data were modeled in different conditions. Specific heat values ranged from 3537.0 to 4190.6 J·kg-1·K-1, with lower values encountered for more concentrated biomass suspensions. The acoustic power transmitted and acoustic intensity varied linearly with the applied power and quadratically with solids concentration, reaching maximum values at higher applied nominal power and for less concentrated suspensions. A power yield of 82.7% was reached for dilute suspensions at 320 W, while 6.4% efficiency was observed for a concentrated suspension at low input energy (80 W.

  3. pH-Induced Lignin Surface Modification to Reduce Nonspecific Cellulase Binding and Enhance Enzymatic Saccharification of Lignocelluloses

    Science.gov (United States)

    Hongming Lou; J.Y. Zhu; Tian Qing Lan; Huranran Lai; Xueqing Qiu

    2013-01-01

    We studied the mechanism of the significant enhancement in the enzymatic saccharification of lignocelluloses at an elevated pH of 5.5–6.0. Four lignin residues with different sulfonic acid contents were isolated from enzymatic hydrolysis of lodgepole pine pretreated by either dilute acid (DA) or sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL...

  4. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  5. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  6. Impact of Acid Cleaning on the Performance of PVDF UF Membranes in Seawater Reverse Osmosis Pretreatment

    KAUST Repository

    Alsogair, Safiya

    2016-05-05

    Low-pressure membrane systems such as Microfiltration (MF) and Ultrafiltration (UF) have been presented as viable option to pre-treatment systems in potable water applications. UF membranes are sporadically backwashed with ultra-filtered water to remove deposited matter from the membrane and restore it. Several factors that may cause permeability and selectivity decrease are involved and numerous procedures are applicable to achieve this objective. Membrane cleaning is the most important step required to maintain the characteristics of the membrane. This research was made with the purpose of investigating the effects of acid cleaning during chemically enhanced backwashing (CEB) on the performance of ultrafiltration (UF) membranes in seawater reverse osmosis (SWRO) pretreatment. To accomplish this, the questions made were: Does the acid addition (before or after the alkali CEB) influence the overall CEB cleaning effectiveness on Dow UF membrane? Does the CEB order of alkali (NaOCl) and acid (H2SO4) affect the overall CEB cleaning effectiveness? If yes, which order is better/worse? What is the optimal acid CEB frequency that will ensure the most reliable performance of the UF?. To answer this queries, a series of sequences were carried out with different types of chemical treatments: Only NaOCl, daily NaOCl plus weekly acid, daily NaOCl plus daily acid, and weekly acid plus daily NaOCl. To investigate the consequence of acid by studying the effect of operational data like the trans-pressure membrane, resistance or permeability and support that by the analytical experiments (organic, inorganic and microbial characterization). Microorganisms were removed almost completely at hydraulic cleaning and showed no difference with addition of acid. As a conclusion of the operational data the organic and inorganic chatacterization resulted in the elimination of the first sequence due to the acummulation of fouling over time, which produces that the cleaning increases downtime

  7. Size effects on acid bisulfite pretreatment efficiency: multiple product yields in spent liquor and enzymatic digestibility of pretreated solids

    Science.gov (United States)

    Yalan Liu; Jinwu Wang; Michael P. Wolcott

    2017-01-01

    Currently, feedstock size effects on chemical pretreatment performance were not clear due to the complexity of the pretreatment process and multiple evaluation standards such as the sugar recovery in spent liquor or enzymatic digestibility. In this study, we evaluated the size effects by various ways: the sugar recovery and coproduct yields in spent liquor, the...

  8. Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kotay, Shireen Meher; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur (India)

    2009-09-15

    The present study summarizes the observations on various nutrient and seed formulation methods using sewage sludge that have been aimed at ameliorating the biohydrogen production potential. Pretreatment methods viz., acid/base treatment, heat treatment, sterilization, freezing-thawing, microwave, ultrasonication and chemical supplementation were attempted on sludge. It was observed that pretreatment was essential not only to reduce the needless, competitive microbial load but also to improve the nutrient solublization of sludge. Heat treatment at 121 C for 20 min was found to be most effective in reducing the microbial load by 98% and hydrolyzing the organic fraction of sludge. However, this pretreatment alone was either not sufficient or inconsistent in developing a suitable microbial consortium for hydrogen production. Hydrogen yield was found to improve 1.5-4 times upon inoculation with H{sub 2}-producing microorganisms. A defined microbial consortium was developed consisting of three established bacteria viz., Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. Following pretreatments soluble proteins and lipids (the major component of the sludge) were also found to be consumed besides carbohydrates. This laid out the concurrent proteolytic/lipolytic ability of the developed H{sub 2}-producing consortium. 1:1:1 v/v ratio of these bacteria in consortium was found to give the maximum yield of H{sub 2} from sludge, 39.15 ml H{sub 2}/g COD{sub reduced}. 15%v/v dilution and supplementation with 0.5%w/v cane molasses prior to heat treatment was found to further improve the yield to 41.23 ml H{sub 2}/g COD{sub reduced}. (author)

  9. An improved technology for decontaminating ruthenium in uranium purification cycle by hydroxylamine pretreatment

    International Nuclear Information System (INIS)

    Qi Zhanshun; Zhu Zhixuan; Zhang Pilu

    1996-01-01

    The Influences of hydroxylamine concentration, pretreatment time, acidity and the concentration of stabilizer have been studied, and the best pretreatment condition for the improvement of Ru decontamination in uranium purification cycle by hydroxylamine pretreatment has been obtained. The results show that no satisfactory result can be obtained by solely using hydroxylamine as pretreatment agent unless a small amount of hydrazine is added into the pretreatment system as stabilizer

  10. Comparative study of sulfite pretreatments for robust enzymatic saccharification of corn cob residue

    Directory of Open Access Journals (Sweden)

    Bu Lingxi

    2012-12-01

    Full Text Available Abstract Background Corn cob residue (CCR is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations. Results It was found that the lignin in the CCR (43.2% had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample among the saccharification samples, which was over 10% higher than that of the raw material (70.6%. More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g and weak acid groups (1.85 mmol/g in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments. Conclusions It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield.

  11. Effect of Pre-treatment method on the Hydrolysis of Corn cob and Sawdust

    Directory of Open Access Journals (Sweden)

    Olawole Ogirima Olanipekun

    2016-12-01

    Full Text Available Efficient pre-treatment has been found to be crucial step before enzymatic hydrolysis of cellulose into fuels or chemicals. As a result various pretreatment methods have been developed to facilitate these bio-conversion processes, and this research focuses on the effect of two pretreatment methods such as liquid hot water and sulphuric acid pre-treatment to remove some of the components like lignin and hemicellulose which form structural barrier to enzymatic accessibility of cellulose in corn cobs and sawdust. The cellulosic materials were first dried in oven at 65 oC for 24 hours,  and using   solid to liquid ratio of 1:10, the two methods were carried out at resident times ranging from 10 - 40 minutes. The liquid hot water method involved heating the cellulosic materials in water at 120 oC and 1atmosphere in a pressure vessel, and for the second method, the dried cellulosic materials were refluxed in 5 % sulphuric acid at a temperature of 120 oC. Pretreated samples were filtered and liquid fractions were analyzed for the presence of reducing sugars, while solid residues were dried in the oven and weighed to measure the mass lost during pretreatment as a pointer to lignin breakdown. It was observed that the mass lost increased with time for both pretreatment methods, but the liquid hot water pretreatment gave higher lignin and hemicellulose removal when compared to the sulphuric acid pre-treatment. The pretreated materials were hydrolyzed with two combinations of commercial enzymes namely cellulase/ hemicellulase and cellulase/β glucosidase. The reducing sugar was measured using Dinitrosalycilic acid (DNSA method and the sugar yields from corn cobs were higher than that of sawdust when subjected to similar process conditions, and the enzyme combination of cellulase/glucosidase gave higher yields of reducing sugars.  A model equation which describes the hydrolysis process was developed from first principles and the experimental data

  12. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    Science.gov (United States)

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: evaluating the pretreatment flexibility on feedstocks and particle sizes.

    Science.gov (United States)

    Wang, Qing; Wang, Zhanghong; Shen, Fei; Hu, Jinguang; Sun, Fubao; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2014-08-01

    In order to seek a high-efficient pretreatment path for converting lignocellulosic feedstocks to fermentable sugars by enzymatic hydrolysis, the concentrated H₃PO₄ plus H₂O₂ (PHP) was attempted to pretreat different lignocellulosic biomass for evaluating the pretreatment flexibility on feedstocks. Meanwhile, the responses of pretreatment to particle sizes were also evaluated. When the PHP-pretreatment was employed (final H₂O₂ and H₃PO₄ concentration of 1.77% and 80.0%), 71-96% lignin and more than 95% hemicellulose in various feedstocks (agricultural residues, hardwood, softwood, bamboo, and their mixture, and garden wastes mixture) can be removed. Consequently, more than 90% glucose conversion was uniformly achieved indicating PHP greatly improved the pretreatment flexibility to different feedstocks. Moreover, when wheat straw and oak chips were PHP-pretreated with different sizes, the average glucose conversion reached 94.9% and 100% with lower coefficient of variation (7.9% and 0.0%), which implied PHP-pretreatment can significantly weaken the negative effects of feedstock sizes on subsequent conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Production of brown algae pyrolysis oils for liquid biofuels depending on the chemical pretreatment methods

    International Nuclear Information System (INIS)

    Choi, Joonhyuk; Choi, Jae-Wook; Suh, Dong Jin; Ha, Jeong-Myeong; Hwang, Ji Won; Jung, Hyun Wook; Lee, Kwan-Young; Woo, Hee-Chul

    2014-01-01

    Highlights: • Pyrolysis of Saccharina japonica, brown algae to produce hydrocarbons. • Sulfuric acid pretreatment of macroalgae to remove inorganic elements. • CaCl 2 treatment of macroalgae to remove valuable fucoidan. • Sulfuric acid pretreatment suppressed the formation of large biochar chunks. • The pretreatment methods allowed the continuous operation of pyrolysis. - Abstract: Based on observations of rapidly growing biochar in fluidization beds, kelp (Saccharina japonica), a species of brown algae, was pretreated for the efficient operation of pyrolysis processes to produce pyrolysis oils. The removal of catalytically active inorganic minerals and the softening of polymeric seaweed structures were performed by means of chemical treatments, including a CaCl 2 treatment to isolate valuable and sticky fucoidan and a sulfuric acid treatment to remove catalytically active minerals. The sulfuric acid pretreatment significantly reduced the inorganic elements but did not significantly affect the properties of the pyrolysis oil compared to the non-treated kelp pyrolysis oil. Whereas the non-treated kelp produced significantly large chunks of biochar, which hindered the continuous operation of pyrolysis, the kelp treated with sulfuric acid did not produce aggregated large particles of biochar, thereby offering a means of developing reliable continuous pyrolysis processes

  15. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab

    2015-01-01

    of lignin during anaerobic digestion processes. The pretreatment of feedlot manure was performed in a 10 L reactor at 170 C for 25 min using 4 bars oxygen and the material was fed to a continuous stirred tank reactor operated at 55 C for anaerobic digestion. Methane yield of untreated and pretreated...... material was 70 ± 27 and 320 ± 36 L/kg-VS/day, respectively, or 4.5 times higher yield as a result of the pretreatment. Aliphatic acids formed during the pretreatment were utilized by microbes. 44.4% lignin in pretreated material was actually converted in the anaerobic digestion process compared to 12...

  16. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...

  17. Pretreatment of Sialic Acid Efficiently Prevents Lipopolysaccharide-Induced Acute Renal Failure and Suppresses TLR4/gp91-Mediated Apoptotic Signaling

    Directory of Open Access Journals (Sweden)

    Shih-Ping Hsu

    2016-05-01

    Full Text Available Background/Aims: Lipopolysaccharides (LPS binding to Toll-like receptor 4 (TLR4 activate NADPH oxidase gp91 subunit-mediated inflammation and oxidative damage. Recognizing the high binding affinity of sialic acid (SA with LPS, we further explored the preventive potential of SA pretreatment on LPS-evoked acute renal failure (ARF. Methods: We determined the effect of intravenous SA 30 min before LPS-induced injury in urethane-anesthetized female Wistar rats by evaluating kidney reactive oxygen species (ROS responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. Results: LPS time-dependently reduced arterial blood pressure, renal microcirculation, and increased blood urea nitrogen and creatinine in the rats. LPS enhanced monocyte/macrophage infiltration and ROS production, and subsequently impaired kidneys with the enhancement of TLR4/NADPH oxidase gp91/Caspase 3/poly-(ADP-ribose-polymerase (PARP-mediated apoptosis in the kidneys. SA pretreatment effectively alleviated LPS-induced ARF. The levels of LPS-increased ED-1 infiltration and ROS production in the kidney were significantly depressed by SA pretreatment. Furthermore, SA pretreatment significantly depressed TLR4 activation, gp91 expression, and Caspase 3/PARP induced apoptosis in the kidneys. Conclusion: We suggest that pretreatment of SA significantly and preventively attenuated LPS-induced detrimental effects on systemic and renal hemodynamics, renal ROS production and renal function, as well as, LPS-activated TLR4/gp91/Caspase3 mediated apoptosis signaling.

  18. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia

    2013-01-01

    BACKGROUND: Ensiling is a well-known method for preserving green biomasses through anaerobic production of organic acids by lactic acid bacteria. In this study, wheat straw is subjected to ensiling in combination with hydrothermal treatment as a combined pretreatment method, taking advantage...... of the produced organic acids. RESULTS: Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0...... increased.Subsequent enzymatic hydrolysis of the solid fractions showed that ensiling significantly improved the effect of pretreatment, especially at the lower temperatures of 170 and 180°C.The overall glucose yields after pretreatments of ensiled wheat straw were higher than for non-ensiled wheat straw...

  19. Effects of process parameters of various pretreatments on enzymatic hydrolysability of Ceiba pentandra (L.) Gaertn. (Kapok) fibre: A response surface methodology study

    International Nuclear Information System (INIS)

    Tye, Ying Ying; Lee, Keat Teong; Wan Abdullah, Wan Nadiah; Leh, Cheu Peng

    2015-01-01

    Kapok fibre is a promising raw material to produce sugar by enzymatic hydrolysis. In this work, effects of water, acid and alkaline pretreatments on the enzymatic sugar yield were studied through response surface methodology (RSM) and supported by the analysis of chemical compositions and physical structure of the fibre. For water pretreatment, reaction temperature and time were the independent variables while chemical concentration was also used as the third independent variable for acid and alkaline pretreatments. For all pretreatments, the enzymatic hydrolysis conditions were kept constant. The structure of pretreated fibre was also examined using scanning electron microscope (SEM). Results showed that water and acid pretreatments effectively dissolved hemicellulose of the fibre with the latter unveiled better results. The alkaline pretreatment resulted in the highest total glucose yield (g/kg of untreated fibre) as compared to water and acid pretreatments. SEM analysis illustrated that water and acid pretreatments led severe destruction of fibre structure; however, both of these pretreatments exhibited lower enhancement of enzymatic hydrolysability of kapok fibre as compared to that observed in alkaline pretreatment. - Highlights: • Effect of pretreatments on sugar yield was studied by response surface methodology. • Glucose yield was highly related to the chemical compositions of pretreated fibers. • Pretreatments altered the physical structure of kapok fibers. • Enzymatic hydrolysability of fibre was improved the most by alkaline treatment. • Over 94% cellulose of the pretreated fibres was converted to glucose

  20. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Selection of the best chemical pretreatment for lignocellulosic substrate Prosopis juliflora.

    Science.gov (United States)

    Naseeruddin, Shaik; Srilekha Yadav, K; Sateesh, L; Manikyam, Ananth; Desai, Suseelendra; Venkateswar Rao, L

    2013-05-01

    Pretreatment is a pre-requisite step in bioethanol production from lignocellulosic biomass required to remove lignin and increase the porosity of the substrate for saccharification. In the present study, chemical pretreatment of Prosopis juliflora was performed using alkali (NaOH, KOH, and NH3), reducing agents (Na2S2O4, Na2SO3) and NaClO2 in different concentration ranges at room temperature (30±2 °C) to remove maximum lignin with minimum sugar loss. Further, biphasic acid hydrolysis of the various pretreated substrates was performed at mild temperatures. Considering the amount of holocellulose hydrolyzed and inhibitors released during hydrolysis, best chemical pretreatment was selected. Among all the chemicals investigated, pretreatment with sodium dithionite at concentration of 2% (w/v) removed maximum lignin (80.46±1.35%) with a minimum sugar loss (2.56±0.021%). Subsequent biphasic acid hydrolysis of the sodium dithionite pretreated substrate hydrolyzed 40.09±1.22% of holocellulose and released minimum amount of phenolics (1.04±0.022 g/L) and furans (0.41±0.012 g/L) in the hydrolysate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Combined Sewer Overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Bonnerup, Arne; Andersen, Henrik Rasmus

    2016-01-01

    Full scale disinfection by peracetic acid (PAA) was achieved on Combined Sewer Overflow (CSO) water, which was pre-treated physically by a fast settling-filtration unit. Disinfection of untreated CSO water using PAA was compared to treatment using a particle separator (Hydro......Separator®) and additional coagulation with poly-aluminum-chloride. Disinfection for Enterococcus increased with the applied dose of PAA and additional improvement was achieved when it was preceded by chemical coagulation with 5 mg L−1 poly-aluminum-chloride. When Enterococcus was reduced by treatment in the Hydro...

  3. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Separation of phenolic acids from monosaccharides by low-pressure nanofiltration integrated with laccase pre-treatments

    DEFF Research Database (Denmark)

    Luo, Jianquan; Zeuner, Birgitte; Morthensen, Sofie Thage

    2015-01-01

    (e.g. dimers and trimers) were mainly responsible for the adsorption fouling. Free laccase treatment was preferred since it was prone to produce large polymeric products while the biocatalytic membrane with immobilized laccase was not suitable as it generated smaller polymers by in-situ product...... monosaccharides (xylose, arabinose, glucose). Four commercial NF membranes (NF270, NP030, NTR7450 and NP010) were evaluated at different pH values and with various laccase pre-treatments (for polymerization of phenolic acids). The results showed that with increasing pH, the retentions of phenolic acids by NF...... could be polymerized by laccase and then completely retained by the NF membranes via size exclusion at pH 5.15. The formation of large polymeric products by laccase could alleviate the irreversible fouling in/on a NF membrane and decrease the monosaccharide retention, while the small polymeric products...

  5. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    Science.gov (United States)

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Dilute Ionic Liquids Pretreatment of Palm Empty Bunch and Its Impact to Produce Bioethanol

    OpenAIRE

    Lucy Arianie; Utin Dewi Pebriyana; Yudiansyah; Nora Idiawati; Deana Wahyuningrum

    2014-01-01

    Ethanol production through ionic liquids pretreatment of palm empty bunch (PEB) was carried out. This research aims to investigate impact of ionic liquids synthetic i.e 1-butyl-3-methyl imidazoliumbromide or [BMIM]bromide toward cellulose’s palm empty bunch and convert its cellulose into bioethanol. Ionic liquid was synthesized  through reflux and microwave assisted synthesis methods. Research investigation showed that microwave assisted synthesis produce [BMIM]bromide 90% faster than reflux ...

  7. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  8. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    NICOLAAS

    2014-06-23

    Jun 23, 2014 ... The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium ... the formation of a complex precipitate of protective film, which ... silicon carbide abrasive papers of 80, 120, 220, 800 and 1000 grit ...... ions in sulphuric acid on the corrosion behaviour of stainless steel,.

  9. Bioethanol productions from rice polish by optimization of dilute acid ...

    African Journals Online (AJOL)

    Lignocellulose materials are abundant renewable resource for the production of biofuel from fermentative organism (Sacchromyces cervesiae). Rice polish is cheapest and abundant lignocelluloses resource and has potential to produce bioethanol. The main steps for the conversion of biomass into glucose required dilute ...

  10. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    Science.gov (United States)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ait Si Mamar, S.; Hadjadj, A.

    1990-01-01

    The conversion of wheat straw agricultural cellulosic wastes to reducing sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution. (author)

  12. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    Science.gov (United States)

    Mamar, S. Ait Si; Hadjadj, A.

    The conversion of wheat straw agricultural cellulosic wastes to reduning sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution.

  13. Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Tanmoy; Isern, Nancy G.; Sun, Jian; Wang, Eileen; Hull, Sarah; Cort, John R.; Simmons, Blake A.; Singh, Seema

    2017-09-26

    A detailed study of chemical changes in lignin structure during the ionic liquid (IL) pretreatment process is not only pivotal for understanding and overcoming biomass recalcitrance during IL pretreatment, but also is necessary for designing new routes for lignin valorization. Chemical changes in lignin were systematically studied as a function of pretreatment temperature, time and type of IL used. Kraft lignin was used as the lignin source and common pretreatment conditions were employed using three different ILs of varying chemical structure in terms of acidic or basic character. The chemical changes in the lignin structure due to IL pretreatment processes were monitored using 1H-13C HSQC NMR, 31P NMR, elemental analysis, GPC, FT-IR, and the depolymerized products were analyzed using GC-MS. Although pretreatment in acidic IL, triethylammonium hydrogensulfate ([TEA][HSO4]) results in maximum decrease in β-aryl ether bond, maximum dehydration and recondensation pathways were also evident, with the net process showing a minimum decrease in the molecular weight of regenerated lignin. However, 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) pretreatment yields a smaller decrease in the β-aryl ether content along with minimum evidence of recondensation, resulting in the maximum decrease in the molecular weight. Cholinium lysinate ([Ch][Lys]) pretreatment shows an intermediate result, with moderate depolymerization, dehydration and recondensation observed. The depolymerization products after IL pretreatment are found to be a function of the pretreatment temperature and the specific chemical nature of the IL used. At higher pretreatment temperature, [Ch][Lys] pretreatment yields guaiacol, [TEA][HSO4] yields guaiacylacetone, and [C2C1Im][OAc] yields both guaiacol and guaiacylacetone as major products. These results clearly indicate that the changes in lignin structure as well as the depolymerized product profile depend on the pretreatment conditions and the nature

  14. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment

    DEFF Research Database (Denmark)

    Pedersen, Mads; Viksø-Nielsen, Anders; Meyer, Anne S.

    2010-01-01

    The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5 L and Novozym 188. While pretreat......The influence of various low temperature (140 °C) pretreatments, using different acid and alkaline catalysts and different pH values, was studied for enzymatic hydrolysis of wheat straw. The pretreated wheat straw was treated by a standard blend of Celluclast 1.5 L and Novozym 188. While...... pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic...... hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69 and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw...

  15. Biological abatement of cellulase inhibitors

    Science.gov (United States)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  16. Introducing AAA-MS, a rapid and sensitive method for amino acid analysis using isotope dilution and high-resolution mass spectrometry.

    Science.gov (United States)

    Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie

    2012-07-06

    Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.

  17. Transformation of Starchy Lignocellulosic Biomass to Ethanol using Ragi Tapai Synergized with Microwave Irradiation Pretreatment

    Directory of Open Access Journals (Sweden)

    Kok Cheang Diong

    2016-01-01

    Full Text Available Ethanol production strategy was studied using multiple strain microbes from microwave irradiation (MI pretreated sago waste. Sago waste (SW was MI-pretreated for reducing sugars production using 2 heating media (water and sulfuric acid under pretreatment conditions including MI power, pretreatment duration, and solid loading. When water was used, the pretreatment parameters were optimized using Box-Behnken Design (BBD. However, gelatinized starch and charring of SW led to an insignificant quadratic model. To mitigate the gelatinization problem while determining the best MI pretreatment conditions, water was substituted by sulfuric acid using single factor method. The highest reducing sugar yield of 261.5 mg/g SW was achieved at 7.5% solid loading, 6 min pretreatment duration, and 300 W MI power. The effectiveness of the pretreatment was ascertained by field-emission scanning electron microscopy (FESEM and chemical-composition analysis. When fermenting MI-pretreated SW using ragi tapai, simultaneous saccharification of starch and ethanol production was evidenced from the sugar/ethanol profile. A resulted yield of 7.24 g ethanol/100 g SW confirmed the fermentability of MI-pretreated SW. The ethanol production was well fitted into the modified Gompertz model.

  18. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  19. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Science.gov (United States)

    2011-01-01

    Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX) and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy. PMID:21702938

  20. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

    Science.gov (United States)

    Zhang, Ke; Pei, Zhijian; Wang, Donghai

    2016-01-01

    Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    Science.gov (United States)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated

  2. Lignocellulose fractionation into furfural and glucose by AlCl3-catalyzed DES/MIBK biphasic pretreatment.

    Science.gov (United States)

    Wang, Zhi-Kun; Shen, Xiao-Jun; Chen, Jun-Jie; Jiang, Ying-Qiu; Hu, Zhi-Yan; Wang, Xing; Liu, Li

    2018-06-01

    Herein, an efficient DES/MIBK biphasic pretreatment system for preparation of furfural and fermentable glucose from lignocellulose was developed with AlCl 3 as catalysis. The low-cost and renewable DES (Choline chloride-Oxalic acid) served not only as a Brønsted acid catalyst, but also as a pretreatment solvent in present work, and MIBK as an extracting reagent which can increase the yield of furfural in DES phase. The effects of this biphasic pretreatment on the furfural yield and saccharification of the lignocellulose before and after pretreatment were explored using HPLC, HAPEC, FT-IR, XRD and SEM. Under the best pretreatment condition (at 140 °C for 90 min), furfural could be obtained in 70.3% yield and 80.8% of the pretreated lignocellulose was saccharified, which was 8.4 times higher than that of the raw lignocellulose without pretreatment. In a word, this pretreatment system can be considered as a potential technique for efficient valorization of lignocellulose for production of furfural and fermentable glucose. Copyright © 2018. Published by Elsevier B.V.

  3. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  4. Pretreatment with U(IV) solution for improving the decontamination of ruthenium

    International Nuclear Information System (INIS)

    Huang Haoxin; Qi Zhanshun; Zhu Guohui

    1993-01-01

    The ruthenium decontamination factor in Purex process falls quickly in successive TBP cycles. So, it is necessary to change the chemical states of RuNO complexes in order to improve DF Ru in the uranium purification cycle. Hydrazine nitrate is being used to transform RuNO complexes into in-extractable Ru(III)and Ru(IV). However, hydrazine nitrate may be inverted into hydrazoic acid which is dangerous and can bring an unstable factor. Pretreatment using U(IV) solution provides another method to improve the decontamination of ruthenium in Purex process. 0.02 mol/lU(IV) solution can transform RuNO complexes into inextricable species by heating in water bath. The D Ru can be decreased by a factor of 10-20. U(IV) pretreatment does not bring any harmful chemical in process. The acidity has a very large influence on the effect of pretreatment. The higher the acidity is, the worse the effect will be

  5. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Reid, Gregor [Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario (Canada); Canadian Research and Development Center for Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada)

    2008-08-15

    The effect of heat treatment at different temperatures on two types of inocula, activated sludge and anaerobically digested sludge, was investigated in batch cultures. Heat treatments were conducted at 65, 80 and 95 C for 30 min. The untreated inocula produced less amount of hydrogen than the pretreated inocula, with lactic acid as the main metabolite. The maximum yields of 2.3 and 1.6 mol H{sub 2}/mol glucose were achieved for the 65 C pretreated anaerobically digested and activated sludges, respectively. Approximately a 15% decrease in yield was observed with increasing pretreatment temperature from 65 to 95 C concomitant with an increase in butyrate/acetate ratio from 1.5 to 2.4 for anaerobically digested sludge. The increase of pretreatment temperature of activated sludge to 95 C suppressed the hydrogen production by lactic acid fermentation. DNA analysis of the microbial community showed that the elevated pretreatment temperatures reduced the species diversity. (author)

  6. Biological abatement of cellulase inhibitors.

    Science.gov (United States)

    Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael

    2013-10-01

    Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors

    International Nuclear Information System (INIS)

    Dai, Leilei; He, Chao; Wang, Yunpu; Liu, Yuhuan; Yu, Zhenting; Zhou, Yue; Fan, Liangliang; Duan, Dengle

    2017-01-01

    Highlights: • Two pretreatments affect differently the hydrochar properties and its pyrolysis behaviors. • Hydrochar by conventional hydrothermal pretreatment shows higher thermal stability. • Microwave hydrothermal pretreatment removes more acetyl. • Hydrochar by microwave hydrothermal pretreatment produces more glucopyranose and less acids. - Abstract: Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust was carried out in this study. Microwave and conventional hydrothermal pretreatment both improved the hydrochar properties and its pyrolysis behaviors. Proximate and elemental analyses show that the properties of hydrochar from microwave hydrothermal pretreatment are better than conventional hydrothermal pretreatment in terms of calorific value and oxygen content except for 150 °C. Microwave hydrothermal pretreatment removes more acetyl groups in hemicellulose compared to conventional hydrothermal pretreatment, which may be attributed to the hot spot effect of microwave irradiation. The peaks of thermogravimetric and derivative thermogravimetric curves of pretreated samples always shifted to higher temperature region. Also, the conventional hydrothermal pretreated samples are more thermally stable than those by microwave heating. In addition, the glucopyranose content in pyrolysis vapors of microwave hydrothermal pretreated bamboo sawdust (190 °C) was 9.82% higher than that from conventional hydrothermal pretreated bamboo sawdust. However, the acids content from microwave hydrothermal pretreated bamboo sawdust (150 °C) was 4.12% lower. In this regard, microwave hydrothermal pretreatment is more suitable for upgrading the pyrolysis oil quality than conventional hydrothermal pretreatment.

  8. Diglycolic acid modified zirconium phosphate and studies on the extraction of Am(III) and Eu(III) from dilute nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Selvan, B. Robert; Suneesh, A.S.; Venkatesan, K.A.; Antony, M.P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Division; Dasthaiah, K.; Gardas, R.L. [Indian Institute of Technology - Madras, Chennai (India). Dept. of Chemistry

    2017-06-01

    Diglycolic acid modified zirconium phosphate (ZrP-DGA) was prepared and studied for the extraction of Am(III) and Eu(III) from dilute nitric acid medium. The distribution coefficient (K{sub d}, mL.g{sup -1}) of Am(III) and Eu(III) was measured as a function of time, pH and concentration of Eu(III) ion etc. The K{sub d} of Am(III) and Eu(III) increased with increase of pH, reached a maximum value of distribution coefficient at pH 1.5 - 2, followed by decrease in K{sub d} values. Rapid extraction of Am(III) and Eu(III) in ZrP-DGA was observed followed by the establishment of equilibrium occurred in 100 min. Kinetics of extraction was fitted in to pseudo second order rate equation. The amount of Eu(III) loaded in ZrP-DGA increased with increase in the concentration of Eu(III) ion in aqueous phase and the isotherm was fitted in to Langmuir and Freundlich adsorption models. The extraction of Am(III) in ZrP-DGA was higher as compared to Eu(III) and the interference of Eu(III) on the extraction of Am(III) was studied. The distribution coefficient of some lanthanides in ZrP-DGA was measured and the K{sub d} of lanthanides increased across the lanthanide series. The extracted trivalent metal ions were recovered in three contacts of loaded ZrP-DGA with 0.5 M nitric acid.

  9. Quantitation of 5-Methyltetrahydrofolic Acid in Dried Blood Spots and Dried Plasma Spots by Stable Isotope Dilution Assays.

    Directory of Open Access Journals (Sweden)

    Markus Kopp

    Full Text Available Because of minimal data available on folate analysis in dried matrix spots (DMSs, we combined the advantages of stable isotope dilution assays followed by LC-MS/MS analysis with DMS sampling to develop a reliable method for the quantitation of plasma 5-methyltetrahydrofolic acid in dried blood spots (DBSs and dried plasma spots (DPSs as well as for the quantitation of whole blood 5-methyltetrahydrofolic acid in DBSs. We focused on two diagnostically conclusive parameters exhibited by the plasma and whole blood 5-methyltetrahydrofolic acid levels that reflect both temporary and long-term folate status. The method is performed using the [2H4]-labeled isotopologue of the vitamin as the internal standard, and three steps are required for the extraction procedure. Elution of the punched out matrix spots was performed using stabilization buffer including Triton X-100 in a standardized ultrasonication treatment followed by enzymatic digestion (whole blood only and solid-phase extraction with SAX cartridges. This method is sensitive enough to quantify 27 nmol/L whole blood 5-methyltetrahydrofolic acid in DBSs and 6.3 and 4.4 nmol/L plasma 5-methyltetrahydrofolic acid in DBSs and DPSs, respectively. The unprecedented accurate quantification of plasma 5-methyltetrahydrofolic acid in DBSs was achieved by thermal treatment prior to ultrasonication, inhibiting plasma conjugase activity. Mass screenings are more feasible and easier to facilitate for this method in terms of sample collection and storage compared with conventional clinical sampling for the assessment of folate status.

  10. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production.

    Science.gov (United States)

    Digman, Matthew F; Shinners, Kevin J; Casler, Michael D; Dien, Bruce S; Hatfield, Ronald D; Jung, Hans-Joachim G; Muck, Richard E; Weimer, Paul J

    2010-07-01

    Switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.) were pretreated under ambient temperature and pressure with sulfuric acid and calcium hydroxide in separate experiments. Chemical loadings from 0 to 100g (kg DM)(-1) and durations of anaerobic storage from 0 to 180days were investigated by way of a central composite design at two moisture contents (40% or 60% w.b.). Pretreated and untreated samples were fermented to ethanol by Saccharomyces cerevisiae D5A in the presence of a commercially available cellulase (Celluclast 1.5L) and beta-glucosidase (Novozyme 188). Xylose levels were also measured following fermentation because xylose is not metabolized by S. cerevisiae. After sulfuric acid pretreatment and anaerobic storage, conversion of cell wall glucose to ethanol for reed canarygrass ranged from 22% to 83% whereas switchgrass conversions ranged from 16% to 46%. Pretreatment duration had a positive effect on conversion but was mitigated with increased chemical loadings. Conversions after calcium hydroxide pretreatment and anaerobic storage ranged from 21% to 55% and 18% to 54% for reed canarygrass and switchgrass, respectively. The efficacy of lime pretreatment was found to be highly dependent on moisture content. Moreover, pretreatment duration was only found to be significant for reed canarygrass. Although significant levels of acetate and lactate were observed in the biomass after storage, S. cerevisiae was not found to be inhibited at a 10% solids loading. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Ethanol production from hydrothermal pretreated corn stover with a loop reactor

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    to the different pretreatment times. The glucan recovered from liquid was from 4.9% to 5.6% and the total glucan recoveries from all the pretreatments were higher than 98%. Besides HMF and furfural, acetic, lactic, formic and glycolic acids were also found in the liquid phase. All the concentrations...

  12. Rapid and precise measurement of serum branched-chain and aromatic amino acids by isotope dilution liquid chromatography tandem mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. RESULTS: Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. CONCLUSION: A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.

  13. Method for pretreating lignocellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  14. Effect of Salt and Drought Stresses and Pretreatment of Salicylic acid on Seed Germination Characteristics of Lavender (Lavandula stricta Del.

    Directory of Open Access Journals (Sweden)

    Hadi Sanginabadi

    2017-02-01

    structure. SA is involved in endogenous signaling, mediating in plant defense against pathogens. The signal can also move to nearby plants by salicylic acid being converted to the volatile ester, methyl salicylate. Salicylic acid has an important role in resistance to environmental stresses. In the current study, the effects of pretreatment of salicylic acid to eliminate salinity and drought stresses were evaluated on Lavender seed germination (Lavandula stricta Del.. Materials and Methods: Seed samples of raised lavender were collected from Geno (Bandar Abbas on May 2013. Two experiments were conducted based on completely randomized design with three levels of Salicylic acid (0, 0.1 and 0.5 mM and four levels (0, -2, -4 and -6 bar of drought and salinity stresses with three replications in Horticultural Sciences department, Plant production faculty of Gorgan University of Agricultural Sciences and Natural Resources (GUASNR. Plumule and radicle length, germination percentage and seed vigor were evaluated. Results Discussion: Results indicated that plumule and radicle length, germination percentage and seed vigor were significantly decreased by increasing drought and salinity stresses. The absence of pretreatment with salicylic acid were lead to increase negative effects of salinity in comparison with non-pretreated in the studied trait. However salinity stress levels -2 and -6 bar and pretreatments increased all traits significantly. Overall, the results showed that among total characteristics, plumule length is more sensitive in to drought and salinity stresses. As a result, the best range of moisture for lavender seeds germination is from non-stress conditions to -2 bars. It seems that seed germination on lavender has more tolerance to drought stress conditions than salinity stress conditions. Since the climate change will result in ecological degradation and further threaten the fragility of dry and saline lands, with serious consequences for crop and livestock

  15. Effect of Salt and Drought Stresses and Pretreatment of Salicylic acid on Seed Germination Characteristics of Lavender (Lavandula stricta Del.

    Directory of Open Access Journals (Sweden)

    Hadi Sanginabadi

    2017-09-01

    structure. SA is involved in endogenous signaling, mediating in plant defense against pathogens. The signal can also move to nearby plants by salicylic acid being converted to the volatile ester, methyl salicylate. Salicylic acid has an important role in resistance to environmental stresses. In the current study, the effects of pretreatment of salicylic acid to eliminate salinity and drought stresses were evaluated on Lavender seed germination (Lavandula stricta Del.. Materials and Methods: Seed samples of raised lavender were collected from Geno (Bandar Abbas on May 2013. Two experiments were conducted based on completely randomized design with three levels of Salicylic acid (0, 0.1 and 0.5 mM and four levels (0, -2, -4 and -6 bar of drought and salinity stresses with three replications in Horticultural Sciences department, Plant production faculty of Gorgan University of Agricultural Sciences and Natural Resources (GUASNR. Plumule and radicle length, germination percentage and seed vigor were evaluated. Results Discussion: Results indicated that plumule and radicle length, germination percentage and seed vigor were significantly decreased by increasing drought and salinity stresses. The absence of pretreatment with salicylic acid were lead to increase negative effects of salinity in comparison with non-pretreated in the studied trait. However salinity stress levels -2 and -6 bar and pretreatments increased all traits significantly. Overall, the results showed that among total characteristics, plumule length is more sensitive in to drought and salinity stresses. As a result, the best range of moisture for lavender seeds germination is from non-stress conditions to -2 bars. It seems that seed germination on lavender has more tolerance to drought stress conditions than salinity stress conditions. Since the climate change will result in ecological degradation and further threaten the fragility of dry and saline lands, with serious consequences for crop and livestock

  16. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling.

    Science.gov (United States)

    Liu, Gang; Sun, Jiaoe; Zhang, Jian; Tu, Yi; Bao, Jie

    2015-12-01

    Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pretreating dogwood seedlings with simulated acidic precipitation increases dogwood anthracnose symptoms in greenhouse-laboratory trials

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L.; Knighten, J. (USDA Forest Service, Resistance Screening Center, Asheville, NC (United States)); Berrange, P.; Lawton, K.A. (USDA Forest Service, Center for Forest Environmental Studies, Dry Branch, GA (United States)); Britton, K.O. (USDA Forest Service, Southeastern Forest Experiment Station, Athens, GA (United States))

    1993-01-01

    Dogwood anthracnose is the most damaging disease of flowering dogwood (Cornus florida L.) in a large part of the tree's natural range. It is caused by Discula destructiva infection. Previous attempts to inoculate C. florida to produce anthracnose symptoms have met with limited success except when the leaves were pretreated with acidic water, suggesting that acidic precipitation may predispose dogwoods to the disease. This hypothesis was tested in two greenhouse-laboratory studies in which year-old C. florida seedlings were randomly assigned to four treatments of simulated rain (pH 2.5, 3.5, 4.5, and 5.5) in 1989 and 1990. After 10 applications over a 42-d period, the seedlings were moved to a temperature-controlled laboratory, placed in plastic bags, humidified, and sprayed with a spore suspension of five D. destructiva isolates. About 30 d layter, the seedlings were examined for the percentage of leaves exhibiting anthracnose symptoms and disease severity on affected leaves. Both trials showed that as the acidity of the simulated rain increased, the incidence and severity of anthracnose leaf symptoms increased. The 1989 study included a soil lime treatment that showed the same trend but the overall occurrence and severity of symptoms was higher. 17 refs., 5 tabs.

  18. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob.

    Science.gov (United States)

    Ma, Lijuan; Cui, Youzhi; Cai, Rui; Liu, Xueqiang; Zhang, Cuiying; Xiao, Dongguang

    2015-03-01

    Alkaline potassium permanganate solution (APP) was applied to the pretreatment of corncob with a simple and effective optimization of APP concentration, reaction time, temperature and solid to liquid ratio (SLR). The optimized pretreatment conditions were at 2% (w/v) potassium permanganate with SLR of 1:10 treating for 6h at 50°C. This simple one-step treatment resulted in significant 94.56% of the cellulose and 81.47% of the hemicellulose recoveries and 46.79% of the lignin removal of corncob. The reducing sugar in the hydrolysate from APP-pretreated corncob was 8.39g/L after 12h enzymatic hydrolysis, which was 1.44 and 1.29 folds higher than those from raw and acid pretreated corncobs. Physical characteristics, crystallinity and structure of the pretreated corncob were analyzed and assessed by SEM, XRD and FTIR. The APP pretreatment process was novel and enhanced enzymatic hydrolysis of lignocellulose by affecting composition and structural features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  20. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruoshui [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Guo, Mond [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Lin, Kuan-ting [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Hebert, Vincent R. [Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way Richland WA 99354 USA; Zhang, Jinwen [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Wolcott, Michael P. [Wood Materials and Engineering Laboratory, Washington State University, Pullman WA 99164 USA; Quintero, Melissa [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA; Ramasamy, Karthikeyan K. [Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland WA 99354 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd Golden CO 80127 USA; Zhang, Xiao [Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way Richland WA 99354 USA

    2016-07-04

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer as well as its complex side chain structures, it has been a challenge to effectively depolymerize lignin and produce high value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) inclduing 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPCs yields obtained were 18% and 22% based on the initial weight of the lignin in SESPL and DACSL respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47%. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  1. Comparison of isotope dilution and excretion methods for determining the half-life of ascorbic acid in the guinea pig

    International Nuclear Information System (INIS)

    Kipp, D.E.; Rivers, J.M.

    1984-01-01

    The half-life of ascorbic acid (AA) in guinea pigs was investigated by the isotope dilution and excretion methods. The dilution method measures [1-14C]AA disappearance from the plasma, whereas the excretion method measures the elimination of [1-14C]AA and the metabolites from the body. Two groups of animals underwent both isotope studies in reverse order. Animals were conditioned to the experimental procedures and fed 2.5 mg AA/100 g body weight orally to maintain a daily intake of the vitamin independent of food consumption. The two isotope procedures imposed similar stress on the animals, as determined by plasma cortisol levels and body weight changes. The AA half-life calculations of the rapidly exchangeable pool by the isotope dilution method yielded values of 1.23 and 0.34 hours for the two groups, respectively. The half-life of the slowly exchangeable pool for the two groups was 60.2 and 65.8 hours, respectively. The half-life of AA in the rapidly exchangeable pool, as measured by the excretion studies, was 4.57-8.75 hours. For the slowly exchangeable pool, it was 146-149 hours. The longer half-life of both pools obtained with the excretion method indicates that the isotope is disappearing from the plasma more rapidly than it is being excreted. This suggests that a portion of the [1-14C]AA leaving the plasma is removed to a body pool that is not sampled by the isotope excretion method

  2. Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis

    Science.gov (United States)

    Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.

    In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.

  3. Influence of ultrasound pretreatment on wood physiochemical structure.

    Science.gov (United States)

    He, Zhengbin; Wang, Zhenyu; Zhao, Zijian; Yi, Songlin; Mu, Jun; Wang, Xiaoxu

    2017-01-01

    As an initial step to increase the use of renewable biomass resources, this study was aimed at investigating the effects of ultrasound pretreatment on structural changes of wood. Samples were pretreated by ultrasound with the power of 300W and frequency of 28kHz in aqueous soda solution, aqueous acetic acid, or distilled water, then pretreated and control samples were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The results shown that ultrasound pretreatment is indeed effective in modifying the physiochemical structure of eucalyptus wood; the pretreatment decreased the quantity of alkali metals (e.g., potassium, calcium and magnesium) in the resulting material. Compared to the control group, the residual char content of samples pretreated in aqueous soda solution increased by 10.08%-20.12% and the reaction temperature decreased from 361°C to 341°C, however, in samples pretreated by ultrasound in acetic solution or distilled water, the residual char content decreased by 12.40%-21.45% and there were no significant differences in reactivity apart from a slightly higher maximum reaction rate. Ultrasound pretreatment increased the samples' crystallinity up to 35.5% and successfully removed cellulose, hemicellulose, and lignin from the samples; the pretreatment also increased the exposure of the sample to the treatment solutions, broke down sample pits, and generated collapses and microchannels on sample pits, and removed attachments in the samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microbiological test results using three urine pretreatment regimes with 316L stainless steel

    Science.gov (United States)

    Huff, Timothy L.

    1993-01-01

    Three urine pretreatments, (1) Oxone (Dupont) and sulfuric acid, (2) sodium hypochlorite and sulfuric acid, (3) and ozone, were studied for their ability to reduce microbial levels in urine and minimize surface attachment to 316L stainless steel coupons. Urine samples inoculated with Bacillus insolitus and a filamentous mold, organisms previously recovered from the vapor compression distillation subsystem of NASA Space Station Freedom water recovery test were tested in glass corrosion cells containing base or weld metal coupons. Microbial levels, changes in pH, color, turbidity, and odor of the fluid were monitored over the course of the 21-day test. Specimen surfaces were examined by scanning electron microscopy at completion of the test for microbial attachment. Ozonated urine samples were less turbid and had lower microbial levels than controls or samples receiving other pretreatments. Base metal coupons receiving pretreatment were relatively free of attached bacteria. However, well-developed biofilms were found in the heat-affected regions of welded coupons receiving Oxone and hypochlorite pretreatments. Few bacteria were observed in the same regions of the ozone pretreatment sample.

  5. Study on saccharification techniques of seaweed wastes for the transformation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Leilei; Wang, Peng; Mou, Haijin [College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003 (China)

    2011-01-15

    Floating residue (FR), a surplus by-product from the alginate extraction process, contains large amount of cellulosic materials. The technical feasibility of FR utilization as a resource of renewable energy was investigated in this paper. The production of yeast-fermentable sugars (glucose) from FR was studied by dilute sulfuric acid pretreatment and further enzymatic hydrolysis. Dilute sulfuric acid pretreatment was conducted by using sulfuric acid at concentration of 0, 0.1, 0.2, 0.5 and 1.0%(w/v) for 0.5, 1.0 and 1.5 h respectively at 121 C. The system of enzymatic hydrolysis consisted of cellulase and cellobiase. Results showed that FR might be a perfect bioenergy resource, containing high content of cellulose (30.0 {+-} 0.07%) and little hemicellulose (2.2 {+-} 0.86%). The acid pretreatment improved the hydrolysis efficiency of cellulase and cellobiase by increasing the reaction surface area of FR and enhanced the final yield of glucose for fermentation. The maximum yield of glucose reached 277.5 mg/g FR under the optimal condition of dilute sulfuric acid pretreatment (0.1% w/v, 121 C, 1.0 h) followed by enzymatic hydrolysis (50 C, pH 4.8, 48 h). After fermentation by Saccharomyces cerevisiae at 30 C for 36 h, the ethanol conversion rate of the concentrated hydrolysates reached 41.2%, which corresponds to 80.8% of the theoretical yield. It indicates that cellulose in seaweed processing wastes including FR is easily hydrolyzed to produce glucose in comparison with that in terrestrial plants. FR shows excellent prospects as a potential feedstock for the production of bioethanol. (author)

  6. THERMO-MECHANICAL PULPING AS A PRETREATMENT FOR AGRICULTURAL BIOMASS FOR BIOCHEMICAL CONVERSION

    Directory of Open Access Journals (Sweden)

    Ronalds W. Gonzalez

    2011-03-01

    Full Text Available The use of thermo-mechanical pulping (TMP, an existing and well known technology in the pulp and paper industry, is proposed as a potential pretreatment pathway of agriculture biomass for monomeric sugar production in preparation for further fermentation into alcohol species. Three agricultural biomass types, corn stover, wheat straw, and sweet sorghum bagasse, were pretreated in a TMP unit under two temperature conditions, 160 ºC and 170 ºC, and hydrolyzed using cellulase at 5, 10, and 20 FPU/g OD biomass. Wheat straw biomass was further pretreated at different conditions including: i soaking with acetic acid, ii longer steaming residence time (15 and 30 min, and iii refined at lower disk gap (0.0508 and 0.1524 mm. Preliminary results showed that carbohydrate conversion increased from 25% to 40% when the TMP temperature was increased from 160 to 170 ºC. Carbohydrate conversion was relatively similar for the three biomasses under the same pretreatment conditions and enzyme loading. Acetic acid soaking and refining at a reduce disk gap increases carbohydrate conversion. Further studies within this technological field to identify optimum process and TMP conditions for pretreatment are suggested.

  7. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.

    Science.gov (United States)

    Xu, Guo-Chao; Ding, Ji-Cai; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-03-01

    In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, S.; Nair, L.M.; Kuhad, R.C. [Delhi Univ., New Delhi (India). Dept. of Microbiology, Lignocellulose Biotechnology Laboratory

    2008-04-15

    Lignocellulosic biomass is the most abundant energy resource in the world and is a potential source of carbon substrate for the production of ethanol via fermentation. However, the presence of lignin restricts access to holocellulose. It is necessary to break or remove the lignin in plant residues prior to their hydrolysis. Pretreatment is needed to liberate cellulose and hemicellulose from the lignins. This paper discussed a biological delignification method that avoided the use of toxic and corrosive chemicals. The in situ microbial delignification process used white rot fungi as a basidiomycetes for biological pretreatment. The study examined the capability of 4 basidiomycetes fungi, notably: (1) Phanerochaete chrysosporium; (2) Pycnoporus cinnabarinus; (3) fungal isolate RCK-1; and (4) fungal isolate RCK-3. The fungi were used to delignify wheat straw and improve hydrolysis procedures. Attempts were also made to ferment the acid hydrolysates from fungal-pretreated lignocellulosic materials. Results of the experiment showed that higher yields of ethanol were obtained using selective lignin-degrading fungi as a pretreatment method. 39 refs., 3 tabs., 4 figs.

  9. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation

    Science.gov (United States)

    T.Q. Lan; Roland Gleisner; J.Y. Zhu; Bruce S. Dien; Ronald E. Hector

    2012-01-01

    Lodgepole wood chips were pretreated by sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) at 25% solids loading and 180 °C for 20 min with sulfuric acid and sodium bisulfite charges of 2.2 and 8 wt/wt% on an oven-dry wood basis, respectively. The pretreated wood chips were disk-milled with pretreatment spent liquor and water, and the...

  10. Abscisic Acid Content and Stomatal Sensitivity to CO(2) in Leaves of Xanthium strumarium L. after Pretreatments in Warm and Cold Growth Chambers.

    Science.gov (United States)

    Raschke, K; Pierce, M; Popiela, C C

    1976-01-01

    The degree of stomatal sensitivity to CO(2) was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greehouse continuously (high abscisic acid, no CO(2) sensitivity), nor in plants transferred from the cold to the warm chamber (low abscisic acid, high CO(2) sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf.

  11. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis.

    Science.gov (United States)

    Kim, Soo-Jin; Dwiatmoko, Adid Adep; Choi, Jae Wook; Suh, Young-Woong; Suh, Dong Jin; Oh, Moonhyun

    2010-11-01

    This study has been focused on developing a cellulose pretreatment process using 1-n-butyl-3-methylimidazolium chloride ([bmim]Cl) for subsequent hydrolysis over Nafion(R) NR50. Thus, several pretreatment variables such as the pretreatment period and temperature, and the [bmim]Cl amount were varied. Additionally, the [bmim]Cl-treated cellulose samples were characterized by X-ray diffraction analysis, and their crystallinity index values including CI(XD), CI(XD-CI) and CI(XD-CII) were then calculated. When correlated with these values, the concentrations of total reducing sugars (TRS) obtained by the pretreatment of native cellulose (NC) and glucose produced by the hydrolysis reaction were found to show a distinct relationship with the [CI(NC)-CI(XD)] and CI(XD-CII) values, respectively. Consequently, the cellulose pretreatment step with [bmim]Cl is to loosen a crystalline cellulose through partial transformation of cellulose I to cellulose II and, furthermore, the TRS release, while the subsequent hydrolysis of [bmim]Cl-treated cellulose over Nafion(R) NR50 is effective to convert cellulose II to glucose. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Toluene metabolism in isolated rat hepatocytes: effects of in vivo pretreatment with acetone and phenobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, A. (National Inst. of Forensic Toxicology, Oslo (Norway))

    1993-02-01

    Hepatocytes isolated from control, acetone- and phenobarbital-pretreated rats were used to study the metabolic conversion of toluene to benzyl alcohol, benzaldehyde, benzoic acid and hippuric acid at low (<100 [mu]M) and high (100-500 [mu]M) toluene concentrations. The baseline formation rates of toluene metabolites (benzyl alcohol, benzoic acid and hippuric acid) were 2.9[+-]1.7 and 10.0[+-]2.3 nmol/mg cell protein/60 min at low and high toluene concentrations, respectively. In vivo pretreatment of rats with acetone and phenobarbital increased the formation of metabolites: at low toluene concentrations 3- and 5-fold, respectively; at high toluene concentrations no significant increase (acetone) and 8-fold increase (phenobarbital). Apparent inhibition by ethanol, 7 and 60 mM, was most prominent at low toluene concentrations: 63% and 69%, respectively, in control cells; 84% and 91% in acetone-pretreated cells, and 32% (not significant) and 51% in phenobarbital-pretreated cells. Ethanol also caused accumulation of benzyl alcohol. The apparent inhibition by isoniazid was similar to that of ethanol at low toluene concentrations. Control and acetone-pretreated cells were apparently resistant towards metyrapone; the decrease was 49% and 64% in phenobarbital-pretreated cells at low and high toluene concentrations, respectively. In these cells, the decrease in presence of combined ethanol and metyrapone was 95% (low toluene concentrations). 4-Methylpyrazole decreased metabolite formation extensively in all groups. Benzaldehyde was only found in the presence of an aldehyde dehydrogenase inhibitor. Increased ratio benzoic/hippuric acid was observed at high toluene concentrations. These results demonstrate that toluene oxidation may be studied by product formation in isolated hepatocytes. However, the influence of various enzymes in the overall metabolism could not be ascertained due to lack of inhibitor specificity. (orig.).

  13. Bioethanol production from paperboard mill sludge using acid-catalyzed bio-derived choline acetate ionic liquid pretreatment followed by fermentation process

    International Nuclear Information System (INIS)

    Farghaly, Ahmed; Elsamadony, Mohamed; Ookawara, Shinichi; Tawfik, Ahmed

    2017-01-01

    Highlights: • Total reducing sugar concentration depends on [ChO][OAc] ionic liquid to biomass ratio. • Acid-catalyzed ionic liquid significantly enhance pretreatment process. • Prolonged pretreatment duration degraded sugars into furans compounds. • Maximum net energy of 5.36 ± 0.30 kJ/g PMS obtained by using acid catalyst IL. - Abstract: Paperboard mill sludge (PMS) composed of cellulose, hemicellulose, lignin and ash contents of 36.72 ± 2.81, 32.91 ± 1.75, 22.89 ± 0.56, and 7.48 ± 0.39%, respectively. Enzymatic hydrolysis process followed by fermentation of native PMS provided an ethanol yield of 0.36 ± 0.01 g/L which equivalent to net gain energy of −0.84 ± 0.03 kJ/g PMS . Choline acetate ionic liquid [Cho][OAc] IL was extensively used as a solvent for PMS to upgrade the performance. Pretreatment with [Cho][OAc] IL/PMS ratio of 10% (w/w) for 1.0 h, at a temperature of 120 °C exhibited hemicellulose and lignin removal efficiency of 5.05 ± 0.52 and 14.71 ± 1.22%, respectively with 89.19 ± 5.62% cellulose recovery. This corresponded to net gain energy of 0.60 ± 0.04 kJ/g PMS based on ethanol yield from enzymatic saccharification process which was quite low due to a limited hemicellulose removal and glucose yield of 24.1 ± 1.4 g/L. [Cho][OAc] IL/PMS ratio of 10% (w/w) supplemented with 1% (v/v) HCl substantially improved the removal efficiency of hemicellulose (36.38 ± 4.51%), lignin (17.42 ± 1.19%) and cellulose (82.17 ± 4.28%) which provided the maximum net energy of 5.36 ± 0.30 kJ/g PMS .

  14. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Qing Qing

    2011-06-01

    Full Text Available Abstract Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy.

  15. An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel

    International Nuclear Information System (INIS)

    Wang Rongguang

    2004-01-01

    Micro-liquid of dilute sulfuric acid deposited on SUS304 steel surface were observed with the ac non-contact mode of an atomic force microscopy (AFM), and the detail of the corrosion process caused by them was investigated with the contact mode of the AFM, X-ray photoelectron spectroscopy (XPS) and wavelength dispersive X-ray spectroscopy (WDXS). As a result, even not applying bias voltages between the tip of the cantilever and the specimen, micro-liquid of sulfuric acid can be successfully imaged using the ac non-contact mode of AFM. Two shapes of micro-acid, i.e., micro-droplets and micro-films, were found to co-exist on the specimen surface. On areas covered by micro-films of acid, only small corrosion product particles appeared and no corrosion pits were found. Beneath micro-droplets, corrosion reaction continue to produce pits until they were all consumed to form a corrosion product (mainly iron oxides) with almost the same shape with the droplet. The total corrosion reaction time was speculated to be between 690 and 1500 ks. The corrosion product formed from micro-droplets was believed to be a process of accumulating small corrosion product particles from the liquid/substrate interface to the surface of the formerly produced corrosion product. The XPS and WDXS analysis also supports the above results

  16. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan

    2014-01-01

    features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid–liquid separation and detoxification were avoided. Using...... this process, 46.12 g LA could be produced from 100 g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose...

  17. Optimization of dilute acid hydrolysis of Enteromorpha

    Science.gov (United States)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  18. Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Ploeger, A.; Simonsen, T.; Woidemann, A.; Schmidt, A.S.

    1996-11-01

    An investigation of the acid hydrolysis and HPLC analysis have been carried out in order to optimise the quantification of the solubilized hemicellulose fraction from wheat straw lignocellulose after pretreatment. Different acid hydrolyses have been performed to identify which conditions (concentrations of acid and hydrolysis time) gave the maximal quantification of the solubilized hemicellulose (measured as monosaccharides). Four different sugars were identified: xylose, arabinose, glucose and galactose. Some hydrolyses were carried out on aqueous samples and some using freeze-dried samples. The best overall hydrolysis was obtained by treatment of an aqueous sample with 4 %w/v sulfuric acid for 10 minutes. These conditions were not optimal for the determination of glucose, which was estimated by using a correction factor. A purification step was needed following the acid hydrolysis, and included a sulfate precipitation by barium hydroxide and elimination of remaining ions by mixed-bed ion exchange. The level of barium hydroxide addition significantly reduced the recovery of the sugars. Thus, lower than equivalent amounts of barium hydroxide were added in the purification step. For monosaccharide analysis two different HPLC columns, i.e. Aminex HPX-87P and HPX-87H with different resin ionic forms, lead (Pb{sup 2+}) and hydrogen (H{sup +}), respectively. The lead column (HPX-87P) separated all four sugars in the acid hydrolyzates, but sample purification required the removal of all interfering impurities, which resulted in poor reproducibility and a sugar recovery below 50%. The hydrogen column (HPX-87H) separated only glucose, xylose and arabinose, whereas galactose was not separated from xylose; however, the column was less sensitive towards impurities and gave improved recovery and reproducibility. Therefore, the hydrogen column (HPX-87H) was chosen for routine quantification of the hydrolyzed hemicellulose sugars. (au) 11 tabs., 8 ills., 19 refs.

  19. Different physical and chemical pretreatments of wheat straw for enhanced biobutanol production in simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Thirmal, Chumangalah; Dahman, Yaser [Department of Chemical Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2011-07-01

    The objective of this study is to increase butanol product yields using wheat straw as the biomass. First this study examined different pretreatment and saccharification processes to obtain the maximum sugar concentration. Three different physical and chemical pretreatment methods for the wheat straws were examined in the present work in comparison with physical pretreatment alone as a reference. This included water, acidic, and alkaline pretreatment. For all cases, physical pretreatment represented by 1 mm size reduction of the straws was applied prior to each pretreatment. Results showed that 13.91 g/L glucose concentration was produced from saccharification with just the physical pretreatment (i.e., no chemical pretreatment). This represented {approx}5-20 % lower sugar release in saccharification compared to the other three pretreatment processes. Saccharification with acid pretreatment obtained the highest sugar concentrations, which were 18.77 g/L glucose and 12.19 g/L xylose. Second this study produced butanol from simultaneous saccharification and fermentation (SSF) using wheat straw hydrolysate and Clostridium beijerinckii BA101. Water pretreatment was applied to separate lignin and polysaccharides from the wheat straw. Physical pretreatment was applied prior to water pretreatment where, wheat straw was grounded into fine particles less than 1 mm size. Another experiment was conducted where physical pretreatment was applied alone prior to SSF (i.e. no chemical pretreatment was applied). Both processes converted more than 10% of wheat straw into butanol product. This was 2% higher than previous studies. The results illustrated that SSF with physical pretreatment alone obtained 2.61 g/L butanol.

  20. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying; Xu, Weilin; Liu, Dijia; Zhuang, Lin

    2017-12-01

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives of Pt-based catalysts with best performance/price.

  1. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  2. Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis.

    Science.gov (United States)

    Zhang, Xiudong; Bai, Yuanyuan; Cao, Xuefei; Sun, Runcang

    2017-08-01

    Herein, an efficient biphasic pretreatment process was developed to improve the production of furfural (FF) and glucose from Eucalyptus. The influence of formic acid and NaCl on FF production from xylose in water and various biphasic systems was investigated. Results showed that the addition of formic acid and NaCl significantly promoted the FF yield, and the biphasic system of MIBK (methyl isobutyl ketone)/water exhibited the best performance for FF production. Then the Eucalyptus was pretreated in the MIBK/water system, and a maximum FF yield of 82.0% was achieved at 180°C for 60min. Surface of the pretreated Eucalyptus became relatively rough and loose, and its crystallinity index increased obviously due to the removal of hemicelluloses and lignin. The pretreated Eucalyptus samples showed much higher enzymatic hydrolysis rates (26.2-70.7%) than the raw Eucalyptus (14.5%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Study of ext ration equilibrium in the system:phosphoric acid produced in Aqaba-uranium-0.5 M de pa-0.125M TOPO diluted in kerosene

    International Nuclear Information System (INIS)

    Al-Matar, K.A.; Rawajfeh, M.K.

    1995-01-01

    The extraction of uranium from purified wet process Jordanian phosphoric acid by synergistic solvent 0.5 M de pa and 0.125 M TOPO diluted in kerosene has been studied as a function of temperature and electro-motive force. The uranium distribution coefficient was found to be directly proportional to the electro-motive force up to a limiting point. The uranium distribution coefficient was found to decrease with temperature.Distribution coefficients for the Jordanian acid were found to be higher than those for similar acids from elsewhere.An Aqueous to Organic phase ratio (A/O) recommended for use with the Jordanian acid is 2.5. 11 refs., 6 figs., 2 tab.(Author)

  4. Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate.

    Science.gov (United States)

    Reis, Cristiano E R; Zhang, Jianguo; Hu, Bo

    2014-09-01

    Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.

  5. Inhibition Effect of Deanol on Mild Steel Corrosion in Dilute ...

    African Journals Online (AJOL)

    The influence of deanol on the corrosion behaviour of mild steel in dilute sulphuric acid with sodium chloride addition was studied by means of mass-loss, potentiodynamic polarization, electrode potential monitoring, scanning electron microscopy and statistical analysis. Results show that deanol performed excellently with ...

  6. Bioconversion process of rice straw by thermotolerant cellulolytic ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    state fermentation for bioethanol production is a focus of current attention. ... Optimization of fermentation conditions showed highest cellulolytic enzymes ... using dilute acid pretreated rice straw hydrolysate with initial soluble ...

  7. Attenuation of methamphetamine-induced nigrostriatal dopaminergic neurotoxicity in mice by lipopolysaccharide pretreatment.

    Science.gov (United States)

    Lin, Yin Chiu; Kuo, Yu-Min; Liao, Pao-Chi; Cherng, Chianfang G; Su, Su-Wen; Yu, Lung

    2007-04-30

    Immunological activation has been proposed to play a role in methamphetamine-induced dopaminergic terminal damage. In this study, we examined the roles of lipopolysaccharide, a pro-inflammatory and inflammatory factor, treatment in modulating the methamphetamine-induced nigrostriatal dopamine neurotoxicity. Lipopolysaccharide pretreatment did not affect the basal body temperature or methamphetamine-elicited hyperthermia three days later. Such systemic lipopolysaccharide treatment mitigated methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions in a dose-dependent manner. As the most potent dose (1 mg/kg) of lipopolysaccharide was administered two weeks, one day before or after the methamphetamine dosing regimen, methamphetamine-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid depletions remained unaltered. Moreover, systemic lipopolysaccharide pretreatment (1 mg/kg) attenuated local methamphetamine infusion-produced dopamine and 3,4-dihydroxyphenylacetic acid depletions in the striatum, indicating that the protective effect of lipopolysaccharide is less likely due to interrupted peripheral distribution or metabolism of methamphetamine. We concluded a critical time window for systemic lipopolysaccharide pretreatment in exerting effective protection against methamphetamine-induced nigrostriatal dopamine neurotoxicity.

  8. Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion.

    Science.gov (United States)

    Wei, Wei; Wang, Qilin; Zhang, Liguo; Laloo, Andrew; Duan, Haoran; Batstone, Damien J; Yuan, Zhiguo

    2018-03-01

    Previous work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO 2 ) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests. This suggests that FNA pre-treatment would enhance the destruction of volatile solids (VS) in an anaerobic sludge digester, and reduce overall sludge disposal costs, provided that the dewaterability of the digested sludge is not negatively affected. This study experimentally evaluates the impact of FNA pre-treatment on the VS destruction in anaerobic sludge digestion and on the dewaterability of digested sludge, using continuously operated bench-scale anaerobic digesters. Pre-treatment of full-scale WAS for 24 h at an FNA concentration of 1.8 mg NN/L enhanced VS destruction by 17 ± 1% (from 29.2 ± 0.9% to 34.2 ± 1.1%) and increased dewaterability (centrifuge test) from 12.4 ± 0.4% to 14.1 ± 0.4%. Supporting the VS destruction data, methane production increased by 16 ± 1%. Biochemical methane potential tests indicated that the final digestate stability was also improved with a lower potential from FNA treated digestate. Further, a 2.1 ± 0.2 log improvement in pathogen reduction was also achieved. With inorganic solids representing 15-22% of the full-scale WAS used, FNA pre-treatment resulted in a 16-17% reduction in the volume of dewatered sludge for final disposal. This results in significantly reduced costs as assessed by economic analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Abscisic Acid Content and Stomatal Sensitivity to CO2 in Leaves of Xanthium strumarium L. after Pretreatments in Warm and Cold Growth Chambers 1

    Science.gov (United States)

    Raschke, Klaus; Pierce, Margaret; Popiela, Chu Chen

    1976-01-01

    The degree of stomatal sensitivity to CO2 was positively correlated with the content of abscisic acid of leaves of Xanthium strumarium grown in a greenhouse and then transferred for 24 hours or more to a cold (5/10 C, night/day) or a warm growth chamber (20/23 C). This correlation did not exist in plants kept in the greehouse continuously (high abscisic acid, no CO2 sensitivity), nor in plants transferred from the cold to the warm chamber (low abscisic acid, high CO2 sensitivity). The abscisic acid content of leaves was correlated with water content only within narrow limits, if at all. At equal water contents, prechilled leaves contained more abscisic acid than leaves of plants pretreated in the warm chamber. There appear to be at least two compartments for abscisic acid in the leaf. PMID:16659416

  10. Optimization of the pretreatment of Prosopis nigra sawdust for the production of fermentable sugars

    Directory of Open Access Journals (Sweden)

    Eliana P. Dagnino

    2013-02-01

    Full Text Available The black carob tree (Prosopis nigra is a particularly valued species in Chaco, Argentina on account of its hard wood. Finding a use for the sawdust, the main industrial residue of wood, could be useful within the furniture industry of any country in the tropics seeking to apply the biorefinery concept. For the conversion of wood carbohydrates to bioethanol, a pretreatment stage is necessary. The objective of this work was to find the acid pretreatment conditions that maximize the extraction of xylose with minimum degradation, while maximizing the concentration of glucans in the pretreated solid to obtain better enzymatic accessibility, using black carob tree sawdust as the raw material. The optimization was carried out by use of a central composite design (CCD with two independent variables: the concentration of the sulfuric acid solution and the heating time. Optimal enzymatic hydrolysis occurred at the mean values of the tested acid solution concentration (1.2% and after shorter heating times (10.2 min. The concentration of sugars after the enzymatic hydrolysis of the pretreated solid over a time period of 72 h was three times higher than the untreated solid.

  11. The effect of varying organosolv pretreatment chemicals on the physicochemical properties and cellulolytic hydrolysis of mountain pine beetle-killed lodgepole pine.

    Science.gov (United States)

    Del Rio, Luis F; Chandra, Richard P; Saddler, Jack N

    2010-05-01

    Mountain pine beetle-killed lodgepole pine (Pinus contorta) chips were pretreated using the organosolv process, and their ease of subsequent enzymatic hydrolysis was assessed. The effect of varying pretreatment chemicals and solvents on the substrate's physicochemical characteristics was also investigated. The chemicals employed were MgCl2, H2SO4, SO2, and NaOH, and the solvents were ethanol and butanol. It was apparent that the different pretreatments resulted in variations in both the chemical composition of the solid and liquid fractions as well in the extent of cellulolytic hydrolysis (ranging from 21% to 82% hydrolysis after 12 h). Pretreatment under acidic conditions resulted in substrates that were readily hydrolyzed despite the apparent contradiction that pretreatment under alkaline conditions resulted in increased delignification (approximately 7% and 10% residual lignin for alkaline conditions versus 17% to 19% for acidic conditions). Acidic pretreatments also resulted in lower cellulose degree of polymerization, shorter fiber lengths, and increased substrate porosity. The substrates generated when butanol/water mixtures were used as the pretreatment solvent were also hydrolyzed more readily than those generated with ethanol/water. This was likely due to the limited miscibility of the solvents resulting in an increased concentration of pretreatment chemicals in the aqueous layer and thus a higher pretreatment severity.

  12. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry.

    Science.gov (United States)

    Satapanajaru, Tunlawit; Anurakpongsatorn, Patana; Pengthamkeerati, Patthra

    2006-01-01

    The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v-1) to treat 0.014 mM (5 mgL-1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d-1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg-1) was incubated with 5% (wt v-1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.

  13. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer.

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J

    2009-07-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27+/-5.22, 21.18+/-10.94, and 18.34+/-14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39+/-5.35, 6.23+/-3.84, and 35.37+/-29.42. Both GC-MS and iTRAQ-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.

  14. Sample pretreatment for the determination of metal impurities in silicon wafer

    International Nuclear Information System (INIS)

    Chung, H. Y.; Kim, Y. H.; Yoo, H. D.; Lee, S. H.

    1999-01-01

    The analytical results obtained by microwave digestion and acid digestion methods for sample pretreatment to determine metal impurities in silicon wafer by inductively coupled plasma--mass spectrometry(ICP-MS) were compared. In order to decompose the silicon wafer, a mixed solution of HNO 3 and HF was added to the sample and the metal elements were determined after removing the silicon matrix by evaporating silicon in the form of Si-F. The recovery percentages of Ni, Cr and Fe were found to be 95∼106% for both microwave digestion and acid digestion methods. The recovery percentage of Cu obtained by the acid digestion method was higher than that obtained by the microwave digestion method. For Zn, however, the microwave digestion method gave better result than the acid digestion method. Fe was added to a silicon wafer using a spin coater. The concentration of Fe in this sample was determined by ICP-MS, and the same results were obtained in the two pretreatment methods

  15. Adsorption of cellulases onto sugar beet shreds and modeling of the experimental data

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This study investigated the adsorption of cellulases onto sugar beet shreds. The experiments were carried out using untreated, as well as dried and not dried dilute acid and steam pretreated sugar beet shreds at different initial enzyme loads. Both dilute acid and steam pretreatment were beneficial in respect of cellulases adsorption providing 8 and 9 times higher amounts of adsorbed proteins, respectively, in comparison to the results obtained with the untreated substrate. Although the use of higher solids load enabled by drying of pretreated substrates, could be beneficial for process productivity, at the same time it decreases the adsorption of enzymes. The obtained experimental data were fitted to five adsorption models, and the Langmuir model having the lowest residual sum of squares was used for the determination of adsorption parameters which were used to calculate the strength of cellulases binding to the substrates.[Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  16. Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures.

    Science.gov (United States)

    Viell, Jörn; Inouye, Hideyo; Szekely, Noemi K; Frielinghaus, Henrich; Marks, Caroline; Wang, Yumei; Anders, Nico; Spiess, Antje C; Makowski, Lee

    2016-01-01

    The valorization of biomass for chemicals and fuels requires efficient pretreatment. One effective strategy involves the pretreatment with ionic liquids which enables enzymatic saccharification of wood within a few hours under mild conditions. This pretreatment strategy is, however, limited by water and the ionic liquids are rather expensive. The scarce understanding of the involved effects, however, challenges the design of alternative pretreatment concepts. This work investigates the multi length-scale effects of pretreatment of wood in 1-ethyl-3-methylimidazolium acetate (EMIMAc) in mixtures with water using spectroscopy, X-ray and neutron scattering. The structure of beech wood is disintegrated in EMIMAc/water mixtures with a water content up to 8.6 wt%. Above 10.7 wt%, the pretreated wood is not disintegrated, but still much better digested enzymatically compared to native wood. In both regimes, component analysis of the solid after pretreatment shows an extraction of few percent of lignin and hemicellulose. In concentrated EMIMAc, xylan is extracted more efficiently and lignin is defunctionalized. Corresponding to the disintegration at macroscopic scale, SANS and XRD show isotropy and a loss of crystallinity in the pretreated wood, but without distinct reflections of type II cellulose. Hence, the microfibril assembly is decrystallized into rather amorphous cellulose within the cell wall. The molecular and structural changes elucidate the processes of wood pretreatment in EMIMAc/water mixtures. In the aqueous regime with >10.7 wt% water in EMIMAc, xyloglucan and lignin moieties are extracted, which leads to coalescence of fibrillary cellulose structures. Dilute EMIMAc/water mixtures thus resemble established aqueous pretreatment concepts. In concentrated EMIMAc, the swelling due to decrystallinization of cellulose, dissolution of cross-linking xylan, and defunctionalization of lignin releases the mechanical stress to result in macroscopic disintegration of

  17. Effectiveness of different pre-treatments in recovering pre-burial isotopic ratios of charred plants.

    Science.gov (United States)

    Brinkkemper, O; Braadbaart, F; van Os, B; van Hoesel, A; van Brussel, A A N; Fernandes, R

    2018-02-15

    Isotopic analysis of archaeological charred plant remains offers useful archaeological information. However, adequate sample pre-treatment protocols may be necessary to provide a contamination-free isotopic signal while limiting sample loss and achieving a high throughput. Under these constraints, research was undertaken to compare the performance of different pre-treatment protocols. Charred archaeological plant material was selected for isotopic analysis (δ 13 C and δ 15 N values) by isotope ratio mass spectrometry from a variety of plant species, time periods and soil conditions. Preservation conditions and the effectiveness of cleaning protocols were assessed through Fourier transform infrared spectroscopy and X-ray fluorescence (XRF) spectrometry. An acid-base-acid protocol, successfully employed in radiocarbon dating, was used to define a contamination-free isotopic reference. Acid-base-acid isotopic measurements were compared with those obtained from untreated material and an acid-only protocol. The isotopic signals of untreated material and the acid-only protocol typically did not differ more than 1‰ from those of the acid-base-acid reference. There were no significant isotopic offsets between acid-base-acid and acid-only or untreated samples. Sample losses in the acid-base-acid protocol were on average 50 ± 17% (maximum = 98.4%). Elemental XRF measurements showed promising results in the detection of more contaminated samples albeit with a high rate of false positives. For the large range of preservation conditions described in the study, untreated charred plant samples, water cleaned of sediments, provide reliable stable isotope ratios of carbon and nitrogen. The use of pre-treatments may be necessary under different preservation conditions or more conservative measurement uncertainties should be reported. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment.

    Science.gov (United States)

    Song, Younho; Wi, Seung Gon; Kim, Ho Myeong; Bae, Hyeun-Jong

    2016-08-01

    Jerusalem artichoke (JA) is recognized as a suitable candidate biomass crop for bioethanol production because it has a rapid growth rate and high biomass productivity. In this study, hydrogen peroxide-acetic acid (HPAC) pretreatment was used to enhance the enzymatic hydrolysis and to effectively remove the lignin of JA. With optimized enzyme doses, synergy was observed from the combination of three different enzymes (RUT-C30, pectinase, and xylanase) which provided a conversion rate was approximately 30% higher than the rate with from treatment with RUT-C30 alone. Fermentation of the JA hydrolyzates by Saccharomyces cerevisiae produced a fermentation yield of approximately 84%. Therefore, Jerusalem artichoke has potential as a bioenergy crop for bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies.

    Science.gov (United States)

    Gurram, Raghu N; Datta, Saurav; Lin, Yupo J; Snyder, Seth W; Menkhaus, Todd J

    2011-09-01

    Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw.

    Science.gov (United States)

    Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto

    2017-07-01

    A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao (China); Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Zhu, J. Y., E-mail: jzhu@fs.fed.us; Gleisner, Roland [Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Qiu, Xueqing [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Horn, Eric [BioPulping International, Inc., Madison, WI (United States)

    2015-04-27

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L{sup -1} with a yield of 247 L tonne wood{sup -1} was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  2. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    Science.gov (United States)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment

    OpenAIRE

    Martín, Carlos; Wei, Maogui; Xiong, Shaojun; Jönsson, Leif J.

    2017-01-01

    Chemical characterization of cassava stems from different origin revealed that glucans accounted for 54-63% of the dry weight, whereas 35-67% of these glucans consisted of starch. The cassava stems were subjected to a saccharification study including starch hydrolysis, pretreatment with either sulfuric acid or 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), and enzymatic hydrolysis of cellulose. Starch hydrolysis prior to pretreatment decreased sugar degradation, improved enzymatic convertib...

  4. The Effect of Pretreatments on Surfactin Production From Potato Process Effluent by Bacillus Subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    2000-05-01

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  5. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  6. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    International Nuclear Information System (INIS)

    Duarte, C.L.; Ribeiro, M.A.; Oikawa, H.; Mori, M.N.; Napolitano, C.M.; Galvão, C.A.

    2012-01-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH. - Highlights: ► We study the enzymatic hydrolysis of cellulose and hemicellulose in sugarcane bagasse. ► We study the combination of three pretreatments: electron beam processing, EBP followed by hydrothermal and by diluted acid treatment. ► The electron beam processing increased the enzymatic hydrolysis from 8% to 15% with 20 kGy. ► The enzymes used were commercial preparations, as Celluclast 1.5 L and β-glycosidase. ► The EBP with 50 kGy increased on 20% the yield of EH of cellulose after TH and 30% after AH.

  7. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    Directory of Open Access Journals (Sweden)

    Yuyan An

    Full Text Available 5-aminolevulinic acid (ALA, a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn. plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC, and reduced leaf superoxide anion ([Formula: see text] production rate and malonaldehyde (MDA content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD and peroxidase (POD, root vigor, and activities of root alcohol dehydrogenase (ADH, and lactate dehydrogenase (LDH, indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  8. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  9. Brewing Bokashi: Strengthening Student Skills in Dilution Theory through Fermentation Analysis

    Directory of Open Access Journals (Sweden)

    Robert E. Zdor

    2016-05-01

    Full Text Available One of the basic microbiological techniques that students should master is that of using dilution theory to calculate the levels of bacteria in a fluid. This tip reports on using a rice water-milk fermentation mixture termed Bokashi as an easily implemented exercise in the basic microbiological lab to give students multiple opportunities to use dilution theory. Due to the shifts in bacterial community composition over time, a variety of microbes can be cultured using selective and nonselective media. Microscopic observation and the use of GEN III microplates to determine the collective phenotypic pattern of the mixture both give additional opportunities for students to hone their skills in bacterial analysis. Due to the decrease in the pH of the mixture over time, the notion of acid tolerance in bacteria can be explored and assessed using the microplate. By performing multiple rounds of serial dilutions and spread plating, students can practice their skill at using dilution theory several times over the course of the exercise.

  10. Urine pretreatment for waste water processing systems. [for space station

    Science.gov (United States)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  11. Multistage dilute acid leaching of a medium grade iron ore to super-concentrate

    Directory of Open Access Journals (Sweden)

    Adeleke A.A.

    2014-01-01

    Full Text Available The phosphorous laden Koton Karfe iron ore is a medium grade iron ore deposit in Nigeria that can be upgraded as a super-concentrate for use at the Aladja Steel Midrex plant. The 75 μm size sample fraction of the ore was preconcentrated with shaking table and leached in the oven at atmospheric pressure with dilute hydrochloric acid in single and multistage leaching sequences of H2O-HCl-H2O and HCl-H2O-H2O. The as-received, as-tabled and asleached samples were then subjected to X-ray fluorescence and microscopic analyses. The results obtained showed that the H2O-HCl-H2O route produced a higher grade concentrate that assayed 68.54% Fe indicating about 58% upgrade in iron content; while the phosphorus and sulphur contents were reduced by about 77 and 99.6% respectively. In addition, the silicon, manganese, and titanium contents were drastically reduced, while potassium was completely eliminated. The upgrade of iron content in the ore to 68.54% and the drastic reduction in phosphorous and sulphur contents has thus rendered the Koton Karfe iron ore suitable for use as a super concentrate for the Aladja steel plant direct reduction iron making process.

  12. Molecular analysis of two mouse dilute locus deletion mutations: Spontaneous dilute lethal20J and radiation-induced dilute prenatal lethal Aa2 alleles

    International Nuclear Information System (INIS)

    Strobel, M.C.; Seperack, P.K.; Copeland, N.G.; Jenkins, N.A.

    1990-01-01

    The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit

  13. Radiation pretreatment of cellulose for energy production

    Science.gov (United States)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  14. Radiation pretreatment of cellulose for energy production

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Dela Mines, A.S.; Banzon, R.B.; Simbul-Nuguid, Z.F.

    1983-01-01

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulose material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism. (author)

  15. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    Science.gov (United States)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2017-10-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  16. What infusion flow should be used for mid-dilution hemodiafiltration?

    Science.gov (United States)

    Maduell, Francisco; Arias, Marta; Fontseré, Néstor; Vera, Manel; Masso, Elisabeth; Garro, Julia; Barros, Xoana; Martina, Maria N; Elena, Montserrat; Bergadá, Eduardo; Cases, Aleix; Bedini, Jose Luis; Campistol, Josep M

    2010-01-01

    There is still no consensus on the optimal infusion flow (Qi) in mid-dilution hemodiafiltration. The aim of this study was to compare mid-dilution with varying Qi. Prospective study in 25 patients who underwent seven hemodialysis sessions with a Qi of 0, 50, 100, 150, 200, 250 and 300 ml/min. All sessions were well tolerated except Qi 300 ml/min. No significant differences in urea, creatinine, alpha(1)-microglobulin or alpha(1)-acid glycoprotein reduction ratios were observed. beta(2)-Microglobulin, myoglobin and prolactin reduction ratios were higher with Qi 150, 200, 250 and 300 ml/min in comparison with Qi of 0, 50 and 100 ml/min. There were no differences in the removal of small or larger molecules when Qi was 150 ml/min or higher. Optimal Qi in mid-dilution appears to be in the range of 150-250 ml/min since good clinical outcomes, similar efficiency and no technical complications up to a Qi of 250 ml/min were observed.

  17. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    International Nuclear Information System (INIS)

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-01-01

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process

  18. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Qi, Yingying [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108 (China); Zhang, Fu-Shen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  19. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production.

    Science.gov (United States)

    Pellera, Frantseska-Maria; Gidarakos, Evangelos

    2018-01-01

    This study investigates the effect of different chemical pretreatments on the solubilization and the degradability of different solid agroindustrial waste, namely winery waste, cotton gin waste, olive pomace and juice industry waste. Eight different reagents were investigated, i.e. sodium hydroxide (NaOH), sodium bicarbonate (NaHCO 3 ), sodium chloride (NaCl), citric acid (H 3 Cit), acetic acid (AcOH), hydrogen peroxide (H 2 O 2 ), acetone (Me 2 CO) and ethanol (EtOH), under three condition sets resulting in treatments of varying intensity, depending on process duration, reagent dosage and temperature. Results indicated that chemical pretreatment under more severe conditions is more effective on the solubilization of lignocellulosic substrates, such as those of the present study and among the investigated reagents, H 3 Cit, H 2 O 2 and EtOH appeared to be the most effective to this regard. At the same time, although chemical pretreatment in general did not improve the methane potential of the substrates, moderate to high severity conditions were found to generally be the most satisfactory in terms of methane production from pretreated materials. In fact, moderate severity treatments using EtOH for winery waste, H 3 Cit for olive pomace and H 2 O 2 for juice industry waste and a high severity treatment with EtOH for cotton gin waste, resulted in maximum specific methane yield values. Ultimately, the impact of pretreatment parameters on the different substrates seems to be dependent on their characteristics, in combination with the specific mode of action of each reagent. The overall energy balance of such a system could probably be improved by using lower operating powers and higher solid to liquid ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method.

    Science.gov (United States)

    Lewandowska, Małgorzata; Szymańska, Karolina; Kordala, Natalia; Dąbrowska, Aneta; Bednarski, Włodzimierz; Juszczuk, Andrzej

    2016-07-01

    Rape straw and Miscanthus giganteus was pretreated chemically with oxalic acid or sodium hydroxide. The pretreated substrates were hydrolyzed with enzymatic preparations of cellulase, xylanase and cellobiase. The highest concentration of reducing sugars was achieved after hydrolysis of M. giganteus pretreated with NaOH (51.53gdm(-3)). In turn, the highest yield of enzymatic hydrolysis determined based on polysaccharides content in the pretreated substrates was obtained in the experiments with M. giganteus and oxalic acid (99.3%). Rape straw and M. giganteus hydrolysates were fermented using yeast Saccharomyces cerevisiae 7, NRRL 978 or filamentous fungus Mucor rouxii (Mucor indicus) DSM 1191. The highest ethanol concentration was determined after fermentation of M. giganteus hydrolysate pretreated with NaOH using S. cerevisiae (1.92% v/v). Considering cellulose content in the pretreated solid, the highest degree of its conversion to ethanol (86.2%) was achieved after fermentation of the hydrolysate of acid-treated M. giganteus using S. cerevisiae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hybridizing pines with diluted pollen

    Science.gov (United States)

    Robert Z. Callaham

    1967-01-01

    Diluted pollens would have many uses by the tree breeder. Dilutions would be particularly advantageous in making many controlled pollinations with a limited amount of pollen. They also would be useful in artificial mass pollinations of orchards or single trees. Diluted pollens might help overcome troublesome genetic barriers to crossing. Feasibility o,f using diluted...

  2. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  3. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong Soo; Lee, Jong Hyuk; Lee, So Hee; Lee, Sun Kyung; Lee, Yoon Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2014-11-04

    Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c - Fos in the ipsilateral dorsal root ganglion. The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.

  4. Determination of the Thermodynamic Properties of Poly [2-(3-phenyl-3-methylcyclobutyl)-2-hydroxyethyl methacrylate-co-methacrylic acid] at Infinite Dilution by Inverse Gas Chromatography

    OpenAIRE

    KAYA, İsmet

    2014-01-01

    Some thermodynamic quantities were obtained for the interactions of poly [2-(3-phenyl -3- methylcyclobutyl)-2-hydroxyethyl methacrylate-co-methacrylic acid] Poly (PCHEMA-co-MA) with alcohols, ketones, acetates, aromatics and n-alkanes by inverse gas chromatography in the temperature range of 150-180oC. The specific retention volumes, Vgo, weight fraction activity coefficients of solute probes at infinite dilution, W1\\infty and Flory-Huggins thermodynamic interaction parameters, c12...

  5. Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L.; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J.

    2009-01-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ®-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27±5.22, 21.18±10.94, and 18.34±14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39±5.35, 6.23±3.84, and 35.37±29.42. Both GC-MS and iTRAQ®-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines. PMID:19481989

  6. Effects of Pretreatment of Single and Mixed Lignocellulosic Substrates on Production of Endoglucanase by Bacillus aerius S5.2

    Directory of Open Access Journals (Sweden)

    Mushafau Adebayo Oke

    2016-06-01

    Full Text Available A mixed substrate (MS comprising oil palm empty fruit bunch (EFB, oil palm frond (OPF, and rice husk (RH was evaluated for endoglucanase production by Bacillus aerius S5.2. Effects of sulphuric acid, sodium hydroxide, N-methylmorpholine-N-oxide (NMMO, and hydrothermal pretreatments on endoglucanase production were investigated. Endoglucanase production by B. aerius on the untreated (0.677 U/mL and pretreated MS (0.305 – 0.630 U/mL was generally similar, except that the acid (0.305 U/mL and hydrothermal (0.549 U/mL pretreatments that were more severe consequently produced significantly lower titres. Alkali pretreatment supported the highest enzyme production (0.630 U/mL among all pretreatments that were studied. When endoglucanase production on the alkali-pretreated MS and single substrates (SS was compared, alkali-pretreated EFB produced a titre (0.655 U/mL similar to the MS, and this was significantly higher than titres recorded on OPF (0.504 U/mL and RH (0.525 U/mL. Lower enzyme production was found to be consistent with higher pretreatment severity and greater removal of amorphous regions in all the pretreatments. Furthermore, combining the SS showed no adverse effects on endoglucanase production.

  7. High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs

    International Nuclear Information System (INIS)

    Lin, Liang-You; Wu, Yi-Shiuan; Chang, Chaun; Tseng, Fan-Gang

    2013-01-01

    In this paper, highly dense platinum (Pt) nanocatalysts were successfully deposited on the hydrophilically-treated nano/micro carbon supports with an ethanol (EtOH) immersion pretreatment and an acidic treatment for the performance improvement of methanol oxidation reaction (MOR). In order to thoroughly immerse the three-dimensional, interwoven structures of the carbon cloth fibers with a 6 M sulfuric acid surface modification, which increasing more oxygen-containing functional groups on the surfaces of the carbon supports, the EtOH immersion pretreatment of the carbon supports was utilized prior to the sulfuric acid treatment. Subsequently, Pt catalysts were reduced on the modified carbon supports by a homemade open-loop reduction system (OLRS) [1] For comparisons, carbon cloth (CC) and carbon nanotube on CC (CNT/CC) supports were employed with and without EtOH immersion pretreatments before Pt catalyst reduction. In the cyclic voltammetry (CV) curves, the electrosorption charges of hydrogen ion (Q H ) and the peak current density (I P ) of the fabricated Pt/CC and Pt/CNT/CC electrodes with the EtOH immersion pretreatments can efficiently be enhanced due to more active Pt sites for electrocatalytic reactions

  8. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  9. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  10. Furfural and ethanol production from corn stover by dilute phosphoric acid pretreatment

    Science.gov (United States)

    Lignocellulosic biomass is the most abundant carbohydrate source in the world and has potential for economical production of biofuels, especially ethanol. However, its composition is an obstacle for the production of ethanol by the conventional ethanol producing yeast Saccharomyces cerevisiae as it...

  11. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna

    2018-01-01

    in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10...

  12. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass

    NARCIS (Netherlands)

    Panagiotopoulos, I.; Bakker, R.; Vrije, de G.J.; Niel, van E.W.J.; Koukios, E.; Claassen, P.A.M.

    2011-01-01

    Four dilute-acid pretreated and hydrolysed lignocellulosic raw materials were evaluated as substrates for fermentative hydrogen production by Caldicellulosiruptor saccharolyticus. Their fermentability was ranked in the order: barley straw > wheat straw > corn stalk > corn cob. The content

  13. Can washing-pretreatment eliminate the health risk of municipal solid waste incineration fly ash reuse?

    Science.gov (United States)

    Wang, Yao; Pan, Yun; Zhang, Lingen; Yue, Yang; Zhou, Jizhi; Xu, Yunfeng; Qian, Guangren

    2015-01-01

    Although the reuse of washing-pretreated MSWI fly ash bas been a hot topic, the associated risk is still an issue of great concern. The present study investigated the influence of washing-pretreatment on the total contents and bioaccessibility of heavy metals in MSWI fly ash. Furthermore, the study incorporated bioaccessibility adjustment into probabilistic risk assessment, to quantify the health risk from multi-pathway exposure to the concerned chemicals as a result of reusing washed MSWI fly ash. The results revealed that both water-washing and acid-washing process have resulted in the concentrated heavy metal content, and have reduced the bioaccessibility of heavy metals. Besides, the acid-washing process increased the cancer risk in most cases, while the effect of water-washing process was uncertain. However, both water-washing and acid-washing pretreatment could decrease the hazard index based on bioaccesilbility. Despite the uncertainties accompanying these procedures, the results indicated that, in this application scenario, only water-washing or acid-washing process cannot reduce the actual risk from all samples to acceptable level, especially for cancer risk. Copyright © 2014. Published by Elsevier Inc.

  14. An on-line dilution system for spectrometry using an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Moore, G.L.; Watson, A.E.; Humphries-Cuff, P.J.

    1982-01-01

    An on-line dilution system that uses a two-channel peristaltic pump to feed a GMK Babington type of nebulizer is described. By the use of a diluent containing the appropriate concentrations of acid, sodium, and internal standard element, which was fed at a constant rate to the nebulizer, the system produced analytical results that are not significantly different (less than 3 per cent relative) from those obtained with the normal dilution technique. However, a considerable saving in time is achieved, as well as a saving in the use of expensive reagents

  15. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  16. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  17. 1-Butyl-3-Methylimidazolium Chloride Pretreatment on Malaysia Lignocellulose Wastes

    International Nuclear Information System (INIS)

    Lee, L.P.; Nur Hasyareeda Hassan; Muhammad Rahimi Yusop

    2015-01-01

    Ionic liquids (ILs) are of great interest as potential solvents for the production of fuels from lignocellulose biomass which is a potential source of bio fuels. To study the effects of pretreatment, 1-butyl-3-methylimidazolium chloride ([B mim]Cl) was used to pretreat woody plants, kempas (Koompassia malaccensis) and jelutong (Dyera costulata), and non-woody plants, kenaf (Hibiscus cannabinus) and rice husk (Oryza sativa) at 120 degree Celsius for 24 h. Cellulose was regenerated by the addition of water. The cell wall composition and structure of the lignocellulose bio masses before and after the ILs pretreatment were observed and characterized using field emission scanning electron microscopy (FESEM), attenuated total reflectance fourier transform infrared (ATR FT-IR) spectroscopy, and X-ray diffraction (XRD). After the pretreatment, enzymatic hydrolysis was carried out to identify the total reducing sugars (TRS) yields using dinitrosalicylic acid (DNS) method. Regenerated lignocellulose bio masses resulted in high TRS yields compared to their counter-parts which are in agreement with the findings of FESEM, ATR FT-IR and XRD that exhibited regenerated cellulose were less crystalline and more amorphous upon IL pretreatment. Therefore, kempas and jelutong can be alternate sources for the bio fuels production. (author)

  18. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    Science.gov (United States)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  19. Bias due to Preanalytical Dilution of Rodent Serum for Biochemical Analysis on the Siemens Dimension Xpand Plus

    Directory of Open Access Journals (Sweden)

    Jennifer L. Johns

    2018-02-01

    Full Text Available Clinical pathology testing of rodents is often challenging due to insufficient sample volume. One solution in clinical veterinary and exploratory research environments is dilution of samples prior to analysis. However, published information on the impact of preanalytical sample dilution on rodent biochemical data is incomplete. The objective of this study was to evaluate the effects of preanalytical sample dilution on biochemical analysis of mouse and rat serum samples utilizing the Siemens Dimension Xpand Plus. Rats were obtained from end of study research projects. Mice were obtained from sentinel testing programs. For both, whole blood was collected via terminal cardiocentesis into empty tubes and serum was harvested. Biochemical parameters were measured on fresh and thawed frozen samples run straight and at dilution factors 2–10. Dilutions were performed manually, utilizing either ultrapure water or enzyme diluent per manufacturer recommendations. All diluted samples were generated directly from the undiluted sample. Preanalytical dilution caused clinically unacceptable bias in most analytes at dilution factors four and above. Dilution-induced bias in total calcium, creatinine, total bilirubin, and uric acid was considered unacceptable with any degree of dilution, based on the more conservative of two definitions of acceptability. Dilution often caused electrolyte values to fall below assay range precluding evaluation of bias. Dilution-induced bias occurred in most biochemical parameters to varying degrees and may render dilution unacceptable in the exploratory research and clinical veterinary environments. Additionally, differences between results obtained at different dilution factors may confound statistical comparisons in research settings. Comparison of data obtained at a single dilution factor is highly recommended.

  20. Determination of gamma-aminobutyric acid in food matrices by isotope dilution hydrophilic interaction chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Zazzeroni, Raniero; Homan, Andrew; Thain, Emma

    2009-08-01

    The estimation of the dietary intake of gamma-aminobutyric acid (GABA) is dependent upon the knowledge of its concentration values in food matrices. To this end, an isotope dilution liquid chromatography-mass spectrometry method has been developed employing the hydrophilic interaction chromatography technique for analyte separation. This approach enabled accurate quantification of GABA in apple, potato, soybeans, and orange juice without the need of a pre- or post-column derivatization reaction. A selective and precise analytical measurement has been obtained with a triple quadrupole mass spectrometer operating in multiple reaction monitoring using the method of standard additions and GABA-d(6) as an internal standard. The concentrations of GABA found in the matrices tested are 7 microg/g of apple, 342 microg/g of potatoes, 211 microg/g of soybeans, and 344 microg/mL of orange juice.