WorldWideScience

Sample records for dihydropteroate synthetase gene

  1. The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics

    DEFF Research Database (Denmark)

    A-Elbasit, Ishraga E; Alifrangis, Michael; Khalil, Insaf F

    2007-01-01

    , contributed significantly to the clearance of parasites with multiple dhfr/dhps mutations. However, these mutations have a survival advantage as they were associated with increased gametocytogenesis. The above implications of dhfr/dhps mutations were associated with MOM 2 to 5, regardless of the gene...

  2. Prediction of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in vivo by mutations in the dihydrofolate reductase and dihydropteroate synthetase genes: a comparative study between sites of differing endemicity

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonja; Khalil, Insaf F

    2003-01-01

    in vivo. The prevalence of mutations in dhfr and dhps in relation to S/P efficacy was studied in four sites of differing endemicity in Sudan, Mozambique, and Tanzania. The sites were organized in order of increasing resistance and a significant increase in the prevalence of triple mutations in codons c51...... recently. However, changes in susceptibility within the same area with moderate levels of resistance may be possible by longitudinal surveillance of a subset of dhfr/dhps mutations that has been associated with S/P resistance in vivo in a defined location.......Plasmodium falciparum resistance to sulfadoxine/pyrimethamine (S/P) is due to mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhfr) genes. Large-scale screening of the prevalence of these mutations could facilitate the surveillance of the level of S/P resistance...

  3. Inhibition of Dihydropteroate Synthetase from Escherichia coli by Sulfones and Sulfonamides

    Science.gov (United States)

    McCullough, Jerry L.; Maren, Thomas H.

    1973-01-01

    The inhibitory action of various diphenylsulfones and sulfonamides on dihydropteroate synthetase partially purified from Escherichia coli was examined. 4,4′-Diaminodiphenylsulfone (DDS; I50 = 2 × 10−5 M) and the monosubstituted derivatives 4-amino-4′-formamidodiphenylsulfone (I50 = 5.8 × 10−5 M) and 4-amino-4′-acetamidodiphenylsulfone (I50 = 5.2 × 10−5 M) were effective inhibitors of dihydropteroate synthetase activity. Disubstitution of the arylamine groups of DDS (4,4′-diformamidodiphenylsulfone and 4,4′-diacetamidodiphenylsulfone) resulted in complete loss of inhibitory activity. Both DDS (KI = 5.9 × 10−6 M) and sulfadiazine (KI = 2.5 × 10−6 M) were found to be competitive inhibitors of dihydropteroate synthetase. These findings are discussed in regard to the Bell and Roblin theory of structure-activity relationships for p-aminobenzoic acid antagonists. PMID:4597736

  4. Island-wide diversity in single nucleotide polymorphisms of the Plasmodium vivax dihydrofolate reductase and dihydropteroate synthetase genes in Sri Lanka

    DEFF Research Database (Denmark)

    Schousboe, Mette L; Rajakaruna, Rupika S; Salanti, Ali

    2007-01-01

    into the level of drug pressure caused by SP use and presumably other antifolate drugs. In Sri Lanka, chloroquine (CQ) with primaquine (PQ) and SP with PQ is used as first and second line treatment, respectively, against uncomplicated Plasmodium falciparum and/or P. vivax infections. CQ/PQ is still efficacious...... against P. vivax infections, thus SP is rarely used and it is assumed that the prevalence of SNPs related to P. vivax SP resistance is low. However, this has not been assessed in Sri Lanka as in most other parts of Asia. This study describes the prevalence and distribution of SNPs related to P. vivax SP...... resistance across Sri Lanka. SUBJECTS AND METHODS: P. vivax-positive samples were collected from subjects presenting at government health facilities across nine of the major malaria endemic districts on the island. The samples were analysed for SNPs/haplotypes at codon 57, 58, 61 and 117 of the Pvdhfr gene...

  5. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti

    Directory of Open Access Journals (Sweden)

    Carter Tamar E

    2012-08-01

    Full Text Available Abstract Background Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR and sulphadoxine (SDX treatment combination (SP, have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr and dihydropteroate synthetase (dhps genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. Methods DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Results Thirty-three percent (20/61 of the samples carried a mutation at codon 108 (S108N of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540 examined. No significant difference was observed between samples collected in urban vs rural sites (Welch’s T-test p-value = 0.53 and permutations p-value = 0.59. Conclusion This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These

  6. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti.

    Science.gov (United States)

    Carter, Tamar E; Warner, Megan; Mulligan, Connie J; Existe, Alexander; Victor, Yves S; Memnon, Gladys; Boncy, Jacques; Oscar, Roland; Fukuda, Mark M; Okech, Bernard A

    2012-08-13

    Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch's T-test p-value = 0.53 and permutations p-value = 0.59). This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important implications for ongoing discussions on

  7. Mutations in the dihydropteroate synthase gene of Pneumocystis jiroveci isolates from Portuguese patients with Pneumocystis pneumonia

    DEFF Research Database (Denmark)

    Costa, M C; Helweg-Larsen, J; Lundgren, Bettina

    2003-01-01

    The aim of this study was to evaluate the frequency of mutations of the P. jiroveci dihydropteroate synthase (DHPS) gene in an immunocompromised Portuguese population and to investigate the possible association between DHPS mutations and sulpha exposure. In the studied population, DHPS gene mutat...

  8. Frequencies distribution of dihydrofolate reductase and dihydropteroate synthetase mutant alleles associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum population from Hadhramout Governorate, Yemen.

    Science.gov (United States)

    Bamaga, Omar A A; Mahdy, Mohammed A K; Lim, Yvonne A L

    2015-12-22

    Malaria in Yemen is mainly caused by Plasmodium falciparum and 25% of the population is at high risk. Sulfadoxine-pyrimethamine (SP) had been used as monotherapy against P. falciparum. Emergence of chloroquine resistance led to the shift in anti-malarial treatment policy in Yemen to artemisinin-based combination therapy, that is artesunate (AS) plus SP as first-line therapy for uncomplicated malaria and artemether-lumefantrine as second-line treatment. This study aimed to screen mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes associated with SP resistance among P. falciparum population in Hadhramout governorate, Yemen. Genomic DNA was extracted from dried blood spots of 137 P. falciparum isolates collected from a community-based study. DNA was amplified using nested polymerase chain reaction (PCR) and subsequently sequenced for Pfdhfr and Pfdhps genes. Sequences were analysed for mutations in Pfdhfr gene codons 51, 59, 108, and 164 and in Pfdhps gene codons 436, 437, and 540. A total of 128 and 114 P. falciparum isolates were successfully sequenced for Pfdhfr and Pfdhps genes, respectively. Each Pfdhfr mutant allele (I51 and N108) in P. falciparum population had a frequency of 84%. Pfdhfr R59 mutant allele was detected in one isolate. Mutation at codon 437 (G437) in the Pfdhps gene was detected in 44.7% of falciparum malaria isolates. Frequencies of Pfdhfr double mutant genotype (I51C59N108I164) and Pfdhfr/Pfdhps triple mutant genotype (I51C59N108I164-S436G437K540) were 82.8 and 39.3%, respectively. One isolate harboured Pfdhfr triple mutant genotype (I51, R59, N108, I164) and Pfdhfr/Pfdhps quadruple mutant genotype (I51R59N108I164-S436G437K540). High frequencies of Pfdhfr and Pfdhps mutant alleles and genotypes in P. falciparum population in Hadhramout, Yemen, highlight the risk of developing resistance for SP, the partner drug of AS, which subsequently will expose the parasite to AS monotherapy increasing then the

  9. Mutations in the dihydropteroate synthase gene of Pneumocystis jiroveci isolates from Portuguese patients with Pneumocystis pneumonia

    DEFF Research Database (Denmark)

    Costa, M C; Helweg-Larsen, J; Lundgren, Bettina

    2003-01-01

    The aim of this study was to evaluate the frequency of mutations of the P. jiroveci dihydropteroate synthase (DHPS) gene in an immunocompromised Portuguese population and to investigate the possible association between DHPS mutations and sulpha exposure. In the studied population, DHPS gene...... mutations were not significantly more frequent in patients exposed to sulpha drugs compared with patients not exposed (P=0.390). The results of this study suggest that DHPS gene mutations are frequent in the Portuguese immunocompromised population but do not seem associated with previous sulpha exposure...

  10. Mutational analysis of Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in the interior division of Sabah, Malaysia.

    Science.gov (United States)

    Lau, Tiek Ying; Sylvi, Mersumpin; William, Timothy

    2013-12-10

    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo. A total of 22 P. falciparum single infection isolates collected from two districts of the interior division of Sabah from February to November 2010 were recruited for the mutational study of pfdhfr and pfdhps. Both genes were amplified by nested PCR prior to DNA sequencing and mutational analysis. A total of three pfdhfr and four pfdhps alleles were identified. The most prevalent pfdhfr allele is ANRNL (86%) involving triple mutation at position 108(S to N), 59(C to R) and 164(I to L). In pfdhps, two novel alleles, SGTGA (73%) and AAKAA (5%) were identified. Alleles involving triple mutation in both pfdhfr (ANRNL) and pfdhps (SGTGA), which were absent in Sabah in a study conducted about 15 years ago, are now prevalent. High prevalence of mutations in SDX/PYR associated drug resistance genes are reported in this study. This mutational study of pfdhps and pfdhfr indicating that SDX/PYR should be discontinued in this region.

  11. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Benfield, Thomas; Eugen-Olsen, J

    1999-01-01

    Sulpha drugs are widely used for the treatment and long-term prophylaxis of Pneumocystis carinii pneumonia (PCP) in HIV-1-infected individuals. Sulpha resistance in many microorganisms is caused by point mutations in dihydropteroate synthase (DHPS), an enzyme that is essential for folate biosynth......Sulpha drugs are widely used for the treatment and long-term prophylaxis of Pneumocystis carinii pneumonia (PCP) in HIV-1-infected individuals. Sulpha resistance in many microorganisms is caused by point mutations in dihydropteroate synthase (DHPS), an enzyme that is essential for folate...

  12. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Benfield, Thomas; Eugen-Olsen, Jesper

    1999-01-01

    BACKGROUND: Sulpha drugs are widely used for the treatment and long-term prophylaxis of Pneumocystis carinii pneumonia (PCP) in HIV-1-infected individuals. Sulpha resistance in many microorganisms is caused by point mutations in dihydropteroate synthase (DHPS), an enzyme that is essential...

  13. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Benfield, Thomas; Eugen-Olsen, J

    1999-01-01

    Sulpha drugs are widely used for the treatment and long-term prophylaxis of Pneumocystis carinii pneumonia (PCP) in HIV-1-infected individuals. Sulpha resistance in many microorganisms is caused by point mutations in dihydropteroate synthase (DHPS), an enzyme that is essential for folate biosynth...

  14. The glutamine synthetase gene family in Populus

    Directory of Open Access Journals (Sweden)

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  15. SCREENING OF ANTIMICROBIAL ACTIVITY AND GENES CODING POLYKETIDE SYNTHETASE AND NONRIBOSOMAL PEPTIDE SYNTHETASE OF ACTINOMYCETE ISOLATES

    Directory of Open Access Journals (Sweden)

    Silvia Kovácsová

    2013-12-01

    Full Text Available The aim of this study was to observe antimicrobial activity using agar plate diffusion method and screening genes coding polyketide synthetase (PKS-I and nonribosomal peptide synthetase (NRPS from actinomycetes. A total of 105 actinomycete strains were isolated from arable soil. Antimicrobial activity was demonstrated at 54 strains against at least 1 of total 12 indicator organisms. Antifungal properties were recorded more often than antibacterial properties. The presence of PKS-I and NRPS genes were founded at 61 of total 105 strains. The number of strains with mentioned biosynthetic enzyme gene fragments matching the anticipated length were 19 (18% and 50 (47% respectively. Overall, five actinomycete strains carried all the biosynthetical genes, yet no antimicrobial activity was found against any of tested pathogens. On the other hand, twenty-one strains showed antimicrobial activity even though we were not able to amplify any of the PKS or NRPS genes from them. Combination of the two methods showed broad-spectrum antimicrobial activity of actinomycetes isolated from arable soil, which indicate that actinomycetes are valuable reservoirs of novel bioactive compounds.

  16. Glutamine synthetase gene evolution: A good molecular clock

    International Nuclear Information System (INIS)

    Pesole, G.; Lanvave, C.; Saccone, C.; Bozzetti, M.P.; Preparata, G.

    1991-01-01

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves

  17. Rapid detection of dihydropteroate polymorphism in AIDS-related Pneumocystis carinii pneumonia by restriction fragment length polymorphism

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Eugen-Olsen, Jesper; Lundgren, B

    2000-01-01

    Sulpha agents, which act by inhibiting the enzyme dihydropteroate synthase (DHPS), are used widely for the treatment and prophylaxis of Pneumocystis carinii pneumonia (PCP). Recently, we have shown that mutations in the dihydropteroate synthase (DHPS) gene of Pneumocystis carinii f.sp hominis...

  18. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    Science.gov (United States)

    Pyne, C; Bognar, A L

    1992-03-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.

  19. Non-ribosomal peptide synthetases: Identifying the cryptic gene ...

    Indian Academy of Sciences (India)

    2017-01-19

    Jan 19, 2017 ... Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically impor- tant antibiotics and siderophores. Each of the multiple modules of an ...

  20. Non-ribosomal peptide synthetases: Identifying the cryptic gene ...

    Indian Academy of Sciences (India)

    Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are themajor multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically importantantibiotics and siderophores. Each of the multiple modules of an NRPS activates a ...

  1. Isolation and characterization of the rat glutamine synthetase-encoding gene

    NARCIS (Netherlands)

    van de Zande, L.; Labruyère, W. T.; Arnberg, A. C.; Wilson, R. H.; van den Bogaert, A. J.; Das, A. T.; van Oorschot, D. A.; Frijters, C.; Charles, R.; Moorman, A. F.

    1990-01-01

    From a rat genomic library in phage lambda Charon4A, a complete glutamine synthetase-encoding gene was isolated. The gene is 9.5-10 kb long, consists of seven exons, and codes for two mRNA species of 1375 nucleotides (nt) and 2787 nt, respectively. For both mRNAs, full-length cDNAs containing a

  2. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G.C.; Vaska, V.L.; Ford, J.H. [Queen Elizabeth Hospital, Woodville (Australia)] [and others

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  3. Valyl-tRNA synthetase gene of Escherichia coli K12: Molecular genetic characterization and homology within a family of aminoacyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Heck, J.D. III.

    1988-01-01

    This work reports the subcloning and characterization of the molecular elements necessary for the expression of the Escherichia coli valS gene encoding valyl-tRNA synthetase. The valS gene was subcloned from plasmid pLC26-22 by genetic complementation of a valS ts strain. The DNA region encoding the valS structural gene was determined by in vitro coupled transcription-translation assays. Cells transformed with a plasmid containing a full length copy of the valS gene enhanced in vivo valyl-tRNA synthetase specific activity twelve-fold. DNA sequences flanking the valS structural gene are presented. The transcription initiation sites of the valS gene were determined, in vivo and in vitro, by S1 nuclease protection studies, primer-extension analysis and both [α- 32 P]labeled and [γ- 32 P]end-labeled in vitro transcription assays. The DNA sequence of the valS gene of Escherichia coli has been determined. Significant similarity at the primary sequence level was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. An extended open reading frame (ORF) encoded on the DNA strand opposite the valS structural gene is described

  4. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.

    1986-01-01

    of ADP. The nucleotide sequence of the E. coli prs gene has been determined and the coding segment established. The deduced amino acid sequence of P-Rib-PP synthetase contained 314 amino acid residues and the molecular weight was calculated as 34,060. The initiation site of transcription was determined......Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...

  5. Increasing prevalence of wildtypes in the dihydrofolate reductase gene of Plasmodium falciparum in an area with high levels of sulfadoxine/pyrimethamine resistance after introduction of treated bed nets

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lemnge, Martha M; Rønn, Anita M

    2003-01-01

    In Magoda and Mpapayu villages in Tanzania, we have previously found comparable high prevalence of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine (S/P) in vivo and of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of P. falciparum respon...... than in Mpapayu in 2000. The impact of ITNs on the transmission intensity seems not only to affect the overall malaria morbidity, but may even facilitate restoration of susceptibility to antimalarial drugs....

  6. Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater.

    Directory of Open Access Journals (Sweden)

    Caroline Hoff-Risseti

    Full Text Available The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX, while cylindrospermopsin (CYN, which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.

  7. PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carter, Andrew T.; Beiche, Flora; Hove-Jensen, Bjarne

    1997-01-01

    In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(α)-pyrophosphate synthetases (PRS......) genetically and biochemically. Each of the four genes, all of which are transcribed, has been disrupted in haploid yeast strains of each mating type and although all disruptants are able to grow on complete medium, differences in growth rate and enzyme activity suggest that disruption of PRS1 or PRS3 has...

  8. Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene.

    Science.gov (United States)

    Meussen, Bas J; Weusthuis, Ruud A; Sanders, Johan P M; Graaff, Leo H de

    2012-02-01

    Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.

  9. Quick guide to polyketide synthase and nonribosomal synthetase genes in Fusarium

    DEFF Research Database (Denmark)

    Hansen, Jørgen T.; Sørensen, Jens L.; Giese, Henriette

    2012-01-01

    for future polyketide synthases (PKSs) and nonribosomal peptides synthetases (NRPSs) nomenclature assignment and classification. Sequence similarities of the adenylation and ketosynthase domain sequences were used to group the identified NRPS and PKS genes. We present the current state of knowledge of PKS......Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework...

  10. Purification and properties of the dihydrofolate synthetase from Serratia indica

    International Nuclear Information System (INIS)

    Ikeda, Masamichi; Iwai, Kazuo

    1976-01-01

    The dihydrofolate synthetase (EC6.3.2.12) responsible for catalyzing the synthesis of dihydrofolic acid from dihydropteroic acid and L-glutamic acid was purified about 130-fold from extracts of Serratia indica IFO 3759 by ammonium sulfate fractionation, DEAE-Sephadex column chromatography, Sephadex G-200 gel filtration, and DEAE-cellulose column chromatography. The enzyme preparation obtained was shown to be homogeneous by DEAE-cellulose column chromatography and ultracentrifugal analysis. The sedimentation coefficient of this enzyme was 3.9 S, and the molecular weight was determined to be about 47,000 by Sephadex G-100. The optimum pH for the reaction was 9.0. The enzymatic reaction required dihydropteroate, L-glutamate and ATP as substrates, and Mg 2+ and K + as cofactors. γ-L-Glutamyl-L-glutamic acid cannot replace L-glutamic acid as the substrate. Neither pteroic acid nor tetrahydropteroic acid can be used as the substrate. ATP was partially replaced by ITP or GTP. The enzyme reaction was inhibited by the addition of ADP, but not by AMP. One mole of dihydrofolate, 1 mole of ADP and 1 mole of orthophosphate were produced from each 1 mole of dihydropteroic acid, L-glutamic acid, and ATP. These results suggest that the systematic name for the dihydrofolate synthetase is 7,8-dihydropteroate: L-glutamate ligase (ADP). (auth.)

  11. Mapping hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase, in Escherichia coli.

    Science.gov (United States)

    Parker, J; Fishman, S E

    1979-01-01

    The structural gene for histidyl-tRNA synthetase was localized to 53.8 min on the Escherichia coli genome. The gene order in this region was determined to be dapE-purC-upp-purG-(guaA, guaB)-hisS-glyA. PMID:374370

  12. Mapping hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase, in Escherichia coli.

    Science.gov (United States)

    Parker, J; Fishman, S E

    1979-04-01

    The structural gene for histidyl-tRNA synthetase was localized to 53.8 min on the Escherichia coli genome. The gene order in this region was determined to be dapE-purC-upp-purG-(guaA, guaB)-hisS-glyA.

  13. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ute Hentschel

    2012-05-01

    Full Text Available Genomic mining revealed one major nonribosomal peptide synthetase (NRPS phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis.

  14. Nucleotide sequence and developmental expression of Acanthamoeba S-adenosylmethionine synthetase gene.

    Science.gov (United States)

    Ahn, K S; Henney, H R

    1997-03-20

    We have isolated and characterized a cDNA (cDNA1) from an Acanthamoeba cDNA library encoding the enzyme S-adenosylmethionine (SAM) synthetase (ATP: L-methionine S-adenosyltransferase; EC 2.5.1.6). The nucleotide sequence exhibits about 61-73% overall similarity to the corresponding gene of other organisms. The cDNA displays extreme codon bias with a preference for C or G in the third position. A putative initiation site and an ATP-binding site are identified. An amino acid content of 388 and a molecular mass of about 44,000 Daltons are deduced for the enzyme. Putative phosphorylation sites which might be involved in regulation of the enzyme are revealed. The cDNA was expressed in Escherichia coli BL21(DE3), and the identity of the protein product confirmed by Western blotting analysis. Northern analyses of the expression of the Acanthamoeba SAM synthetase gene during development revealed a pronounced reduction in the level of transcripts as amoebae converted to cysts.

  15. Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii.

    Science.gov (United States)

    Rodrigues, Fernando; Zeeman, Anne-Marie; Cardoso, Helena; Sousa, Maria João; Steensma, H Yde; Côrte-Real, Manuela; Leão, Cecília

    2004-03-01

    A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210-219) and RVDDVVNVSG (ScAcs1p; 574-583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1-0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells. Copyright 2004 John Wiley & Sons, Ltd.

  16. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Bernard, Stéphanie M.; Møller, Anders Laurell Blom; Dionisio, Giuseppe

    2008-01-01

    We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2...

  17. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    DEFF Research Database (Denmark)

    hart, Leen M; Hansen, Torben; Rietveld, Ingrid

    2005-01-01

    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase...... gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes. Direct sequencing of LARS2 cDNA from 25 type 2 diabetic subjects revealed eight single nucleotide polymorphisms. Two of the variants were examined in 7,836 subjects from four independent populations...... no significant differences in clinical variables between carriers and noncarriers. In this study, we provide evidence that the LARS2 gene may represent a novel type 2 diabetes susceptibility gene. The mechanism by which the H324Q variant enhances type 2 diabetes risk needs to be further established...

  18. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes.

    Science.gov (United States)

    de Crécy-Lagard, V; Blanc, V; Gil, P; Naudin, L; Lorenzon, S; Famechon, A; Bamas-Jacques, N; Crouzet, J; Thibaut, D

    1997-01-01

    Two genes involved in the biosynthesis of the depsipeptide antibiotics pristinamycins I (PI) produced by Streptomyces pristinaespiralis were cloned and sequenced. The 1.7-kb snbA gene encodes a 3-hydroxypicolinic acid:AMP ligase, and the 7.7-kb snbC gene encodes PI synthetase 2, responsible for incorporating L-threonine and L-aminobutyric acid in the PI macrocycle. snbA and snbC, which encode the two first structural enzymes of PI synthesis, are not contiguous. Both genes are located in PI-specific transcriptional units, as disruption of one gene or the other led to PI-deficient strains producing normal levels of the polyunsaturated macrolactone antibiotic pristinamycin II, also produced by S. pristinaespiralis. Analysis of the deduced amino acid sequences showed that the SnbA protein is a member of the adenylate-forming enzyme superfamily and that the SnbC protein contains two amino acid-incorporating modules and a C-terminal epimerization domain. A model for the initiation of PI synthesis analogous to the established model of initiation of fatty acid synthesis is proposed. PMID:9006024

  19. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  20. Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes.

    Science.gov (United States)

    Li, Jie; Dong, Jun-De; Yang, Jian; Luo, Xiong-Ming; Zhang, Si

    2014-10-01

    The diversity and properties of actinobacteria, predominant residents in coral holobionts, have been rarely documented. In this study, we aimed to explore the species diversity, antimicrobial activities and biosynthetic potential of culturable actinomycetes within the tissues of the scleractinian corals Porites lutea, Galaxea fascicularis and Acropora millepora from the South China Sea. A total of 70 strains representing 13 families and 15 genera of actinobacteria were isolated. The antimicrobial activity and biosynthetic potential of fifteen representative filamentous actinomycetes were estimated. Crude fermentation extracts of 6 strains exhibited comparable or greater activities against Vibrio alginolyticus than ciprofloxacin. Seven of the 15 actinomycetes strains possess type I polyketide synthases (PKS-I) and/or nonribosomal peptide synthetases (NRPS) genes. Nine tested strains possess type II polyketide synthases (PKS-II). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these PKS and NRPS gene screening positive strains belong to genera Nocardiopsis, Pseudonocardia, Streptomyces, Micromonospora, Amycolatopsis and Prauserella. One PKS-I and four NRPS fragments showed actinomycetes to produce bioactive molecules.

  1. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...

  2. Cytoplasmic glutamine synthetase gene expression regulates larval development in Bactrocera dorsalis (Hendel).

    Science.gov (United States)

    Zhang, Meng-Yi; Wei, Dong; Li, Ran; Jia, Hong-Ting; Liu, Yu-Wei; Taning, Clauvis Nji Tizi; Wang, Jin-Jun; Smagghe, Guy

    2018-04-01

    In insects, glutamine synthetase (GS), a key enzyme in the synthesis of glutamine, has been reported to be associated with embryonic development, heat shock response, and fecundity regulation. However, little is known about the influence of GS on postembryonic development. In this study, we demonstrate that blocking the activity of GS in the oriental fruit fly (Bactrocera dorsalis) with use of a GS-specific inhibitor (L-methionine S-sulfoximine), led to a significant delay in larval development, pupal weight loss, and inhibition of pupation. We further identify cloned and characterized two GS genes (BdGS-c and BdGS-m) from B. dorsalis. The two GS genes identified in B. dorsalis were predicted to be located in the cytosol (BdGS-c) and mitochondria (BdGS-m), and homology analysis indicated that both genes were similar to homologs from other Dipterans, such as Drosophila melanogaster and Aedes aegypti. BdGS-c was highly expressed in the larval stages, suggesting that cytosolic GS plays a predominant role in larval development. Furthermore, RNA interference experiments against BdGS-c, to specifically decrease the expression of cytosolic GS, resulted in delay in larval development as well as pupal weight loss. This study presents the prominent role played by BdGS-c in regulating larval development and suggests that the observed effect could have been modulated through ecdysteroid synthesis, agreeing with the reduced expression of the halloween gene spook. Also, the direct effects of BdGS-c silencing on B. dorsalis, such as larval lethality, delayed pupation, and late emergence, can be further exploited as novel insecticide target in the context of pest management. © 2018 Wiley Periodicals, Inc.

  3. The tryptophan synthetase gene TRP1 of Nodulisporium sp.: molecular characterization and its relation to nodulisporic acid A production.

    Science.gov (United States)

    Ireland, C; Peekhaus, N; Lu, P; Sangari, R; Zhang, A; Masurekar, P; An, Z

    2008-06-01

    Nodulisporic acid A (NAA), an insecticidal indole diterpene, is produced by the fungus Nodulisporium sp. Since indole-3-glycerolphosphate is the precursor of the indole moiety of NAA, it is suggested that the activity of tryptophan synthetase may play a role in NAA biosynthesis. To investigate this hypothesis, the tryptophan synthetase gene TRP1 of Nodulisporium sp. was cloned and characterized. The gene consists of three introns of 146, 68, and 57 bp. The four exons encode a protein of 712 amino acids, the sequence of which is highly homologous to that of other fungal tryptophan synthetase proteins. The transcription initiation site was mapped 66 bp upstream to the ATG, and the polyA tail attachment site is 169 bp downstream to the translation stop codon. Replacement of the N-terminal half of the gene with a hygromycin selection marker yielded mutants with the tryptophan auxotroph/hygromycin-resistance (trp(-)/hyr) phenotype. The TRP1 mutants required a high concentration of tryptophan supplement in solid medium (10 mM) to sustain minimal growth and failed to produce NAA in the production medium (FFL-CAM) supplemented with high concentrations of tryptophan.

  4. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.

    Science.gov (United States)

    León-Del-Río, Alfonso; Valadez-Graham, Viviana; Gravel, Roy A

    2017-08-21

    The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

  5. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles.

    Science.gov (United States)

    Ottesen, Elizabeth A; Leadbetter, Jared R

    2011-05-01

    In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches.

  6. Efficient procedure for transferring specific human genes into Chinese hamster cell mutants: interspecific transfer of the human genes encoding leucyl- and asparaginyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Cirullo, R.E.; Dana, S.; Wasmuth, J.J.

    1983-01-01

    A simple and efficient procedure for transferring specific human genes into mutant Chinese hamster ovary cell recipients has been developed that does not rely on using calcium phosphate-precipitated high-molecular-weight DNA. Interspecific cell hybrids between human leukocytes and temperature-sensitive Chinese hamster cell mutants with either a thermolabile leucyl-tRNA synthetase or a thermolabile asparaginyl-tRNA synthetase were used as the starting material in these experiments. These hybrids contain only one or a few human chromosomes and require expression of the appropriate human aminoacyl-tRNA synthetase gene to grow at 39 degrees C. Hybrids were exposed to very high doses of gamma-irradiation to extensively fragment the chromosomes and re-fused immediately to the original temperature-sensitive Chinese hamster mutant, and secondary hybrids were isolated at 39 degrees C. Secondary hybrids, which had retained small fragments of the human genome containing the selected gene, were subjected to another round of irradiation, refusion, and selection at 39 degrees C to reduce the amount of human DNA even further. Using this procedure, Chinese hamster cell lines have been constructed that express the human genes encoding either asparaginyl- or leucyl-tRNA synthetase, yet less than 0.1% of their DNA is derived from the human genome, as quantitated by a sensitive dot-blot nucleic acid hybridization procedure

  7. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Harlow, Kenneth W.; King, Cheryl J.

    1986-01-01

    Phosphoribosylpyrophosphate (P-Rib-PP) synthetase of Escherichia coli has been purified to near homogeneity from a strain harboring the prs gene, encoding P-Rib-PP synthetase, on a multicopy plasmid. Analysis of the enzyme showed that it required inorganic phosphate for activity and for stability...... the UAA translation stop codon, within a Thy-rich region following an inverted repeat sequence, indicative of an rho-independent transcription terminator....

  8. Dihydropteroate Synthase of Mycobacterium leprae and Dapsone Resistance

    Science.gov (United States)

    Williams, Diana L.; Spring, Laynette; Harris, Eugene; Roche, Paul; Gillis, Thomas P.

    2000-01-01

    Two Mycobacterium leprae genes, folP1 and folP2, encoding putative dihydropteroate synthases (DHPS), were studied for enzymatic activity and for the presence of mutations associated with dapsone resistance. Each gene was cloned and expressed in a folP knockout mutant of Escherichia coli (C600ΔfolP::Kmr). Expression of M. leprae folP1 in C600ΔfolP::Kmr conferred growth on a folate-deficient medium, and bacterial lysates exhibited DHPS activity. This recombinant displayed a 256-fold-greater sensitivity to dapsone (measured by the MIC) than wild-type E. coli C600, and 50-fold less dapsone was required to block (expressed as the 50% inhibitory concentration [IC50]) the DHPS activity of this recombinant. When the folP1 genes of several dapsone-resistant M. leprae clinical isolates were sequenced, two missense mutations were identified. One mutation occurred at codon 53, substituting an isoleucine for a threonine residue (T53I) in the DHPS-1, and a second mutation occurred in codon 55, substituting an arginine for a proline residue (P55R). Transformation of the C600ΔfolP::Kmr knockout with plasmids carrying either the T53I or the P55R mutant allele did not substantially alter the DHPS activity compared to levels produced by recombinants containing wild-type M. leprae folP1. However, both mutations increased dapsone resistance, with P55R having the greatest affect on dapsone resistance by increasing the MIC 64-fold and the IC50 68-fold. These results prove that the folP1 of M. leprae encodes a functional DHPS and that mutations within this gene are associated with the development of dapsone resistance in clinical isolates of M. leprae. Transformants created with M. leprae folP2 did not confer growth on the C600ΔfolP::Kmr knockout strain, and DNA sequences of folP2 from dapsone-susceptible and -resistant M. leprae strains were identical, indicating that this gene does not encode a functional DHPS and is not involved in dapsone resistance in M. leprae. PMID:10817704

  9. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene

    NARCIS (Netherlands)

    Lie-Venema, H.; Hakvoort, T. B.; van Hemert, F. J.; Moorman, A. F.; Lamers, W. H.

    1998-01-01

    Glutamine synthetase, the enzyme that catalyzes the ATP-dependent conversion of glutamate and ammonia into glutamine, is expressed in a tissue-specific and developmentally controlled manner. The first part of this review focuses on its spatiotemporal pattern of expression, the factors that regulate

  10. Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene.

    Science.gov (United States)

    Apfel, C M; Takács, B; Fountoulakis, M; Stieger, M; Keck, W

    1999-01-01

    The prenyltransferase undecaprenyl pyrophosphate synthetase (di-trans,poly-cis-decaprenylcistransferase; EC 2.5.1.31) was purified from the soluble fraction of Escherichia coli by TSK-DEAE, ceramic hydroxyapatite, TSK-ether, Superdex 200, and heparin-Actigel chromatography. The protein was labeled with the photolabile analogue of the farnesyl pyrophosphate analogue (E, E)-[1-3H]-(2-diazo-3-trifluoropropionyloxy)geranyl diphosphate and was detected on a sodium dodecyl sulfate-polyacrylamide gel as a protein with an apparent molecular mass of 29 kDa. This protein band was cut out from the gel, trypsin digested, and subjected to matrix-assisted laser desorption ionization mass spectrometric analysis. Comparison of the experimental data with computer-simulated trypsin digest data for all E. coli proteins yielded a single match with a protein of unassigned function (SWISS-PROT Q47675; YAES_ECOLI). Sequences with strong similarity indicative of homology to this protein were identified in 25 bacterial species, in Saccharomyces cerevisiae, and in Caenorhabditis elegans. The homologous genes (uppS) were cloned from E. coli, Haemophilus influenzae, and Streptococcus pneumoniae, expressed in E. coli as amino-terminal His-tagged fusion proteins, and purified over a Ni2+ affinity column. An untagged version of the E. coli uppS gene was also cloned and expressed, and the protein purified in two chromatographic steps. We were able to detect Upp synthetase activity for all purified enzymes. Further, biochemical characterization revealed no differences between the recombinant untagged E. coli Upp synthetase and the three His-tagged fusion proteins. All enzymes were absolutely Triton X-100 and MgCl2 dependent. With the use of a regulatable gene disruption system, we demonstrated that uppS is essential for growth in S. pneumoniae R6.

  11. Cloning and Expression of the γ-Polyglutamic Acid Synthetase Gene pgsBCA in Bacillus subtilis WB600

    Directory of Open Access Journals (Sweden)

    Biaosheng Lin

    2016-01-01

    Full Text Available To clone and express the γ-polyglutamic acid (γ-PGA synthetase gene pgsBCA in Bacillus subtilis, a pWB980 plasmid was used to construct and transfect the recombinant expression vector pWB980-pgsBCA into Bacillus subtilis WB600. PgsBCA was expressed under the action of a P43 promoter in the pWB980 plasmid. Our results showed that the recombinant bacteria had the capacity to synthesize γ-PGA. The expression product was secreted extracellularly into the fermentation broth, with a product yield of 1.74 g/L or higher. γ-PGA samples from the fermentation broth were purified and characterized. Hydrolysates of γ-PGA presented in single form, constituting simple glutamic acid only, which matched the characteristics of the infrared spectra of the γ-PGA standard, and presented as multimolecular aggregates with a molecular weight within the range of 500–600 kDa. Expressing the γ-PGA synthetase gene pgsBCA in B. subtilis system has potential industrial applications.

  12. The role of proximal-enhancer elements in the glucocorticoid regulation of carbamoylphosphate synthetase gene transcription from the upstream response unit

    NARCIS (Netherlands)

    Schoneveld, Onard J. L. M.; Gaemers, Ingrid C.; Hoogenkamp, Maarten; Lamers, Wouter H.

    2005-01-01

    As part of the urea cycle, carbamoylphosphate synthetase (CPS) converts toxic ammonia resulting from amino-acid catabolism into urea. Liver-specific and glucocorticoid-dependent expression of the gene involves a distal enhancer, a promoter-proximal enhancer, and the minimal promoter itself. When

  13. Mutations in the glutaminyl-tRNA synthetase gene cause early-onset epileptic encephalopathy.

    Science.gov (United States)

    Kodera, Hirofumi; Osaka, Hitoshi; Iai, Mizue; Aida, Noriko; Yamashita, Akio; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-02-01

    Aminoacylation is the process of attaching amino acids to their cognate tRNA, and thus is essential for the translation of mRNA into protein. This direct interaction of tRNA with amino acids is catalyzed by aminoacyl-tRNA synthetases. Using whole-exome sequencing, we identified compound heterozygous mutations [c.169T>C (p.Tyr57His) and c.1485dup (p.Lys496*)] in QARS, which encodes glutaminyl-tRNA synthetase, in two siblings with early-onset epileptic encephalopathy (EOEE). Recessive mutations in QARS, including the loss-of-function missense mutation p.Tyr57His, have been reported to cause intractable seizures with progressive microcephaly. The p.Lys496* mutation is novel and causes truncation of the QARS protein, leading to a deletion of part of the catalytic domain and the entire anticodon-binding domain. Transient expression of the p.Lys496* mutant in neuroblastoma 2A cells revealed diminished and aberrantly aggregated expression, indicating the loss-of-function nature of this mutant. Together with the previous report, our data suggest that abnormal aminoacylation is one of the underlying pathologies of EOEE.

  14. A new mutation in the gene encoding mitochondrial seryl-tRNA synthetase as a cause of HUPRA syndrome.

    Science.gov (United States)

    Rivera, Henry; Martín-Hernández, Elena; Delmiro, Aitor; García-Silva, María Teresa; Quijada-Fraile, Pilar; Muley, Rafael; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2013-09-13

    HUPRA syndrome is a rare mitochondrial disease characterized by hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis. This syndrome was previously described in three patients with a homozygous mutation c.1169A > G (p.D390G) in SARS2, encoding the mitochondrial seryl-tRNA synthetase. Here we report the clinical and genetic findings in a girl and her brother. Both patients were clinically diagnosed with the HUPRA syndrome. Analysis of the pedigree identified a new homozygous mutation c.1205G > A (p.R402H) in SARS2 gene. This mutation is very rare in the population and it is located at the C-terminal globular domain of the homodimeric enzyme very close to p.D390G. Several data support that p.R402H mutation in SARS2 is a new cause of HUPRA syndrome.

  15. Effects of GSH1 and GSH2 Gene Mutation on Glutathione Synthetases Activity of Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Wen; Jia, Haiyan; Zhang, Longmei; Wang, Haiyan; Tang, Hui; Zhang, Liping

    2017-08-01

    In this paper, three mutants from wild Saccharomyces cerevisiae HBU2.558, called U2.558, UN2.558, and UNA2.558, were screened by UV, sodium nitrite, Atmospheric and room temperature plasma, respectively. Glutathione production of the three mutants increased by 41.86, 72.09 and 56.76%, respectively. We detected the activity of glutathione synthetases and found that its activity was improved. Amino acid sequences of three mutant colonies were compared with HBU2.558. Four mutants: Leu51→Pro51 (L51P), Glu62→Val62 (E62V), Ala332→Glu332 (A332E) and Ser653→Gly653 (S653G) were found in the analysis of γ-glutamylcysteine ligase. L51 is located adjacently to the two active sites of GCL/E/Mg 2+ /ADP complex in the overall GCL structure. L51P mutant spread distortion on the β-sheet due to the fact that the φ was changed from -50.4° to -40.2°. A mutant Leu54→Pro54 (L54P) was found in the analysis of glutathione synthetase, and L54 was an amino acid located between an α-helix and a β-sheet. The results confirm that introduction of proline located at the middle of the β-sheet or at the N- or C-terminal between α-helix and β-sheet or, i.e., L51P and L54P, changed the φ, rigidity, hydrophobicity and conformational entropy, thus increased protein stability and improved the enzyme activity.

  16. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end produc...

  17. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  19. Real-time PCR assays targeting formyltetrahydrofolate synthetase gene to enumerate acetogens in natural and engineered environments.

    Science.gov (United States)

    Xu, Kewei; Liu, He; Du, Guocheng; Chen, Jian

    2009-10-01

    Acetogens are ubiquitous in many anaerobic habitats and play a very important role in bioconversion and biodegradation of organic compounds. Methods for rapid detection and quantification of acetogens in different environments are urgently needed to understand the in situ activities in complicated microbial communities. To overcome the limitations of culture-dependent methods and provide enhanced diagnostic tools for determination of the ecological roles of acetogens in different habitats, a quantitative real-time PCR (qrt-PCR) approach targeting functional FTHFS (fhs) gene encoding the formyltetrahydrofolate synthetase was developed. Novel primers flanking the FTHFS fragment were designed and tested. High specificity and sensitivity for estimation of the abundance of acetogens were confirmed analysis of a collection of acetogens, clone libraries and melting curves. The utility of the assay was validated and used in quantifying the FTHFS gene present in different anoxic and oxic habitats, including anoxic and oxic sludges, lake sediment, sewage sullage as well as flooded rice field soils. The abundance of FTHFS gene recovered by fhs1 assay was in the order of magnitude of 10(5) up to 10(7) copies per gram of dry weight sample, and the maximum calculated abundance of acetogens relative to Eubacteria was 0.6-0.9%, confirming the low proportion of acetogens to total bacteria in environments.

  20. Assignment of two human autoantigen genes-isoleucyl-tRNA synthetase locates to 9q21 and lysyl-tRNA synthetase locates to 16q23-q24

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.C.; Blinder, J.; Pai, S.I. [National Inst. of Health, Bethesda, MD (United States)] [and others

    1996-08-15

    Protein synthesis is initiated by the attachment of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (aaRS). Five of twenty human aaRS (histidyl-RS, threonyl-RS, alanyl-RS, glycyl-RS, and isoleucyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis. Autoantibodies to human lysyl-RS, a sixth autoantigenic aminoacyl-RS, were recently identified. The genes for histidyl-RS and threonyl-RS have been localized to chromosome 5, and we recently reported that the genes for alanyl-RS and glycyl-RS localize to chromosomes 16 and 7, respectively. To understand the genesis of autoimmune responses to aaRS better, we have used PCR-based screening of somatic cell hybrid panels and fluorescence in situ hybridization (FISH) to assign the genes for isoleucyl-RS and lysyl-RS. 19 refs., 1 fig.

  1. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33.

    Science.gov (United States)

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-08-02

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F₁-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata.

  2. Streptogramin B biosynthesis in Streptomyces pristinaespiralis and Streptomyces virginiae: molecular characterization of the last structural peptide synthetase gene.

    Science.gov (United States)

    de Crécy-Lagard, V; Saurin, W; Thibaut, D; Gil, P; Naudin, L; Crouzet, J; Blanc, V

    1997-01-01

    Streptomyces pristinaespiralis and S. virginiae both produce closely related hexadepsipeptide antibiotics of the streptogramin B family. Pristinamycins I and virginiamycins S differ only in the fifth incorporated precursor, di(mono)methylated amine and phenylalanine, respectively. By using degenerate oligonucleotide probes derived from internal sequences of the purified S. pristinaespiralis SnbD and SnbE proteins, the genes from two streptogramin B producers, S. pristinaespiralis and S. virginiae, encoding the peptide synthetase involved in the activation and incorporation of the last four precursors (proline, 4-dimethylparaaminophenylalanine [for pristinamycin I(A)] or phenylalanine [for virginiamycin S], pipecolic acid, and phenylglycine) were cloned. Analysis of the sequence revealed that SnbD and SnbE are encoded by a unique snbDE gene. SnbDE (4,849 amino acids [aa]) contains four amino acid activation domains, four condensation domains, an N-methylation domain, and a C-terminal thioesterase domain. Comparison of the sequences of 55 amino acid-activating modules from different origins confirmed that these sequences contain enough information for the performance of legitimate predictions of their substrate specificity. Partial sequencing (1,993 aa) of the SnbDE protein of S. virginiae allowed comparison of the proline and aromatic acid activation domains of the two species and the identification of coupled frameshift mutations. PMID:9303382

  3. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  4. Formyltetrahydrofolate Synthetase Gene Diversity in the Guts of Higher Termites with Different Diets and Lifestyles ▿ †

    Science.gov (United States)

    Ottesen, Elizabeth A.; Leadbetter, Jared R.

    2011-01-01

    In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The “higher” termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the “lower” termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches. PMID:21441328

  5. Gene Regulation by Metabolic Enzyme GMP Synthetase and Chromatin Remodeler NuRD

    NARCIS (Netherlands)

    B.A. Reddy (Ashok)

    2012-01-01

    textabstractSpatial and temporal control of the gene expression is crucial for normal growth and development of an organism. Environmental stress factors pose a constant threat to normal development of an organism by causing altered gene expression. Cells have evolved counteractive mechanisms to

  6. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution

    Directory of Open Access Journals (Sweden)

    Tartar Aurélien

    2010-06-01

    Full Text Available Abstract Background Glutamine synthetase (GS is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria to the Chloroplastida. Results GSII sequences were isolated from four species of green algae (Trebouxiophyceae, and additional green algal (Chlorophyceae and Prasinophytae and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB and eukaryotic (GSIIE GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the γ-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT. Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida. However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting

  7. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  8. Аldosterone synthetase gene (CYP11B2 polymorphism and structural parameters of the left ventricle in patients with coronary heart disease, postinfarction cardiosclerosis

    Directory of Open Access Journals (Sweden)

    M. N. Dolzhenko

    2017-12-01

    Full Text Available Purpose of the work – to investigate the possible contribution of aldosterone synthetase gene (CYP11B2 polymorphism to the disease course and structural parameters of LV in patients with coronary heart disease, postinfarction cardiosclerosis. Materials and мethods. General clinical examination of 100 patients with postinfarction cardiosclerosis was done at the Cardiology Department of P. L Shupyk NMAPE. Genetic testing was performed by polymerase chain reaction in real time at the Bogomolets Institute of Physiology,Kyiv,Ukraine. Exclusion criteria were hemodynamically significant valvular heart diseases, chronic obstructive pulmonary diseases, permanent or temporary heart pacing, acute heart failure and implanted cardioverter-defibrillator, permanent atrial fibrillation. Statistical analysis of the results was performed using Microsoft Excel, the statistical program SPSS (version 20, US. The results obtained are presented as M ± σ. Results. The stenosis of the left main coronary artery was observed in 25.9 % of cases in the subgroup of the TT variant. It should be noted that in the TC subgroup of aldosterone synthase gene variant polymorphism the incidence of the left main coronary artery lesion was 13.9 %. There has been no single case of left main coronary artery lesion in the SS subgroup with little statistical significance in comparison with the subgroup of TT variant of the polymorphism (P = 0.048. In the analysis of clinical data the most marked manifestations of angina pectoris were in subgroups of TT and TC – 73.3 % and 72.7 %, respectively, compared with CC subgroup – 40 %, reliable for both subgroups (P1.2 = 0.95, P1.3 = 0.039, P2.3 = 0.029. In the analysis of LV morphological characteristics the smallest indices of the LV mass have been revealed in the CC subgroup of the polymorphism variant (190.5 ± 52.1 g, compared with the LV mass values in the TT subgroup (231.00 ± 55.21 g, P = 0.03 and TC (197.421 ± 63.15, P > 0.05. A

  9. Localization of two human autoantigen genes by PCR screening and in situ hybridization-glycyl-tRNA synthetase locates to 7p15 and Alanyl-tRNA synthetase locates to 16q22

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.C.; Pai, S.I.; Liu, P. [National Inst. of Health, Bethesda, MD (United States); Ge, Q.; Targoff, I.N. [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States)

    1995-11-01

    Aminoacyl-tRNA synthetases (aminoacyl-RS) catalyze the attachment of an amino acid to its cognate tRNA. Five of 20 human aminoacyl-RS (histidyl-RS, threonyl-RS, isoleucyl-RS, glycyl-RS, and alanyl-RS) have been identified as targets of autoantibodies in the autoimmune disease polymyositis/dermatomyositis (PM/DM; 9). A sixth autoantigenic amino-acyl-RS, lysyl-RS, was recently reported. The genes for histidyl-RS and threonyl-RS have been assigned to chromosome 5, as have the genes for leucyl-RS and arginyl-RS. Six other aminoacyl-RS (glutamyl-prolyl-RS, valyl-RS, cysteinyl-RS, methionyl-RS, tryptophanyl-RS, and asparaginyl-RS) were assigned to chromosomes 1, 6, 11, 12, 14, and 18, respectively. The reason for a preponderance of aminoacyl-RS genes on chromosome 5 is unknown, but it has been suggested that regulatory relatedness might be a factor. Recently the entire or partial cDNA sequences for two autoantigenic aminoacyl-RS genes, glycyl-RS (gene symbol GARS; 4) and alanyl-RS (gene symbol AARS; 1), were reported. To understand further the genesis of autoimmune responses to aminoacyl-RS and to determine whether genes for autoantigenic aminoacyl-RS colocalize to chromosome 5, we have determined the chromosomal site of the GARS and AARS genes by PCR-based screening of somatic cell hybrid panels and by fluorescence in situ hybridization (FISH) analysis. 10 refs., 1 fig.

  10. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    Science.gov (United States)

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM.

  11. Tricistronic operon expression of the genes gcaD (tms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and ctc in vegetative cells of Bacillus subtilis

    DEFF Research Database (Denmark)

    Hilden, Ida; Krath, Britta N.; Hove-Jensen, Bjarne

    1995-01-01

    The gcaD, prs, and ctc genes were shown to be organized as a tricistronic operon. The transcription of the prs gene, measured as phosphoribosyl diphosphate synthetase activity, and of the ctc gene, measured as β-galactosidase activity specified by a ctc-lacZ protein fusion, were dependent...

  12. The glycyl-tRNA synthetase of Chlamydia trachomatis.

    Science.gov (United States)

    Wagar, E A; Giese, M J; Yasin, B; Pang, M

    1995-01-01

    Aminoacyl-tRNA synthetases specifically charge tRNAs with their cognate amino acids. A prototype for the most complex aminoacyl-tRNA synthetases is the four-subunit glycyl-tRNA synthetase from Escherichia coli, encoded by two open reading frames. We examined the glycyl-tRNA synthetase gene from Chlamydia trachomatis, a genetically isolated bacterium, and identified only a single open reading frame for the chlamydial homolog (glyQS). This is the first report of a prokaryotic glycyl-tRNA synthetase encoded by a single gene. PMID:7665503

  13. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about d...... for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone....

  14. Gene polymorphism of aldosterone synthetase (CYP11B2 variants and main cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    L. Ye. Lobach

    2016-12-01

    Full Text Available Background. Purpose of the work – to investigate the possible relationship of the cardiovascular risk main factors with certain polymorphism of aldosterone synthase gene (CYP11B2. Materials and methods. Аt the Cardiology Department of PL Shupyk NMAPE general clinical examination of 378 patients was held. Patients were divided into four groups: 100 patients with postinfarction cardiosclerosis, 78 patients with CAD without myocardial infarction in history, 100 high cardiovascular risk patients (with diabetes, hypertension or dyslipidemia and 100 healthy patients (absence of cardiovascular disease was confirmed by medical history, ECG, blood pressure measurement and stress-ECG. Genetic testing was performed by polymerase chain reaction in real time at the Institute of Physiology named after O. O. Bogomolets. Exclusion criteria were hemodynamically significant valvular heart disease, chronic obstructive pulmonary disease, permanent or temporary heart pacing, acute heart failure and implanted cardioverter-defibrillator, permanent form of atrial fibrillation. Statistical analysis of the results was performed using Microsoft Excel, the statistical program SPSS (version 13US. Results. When analyzing the average levels of low density lipoprotein (LDL cholesterol statistically significant difference between the group of patients with postinfarction cardiosclerosis and the group of high-risk patients (2.93±1.2 mmol/L vs 3.4±1.2 mmol/L, p=0.0075 was demonstrated, indicating a better cholesterol control in the group of patients with postinfarction cardiosclerosis, despite the fact that the average cholesterol level did not reach the target. The highest average levels of triglycerides (TG were observed in patients with postinfarction cardiosclerosis – 1.56±0.725 mmol/L, intermediate – in patients with stable coronary artery disease – 1.39±0.795 mmol/L, and the lowest – in high cardiovascular risk patients – 1.04±0.565 mmol/L, with

  15. Genetics Home Reference: phosphoribosylpyrophosphate synthetase superactivity

    Science.gov (United States)

    ... purines available. In people with the more severe form of PRS superactivity , PRPS1 gene mutations change single protein building blocks ( amino acids ) in the PRPP synthetase 1 enzyme, resulting in ...

  16. Organization and expression of genes in the genomic region surrounding the glutamine synthetase gene Gln1 from Lotus japonicus

    DEFF Research Database (Denmark)

    Thykjaer, T; Danielsen, D; She, Q

    1997-01-01

    The diploid Lotus japonicus was previously suggested as a model for the legume plant family. We present here the nucleotide sequence and the derived gene organization of a small part of the genome in this model plant. Two functional genes with the same transcriptional orientation were identified...

  17. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a.

    Directory of Open Access Journals (Sweden)

    Juan Jesús Molina-Rueda

    Full Text Available BACKGROUND: Glutamine synthetase (GS plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4 expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns. RESULTS: In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs. The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs, with concomitant up-regulation of plastidic iron SODs (FSDs in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions. CONCLUSIONS: Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this

  18. The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants.

    Science.gov (United States)

    Spena, A; Prinsen, E; Fladung, M; Schulze, S C; Van Onckelen, H

    1991-06-01

    The iaaL gene of Pseudomonas syringae subsp. savastanoi encodes an indoleacetic acid-lysine synthetase that conjugates lysine to indoleacetic acid. A chimaeric gene consisting of the iaaL coding region under the control of the 35S RNA promoter from cauliflower mosaic virus (35SiaaL) has been used to test if iaaL gene expression leads to morphological alterations in tobacco and potato. Transgenic tobacco plantlets bearing this construct have been shown to synthesize IAA-[14C]lysine when fed with [14C]lysine. In late stages of development, their leaves show an increased nastic curvature (epinasty) of the petiole and midvein, a finding suggestive of an abnormal auxin metabolism. The alteration is transmitted to progeny as a dominant Mendelian trait cosegregating with the kanamycin resistance marker. Transgenic potato plants harbouring the construct are also characterized by petiole epinasty. Moreover, 35SiaaL transgenic plants have an increased internode length in potato and decreased root growth in both tobacco and potato. An increased content of IAA-conjugates in leaf blade was found to correlate with the epinastic alterations caused by iaaL gene expression in tobacco leaves. These data provide evidence that IAA conjugation is able to modulate hormone action, suggesting that the widespread endogenous auxin-conjugating activities are of physiological importance.

  19. A novel mutation of the glycyl-tRNA synthetase (GARS) gene associated with Charcot-Marie-Tooth type 2D in a Chinese family.

    Science.gov (United States)

    Sun, Aping; Liu, Xiangyi; Zheng, Mei; Sun, Qingli; Huang, Yu; Fan, Dongsheng

    2015-09-01

    To explore the clinical features of a novel glycyl-tRNA synthetase (GARS) gene mutation in a family with Charcot-Marie-Tooth disease type 2D (CMT2D). Exome capture with the next-generation sequencing technique was used to detect gene mutations. The mutations were verified by the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique combined with DNA sequencing. In this pedigree, eight members were affected; seven males and one female. The affected members initially manifested with the onset of hand muscle weakness and atrophy in adolescence followed by gradual development of distal lower limb involvement and minor sensory involvement. Electrophysiological studies revealed that this disease mainly involves axonal damage. Genetic detection showed that all affected family members had a heterozygous missense mutation, c.999G>T (p.E333D), of the GARS gene. The c.999G>T mutation is a novel mutation of the GARS gene that has not been previously reported. The phenotype of this family is CMT2D, which is first reported in Chinese population.

  20. Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1988-01-01

    A mutant of Escherichia coli harboring a temperature-labile phosphoribosylpyrophosphate (PRPP) synthetase was characterized. Despite the lack of a detectable PRPP pool or PRPP synthetase activity at 40 degrees C, the strain was fully viable at this temperature as long as guanosine, uridine, histi...

  1. Revelation and cloning of valinomycin synthetase genes in Streptomyces lavendulae ACR-DA1 and their expression analysis under different fermentation and elicitation conditions.

    Science.gov (United States)

    Sharma, Richa; Jamwal, Vijaylakshmi; Singh, Varun P; Wazir, Priya; Awasthi, Praveen; Singh, Deepika; Vishwakarma, Ram A; Gandhi, Sumit G; Chaubey, Asha

    2017-07-10

    Streptomyces species are amongst the most exploited microorganisms due to their ability to produce a plethora of secondary metabolites with bioactive potential, including several well known drugs. They are endowed with immense unexplored potential and substantial efforts are required for their isolation as well as characterization for their bioactive potential. Unexplored niches and extreme environments are host to diverse microbial species. In this study, we report Streptomyces lavendulae ACR-DA1, isolated from extreme cold deserts of the North Western Himalayas, which produces a macrolactone antibiotic, valinomycin. Valinomycin is a K + ionophoric non-ribosomal cyclodepsipeptide with a broad range of bioactivities including antibacterial, antifungal, antiviral and cytotoxic/anticancer activities. Production of valinomycin by the strain S. lavendulae ACR-DA1 was studied under different fermentation conditions like fermentation medium, temperature and addition of biosynthetic precursors. Synthetic medium at 10°C in the presence of precursors i.e. valine and pyruvate showed enhanced valinomycin production. In order to assess the impact of various elicitors, expression of the two genes viz. vlm1 and vlm2 that encode components of heterodimeric valinomycin synthetase, was analyzed using RT-PCR and correlated with quantity of valinomycin using LC-MS/MS. Annelid, bacterial and yeast elicitors increased valinomycin production whereas addition of fungal and plant elicitors down regulated the biosynthetic genes and reduced valinomycin production. This study is also the first report of valinomycin biosynthesis by Streptomyces lavendulae. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Acyl coenzyme A synthetase long-chain 1 (ACSL1 gene polymorphism (rs6552828 and elite endurance athletic status: a replication study.

    Directory of Open Access Journals (Sweden)

    Thomas Yvert

    Full Text Available The aim of this study was to determine the association between the rs6552828 polymorphism in acyl coenzyme A synthetase (ACSL1 and elite endurance athletic status. We studied 82 Caucasian (Spanish World/Olympic-class endurance male athletes, and a group of sex and ethnically matched healthy young adults (controls, n=197. The analyses were replicated in a cohort of a different ethnic origin (Chinese of the Han ethnic group, composed of elite endurance athletes (runners [cases, n=241 (128 male] and healthy sedentary adults [controls, n=504 (267 male]. In the Spanish cohort, genotype (P=0.591 and minor allele (A frequencies were similar in cases and controls (P=0.978. In the Chinese cohort, genotype (P=0.973 and minor allele (G frequencies were comparable in female endurance athletes and sedentary controls (P=0.881, whereas in males the frequency of the G allele was higher in endurance athletes (0.40 compared with their controls (0.32, P=0.040. The odds ratio (95%CI for an elite endurance Chinese athlete to carry the G allele compared with ethnically matched controls was 1.381 (1.015-1.880 (P-value=0.04. Our findings suggest that the ACSL1 gene polymorphism rs6552828 is not associated with elite endurance athletic status in Caucasians, yet a marginal association seems to exist for the Chinese (Han male population.

  3. Diversity of formyltetrahydrofolate synthetase genes in the rumens of roe deer (Capreolus pygargus) and sika deer (Cervus nippon) fed different diets.

    Science.gov (United States)

    Li, Zhipeng; Henderson, Gemma; Yang, Yahan; Li, Guangyu

    2017-01-01

    Reductive acetogenesis by homoacetogens represents an alternative pathway to methanogenesis to remove metabolic hydrogen during rumen fermentation. In this study, we investigated the occurrence of homoacetogen in the rumens of pasture-fed roe deer (Capreolus pygargus) and sika deer (Cervus nippon) fed either oak-leaf-based (tannin-rich, 100 mg/kg dried matter), corn-stover-based, or corn-silage-based diets, by using formyltetrahydrofolate synthetase (FTHFS) gene sequences as a marker. The diversity and richness of FTHFS sequences was lowest in animals fed oak leaf, indicating that tannin-containing plants may affect rumen homoacetogen diversity. FTHFS amino acid sequences in the rumen of roe deer significantly differed from those of sika deer. The phylogenetic analyses showed that 44.8% of sequences in pasture-fed roe deer, and 72.1%, 81.1%, and 37.5% of sequences in sika deer fed oak-leaf-, corn-stover-, and corn-silage-based diets, respectively, may represent novel bacteria that have not yet been cultured. These results demonstrate that the rumens of roe deer and sika deer harbor potentially novel homoacetogens and that diet may influence homoacetogen community structure.

  4. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes.

    Science.gov (United States)

    Wang, Mu-Yang; Liu, Xue-Ting; Chen, Ying; Xu, Xiao-Jing; Yu, Biao; Zhang, Shu-Qun; Li, Qun; He, Zu-Hua

    2012-07-01

    Camalexin (3-thiazol-2'-yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is catalyzed by the cytochrome P450 monooxygenase CYP71A13. Here, we demonstrate that the Arabidopsis GH3.5 protein, a multifunctional acetyl-amido synthetase, is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes. Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection. The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro. In support of the in vitro reaction, feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D. Dihydrocamalexic acid (DHCA), the precursor of camalexin and the substrate for PAD3, was accumulated in gh3.5-1D/pad3-1, suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis. Furthermore, expression of the major camalexin biosynthesis genes CYP79B2, CYP71A12, CYP71A13 and PAD3 was strongly induced in gh3.5-1D. Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys), and upregulation of the major biosynthetic pathway genes. © 2012 Institute of Botany, Chinese Academy of Sciences.

  5. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame......, showing a high degree of similarity to glutathione peroxidases from other organisms was identified....

  6. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    to be an isolated transcriptional unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy...

  7. Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)

    DEFF Research Database (Denmark)

    Durkin, M E; Jäger, A C; Khurana, T S

    1999-01-01

    The laminin beta2 chain is an important constituent of certain kidney and muscle basement membranes. We have generated a detailed physical map of a 110-kb genomic DNA segment surrounding the human laminin beta2 chain gene (LAMB2) on chromosome 3p21.3-->p21.2, a region paralogous with the chromosome...... 7q22-->q31 region that contains the laminin beta1 chain gene locus (LAMB1). Several CpG islands and a novel polymorphic microsatellite marker (D3S4594) were identified. The 3' end of LAMB2 lies 16 kb from the 5' end of the glutaminyl tRNA synthetase gene (QARS). About 20 kb upstream of LAMB2 we...... found a gene encoding a transcribed, non-processed LAMB2-like pseudogene (LAMB2L). The sequence of 1.75 kb of genomic DNA at the 3' end of LAMB2L was similar to exons 8-12 of the laminin beta2 chain gene. The LAMB2L-LAMB2-QARS cluster lies telomeric to the gene encoding the laminin-binding protein...

  8. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  9. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase in Mycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy.

    Science.gov (United States)

    Chaitanya V, Sundeep; Das, Madhusmita; Bhat, Pritesh; Ebenezer, Mannam

    2015-10-01

    The molecular basis for determination of resistance to anti-leprosy drugs is the presence of point mutations within the genes of Mycobacterium leprae (M. leprae) that encode active drug targets. The downstream structural and functional implications of these point mutations on drug targets were scarcely studied. In this study, we utilized computational tools to develop native and mutant protein models for 5 point mutations at codon positions 53 and 55 in 6-hydroxymethyl-7, 8-dihydropteroate synthase (DHPS) of M. leprae, an active target for dapsone encoded by folp1 gene, that confer resistance to dapsone. Molecular docking was performed to identify variations in dapsone interaction with mutant DHPS in terms of hydrogen bonding, hydrophobic interactions, and energy changes. Schrodinger Suite 2014-3 was used to build homology models and in performing molecular docking. An increase in volume of the binding cavities of mutant structures was noted when compared to native form indicating a weakening in interaction (60.7 Å(3) in native vs. 233.6 Å(3) in Thr53Ala, 659.9 Å(3) in Thr53Ile, 400 Å(3) for Thr53Val, 385 Å(3) for Pro55Arg, and 210 Å(3) for Pro55Leu). This was also reflected by changes in hydrogen bonds and decrease in hydrophobic interactions in the mutant models. The total binding energy (ΔG) decreased significantly in mutant forms when compared to the native form (-51.92 Kcal/mol for native vs. -35.64, -35.24, -46.47, -47.69, and -41.36 Kcal/mol for mutations Thr53Ala, Thr53Ile, Thr53Val, Pro55Arg, and Pro55Leu, respectively. In brief, this analysis provided structural and mechanistic insights to the degree of dapsone resistance contributed by each of these DHPS mutants in leprosy. © 2015 Wiley Periodicals, Inc.

  10. Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species.

    Science.gov (United States)

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Takahashi-Nakaguchi, Azusa; Matsuzawa, Tetsuhiro; Suzuki, Ken-ichiro; Fujita, Nobuyuki; Gonoi, Tohru

    2014-04-30

    Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology. Draft genome sequences of Nocardia asteroides NBRC 15531(T), Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402(T), and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4-11, 7-13, and 1-6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text. We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied

  11. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Eriko Kage-Nakadai

    Full Text Available In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4 is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.

  12. Cytosolic glutamine synthetase

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie; Eriksson, Ulf Dennis; Møller, Inge Skrumsager

    2014-01-01

    Overexpression of the cytosolic enzyme glutamine synthetase 1 (GS1) has been investigated in numerous cases with the goal of improving crop nitrogen use efficiency. However, the outcome has generally been inconsistent. Here, we review possible reasons underlying the lack of success and conclude...

  13. Physical studies of adenylosuccinate synthetase

    International Nuclear Information System (INIS)

    Bass, M.B.

    1987-01-01

    To determine the chemical mechanism of the reaction catalyzed by adenylosuccinate synthetase, positional isotope exchange studies were performed. Positional isotope exchange from the β-γ bridge to the β nonbridge position of [γ- 18 O]GTP was followed using 31 P NMR. The positional isotope exchange was found to occur in the presence of either IMP or IMP and succinate. The exchange did not occur in the presence of asparate. These results support a reaction mechanism which involves formation of a 6-phosphoryl-IMP intermediate with subsequent attack by aspartate to form adenylosuccinate as originally proposed by Lieberman in 1956. In order to resolve the NMR resonances for positional isotope exchange, it was necessary to find a chelator which would limit exchange broadening. trans-1,2-Diaminocyclohexane-N,N,N',N'-tetraacetic acid was found to be a suitable chelator at neutral and acidic pH. Studies of adenylosuccinate synthetase from Escherichia coli have been limited by the low concentrations of enzyme present in the cell and the difficulty in purifying the enzyme to homogeneity. Overproduction of the enzyme by cloning the purA gene into a runaway replication plasmid allowed the cells to produce a much higher concentration of enzyme. A new purification scheme is reported that takes advantage of the overproduced enzyme. Yields of 75 mg of homogeneous enzyme have been obtained from 76 g of E. coli cell paste

  14. Highly variable clinical phenotype of carbamylphosphate synthetase 1 deficiency in one family: an effect of allelic variation in gene expression?

    DEFF Research Database (Denmark)

    Klaus, V; Vermeulen, T; Minassian, B

    2009-01-01

    sequences of the CPS1 gene and find also in these regions no sequence differences between patients. Finally, we perform cloning experiments and find that in the neonatal-onset case, clones of messenger RNA (mRNA) expressed from the allele carrying the c.4101 + 2T > C mutation are threefold more than clones...... report two patients from one family with highly divergent clinical course, one presenting neonatally with a fatal form and the other at age 45 with benign diet-responsive disease. The patients are compound heterozygous for two mutations of the CPS1 gene, c.3558 + 1G > C and c.4101 + 2T > C...... of mRNA from the allele with the c.3558 + 1G > C mutation, whereas in the adult-onset case the two types of clones are equal, indicating skewed expression towards the c.4101 + 2T > C allele in the neonatal case. Although we are yet to understand the mechanism of this differential expression, our work...

  15. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes

    Czech Academy of Sciences Publication Activity Database

    Bakal, Tomáš; Goo, K.-S.; Najmanová, Lucie; Plháčková, Kamila; Kadlčík, Stanislav; Ulanová, Dana

    2015-01-01

    Roč. 108, č. 5 (2015), s. 1267-1274 ISSN 0003-6072 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Nonribosomal peptide synthetase * Adenylation domain * Actinomycetes Subject RIV: EE - Microbiology, Virology Impact factor: 1.944, year: 2015

  16. Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole

    DEFF Research Database (Denmark)

    Khalil, Insaf; Rønn, Anita M; Alifrangis, Michael

    2003-01-01

    A total of 70 Plasmodium falciparum isolates were tested in vitro against pyrimethamine (PYR), trimethoprim (TRM), sulfadoxine (SDX), and sulfamethoxazole (SMX), and their dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genotypes were determined. dhfr genotypes correlated with ...... the cultures....

  17. Variation in Antiviral 2', 5'-Oligoadenylate Synthetase (2'5'AS) Enzyme Activity is controlled by a Single-Nucleotide Polymorphism at a Splice-Acceptor Site in the OAS1 Gene

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V.; Leigh, F.L.; Lu, S.

    2005-01-01

    It is likely that human genetic differences mediate susceptibility to viral infection and virus-triggered disorders. OAS genes encoding the antiviral enzyme 2',5'-oligoadenylate synthetase (2'5'AS) are critical components of the innate immune response to viruses. This enzyme uses adenosine......, and AA genotypes (tested by analysis of variance; P=1 x 10(-14)). Allele G generates the previously described p46 enzyme isoform, whereas allele A ablates the splice site and generates a dual-function antiviral/proapoptotic p48 isoform and a novel p52 isoform. This genetic polymorphism makes OAS1...

  18. Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme A Synthetase Family in Cancer.

    Directory of Open Access Journals (Sweden)

    Wei-Ching Chen

    Full Text Available Dysregulated lipid metabolism contributes to cancer progression. Our previous study indicates that long-chain fatty acyl-Co A synthetase (ACSL 3 is essential for lipid upregulation induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL family in cancer with systematic analysis and in vitro experiment. We explored the ACSL expression using Oncomine database to determine the gene alteration during carcinogenesis and identified the association between ACSL expression and the survival of cancer patient using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analysis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analysis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migration, and anchorage-independent growth. In contrast, increase of oncogenic property was observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma. High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2, HNRNPCL1, ITIH2, PROCR, LRRFIP1. High expression of ACSL5 predicted good prognosis in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL, BIRC3, PTPRE, and SERPINB1. Low ACSL6 predicted a worse prognosis in acute myeloid leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules may be used to further investigate the role of ACSL

  19. Phosphinothricin-tripeptide synthetases from Streptomyces viridochromogenes.

    Science.gov (United States)

    Grammel, N; Schwartz, D; Wohlleben, W; Keller, U

    1998-02-10

    Phosphinothricyl-alanyl-alanine (Pt tripeptide (Ptt), bialaphos) is a metabolite produced by Streptomyces viridochromogenes and Streptomyces hygroscopicus. It contains the unique phosphinoamino acid phosphinothricin (Pt), which after cleavage from Ptt is active as an inhibitor of glutamine synthetase. We have isolated three enzymes that assemble the building block of the Ptt peptide backbone in a nonribosomal mechanism. The first enzyme, named Ptt-synthetase I (PTTS I), activates N-acetyldemethylphosphinothricin (AcDMPt) as adenylate and thioester. Pt is not activated. PTTS I can also activate N-acetylphosphinothricin (AcPt) or N-acetylglutamate as structural analogues of AcDMPT. Native PTTS I has an estimated size of 62 kDa whereas the denatured form displays a size of 76 kDa. Immunoblot analysis and determination of its N-terminal protein sequence revealed that PTTS I is identical with the gene product of phsA. The phsA gene was previously identified near the Pt-resistance gene pat in the Ptt biosynthesis gene cluster in S. viridochromogenes. Besides PTTS I, two alanine-activating enzymes (PTTS II/III) were partially purified from S. viridochromogenes with estimated native sizes of ca. 120 kDa (enzyme 1) and ca. 140 kDa (enzyme 2). Both enzymes bind alanine as a thioester via the corresponding adenylate. Level of PTTS II/III and product formation were correlated with each other in several different strains of S. viridochromogenes. These results indicate that Ptt is synthesized by three peptide synthetases, each activating one single amino acid. The data also confirm previous genetic data, which suggest that AcDMPt-Ala-Ala is the precursor of Ptt.

  20. Accumulated Expression Level of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 or OsGS1;2) Alter Plant Development and the Carbon-Nitrogen Metabolic Status in Rice

    Science.gov (United States)

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2014-01-01

    Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield. PMID:24743556

  1. Characterization of FdmV as an Amide Synthetase for Fredericamycin A Biosynthesis in Streptomyces griseus ATCC 43944*

    OpenAIRE

    Chen, Yihua; Wendt-Pienkowski, Evelyn; Ju, Jianhua; Lin, Shuangjun; Rajski, Scott R.; Shen, Ben

    2010-01-01

    Fredericamycin (FDM) A is a pentadecaketide natural product that features an amide linkage. Analysis of the fdm cluster from Streptomyces griseus ATCC 43944, however, failed to reveal genes encoding the types of amide synthetases commonly seen in natural product biosynthesis. Here, we report in vivo and in vitro characterizations of FdmV, an asparagine synthetase (AS) B-like protein, as an amide synthetase that catalyzes the amide bond formation in FDM A biosynthesis. This is supported by the...

  2. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans.

    Science.gov (United States)

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-03-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l(-1) when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24-30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    Science.gov (United States)

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. PMID:24423427

  4. Detection of Malaria parasite species based on 18S rRNA and assessment of its resistance to the drug for DHPS gene to support the development of irradiation Malaria vaccine

    International Nuclear Information System (INIS)

    Mukh Syaifudin; Darlina; Siti Nurhayati

    2016-01-01

    Malaria remains a major public health problem because it causes 1-2 million mortality per year. Therefore the development of its vaccine, including vaccine created by ionizing radiation, is urgently needed to control the disease. Aim of this research was to determine the species of malaria parasite infecting the blood of malaria suspected patients and its resistance to sulfadoxine-pyrimethamine (SP). The number of samples used were 10 blood specimens that obtained from Dok II Hospital in Jayapura. Microscopic examination on thin blood smear was done according to standard procedure, followed by Polymerase Chain Reaction (PCR) based diagnosis to further confirm the parasite using 18S rRNA gene on deoxyribonucleic acid extract. The presence of mutation in the dhps (dihydropteroate synthetase) gene related to SP drugs was examined using restriction fragment length polymorphism (RFLP) method. Results showed that 9 samples were infected with Plasmodium falciparum and 1 infected with P. vivax. Allelic mutants of dhps gene at codon K540E were detected in 3 (33.3%) samples. Even though only in very limited number of samples analyzed, the information obtained will be a great value in additional knowledge for vaccine development with irradiation. (author)

  5. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  6. Cloning and characterization of the prs gene encoding phosphoribosylpyrophosphate synthetase of Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1985-01-01

    by lysogenic complementation. The prs gene resided on a 5.6 kilobase-pair (kbp) DNA fragment generated by hydrolysis with restriction endonuclease BamHI. The nearby gene pth, encoding peptidyl-tRNA hydrolase, was also on this fragment. Subcloning of the fragment in the multi-copy plasmid pBR322 and subsequent...

  7. New perspectives on glutamine synthetase in grasses.

    Science.gov (United States)

    Swarbreck, Stéphanie M; Defoin-Platel, M; Hindle, M; Saqi, M; Habash, Dimah Z

    2011-02-01

    Members of the glutamine synthetase (GS) gene family have now been characterized in many crop species such as wheat, rice, and maize. Studies have shown that cytosolic GS isoforms are involved in nitrogen remobilization during leaf senescence and emphasized a role in seed production particularly in small grain crop species. Data from the sequencing of genomes for model crops and expressed sequence tag (EST) libraries from non-model species have strengthened the idea that the cytosolic GS genes are organized in three functionally and phylogenetically conserved subfamilies. Using a bioinformatic approach, the considerable publicly available information on high throughput gene expression was mined to search for genes having patterns of expression similar to GS. Interesting new hypotheses have emerged from searching for co-expressed genes across multiple unfiltered experimental data sets in rice. This approach should inform new experimental designs and studies to explore the regulation of the GS gene family further. It is expected that understanding the regulation of GS under varied climatic conditions will emerge as an important new area considering the results from recent studies that have shown nitrogen assimilation to be critical to plant acclimation to high CO(2) concentrations.

  8. Hepatocytes explanted in the spleen preferentially express carbamoylphosphate synthetase rather than glutamine synthetase

    NARCIS (Netherlands)

    Lamers, W. H.; Been, W.; Charles, R.; Moorman, A. F.

    1990-01-01

    Urea cycle enzymes and glutamine synthetase are essential for NH3 detoxification and systemic pH homeostasis in mammals. Carbamoylphosphate synthetase, the first and flux-determining enzyme of the cycle, is found only in a large periportal compartment, and glutamine synthetase is found only in a

  9. Genomic, Biochemical, and Modeling Analyses of Asparagine Synthetases from Wheat

    Directory of Open Access Journals (Sweden)

    Hongwei Xu

    2018-01-01

    Full Text Available Asparagine synthetase activity in cereals has become an important issue with the discovery that free asparagine concentration determines the potential for formation of acrylamide, a probably carcinogenic processing contaminant, in baked cereal products. Asparagine synthetase catalyses the ATP-dependent transfer of the amino group of glutamine to a molecule of aspartate to generate glutamate and asparagine. Here, asparagine synthetase-encoding polymerase chain reaction (PCR products were amplified from wheat (Triticum aestivum cv. Spark cDNA. The encoded proteins were assigned the names TaASN1, TaASN2, and TaASN3 on the basis of comparisons with other wheat and cereal asparagine synthetases. Although very similar to each other they differed slightly in size, with molecular masses of 65.49, 65.06, and 66.24 kDa, respectively. Chromosomal positions and scaffold references were established for TaASN1, TaASN2, and TaASN3, and a fourth, more recently identified gene, TaASN4. TaASN1, TaASN2, and TaASN4 were all found to be single copy genes, located on chromosomes 5, 3, and 4, respectively, of each genome (A, B, and D, although variety Chinese Spring lacked a TaASN2 gene in the B genome. Two copies of TaASN3 were found on chromosome 1 of each genome, and these were given the names TaASN3.1 and TaASN3.2. The TaASN1, TaASN2, and TaASN3 PCR products were heterologously expressed in Escherichia coli (TaASN4 was not investigated in this part of the study. Western blot analysis identified two monoclonal antibodies that recognized the three proteins, but did not distinguish between them, despite being raised to epitopes SKKPRMIEVAAP and GGSNKPGVMNTV in the variable C-terminal regions of the proteins. The heterologously expressed TaASN1 and TaASN2 proteins were found to be active asparagine synthetases, producing asparagine and glutamate from glutamine and aspartate. The asparagine synthetase reaction was modeled using SNOOPY® software and information from

  10. Folylpolyglutamate Synthetase Gene Transcription is Regulated by a Multiprotein Complex that Binds the TEL-AML1 Fusion in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Leclerc, Guy J.; Sanderson, Christopher; Hunger, Stephen; Devidas, Meenakshi; Barredo, Julio C.

    2010-01-01

    Acute Lymphoblastic Leukemia (ALL) non-random fusions influence clinical outcome and alter the accumulation of MTX-PGs in vivo. Analysis of primary ALL samples uncovered subtype-specific patterns of folate gene expression. Using an FPGS-luciferase reporter gene assay, we determined that E2A-PBX1 and TEL-AML1 expression decreased FPGS transcription. ChIP assays uncovered HDAC1,AML1, mSin3A, E2F, and Rb interactions with the FPGS promoter region. We demonstrate that FPGS expression is epigenetically regulated through binding of selected ALL fusions to a multiprotein complex, which also controls the cell cycle dependence of FPGS expression. This study provides insights into the pharmacogenomics of MTX in ALL subtypes. PMID:20538338

  11. Association of anti-aminoacyl-transfer RNA synthetase antibody and anti-melanoma differentiation-associated gene 5 antibody with the therapeutic response of polymyositis/dermatomyositis-associated interstitial lung disease.

    Science.gov (United States)

    Yoshida, Naomi; Okamoto, Masaki; Kaieda, Shinjiro; Fujimoto, Kiminori; Ebata, Tomohiro; Tajiri, Morihiro; Nakamura, Masayuki; Tominaga, Masaki; Wakasugi, Daisuke; Kawayama, Tomotaka; Kuwana, Masataka; Mimori, Tsuneyo; Ida, Hiroaki; Hoshino, Tomoaki

    2017-01-01

    We attempted to clarify whether the presence of anti-aminoacyl-transfer RNA synthetase antibody (anti-ARS Ab) or anti-melanoma differentiation-associated gene 5 antibody (anti-MDA5 Ab) is associated with the therapeutic response of polymyositis/dermatomyositis-associated interstitial lung disease (PM/DM-ILD). We retrospectively investigated 22 patients with PM/DM-ILD (10 positive for anti-ARS Ab and nine positive for anti-MDA5 Ab) for whom antibody analysis of conserved serum was possible. We assessed mortality in the first three months as the therapeutic response in the acute phase and compared changes in clinical data for up to one year considered as the chronic phase. We classified the clinical changes over the year into three groups: Improvement (increased % vital capacity [%VC] or diffusing capacity of the lung for carbon monoxide [%D LCO ]≥10 or 15%), deterioration (decreased %VC or %D LCO ≥10 or 15%), and no change (remainder of the changes). The extent of abnormality demonstrated by high-resolution computed tomography (HRCT) was scored. Positivity for anti-MDA5 Ab, but not for anti-ARS Ab, was associated with mortality in the first 3 months. Evaluation of the therapeutic response in the first year showed that positivity for the anti-ARS Ab, but not for the anti-MDA5 Ab, was associated with an improvement in %D LCO and a decline in the serum KL-6 levels. Positivity for the anti-ARS Ab or negativity for anti-MDA5 Ab was associated with a greater decrease in bronchial dilatation as seen by HRCT. Anti-ARS and anti-MDA5 Abs are associated with the therapeutic response of PM/DM-ILD. Copyright © 2016. Published by Elsevier B.V.

  12. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination.

    Science.gov (United States)

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-07-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.

  13. Phosphinothricin tripeptide synthetases in Streptomyces viridochromogenes Tü494.

    Science.gov (United States)

    Schwartz, Dirk; Grammel, Nicolas; Heinzelmann, Eva; Keller, Ullrich; Wohlleben, Wolfgang

    2005-11-01

    The tripeptide backbone of phosphinothricin (PT) tripeptide (PTT), a compound with herbicidal activity from Streptomyces viridochromogenes, is assembled by three stand-alone peptide synthetase modules. The enzyme PhsA (66 kDa) recruits the PT-precursor N-acetyl-demethylphosphinothricin (N-Ac-DMPT), whereas the two alanine residues of PTT are assembled by the enzymes PhsB and PhsC (129 and 119 kDa, respectively). During or after assembly, the N-Ac-DMPT residue in the peptide is converted to PT by methylation and deacetylation. Both phsB and phsC appear to be cotranscribed together with two other genes from a single promoter and they are located at a distance of 20 kb from the gene phsA, encoding PhsA, in the PTT biosynthesis gene cluster of S. viridochromogenes. PhsB and PhsC represent single nonribosomal peptide synthetase elongation modules lacking a thioesterase domain. Gene inactivations, genetic complementations, determinations of substrate specificity of the heterologously produced proteins, and comparison of PhsC sequence with the amino terminus of the alanine-activating nonribosomal peptide synthetase PTTSII from S. viridochromogenes confirmed the role of the two genes in the bialanylation of Ac-DMPT. The lack of an integral thioesterase domain in the PTT assembly system points to product release possibly involving two type II thioesterase genes (the1 and the2) located in the PTT gene cluster alone or in conjunction with an as yet unknown mechanism of product release.

  14. A Rare Cause of Neonatal Hemolytic Anemia: Glutathione Synthetase Deficiency.

    Science.gov (United States)

    Soylu Ustkoyuncu, Pembe; Mutlu, Fatma Türkan; Kiraz, Aslihan; Tag Balkis, Zuhal; Yel, Sibel

    2018-01-01

    Isolated hemolysis or hemolytic anemia and 5-oxoprolinuria are 2 distinct medical conditions in the clinical spectrum associated with glutathione synthetase deficiency. A 1-day-old female baby presented with anemia and respiratory distress. Her hemoglobin level was 9.5 g/dL and the total serum bilirubin level was 5.6 mg/dL. Metabolic acidosis was detected in her blood gas analysis. Metabolic acidosis recurred despite treatment and further investigation was required. Her 5-oxoproline level was 3815 mmol/mol creatinine in urine organic acid analysis, and a homozygous mutation [p.R125H (c.374G>A)] was found in the glutathione synthetase gene. GSD has been observed in very few patients and is rarely considered in the differential diagnosis of hemolytic anemia in newborns.

  15. Cloning and Expression Analysis of One Gamma-Glutamylcysteine Synthetase Gene (Hbγ-ECS1) in Latex Production in Hevea brasiliensis.

    Science.gov (United States)

    Fang, Wei; Qiao, Luo Shi; Ming, Wu; Jian, Qiu; Feng, Yang Wen; Hua, Gao Hong; Zhou, Xiao Xian

    2016-01-01

    Rubber tree is a major commercial source of natural rubber. Latex coagulation is delayed by thiols, which belong to the important type of antioxidants in laticifer submembrane, and is composed of glutathione (GSH), cysteine, and methionine. The rate-limiting enzyme, γ-ECS, plays an important role in regulating the biosynthesis of glutathione under any environment conditions. To understand the relation between γ-ECS and thiols and to correlate latex flow with one-time tapping and continuous tapping, we cloned and derived the full length of one γ-ECS from rubber tree latex (Hbγ-ECS1). According to qPCR analysis, the expression levels of Hbγ-ECS1 were induced by tapping and Ethrel stimulation, and the expression was related to thiols content in the latex. Continuous tapping induced injury, and the expression of HbγECS1 increased with routine tapping and Ethrel-stimulation tapping (more intensive tapping). According to expression in long-term flowing latex, the gene was related to the duration of latex flow. HbγECS1 was expressed in E. coli Rosetta using pET-sumo as an expression vector and the recombinant enzyme was purified; then we achieved 0.827 U/mg specific activity and about 66 kDa molecular weight. The present study can help us understand the complex role of Hbγ-ECS in thiols biosynthesis, which is influenced by tapping.

  16. Expression of DNA repair and replication genes in non-small cell lung cancer (NSCLC): a role for thymidylate synthetase (TYMS)

    International Nuclear Information System (INIS)

    Kotoula, Vassiliki; Pectasides, Dimitrios; Syrigos, Konstantinos N; Kosmidis, Paris A; Fountzilas, George; Krikelis, Dimitrios; Karavasilis, Vasilios; Koletsa, Triantafillia; Eleftheraki, Anastasia G; Televantou, Despina; Christodoulou, Christos; Dimoudis, Stefanos; Korantzis, Ippokratis

    2012-01-01

    BRCA1 (B), ERCC1 (E), RRM1 (R) and TYMS (T) mRNA expression has been extensively studied with respect to NSCLC patient outcome upon various chemotherapy agents. However, these markers have not been introduced into clinical practice yet. One of the reasons seems to be lack of a standard approach for the classification of the reported high/low mRNA expression. The aim of this study was to determine the prognostic/predictive impact of B, E, R, T in routinely-treated NSCLC patients by taking into account the expression of these genes in the normal lung parenchyma. B, E, R, T mRNA expression was examined in 276 NSCLC samples (real-time PCR). The normal range of B, E, R, T transcript levels was first determined in matched tumor – normal pairs and then applied to the entire tumor series. Four main chemotherapy categories were examined: taxanes-without-platinum (Tax); platinum-without-taxanes (Plat); taxanes/platinum doublets (Tax/Plat); and, all-other combinations. In comparison to remotely located normal lung parenchyma, B, E, R, T mRNA expression was generally increased in matched tumors, as well as in the entire tumor series. Therefore, tumors were classified as expressing normal or aberrant B, E, R, T mRNA. In general, no marker was associated with overall and progression free survival (OS, PFS). Upon multivariate analysis, aberrant intratumoral TYMS predicted for shorter PFS than normal TYMS in 1st line chemo-naïve treated patients (p = 0.012). In the same setting, specific interactions were observed for aberrant TYMS with Plat and Tax/Plat (p = 0.003 and p = 0.006, respectively). Corresponding patients had longer PFS in comparison to those treated with Tax (Plat: HR = 0.234, 95% CI:0.108-0.506, Wald’s p < 0.0001; Tax/Plat: HR = 0.242, 95% CI:0.131-0.447, Wald’s p < 0.0001). Similar results were obtained for PFS in 1st line chemo-naïve and (neo)adjuvant pre-treated patients. Adenocarcinoma, early disease stage, and treatment with Tax/Plat doublets

  17. Gain-Of-Function Mutational Activation of Human TRNA Synthetase Procytokine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.L.; Kapoor, M.; Otero, F.J.; Slike, B.M.; Tsuruta, H.; Frausto, R.; Bates, A.; Ewalt, K.L.; Cheresh, D.A.; Schimmel, P.; /Scripps Res. Inst. /SLAC, SSRL

    2009-04-30

    Disease-causing mutations occur in genes for aminoacyl tRNA synthetases. That some mutations are dominant suggests a gain of function. Native tRNA synthetases, such as tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, catalyze aminoacylation and are also procytokines that are activated by natural fragmentation. In principle, however, gain-of-function phenotypes could arise from mutational activation of synthetase procytokines. From crystal structure analysis, we hypothesized that a steric block of a critical Glu-Leu-Arg (ELR) motif in full-length TyrRS suppresses the cytokine activity of a natural fragment. To test this hypothesis, we attempted to uncover ELR in the procytokine by mutating a conserved tyrosine (Y341) that tethers ELR. Site-specific proteolytic cleavage and small-angle X-ray scattering established subtle opening of the structure by the mutation. Strikingly, four different assays demonstrated mutational activation of cytokine functions. The results prove the possibilities for constitutive gain-of-function mutations in tRNA synthetases.

  18. Radioimmune assay of human platelet prostaglandin synthetase

    International Nuclear Information System (INIS)

    Roth, G.J.; Machuga, E.T.

    1982-01-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH 2 from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and [ 125 I]-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the [ 125 I]antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10 9 platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency

  19. Evolutionary relationships of the carbamoylphosphate synthetase genes

    NARCIS (Netherlands)

    van den Hoff, M. J.; Jonker, A.; Beintema, J. J.; Lamers, W. H.

    1995-01-01

    Carbamoylphosphate is a common intermediate in the metabolic pathways leading to the biosynthesis of arginine and pyrimidines. The amino acid sequences of all available proteins that catalyze the formation of carbamoylphosphate were retrieved from Genbank and aligned to estimate their mutual

  20. Evolutionary relationships of the carbamoylphosphate synthetase genes

    NARCIS (Netherlands)

    vandenHoff, MJB; Jonker, A; Beintema, JJ; Lamers, WH

    1995-01-01

    Carbamoylphosphate is a common intermediate in the metabolic pathways leading to the biosynthesis of arginine and pyrimidines, The amino acid sequences of all available proteins that catalyze the formation of carbamoylphosphate were retrieved from Genbank and aligned to estimate their mutual

  1. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  2. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    International Nuclear Information System (INIS)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-01-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine

  3. Glutamine Synthetase: Localization Dictates Outcome

    Directory of Open Access Journals (Sweden)

    Alessandra Castegna

    2018-02-01

    Full Text Available Glutamine synthetase (GS is the adenosine triphosphate (ATP-dependent enzyme that catalyses the synthesis of glutamine by condensing ammonium to glutamate. In the circulatory system, glutamine carries ammonia from muscle and brain to the kidney and liver. In brain reduction of GS activity has been suggested as a mechanism mediating neurotoxicity in neurodegenerative disorders. In cancer, the delicate balance between glutamine synthesis and catabolism is a critical event. In vitro evidence, confirmed in vivo in some cases, suggests that reduced GS activity in cancer cells associates with a more invasive and aggressive phenotype. However, GS is known to be highly expressed in cells of the tumor microenvironment, such as fibroblasts, adipocytes and immune cells, and their ability to synthesize glutamine is responsible for the acquisition of protumoral phenotypes. This has opened a new window into the complex scenario of the tumor microenvironment, in which the balance of glutamine consumption versus glutamine synthesis influences cellular function. Since GS expression responds to glutamine starvation, a lower glutamine synthesizing power due to the absence of GS in cancer cells might apply a metabolic pressure on stromal cells. This event might push stroma towards a GS-high/protumoral phenotype. When referred to stromal cells, GS expression might acquire a ‘bad’ significance to the point that GS inhibition might be considered a conceivable strategy against cancer metastasis.

  4. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid se...

  5. Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase.

    NARCIS (Netherlands)

    Guan, C.; Ribeiro, A.; Akkermans, A.D.L.; Jing, Y.; Kammen, van A.; Bisseling, T.; Pawlowski, K.

    1996-01-01

    Two nodule cDNA clones representing genes involved in Alnus glutinosa nitrogen metabolism were analysed. ag11 encoded glutamine synthetase (GS), the enzyme responsible for ammonium assimilation, while ag118 encoded acetylornithine transaminase (AOTA), an enzyme involved in the biosynthesis of

  6. Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum

    NARCIS (Netherlands)

    Di Lorenzo, M.; Stork, M.; Naka, H.; Tolmasky, M.E.; Crosa, J.H.

    2008-01-01

    Anguibactin, the siderophore produced by Vibrio anguillarum 775, is synthesized via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes required for anguibactin biosynthesis are harbored by the pJM1 plasmid. Complete sequencing of this plasmid identified an orf encoding a 108 kDa

  7. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism

    Science.gov (United States)

    Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel

    2003-01-01

    Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385

  8. Phytohormonal regulation of S-adenosylmethionine synthetase by gibberellic acid in wheat aleurones.

    Science.gov (United States)

    Mathur, M; Satpathy, M; Sachar, R C

    1992-11-17

    yielded two additional isozymic peaks, I and III, thereby suggesting its heterodimeric nature. We envisage that the three isozymes in GA3-treated wheat aleurone layers are formed by the random dimerization of two classes of enzyme subunits. The two enzyme subunits which differ in their net charge could be the product of two genes of AdoMet synthetase (SAM1 and SAM2). Based on this assumption, we propose that a single isozyme I in water imbibed control wheat aleurones is the product of SAM1 gene of AdoMet synthetase. The occurrence of three isozymes in GA3-treated aleurones could be ascribed to the expression of an alternate gene of AdoMet synthetase (SAM2 gene).(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Glutamine versus ammonia utilization in the NAD synthetase family.

    Directory of Open Access Journals (Sweden)

    Jessica De Ingeniis

    Full Text Available NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS. Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS

  10. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M. [Univ. of Rochester, NY (United States). Dept. of Radiation Biology and Biophysics

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy+ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy+ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy+ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  11. A Tyrosine-Dependent Riboswitch Controls the Expression of a Tyrosyl-tRNA Synthetase from Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Paula Bustamante

    2016-06-01

    Full Text Available Expression of aminoacyl-tRNA synthetases is regulated by a variety of mechanisms at the level of transcription or translation. A T-box dependent transcription termination / antitermination riboswitch system that responds to charged / uncharged tRNA regulates expression of aminoacyl tRNA synthetase genes in Gram-positive bacteria. TyrZ, the gene encoding tyrosyl-tRNA synthetase from Acidithiobacillus ferrooxidans, a Gram-negative acidophilic bacterium that participates in bioleaching of minerals, resembles the gene from Bacillus subtilis including the 5´-untranslated region encoding the riboswitch. Transcription of A. ferrooxidans tyrZ is induced by the presence of tyrosine by a mechanism involving antitermination of transcription. This mechanism is probably adapted to the low supply of amino acids of acidic environments of autotrophic bioleaching microorganisms. This work is licensed under a Creative Commons Attribution 4.0 International License.

  12. Growth factors regulate glutamine synthetase activity in ...

    African Journals Online (AJOL)

    Khaled

    2012-07-10

    Jul 10, 2012 ... affected by growth medium, carbon source, nitrogen source and sodium chloride. LB supplemented with 7% glycerol ... Abbreviations: GS, Glutamine synthetase; MSM, minimal salt medium; NB, nutrient broth medium; NF, ... glutamate and ammonia, which in turn, cells are supplied with ammonia, and their ...

  13. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    GS activity in root and stem during the vegetative growth stages and an increased GS activity in leaves during senescence compared to wildtype control. Furthermore, during the vegetative growth stages, there were distinct differences in N accumulation and biomass partitioning between transgenic lines...... new insight into the adaptability of plants to fluctuations in N supply. There was a clear relationship between nitrate high affinity uptake and the transcript levels of high affinity transporter, HvNRT2s, suggesting that these may play a dynamic and important role in fine-tuning plant nitrate supply...... for N demand. Of the GS isogenes, only the transcript levels of root HvGS1.1 increased when plants were transferred from high to low N. This change coincided with an increase in total GS activity. Pronounced diurnal variation was observed for root nitrate transporter genes and GS isogenes in both root...

  14. Partial response to biotin therapy in a patient with holocarboxylase synthetase deficiency: clinical, biochemical, and molecular genetic aspects

    NARCIS (Netherlands)

    Santer, R.; Muhle, H.; Suormala, T.; Baumgartner, E. R.; Duran, M.; Yang, X.; Aoki, Y.; Suzuki, Y.; Stephani, U.

    2003-01-01

    We report the clinical course and biochemical findings of a 10-year-old, mentally retarded girl with late-onset holocarboxylase synthetase (HCS, gene symbol HLCS) deficiency and only partial response to biotin. On treatment, even with an unusually high dose of 200mg/day, activities of the

  15. Loss of (2'-5')oligoadenylate synthetase activity by production of antisense RNA results in lack of protection by interferon from viral infections

    International Nuclear Information System (INIS)

    De Benedetti, A.; Pytel, B.A.; Baglioni, C.

    1987-01-01

    An expression vector was constructed that carries part of the human BK papovavirus with 0.5 kilobases of (2'-5')oligoadenylate (2-5A) synthetase cDNA inserted in inverted orientation downstream from the virion proteins (VP) promoter and the neomycin-resistance gene neo under the control of a simian virus 40 promoter. Cells transfected with this vector and selected for resistance to the neomycin derivative G418 synthesized RNA complementary to 2-5A synthetase mRNA. These cells lacked 2-5A synthetase activity, and the enzyme was not inducible by interferon. In contrast, 2-5A synthetase was induced in cells transfected with a control vector without the cDNA insert. Such cells were protected by interferon from RNA viruses, whereas cells lacking 2-5A synthetase were not protected from encephalomyocarditis virus, vesicular stomatitis virus, and Sindbis virus but were fully protected from influenza virus. These findings show that a high level of 2-5A synthetase is required for interferon-induced protection from the cytoplasmic RNA viruses tested

  16. Evolution of the 2'-5'-Oligoadenylate Synthetase family in eukaryotes and bacteria

    DEFF Research Database (Denmark)

    Kjær, Karina Hansen; Poulsen, Jesper Buchhave; Reitamm, Tonu

    2009-01-01

    system. In view of these observations, we have pursued the idea that OAS genes could be present in other metazoans and in unicellular organisms as well. We have identified a number of OAS1 genes in annelids, mollusks, a cnidarian, chordates, and unicellular eukaryotes and also found a family of proteins......The 2′-5′-oligoadenylate synthetase (OAS) belongs to a nucleotidyl transferase family that includes poly(A) polymerases and CCA-adding enzymes. In mammals and birds, the OAS functions in the interferon system but it is also present in an active form in sponges, which are devoid of the interferon...

  17. Biochemical and genetic characterization of a carbamyl phosphate synthetase mutant of Escherichia coli K12.

    Science.gov (United States)

    Bolivar, F; Galván, M; Martuscelli, J

    1976-05-01

    An unusual Escherichia coli K12 mutant for carbamyl phosphate synthetase is described. The mutation was generated by bacteriophage MUI insertion and left a 5% residual activity of the enzyme using either ammonia or glutamine as donors. The mutation is recessive to the wild-type allele and maps at or near the pyrA gene, but the mutant requires only arginine and not uracil for growth. By a second block in the pyrB gene it was possible to shift the accumulated carbamyl phosphate to arginine biosynthesis. The Km values and the levels of ornithine activation and inhibition by UMP were normal in the mutant enzyme.

  18. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    Science.gov (United States)

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  19. Stoichiometry and composition of an aminoacyl-tRNA synthetase complex from rat liver.

    OpenAIRE

    Johnson, D L; Yang, D C

    1981-01-01

    The particulate aminoacyl-tRNA synthetases of rat liver were copurified about 1000-fold with more than 20% yields for individual synthetase activities. Measurements of aminoacylation activities showed that lysyl-, arginyl-, leucyl-, isoleucyl-, and methionyl-tRNA synthetases in the purified complex cosedimented at 18 S. The molecular weight of the synthetase complex is about one million, as estimated by gel filtration. The stoichiometry of the synthetase in the complex was determined by activ...

  20. Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins.

    Science.gov (United States)

    Wiszniewski, Andrew A G; Zhou, Wenxu; Smith, Steven M; Bussell, John D

    2009-03-01

    Indole-3-butyric acid (IBA) and 2,4-dichlorophenoxybutyric acid (2,4-DB) are metabolised by peroxisomal beta-oxidation to active auxins that inhibit root growth. We screened Arabidopsis mutants for resistance to IBA and 2,4-DB and identified two new 2,4-DB resistant mutants. The mutant genes encode a putative oxidoreductase (SDRa) and a putative acyl-activating enzyme (AAE18). Both proteins are localised to peroxisomes. SDRa is coexpressed with core beta-oxidation genes, but germination, seedling growth and the fatty acid profile of sdra seedlings are indistinguishable from wild type. The sdra mutant is also resistant to IBA, but aae18 is not. AAE18 is the first example of a gene required for response to 2,4-DB but not IBA. The closest relative of AAE18 is AAE17. AAE17 is predicted to be peroxisomal, but an aae17 aae18 double mutant responded similarly to aae18 for all assays. We propose that AAE18 is capable of activating 2,4-DB but IBA activating enzymes remain to be discovered. We present an updated model for peroxisomal pro-auxin metabolism in Arabidopsis that includes SDRa and AAE18.

  1. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    Science.gov (United States)

    ... hyperammonemia, type I Genetics Education Materials for School Success (GEMSS) Orphanet: Carbamoyl-phosphate synthetase 1 deficiency Patient ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  2. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    OpenAIRE

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as S treptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control...

  3. Gleaning unexpected fruits from hard-won synthetases: probing principles of permissivity in non-canonical amino acid-tRNA synthetases.

    Science.gov (United States)

    Cooley, Richard B; Karplus, P Andrew; Mehl, Ryan A

    2014-08-18

    The site-specific incorporation of non-canonical amino acids (ncAAs) into proteins is an important tool for understanding biological function. Traditionally, each new ncAA targeted for incorporation requires a resource-consuming process of generating new ncAA aminoacyl tRNA synthetase/tRNACUA pairs. However, the discovery that some tRNA synthetases are "permissive", in that they can incorporate multiple ncAAs, means that it is no longer always necessary to develop a new synthetase for each newly desired ncAA. Developing a better understanding of what factors make ncAA synthetases more permissive would increase the utility of this new approach. Here, we characterized two synthetases selected for the same ncAA that have markedly different "permissivity profiles." Remarkably, the more permissive synthetase incorporated an ncAA for which we had not been able to generate a synthetase through de novo selection methods. Crystal structures revealed that the two synthetases recognize their parent ncAA through a conserved core of interactions, with the more permissive synthetase displaying a greater degree of flexibility in its interaction geometries. We also observed that intraprotein interactions not directly involved in ncAA binding can play a crucial role in synthetase permissivity and suggest that optimization of such interactions might provide an avenue to engineering synthetases with enhanced permissivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds.

    Science.gov (United States)

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira

    2017-08-01

    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter Ca MV 35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Evolutionary divergence of chloroplast FAD synthetase proteins

    Directory of Open Access Journals (Sweden)

    Arilla-Luna Sonia

    2010-10-01

    Full Text Available Abstract Background Flavin adenine dinucleotide synthetases (FADSs - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.

  6. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    Science.gov (United States)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  7. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay.

    Science.gov (United States)

    Ben-Salem, Salma; Gleeson, Joseph G; Al-Shamsi, Aisha M; Islam, Barira; Hertecant, Jozef; Ali, Bassam R; Al-Gazali, Lihadh

    2015-06-01

    Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A > C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions.

  8. Regions involved in fengycin synthetases enzyme complex formation

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Cheng

    2017-12-01

    Full Text Available Background: Fengycin is a lipopeptide antibiotic synthesized nonribosomally by five fengycin synthetases. These enzymes are linked in a specific order to form the complex. This study investigates how these enzymes interact in the complex and analyzes the regions in the enzymes that are critical to the interactions. Methods: Deletions were generated in the fengycin synthetases. The interaction of these mutant proteins with their partner enzymes in the complex was analyzed in vitro by a glutathione S-transferase (GST or nickel pulldown assay. Results: The communication-mediating donor (COM-D domains of the fengycin synthetases, when fused to GST, specifically pulled down their downstream partner enzymes in the GST-pulldown assays. The communication-mediating acceptor (COM-A domains were required for binding between two partner enzymes, although the domains alone did not confer specificity of the binding to their upstream partner enzymes. This study found that the COM-A domain, the condensation domain, and a portion of the adenylation domain in fengycin synthetase B (FenB were required for specific binding to fengycin synthetase A (FenA. Conclusion: The interaction between the COM-D and COM-A domains in two partner enzymes is critical for nonribosomal peptide synthesis. The COM-A domain alone is insufficient for interacting with its upstream partner enzyme in the enzyme complex with specificity; a region that contains COM-A, condensation, and a portion of adenylation domains in the downstream partner enzyme is required. Keywords: communication-mediating donor and acceptor domain, fengycin synthetase, protein-protein interaction

  9. Fusion of the subunits α and β of succinyl-CoA synthetase as a phylogenetic marker for Pezizomycotina fungi

    Directory of Open Access Journals (Sweden)

    Amanda M. Koire

    2011-01-01

    Full Text Available Gene fusions, yielding the formation of multidomain proteins, are evolutionary events that can be utilized as phylogenetic markers. Here we describe a fusion gene comprising the α and β subunits of succinyl-coA synthetase, an enzyme of the TCA cycle, in Pezizomycotina fungi. This fusion is present in all Pezizomycotina with complete genome sequences and absent from all other organisms. Phylogenetic analysis of the α and β subunits of succinyl-CoA synthetase suggests that both subunits were duplicated and retained in Pezizomycotina while one copy was lost from other fungi. One of the duplicated copies was then fused in Pezizomycotina. Our results suggest that the fusion of the α and β subunits of succinyl-CoA synthetase can be used as a molecular marker for membership in the Pezizomycotina subphylum. If a species has the fusion it can be reliably classified as Pezizomycotina, while the absence of the fusion is suggestive that the species is not a member of this subphylum.

  10. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    International Nuclear Information System (INIS)

    Chu, Wenchy; Horowitz, J.

    1991-01-01

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA Val with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K M and V max values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA Val . Binding of VRS to (FUra)tRNA Val induces structural perturbations that are reflected in selective changes in the 19 F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA Val along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA Val , suggesting conformational changes in this part of the molecule. No 19 F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA Val that has been proposed as a common intermediate in the aminoacylation reaction

  11. Biosynthesis of the Peptide Antibiotic Feglymycin by a Linear Nonribosomal Peptide Synthetase Mechanism.

    Science.gov (United States)

    Gonsior, Melanie; Mühlenweg, Agnes; Tietzmann, Marcel; Rausch, Saskia; Poch, Annette; Süssmuth, Roderich D

    2015-12-01

    Feglymycin, a peptide antibiotic produced by Streptomyces sp. DSM 11171, consists mostly of nonproteinogenic phenylglycine-type amino acids. It possesses antibacterial activity against methicillin-resistant Staphylococcus aureus strains and antiviral activity against HIV. Inhibition of the early steps of bacterial peptidoglycan synthesis indicated a mode of action different from those of other peptide antibiotics. Here we describe the identification and assignment of the feglymycin (feg) biosynthesis gene cluster, which codes for a 13-module nonribosomal peptide synthetase (NRPS) system. Inactivation of an NRPS gene and supplementation of a hydroxymandelate oxidase mutant with the amino acid l-Hpg proved the identity of the feg cluster. Feeding of Hpg-related unnatural amino acids was not successful. This characterization of the feg cluster is an important step to understanding the biosynthesis of this potent antibacterial peptide. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a...

  13. Heterogeneous distribution of glutamine synthetase during rat liver development

    NARCIS (Netherlands)

    Gaasbeek Janzen, J. W.; Gebhardt, R.; ten Voorde, G. H.; Lamers, W. H.; Charles, R.; Moorman, A. F.

    1987-01-01

    Two days before birth, immunohistochemical detection of glutamine synthetase already reveals a heterogeneous distribution pattern related to the vascular architecture of the liver. Only a small number of hepatocytes in the vicinity of the efferent venules show relatively high staining intensity.

  14. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    Science.gov (United States)

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  15. Glutamine Synthetase Deficiency in Murine Astrocytes Results in Neonatal Death

    NARCIS (Netherlands)

    He, Youji; Hakvoort, Theodorus B. M.; Vermeulen, Jacqueline L. M.; Labruyère, Wilhelmina T.; de Waart, D. Rudi; van der Hel, W. Saskia; Ruijter, Jan M.; Uylings, Harry B. M.; Lamers, Wouter H.

    2010-01-01

    Glutamine synthetase (GS) is a key enzyme in the "glutamine-glutamate cycle" between astrocytes and neurons, but its function in vivo was thus far tested only pharmacologically. Crossing GS(fl/lacZ) or GS(fl/f)l mice with hGFAP-Cre mice resulted in prenatal excision of the GS(fl) allele in

  16. Restoration Of Glutamine Synthetase Activity, Nitric Oxide Levels ...

    African Journals Online (AJOL)

    Background: Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain ...

  17. Folylpolyglutamate synthetase: direct evidence for an acyl phosphate intermediate in the enzyme-catalyzed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, R.; McGuire, J.J.; Shane, B.; Coward, J.K.

    1986-05-01

    The nature of the intermediate in the reaction catalyzed by folylpoly-..gamma..-glutamate synthetase (FPGS) has been investigated. Incubation of ..cap alpha..,..gamma..-(/sup 18/O)methotrexate with ATP, glutamate, and FPGS resulted in the formation of (/sup 18/O)phosphate, thus providing strong evidence for the formation of a ..gamma..-glutamyl phosphate during catalysis. The inorganic phosphate formed in the enzyme-catalyzed reaction was separated from other products and substrates by chromatography on DEAE-cellulose, then converted to the trimethyl ester, and analyzed by mass spectroscopy. Stoichiometric formation of (/sup 18/O)phosphate was observed in the case of the E. coli enzyme, isolated from a transformant containing the cloned FPGS-dihydrofolate synthetase (folC) gene. In addition, /sup 31/P-NMR analysis of the phosphate isolated from the reaction using E. coli FPGS showed the expected /sup 18/O-isotopic perturbations due to both singly bonded and doubly bonded P-/sup 18/O species. Similar experiments were carried out with FPGS isolated from hog liver. In this case, the small amounts of pure enzyme available precluded use of the NMR technique. However, mass spectral analysis of the derivatized phosphate product revealed the presence of (/sup 18/O)-trimethyl phosphate, thus indicating that the reaction catalyzed by the mammalian enzyme also proceeds via an acyl phosphate intermediate.

  18. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme

    Directory of Open Access Journals (Sweden)

    Ana Rita Seabra

    2015-07-01

    Full Text Available Glutamine Synthetase (GS catalyses the first step at which nitrogen is brought into cellular metabolism and is also involved in the reassimilation of ammonium released by a number of metabolic pathways. Due to its unique position in plant nitrogen metabolism, GS plays essential roles in all aspects of plant development, from germination to senescence, and is a key component of nitrogen use efficiency (NUE and plant yield. Understanding the mechanisms regulating GS activity is therefore of utmost importance and a great effort has been dedicated to understand how GS is regulated in different plant species. The present review summarizes exciting recent developments concerning the structure and regulation of glutamine synthetase isoenzymes, using the model legume Medicago truncatula. These include the understanding of the structural determinants of both the cytosolic and plastid located isoenzymes, the existence of a seed-specific GS gene unique to M. truncatula and closely related species and the discovery that GS isoenzymes are regulated by nitric oxide at the post-translational level. The data is discussed and integrated with the potential roles of the distinct GS isoenzymes within the whole plant context.

  19. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Marta Spodenkiewicz

    2016-10-01

    Full Text Available Glutamine synthetase (GS is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.

  20. Genetics Home Reference: glutathione synthetase deficiency

    Science.gov (United States)

    ... slowing down of physical reactions, movements, and speech (psychomotor retardation); intellectual disability; and a loss of coordination ( ... occur? How can gene mutations affect health and development? More about Mutations and Health Inheritance Pattern This ...

  1. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn).

    Science.gov (United States)

    Nair, Nilendra; Raff, Hannah; Islam, Mohammed Tarek; Feen, Melanie; Garofalo, Denise M; Sheppard, Kelly

    2016-02-13

    Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Characterization of a Bacillus subtilis surfactin synthetase knockout and antimicrobial activity analysis.

    Science.gov (United States)

    Liu, Hongxia; Qu, Xiaoxu; Gao, Ling; Zhao, Shengming; Lu, Zhaoxin; Zhang, Chong; Bie, Xiaomei

    2016-11-10

    Gene knockout is an important approach to improve the production of antimicrobial compounds. B. subtilis PB2-LS10, derived from B. subtilis PB2-L by a surfactin synthetase (srf) genes knockout, exhibits stronger inhibitory action than its parental strain against all tested pathogenic bacteria and fungi. The antimicrobial extracts produced by B. subtilis PB2-L and B. subtilis PB2-LS10 respectively were characterized by the high-resolution LC-ESI-MS. To provide further insight into the distinct antimicrobial activities, we investigated the impact of the srf genes deletion on the growth and gene transcriptional profile of the strains. The mutant strain grew quickly and reached stationary phase 2h earlier than the wild-type. Prominent expression changes in the modified strain involved genes that were essential to metabolic pathways and processes. Genes related to amino acid transport, ATP-binding cassette (ABC) transporters and protein export were up-regulated in strain PB2-LS10. However, amino acid metabolism, carbohydrate metabolism and fatty acid metabolism were repressed. Because of its excellent antimicrobial activity, strain PB2-LS10 has potential for use in food preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of point mutations in Plasmodium falciparum dihydrofolate reductase and dihydropterate synthase genes on clinical outcomes and in vitro susceptibility to sulfadoxine and pyrimethamine.

    Directory of Open Access Journals (Sweden)

    David J Bacon

    2009-08-01

    Full Text Available Sulfadoxine-pyrimethamine was a common first line drug therapy to treat uncomplicated falciparum malaria, but increasing therapeutic failures associated with the development of significant levels of resistance worldwide has prompted change to alternative treatment regimes in many national malaria control programs. METHODOLOGY AND FINDING: We conducted an in vivo therapeutic efficacy trial of sulfadoxine-pyrimethamine at two locations in the Peruvian Amazon enrolling 99 patients of which, 86 patients completed the protocol specified 28 day follow up. Our objective was to correlate the presence of polymorphisms in P. falciparum dihydrofolate reductase and dihydropteroate synthase to in vitro parasite susceptibility to sulfadoxine and pyrimethamine and to in vivo treatment outcomes. Inhibitory concentration 50 values of isolates increased with numbers of mutations (single [108N], sextuplet [BR/51I/108N/164L and 437G/581G] and septuplet (BR/51I/108N/164L and 437G/540E/581G with geometric means of 76 nM (35-166 nM, 582 nM (49-6890- nM and 4909 (3575-6741 nM nM for sulfadoxine and 33 nM (22-51 nM, 81 nM (19-345 nM, and 215 nM (176-262 nM for pyrimethamine. A single mutation present in the isolate obtained at the time of enrollment from either dihydrofolate reductase (164L or dihydropteroate synthase (540E predicted treatment failure as well as any other single gene alone or in combination. Patients with the dihydrofolate reductase 164L mutation were 3.6 times as likely to be treatment failures [failures 85.4% (164L vs 23.7% (I164; relative risk = 3.61; 95% CI: 2.14 - 6.64] while patients with the dihydropteroate synthase 540E were 2.6 times as likely to fail treatment (96.7% (540E vs 37.5% (K540; relative risk = 2.58; 95% CI: 1.88 - 3.73. Patients with both dihydrofolate reductase 164L and dihydropteroate synthase 540E mutations were 4.1 times as likely to be treatment failures [96.7% vs 23.7%; RR = 4.08; 95% CI: 2.45 - 7.46] compared to patients

  4. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.

    Science.gov (United States)

    Dewan, Varun; Reader, John; Forsyth, Karin-Musier

    2014-01-01

    Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using

  5. A stochastic modeling of isotope exchange reactions in glutamine synthetase

    Science.gov (United States)

    Kazmiruk, N. V.; Boronovskiy, S. E.; Nartsissov, Ya R.

    2017-11-01

    The model presented in this work allows simulation of isotopic exchange reactions at chemical equilibrium catalyzed by a glutamine synthetase. To simulate the functioning of the enzyme the algorithm based on the stochastic approach was applied. The dependence of exchange rates for 14C and 32P on metabolite concentration was estimated. The simulation results confirmed the hypothesis of the ascertained validity for preferred order random binding mechanism. Corresponding values of K0.5 were also obtained.

  6. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard, E-mail: r.giege@ibmc.u-strasbg.fr; Rudinger-Thirion, Joëlle; Sauter, Claude [Département ‘Machineries Traductionnelles’, Architecture et Réactivité de l’ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg (France)

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  7. The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad.

    Science.gov (United States)

    Bieganowski, Pawel; Brenner, Charles

    2003-08-29

    Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.

  8. Engineering polyketide synthases and nonribosomal peptide synthetases.

    Science.gov (United States)

    Williams, Gavin J

    2013-08-01

    Naturally occurring polyketides and nonribosomal peptides with broad and potent biological activities continue to inspire the discovery of new and improved analogs. The biosynthetic apparatus responsible for the construction of these natural products has been the target of intensive protein engineering efforts. Traditionally, engineering has focused on substituting individual enzymatic domains or entire modules with those of different building block specificity, or by deleting various enzymatic functions, in an attempt to generate analogs. This review highlights strategies based on site-directed mutagenesis of substrate binding pockets, semi-rational mutagenesis, and whole-gene random mutagenesis to engineer the substrate specificity, activity, and protein interactions of polyketide and nonribosomal peptide biosynthetic machinery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus.

    Science.gov (United States)

    Montanini, Barbara; Betti, Marco; Márquez, Antonio J; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone

    2003-01-01

    The nucleotide sequences reported in this paper have been submitted to the GenBank(R)/EBI Nucleotide Sequence Databases with accession numbers AF462037 (glutamine synthetase) and AF462032 (glutamate synthase). Nitrogen retrieval and assimilation by symbiotic ectomycorrhizal fungi is thought to play a central role in the mutualistic interaction between these organisms and their plant hosts. Here we report on the molecular characterization of the key N-assimilation enzyme glutamine synthetase from the mycorrhizal ascomycete Tuber borchii (TbGS). TbGS displayed a strong positive co-operativity ( n =1.7+/-0.29) and an unusually high S(0.5) value (54+/-16 mM; S(0.5) is the substrate concentration value at which v =(1/2) V (max)) for glutamate, and a correspondingly low sensitivity towards inhibition by the glutamate analogue herbicide phosphinothricin. The TbGS mRNA, which is encoded by a single-copy gene in the Tuber genome, was up-regulated in N-starved mycelia and returned to basal levels upon resupplementation of various forms of N, the most effective of which was nitrate. Both responses were accompanied by parallel variations of TbGS protein amount and glutamine synthetase activity, thus indicating that TbGS levels are primarily controlled at the pre-translational level. As revealed by a comparative analysis of the TbGS mRNA and of the mRNAs for the metabolically related enzymes glutamate dehydrogenase and glutamate synthase, TbGS is not only the sole messenger that positively responds to N starvation, but also the most abundant under N-limiting conditions. A similar, but even more discriminating expression pattern, with practically undetectable glutamate dehydrogenase mRNA levels, was observed in fruitbodies. The TbGS mRNA was also found to be expressed in symbiosis-engaged hyphae, with distinctively higher hybridization signals in hyphae that were penetrating among and within root cells. PMID:12683951

  10. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...... groups of rats. These changes may partly explain the demonstrated training-induced increase in glucose tolerance. None of the findings could be ascribed to differences in foold intake or body weight....

  11. Phosphorylation and Acetylation of Acyl-CoA Synthetase- I

    DEFF Research Database (Denmark)

    Frahm, Jennifer L; Li, Lei O; Grevengoed, Trisha J

    2011-01-01

    Long chain acyl-CoA synthetase 1 (ACSL1) contributes 50 to 90% of total ACSL activity in liver, adipose tissue, and heart and appears to direct the use of long chain fatty acids for energy. Although the functional importance of ACSL1 is becoming clear, little is understood about its post...... and acetylated amino acids by mass spectrometry. We then compared these results to the post-translational modifications observed in vivo in liver and brown adipose tissue after mice were fasted or exposed to a cold environment. We identified universal N-terminal acetylation, 15 acetylated lysines, and 25...

  12. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  13. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  14. The early history of tRNA recognition by aminoacyl-tRNA synthetases

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... of these enzymes for correct genetic code expression as well as early structural data and related enzymology will be reviewed. Despite structural diversity, all synthetases follow a two-step mechanism for tRNA aminoacylation. Specificity, however, is not absolute since synthetases were shown to catalyze ...

  15. [The anti-synthetase syndrome: muscle disease and multisystem disorder at the same time

    NARCIS (Netherlands)

    Hengstman, G.J.D.; Venrooij, W.J.W. van; Hoogen, F.H.J. van den; Engelen, B.G.M. van

    2003-01-01

    In three women, aged 60, 45 and 38 years, who presented with exertional dyspnoea (due to lung fibrosis) and Raynaud's phenomenon, dermatomyopathy and Raynaud's phenomenon, and symmetrical arthralgia and myalgia, respectively, the anti-synthetase syndrome was diagnosed. The anti-synthetase syndrome

  16. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    Science.gov (United States)

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  17. Biochemical and mutational analysis of glutamine synthetase type III from the rumen anaerobe Ruminococcus albus 8.

    Science.gov (United States)

    Amaya, Kensey R; Kocherginskaya, Svetlana A; Mackie, Roderick I; Cann, Isaac K O

    2005-11-01

    Two different genes encoding glutamine synthetase type I (GSI) and GSIII were identified in the genome sequence of R. albus 8. The identity of the GSIII protein was confirmed by the presence of its associated conserved motifs. The glnN gene, encoding the GSIII, was cloned and expressed in Escherichia coli BL21 cells. The recombinant protein was purified and subjected to biochemical and physical analyses. Subunit organization suggested a protein present in solution as both monomers and oligomers. Kinetic studies using the forward and the gamma-glutamyl transferase (gamma-GT) assays were carried out. Mutations that changed conserved glutamic acid residues to alanine in the four GSIII motifs resulted in drastic decreases in GS activity using both assays, except for an E380A mutation, which rather resulted in an increase in activity in the forward assay compared to the wild-type protein. Reduced GSIII activity was also exhibited by mutating, individually, two lysines (K308 and K318) located in the putative nucleotide-binding site to alanine. Most importantly, the presence of mRNA transcripts of the glnN gene in R. albus 8 cells grown under ammonia limiting conditions, whereas little or no transcript was detected in cells grown under ammonia sufficient conditions, suggested an important role for the GSIII in the nitrogen metabolism of R. albus 8. Furthermore, the mutational studies on the conserved GSIII motifs demonstrated, for the first time, their importance in the structure and/or function of a GSIII protein.

  18. Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase

    Directory of Open Access Journals (Sweden)

    Margarita eGarcía-Calderón

    2015-09-01

    Full Text Available This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2 in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L .japonicus plants in response to stress.

  19. Functional identification of glutamate cysteine ligase and glutathione synthetase in the marine yeast Rhodosporidium diobovatum

    Science.gov (United States)

    Kong, Min; Wang, Fengjuan; Tian, Liuying; Tang, Hui; Zhang, Liping

    2018-02-01

    Glutathione (GSH) fulfills a variety of metabolic functions, participates in oxidative stress response, and defends against toxic actions of heavy metals and xenobiotics. In this study, GSH was detected in Rhodosporidium diobovatum by high-performance liquid chromatography (HPLC). Then, two novel enzymes from R. diobovatum were characterized that convert glutamate, cysteine, and glycine into GSH. Based on reverse transcription PCR, we obtained the glutathione synthetase gene ( GSH2), 1866 bp, coding for a 56.6-kDa protein, and the glutamate cysteine ligase gene ( GSH1), 2469 bp, coding for a 90.5-kDa protein. The role of GSH1 and GSH2 for the biosynthesis of GSH in the marine yeast R. diobovatum was determined by deletions using the CRISPR-Cas9 nuclease system and enzymatic activity. These results also showed that GSH1 and GSH2 were involved in the production of GSH and are thus being potentially useful to engineer GSH pathways. Alternatively, pET- GSH constructed using vitro recombination could be used to detect the function of genes related to GSH biosynthesis. Finally, the fermentation parameters determined in the present study provide a reference for industrial GSH production in R. diobovatum.

  20. Human asparaginyl-tRNA synthetase: molecular cloning and the inference of the evolutionary history of Asx-tRNA synthetase family.

    Science.gov (United States)

    Shiba, K; Motegi, H; Yoshida, M; Noda, T

    1998-11-15

    We have cloned and sequenced a cDNA encoding human cytoplasmic asparaginyl-tRNA synthetase (AsnRS). The N-terminal appended domain of 112 amino acid represents the signature sequence for the eukaryotic AsnRS and is absent from archaebacterial or eubacterial enzymes. The canonical ortholog for AsnRS is absent from most archaebacterial and some eubacterial genomes, indicating that in those organisms, formation of asparaginyl-tRNA is independent of the enzyme. The high degree of sequence conservation among asparaginyl- and aspartyl-tRNA synthetases (AsxRS) made it possible to infer the evolutionary paths of the two enzymes. The data show the neighbor relationship between AsnRS and eubacterial aspartyl-tRNA synthetase, and support the occurrence of AsnRS early in the course of evolution, which is in contrast to the proposed late occurrence of glutaminyl-tRNA synthetase.

  1. Mutations in QARS, Encoding Glutaminyl-tRNA Synthetase, Cause Progressive Microcephaly, Cerebral-Cerebellar Atrophy, and Intractable Seizures

    Science.gov (United States)

    Zhang, Xiaochang; Ling, Jiqiang; Barcia, Giulia; Jing, Lili; Wu, Jiang; Barry, Brenda J.; Mochida, Ganeshwaran H.; Hill, R. Sean; Weimer, Jill M.; Stein, Quinn; Poduri, Annapurna; Partlow, Jennifer N.; Ville, Dorothée; Dulac, Olivier; Yu, Tim W.; Lam, Anh-Thu N.; Servattalab, Sarah; Rodriguez, Jacqueline; Boddaert, Nathalie; Munnich, Arnold; Colleaux, Laurence; Zon, Leonard I.; Söll, Dieter; Walsh, Christopher A.; Nabbout, Rima

    2014-01-01

    Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders. PMID:24656866

  2. Holocarboxylase synthetase deficiency pre and post newborn screening

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2016-06-01

    Full Text Available Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis.

  3. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera

    Directory of Open Access Journals (Sweden)

    Rouhiainen Leo

    2008-09-01

    Full Text Available Abstract Background Cyanobacteria produce a wealth of secondary metabolites, including the group of small cyclic heptapeptide hepatotoxins that constitutes the microcystin family. The enzyme complex that directs the biosynthesis of microcystin is encoded in a single large gene cluster (mcy. mcy genes have a widespread distribution among cyanobacteria and are likely to have an ancient origin. The notable diversity within some of the Mcy modules is generated through various recombination events including horizontal gene transfer. Results A comparative analysis of the adenylation domains from the first module of McyB (McyB1 and McyC in the microcystin synthetase complex was performed on a large number of microcystin-producing strains from the Anabaena, Microcystis and Planktothrix genera. We found no decisive evidence for recombination between strains from different genera. However, we detected frequent recombination events in the mcyB and mcyC genes between strains within the same genus. Frequent interdomain recombination events were also observed between mcyB and mcyC sequences in Anabaena and Microcystis. Recombination and mutation rate ratios suggest that the diversification of mcyB and mcyC genes is driven by recombination events as well as point mutations in all three genera. Sequence analysis suggests that generally the adenylation domains of the first domain of McyB and McyC are under purifying selection. However, we found clear evidence for positive selection acting on a number of amino acid residues within these adenylation domains. These include residues important for active site selectivity of the adenylation domain, strongly suggesting selection for novel microcystin variants. Conclusion We provide the first clear evidence for positive selection acting on amino acid residues involved directly in the recognition and activation of amino acids incorporated into microcystin, indicating that the microcystin complement of a given strain may

  4. A case of severe glutathione synthetase deficiency with novel GSS mutations

    Directory of Open Access Journals (Sweden)

    H. Xia

    2018-01-01

    Full Text Available Glutathione synthetase deficiency (GSSD is a rare inborn error of glutathione metabolism with autosomal recessive inheritance. The severe form of the disease is characterized by acute metabolic acidosis, usually present in the neonatal period with hemolytic anemia and progressive encephalopathy. A case of a male newborn infant who had severe metabolic acidosis with high anion gap, hemolytic anemia, and hyperbilirubinemia is reported. A high level of 5-oxoproline was detected in his urine and a diagnosis of generalized GSSD was made. DNA sequence analysis revealed the infant to be compound heterozygous with two mutations, c.738dupG in exon 8 of GSS gene resulting in p.S247fs and a repetitive sequence in exon 3 of GSS gene. Treatment after diagnosis of GSSD included supplementation with antioxidants and oral sodium hydrogen bicarbonate. However, he maintained a variable degree of metabolic acidosis and succumbed shortly after his parents requested discontinuation of therapy because of dismal prognosis and medical futility when he was 18 days old.

  5. A case of severe glutathione synthetase deficiency with novel GSS mutations

    Science.gov (United States)

    Xia, H.; Ye, J.; Wang, L.; Zhu, J.; He, Z.

    2018-01-01

    Glutathione synthetase deficiency (GSSD) is a rare inborn error of glutathione metabolism with autosomal recessive inheritance. The severe form of the disease is characterized by acute metabolic acidosis, usually present in the neonatal period with hemolytic anemia and progressive encephalopathy. A case of a male newborn infant who had severe metabolic acidosis with high anion gap, hemolytic anemia, and hyperbilirubinemia is reported. A high level of 5-oxoproline was detected in his urine and a diagnosis of generalized GSSD was made. DNA sequence analysis revealed the infant to be compound heterozygous with two mutations, c.738dupG in exon 8 of GSS gene resulting in p.S247fs and a repetitive sequence in exon 3 of GSS gene. Treatment after diagnosis of GSSD included supplementation with antioxidants and oral sodium hydrogen bicarbonate. However, he maintained a variable degree of metabolic acidosis and succumbed shortly after his parents requested discontinuation of therapy because of dismal prognosis and medical futility when he was 18 days old. PMID:29340523

  6. Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids.

    Science.gov (United States)

    Clarkson, James J; Kelly, Laura J; Leitch, Andrew R; Knapp, Sandra; Chase, Mark W

    2010-04-01

    Interspecies relationships in Nicotiana (Solanaceae) are complex because 40 species are diploid (two sets of chromosomes) and 35 species are allotetraploid (four sets of chromosomes, two from each progenitor diploid species). We sequenced a fragment (containing four introns) of the nuclear gene 'chloroplast-expressed glutamine synthetase' (ncpGS) in 65 species of Nicotiana. Here we present the first phylogenetic analysis based on a low-copy nuclear gene for this well studied and important genus. Diploid species have a single-copy of ncpGS, and allotetraploids as expected have two homeologous copies, each derived from their progenitor diploid. Results were particularly useful for determining the paternal lineage of previously enigmatic taxa (for which our previous analyses had revealed only the maternal progenitors). In particular, we were able to shed light on the origins of the two oldest and largest allotetraploid sections, N. sects. Suaveolentes and Repandae. All homeologues have an intact reading frame and apparently similar rates of divergence, suggesting both remain functional. Difficulties in fitting certain diploid species into the sectional classification of Nicotiana on morphological grounds, coupled with discordance between the ncpGS data and previous trees (i.e. plastid, nuclear ribosomal DNA), indicate a number of homoploid (diploid) hybrids in the genus. We have evidence for Nicotiana glutinosa and Nicotiana linearis being of hybrid origin and patterns of intra-allelic recombination also indicate the possibility of reticulate origins for other diploid species. (c) 2009 Elsevier Inc. All rights reserved.

  7. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Yong-Wan Kim

    Full Text Available Aminoacyl-tRNA synthetases (ARSs and ARS-interacting multifunctional proteins (AIMPs exhibit remarkable functional versatility beyond their catalytic activities in protein synthesis. Their non-canonical functions have been pathologically linked to cancers. Here we described our integrative genome-wide analysis of ARSs to show cancer-associated activities in glioblastoma multiforme (GBM, the most aggressive malignant primary brain tumor. We first selected 23 ARS/AIMPs (together referred to as ARSN, 124 cancer-associated druggable target genes (DTGs and 404 protein-protein interactors (PPIs of ARSs using NCI's cancer gene index. 254 GBM affymetrix microarray data in The Cancer Genome Atlas (TCGA were used to identify the probe sets whose expression were most strongly correlated with survival (Kaplan-Meier plots versus survival times, log-rank t-test <0.05. The analysis identified 122 probe sets as survival signatures, including 5 of ARSN (VARS, QARS, CARS, NARS, FARS, and 115 of DTGs and PPIs (PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2, KRT10, MED12, etc. Of note, 61 survival-related probes were differentially expressed in three different prognosis subgroups in GBM patients and showed correlation with established prognosis markers such as age and phenotypic molecular signatures. CARS and FARS also showed significantly higher association with different molecular networks in GBM patients. Taken together, our findings demonstrate evidence for an ARSN biology-dominant contribution in the biology of GBM.

  8. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    International Nuclear Information System (INIS)

    Bandaralage, Sahan P.S.; Farnaghi, Soheil; Dulhunty, Joel M.; Kothari, Alka

    2016-01-01

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  9. Antenatal and postnatal radiologic diagnosis of holocarboxylase synthetase deficiency: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Bandaralage, Sahan P.S. [Gold Coast Hospital and Health Service, Southport, Queensland (Australia); Griffith University, School of Medicine, Southport, Queensland (Australia); Farnaghi, Soheil [Caboolture Hospital, Caboolture, Queensland (Australia); Dulhunty, Joel M.; Kothari, Alka [Redcliffe Hospital, Redcliffe, Queensland (Australia); The University of Queensland, School of Medicine, Herston, Queensland (Australia)

    2016-03-15

    Holocarboxylase synthetase deficiency results in impaired activation of enzymes implicated in glucose, fatty acid and amino acid metabolism. Antenatal imaging and postnatal imaging are useful in making the diagnosis. Untreated holocarboxylase synthetase deficiency is fatal, while antenatal and postnatal biotin supplementation is associated with good clinical outcomes. Although biochemical assays are required for definitive diagnosis, certain radiologic features assist in the diagnosis of holocarboxylase synthetase deficiency. To review evidence regarding radiologic diagnostic features of holocarboxylase synthetase deficiency in the antenatal and postnatal period. A systematic review of all published cases of holocarboxylase synthetase deficiency identified by a search of Pubmed, Scopus and Web of Science. A total of 75 patients with holocarboxylase synthetase deficiency were identified from the systematic review, which screened 687 manuscripts. Most patients with imaging (19/22, 86%) had abnormal findings, the most common being subependymal cysts, ventriculomegaly and intraventricular hemorrhage. Although the radiologic features of subependymal cysts, ventriculomegaly, intraventricular hemorrhage and intrauterine growth restriction may be found in the setting of other pathologies, these findings should prompt consideration of holocarboxylase synthetase deficiency in at-risk children. (orig.)

  10. Lincosamide Synthetase-A Unique Condensation System Combining Elements of Nonribosomal Peptide Synthetase and Mycothiol Metabolism

    Czech Academy of Sciences Publication Activity Database

    Janata, Jiří; Kadlčík, Stanislav; Koběrská, Markéta; Ulanová, Dana; Kameník, Zdeněk; Novák, Petr; Kopecký, Jan; Novotná, Jitka; Radojevič, Bojana; Plháčková, Kamila; Gažák, Radek; Najmanová, Lucie

    2015-01-01

    Roč. 10, č. 3 (2015) E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : BIOSYNTHETIC GENE-CLUSTER * MOLECULAR-WEIGHT THIOL * PHOSPHOPANTETHEINYL TRANSFERASE Subject RIV: EE - Microbiology, Virology Impact factor: 3.057, year: 2015

  11. Seryl-tRNA Synthetases in Translation and Beyond

    Directory of Open Access Journals (Sweden)

    Marko Močibob

    2016-06-01

    Full Text Available For a long time seryl-tRNA synthetases (SerRSs stood as an archetypal, canonical aminoacyl-tRNA synthetases (aaRS, exhibiting only basic tRNA aminoacylation activity and with no moonlighting functions beyond protein biosynthesis. The picture has changed substantially in recent years after the discovery that SerRSs play an important role in antibiotic production and resistance and act as a regulatory factor in vascular development, as well as after the discovery of mitochondrial morphogenesis factor homologous to SerRS in insects. In this review we summarize the recent research results from our laboratory, which advance the understanding of seryl-tRNA synthetases and further paint the dynamic picture of unexpected SerRS activities. SerRS from archaeon Methanothermobacter thermautotrophicus was shown to interact with the large ribosomal subunit and it was postulated to contribute to a more efficient translation by the"tRNA channeling" hypothesis. Discovery of the atypical SerRS in a small number of methanogenic archaea led to the discovery of a new family of enzymes in numerous bacteria - amino acid:[carrier protein] ligases (aa:CP ligases. These SerRS homologues resigned tRNA aminoacylation activity, and instead adopted carrier proteins as the acceptors of activated amino acids. The crystal structure of the aa:CP ligase complex with the carrier protein revealed that the interactions between two macromolecules are incomparable to tRNA binding by the aaRS and consequently represent a true evolutionary invention. Kinetic investigations of SerRSs and the accuracy of amino acid selection revealed that SerRSs possess pre-transfer proofreading activity, challenging the widely accepted presumption that hydrolytic proofreading activity must reside in an additional, separate editing domain, not present in SerRSs. Finally, the plant tRNA serylation system is discussed, which is particularly interesting due to the fact that protein biosynthesis takes place

  12. Allostery of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase in Clostridium: another conserved generic characteristic.

    Science.gov (United States)

    Jensen, R A; Twarog, R

    1972-09-01

    Enzymological studies were done to characterize the allosteric control of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase in three species of Clostridium. Allosteric control was identified as feedback inhibition by phenylalanine and was qualitatively similar for the DAHP synthetases of C. butyricum, C. acetobutylicum, and C. tetanomorphum. Quantitative differences in the enzymology and kinetics of allosteric control distinguished C. tetanomorphum from C. butyricum and C. acetobutylicum. Crude extracts contained apparent proteolytic activity which could be fractionated from DAHP synthetase. The proteolytic activity was more labile than DAHP synthetase in extracts and was progressively inactivated by serial freeze-thaw treatments. Protease activity was at least partially inhibited by phenylmethylsulfonyl-fluoride. The method of comparative allostery of DAHP synthetase distinguishes the genera Bacillus and Clostridium, each having a strongly conserved pattern of regulation for DAHP synthetase. The data reinforce previous conclusions that allosteric control patterns governing the activity of DAHP synthetase are stable, reliable generic characteristics.

  13. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase.

    Science.gov (United States)

    Chang, Chih-Yao; Chien, Chin-I; Chang, Chia-Pei; Lin, Bo-Chun; Wang, Chien-Chia

    2016-08-05

    WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    Science.gov (United States)

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  15. Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases

    Directory of Open Access Journals (Sweden)

    Adam C. Mirando

    2014-12-01

    Full Text Available In addition to their canonical roles in translation the aminoacyl-tRNA synthetases (ARSs have developed secondary functions over the course of evolution. Many of these activities are associated with cellular survival and nutritional stress responses essential for homeostatic processes in higher eukaryotes. In particular, six ARSs and one associated factor have documented functions in angiogenesis. However, despite their connection to this process, the ARSs are mechanistically distinct and exhibit a range of positive or negative effects on aspects of endothelial cell migration, proliferation, and survival. This variability is achieved through the appearance of appended domains and interplay with inflammatory pathways not found in prokaryotic systems. Complete knowledge of the non-canonical functions of ARSs is necessary to understand the mechanisms underlying the physiological regulation of angiogenesis.

  16. Common peptides study of aminoacyl-tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Assaf Gottlieb

    Full Text Available BACKGROUND: Aminoacyl tRNA synthetases (aaRSs constitute an essential enzyme super-family, providing fidelity of the translation process of mRNA to proteins in living cells. They are common to all kingdoms and are of utmost importance to all organisms. It is thus of great interest to understand the evolutionary relationships among them and underline signature motifs defining their common domains. RESULTS: We utilized the Common Peptides (CPs framework, based on extracted deterministic motifs from all aaRSs, to study family-specific properties. We identified novel aaRS-class related signatures that may supplement the current classification methods and provide a basis for identifying functional regions specific to each aaRS class. We exploited the space spanned by the CPs in order to identify similarities between aaRS families that are not observed using sequence alignment methods, identifying different inter-aaRS associations across different kingdom of life. We explored the evolutionary history of the aaRS families and evolutionary origins of the mitochondrial aaRSs. Lastly, we showed that prevalent CPs significantly overlap known catalytic and binding sites, suggesting that they have meaningful functional roles, as well as identifying a motif shared between aaRSs and a the Biotin-[acetyl-CoA carboxylase] synthetase (birA enzyme overlapping binding sites in both families. CONCLUSIONS: The study presents the multitude of ways to exploit the CP framework in order to extract meaningful patterns from the aaRS super-family. Specific CPs, discovered in this study, may play important roles in the functionality of these enzymes. We explored the evolutionary patterns in each aaRS family and tracked remote evolutionary links between these families.

  17. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue.

    Directory of Open Access Journals (Sweden)

    Christine Böttcher

    Full Text Available An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-ylethyl]phosphate (AIEP mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i-values 17-68-fold lower than the respective K(m-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.

  18. Studies towards the synthesis of ATP analogs as potential glutamine synthetase inhibitors

    CSIR Research Space (South Africa)

    Salisu, S

    2011-05-01

    Full Text Available In research directed at the development of adenine triphosphate (ATP) analogs as potential glutamine synthetase (GS) inhibitors, adenine and allopurinol derivatives have been synthesized either as novel ATP analogs or as scaffolds...

  19. Amino acid environment determines expression of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in embryonic rat hepatocytes

    NARCIS (Netherlands)

    Lamers, W. H.; van Roon, M.; Mooren, P. G.; de Graaf, A.; Charles, R.

    1985-01-01

    A completely defined medium (EHM-1), which reflects the amino acid composition of fetal rat serum and contains albumin as the sole proteinaceous compound, allows the accumulation of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in the presence of dexamethasone, dibutyryl cyclic

  20. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.

    Science.gov (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao

    2016-10-01

    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  1. Diversity of Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Lipopeptide Biosurfactants

    Directory of Open Access Journals (Sweden)

    Niran Roongsawang

    2010-12-01

    Full Text Available Lipopeptide biosurfactants (LPBSs consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive and Pseudomonas (Gram-negative have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs. Production of active‑form NRPSs requires not only transcriptional induction and translation but also post‑translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.

  2. Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent.

    Science.gov (United States)

    Chopra, Shaileja; Palencia, Andrés; Virus, Cornelia; Schulwitz, Sarah; Temple, Brenda R; Cusack, Stephen; Reader, John

    2016-10-07

    Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation.

  3. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase.

    Science.gov (United States)

    Zhu, Y L; Pilon-Smits, E A; Tarun, A S; Weber, S U; Jouanin, L; Terry, N

    1999-12-01

    To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding gamma-glutamylcysteine synthetase (gamma-ECS), targeted to the plastids. The gamma-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, gamma-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, gamma-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the gamma-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of gamma-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of gamma-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity.

  4. Cadmium Tolerance and Accumulation in Indian Mustard Is Enhanced by Overexpressing γ-Glutamylcysteine Synthetase1

    Science.gov (United States)

    Zhu, Yong Liang; Pilon-Smits, Elizabeth A.H.; Tarun, Alice S.; Weber, Stefan U.; Jouanin, Lise; Terry, Norman

    1999-01-01

    To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding γ-glutamylcysteine synthetase (γ-ECS), targeted to the plastids. The γ-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, γ-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, γ-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the γ-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of γ-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of γ-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity. PMID:10594104

  5. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Rydzak, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Garcia, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Stevenson, David M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology; Sladek, Margaret [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Klingeman, Dawn M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Holwerda, Evert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology; Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Guss, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.

  6. REPRESSION BY ADENINE OF THE FORMYLTETRAHYDROFOLATE SYNTHETASE IN AN ANTIFOLIC-RESISTANT MUTANT OF STREPTOCOCCUS FAECALIS.

    Science.gov (United States)

    ALBRECHT, A M; HUTCHISON, D J

    1964-04-01

    Albrecht, Alberta M. (Sloan-Kettering Institute for Cancer Research, New York, N.Y.), and Dorris J. Hutchison. Repression by adenine of the formyltetrahydrofolate synthetase in an antifolic-resistant mutant of Streptococcus faecalis. J. Bacteriol. 87:792-798. 1964.-In an amethopterin-resistant mutant of Streptococcus faecalis ATCC 8043 under cultivation conditions requiring purine synthesis de novo, both the dihydrofolate reductase and the formyltetrahydrofolate synthetase were formed as constant fractions of the total protein synthesized during the exponential phase of growth. When excess adenine was added to the medium, the rate of formation of the synthetase was markedly decreased, i.e., repressed. Under these latter conditions, the synthesis of the reductase proceeded at a rate equal to that observed in the absence of adenine. The repressibility of the synthetase by adenine was demonstrated also by the decrease in rate of synthetase formation upon the addition of adenine to a culture actively synthesizing this enzyme. Guanine and hypoxanthine, like adenine, also repressed the synthetase; exogenous xanthine was less effective. Neither of the pyrimidines, thymine and uracil, at approximately 1 mug/ml, interfered with synthesis of the two enzymes.

  7. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies

    DEFF Research Database (Denmark)

    Noh, Soo Min; Shin, Seunghyeon; Min Lee, Gyun

    2018-01-01

    and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated......To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1...... in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation...

  8. Structure Elucidation and Activity of Kolossin A, the D-/L-Pentadecapeptide Product of a Giant Nonribosomal Peptide Synthetase.

    Science.gov (United States)

    Bode, Helge B; Brachmann, Alexander O; Jadhav, Kirtikumar B; Seyfarth, Lydia; Dauth, Christina; Fuchs, Sebastian W; Kaiser, Marcel; Waterfield, Nick R; Sack, Holger; Heinemann, Stefan H; Arndt, Hans-Dieter

    2015-08-24

    The largest continuous bacterial nonribosomal peptide synthetase discovered so far is described. It consists of 15 consecutive modules arising from an uninterrupted, fully functional gene in the entomopathogenic bacterium Photorhabdus luminescens. The identification of its cryptic biosynthesis product was achieved by using a combination of genome analysis, promoter exchange, isotopic labeling experiments, and total synthesis of a focused collection of peptide candidates. Although it belongs to the growing class of D-/ L-peptide natural products, the encoded metabolite kolossin A was found to be largely devoid of antibiotic activity and is likely involved in interspecies communication. A stereoisomer of this peculiar natural product displayed high activity against Trypanosoma brucei rhodesiense, a recalcitrant parasite that causes the deadly disease African sleeping sickness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In situ autoradiographic detection of folylpolyglutamate synthetase activity

    International Nuclear Information System (INIS)

    Sussman, D.J.; Milman, G.; Osborne, C.; Shane, B.

    1986-01-01

    The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of [6- 3 H]deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of [6- 3 H]deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which functions in mammalian cells

  10. Nitric oxide synthetase and Helicobacter pylori in patients undergoing appendicectomy.

    LENUS (Irish Health Repository)

    Kell, M R

    2012-02-03

    BACKGROUND: This study was designed to determine whether Helicobacter pylori forms part of the normal microenvironment of the appendix, whether it plays a role in the pathogenesis of acute appendicitis, and whether it is associated with increased expression of inducible nitric oxide synthetase (iNOS) in appendicular macrophages. METHODS: Serology for H. pylori was performed on 51 consecutive patients undergoing emergency appendicectomy. Appendix samples were tested for urease activity, cultured and stained for H. pylori, graded according to the degree of inflammatory infiltrate, and probed immunohistochemically for iNOS expression. RESULTS: The mean age of the patients was 21 (range 7-51) years. Seventeen patients (33 per cent) were seropositive for H. pylori but no evidence of H. pylori was found in any appendix specimen. However, an enhanced inflammatory cell infiltration was observed in seropositive patients (P < 0.04) and the expression of macrophage iNOS in the mucosa of normal and inflamed appendix specimens was increased (P < 0.01). CONCLUSION: H. pylori does not colonize the appendix and is unlikely to be a pathogenic stimulus for appendicitis. Priming effects on mucosal immunology downstream from the foregut may occur after infection with H. pylori.

  11. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    International Nuclear Information System (INIS)

    Das, S.; Gillin, F.D.

    1987-01-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of 3 H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei

  12. Chitin synthetase in encysting Giardia lamblia and Entamoeba invadens

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Gillin, F.D.

    1987-05-01

    Giardia lamblia (Gl) and Entamoeba invadens (Ei) are protozoan parasites with two morphologic stages in their life cycles. Motile trophozoites colonize the intestine of humans and reptiles respectively. Water resistant cysts, which can survive outside the host, transmit infection. In vitro cyst formation of Ei from trophozoites has been reported, and the authors have recently induced in vitro encystation of Gl. Although the cyst walls of both parasites contain chitin, it synthesis by encysting trophozoites has not been reported. The authors now show that encystation conditions greatly increase chitin synthetase (CS) specific activity (incorporation of /sup 3/H GlcNAc from UDP-GlcNAc into TCA-or alcohol-precipitable material). Extracts of encysting Gl incorporated 3.6 nmol/mg protein in 5 hr compared to < 0.005 in controls. Extracts of encysting Fi incorporated 4.8 n mol/mg protein, compared to 1.7 in the control. CS activity of both parasites requires preformed chitin. The Gl enzyme requires a reducing agent, is inhibited by digitonin and the CS inhibitors, polyoxin D and Nikkomycin, but not by tunicamycin. The product is digested by chitinase. Ei enzyme does not require a reducing agent and is stimulated by 1 mg/ml digitonin, but inhibited by higher concentrations. These studies demonstrate CS enzymes which may play important roles in encystation of Gl and Ei.

  13. Essential nontranslational functions of tRNA synthetases.

    Science.gov (United States)

    Guo, Min; Schimmel, Paul

    2013-03-01

    Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. Although these new functions were thought to be 'moonlighting activities', many are as critical for cellular homeostasis as their activity in translation. New roles have been associated with their cytoplasmic forms as well as with nuclear and secreted extracellular forms that affect pathways for cardiovascular development and the immune response and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. New architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. Although a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid-binding site for another purpose.

  14. Essential Non-Translational Functions of tRNA Synthetases

    Science.gov (United States)

    Guo, Min; Schimmel, Paul

    2013-01-01

    Nontranslational functions of vertebrate aminoacyl tRNA synthetases (aaRSs), which catalyze the production of aminoacyl-tRNAs for protein synthesis, have recently been discovered. While these new functions were thought to be ‘moonlighting activities’, many are as critical for cellular homeostasis as the activity in translation. New roles have been associated with cytoplasmic forms as well as with nuclear and secreted extracellular forms that impact pathways for cardiovascular development, the immune response, and mTOR, IFN-γ and p53 signaling. The associations of aaRSs with autoimmune disorders, cancers and neurological disorders further highlight nontranslational functions of these proteins. Novel architecture elaborations of the aaRSs accompany their functional expansion in higher organisms and have been associated with the nontranslational functions for several aaRSs. While a general understanding of how these functions developed is limited, the expropriation of aaRSs for essential nontranslational functions may have been initiated by co-opting the amino acid binding site for another purpose. PMID:23416400

  15. Dual Organellar Targeting of Aminoacyl-tRNA Synthetases in Diatoms and Cryptophytes.

    Science.gov (United States)

    Gile, Gillian H; Moog, Daniel; Slamovits, Claudio H; Maier, Uwe-G; Archibald, John M

    2015-05-20

    The internal compartmentation of eukaryotic cells not only allows separation of biochemical processes but it also creates the requirement for systems that can selectively transport proteins across the membrane boundaries. Although most proteins function in a single subcellular compartment, many are able to enter two or more compartments, a phenomenon known as dual or multiple targeting. The aminoacyl-tRNA synthetases (aaRSs), which catalyze the ligation of tRNAs to their cognate amino acids, are particularly prone to functioning in multiple subcellular compartments. They are essential for translation, so they are required in every compartment where translation takes place. In diatoms, there are three such compartments, the plastid, the mitochondrion, and the cytosol. In cryptophytes, translation also takes place in the periplastid compartment (PPC), which is the reduced cytoplasm of the plastid's red algal ancestor and which retains a reduced red algal nucleus. We searched the organelle and nuclear genomes of the cryptophyte Guillardia theta and the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana for aaRS genes and found an insufficient number of genes to provide each compartment with a complete set of aaRSs. We therefore inferred, with support from localization predictions, that many aaRSs are dual targeted. We tested four of the predicted dual targeted aaRSs with green fluorescent protein fusion localizations in P. tricornutum and found evidence for dual targeting to the mitochondrion and plastid in P. tricornutum and G. theta, and indications for dual targeting to the PPC and cytosol in G. theta. This is the first report of dual targeting in diatoms or cryptophytes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate.

    Directory of Open Access Journals (Sweden)

    Ariel Alperstein

    Full Text Available The predatory bacterium Bdellovibrio bacteriovorus preys on other Gram-negative bacteria and was predicted to be an asparagine auxotroph. However, despite encoding asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, B. bacteriovorus also contains the amidotransferase GatCAB. Deinococcus radiodurans, and Thermus thermophilus also encode both of these aminoacyl-tRNA synthetases with GatCAB. Both also code for a second aspartyl-tRNA synthetase and use the additional aspartyl-tRNA synthetase with GatCAB to synthesize asparagine on tRNAAsn. Unlike those two bacteria, B. bacteriovorus encodes only one aspartyl-tRNA synthetase. Here we demonstrate the lone B. bacteriovorus aspartyl-tRNA synthetase catalyzes aspartyl-tRNAAsn formation that GatCAB can then amidate to asparaginyl-tRNAAsn. This non-discriminating aspartyl-tRNA synthetase with GatCAB thus provides B. bacteriovorus a second route for Asn-tRNAAsn formation with the asparagine synthesized in a tRNA-dependent manner. Thus, in contrast to a previous prediction, B. bacteriovorus codes for a biosynthetic route for asparagine. Analysis of bacterial genomes suggests a significant number of other bacteria may also code for both routes for Asn-tRNAAsn synthesis with only a limited number encoding a second aspartyl-tRNA synthetase.

  17. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    Directory of Open Access Journals (Sweden)

    A Theron

    Full Text Available Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  18. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    Science.gov (United States)

    Theron, A; Roth, R L; Hoppe, H; Parkinson, C; van der Westhuyzen, C W; Stoychev, S; Wiid, I; Pietersen, R D; Baker, B; Kenyon, C P

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  19. Differential expression of argininosuccinate synthetase in serous and non‐serous ovarian carcinomas

    Science.gov (United States)

    Cheon, Dong‐Joo; Walts, Ann E; Beach, Jessica A; Lester, Jenny; Bomalaski, John S; Walsh, Christine S; Ruprecht Wiedemeyer, W; Karlan, Beth Y

    2014-01-01

    Abstract The current standard of care for epithelial ovarian cancer does not discriminate between different histologic subtypes (serous, clear cell, endometrioid and mucinous) despite the knowledge that ovarian carcinoma subtypes do not respond uniformly to conventional platinum/taxane‐based chemotherapy. Exploiting addictions and vulnerabilities in cancers with distinguishable molecular features presents an opportunity to develop individualized therapies that may be more effective than the current ‘one size fits all' approach. One such opportunity is arginine depletion therapy with pegylated arginine deiminase, which has shown promise in several cancer types that exhibit low levels of argininosuccinate synthetase including hepatocellular and prostate carcinoma and melanoma. Based on the high levels of argininosuccinate synthetase previously observed in ovarian cancers, these tumours have been considered unlikely candidates for arginine depletion therapy. However, argininosuccinate synthetase levels have not been evaluated in the individual histologic subtypes of ovarian carcinoma. The current study is the first to examine the expression of argininosuccinate synthetase at the mRNA and protein levels in large cohorts of primary and recurrent ovarian carcinomas and ovarian cancer cell lines. We show that the normal fallopian tube fimbria and the majority of primary high‐grade and low‐grade serous ovarian carcinomas express high levels of argininosuccinate synthetase, which tend to further increase in recurrent tumours. In contrast to the serous subtype, non‐serous ovarian carcinoma subtypes (clear cell, endometrioid and mucinous) frequently lack detectable argininosuccinate synthetase expression. The in vitro sensitivity of ovarian cancer cell lines to arginine depletion with pegylated arginine deiminase was inversely correlated with argininosuccinate synthetase expression. Our data suggest that the majority of serous ovarian carcinomas are not susceptible

  20. High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen.

    Science.gov (United States)

    Cañas, Rafael A; de la Torre, Fernando; Cánovas, Francisco M; Cantón, Francisco R

    2006-06-01

    A pine asparagine synthetase gene expressed in developing seedlings has been identified by cloning its cDNA (PsAS1) from Scots pine (Pinus sylvestris L.). Genomic DNA analysis with PsAS1 probes and a sequence-based phylogenetic tree are consistent with the possibility of more than one gene encoding asparagine synthetase in pine. However, the parallel patterns of free asparagine content and PsAS1 products indicate that the protein encoded by this gene is mainly responsible for the accumulation of this amino acid during germination and early seedling development. The temporal and spatial patterns of PsAS1 expression together with the spatial distribution of asparagine content suggest that, early after germination, part of the nitrogen mobilized from the megagametophyte is diverted toward the hypocotyl to produce high levels of asparagine as a reservoir of nitrogen to meet later specific demands of development. Furthermore, the transcript and protein analyses in seedlings germinated and growth for extended periods under continuous light or dark suggest that the spatial expression pattern of PsAS1 is largely determined by a developmental program. Therefore, our results suggest that the spatial and temporal control of PsAS1 expression determines the re-allocation of an important amount of seed-stored nitrogen during pine germination.

  1. Induction of carbamoyl phosphate synthetase III and glutamine synthetase mRNA during confinement stress in gulf toadfish (Opsanus beta).

    Science.gov (United States)

    Kong, H; Kahatapitiya, N; Kingsley, K; Salo, W L; Anderson, P M; Wang, Y S; Walsh, P J

    2000-01-01

    Gulf toadfish (Opsanus &bgr;) rapidly switch to excretion of urea as their main nitrogenous waste product under several laboratory conditions, including confinement to small volumes of water. Prior evidence suggested that the activities of two key enzymes of urea synthesis exhibited potentially different modes of upregulation during this switch, with carbamoyl phosphate synthethase III (CPSase III) activated allosterically by N-acetylglutamate, and glutamine synthetase (GSase) activated by increases in the concentration of protein. The present study was undertaken to examine additional aspects of the regulation of these enzymes. The sequence for O. beta CPSase III cDNA was obtained, and it was found to be similar to that of other piscine CPSases. The sequence also allowed us to develop riboprobes for CPSase III mRNA analysis using ribonuclease protection assays (RPAs). CPSase III mRNA was expressed in liver, muscle, kidney and intestine, in agreement with prior enzymatic measurements. Levels of CPSase III mRNA increased five- to tenfold (relative to beta-actin mRNA) in liver (but not muscle) following 48 h of confinement stress. Measured by western analysis using an antibody to chicken GSase, confined O. beta GSase protein concentrations increased eightfold over control levels, in agreement with prior and present measurements of increases in GSase activity. Furthermore, RPAs of GSase mRNA levels demonstrated an increase of fivefold during confinement.

  2. Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, AS; Han, YJ; Bennett, RK; Adams, MWW; Kelly, RM

    2013-02-08

    Metallosphaera sedula is an extremely thermoacidophilic archaeon that grows heterotrophically on peptides and chemolithoautotrophically on hydrogen, sulfur, or reduced metals as energy sources. During autotrophic growth, carbon dioxide is incorporated into cellular carbon via the 3-hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB). To date, all of the steps in the pathway have been connected to enzymes encoded in specific genes, except for the one responsible for ligation of coenzyme A (CoA) to 4HB. Although several candidates for this step have been identified through bioinformatic analysis of the M. sedula genome, none have been shown to catalyze this biotransformation. In this report, transcriptomic analysis of cells grown under strict H-2-CO2 autotrophy was consistent with the involvement of Msed_0406 and Msed_0394. Recombinant versions of these enzymes catalyzed the ligation of CoA to 4HB, with similar affinities for 4HB (K-m values of 1.9 and 1.5 mM for Msed_0406 and Msed_0394, respectively) but with different rates (1.69 and 0.22 mu mol x min(-1) x mg(-1) for Msed_0406 and Msed_0394, respectively). Neither Msed_0406 nor Msed_0394 have close homologs in other Sulfolobales, although low sequence similarity is not unusual for acyl-adenylate-forming enzymes. The capacity of these two enzymes to use 4HB as a substrate may have arisen from simple modifications to acyl-adenylate-forming enzymes. For example, a single amino acid substitution (W424G) in the active site of the acetate/propionate synthetase (Msed_1353), an enzyme that is highly conserved among the Sulfolobales, changed its substrate specificity to include 4HB. The identification of the 4-HB CoA synthetase now completes the set of enzymes comprising the 3HP/4HB cycle.

  3. Enhancement of lysyl-tRNA synthetase activity in the Enterobacteriaceae

    International Nuclear Information System (INIS)

    Hickey, E.W.; Hirshfield, I.

    1987-01-01

    Lysyl-tRNA synthetase (LRS) in E. coli is coded by two genes, one constitutive, and the other inducible; the latter is a cell stress protein. To determine if this system is wide spread in prokaryotes, the inducibility of LRS was first tested in eight members of the Enterobacteriaceae using cultural conditions known to induce the enzyme in E. coli K-12. Uninduced control cultures were grown to an O.D. of 0.2 at 580 nm in a supplemented minimal medium (SMM), pH 7.0 at 37 0 C. Induction stimuli include: growth in SMM with 3mM Gly-L-Leu; growth in SMM as above, but with the initial pH adjusted to 5.0; or growth in Difco AC Broth to early stationary phase with a concomitant drop in the pH of the medium below 5.5. LRS activity was assayed in whole-cell sonic extracts by the aminoacylation of crude E. coli tRNA by 14 C-lysine at pH 7.8 for three minutes. When E. aerogenes, K. pneumoniae, C. freundii, and S. typhimurium were grown in AC Broth, LRS activity was enhanced 2 to 4 fold. The enzyme is induced 2 to 4 fold in C. freundii and S. typhimurium upon growth at pH 5.0, whereas E. coli, K.; pneumoniae, and E. aerogenes show only a 1.5 fold induction. The peptide Gly-L-Leu enhanced LRS activity only in E. coli. LRS was not found to be inducible in S. marcescens, M. morganii, P. mirabilis, or P. vulgaris by any of the stimuli

  4. Arabidopsis plastidial folylpolyglutamate synthetase is required for seed reserve accumulation and seedling establishment in darkness.

    Directory of Open Access Journals (Sweden)

    Hongyan Meng

    Full Text Available Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3 of the plastidial folylpolyglutamate synthetase gene (AtDFB was defective in seed reserves and skotomorphogenesis. Lower carbon (C and higher nitrogen (N content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.

  5. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.

    Science.gov (United States)

    Quadri, L E; Weinreb, P H; Lei, M; Nakano, M M; Zuber, P; Walsh, C T

    1998-02-10

    The Bacillus subtilis enzyme Sfp, required for production of the lipoheptapeptide antibiotic surfactin, posttranslationally phosphopantetheinylates a serine residue in each of the seven peptidyl carrier protein domains of the first three subunits (SrfABC) of surfactin synthetase to yield docking sites for amino acid loading and peptide bond formation. With recombinant Sfp and 16-17-kDa peptidyl carrier protein (PCP) domains excised from the SrfB1 and SrfB2 modules as apo substrates, kcat values of 56-104 min-1 and K(m) values of 1.3-1.8 microM were determined, indicating equivalent recognition of the adjacent PCP domains by Sfp. In contrast to other phosphopantetheinyl transferases (PPTases) previously examined, Sfp will modify the apo forms of heterologous recombinant proteins, including the PCP domain of Saccharomyces cerevisiae Lys2 (involved in lysine biosynthesis), the aryl carrier protein (ArCP) domain of Escherichia coli EntB (involved in enterobactin biosynthesis), and the E. coli acyl carrier protein (ACP) subunit, suggesting Sfp as a good candidate for heterologous coexpression with peptide and polyketide synthase genes to overproduce holo-synthase enzymes. Cosubstrate coenzyme A (CoA), the phosphopantetheinyl group donor, has a K(m) of 0.7 microM. Desulfo-CoA and homocysteamine-CoA are also substrates of Sfp, and benzoyl-CoA and phenylacetyl-CoA are also utilized by Sfp, resulting in direct transfer of acyl phosphopantetheinyl moieties into the carrier protein substrate. Mutagenesis in Sfp of five residues conserved across the PPTase family was assessed for in vivo effects on surfactin production and in vitro effects on PPTase activity.

  6. Identification of autoantibodies to tyrosil-tRNA synthetase in heart disfunctions

    Directory of Open Access Journals (Sweden)

    Ryabenko D. V.

    2010-09-01

    Full Text Available Aim. To investigate the levels of specific autoantibodies against tyrosyl-tRNA synthetase and its individual modules in the blood serum of people with heart failure caused by dilated cardiomyopathy, myocarditis and ischemic heart disease compared with healthy donors. Methods. Recombinant proteins were obtained using bacterial strains transformed with appropriate plasmid vectors and were purified by chromatography on Ni-NTA-agarose. The levels of specific autoantibodies were investigated by ELISA. Results. The increased levels of autoantibodies specific to tyrosyl-tRNA synthetase, its N-terminal catalytic module and non-catalytic C-module, were found in the blood serum of patients, compared with healthy donors. Conclusions. The results obtained demonstrate the possible role of tyrosyl-tRNA synthetase in adaptive changes of the myocardium in response to stress factors.

  7. [Methionine sulfoximine and phosphinothricin--glutamine synthetase inhibitors and activators and their herbicidal activity (A review)].

    Science.gov (United States)

    Evstigneeva, Z G; Solov'eva, N A; Sidel'nikova, L I

    2003-01-01

    Derivatives of methionine sulfoximine (MSO) and phosphinothrycin (PPT), which are analogues of glutamate, exhibit selective herbicidal activity. This effect is accounted for by impairments of nitrogen metabolism, resulting from inhibition of its key enzyme in plants, glutamine synthetase (EC 6.3.1.2). Inhibition of the enzyme causes ammoniac nitrogen to accumulate and terminates the synthesis of glutamine. Changes in the content of these two metabolites (excess ammonium and glutamine deficiency) act in a concert to cause plant death. However, low concentrations of MSO, PPT, and their metabolites produce an opposite effect: glutamine synthetase is activated, with concomitant stimulation of plant growth and productivity. The mechanisms whereby MSO and PPT affect glutamine synthetase activity are discussed in the context of nitrogen metabolism in plants.

  8. Diet- and hormone-induced reversal of the carbamoylphosphate synthetase mRNA gradient in the rat liver lobulus

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Charles, R.; Lamers, W. H.

    1990-01-01

    A hybridocytochemical analysis of adult liver from normal control and from hormonally and dietary-treated rats was carried out, using radioactively-labelled probes for the mRNAs of glutamine synthetase (GS), carbamoylphosphate synthetase (CPS) and phosphoenolpyruvate carboxykinase (PEPCK). In line

  9. Continuous recording of long-chain acyl-coenzyme A synthetase activity using fluorescently labeled bovine serum albumin

    DEFF Research Database (Denmark)

    Demant, Erland J.F.; Nystrøm, Birthe T.

    2001-01-01

    acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes......acyl-Coenzyme A, synthetase, activity assay, fluorescence recording, fatty acid probe, serum albumin, hydroxycoumarin, detergent, micelles, Pseudomonas fragi, rat liver microsomes...

  10. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis. © 2013 Scandinavian Plant Physiology Society.

  11. The influence of prenatal X-irradiation on the activity of SRNA-aminoacyl synthetases in the developing rabbit brain

    International Nuclear Information System (INIS)

    Wender, M.; Zgorzalewicz, B.

    1976-01-01

    The activities of sRNA-aminoacyl synthetases were investigated in the cerebral white and grey matter of rabbits subjected during their prenatal life to a single x-ray dose of 150 rad. The results of investigations have shown that ionizing radiation acting during intrauterine development of the experimental animal brings about a distinct depression of all sRNA-aminoacyl synthetase activities in the newborn irradiated litter. During the postnatal development of these animals the activities of some of the synthetases further decreased and even at adulthood, where they are normally very low, their activities were below the control values. The activities of some other synthetases, after the initial depression, showed no further decrease and at adulthood had values comparable to controls. The results indicate clearly that prenatal exposure to ionizing radiation also affects the steps of protein biosynthesis which depend on the activity of sRNA-aminoacyl synthetases. (author)

  12. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Hove-Jensen, Bjarne; Garber, Bruce B.

    1985-01-01

    -utilizing mutants. Strain GP122 had roughly 15% of the PRPP synthetase activity and 25% of the PRPP pool of its parent strain. The mutant exhibited many of the predicted consequences of a decreased PRPP pool and a defective PRPP synthetase enzyme, including: poor growth on purine bases; decreased accumulation of 5......-aminoimidazole ribonucleotide (the substrate of the blocked purE reaction) under conditions of purine starvation; excretion of anthranilic acid when grown in medium lacking tryptophan; increased resistance to inhibition by 5-fluorouracil; derepressed levels of aspartate transcarbamylase and orotate...

  13. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions

    DEFF Research Database (Denmark)

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Hausmann, Corinne D

    2011-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translatio...... of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions....

  14. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis

    Directory of Open Access Journals (Sweden)

    van Helden Paul

    2010-05-01

    Full Text Available Abstract Background The assimilation of nitrogen is an essential process in all prokaryotes, yet a relatively limited amount of information is available on nitrogen metabolism in the mycobacteria. The physiological role and pathogenic properties of glutamine synthetase (GS have been extensively investigated in Mycobacterium tuberculosis. However, little is known about this enzyme in other mycobacterial species, or the role of an additional nitrogen assimilatory pathway via glutamate dehydrogenase (GDH, in the mycobacteria as a whole. We investigated specific enzyme activity and transcription of GS and as well as both possible isoforms of GDH (NAD+- and NADP+-specific GDH under varying conditions of nitrogen availability in Mycobacterium smegmatis as a model for the mycobacteria. Results It was found that the specific activity of the aminating NADP+-GDH reaction and the deaminating NAD+-GDH reaction did not change appreciably in response to nitrogen availability. However, GS activity as well as the deaminating NADP+-GDH and aminating NAD+-GDH reactions were indeed significantly altered in response to exogenous nitrogen concentrations. Transcription of genes encoding for GS and the GDH isoforms were also found to be regulated under our experimental conditions. Conclusions The physiological role and regulation of GS in M. smegmatis was similar to that which has been described for other mycobacteria, however, in our study the regulation of both NADP+- and NAD+-GDH specific activity in M. smegmatis appeared to be different to that of other Actinomycetales. It was found that NAD+-GDH played an important role in nitrogen assimilation rather than glutamate catabolism as was previously thought, and is it's activity appeared to be regulated in response to nitrogen availability. Transcription of the genes encoding for NAD+-GDH enzymes seem to be regulated in M. smegmatis under the conditions tested and may contribute to the changes in enzyme activity

  15. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder.

    Science.gov (United States)

    Diez-Fernandez, Carmen; Häberle, Johannes

    2017-04-01

    Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.

  16. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine...

  17. Regulation of Amidase Formation in Mutants from Pseudomonas aeruginosa PAO Lacking Glutamine Synthetase Activity

    NARCIS (Netherlands)

    Janssen, Dick B.; Herst, Patricia M.; Joosten, Han M.L.J.; Drift, Chris van der

    1982-01-01

    The formation of amidase was studied in mutants from Pseudomonas aeruginosa PAO lacking glutamine synthetase activity. It appeared that catabolite repression of amidase synthesis by succinate was partially relieved when cellular growth was limited by glutamine. Under these conditions, a correlation

  18. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases

    DEFF Research Database (Denmark)

    Knudsen, Michael; Søndergaard, Dan Ariel; Tofting-Olesen, Claus

    2016-01-01

    Motivation: By using a class of large modular enzymes known as Non-Ribosomal Peptide Synthetases (NRPS), bacteria and fungi are capable of synthesizing a large variety of secondary metabolites, many of which are bioactive and have potential, pharmaceutical applications as e.g.~antibiotics. There ...

  19. Primer Dependent and Independent Forms of Soluble Starch Synthetase from Developing Barley Endosperms

    DEFF Research Database (Denmark)

    Kreis, M.

    1980-01-01

    The activity of soluble starch synthetase (ADP-glucose: agr-1,4-glucan agr-4-glucosyltransferase) in the non-purified extract from 16 day-old Bomi barley endosperms (Hordeum vulgare L.) was low and the reaction was non-linear when plotted against protein concentration. Starch synthetase was purif......The activity of soluble starch synthetase (ADP-glucose: agr-1,4-glucan agr-4-glucosyltransferase) in the non-purified extract from 16 day-old Bomi barley endosperms (Hordeum vulgare L.) was low and the reaction was non-linear when plotted against protein concentration. Starch synthetase...... was purified by ammonium sulfate precipitation and DEAE-cellulose chromatography and separated into four fractions. In the absence of an added carbohydrate primer two of the four fractions catalized the synthesis of a methanol-precipitable agr-glucan when high concentrations of sodium citrate and bovine serum...... albumim were added. The rate of agr-glucan synthesis by the unprimed reaction was higher than for the primed reaction. The four enzyme fractions were active with ADP-Glc, but not with UDP-Glc, both in the primed and in the unprimed reaction....

  20. Orthogonal use of a human tRNA synthetase active site to achieve multi-functionality

    Science.gov (United States)

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B.; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A.; Schimmel, Paul; Yang, Xiang-Lei

    2011-01-01

    Protein multi-functionality is an emerging explanation for the complexity of higher organisms. In this regard, while aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, some also act in pathways for inflammation, angiogenesis, and apoptosis. How multiple functions evolved and their relationship to the active site is not clear. Here structural modeling analysis, mutagenesis, and cell-based functional studies show that the potent angiostatic, natural fragment of human TrpRS associates via Trp side chains that protrude from the cognate cellular receptor VE-cadherin. Modeling indicates that (I prefer the way it was because the conclusion was reached not only by modeling, but more so by experimental studies.)VE-cadherin Trp side chains fit into the Trp-specific active site of the synthetase. Thus, specific side chains of the receptor mimic (?) amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multi-functionality of human tRNA synthetases and other proteins. PMID:20010843

  1. Synthesis, accumulation and turnover of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in cultures of embryonic rat hepatocytes

    NARCIS (Netherlands)

    van Roon, M. A.; Charles, R.; Lamers, W. H.

    1987-01-01

    Glucocorticosteroid, thyroid hormones and cyclic AMP can induce the synthesis of carbamoylphosphate synthetase and phosphoenolpyruvate carboxykinase in cultures of hepatocytes as soon as these cells differentiate from the embryonic foregut. The low levels of both enzymes that can accumulate in such

  2. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism

    NARCIS (Netherlands)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Lamers, Wouter H.; Chaudhry, Farrukh A.; Verlander, Jill W.; Weiner, I. David

    2016-01-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of

  3. Glutamine Synthetase in Muscle Is Required for Glutamine Production during Fasting and Extrahepatic Ammonia Detoxification

    NARCIS (Netherlands)

    He, Youji; Hakvoort, Theodorus B. M.; Köhler, S. Eleonore; Vermeulen, Jacqueline L. M.; de Waart, D. Rudi; de Theije, Chiel; ten Have, Gabrie A. M.; van Eijk, Hans M. H.; Kunne, Cindy; Labruyere, Wilhelmina T.; Houten, Sander M.; Sokolovic, Milka; Ruijter, Jan M.; Deutz, Nicolaas E. P.; Lamers, Wouter H.

    2010-01-01

    The main endogenous source of glutamine is de novo synthesis in striated muscle via the enzyme glutamine synthetase (GS). The mice in which GS is selectively but completely eliminated from striated muscle with the Cre-loxP strategy (GS-KO/M mice) are, nevertheless, healthy and fertile. Compared with

  4. Expression pattern of glutamine synthetase marks transition from collecting into conducting hepatic veins

    NARCIS (Netherlands)

    Lamers, W. H.; Vermeulen, J. L.; Hakvoort, T. B.; Moorman, A. F.

    1999-01-01

    The expression of glutamine synthetase (GS) is confined to a rim of hepatocytes surrounding the efferent hepatic veins in all mammalian species investigated. In rat liver, a two- to three-cell thick layer of GS-positive (GS(+)) hepatocytes uniformly surrounds the two to four terminal branching

  5. Changes in Activities of Glutamine Synthetase during Grain Filling and Their Relation to Rice Quality

    Directory of Open Access Journals (Sweden)

    Zheng-xun JIN

    2007-09-01

    Full Text Available Four japonica rice varieties differed in cooking and eating qualities were used in a pot experiment to study the relationship between the activities of glutamine synthetase during grain filling and rice quality. The activities of glutamine synthetase gradually increased and then declined as a single peak curve in the course of grain filling. The 15th day after heading was a turning point, before which the enzymatic activities in the inferior rice varieties with high protein content were higher than those in the superior rice varietie with low protein content, and after which it was converse. The activity of glutamine synthetase in grain was correlated with the taste meter value, peak viscosity and breakdown negatively at the early stage of grain filling whereas positively at the middle and late stages. Moreover, it was correlated with the protein content of rice grain and setback positively at the early stage and negatively at the middle and late stages. The correlation degree varied with the course of grain filling. From 15 days to 20 days after heading was a critical stage, in which the direction of correlation between the activity of glutamine synthetase and taste meter value and RVA properties of rice changed.

  6. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    , stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib...

  7. Characterization of a Salmonella typhimurium mutant defective in phosphoribosylpyrophosphate synthetase

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne U.; Hove-Jensen, Bjarne; Garber, Bruce B.

    1985-01-01

    This study describes the isolation and characterization of a mutant (strain GP122) of Salmonella typhimurium with a partial deficiency of phosphoribosylpyrophosphate (PRPP) synthetase activity. This strain was isolated in a purE deoD gpt purine auxotroph by a procedure designed to select guanosine...

  8. Computational Insights into the High-Fidelity Catalysis of Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Aboelnga, Mohamed M.

    Obtaining insights into the catalytic function of enzymes is an important area of research due to their widespread applications in the biotechnology and pharmaceutical industries. Among these enzymes, the aminoacyl-tRNA synthetases (aaRSs) are known for their remarkable fidelity in catalyzing the aminoacylation reactions of tRNA in protein biosynthesis. Despite the exceptional execution of this critical function, mechanistic details of the reactions catalyzed by aminoacyl-tRNA synthetases remain elusive demonstrating the obvious need to explore their remarkable chemistry. During the PhD studies reported in this thesis the mechanism of aminoacylation, pre?transfer editing and post?transfer editing catalyzed by different aaRS have been established using multi-scale computational enzymology. In the first two chapters a detailed information about aaRS and the addressed questions was given in addition to an overview of the used computational methodology currently used to investigate the enzymatic mechanisms. The aminoacylation mechanism of threonine by Threonyl-tRNA synthetases, glutamine by Glutaminyl-tRNA synthetases and glutamate by Glutamyl-tRNA synthetases have been clearly unveiled in chapter 3 and 4. Also, valuable information regarding the role of cofactors and active site residues has been obtained. While investigating the post-transfer editing mechanisms, which proceed in a remote and distinct active site, two different scenarios were experimentally suggested for two types of threonyl-tRNA synthetase species to correct the misacylation of the structurally related serine. We explored these two mechanisms as in chapters 5 and 6. Moreover, the synthetic site in which the aminoacylation reaction is catalyzed, is also responsible for a second type of proofreading reaction called pre-transfer editing mechanism. In chapter 7, this latter mechanism has been elucidated for both Seryl-tRNA synthetases and Isoleucyl-tRNA synthetases against their non-cognate substrates

  9. Equilibria and partitioning of complexes in the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.

    1987-01-01

    S-adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a reaction in which the [enzyme-ATP-methionine] complex reacts to form an intermediate [enzyme-AdoMet-PPPi] complex: hydrolysis of PPPi yields an [enzyme-AdoMet-PPi-Pi] complex from which AdoMet is the last product to dissociate. Analysis of reaction mixtures which were quenched with acid during turnover of E. coli AdoMet synthetase with saturating substrates containing [α - 32 P]ATP showed that PPPi is present in an amount corresponding to 45% of the total enzyme active sites, reflecting the portion of enzyme present in an [enzyme-AdoMet-PPPi] complex. Similar experiments in which excess pyrophosphatase was included (to hydrolyze PPi as it was released from AdoMet synthetase), showed that enzyme-bound PPi is present in an amount corresponding to 22% of the total AdoMet synthetase. The enzyme not present in complexes with PPPi or PPi is probably distributed between the [enzyme-ATP-methionine] and the [enzyme-AdoMet] complexes. AdoMet synthetase forms enzyme-bound 32 PPPi from added 32 PPi and Pi; the equilibrium constant [enzyme-AdoMet-PPi-Pi]/[enzyme-AdoMet-PPPi] is 2.0, greatly displaced from the equilibrium for hydrolysis of free PPPi. Since the ratio of enzyme-bound PPi to PPPi is 0.5 during the steady state, the PPPi hydrolysis step is not at equilibrium during turnover. Formation of [ 32 P]ATP from the [enzyme-AdoMet- 32 PPPi] complex was not detected

  10. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara (SSRL); (Maryland)

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  11. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  12. Giardia fatty acyl-CoA synthetases as potential drug targets

    Directory of Open Access Journals (Sweden)

    Fengguang eGuo

    2015-07-01

    Full Text Available Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis is one of the leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to treat giardiasis are available, there are concerns regarding toxicity in some patients and the emerging drug resistance. By data-mining genome sequences, we observed that G. intestinalis is incapable of synthesizing fatty acids de novo. However, this parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5 to activate fatty acids scavenged from the host. ACS is an essential enzyme because fatty acids need to be activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In the present study, we performed experiments to explore whether some GiACS enzymes could serve as drug targets in Giardia. Based on the high-throughput datasets and protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes encoding these two enzymes were found to be more consistently expressed in varied parasite life cycle stages and when interacting with host cells based on previously reported transcriptome data. These two proteins were cloned and expressed as recombinant proteins. Biochemical analysis revealed that both had apparent substrate preference towards palmitic acid (C16:0 and myristic acid (C14:0, and allosteric or Michaelis-Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited the activity of both enzymes (IC50 = 1.56 µM, Ki = 0.18 µM for GiACS1 and IC50 = 2.28 µM, Ki = 0.23 µM for GiACS2, respectively and the growth of G. intestinalis in vitro (IC50 = 0.8 µM. As expected from giardial evolutionary characteristics, both GiACSs displayed differences in overall folding structure as compared with their human counterparts. These observations support the notion that some of the GiACS enzymes may be explored as drug targets in this parasite.

  13. Five-year surveillance of molecular markers of Plasmodium falciparum antimalarial drug resistance in Korogwe District, Tanzania: accumulation of the 581G mutation in the P. falciparum dihydropteroate synthase gene

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lusingu, John P; Mmbando, Bruno

    2009-01-01

    In January 2007, Tanzania replaced sulfadoxine-pyrimethamine (SP) with artemether-lumefantrine for treatment of uncomplicated malaria. This study examined the impact of widespread SP use on molecular markers of Plasmodium falciparum drug resistance in blood samples from persons living in two...

  14. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard

    2005-01-01

    . However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA...... the SNPs of dhfr, dhps, and Pfcrt with high specificity. The SSOP-ELISA compared well with a standard PCR-restriction fragment length polymorphism procedure, and gave identical positive results in more than 90% of the P. falciparum slide-positive samples tested. The SSOP-ELISA of all dhfr, dhps, or Pfcrt...

  15. Activation of 2'-5' oligoadenylate synthetase by single-stranded and double-stranded RNA aptamers

    DEFF Research Database (Denmark)

    Hartmann, R; Norby, P L; Martensen, P M

    1998-01-01

    A number of small RNA molecules that are high affinity ligands for the 46-kDa form of human 2'-5' oligoadenylate synthetase have been identified by the SELEX method. Surface plasmon resonance analysis indicates that these RNAs bind to the enzyme with dissociation constants in the nanomolar range....... Competition experiments indicate that the binding site for the small RNAs on the 2'-5' oligoadenylate synthetase molecule at least partially overlaps that for the synthetic double-stranded RNA, poly(I).poly(C). Several of the RNAs function as potent activators of 2'-5' oligoadenylate synthetase in vitro......-stranded RNA, can also be activated by RNA ligands with little secondary structure. Since 2'-5' oligoadenylate synthetase possesses no homology to other known RNA-binding proteins, the development of small specific ligands by SELEX should facilitate studies of RNA-protein interactions and may reveal novel...

  16. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform

    CSIR Research Space (South Africa)

    Theron, Anjo

    2017-10-01

    Full Text Available studies indicating an alternative mechanism via the cytochrome cytochrome bc1 complex impacting on the homeostasis of ATP synthesis [39]. The inhibition of glutamine synthetase may also impact the ATP homeostasis as the resultant accumulation of α...

  17. Glutamine synthetase expression in perinatal spiny mouse liver

    NARCIS (Netherlands)

    Lamers, W. H.; Boon, L.; van Hemert, F. J.; Labruyère, W. T.; de Jong, P.; Ruijter, J. M.; Moorman, A. F.

    1999-01-01

    The pronounced increase in the protein/mRNA ratio of ammonia-metabolising enzymes in rat liver in the last prenatal week represents a clear example of a post-transcriptional level of control of gene expression. Both the underlying mechanism, namely an increase in translational efficiency of the mRNA

  18. Acetate Activation in Methanosaeta thermophila: Characterization of the Key Enzymes Pyrophosphatase and Acetyl-CoA Synthetase

    Directory of Open Access Journals (Sweden)

    Stefanie Berger

    2012-01-01

    Full Text Available The thermophilic methanogen Methanosaeta thermophila uses acetate as sole substrate for methanogenesis. It was proposed that the acetate activation reaction that is needed to feed acetate into the methanogenic pathway requires the hydrolysis of two ATP, whereas the acetate activation reaction in Methanosarcina sp. is known to require only one ATP. As these organisms live at the thermodynamic limit that sustains life, the acetate activation reaction in Mt. thermophila seems too costly and was thus reevaluated. It was found that of the putative acetate activation enzymes one gene encoding an AMP-forming acetyl-CoA synthetase was highly expressed. The corresponding enzyme was purified and characterized in detail. It catalyzed the ATP-dependent formation of acetyl-CoA, AMP, and pyrophosphate (PPi and was only moderately inhibited by PPi. The breakdown of PPi was performed by a soluble pyrophosphatase. This enzyme was also purified and characterized. The pyrophosphatase hydrolyzed the major part of PPi (KM=0.27±0.05 mM that was produced in the acetate activation reaction. Activity was not inhibited by nucleotides or PPi. However, it cannot be excluded that other PPi-dependent enzymes take advantage of the remaining PPi and contribute to the energy balance of the cell.

  19. Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme.

    Directory of Open Access Journals (Sweden)

    Chin-I Chien

    Full Text Available Two oligomeric types of glycyl-tRNA synthetase (GlyRS are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme and A. thaliana organellar GlyRS (a (αβ2-type enzyme failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships.

  20. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    Science.gov (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  1. Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis.

    Science.gov (United States)

    Jain, Vitul; Yogavel, Manickam; Kikuchi, Haruhisa; Oshima, Yoshiteru; Hariguchi, Norimitsu; Matsumoto, Makoto; Goel, Preeti; Touquet, Bastien; Jumani, Rajiv S; Tacchini-Cottier, Fabienne; Harlos, Karl; Huston, Christopher D; Hakimi, Mohamed-Ali; Sharma, Amit

    2017-10-03

    Developing anti-parasitic lead compounds that act on key vulnerabilities are necessary for new anti-infectives. Malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis and coccidiosis together kill >500,000 humans annually. Their causative parasites Plasmodium, Leishmania, Toxoplasma, Cryptosporidium and Eimeria display high conservation in many housekeeping genes, suggesting that these parasites can be attacked by targeting invariant essential proteins. Here, we describe selective and potent inhibition of prolyl-tRNA synthetases (PRSs) from the above parasites using a series of quinazolinone-scaffold compounds. Our PRS-drug co-crystal structures reveal remarkable active site plasticity that accommodates diversely substituted compounds, an enzymatic feature that can be leveraged for refining drug-like properties of quinazolinones on a per parasite basis. A compound we termed In-5 exhibited a unique double conformation, enhanced drug-like properties, and cleared malaria in mice. It thus represents a new lead for optimization. Collectively, our data offer insights into the structure-guided optimization of quinazolinone-based compounds for drug development against multiple human eukaryotic pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    Science.gov (United States)

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2009-08-18

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  3. Oligoadenylate synthetase 1 (OAS1 expression in human breast and prostate cancer cases, and its regulation by sex steroid hormones

    Directory of Open Access Journals (Sweden)

    Cláudio Jorge Maia

    2016-06-01

    Full Text Available Oligoadenylate synthetase 1 (OAS1 is an interferon-induced protein characterised by its capacity to catalyse the synthesis of 2ʹ-5ʹ-linked oligomers of adenosine from adenosine triphosphate (2-5A. The 2-5A binds to a latent Ribonuclease L (RNase L, which subsequently dimerises into its active form and may play an important role in the control of cell growth, differentiation and apoptosis. Previously, our research group identified OAS1 as a differentially-expressed gene in breast and prostate cancer cell lines when compared to normal cells. This study evaluates: i the expression of OAS1 in human breast and prostate cancer specimens; and ii the effect of sex steroid hormones in regulating the expression of OAS1 in breast (MCF-7 and prostate (LNCaP cancer cell lines. The obtained results showed that OAS1 expression was down-regulated in human infiltrative ductal carcinoma of breast, adenocarcinoma of prostate, and benign prostate hyperplasia, both at mRNA and protein level. In addition, OAS1 expression was negatively correlated with the progression of breast and prostate cancer. With regards to the regulation of OAS1 gene, it was demonstrated that 17β-estradiol (E2 down-regulates OAS1 gene in MCF-7 cell lines, an effect that seems to be dependent on the activation of oestrogen receptor (ER. On the other hand, 5α-dihydrotestosterone (DHT treatment showed no effect on the expression of OAS1 in LNCaP cell lines. The lower levels of OAS1 in breast and prostate cancer cases indicated that the OAS1/RNaseL apoptotic pathway may be compromised in breast and prostate tumours. Moreover, the present findings suggested that this effect may be enhanced by oestrogen in ER-positive breast cancers.

  4. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    Science.gov (United States)

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  5. Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity

    Science.gov (United States)

    Lee, Eun-Young; Lee, Hyun-Cheol; Kim, Hyun-Kwan; Jang, Song Yee; Park, Seong-Jun; Kim, Yong-Hoon; Kim, Jong Hwan; Hwang, Jungwon; Kim, Jae-Hoon; Kim, Tae-Hwan; Arif, Abul; Kim, Seon-Young; Choi, Young-Ki; Lee, Cheolju; Lee, Chul-Ho; Jung, Jae U; Fox, Paul L; Kim, Sunghoon; Lee, Jong-Soo; Kim, Myung Hee

    2016-01-01

    The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/−) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection. PMID:27595231

  6. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling

    DEFF Research Database (Denmark)

    Uzarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara

    2009-01-01

    -related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. Conclusion Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support...

  7. The glutamine synthetase of Trypanosoma cruzi is required for its resistance to ammonium accumulation and evasion of the parasitophorous vacuole during host-cell infection.

    Directory of Open Access Journals (Sweden)

    Marcell Crispim

    2018-01-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.

  8. Production of cyanophycin in Rhizopus oryzae through the expression of a cyanophycin synthetase encoding gene

    NARCIS (Netherlands)

    Meussen, B.J.; Weusthuis, R.A.; Sanders, J.P.M.; Graaff, de L.H.

    2012-01-01

    Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid,

  9. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases

    Directory of Open Access Journals (Sweden)

    Anna Sivachenko

    2016-04-01

    Full Text Available Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS double mutant. We show that the Drosophila bubblegum (bgm and double bubble (dbb genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD, a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivo is causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6 (encoding a very-long-chain ACS, a human homolog of bgm and dbb.

  10. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases.

    Science.gov (United States)

    Sivachenko, Anna; Gordon, Hannah B; Kimball, Suzanne S; Gavin, Erin J; Bonkowsky, Joshua L; Letsou, Anthea

    2016-04-01

    Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum(bgm) and double bubble(dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivois causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6(encoding a very-long-chain ACS), a human homolog of bgm and dbb. © 2016. Published by The Company of Biologists Ltd.

  11. Rapid approach for cloning bacterial single-genes directly from soils ...

    African Journals Online (AJOL)

    Obtaining functional genes of bacteria from environmental samples usually depends on library-based approach which is not favored as its large amount of work with small possibility of positive clones. A kind of bacterial single-gene encoding glutamine synthetase (GS) was selected as example to detect the efficiency of ...

  12. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture.

    Science.gov (United States)

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel; Zhou, Min; Llorca, Óscar; Robinson, Carol V; Carvalho, Helena G; Fernández-Tornero, Carlos; Pereira, Pedro José Barbosa

    2014-04-01

    The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  13. Effect of Mini-Tyrosyl-tRNA Synthetase/Mini-Tryptophanyl-tRNA Synthetase on Angiogenesis in Rhesus Monkeys after Acute Myocardial Infarction.

    Science.gov (United States)

    Zeng, Rui; Wang, Mian; You, Gui-ying; Yue, Rong-zheng; Chen, Yu-cheng; Zeng, Zhi; Liu, Rui; Qiang, Ou; Zhang, Li

    2016-02-01

    The purpose of this study was to clarify the effect of mini-tyrosyl-tRNA synthetase/mini-tryptophanyl-tRNA synthetase (mini-TyrRS/mini-TrpRS) in ischemic angiogenesis in rhesus monkeys with acute myocardial infarction (AMI). A 27-gauge needle was incorporated percutaneously into the left ventricular myocardium of rhesus monkeys with AMI. All monkeys were randomized to receive adenoviral vector mini-TyrRS/mini-TrpRS, which was administered as five injections into the infarcted myocardium, or saline or ad-null (control groups). The injections were guided by EnSite NavX left ventricular electroanatomical mapping. Mini-TyrRS/mini-TrpRS proteins were detected by Western blot and immunoprecipitation analyses. Microvessel density (MVD) per section was measured using immunostaining with a CD34 monoclonal antibody. Proliferating cardiomyocytes were identified through histological and immunohistochemical analyses. Myocardial perfusion and cardiac function were estimated by G-SPECT. Infarction size was also measured. Western blot analyses showed that compared to the normal zone, the expression level of mini-TyrRS/mini-TrpRS was significantly different in the infarction zone. G-SPECT analysis indicated that the mini-TyrRS group had better cardiac function and myocardial perfusion after the injection of ad-mini-TyrRS than before, while mini-TrpRS injection had a totally opposite effect. After mini-TyrRS was administered, there was less of an infarction zone and more proliferating cardiomyocytes and capillaries in the mini-TyrRS group compared to both of the control groups, and the ad-mini-TrpRS group had a totally opposite effect. These results indicated that angiogenesis could be either stimulated by mini-TyrRS or inhibited by mini-TrpRS. © 2015 John Wiley & Sons Ltd.

  14. A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase

    Directory of Open Access Journals (Sweden)

    Marissa A. Holmbeck

    2015-08-01

    Full Text Available Communication between the mitochondrial and nuclear genomes is vital for cellular function. The assembly of mitochondrial enzyme complexes, which produce the majority of cellular energy, requires the coordinated expression and translation of both mitochondrially and nuclear-encoded proteins. The joint genetic architecture of this system complicates the basis of mitochondrial diseases, and mutations both in mitochondrial DNA (mtDNA- and nuclear-encoded genes have been implicated in mitochondrial dysfunction. Previously, in a set of mitochondrial-nuclear introgression strains, we characterized a dual genome epistasis in which a naturally occurring mutation in the Drosophila simulans simw501 mtDNA-encoded transfer RNA (tRNA for tyrosine (tRNATyr interacts with a mutation in the nuclear-encoded mitochondrially localized tyrosyl-tRNA synthetase from Drosophila melanogaster. Here, we show that the incompatible mitochondrial-nuclear combination results in locomotor defects, reduced mitochondrial respiratory capacity, decreased oxidative phosphorylation (OXPHOS enzyme activity and severe alterations in mitochondrial morphology. Transgenic rescue strains containing nuclear variants of the tyrosyl-tRNA synthetase are sufficient to rescue many of the deleterious phenotypes identified when paired with the simw501 mtDNA. However, the severity of this defective mito-nuclear interaction varies across traits and genetic backgrounds, suggesting that the impact of mitochondrial dysfunction might be tissue specific. Because mutations in mitochondrial tRNATyr are associated with exercise intolerance in humans, this mitochondrial-nuclear introgression model in Drosophila provides a means to dissect the molecular basis of these, and other, mitochondrial diseases that are a consequence of the joint genetic architecture of mitochondrial function.

  15. Gamma-Glutamylpolyamine Synthetase GlnA3 Is Involved in the First Step of Polyamine Degradation Pathway in Streptomyces coelicolor M145

    Directory of Open Access Journals (Sweden)

    Agnieszka Bera

    2017-04-01

    Full Text Available Streptomyces coelicolor M145 was shown to be able to grow in the presence of high concentrations of polyamines, such as putrescine, cadaverine, spermidine, or spermine, as a sole nitrogen source. However, hardly anything is known about polyamine utilization and its regulation in streptomycetes. In this study, we demonstrated that only one of the three proteins annotated as glutamine synthetase-like protein, GlnA3 (SCO6962, was involved in the catabolism of polyamines. Transcriptional analysis revealed that the expression of glnA3 was strongly induced by exogenous polyamines and repressed in the presence of ammonium. The ΔglnA3 mutant was shown to be unable to grow on defined Evans agar supplemented with putrescine, cadaverine, spermidine, and spermine as sole nitrogen source. HPLC analysis demonstrated that the ΔglnA3 mutant accumulated polyamines intracellularly, but was unable to degrade them. In a rich complex medium supplemented with a mixture of the four different polyamines, the ΔglnA3 mutant grew poorly showing abnormal mycelium morphology and decreased life span in comparison to the parental strain. These observations indicated that the accumulation of polyamines was toxic for the cell. An in silico analysis of the GlnA3 protein model suggested that it might act as a gamma-glutamylpolyamine synthetase catalyzing the first step of polyamine degradation. GlnA3-catalyzed glutamylation of putrescine was confirmed in an enzymatic in vitro assay and the GlnA3 reaction product, gamma-glutamylputrescine, was detected by HPLC/ESI-MS. In this work, the first step of polyamine utilization in S. coelicolor has been elucidated and the putative polyamine utilization pathway has been deduced based on the sequence similarity and transcriptional analysis of homologous genes expressed in the presence of polyamines.

  16. Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus).

    Science.gov (United States)

    Dalessandro, G; Northcote, D H

    1981-01-01

    Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-(14)C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-(14)C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[(14)C]xylose and tri-O-methyl-[(14)C]xylose, suggesting a 1→4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg(2+) and Mn(2+) ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.

  17. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine...... represented a primary stimulus in all subjects. First, basal 2',5'A activity increased severalfold in response to yellow fever vaccination. In IDDM subjects, this increase was significantly lower (P = .025). Second, the 2',5'A activity increased proportionately to the higher basal 2',5'A activity in IDDM...

  18. Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis

    DEFF Research Database (Denmark)

    Raina, Medha; Elgamal, Sara; Santangelo, Thomas J

    2012-01-01

    -dependent methyltransferase 144, GTP cyclohydrolase 398, DNA topoisomerase VI subunit A 209, DNA topoisomerase VI subunit B 192, Type A Flavoprotein 911, NAD(P)H:rubredoxin oxidoreductase (Fatty acid metabolism) 120, NAD(P)H:rubredoxin oxidoreductase 120, cofactor-independent phosphoglycerate mutase 909, bis(5'-adenosyl......, transcriptional regulator 364, glutamine synthetase 120, N6-adenine-specific DNA methylase 194, ArsR family transcriptional regulator 113, 5'-methylthioadenosine phosphorylase II 280, DNA repair and recombination protein RadA 323, 30S ribosomal protein S6e 106, pyruvate ferredoxin oxidoreductase subunit beta 282...

  19. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.

    Science.gov (United States)

    Amoutzias, Grigoris D; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-04-16

    Considering that 70% of our planet's surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  20. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  1. Stage-dependent expression and up-regulation of trypanothione synthetase in amphotericin B resistant Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Asif Equbal

    Full Text Available Kinetoplastids differ from other organisms in their ability to conjugate glutathione and spermidine to form trypanothione which is involved in maintaining redox homeostasis and removal of toxic metabolites. It is also involved in drug resistance, antioxidant mechanism, and defense against cellular oxidants. Trypanothione synthetase (TryS of thiol metabolic pathway is the sole enzyme responsible for the biosynthesis of trypanothione in Leishmania donovani. In this study, TryS gene of L. donovani (LdTryS was cloned, expressed, and fusion protein purified with affinity column chromatography. The purified protein showed optimum enzymatic activity at pH 8.0-8.5. The TryS amino acids sequences alignment showed that all amino acids involved in catalytic and ligands binding of L. major are conserved in L. donovani. Subcellular localization using digitonin fractionation and immunoblot analysis showed that LdTryS is localized in the cytoplasm. Furthermore, RT-PCR coupled with immunoblot analysis showed that LdTryS is overexpressed in Amp B resistant and stationary phase promastigotes (∼ 2.0-folds than in sensitive strain and logarithmic phase, respectively, which suggests its involvement in Amp B resistance. Also, H2O2 treatment upto 150 µM for 8 hrs leads to 2-fold increased expression of LdTryS probably to cope up with oxidative stress generated by H2O2. Therefore, this study demonstrates stage- and Amp B sensitivity-dependent expression of LdTryS in L. donovani and involvement of TryS during oxidative stress to help the parasites survival.

  2. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography

    DEFF Research Database (Denmark)

    Led, Jens Jørgen; Switon, Werner K.; Jensen, Kaj Frank

    1983-01-01

    The catalytic activity of highly purified Escherichia coli glycyl-tRNA synthetase has been studied by 31P-NMR spectroscopy and thin-layer chromatography on poly(ethyleneimine)-cellulose. It was found that this synthetase, besides the activation of its cognate amino acid and the syntheses...

  3. δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme

    NARCIS (Netherlands)

    Lende, Ted R. van der; Kamp, Mart van de; Berg, Marco van den; Sjollema, Klaas; Bovenberg, Roel A.L.; Veenhuis, Marten; Konings, Wil N.; Driessen, Arnold J.M.

    2002-01-01

    Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-α-aminoadipate, L-cysteine, and L-valine into

  4. delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase, that mediates the first committed step in penicillin biosynthesis, is a cytosolic enzyme

    NARCIS (Netherlands)

    van der Lende, T.R.; de Kamp, M.; den Berg, M.van; Sjollema, K.; Bovenberg, R.A.L.; Veenhuis, M; Konings, W.N; Driessen, A.J.M.

    2002-01-01

    Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteme, and

  5. Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens)

    Science.gov (United States)

    Michelle J. Serapiglia; Rakesh Minocha; Subhash C. Minocha

    2008-01-01

    We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount...

  6. Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling.

    Science.gov (United States)

    Hori, Tomoyuki; Sasaki, Daisuke; Haruta, Shin; Shigematsu, Toru; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2011-07-01

    Syntrophic oxidation of acetate, so-called reversed reductive acetogenesis, is one of the most important degradation steps in anaerobic digesters. However, little is known about the genetic diversity of the micro-organisms involved. Here we investigated the activity and composition of potentially acetate-oxidizing syntrophs using a combinatorial approach of flux measurement and transcriptional profiling of the formyltetrahydrofolate synthetase (FTHFS) gene, an ecological biomarker for reductive acetogenesis. During the operation of a thermophilic anaerobic digester, volatile fatty acids were mostly depleted, suggesting a high turnover rate for dissolved H(2), and hydrogenotrophic methanogens were the dominant archaeal members. Batch cultivation of the digester microbiota with (13)C-labelled acetate indicated that syntrophic oxidation accounted for 13.1-21.3 % of methane production from acetate. FTHFS genes were transcribed in the absence of carbon monoxide, methoxylated compounds and inorganic electron acceptors other than CO(2), which is implicated in the activity of reversed reductive acetogenesis; however, expression itself does not distinguish whether biosynthesis or biodegradation is functioning. The mRNA- and DNA-based terminal RFLP and clone library analyses indicated that, out of nine FTHFS phylotypes detected, the FTHFS genes from the novel phylotypes I-IV in addition to the known syntroph Thermacetogenium phaeum (i.e. phylotype V) were specifically expressed. These transcripts arose from phylogenetically presumed homoacetogens. The results of this study demonstrate that hitherto unidentified phylotypes of homoacetogens are responsible for syntrophic acetate oxidation in an anaerobic digester.

  7. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (cmtx5).

    Science.gov (United States)

    Kim, Hee-Jin; Sohn, Kwang-Min; Shy, Michael E; Krajewski, Karen M; Hwang, Miok; Park, June-Hee; Jang, Sue-Yon; Won, Hong-Hee; Choi, Byung-Ok; Hong, Sung Hwa; Kim, Byoung-Joon; Suh, Yeon-Lim; Ki, Chang-Seok; Lee, Soo-Youn; Kim, Sun-Hee; Kim, Jong-Won

    2007-09-01

    We have identified missense mutations at conserved amino acids in the PRPS1 gene on Xq22.3 in two families with a syndromic form of inherited peripheral neuropathy, one of Asian and one of European descent. The disease is inherited in an X-linked recessive manner, and the affected male patients invariably develop sensorineural hearing loss of prelingual type followed by gating disturbance and visual loss. The family of European descent was reported in 1967 as having Rosenberg-Chutorian syndrome, and recently a Korean family with the same symptom triad was identified with a novel disease locus CMTX5 on the chromosome band Xq21.32-q24. PRPS1 (phosphoribosyl pyrophosphate synthetase 1) is an isoform of the PRPS gene family and is ubiquitously expressed in human tissues, including cochlea. The enzyme mediates the biochemical step critical for purine metabolism and nucleotide biosynthesis. The mutations identified were E43D, in patients with Rosenberg-Chutorian syndrome, and M115T, in the Korean patients with CMTX5. We also showed decreased enzyme activity in patients with M115T. PRPS1 is the first CMT gene that encodes a metabolic enzyme, shedding a new light on the understanding of peripheral nerve-specific metabolism and also suggesting the potential of PRPS1 as a target for drugs in prevention and treatment of peripheral neuropathy by antimetabolite therapy.

  8. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    Energy Technology Data Exchange (ETDEWEB)

    Torreira, Eva [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Seabra, Ana Rita [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Marriott, Hazel; Zhou, Min [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Llorca, Óscar [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Robinson, Carol V. [University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Carvalho, Helena G. [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Pereira, Pedro José Barbosa, E-mail: cftornero@cib.csic.es [IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto (Portugal); Centro de Investigaciones Biológicas – CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)

    2014-04-01

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of crop yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.

  9. Purification and characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Theilgaard, Hanne Birgitte; Kristiansen, K.N.; Henriksen, Claus Maxel

    1997-01-01

    delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)(2)SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography. The mole......delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)(2)SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography...

  10. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine

    DEFF Research Database (Denmark)

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman

    2004-01-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology......-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine....

  11. β-Keto and β-hydroxyphosphonate analogs of biotin-5’-AMP are inhibitors of holocarboxylase synthetase

    OpenAIRE

    Sittiwong, Wantanee; Cordonier, Elizabeth L.; Zempleni, Janos; Dussault, Patrick H.

    2014-01-01

    Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5′-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 μM and 17.3 μM, r...

  12. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    Science.gov (United States)

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  13. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    Science.gov (United States)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  14. tRNA-like recognition of group I introns by a tyrosyl-tRNA synthetase.

    Science.gov (United States)

    Myers, Christopher A; Kuhla, Birte; Cusack, Stephen; Lambowitz, Alan M

    2002-03-05

    The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) functions in splicing group I introns by promoting the formation of the catalytically active RNA structure. Previous work suggested that CYT-18 recognizes a conserved tRNA-like structure of the group I intron catalytic core. Here, directed hydroxyl-radical cleavage assays show that the nucleotide-binding fold and C-terminal domains of CYT-18 interact with the expected group I intron cognates of the aminoacyl-acceptor stem and D-anticodon arms, respectively. Further, three-dimensional graphic modeling, supported by biochemical data, shows that conserved regions of group I introns can be superimposed over interacting regions of the tRNA in a Thermus thermophilus TyrRS/tRNA(Tyr) cocrystal structure. Our results support the hypothesis that CYT-18 and other aminoacyl-tRNA synthetases interact with group I introns by recognizing conserved tRNA-like structural features of the intron RNAs.

  15. An Appended Domain Results in an Unusual Architecture for Malaria Parasite Tryptophanyl-tRNA Synthetase

    Science.gov (United States)

    Khan, Sameena; Garg, Ankur; Sharma, Arvind; Camacho, Noelia; Picchioni, Daria; Saint-Léger, Adélaïde; de Pouplana, Lluís Ribas; Yogavel, Manickam; Sharma, Amit

    2013-01-01

    Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations. PMID:23776638

  16. Mammalian folylpoly-γ-glutamate synthetase. 1. Purification and general properties of the hog liver enzyme

    International Nuclear Information System (INIS)

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    Folylpolyglutamate synthetase was purified 30,000-150,000-fold from hog liver. Purification required the use of protease inhibitors, and the protein was purified to homogeneity in two forms. Both forms of the enzyme were monomers of M/sub r/ 62,000 and had similar specific activities. The specific activity of the homogeneous protein was over 2000-fold higher than reported for partially purified folylpolyglutamate synthetases from other mammalian sources. Enzyme activity was absolutely dependent on the presence of a reducing agent and a monovalent cation, of which K + was most effective. The purified enzyme catalyzed a MgATP-dependent addition of glutamate to tetrahydrofolate with the concomitant stoichiometric formation of MgADP and phosphate. Under conditions that resembled the expected substrate and enzyme concentrations in hog liver, tetrahydrofolate was metabolized to long glutamate chain length derivatives with the hexaglutamate, the major in vivo folate derivative, predominating. Enzyme activity was maximal at about pH 9.5. The high-pH optimum was primarily due to an increase in the K/sub m/ value for the L-glutamate substrate at lower pH values, and the reaction proceeded effectively at physiological pH provided high levels of glutamate were supplied

  17. Effectiveness and mode of action of phosphonate inhibitors of plant glutamine synthetase.

    Science.gov (United States)

    Occhipinti, Andrea; Berlicki, Łukasz; Giberti, Samuele; Dziedzioła, Gabriela; Kafarski, Paweł; Forlani, Giuseppe

    2010-01-01

    Aiming at the rational design of new herbicides, the availability of the three-dimensional structure of the target enzyme greatly enhances the optimisation of lead compounds and the design of derivatives with increased activity. Among the most widely exploited herbicide targets is glutamine synthetase. Recently, the structure of a cytosolic form of the maize enzyme has been described, making it possible to verify whether steric, electronic and hydrophobic features of a compound are in agreement with inhibitor-protein interaction geometry. Three series of compounds (aminophosphonates, hydroxyphosphonates and aminomethylenebisphosphonates) were evaluated as possible inhibitors of maize glutamine synthetase. Aminomethylenebisphosphonate derivatives substituted in the phenyl ring retained the inhibitory potential, whereas variations in the scaffold, i.e. the replacement of the second phosphonate moiety with a hydroxyl or an amino residue, resulted in a significant loss of activity. A kinetic characterisation showed a non-competitive mechanism against glutamate and an uncompetitive mechanism against ATP. A docking analysis suggested the mode of bisphosphonate binding to the active site. Results made it possible to define the features required to maintain or enhance the biological activity of these compounds, which represent lead structures to be further exploited for the design of new substances endowed with herbicidal activity.

  18. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evidence supporting distinct functions of three cytosolic glutamine synthetases and two NADH-glutamate synthases in rice.

    Science.gov (United States)

    Yamaya, Tomoyuki; Kusano, Miyako

    2014-10-01

    The functions of the three isoenzymes of cytosolic glutamine synthetase (GS1;1, GS1;2, and GS1;3) and two NADH-glutamate synthases (NADH-GOGAT1 and NADH-GOGAT2) in rice (Oryza sativa L.) were characterized using a reverse genetics approach and spatial expression of the corresponding genes. OsGS1;2 and OsNADH-GOGAT1 were mainly expressed in surface cells of rice roots in an NH4 (+)-dependent manner. Disruption of either gene by the insertion of endogenous retrotransposon Tos17 caused reduction in active tiller number and hence panicle number at harvest. Re-introduction of OsGS1;2 cDNA under the control of its own promoter into the knockout mutants successfully restored panicle number to wild-type levels. These results indicate that GS1;2 and NADH-GOGAT1 are important in the primary assimilation of NH4 (+) taken up by rice roots. OsGS1;1 and OsNADH-GOGAT2 were mainly expressed in vascular tissues of mature leaf blades. OsGS1;1 mutants showed severe reduction in growth rate and grain filling, whereas OsNADH-GOGAT2 mutants had marked reduction in spikelet number per panicle. Complementation of phenotypes seen in the OsGS1;1 mutant was successfully observed when OsGS1;1 was re-introduced. Thus, these two enzymes could be important in remobilization of nitrogen during natural senescence. Metabolite profiling data showed a crucial role of GS1;1 in coordinating metabolic balance in rice. Expression of OsGS1:3 was spikelet-specific, indicating that it is probably important in grain ripening and/or germination. Thus, these isoenzymes seem to possess distinct and non-overlapping functions and none was able to compensate for the individual function of another. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    Science.gov (United States)

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  1. Mitochondrial aminoacyl-tRNA synthetase single-nucleotide polymorphisms that lead to defects in refolding but not aminoacylation

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Reynolds, Noah M; Yadavalli, Srujana S

    2011-01-01

    that mutations in nuclear-encoded components of the mitochondrial translation machinery, such as aminoacyl-tRNA synthetases (aaRSs), can also lead to disease. In some cases, mutations can be directly linked to losses in enzymatic activity; however, for many, their effect is unknown. To investigate how aa...

  2. Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases

    Directory of Open Access Journals (Sweden)

    Tukalo M. A.

    2013-07-01

    Full Text Available In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nucleotides (type 2 tRNA rather than usual 4 or 5 nucleotides (type 1 tRNA. In this review we have summarized the results of our research on the structural basis for recognition and discrimination of type 2 tRNAs by Thermus thermophilus seryl-, tyrosyl- and leucyl-tRNA synthetases (SerRS, TyrRS and LeuRS obtained by X-ray crystallography and chemical probing tRNA in solution. Crystal structures are now known of all three aminoacyl-tRNA synthetases complexed with type 2 tRNAs and the different modes of tRNA recognition represented by these structures will be discussed. In particular, emphasis will be given to the results on recognition of characteristic shape of type 2 tRNAs by cognate synthetases. In tRNASer, tRNATyr and tRNALeu the orientation of the long variable arm with respect to the body of the tRNA is different and is controlled by different packing of the core. In the case of SerRS the N-terminal domain and in the case of TyrRS, the C-terminal domain, bind to the characteristic long variable arm of the cognate RNA, thus recognizing the unique shape of the tRNA. The core of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by the crystal structure of tRNALeu complexed with T. thermophilus LeuRS and by probing a ligand-free tRNA by specific chemical reagents in solution. In the crystal structure of the LeuRS-tRNALeu complex the unique D-stem structure is recognized by the C-terminal domain of LeuRS and these data are in good agreement with those obtained in solution. LeuRS has canonical class I mode of tRNA recognition, approaching the tRNA acceptor stem from the D-stem and minor groove of the acceptor stem side. SerRS also has canonical class II mode of tRNA recognition and approaches tRNASer from opposite, variable stem and major groove of acceptor stem site. And finally, TyrRS in strong

  3. Gamma-T4 hybrid bacteriophage carrying the thymidine kinase gene of bacteriophage T4.

    OpenAIRE

    Mileham, A J; Murray, N E; Revel, H R

    1984-01-01

    Among 32 lambda-T4 recombinant phages selected for growth on a thymidylate synthetase-deficient (thyA) host, 2 were shown to carry the T4 thymidine kinase (tk) gene. The lambda-T4tk phages contain two T4 HindIII DNA fragments (2.0 and 1.5 kilobases) that hybridize to restriction fragments of T4 DNA, encompassing the tk locus at 60 kilobases on the T4 map. The T4tk insert compensates for the simultaneous host deficiencies of thymidine kinase and thymidylate synthetase in a thymidine kinase-def...

  4. Two P5CS genes from common bean exhibiting different tolerance ...

    Indian Academy of Sciences (India)

    carboxylate synthetase (P5CS) is the rate-limiting enzyme in proline biosynthesis in plants. Plasmid DNA (pCHF3-PvP5CS1 and pCHF3-PvP5CS2) containing the selectable neomycin phosphotransferase gene for kanamycin resistance and ...

  5. Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases.

    Science.gov (United States)

    Wang, Hao; Sivonen, Kaarina; Fewer, David P

    2015-12-01

    Polyketides and nonribosomal peptides are important secondary metabolites that exhibit enormous structural diversity, have many pharmaceutical applications, and include a number of clinically important drugs. These complex metabolites are most commonly synthesized on enzymatic assembly lines of polyketide synthases and nonribosomal peptide synthetases. Genome-mining studies making use of the recent explosion in the number of genome sequences have demonstrated unexpected enzymatic diversity and greatly expanded the known distribution of these enzyme systems across the three domains of life. The wealth of data now available suggests that genome-mining efforts will uncover new natural products, novel biosynthetic mechanisms, and shed light on the origin and evolution of these important enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. De novo design and engineering of non-ribosomal peptide synthetases

    Science.gov (United States)

    Bozhüyük, Kenan A. J.; Fleischhacker, Florian; Linck, Annabell; Wesche, Frank; Tietze, Andreas; Niesert, Claus-Peter; Bode, Helge B.

    2018-03-01

    Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.

  7. Redox status affects the catalytic activity of glutamyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Katz, Assaf; Banerjee, Rajat; de Armas, Merly

    2010-01-01

    Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles...... in tetrapyrrole biosynthesis is not known. Previous studies have shown that GluRS1, one of two GluRSs from the extremophile Acidithiobacillus ferrooxidans, is inactivated when intracellular heme is elevated suggesting a specific role for GluRS1 in the regulation of tetrapyrrole biosynthesis. We now show that...... inactivation by hemin plus hydrogen peroxide. The sensitivity to oxidation of A. ferrooxidans GluRS1 might provide a means to regulate tetrapyrrole and protein biosynthesis in response to extreme changes in both the redox and heme status of the cell via a single enzyme....

  8. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  9. Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis.

    Science.gov (United States)

    Mowbray, Sherry L; Kathiravan, Muthu K; Pandey, Abhishek A; Odell, Luke R

    2014-08-26

    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6-9 months) and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  10. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats

    DEFF Research Database (Denmark)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne

    2014-01-01

    of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine......Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains...... but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia....

  11. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy

    DEFF Research Database (Denmark)

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya

    2012-01-01

    the mitochondrial phenylalanyl transfer RNA (tRNA) synthetase (mtPheRS) in two patients with fatal epileptic mitochondrial encephalopathy. The mutations affected highly conserved amino acids, p.I329T and p.D391V. Recently, a homozygous FARS2 variant p.Y144C was reported in a Saudi girl with mitochondrial...... encephalopathy, but the pathogenic role of the variant remained open. Clinical features, including postnatal onset, catastrophic epilepsy, lactic acidemia, early lethality and neuroimaging findings of the patients with FARS2 variants, resembled each other closely, and neuropathology was consistent with Alpers...... was impaired. Our results imply that the three FARS2 mutations directly impair aminoacylation function and stability of mtPheRS, leading to a decrease in overall tRNA charging capacity. This study establishes a new genetic cause of infantile mitochondrial Alpers encephalopathy and reports a new mitochondrial...

  12. The Insect Pathogen Serratia marcescens Db10 Uses a Hybrid Non-Ribosomal Peptide Synthetase-Polyketide Synthase to Produce the Antibiotic Althiomycin

    Science.gov (United States)

    Challis, Gregory L.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2012-01-01

    There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1–alb6. Bioinformatic analysis of the proteins encoded by alb1–6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2–Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism. PMID:23028578

  13. Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst.

    Science.gov (United States)

    Hagiwara, Yohsuke; Field, Martin J; Nureki, Osamu; Tateno, Masaru

    2010-03-03

    Aminoacyl-tRNA synthetases (aaRSs) are critical for the translational process, catalyzing the attachment of specific amino acids to their cognate tRNAs. To ensure formation of the correct aminoacyl-tRNA, and thereby enhance the reliability of translation, several aaRSs have an editing capability that hinders formation of misaminoacylated tRNAs. We investigated theoretically the mechanism of the editing reaction for a class I enzyme, leucyl-tRNA synthetase (LeuRS), complexed with a misaminoacylated tRNA(Leu), employing ab initio hybrid quantum mechanical/molecular mechanical potentials in conjunction with molecular dynamics simulations. It is shown that the water molecule that acts as the nucleophile in the editing reaction is activated by a 3'-hydroxyl group at the 3'-end of tRNA(Leu) and that the O2' atom of the leaving group of the substrate is capped by one of the water's hydrogen atoms. Thus, it is shown that editing is a self-cleavage reaction of the tRNA and so it is the tRNA, and not the protein, that drives the reaction. The protein does, however, have an important stabilizing effect on some high-energy intermediates along the reaction path, which is more efficient than the ribozyme would be alone. This indicates that editing is achieved by a novel "hybrid ribozyme/protein catalyst". Analysis of existing experimental data and additional modeling shows that this ribozymal mechanism appears to be widespread, occurring in the ribosome as well as in other aaRSs. It also suggests transitional forms that could have played an important role in the RNA world hypothesis for the origin of life.

  14. Kinetic isotope effect studies of the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.; Parkin, D.W.; Schramm, V.L.

    1986-01-01

    S-adenosylmethionine (AdoMet) synthetase catalyzes a unique substitution reaction at the 5' carbon of MgATP. Kinetic isotope effect (V/K) measurements have been used to investigate the mechanism of AdoMet synthetase from E. coli. Changes in 3 H/ 14 C ratios when AdoMet is formed from a mixture of either ([5'- 14 C]ATP and [5'- 12 C,1'- 3 H]ATP) or ([5'- 3 H]ATP and [5'- 1 H,1'- 14 C]ATP) were examined. The effects of varying the concentrations of the co-substrate methionine and the monovalent cation activator K + were investigated. Substitution of 14 C for 12 C at the 5' position of ATP yields a primary V/K kinetic isotope effect ( 12 C/ 14 C) of 1.128 +/- 0.004 at low K + and methionine concentrations. The observed isotope effect diminishes slightly to 1.107 +/- 0.003 when both K + and methionine are present at saturating concentrations, suggesting that MgATP has only a low commitment to catalysis from at conditions near Vmax. No secondary V/K 3 H isotope effect from [5'- 3 H]ATP was detected ( 1 H/ 3 H) = 0.997 +/- 0.003. The magnitude of the primary 14 C isotope effect and the small secondary 3 H effect demonstrate that AdoMet synthesis occurs with a S/sub N/ 2 transition state which is symmetric with respect to the sulfur nucleophile and the departing tripolyphosphate group

  15. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18.

    Science.gov (United States)

    Bao, Baolong; Pestinger, Valerie; Hassan, Yousef I; Borgstahl, Gloria E O; Kolar, Carol; Zempleni, Janos

    2011-05-01

    Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [(3)H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The cyclic GMP-AMP synthetase-STING signaling pathway is required for both the innate immune response against HBV and the suppression of HBV assembly.

    Science.gov (United States)

    Dansako, Hiromichi; Ueda, Youki; Okumura, Nobuaki; Satoh, Shinya; Sugiyama, Masaya; Mizokami, Masashi; Ikeda, Masanori; Kato, Nobuyuki

    2016-01-01

    During viral replication, the innate immune response is induced through the recognition of viral replication intermediates by host factor(s). One of these host factors, cyclic GMP-AMP synthetase (cGAS), was recently reported to be involved in the recognition of viral DNA derived from DNA viruses. However, it is uncertain whether cGAS is involved in the recognition of hepatitis B virus (HBV), which is a hepatotropic DNA virus. In the present study, we demonstrated that HBV genome-derived double-stranded DNA induced the innate immune response through cGAS and its adaptor protein, stimulator of interferon genes (STING), in human hepatoma Li23 cells expressing high levels of cGAS. In addition, we demonstrated that HBV infection induced ISG56 through the cGAS-STING signaling pathway. This signaling pathway also showed an antiviral response towards HBV through the suppression of viral assembly. From these results, we conclude that the cGAS-STING signaling pathway is required for not only the innate immune response against HBV but also the suppression of HBV assembly. The cGAS-STING signaling pathway may thus be a novel target for anti-HBV strategies. © 2015 FEBS.

  17. Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea.

    Science.gov (United States)

    Seifi, Hamed Soren; Curvers, Katrien; De Vleesschauwer, David; Delaere, Ilse; Aziz, Aziz; Höfte, Monica

    2013-07-01

    Deficiency of abscisic acid (ABA) in the sitiens mutant of tomato (Solanum lycopersicum) culminates in increased resistance to Botrytis cinerea through a rapid epidermal hypersensitive response (HR) and associated phenylpropanoid pathway-derived cell wall fortifications. This study focused on understanding the role of primary carbon : nitrogen (C : N) metabolism in the resistance response of sitiens to B. cinerea. How alterations in C : N metabolism are linked with the HR-mediated epidermal arrest of the pathogen has been also investigated. Temporal alterations in the γ-aminobutyric acid (GABA) shunt, glutamine synthetase/glutamate synthase (GS/GOGAT) cycle and phenylpropanoid pathway were transcriptionally, enzymatically and metabolically monitored in both wild-type and sitiens plants. Virus-induced gene silencing, microscopic analyses and pharmacological assays were used to further confirm the data. Our results on the sitiens-B. cinerea interaction favor a model in which cell viability in the cells surrounding the invaded tissue is maintained by a constant replenishment of the tricarboxylic acid (TCA) cycle through overactivation of the GS/GOGAT cycle and the GABA shunt, resulting in resistance through both tightly controlling the defense-associated HR and slowing down the pathogen-induced senescence. Collectively, this study shows that maintaining cell viability via alterations in host C : N metabolism plays a vital role in the resistance response against necrotrophic pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  18. Mutations in LACS2, a long-chain acyl-coenzyme A synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis.

    Science.gov (United States)

    Tang, Dingzhong; Simonich, Michael T; Innes, Roger W

    2007-06-01

    We identified an Arabidopsis (Arabidopsis thaliana) mutant, sma4 (symptoms to multiple avr genotypes4), that displays severe disease symptoms when inoculated with avirulent strains of Pseudomonas syringae pv tomato, although bacterial growth is only moderately enhanced compared to wild-type plants. The sma4 mutant showed a normal susceptible phenotype to the biotrophic fungal pathogen Erysiphe cichoracearum. Significantly, the sma4 mutant was highly resistant to a necrotrophic fungal pathogen, Botrytis cinerea. Germination of B. cinerea spores on sma4 mutant leaves was inhibited, and penetration by those that did germinate was rare. The sma4 mutant also showed several pleiotropic phenotypes, including increased sensitivity to lower humidity and salt stress. Isolation of SMA4 by positional cloning revealed that it encodes LACS2, a member of the long-chain acyl-CoA synthetases. LACS2 has previously been shown to be involved in cutin biosynthesis. We therefore tested three additional cutin-defective mutants for resistance to B. cinerea: att1 (for aberrant induction of type three genes), bodyguard, and lacerata. All three displayed an enhanced resistance to B. cinerea. Our results indicate that plant cutin or cuticle structure may play a crucial role in tolerance to biotic and abiotic stress and in the pathogenesis of B. cinerea.

  19. Association of human mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol does not require other viral proteins

    Directory of Open Access Journals (Sweden)

    Lydia Kobbi

    2016-06-01

    Full Text Available In human, the cytoplasmic (cLysRS and mitochondrial (mLysRS species of lysyl-tRNA synthetase are encoded by a single gene. Following HIV-1 infection, mLysRS is selectively taken up into viral particles along with the three tRNALys isoacceptors. The GagPol polyprotein precursor is involved in this process. With the aim to reconstitute in vitro the HIV-1 tRNA3Lys packaging complex, we first searched for the putative involvement of another viral protein in the selective viral hijacking of mLysRS only. After screening all the viral proteins, we observed that Vpr and Rev have the potential to interact with mLysRS, but that this association does not take place at the level of the assembly of mLysRS into the packaging complex. We also show that tRNA3Lys can form a ternary complex with the two purified proteins mLysRS and the Pol domain of GagPol, which mimicks its packaging complex.

  20. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4).

    Science.gov (United States)

    Coleman, Heather D; Cánovas, Francisco M; Man, Huimin; Kirby, Edward G; Mansfield, Shawn D

    2012-09-01

    Hybrid poplar (Populus tremula X P. alba) genetically engineered to express the pine cytosolic glutamine synthetase gene (GS1a) has been previously shown to display desirable field performance characteristics, including enhancements in growth and nitrogen use efficiency. Analysis of wood samples from a 3-year-old field trial of three independently transformed GS1a transgenic hybrid poplar lines revealed that, when compared with wild-type controls, ectopic expression of GS1a resulted in alterations in wood properties and wood chemistry. Included were significant enhancements in wood fibre length, wood density, microfibre angle, per cent syringyl lignin and elevated concentrations of wood sugars, specifically glucose, galactose, mannose and xylose. Total extractive content and acid-insoluble lignin were significantly reduced in wood of GS1a transgenics when compared with wild-type trees. Together, these cell wall characteristics resulted in improved wood pulping attributes, including improved lignin solubilization with no concurrent decrease in yield. Trees with increased GS1a expression have improved characteristics for pulp and paper production and hold potential as a feedstock for biofuels production. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  1. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice.

    Science.gov (United States)

    Ding, Xinhua; Cao, Yinglong; Huang, Liling; Zhao, Jing; Xu, Caiguo; Li, Xianghua; Wang, Shiping

    2008-01-01

    New evidence suggests a role for the plant growth hormone auxin in pathogenesis and disease resistance. Bacterial infection induces the accumulation of indole-3-acetic acid (IAA), the major type of auxin, in rice (Oryza sativa). IAA induces the expression of expansins, proteins that loosen the cell wall. Loosening the cell wall is key for plant growth but may also make the plant vulnerable to biotic intruders. Here, we report that rice GH3-8, an auxin-responsive gene functioning in auxin-dependent development, activates disease resistance in a salicylic acid signaling- and jasmonic acid signaling-independent pathway. GH3-8 encodes an IAA-amino synthetase that prevents free IAA accumulation. Overexpression of GH3-8 results in enhanced disease resistance to the rice pathogen Xanthomonas oryzae pv oryzae. This resistance is independent of jasmonic acid and salicylic acid signaling. Overexpression of GH3-8 also causes abnormal plant morphology and retarded growth and development. Both enhanced resistance and abnormal development may be caused by inhibition of the expression of expansins via suppressed auxin signaling.

  2. Site-directed mutagenesis studies on the uridine monophosphate binding sites of feedback inhibition in carbamoyl phosphate synthetase and effects on cytidine production by Bacillus amyloliquefaciens.

    Science.gov (United States)

    Fang, Haitian; Liu, Huiyan; Chen, Ning; Zhang, Chenglin; Xie, Xixian; Xu, Qingyang

    2013-06-01

    A major problem when pyrimidine de novo biosynthesis is used for cytidine production is the existence of many negative regulatory factors. Cytidine biosynthesis in Bacillus amyloliquefaciens proceeds via a pathway that is controlled by uridine monophosphate (UMP) through feedback inhibition of carbamoyl phosphate synthetase (CPS), the enzyme that converts CO2, NH3, and glutamine to carbamoyl phosphate. In this study, the gene carB encoding the large subunit of CPS from B. amyloliquefaciens CYT1 was site directed, and the UMP binding sites of feedback inhibition in Bam-CPS are described. The residues Thr-941, Thr-970, and Lys-986 in CPS from B. amyloliquefaciens were subjected to site-directed mutagenesis to alter UMP's feedback inhibition of CPS. To find feedback-resistant B. amyloliquefaciens, the influence of the T941F, T970A, K986I, T941F/K986I, and T941F/T970A/K986I mutations on CPS enzymatic properties was studied. The recombinant B. amyloliquefaciens with mutated T941F/K986I and T941F/T970A/K986I CPS showed a 3.7- and 5.7-fold increase, respectively, in cytidine production in comparison with the control expressing wild-type CPS, which was more suitable for further application of the cytidine synthesis. To a certain extent, the 5 mutations were found to release the enzyme from UMP inhibition and to improve B. amyloliquefaciens cytidine-producing strains.

  3. Effect of anoxia and Polyscias filicifolia Bailey biomass tincture on the activity of tRNA and aminoacyl-tRNA synthetases in isolated pig heart.

    Science.gov (United States)

    Kasauskas, Artūras; Rodovicius, Hiliaras; Viezeliene, Dale; Lazauskas, Robertas

    2009-01-01

    The aim of this study was to investigate effect of anoxia and Polyscias filicifolia Bailey biomass tincture on the activities of different tRNA and aminoacyl-tRNA synthetases in isolated pig heart. The isolated pig heart was perfused according to the modified method of Langendorf, using an artificial blood circulation apparatus. Anoxia 20 min in duration was performed by perfusion of isolated heart with Krebs-Henseleit bicarbonate buffer saturated with gas mixture (95% N(2) and 5% CO(2)). Control heart was perfused with the same buffer saturated with gas mixture (95% O(2) and 5% CO(2)). Effect of Polyscias filicifolia Bailey biomass tincture was evaluated by perfusion of isolated heart with a buffer containing tincture. Total tRNA and aminoacyl-tRNA synthetases were isolated from pig heart. Activities of tRNA and aminoacyl-tRNA synthetases were measured by the aminoacylation reaction using C(14)-amino acids. Anoxia 20 min in duration has caused a decrease in the acceptor activity of tRNA and increase in the activities of aminacyl-tRNA synthetases. Polyscias filicifolia Bailey tincture did not affect the acceptor activity of tRNA and activities aminacyl-tRNA synthetases. After 20-min anoxic perfusion with the buffer containing Polyscias filicifolia Bailey biomass tincture, the acceptor activities of tRNA increased to the control value and activities of aminacyl-tRNA synthetases reached the control value. The acceptor activity of tRNA from isolated pig heart decreased and activities of aminacyl-tRNA synthetases increased under anoxia. Perfusion with buffer containing tincture of Polyscias filicifolia Bailey biomass restored acceptor activities of tRNA and activities of aminacyl-tRNA synthetases.

  4. Inhibition of Grape Crown Gall by Agrobacterium vitis F2/5 Requires Two Nonribosomal Peptide Synthetases and One Polyketide Synthase.

    Science.gov (United States)

    Zheng, Desen; Burr, Thomas J

    2016-02-01

    Agrobacterium vitis nontumorigenic strain F2/5 is able to inhibit crown gall disease on grapevines. The mechanism of grape tumor inhibition (GTI) by F2/5 has not been fully determined. In this study, we demonstrate that two nonribosomal peptide synthetase (NRPS) genes (F-avi3342 and F-avi5730) and one polyketide synthase gene (F-avi4330) are required for GTI. Knockout of any one of them resulted in F/25 losing GTI capacity. We previously reported that F-avi3342 and F-avi4330 but not F-avi5730 are required for induction of grape tissue necrosis and tobacco hypersensitive response. F-avi5730 is predicted to encode a single modular NRPS. It is located in a cluster that is homologous to the siderophore vicibactin biosynthesis locus in Rhizobium species. Individual disruption of F-avi5730 and two immediate downstream genes, F-avi5731 and F-avi5732, all resulted in reduced siderophore production; however, only F-avi5730 was found to be required for GTI. Complemented F-avi5730 mutant (ΔF-avi5730(+)) restored a wild-type level of GTI activity. It was determined that, over time, populations of ΔF-avi4330, ΔF-avi3342, and ΔF-avi5730 at inoculated wound sites on grapevine did not differ from those of ΔF-avi5730(+) indicating that loss of GTI was not due to reduced colonization of wound sites by mutants.

  5. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    Science.gov (United States)

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  6. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity.

    Science.gov (United States)

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-09

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. In vitro and in vivo effect of interleukin-2 on the 2',5'-oligoadenylate synthetase activity of peripheral mononuclear blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Handgretinger, R.; Bruchelt, G.; Kimmig, A.; Lang, P.; Daurer, B.; Dopfer, R.; Treuner, J.; Niethammer, D. (Children' s Univ. Hospital, Tuebingen (Germany, F.R.))

    1990-02-01

    The in vitro and in vivo influence of interleukin-2 (IL-2) on 2',5'-oligoadenylate (2-5A) synthetase activity and natural killer (NK) activity of peripheral mononuclear blood cells (PBMCs) was investigated. Incubation of PBMCs in vitro with IL-2 resulted in a considerable secretion of interferon-gamma (IFN-gamma) and in a significant elevation of 2-5A synthetase activity, as well as NK activity. Neutralizing monoclonal anti-IFN-gamma antibodies inhibited the elevation of 2-5A synthetase activity, but not the IL-2-induced augmentation of NK activity. Additionally, 2-5A synthetase and NK activity of PBMCs was measured in a child with neuroblastoma that was treated with recombinant IL-2 by continuous intravenous application. During the treatment, NK activity against the NK-sensitive cell line K 562 and against autologous tumor cells was not augmented. However, a significant increase of 2-5A synthetase activity in PBMCs was observed during IL-2 treatment, whereas there was no detectable serum level of IFN-gamma. We conclude that measuring 2-5A synthetase activity in patients treated with IL-2 may be helpful in monitoring the immunomodulatory effects of IL-2 on immune effector cells.

  8. β-Keto and β-hydroxyphosphonate analogs of biotin-5’-AMP are inhibitors of holocarboxylase synthetase

    Science.gov (United States)

    Sittiwong, Wantanee; Cordonier, Elizabeth L.; Zempleni, Janos; Dussault, Patrick H.

    2014-01-01

    Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5′-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 μM and 17.3 μM, respectively, are consistent with the IC50 results, and close to the Ki obtained for biotinol-5'-AMP (7 μM). The β-ketoP and β-hydroxyP molecules are competitive inhibitors of HLCS while biotinol-5'-AMP inhibited HLCS by a mixed mechanism. PMID:25466176

  9. β-Keto and β-hydroxyphosphonate analogs of biotin-5'-AMP are inhibitors of holocarboxylase synthetase.

    Science.gov (United States)

    Sittiwong, Wantanee; Cordonier, Elizabeth L; Zempleni, Janos; Dussault, Patrick H

    2014-12-15

    Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin to cytoplasmic and mitochondrial carboxylases, nuclear histones, and over a hundred human proteins. Nonhydrolyzable ketophosphonate (β-ketoP) and hydroxyphosphonate (β-hydroxyP) analogs of biotin-5'-AMP inhibit holocarboxylase synthetase (HLCS) with IC50 values of 39.7 μM and 203.7 μM. By comparison, an IC50 value of 7 μM was observed with the previously reported biotinol-5'-AMP. The Ki values, 3.4 μM and 17.3 μM, respectively, are consistent with the IC50 results, and close to the Ki obtained for biotinol-5'-AMP (7 μM). The β-ketoP and β-hydroxyP molecules are competitive inhibitors of HLCS while biotinol-5'-AMP inhibited HLCS by a mixed mechanism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Zhukhlistova, N. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Muravieva, T. I.; Esipov, R. S. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sites were shown to be identical in both proteins.

  11. Novel Reaction of Succinyl Coenzyme A (Succinyl-CoA) Synthetase: Activation of 3-Sulfinopropionate to 3-Sulfinopropionyl-CoA in Advenella mimigardefordensis Strain DPN7T during Degradation of 3,3′-Dithiodipropionic Acid ▿ †

    Science.gov (United States)

    Schürmann, Marc; Wübbeler, Jan Hendrik; Grote, Jessica; Steinbüchel, Alexander

    2011-01-01

    The sucCD gene of Advenella mimigardefordensis strain DPN7T encodes a succinyl coenzyme A (succinyl-CoA) synthetase homologue (EC 6.2.1.4 or EC 6.2.1.5) that recognizes, in addition to succinate, the structural analogues 3-sulfinopropionate (3SP) and itaconate as substrates. Accumulation of 3SP during 3,3′-dithiodipropionic acid (DTDP) degradation was observed in Tn5::mob-induced mutants of A. mimigardefordensis strain DPN7T disrupted in sucCD and in the defined deletion mutant A. mimigardefordensis ΔsucCD. These mutants were impaired in growth with DTDP and 3SP as the sole carbon source. Hence, it was proposed that the succinyl-CoA synthetase homologue in A. mimigardefordensis strain DPN7T activates 3SP to the corresponding CoA-thioester (3SP-CoA). The putative genes coding for A. mimigardefordensis succinyl-CoA synthetase (SucCDAm) were cloned and heterologously expressed in Escherichia coli BL21(DE3)/pLysS. Purification and characterization of the enzyme confirmed its involvement during degradation of DTDP. 3SP, the cleavage product of DTDP, was converted into 3SP-CoA by the purified enzyme, as demonstrated by in vitro enzyme assays. The structure of 3SP-CoA was verified by using liquid chromatography-electrospray ionization-mass spectrometry. SucCDAm is Mg2+ or Mn2+ dependent and unspecific regarding ATP or GTP. In kinetic studies the enzyme showed highest enzyme activity and substrate affinity with succinate (Vmax = 9.85 ± 0.14 μmol min−1 mg−1, Km = 0.143 ± 0.001 mM). In comparison to succinate, activity with 3SP was only ca. 1.2% (Vmax = 0.12 ± 0.01 μmol min−1 mg−1) and the affinity was 6-fold lower (Km = 0.818 ± 0.046 mM). Based on the present results, we conclude that SucCDAm is physiologically associated with the citric acid cycle but is mandatory for the catabolic pathway of DTDP and its degradation intermediate 3SP. PMID:21515777

  12. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress

    OpenAIRE

    Schug, Zachary T.; Peck, Barrie; Jones, Dylan T.; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S.; Goodwin, Louise M.; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E.

    2015-01-01

    Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and A...

  13. Protein S-Thiolation by Glutathionylspermidine (Gsp): THE ROLE OF ESCHERICHIA COLI Gsp SYNTHETASE/AMIDASE IN REDOX REGULATION*

    OpenAIRE

    Chiang, Bing-Yu; Chen, Tzu-Chieh; Pai, Chien-Hua; Chou, Chi-Chi; Chen, Hsuan-He; Ko, Tzu-Ping; Hsu, Wen-Hung; Chang, Chun-Yang; Wu, Whei-Fen; Wang, Andrew H.-J.; Lin, Chun-Hung

    2010-01-01

    Certain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated. We report that Gsp-modified proteins from E. coli contain mixed disulfides of Gsp and protein thiols, representing a new type of post-translational modification forme...

  14. Kinetic Basis for the Conjugation of Auxin by a GH3 Family Indole-acetic Acid-Amido Synthetase*

    OpenAIRE

    Chen, Qingfeng; Westfall, Corey S.; Hicks, Leslie M.; Wang, Shiping; Jez, Joseph M.

    2010-01-01

    The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemi...

  15. Purification, crystallization and preliminary X-ray diffraction analysis of the seryl-tRNA synthetase from Candida albicans

    International Nuclear Information System (INIS)

    Rocha, Rita; Barbosa Pereira, Pedro José; Santos, Manuel A. S.; Macedo-Ribeiro, Sandra

    2010-01-01

    The seryl-tRNA synthetase from C. albicans was crystallized by the sitting-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belonged to the hexagonal space group P6 1 22 and diffraction data were collected to 2.0 Å resolution at a synchrotron source. The seryl-tRNA synthetase (SerRS) from Candida albicans exists naturally as two isoforms resulting from ambiguity in the natural genetic code. Both enzymes were crystallized by the sitting-drop vapour-diffusion method using 3.2–3.4 M ammonium sulfate as precipitant. The crystals belonged to the hexagonal space group P6 1 22 and contained one monomer per asymmetric unit, despite the synthetase existing as a homodimer (with a molecular weight of ∼116 kDa) in solution. Diffraction data were collected to 2.0 Å resolution at a synchrotron source and the crystal structures of unliganded SerRS and of its complexes with ATP and with a seryl-adenylate analogue were solved by molecular replacement. The structure of C. albicans SerRS represents the first reported structure of a eukaryotic cytoplasmic SerRS

  16. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-ß-lysine

    DEFF Research Database (Denmark)

    Roy, Hervé; Zou, S Betty; Bullwinkle, Tammy J

    2011-01-01

    The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF-P ......-P was efficiently functionally modified with (R)-ß-lysine but not (S)-ß-lysine or genetically encoded a-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.......The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with a-lysine at low efficiency. Cell-free extracts containing non-a-lysine substrates of PoxA modified EF-P with a change in mass consistent with addition of ß-lysine, a substrate also predicted by genomic analyses. EF...

  17. Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase.

    Science.gov (United States)

    Kamtekar, Satwik; Hohn, Michael J; Park, Hee-Sung; Schnitzbauer, Michael; Sauerwald, Anselm; Söll, Dieter; Steitz, Thomas A

    2007-02-20

    A number of archaeal organisms generate Cys-tRNA(Cys) in a two-step pathway, first charging phosphoserine (Sep) onto tRNA(Cys) and subsequently converting it to Cys-tRNA(Cys). We have determined, at 3.2-A resolution, the structure of the Methanococcus maripaludis phosphoseryl-tRNA synthetase (SepRS), which catalyzes the first step of this pathway. The structure shows that SepRS is a class II, alpha(4) synthetase whose quaternary structure arrangement of subunits closely resembles that of the heterotetrameric (alphabeta)(2) phenylalanyl-tRNA synthetase (PheRS). Homology modeling of a tRNA complex indicates that, in contrast to PheRS, a single monomer in the SepRS tetramer may recognize both the acceptor terminus and anticodon of a tRNA substrate. Using a complex with tungstate as a marker for the position of the phosphate moiety of Sep, we suggest that SepRS and PheRS bind their respective amino acid substrates in dissimilar orientations by using different residues.

  18. Toward Understanding Phosphoseryl-tRNA Cys Formation: The Crystal Structure of Methanococcus maripaludis Phosphoseryl-tRNA Synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Kamtekar ,S.; Hohn, M.; Park, h.; Schnitzbauer, M.; Sauerwald, A.; Soll, D.; Steitz, T.

    2007-01-01

    A number of archaeal organisms generate Cys-tRNA{sup Cys} in a two-step pathway, first charging phosphoserine (Sep) onto tRNA{sup Cys} and subsequently converting it to Cys-tRNA{sup Cys}. We have determined, at 3.2-{angstrom} resolution, the structure of the Methanococcus maripaludis phosphoseryl-tRNA synthetase (SepRS), which catalyzes the first step of this pathway. The structure shows that SepRS is a class II, {alpha}{sub 4} synthetase whose quaternary structure arrangement of subunits closely resembles that of the heterotetrameric ({alpha}{beta}){sub 2} phenylalanyl-tRNA synthetase (PheRS). Homology modeling of a tRNA complex indicates that, in contrast to PheRS, a single monomer in the SepRS tetramer may recognize both the acceptor terminus and anticodon of a tRNA substrate. Using a complex with tungstate as a marker for the position of the phosphate moiety of Sep, we suggest that SepRS and PheRS bind their respective amino acid substrates in dissimilar orientations by using different residues.

  19. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S., E-mail: esipov@mx.ibch.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.

  20. Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Edith Debroas

    2015-05-01

    Full Text Available Astrocytes are claimed to protect neurons against excitotoxicity by clearing glutamate from the extracellular space and rapidly converting it into glutamine. Glutamine, is then released into the extracellular medium, taken up by neurons and transformed back into glutamate which is then stored into synaptic vesicles. Glutamine synthetase (GS, the key enzyme that governs this glutamate/glutamine cycle, is known to be upregulated by glucocorticoids. In the present work we have thus studied in parallel the effects of dexamethasone on glutamine synthetase activity and NMDA-induced neuronal death in cultures derived from the brain cortex of murine embryos. We showed that dexamethasone was able to markedly enhance GS activity in cultures of astrocytes but not in near pure neuronal cultures. The pharmacological characteristics of the dexamethasone action strongly suggest that it corresponds to a typical receptor-mediated effect. We also observed that long lasting incubation (72 h of mixed astrocyte-neuron cultures in the presence of 100 nM dexamethasone significantly reduced the toxicity of NMDA treatment. Furthermore we demonstrated that methionine sulfoximine, a selective inhibitor of GS, abolished the dexamethasone-induced increase in GS activity and also markedly potentiated NMDA toxicity. Altogether these results suggest that dexamethasone may promote neuroprotection through a stimulation of astrocyte glutamine synthetase.

  1. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Paola; Manandhar, Miglena; Dong, Shi-Hui; Deveryshetty, Jaigeeth; Agarwal, Vinayak; Cronan, John E.; Nair, Satish K.

    2017-04-17

    Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.

  2. Insights into substrate promiscuity of human seryl-tRNA synthetase.

    Science.gov (United States)

    Holman, Kaitlyn M; Puppala, Anupama K; Lee, Jonathan W; Lee, Hyun; Simonović, Miljan

    2017-11-01

    Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNA Ser ) and the noncognate selenocysteine tRNA (tRNA Sec ). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNA Ser , tRNA Sec , and 10 mutant and chimeric constructs in which elements of tRNA Ser were transposed onto tRNA Sec We show that human SerRS only subtly prefers tRNA Ser to tRNA Sec , and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNA Sec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNA Sec and tRNA Ser dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNA Sec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis. © 2017 Holman et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Maintainance of specificity, information, and thermostability in thermophilic Bacillus sp. glutamine synthetase.

    Science.gov (United States)

    Wedler, F C; Hoffmann, F M; Kenney, R; Carfi, J

    1976-01-01

    Glutamine synthetase has been purified to homogeneity from B. subtilis (37 degrees) B. stearothermophilus (55 degrees), and B. caldolyticus (75 degrees). Those characteristics compared include size (6.0 +/- 0.3 X 10(5) daltons), quaternary structure (12 SU) amino acid content, substrate Km's and specificity for structural analogs, metal ion activation, number and kind of separate feedback modifier sites, and the complexity of modifier-substrate and modifier-modifier site interactions. Although the 37 degrees and 55 degrees systems are quite similar, the 75 degrees system shows important alterations in substrate specificity and modes of modifier action. Whereas at 37 degrees and 55 degrees AMP inhibits synergistically with amino acids (glycine, glutamine, histidine), the 75 degrees enzyme is inhibited directly by the products ADP, (which assumes the role of AMP) and glutamine, plus other ligands. Ligand binding domains are compared and found to be very different. Thermostabilization occurs by (a) protection by bound L-glutamate, (b) protein aggregation, (c) trends in the content of total polar residues, total Asx + Flx residues, the average hydrophobicity, and (d) disulfide bond cross-linking. Such studies provide insights to molecular evolution occurring with changes in environmental stress.

  4. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Lamers, Wouter H.; Chaudhry, Farrukh A.; Verlander, Jill W.

    2016-01-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4+ with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na+-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  5. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase.

    Science.gov (United States)

    Oliver, Justin C; Gudihal, Ravidra; Burgner, John W; Pedley, Anthony M; Zwierko, Alexander T; Davisson, V Jo; Linger, Rebecca S

    2014-03-01

    GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis.

    Science.gov (United States)

    Peat, Thomas S; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-11-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.

  7. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru; Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  8. Cannabidiol protects retinal neurons by preserving glutamine synthetase activity in diabetes

    Science.gov (United States)

    El-Remessy, A.B.; Khalifa, Y.; Ibrahim, A.S.; Liou, G.I.

    2010-01-01

    Purpose We have previously shown that non-psychotropic cannabidiol (CBD) protects retinal neurons in diabetic rats by inhibiting reactive oxygen species and blocking tyrosine nitration. Tyrosine nitration may inhibit glutamine synthetase (GS), causing glutamate accumulation and leading to further neuronal cell death. We propose to test the hypothesis that diabetes-induced glutamate accumulation in the retina is associated with tyrosine nitration of GS and that CBD treatment inhibits this process. Methods Sprague Dawley rats were made diabetic by streptozotocin injection and received either vehicle or CBD (10 mg/kg/2 days). After eight weeks, retinal cell death, Müller cell activation, GS tyrosine nitration, and GS activity were determined. Results Diabetes causes significant increases in retinal oxidative and nitrative stress compared with controls. These effects were associated with Müller cell activation and dysfunction as well as with impaired GS activity and tyrosine nitration of GS. Cannabidiol treatment reversed these effects. Retinal neuronal death was indicated by numerous terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL)-labeled cells in diabetic rats compared with untreated controls or CBD-treated rats. Conclusions These results suggest that diabetes-induced tyrosine nitration impairs GS activity and that CBD preserves GS activity and retinal neurons by blocking tyrosine nitration. PMID:20806080

  9. Characterization of the acetyl-CoA synthetase of Acetobacter aceti.

    Science.gov (United States)

    O'Sullivan, J; Ettlinger, L

    1976-12-20

    The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested.

  10. Hypophysectomy decrease and growth hormone increases the turnover and mass of rat liver glutamine synthetase

    International Nuclear Information System (INIS)

    Lin, Chingkow; Dunn, A.

    1989-01-01

    Hypophysectomy diminishes rat liver glutamine synthetase (GS) activity and growth hormone (GH) administration restores this activity to normal levels; brain GS is unaffected. We have now investigated the effects of long-term hypophysectomy (45-day) and GH treatment on the GS mass (amount of enzyme) and turnover in rat liver and brain. Labeled GS was isolated by immunoprecipitation at intervals between one and six days after pulse administration of [U- 14 C] leucine and the GS half-life (t 1/2 ) was determined. The GS mass was obtained by immunoassay and by calculation using the specific activity of purified GS. GS turnover was calculated by multiplying the GS mass by the first-order rate constant of degradation (k d ). During the time course of each experiment, the GS mass did not change, indicating that in each o the three hormonal states studied, a steady state existed. Hypophysectomy increased the t 1/2 of hepatic GS from 3.8 to 8.8 days and decreased GS turnover from 0.38 to 0.1 μg/100 g body wt/day; the GH regimen used restored the turnover to above normal levels, 0.6μg/100 g body wt/day. The GS mass decreased from 2.0 to 1.2 μg/100 g body wt and GH restored the GS mass to normal levels. The brain enzyme was not affected by hypophysectomy or GH

  11. NH3-dependent NAD+ synthetase from Bacillus subtilis at 1 A resolution.

    Science.gov (United States)

    Symersky, Jindrich; Devedjiev, Yancho; Moore, Karen; Brouillette, Christie; DeLucas, Larry

    2002-07-01

    The final step of NAD+ biosynthesis includes an amide transfer to nicotinic acid adenine dinucleotide (NaAD) catalyzed by NAD+ synthetase. This enzyme was co-crystallized in microgravity with natural substrates NaAD and ATP at pH 8.5. The crystal was exposed to ammonium ions, synchrotron diffraction data were collected and the atomic model was refined anisotropically at 1 A resolution to R = 11.63%. Both binding sites are occupied by the NAD-adenylate intermediate, pyrophosphate and two magnesium ions. The atomic resolution of the structure allows better definition of non-planar peptide groups, reveals a low mean anisotropy of protein and substrate atoms and indicates the H-atom positions of the phosphoester group of the reaction intermediate. The phosphoester group is protonated at the carbonyl O atom O7N, suggesting a carbenium-ion structure stabilized by interactions with two solvent sites presumably occupied by ammonia and a water molecule. A mechanism is proposed for the second catalytic step, which includes a nucleophilic attack by the ammonia molecule on the intermediate.

  12. Role of tRNAPro in pretransfer editing of alanine by prolyl-tRNA synthetase

    Directory of Open Access Journals (Sweden)

    Boyarshin K. S.

    2013-09-01

    Full Text Available Aim. To characterize the process of tRNA-dependent pretransfer edi- ting of alanine by prolyl-tRNA synthetase of bacteria Enterococcus faecalis (ProRSEf. Methods. Velocity of the editing processes in vitro was determined by ATP hydrolysis by ProRSEf. Pretransfer and posttransfer editing were experimentally separated by site-directed mutagenesis. Results. tRNA-dependent pretransfer editing is characterized by three-fold larger velocity then tRNA-independent editing. Effectivity of the process depends on the presence of 2'-hydroxyle group of A76 tRNAPro. In the absence of tRNAPro selective release of alanyl-AMP occurs simultaneously with tRNA-independent pretransfer editing. Released alanyl-AMP can be re-bound and hydrolyzed. Conclusions. tRNA-dependent pretransfer editing of alanine by ProRSEf is the catalytic mechanism, mediated by 2'-hydroxyl group of A76 tRNAPro. In the absence of tRNAPro tRNA-independent pretransfer editing and selective release of alanyl-AMP occur.

  13. Structural characterization of Helicobacter pylori dethiobiotin synthetase reveals differences between family members

    Energy Technology Data Exchange (ETDEWEB)

    Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian; Nicholls, Robert A.; Murzyn, Krzysztof; Cuff, Marianne E.; Xu, Xiaohui; Cymborowski, Marcin; Murshudov, Garib N.; Savchenko, Alexei; Edwards, Aled; Minor, Wladek (MCSG); (UV); (MRC)

    2012-07-11

    Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminal region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS-ATP and hpDTBS-GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.

  14. Seryl-tRNA Synthetases from Methanogenic Archaea: Suppression of Bacterial Amber Mutation and Heterologous Toxicity

    Directory of Open Access Journals (Sweden)

    Drasko Boko

    2010-01-01

    Full Text Available Methanogenic archaea possess unusual seryl-tRNA synthetases (SerRS, evolutionarily distinct from the SerRSs found in other archaea, eucaryotes and bacteria. Our recent X-ray structural analysis of Methanosarcina barkeri SerRS revealed an idiosyncratic N-terminal domain and catalytic zinc ion in the active site. To shed further light on substrate discrimination by methanogenic-type SerRS, we set up to explore in vivo the interaction of methanogenic-type SerRSs with their cognate tRNAs in Escherichia coli or Saccharomyces cerevisiae. The expression of various methanogenic-type SerRSs was toxic for E. coli, resulting in the synthesis of erroneous proteins, as revealed by β-galactosidase stability assay. Although SerRSs from methanogenic archaea recognize tRNAsSer from all three domains of life in vitro, the toxicity presumably precluded the complementation of endogenous SerRS function in both, E. coli and S. cerevisiae. However, despite the observed toxicity, coexpression of methanogenic-type SerRS with its cognate tRNA suppressed bacterial amber mutation.

  15. Engineering a promiscuous pyrrolysyl-tRNA synthetase by a high throughput FACS screen

    KAUST Repository

    Hohl, Adrian

    2017-12-06

    The Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl are used to facilitate the incorporation of non-canonical amino acids (ncAAs) into the genetic code of bacterial and eukaryotic cells by orthogonally reassigning the amber codon. Currently, the incorporation of new ncAAs requires a cumbersome engineering process composed of several positive and negative selection rounds to select the appropriate PylRS/tRNAPyl pair. Our fast and sensitive engineering approach required only a single FACS selection round to identify 110 orthogonal PylRS variants for the aminoacylation of 20 ncAAs. Pocket-substrate relationship from these variants led to the design of a highly promiscuous PylRS (HpRS), which catalyzed the aminoacylation of 31 structurally diverse lysine derivatives bearing clickable, fluorinated, fluorescent, and biotinylated entities. The high speed and sensitivity of our approach provides a competitive alternative to existing screening methodologies, and delivers insights into the complex PylRS-substrate interactions to facilitate the generation of additional promiscuous variants.

  16. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism.

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E; Lamers, Wouter H; Chaudhry, Farrukh A; Verlander, Jill W; Weiner, I David

    2016-06-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.

  17. Effect of glutamine synthetase inhibition on brain and interorgan ammonia metabolism in bile duct ligated rats.

    Science.gov (United States)

    Fries, Andreas W; Dadsetan, Sherry; Keiding, Susanne; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S; Simonsen, Mette; Ott, Peter; Vilstrup, Hendrik; Sørensen, Michael

    2014-03-01

    Ammonia has a key role in the development of hepatic encephalopathy (HE). In the brain, glutamine synthetase (GS) rapidly converts blood-borne ammonia into glutamine which in high concentrations may cause mitochondrial dysfunction and osmolytic brain edema. In astrocyte-neuron cocultures and brains of healthy rats, inhibition of GS by methionine sulfoximine (MSO) reduced glutamine synthesis and increased alanine synthesis. Here, we investigate effects of MSO on brain and interorgan ammonia metabolism in sham and bile duct ligated (BDL) rats. Concentrations of glutamine, glutamate, alanine, and aspartate and incorporation of (15)NH(4)(+) into these amino acids in brain, liver, muscle, kidney, and plasma were similar in sham and BDL rats treated with saline. Methionine sulfoximine reduced glutamine concentrations in liver, kidney, and plasma but not in brain and muscle; MSO reduced incorporation of (15)NH(4)(+) into glutamine in all tissues. It did not affect alanine concentrations in any of the tissues but plasma alanine concentration increased; incorporation of (15)NH(4)(+) into alanine was increased in brain in sham and BDL rats and in kidney in sham rats. It inhibited GS in all tissues examined but only in brain was an increased incorporation of (15)N-ammonia into alanine observed. Liver and kidney were important for metabolizing blood-borne ammonia.

  18. Plant nutritional status modulates glutamine synthetase levels in ripe tomatoes (Solanum lycopersicum cv. Micro-Tom).

    Science.gov (United States)

    Scarpeci, Telma E; Marro, Martin L; Bortolotti, Santiago; Boggio, Silvana B; Valle, Estela M

    2007-02-01

    Tomato (Solanum lycopersicum) fruit ripening implies that chloroplastic proteins are degraded and new proteins are synthesized. Supplementary nutrition is frequently required when tomato plants begin to fruit and continues until the end of the plant's life cycle. Ammonium assimilation is crucial in these fruit maturation and ripening processes. Glutamine synthetase (GS; EC 6.3.1.2), the main ammonium-fixing enzyme in plants, could not be detected in red fruits of several tomato varieties when growing under standard nutrition. In this paper, we analyze the influence of the nutritional status on the ammonium assimilation capacity of ripe tomato (cv. Micro-Tom) fruit. For this purpose, GS expression and protein profiles were followed in mature green and red fruits harvested from plants grown under standard or supplemented nutrition. Under standard nutrient regime (weekly supplied with 0.5 x Hoagland solution) GS activity was found in chloroplasts (GS2) of mature green fruits, but it was not detected either in the chromoplasts or in the cytosol of red fruits. When plants were shifted to a supplemented nutritional regime (daily supplied with 0.5 x Hoagland solution), GS was found in red fruits. Also, cytosolic transcripts (gs1) preferentially accumulated in red fruits under high nutrition. These results indicate that mature green Micro-Tom fruits assimilate ammonia through GS2 under standard nutrition, while ripe red fruits accumulate GS1 under high nutrition, probably in order to assimilate the extra N-compounds made available through supplemented nutrition.

  19. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress

    Science.gov (United States)

    Ma, Chunquan; Wang, Yuguang; Gu, Dan; Nan, Jingdong; Chen, Sixue; Li, Haiying

    2017-01-01

    The sugar beet monosomic addition line M14 is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss, and shows tolerance to salt stress. Our study focuses on exploring the molecular mechanism of the salt tolerance of the sugar beet M14. In order to identify differentially expressed genes in M14 under salt stress, a subtractive cDNA library was generated by suppression subtractive hybridization (SSH). A total of 36 unique sequences were identified in the library and their putative functions were analyzed. One of the genes, S-adenosylmethionine synthetase (SAMS), is the key enzyme involved in the biosynthesis of S-adenosylmethionine (SAM), a precursor of polyamines. To determine the potential role of SAMS in salt tolerance, we isolated BvM14-SAMS2 from the salt-tolerant sugar beet M14. The expression of BvM14-SAMS2 in leaves and roots was greatly induced by salt stress. Overexpression of BvM14-SAMS2 in Arabidopsis resulted in enhanced salt and H2O2 tolerance. Furthermore, we obtained a knock-down T-DNA insertion mutant of AtSAMS3, which shares the highest homology with BvM14-SAMS2. Interestingly, the mutant atsam3 showed sensitivity to salt and H2O2 stress. We also found that the antioxidant system and polyamine metabolism play an important role in salt and H2O2 tolerance in the BvM14-SAMS2-overexpressed plants. To our knowledge, the function of the sugar beet SAMS has not been reported before. Our results have provided new insights into SAMS functions in sugar beet. PMID:28420190

  20. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA.

    Science.gov (United States)

    Cao, Mingfeng; Geng, Weitao; Zhang, Wei; Sun, Jibin; Wang, Shufang; Feng, Jun; Zheng, Ping; Jiang, Anna; Song, Cunjiang

    2013-11-01

    Poly-γ-glutamic acid (γ-PGA) is a promising environmental-friendly material with outstanding water solubility, biocompatibility and degradability. However, it is tough to determine the relationship between functional synthetic enzyme and the strains' yield or substrate dependency. We cloned γ-PGA synthetase genes pgsBCA and glutamate racemase gene racE from both L-glutamate-dependent γ-PGA-producing Bacillus licheniformis NK-03 and L-glutamate-independent B. amyloliquefaciens LL3 strains. The deduced RacE and PgsA from the two strains shared the identity of 84.5% and 78.53%, while PgsB and PgsC possessed greater similarity with 93.13% and 93.96%. The induced co-expression of pgsBCA and racE showed that the engineered Escherichia coli strains had the capacity of synthesizing γ-PGA, and LL3 derived PgsBCA had higher catalytic activity and enhanced productivity than NK-03 in Luria-Bertani medium containing glucose or L-glutamate. However, the differential effect was weakened when providing sufficient immediateness L-glutamate substrate, that is, the supply of substrate could be served as the ascendance upon γ-PGA production. Furthermore, RacE integration could enhance γ-PGA yield through improving the preferred d-glutamate content. This is the first report about co-expression of pgsBCA and racE from the two Bacillus strains, which will be of great value for the determination of the biosynthetic mechanism of γ-PGA. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation.

    Science.gov (United States)

    Wu, Xiaobin; García-Estrada, Carlos; Vaca, Inmaculada; Martín, Juan-Francisco

    2012-02-01

    The first step in the penicillin biosynthetic pathway is the non-ribosomal condensation of L-α-aminoadipic acid, L-cysteine and L-valine into the tripeptide δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV). This reaction is catalysed by the multienzyme ACV synthetase (ACVS), which is encoded in the filamentous fungus Penicillium chrysogenum by the pcbAB gene. This enzyme contains at least ten catalytic domains. The precise role of the C-terminal domain of this multidomain NRPS still remains obscure. The C-terminal region of ACVS bears the epimerase and the thioesterase domains and may be involved in the epimerization of LLL-ACV to LLD-ACV and in the hydrolysis of the thioester bond. In this work, the conserved motifs (3371)EGHGRE(3376) (located in the putative epimerase domain) and (3629)GWSFG(3633) (located in the thioesterase domain) were changed by site-directed-mutagenesis to LGFGLL and GWAFG, respectively. In addition, the whole thioesterase domain (230 amino acids) and the different parts of this domain were deleted. The activity of these mutant enzymes was assessed in vivo by two different procedures: i) through the quantification of bisACV produced by the fungus and ii) by quantifying the benzylpenicillin production using tailored strains of P. chrysogenum, which lack the pcbAB gene, as host strains. All indicated mutant enzymes showed lower or null activity than the control strain confirming that E3371, H3373, R3375 and E3376 belong to the epimerase active centre. Different fragments included in the C-terminal region of ACVS control thioester hydrolysis. Overexpression of the sequence encoding the ACVS integrated thioesterase domain as a separate (stand-alone) transcriptional unit complemented mutants lacking the integrated thioesterase domain, although with low ACV releasing activity, suggesting that the stand-alone thioesterease interacts with the other ACVS domains. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Chunquan Ma

    2017-04-01

    Full Text Available The sugar beet monosomic addition line M14 is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss, and shows tolerance to salt stress. Our study focuses on exploring the molecular mechanism of the salt tolerance of the sugar beet M14. In order to identify differentially expressed genes in M14 under salt stress, a subtractive cDNA library was generated by suppression subtractive hybridization (SSH. A total of 36 unique sequences were identified in the library and their putative functions were analyzed. One of the genes, S-adenosylmethionine synthetase (SAMS, is the key enzyme involved in the biosynthesis of S-adenosylmethionine (SAM, a precursor of polyamines. To determine the potential role of SAMS in salt tolerance, we isolated BvM14-SAMS2 from the salt-tolerant sugar beet M14. The expression of BvM14-SAMS2 in leaves and roots was greatly induced by salt stress. Overexpression of BvM14-SAMS2 in Arabidopsis resulted in enhanced salt and H2O2 tolerance. Furthermore, we obtained a knock-down T-DNA insertion mutant of AtSAMS3, which shares the highest homology with BvM14-SAMS2. Interestingly, the mutant atsam3 showed sensitivity to salt and H2O2 stress. We also found that the antioxidant system and polyamine metabolism play an important role in salt and H2O2 tolerance in the BvM14-SAMS2-overexpressed plants. To our knowledge, the function of the sugar beet SAMS has not been reported before. Our results have provided new insights into SAMS functions in sugar beet.

  3. Resveratrol Prevents Retinal Dysfunction by Regulating Glutamate Transporters, Glutamine Synthetase Expression and Activity in Diabetic Retina.

    Science.gov (United States)

    Zeng, Kaihong; Yang, Na; Wang, Duozi; Li, Suping; Ming, Jian; Wang, Jing; Yu, Xuemei; Song, Yi; Zhou, Xue; Yang, Yongtao

    2016-05-01

    This study investigated the effects of resveratrol (RSV) on retinal functions, glutamate transporters (GLAST) and glutamine synthetase (GS) expression in diabetic rats retina, and on glutamate uptake, GS activity, GLAST and GS expression in high glucose-cultured Müller cells. The electroretinogram was used to evaluate retinal functions. Müller cells cultures were prepared from 5- to 7-day-old Sprague-Dawley rats. The expression of GLAST and GS was examined by qRT-PCR, ELISA and western-blotting. Glutamate uptake was measured as (3)H-glutamate contents of the lysates. GS activity was assessed by a spectrophotometric assay. 1- to 7-month RSV administrations (5 and 10 mg/kg/day) significantly alleviated hyperglycemia and weight loss in diabetic rats. RSV administrations also significantly attenuated diabetes-induced decreases in amplitude of a-wave in rod response, decreases in amplitude of a-, and b-wave in cone and rod response and decreases in amplitude of OP2 in oscillatory potentials. 1- to 7-month RSV treatments also significantly inhibited diabetes-induced delay in OP2 implicit times in scotopic 3.0 OPS test. The down-regulated mRNA and protein expression of GLAST and GS in diabetic rats retina was prevented by RSV administrations. In high glucose-treated cultures, Müller cells' glutamate uptake, GS activity, GLAST and GS expression were decreased significantly compared with normal control cultures. RSV (10, 20, and 30 mmol/l) significantly inhibited the HG-induced decreases in glutamate uptake, GS activity, GLAST and GS expression (at least P < 0.05). These beneficial results suggest that RSV may be considered as a therapeutic option to prevent from diabetic retinopathy.

  4. Development of Methionyl-tRNA Synthetase Inhibitors as Antibiotics for Gram-Positive Bacterial Infections.

    Science.gov (United States)

    Faghih, Omeed; Zhang, Zhongsheng; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Huang, Wenlin; Shibata, Sayaka; Barros-Álvarez, Ximena; Verlinde, Christophe L M J; Hol, Wim G J; Fan, Erkang; Buckner, Frederick S

    2017-11-01

    Antibiotic-resistant bacteria are widespread and pose a growing threat to human health. New antibiotics acting by novel mechanisms of action are needed to address this challenge. The bacterial methionyl-tRNA synthetase (MetRS) enzyme is essential for protein synthesis, and the type found in Gram-positive bacteria is substantially different from its counterpart found in the mammalian cytoplasm. Both previously published and new selective inhibitors were shown to be highly active against Gram-positive bacteria with MICs of ≤1.3 μg/ml against Staphylococcus , Enterococcus , and Streptococcus strains. Incorporation of radioactive precursors demonstrated that the mechanism of activity was due to the inhibition of protein synthesis. Little activity against Gram-negative bacteria was observed, consistent with the fact that Gram-negative bacterial species contain a different type of MetRS enzyme. The ratio of the MIC to the minimum bactericidal concentration (MBC) was consistent with a bacteriostatic mechanism. The level of protein binding of the compounds was high (>95%), and this translated to a substantial increase in MICs when the compounds were tested in the presence of serum. Despite this, the compounds were very active when they were tested in a Staphylococcus aureus murine thigh infection model. Compounds 1717 and 2144, given by oral gavage, resulted in 3- to 4-log decreases in the bacterial load compared to that in vehicle-treated mice, which was comparable to the results observed with the comparator drugs, vancomycin and linezolid. In summary, the research describes MetRS inhibitors with oral bioavailability that represent a class of compounds acting by a novel mechanism with excellent potential for clinical development. Copyright © 2017 American Society for Microbiology.

  5. Mammalian folylpoly-γ-glutamate synthetase. 2. Substrate specificity and kinetic properties

    International Nuclear Information System (INIS)

    Cichowicz, D.J.; Shane, B.

    1987-01-01

    The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and L-[ 14 C]glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis while 5- and 10-position substitutions of the folate molecule impair catalysis. k/sub cat/ values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The K/sub m/ for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and β,γ-methylene-ATP, β,γ-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P 1 ,P 5 -di(adenosine-5') pentaphosphate, and free ATP 4- are potent inhibitors of the reaction

  6. Poly(Adp-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm.

    Science.gov (United States)

    Ozdülger, Ali; Cinel, Ismail; Unlü, Ali; Cinel, Leyla; Mavioglu, Ilhan; Tamer, Lülüfer; Atik, Ugur; Oral, Ugur

    2002-07-01

    Although the precise mechanism by which sepsis causes impairment of respiratory muscle contractility has not been fully elucidated, oxygen-derived free radicals are thought to play an important role. In our experimental study, the effects of poly(ADP-ribose) synthetase (PARS) inhibition on the diaphragmatic Ca(2+)-ATPase, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) levels and additionally histopathology of the diaphragm in lipopolysaccharide (LPS)-induced endotoxemia are investigated.Thirty-two male Wistar rats, weighing between 180-200 g were randomly divided into four groups. The first group (control; n=8) received saline solution and the second (LPS group; n=8) 10 mgkg(-1) LPS i.p. 3-Aminobenzamide (3-AB) as a PARS inhibitor; was given to the third group (C+3-AB, n=8) 20 min before administration of saline solution while the fourth group (LPS+3-AB, n=8) received 3-AB 20 min before LPS injection. Six hours later, under ketamin/xylasine anesthesia diapraghmatic specimens were obtained and the rats were decapitated. Diaphragmatic specimens were divided into four parts, three for biochemical analyses and one for histopathologic assessment. In the LPS group, tissue Ca(2+)-ATPase levels were found to be decreased and tissue MDA and 3-NT levels were found to be increased (P<0.05). In the LPS+3-AB group, 3-AB pretreatment inhibited the increase in MDA and 3-NT levels and Ca(2+)-ATPase activity remained similar to those in the control group (P<0.05). Histopathologic examination of diaphragm showed edema between muscle fibers only in LPS group. PARS inhibition with 3-AB prevented not only lipid peroxidation but also the decrease of Ca(2+)-ATPase activity in endotoxemia. These results highlights the importance of nitric oxide (NO)-peroxynitrite (ONOO(-))-PARS pathway in preventing free radical mediated injury. PARS inhibitors should further be investigated as a new thearapetic alternative in sepsis treatment.

  7. Interstitial lung disease in anti-synthetase syndrome: Initial and follow-up CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Debray, Marie-Pierre, E-mail: marie-pierre.debray@bch.aphp.fr [AP-HP, Bichat-Claude Bernard Hospital, Department of Radiology, 46, rue Henri Huchard, 75877 Paris Cedex 18 (France); Borie, Raphael, E-mail: raphael.borie@bch.aphp.fr [AP-HP, Bichat-Claude Bernard Hospital, Department of Pneumology A and Centre de Compétence Maladies Pulmonaires rares, DHU Fire 46, rue Henri Huchard, 75877 Paris Cedex 18 (France); Inserm, U1152, Paris (France); Revel, Marie-Pierre, E-mail: marie-pierre.revel@htd.aphp.fr [AP-HP, Cochin Hospital, Department of Radiology, 27, Rue du Fg Saint Jacques, 75679 Paris Cedex 14 (France); Naccache, Jean-Marc, E-mail: jean-marc.naccache@tnn.aphp.fr [AP-HP, Avicenne Hospital, Department of Pneumology and Centre de Compétence Maladies Pulmonaires rares, Bobigny (France); AP-HP, Tenon Hospital, Department of Pneumology and Centre de Compétence Maladies Pulmonaires rares, 4, rue de la Chine, 75020 Paris (France); Khalil, Antoine, E-mail: antoine.khalil@tnn.aphp.fr [AP-HP, Tenon Hospital, Department of Radiology, 4, rue de la Chine, 75020 Paris (France); Toper, Cécile, E-mail: cecile.toper@gmail.com [AP-HP, Tenon Hospital, Department of Pneumology and Centre de Compétence Maladies Pulmonaires rares, 4, rue de la Chine, 75020 Paris (France); Israel-Biet, Dominique, E-mail: dominique.israel-biet@egp.aphp.fr [Université Paris Descartes and AP-HP, Department of Pneumology, Georges Pompidou European Hospital, 20, rue Leblanc, 75015 Paris (France); and others

    2015-03-15

    Purpose: To describe the initial and follow-up CT features of interstitial lung disease associated with anti-synthetase syndrome (AS-ILD). Materials and methods: Two independent thoracic radiologists retrospectively analysed thin-section CT images obtained at diagnosis of AS-ILD in 33 patients (17 positive for anti-Jo1, 13 for anti-PL12, and three for anti-PL7 antibodies). They evaluated the pattern, distribution and extent of the CT abnormalities. They also evaluated the change in findings during follow-up (median 27 months; range 13–167 months) in 26 patients. Results: At diagnosis, ground-glass opacities (100%), reticulations (87%) and traction bronchiectasis (76%) were the most common CT findings. Consolidations were present in 45% of patients. A non-specific interstitial pneumonia (NSIP), organizing pneumonia (OP) or mixed NSIP-OP CT pattern were observed in 15 out of 33 (45%), seven out of 33 (21%) and eight out of 33 (24%) patients, respectively, whereas the CT pattern was indeterminate in three patients. During follow-up, consolidations decreased or disappeared in 11 out of 12 patients (92%), among which seven within the first 6 months, but honeycombing progressed or appeared in ten out of 26 patients (38%) and overall disease extent increased in nine out of 26 patients (35%). Conclusion: CT features at diagnosis of AS-ILD mainly suggest NSIP and OP, isolated or in combination. Consolidations decrease or disappear in most cases but the disease may progress to fibrosis in more than one third of patients.

  8. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  9. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445

    NARCIS (Netherlands)

    Dubern, J.F.; Coppoolse, E.R.; Stiekema, W.J.; Bloemberg, G.V.

    2008-01-01

    Pseudomonas putida PCL1445 secretes two cyclic lipopeptides, putisolvin I and putisolvin II, which possess a surface-tension-reducing ability, and are able to inhibit biofilm formation and to break down biofilms of Pseudomonas species including Pseudomonas aeruginosa. The putisolvin synthetase gene

  10. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains

    Directory of Open Access Journals (Sweden)

    Siliakus Melvin

    2010-04-01

    Full Text Available Abstract Background Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. Results Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. Conclusion The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.

  11. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Buddha,M.; Crane, B.

    2005-01-01

    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  12. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    OpenAIRE

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenyl...

  13. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using......, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity....

  14. The role of the C8 proton of ATP in the regulation of phosphoryl transfer within kinases and synthetases

    Directory of Open Access Journals (Sweden)

    Nkosi Thokozani C

    2011-07-01

    Full Text Available Abstract Background The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 μM to in excess of 1000 μM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude. Results We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold. Conclusions Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the

  15. Long chain fatty Acyl-CoA synthetase 4 is a biomarker for and mediator of hormone resistance in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Xinyu Wu

    Full Text Available The purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4 in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2 in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression. Proliferation, migration, anchorage-independent growth and apoptosis were used as biological end points. Effects on mRNA expression and signal transduction pathways were also monitored. A meta-analysis of public gene expression databases indicated that ACSL4 expression is positively correlated with a unique subtype of triple negative breast cancer (TNBC, characterized by the absence of androgen receptor (AR and therefore referred to as quadruple negative breast cancer (QNBC. Results of experiments in breast cancer cell lines suggest that simultaneous expression of ACSL4 and a receptor is associated with hormone resistance. Forced expression of ACSL4 in ACSL4-negative, estrogen receptor α (ER-positive MCF-7 cells resulted in increased growth, invasion and anchorage independent growth, as well as a loss of dependence on estrogen that was accompanied by a reduction in the levels of steroid hormone receptors. Sensitivity to tamoxifen, triacsin C and etoposide was also attenuated. Similarly, when HER2-positive, ACSL4-negative, SKBr3 breast cancer cells were induced to express ACSL4, the proliferation rate increased and the apoptotic effect of lapatinib was reduced. The growth stimulatory effect of ACSL4 expression was also observed in vivo in nude mice when MCF-7 control and ACSL4-expressing cells were utilized to induce tumors. Our data strongly suggest that ACSL4 can serve as both a biomarker for, and mediator of, an aggressive breast cancer phenotype.

  16. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells.

    Science.gov (United States)

    Galloway, D C; Blake, D G; Shepherd, A G; McLellan, L I

    1997-11-15

    We have shown that in HepG2 cells treatment with 75 microM t-butylhydroquinone (tBHQ) results in a 2.5-fold increase in glutathione concentration, as part of an adaptive response to chemical stress. In these cells the elevation in intracellular glutathione level was found to be accompanied by an increase of between 2-fold and 3-fold in the level of the 73 kDa catalytic subunit of gamma-glutamylcysteine synthetase (heavy subunit, GCSh) and the 31 kDa regulatory subunit (light subunit, GCSl). Levels of GCSh and GCSl mRNA were increased by up to 5-fold in HepG2 cells in response to tBHQ. To study the transcriptional regulation of GCSl, we subcloned 6.7 kb of the upstream region of the human GCSl gene (GLCLR) from a genomic clone isolated from a P1 lymphoblastoid cell line genomic library. HepG2 cells were transfected with GLCLR promoter reporter constructs and treated with tBHQ. This resulted in an induction of between 1.5-fold and 3.5-fold in reporter activity, indicating that transcriptional regulation of GLCLR is likely to contribute to the induction of GCSl by tBHQ in HepG2 cells. Sequence analysis of the promoter region demonstrated the presence of putative enhancer elements including AP-1 sites and an antioxidant-responsive element, which might be involved in the observed induction of the GLCLR promoter.

  17. One-carbon metabolic pathway rewiring in Escherichia coli reveals an evolutionary advantage of 10-formyltetrahydrofolate synthetase (Fhs) in survival under hypoxia.

    Science.gov (United States)

    Sah, Shivjee; Aluri, Srinivas; Rex, Kervin; Varshney, Umesh

    2015-02-15

    In cells, N(10)-formyltetrahydrofolate (N(10)-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N(10)-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (ΔfolD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N(10)-fTHF in the ΔfolD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N(10)-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The ΔfolD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. γ-Glutamylcysteine synthetase (γ-GCS) as a target for overcoming chemo- and radio-resistance of human hepatocellular carcinoma cells.

    Science.gov (United States)

    Lin, Li-Ching; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2018-04-01

    This study uncovered that the genetically endowed intracellular glutathione contents (iGSH) regulated by the catalytic subunit of γ‑glutamylcysteine synthetase heavy chain (γ‑GCSh) as a prime target for overcoming both the inherited and stimuli-activated chemo- and radio-resistance of hepatocellular carcinoma (HCC) cells. Reactive oxygen species (ROS) production and mitochondrial membrane potential (Δψm) were determined by the probe-based flow cytometry. The TUNEL assay was used as an index of radio-sensitivity and the MTT assay was used as an index of chemo-sensitivity against various anti-cancer agents. iGSH and γ‑GCSh activity were measured by HPLC methods. γ‑GCSh-overexpressing GCS30 cell line was established by tetracycline-controlled Tet-OFF gene expression system in SK-Hep-1 cells. The relative radio-sensitivities of a panel of five HCC cells were found to be correlated negatively with both the contents of iGSH and their corresponding γ‑GCSh activities with an order of abundance being Hep G2 > Hep 3B > J5 > Mahlavu > SK-Hep-1, respectively. Similarly, the cytotoxicity response patterns of these HCC cells against arsenic trioxide (ATO), a ROS-producing anti-cancer drug, were exactly identical to the order of ranking instigated by the radiotherapy (RT) treatment. Next, γ‑GCSh-overexpressing GCS30 cells were found to possess excellent ability to profoundly mitigate both the drop of Δψm and apoptotic TUNEL-positive cell population engendered by ATO, cisplatin, doxorubicin, and RT treatments. Our data unequivocally demonstrate that γ‑GCSh may represent a prime target for overcoming anti-cancer drugs and RT resistance for HCC cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Mutant glycyl-tRNA synthetase (Gars ameliorates SOD1(G93A motor neuron degeneration phenotype but has little affect on Loa dynein heavy chain mutant mice.

    Directory of Open Access Journals (Sweden)

    Gareth T Banks

    2009-07-01

    Full Text Available In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs.We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+ mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+ mice to two other mutants: the TgSOD1(G93A model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+;Gars(C201R/+ double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R mutation significantly delayed disease onset in the SOD1(G93A;Gars(C201R/+ double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated.These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.

  20. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    by chemical determination of the amino acid sequence of a tryptic peptide derived from the purified mutant enzyme. The mutation lies at the N-terminal end of a 16 residue sequence that is highly conserved in E. coli, Bacillus subtilis, and rat PRPP synthetases and has the following consensus sequence......The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed...

  1. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development.

    Science.gov (United States)

    Lu, Jiongming; Bergert, Martin; Walther, Anita; Suter, Beat

    2014-11-27

    Aminoacyl-tRNA synthetases (aaRSs) constitute a family of ubiquitously expressed essential enzymes that ligate amino acids to their cognate tRNAs for protein synthesis. Recently, aaRS mutations have been linked to various human diseases; however, how these mutations lead to diseases has remained unclear. In order to address the importance of aminoacylation fidelity in multicellular organisms, we generated an amino-acid double-sieving model in Drosophila melanogaster using phenylalanyl-tRNA synthetase (PheRS). Double-sieving-defective mutations dramatically misacylate non-cognate Tyr, induce protein mistranslation and cause endoplasmic reticulum stress in flies. Mutant adults exhibit many defects, including loss of neuronal cells, impaired locomotive performance, shortened lifespan and smaller organ size. At the cellular level, the mutations reduce cell proliferation and promote cell death. Our results also reveal the particular importance of the first amino-acid recognition sieve. Overall, these findings provide new mechanistic insights into how malfunctioning of aaRSs can cause diseases.

  2. Overexpression, purification, crystallization and preliminary crystallographic studies of a hyperthermophilic adenylosuccinate synthetase from Pyrococcus horikoshii OT3

    International Nuclear Information System (INIS)

    Wang, Xiaoying; Akasaka, Ryogo; Takemoto, Chie; Morita, Satoshi; Yamaguchi, Machiko; Terada, Takaho; Shirozu, Mikako; Yokoyama, Shigeyuki; Chen, Shilin; Si, Shuyi; Xie, Yong

    2011-01-01

    A hyperthermophilic adenylosuccinate synthetase from P. horikoshii OT3, which is 90–120 amino acids shorter than those from the vast majority of organisms, was expressed, purified and crystallized and X-ray diffraction data were collected to 2.5 Å resolution. Adenylosuccinate synthetase (AdSS) is a ubiquitous enzyme that catalyzes the first committed step in the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP) in the purine-biosynthetic pathway. Although AdSS from the vast majority of organisms is 430–457 amino acids in length, AdSS sequences isolated from thermophilic archaea are 90–120 amino acids shorter. In this study, crystallographic studies of a short AdSS sequence from Pyrococcus horikoshii OT3 (PhAdSS) were performed in order to reveal the unusual structure of AdSS from thermophilic archaea. Crystals of PhAdSS were obtained by the microbatch-under-oil method and X-ray diffraction data were collected to 2.50 Å resolution. The crystal belonged to the trigonal space group P3 2 12, with unit-cell parameters a = b = 57.2, c = 107.9 Å. There was one molecule per asymmetric unit, giving a Matthews coefficient of 2.17 Å 3 Da −1 and an approximate solvent content of 43%. In contrast, the results of native polyacrylamide gel electrophoresis and analytical ultracentrifugation showed that the recombinant PhAdSS formed a dimer in solution

  3. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis.

    Science.gov (United States)

    Westfall, Corey S; Sherp, Ashley M; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M

    2016-11-29

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A thaliana This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants.

  4. Fatty acid biosynthesis VII. Substrate control of chain-length of products synthesised by rat liver fatty acid synthetase

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Carey, E.M.; Dils, R.

    1970-01-01

    - 1. Gas-liquid and paper chromatography have been used to determine the chain-lengths of fatty acids synthesised by purified rat liver fatty acid synthetase from [1-14C]acetyl-CoA, [1,3-14C2]malonyl-CoA and from [1-14C]acetyl-CoA plus partially purified rat liver acetyl-CoA carboxylase. - 2....... A wide range (C4:0–C18:0) of fatty acids was synthesised and the proportions were modified by substrate concentrations in the same manner as for purified rabbit mammary gland fatty acid synthetase. - 3. The relative amount of radioactivity incorporated from added acetyl-CoA and malonyl-CoA depended...... on the substrate concentrations used. At excess acetyl-CoA to malonyl-CoA, greater amounts of acetyl-CoA were incorporated than theoretically expected from the malonyl-CoA pathway. At excess malonyl-CoA, less acetyl-CoA was incorporated than theoretically expected. - 4. An increase in the chain-length of fatty...

  5. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    Science.gov (United States)

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Purification and characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Theilgaard, Hanne Birgitte; Kristiansen, K.N.; Henriksen, Claus Maxel

    1997-01-01

    delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)(2)SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography. The mole......delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)(2)SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography....... The molecular mass of ACVS was estimated with native gradient gel electrophoresis and SDS/PAGE. The native enzyme consisted of a single polymer chain with an estimated molecular mass of 470 kDa. The denatured enzyme had an estimated molecular mass of 440 kDa. The influence of different reaction parameters...... such as substrates, cofactors and pH on the activity of the purified ACVS was investigated. The K-m values for the three precursor substrates La-aminoadipic acid, L-cysteine and L-valine were determined as 45, 80 and 80 mu M respectively, and the optimal assay concentration of ATP was found to be 5 mM (with 20 mM Mg...

  7. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development

    Science.gov (United States)

    Lu, Jiongming; Bergert, Martin; Walther, Anita; Suter, Beat

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRSs) constitute a family of ubiquitously expressed essential enzymes that ligate amino acids to their cognate tRNAs for protein synthesis. Recently, aaRS mutations have been linked to various human diseases; however, how these mutations lead to diseases has remained unclear. In order to address the importance of aminoacylation fidelity in multicellular organisms, we generated an amino-acid double-sieving model in Drosophila melanogaster using phenylalanyl-tRNA synthetase (PheRS). Double-sieving-defective mutations dramatically misacylate non-cognate Tyr, induce protein mistranslation and cause endoplasmic reticulum stress in flies. Mutant adults exhibit many defects, including loss of neuronal cells, impaired locomotive performance, shortened lifespan and smaller organ size. At the cellular level, the mutations reduce cell proliferation and promote cell death. Our results also reveal the particular importance of the first amino-acid recognition sieve. Overall, these findings provide new mechanistic insights into how malfunctioning of aaRSs can cause diseases. PMID:25427601

  8. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism.

    Science.gov (United States)

    Gong, Biao; Li, Xiu; VandenLangenberg, Kyle M; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-08-01

    S-adenosyl-L-methionine (SAM) synthetase is the key enzyme involved in the biosynthesis of SAM, which serves as a common precursor for polyamines (PAs) and ethylene. A SAM synthetase cDNA (SlSAMS1) was introduced into the tomato genome using the Agrobacterium tumefaciens transformation method. Transgenic plants overexpressing SlSAMS1 exhibited a significant increase in tolerance to alkali stress and maintained nutrient balance, higher photosynthetic capacity and lower oxidative stress compared with WT lines. Both in vivo and in vitro experiments indicated that the function of SlSAMS1 mainly depended on the accumulation of Spd and Spm in the transgenic lines. A grafting experiment showed that rootstocks from SlSAMS1-overexpressing plants provided a stronger root system, increased PAs accumulation, essential elements absorption, and decreased Na(+) absorption in the scions under alkali stress. As a result, fruit set and yield were significantly enhanced. To our knowledge, this is the first report to provide evidence that SlSAMS1 positively regulates tomato tolerance to alkali stress and plays a major role in modulating polyamine metabolism, resulting in maintainability of nutrient and ROS balance. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis.

    Science.gov (United States)

    Jain, Vitul; Yogavel, Manickam; Oshima, Yoshiteru; Kikuchi, Haruhisa; Touquet, Bastien; Hakimi, Mohamed-Ali; Sharma, Amit

    2015-05-05

    The Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5'-(β,γ-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene.

    Science.gov (United States)

    Richaud, F; Richaud, C; Ratet, P; Patte, J C

    1986-01-01

    In Escherichia coli, the first enzyme of the diaminopimelate and lysine pathway is dihydrodipicolinate synthetase, which is feedback-inhibited by lysine and encoded by the dapA gene. The location of the dapA gene on the bacterial chromosome has been determined accurately with respect to the neighboring purC and dapE genes. The complete nucleotide sequence and the transcriptional start of the dapA gene were determined. The results show that dapA consists of a single cistron encoding a 292-amino acid polypeptide of 31,372 daltons. Images PMID:3514578

  11. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene.

    OpenAIRE

    Richaud, F; Richaud, C; Ratet, P; Patte, J C

    1986-01-01

    In Escherichia coli, the first enzyme of the diaminopimelate and lysine pathway is dihydrodipicolinate synthetase, which is feedback-inhibited by lysine and encoded by the dapA gene. The location of the dapA gene on the bacterial chromosome has been determined accurately with respect to the neighboring purC and dapE genes. The complete nucleotide sequence and the transcriptional start of the dapA gene were determined. The results show that dapA consists of a single cistron encoding a 292-amin...

  12. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene.

    Science.gov (United States)

    Richaud, F; Richaud, C; Ratet, P; Patte, J C

    1986-04-01

    In Escherichia coli, the first enzyme of the diaminopimelate and lysine pathway is dihydrodipicolinate synthetase, which is feedback-inhibited by lysine and encoded by the dapA gene. The location of the dapA gene on the bacterial chromosome has been determined accurately with respect to the neighboring purC and dapE genes. The complete nucleotide sequence and the transcriptional start of the dapA gene were determined. The results show that dapA consists of a single cistron encoding a 292-amino acid polypeptide of 31,372 daltons.

  13. The T box regulatory element controlling expression of the class I lysyl-tRNA synthetase of Bacillus cereus strain 14579 is functional and can be partially induced by reduced charging of asparaginyl-tRNAAsn

    LENUS (Irish Health Repository)

    Foy, Niall

    2010-07-22

    Abstract Background Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression. Results A global study of 891 completely sequenced bacterial genomes identified T box elements associated with control of LysRS expression in only four bacterial species: B. cereus, B. thuringiensis, Symbiobacterium thermophilum and Clostridium beijerinckii. Here we investigate the T box element found in the regulatory region of the lysK gene in B. cereus strain 14579. We show that this T box element is functional, responding in a canonical manner to an increased level of uncharged tRNALys but, unusually, also responding to an increased level of uncharged tRNAAsn. We also show that B. subtilis strains with T box regulated expression of the endogenous lysS or the heterologous lysK genes are viable. Conclusions The T box element controlling lysK (encoding LysRS1) expression in B. cereus strain 14579 is functional, but unusually responds to depletion of charged tRNALys and tRNAAsn. This may have the advantage of making LysRS1 expression responsive to a wider range of nutritional stresses. The viability of B. subtilis strains with a single LysRS1 or LysRS2, whose expression is controlled by this T box element, makes the rarity of the occurrence of such control of LysRS expression puzzling.

  14. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.

    Directory of Open Access Journals (Sweden)

    Jason M van Rooyen

    Full Text Available In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.

  15. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    -fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent...

  16. Up-regulation of asparagine synthetase expression is not linked to the clinical response to L-asparaginase in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    I.M. Appel (Inge); M.L. den Boer (Monique); J.P.P. Meijerink (Jules); A.J.P. Veerman (Anjo); N.C.M. Reniers (N. C M); R. Pieters (Rob)

    2006-01-01

    textabstractL-asparaginase (L-Asp) is an effective drug for treatment of children with acute lymphoblastic leukemia (ALL). The effectiveness is generally thought to result from a rapid depletion of asparagine in serum and cells. Asparagine synthetase (AS) opposes the action of L-Asp by resynthesis

  17. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    Science.gov (United States)

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  18. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis

    Directory of Open Access Journals (Sweden)

    Iyer Lakshminarayan M

    2010-08-01

    Full Text Available Abstract Background Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS in non-ribosomal peptide ligation. Results Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the cyclodipeptide synthases (CDPSs are members of the HUP class of Rossmannoid domains and are likely to be highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual information that it might function independently of protein synthesis as a peptide ligase in the formation of a peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this paralogous methionyl-tRNA synthetase (MtRS. We further identify an analogous system wherein the MtRS has been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains. Conclusions The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host. More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal biosynthetic pathways, ranging from the

  19. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia.

    Science.gov (United States)

    Coude, F X; Sweetman, L; Nyhan, W L

    1979-01-01

    In the search for the mechanism by which hyperammonemia complicates propionic and methylmalonic acidemia the effects of a series of acyl-coenzyme A (CoA) derivatives were studied on the activity of N-acetylglutamate synthetase in rat liver mitochondria using acetyl-CoA as substrate. Propionyl-CoA was found to be a competitive inhibitor. The inhibition constant of 0.71 mM is in the range of concentrations of propionate found in the serum of patients with propionic and methylmalonic acidemia. Propionyl-CoA was also found to be a substrate for N-acetylglutamate synthetase, forming N-propionylglutamate. This compound was a weak activator of rat liver carbamoylphosphate synthetase; the activation constant was 1.1 mM as compared with 0.12 mM for N-acetylglutamate. A decreased level of N-acetylglutamate in liver mitochondria that would follow inhibition of N-acetylglutamate synthetase by propionyl-CoA would be expected to lead to hyperammonemia. Methylmalonyl-CoA, tiglyl-CoA, and isovaleryl-CoA at a concentration of 3 mM caused 30-70% inhibition of N-acetylglutamate synthetase. 3the latter two compounds are readily detoxified by the formation of N-acylglycine conjugates in liver, which may prevent large accumulations and could explain why hyperammonemia is not characteristic of patients with beta-ketothiolase deficiency or isovaleric acidemia in whom these compounds would be expected to be elevated. PMID:500823

  20. Moraxella osloensis Gene Expression in the Slug Host Deroceras reticulatum

    Directory of Open Access Journals (Sweden)

    Sreevatsan Srinand

    2008-01-01

    Full Text Available Abstract Background The bacterium Moraxella osloensis is a mutualistic symbiont of the slug-parasitic nematode Phasmarhabditis hermaphrodita. In nature, P. hermaphrodita vectors M. osloensis into the shell cavity of the slug host Deroceras reticulatum in which the bacteria multiply and kill the slug. As M. osloensis is the main killing agent, genes expressed by M. osloensis in the slug are likely to play important roles in virulence. Studies on pathogenic interactions between bacteria and lower order hosts are few, but such studies have the potential to shed light on the evolution of bacterial virulence. Therefore, we investigated such an interaction by determining gene expression of M. osloensis in its slug host D. reticulatum by selectively capturing transcribed sequences. Results Thirteen M. osloensis genes were identified to be up-regulated post infection in D. reticulatum. Compared to the in vitro expressed genes in the stationary phase, we found that genes of ubiquinone synthetase (ubiS and acyl-coA synthetase (acs were up-regulated in both D. reticulatum and stationary phase in vitro cultures, but the remaining 11 genes were exclusively expressed in D. reticulatum and are hence infection specific. Mutational analysis on genes of protein-disulfide isomerase (dsbC and ubiS showed that the virulence of both mutants to slugs was markedly reduced and could be complemented. Further, compared to the growth rate of wild-type M. osloensis, the dsbC and ubiS mutants showed normal and reduced growth rate in vitro, respectively. Conclusion We conclude that 11 out of the 13 up-regulated M. osloensis genes are infection specific. Distribution of these identified genes in various bacterial pathogens indicates that the virulence genes are conserved among different pathogen-host interactions. Mutagenesis, growth rate and virulence bioassays further confirmed that ubiS and dsbC genes play important roles in M. osloensis survival and virulence, respectively

  1. Crystallization and preliminary X-ray diffraction analysis of selenophosphate synthetases from Trypanosoma brucei and Leishmania major.

    Science.gov (United States)

    Faim, Lívia Maria; Rosa e Silva, Ivan; Bertacine Dias, Marcio Vinicius; D'Muniz Pereira, Humberto; Brandao-Neto, José; Alves da Silva, Marco Túlio; Thiemann, Otavio Henrique

    2013-08-01

    Selenophosphate synthetase (SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the activation of selenide with adenosine 5'-triphosphate (ATP) to generate selenophosphate, the essential selenium donor for selenocysteine synthesis. Recombinant full-length Leishmania major SPS (LmSPS2) was recalcitrant to crystallization. Therefore, a limited proteolysis technique was used and a stable N-terminal truncated construct (ΔN-LmSPS2) yielded suitable crystals. The Trypanosoma brucei SPS orthologue (TbSPS2) was crystallized by the microbatch method using paraffin oil. X-ray diffraction data were collected to resolutions of 1.9 Å for ΔN-LmSPS2 and 3.4 Å for TbSPS2.

  2. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress.

    Science.gov (United States)

    Schug, Zachary T; Peck, Barrie; Jones, Dylan T; Zhang, Qifeng; Grosskurth, Shaun; Alam, Israt S; Goodwin, Louise M; Smethurst, Elizabeth; Mason, Susan; Blyth, Karen; McGarry, Lynn; James, Daniel; Shanks, Emma; Kalna, Gabriela; Saunders, Rebecca E; Jiang, Ming; Howell, Michael; Lassailly, Francois; Thin, May Zaw; Spencer-Dene, Bradley; Stamp, Gordon; van den Broek, Niels J F; Mackay, Gillian; Bulusu, Vinay; Kamphorst, Jurre J; Tardito, Saverio; Strachan, David; Harris, Adrian L; Aboagye, Eric O; Critchlow, Susan E; Wakelam, Michael J O; Schulze, Almut; Gottlieb, Eyal

    2015-01-12

    A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Absence of the glutamine-synthetase-linked methylammonium (ammonium)-transport system in the cyanobiont of Cycas-cyanobacterial symbiosis.

    Science.gov (United States)

    Rai, A N; Lindblad, P; Bergman, B

    1986-11-01

    Using the ammonium analogue (14)CH3NH 3 (+) , ammonium transport was studied in the cyanobiont cells freshly isolated from the root nodules of Cycas revoluta. An L-methionine-DL-sulphoximine (MSX)-insensitive ammonium-transport system, which was dependent on membrane potential (ΔΨ), was found in the cyanobiont. However, the cyanobiont was incapable of metabolizing exogenous (14)CH3NH 3 (+) or NH 4 (+) because of the absence of another ammonium-transport system responsible for the uptake of ammonium for assimilation via glutamine synthetase (EC 6.3.1.2). Such a modification seems to be the result of symbiosis because the free-living cultured isolate, Anabaena cycadeae, has been shown to possess both the ammonium-transport systems.

  4. The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis.

    Science.gov (United States)

    Liu, Yuchen; Long, Feng; Wang, Liangliang; Söll, Dieter; Whitman, William B

    2014-03-18

    Thiolation of carbon-2 of uridine located in the first position of the anticodons of tRNAUUG(Gln), tRNAUUC(Glu), and tRNAUUU(Lys) is a conserved RNA modification event requiring the 2-thiouridine synthetase Ncs6/Ctu1 in archaea and eukaryotes. Ncs6/Ctu1 activates uridine by adenylation, but its role in sulfur transfer is unclear. Here we show that Mmp1356, the Ncs6/Ctu1 homolog in the archaeon Methanococcus maripaludis, forms a persulfide enzyme adduct with an active site cysteine; this suggests that Mmp1356 directly participates in sulfur transfer as a persulfide carrier. Transposon mutagenesis shows that Mmp1356 is likely to be an essential protein. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP

    DEFF Research Database (Denmark)

    Manav, Melek Cemre; Beljantseva, Jelena; Bojer, Martin Saxtorph

    2018-01-01

    '-diphosphate ([p]ppGpp), which is produced by enzymes of the RelA SpoT homologue (RSH) family. The Gram-positive Firmicute pathogen, Staphylococcus aureus, encodes three RSH enzymes: a multi-domain RSH (Rel) that senses amino acid starvation on the ribosome and two small alarmone synthetase (SAS) enzymes, Rel......Q (SAS1) and RelP (SAS2). In Bacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures of S. aureus RelP in two major...

  6. The Cell Wall Teichuronic Acid Synthetase (TUAS Is an Enzyme Complex Located in the Cytoplasmic Membrane of Micrococcus luteus

    Directory of Open Access Journals (Sweden)

    Lingyi Lynn Deng

    2010-01-01

    composed of disaccharide repeating units [-4-β-D-ManNAcAp-(1→6α-D-Glcp−1-]n, which is covalently anchored to the peptidoglycan on the inner cell wall and extended to the outer surface of the cell envelope. An enzyme complex responsible for the TUA chain biosynthesis was purified and characterized. The 440 kDa enzyme complex, named teichuronic acid synthetase (TUAS, is an octomer composed of two kinds of glycosyltransferases, Glucosyltransferase, and ManNAcA-transferase, which is capable of catalyzing the transfer of disaccharide glycosyl residues containing both glucose and the N-acetylmannosaminuronic acid residues. TUAS displays hydrophobic properties and is found primarily associated with the cytoplasmic membrane. The purified TUAS contains carotinoids and lipids. TUAS activity is diminished by phospholipase digestion. We propose that TUAS serves as a multitasking polysaccharide assembling station on the bacterial membrane.

  7. Effect of 60Co γ radiation on the valyl-tRNA synthetase isolated from chick embryo brain

    International Nuclear Information System (INIS)

    Boloni, E.; Szabo, L.D.

    1978-01-01

    he effect of 60 Coγ irradiation on the activity of valyl-tRNA synthetase isolated from chick embryo brain was studied. The enzyme activity exponentially decreased in the dose range 10 to 200 krad. The first step of the enzyme action, i.e. amino acid activation, was found to be less sensitive to irradiation than the whole reaction, the formation of valyl-tRNA. 2-Mercapto ethanol and/or glycerol had a significant radioprotective effect. The lesion caused by radiation in the enzyme was also influenced by its concentration during exposure (diluted effect). According to gel-electrophoretic experiments, no chain rupture occurred in the enzyme molecule. Not even a change in Ksub(m) was observed; however, the maximum velocity of the reaction was found to decrease with increasing radiation dose. (author)

  8. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  9. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis.

    Science.gov (United States)

    Takasaki, Kazuto; Shoun, Hirofumi; Yamaguchi, Masashi; Takeo, Kanji; Nakamura, Akira; Hoshino, Takayuki; Takaya, Naoki

    2004-03-26

    Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.

  10. Crystallization of leucyl-tRNA synthetase complexed with tRNALeu from the archaeon Pyrococcus horikoshii

    International Nuclear Information System (INIS)

    Fukunaga, Ryuya; Ishitani, Ryuichiro; Nureki, Osamu; Yokoyama, Shigeyuki

    2004-01-01

    The leucyl-tRNA synthetase (LeuRS) from P. horikoshii has been overexpressed in Escherichia coli and purified, and cocrystallizations with each of the tRNA Leu isoacceptors have been attempted. Cocrystals were obtained by the hanging-drop vapour-diffusion method, but only when the tRNA Leu isoacceptor with the anticodon CAA was used. All five tRNA Leu isoacceptors from the archaeon Pyrococcus horikoshii have been transcribed in vitro and purified. The leucyl-tRNA synthetase (LeuRS) from P. horikoshii was overexpressed in Escherichia coli and purified, and cocrystallizations with each of the tRNA Leu isoacceptors were attempted. Cocrystals were obtained by the hanging-drop vapour-diffusion method, but only when the tRNA Leu isoacceptor with the anticodon CAA was used. Electrophoretic analyses revealed that the crystals contain both LeuRS and tRNA Leu , suggesting that they are LeuRS–tRNA Leu complex crystals. A data set diffracting to 3.3 Å resolution was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 118.18, b = 120.55, c = 231.13 Å. The asymmetric unit is expected to contain two complexes of LeuRS–tRNA Leu , with a corresponding crystal volume per protein weight of 2.9 Å 3 Da −1 and a solvent content of 57.3%

  11. Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNA

    International Nuclear Information System (INIS)

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S.

    1987-01-01

    Periodate-oxidized tRNA/sup Phe/ (tRNA/sub ox//sup Phe/) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the α 2 β 2 enzyme with tRNA/sub ox//sup Phe/ results in the loss of tRNA/sup Phe/ aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[ 14 C]tRNA/sub ox//sup Phe/ covalent complex indicates that the large (α, M/sub r/ 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA/sub ox//sup Phe/. The [ 14 C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the α subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases

  12. Substrate specificity and catalysis by the editing active site of alanyl-tRNA synthetase from Escherichia coli†

    Science.gov (United States)

    Pasman, Zvi; Robey-Bond, Susan; Mirando, Adam C.; Smith, Gregory J.; Lague, Astrid; Francklyn, Christopher S.

    2011-01-01

    Aminoacyl-tRNA synthetases (ARSs) enhance the fidelity of protein synthesis through multiple mechanisms, including hydrolysis of the adenylate and cleavage of misacylated tRNA. Alanyl-tRNA synthetase (AlaRS) limits misacylation with glycine and serine by use of a dedicated editing domain, and a mutation in this activity has been genetically linked to a mouse model of a progressive neurodegenerative disease. Using the free standing P. horikoshii AlaX editing domain complexed with serine as a model and both Ser-tRNAAla and Ala-tRNAAla as substrates, the deacylation activities of the wild type and five different E. coli AlaRS editing site substitution mutants were characterized. The wild type AlaRS editing domain deacylated Ser-tRNAAla with a kcat/KM of 6.6 × 105 M−1 s−1, equivalent to a rate enhancement of 6000 over the rate of enzyme-independent deacylation, but only 12.2-fold greater than the rate with Ala-tRNAAla. While the E664A and T567G substitutions only minimally decreased kcat/KM, Q584H, I667E, and C666A AlaRS were more compromised in activity, with decreases in kcat/KM in the range of 6-, 7.3-, and 15-fold. C666A AlaRS was 1.4-fold more active on Ala-tRNAAla relative to Ser-tRNAAla, providing the only example of a true reversal of substrate specificity and highlighting a potential role of the coordinated zinc in editing substrate specificity. Along with the potentially serious physiological consequences of serine mis-incorporation, the relatively modest specificity of the AlaRS editing domain may provide a rationale for the widespread phylogenetic distribution of AlaX free standing editing domains, thereby contributing a further mechanism to lower concentrations of misacylated tRNAAla. PMID:21241052

  13. Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase.

    Science.gov (United States)

    Chen, Qingfeng; Westfall, Corey S; Hicks, Leslie M; Wang, Shiping; Jez, Joseph M

    2010-09-24

    The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg(2+) or Mn(2+) for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4-9-fold reductions in k(cat)/K(m) relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.

  14. Identification of the enzymatic reactions encoded by the purG and purI genes of Escherichia coli

    DEFF Research Database (Denmark)

    Houlberg, U.; Hove-Jensen, Bjarne; Jochimsen, B.

    1983-01-01

    The chromosomal locations of the genes purG and purI on the Escherichia coli linkage map are the opposites of those of Salmonella typhimurium. By methods which permit the identification of lesions in any of the five early enzymes of the purine de novo pathway, the gene-enzyme relationships...... of the purG and purI loci have been reevaluated in these two organisms. The results demonstrate that the relative locations of the genes encoding the two enzymes (phosphoribosylformylglycinamidine synthetase and phosphoribosylaminoimidazole synthetase) are similar in the two organisms. The gene products have...... been correctly determined in S. typhimurium. The gene products currently listed for the loci in E. coli are incorrect. The E. coli purG locus is equivalent to the S. typhimurium purI locus, and the E. coli purI locus is equivalent to the S. typhimurium purG locus....

  15. Striatal N-Acetylaspartate Synthetase Shati/Nat8l Regulates Depression-Like Behaviors via mGluR3-Mediated Serotonergic Suppression in Mice

    Science.gov (United States)

    Miyamoto, Yoshiaki; Iegaki, Noriyuki; Fu, Kequan; Ishikawa, Yudai; Sumi, Kazuyuki; Azuma, Sota; Uno, Kyosuke; Muramatsu, Shin-ichi

    2017-01-01

    Abstract Background Several clinical studies have suggested that N-acetylaspartate and N-acetylaspartylglutamate levels in the human brain are associated with various psychiatric disorders, including major depressive disorder. We have previously identified Shati/Nat8l, an N-acetyltransferase, in the brain using an animal model of psychosis. Shati/Nat8l synthesizes N-acetylaspartate from L-aspartate and acetyl-coenzyme A. Further, N-acetylaspartate is converted into N-acetylaspartylglutamate, a neurotransmitter for metabotropic glutamate receptor 3. Methods Because Shati/Nat8l mRNA levels were increased in the dorsal striatum of mice following the exposure to forced swimming stress, Shati/Nat8l was overexpressed in mice by the microinjection of adeno-associated virus vectors containing Shati/Nat8l gene into the dorsal striatum (dS-Shati/Nat8l mice). The dS-Shati/Nat8l mice were further assessed using behavioral and neurochemical tests. Results The dS-Shati/Nat8l mice exhibited behavioral despair in the forced swimming and tail suspension tests and social withdrawal in the 3-chamber social interaction test. These depression-like behaviors were attenuated by the administration of a metabotropic glutamate receptor 2/3 antagonist and a selective serotonin reuptake inhibitor. Furthermore, the metabolism of N-acetylaspartate to N-acetylaspartylglutamate was decreased in the dorsal striatum of the dS-Shati/Nat8l mice. This finding corresponded with the increased expression of glutamate carboxypeptidase II, an enzyme that metabolizes N-acetylaspartylglutamate present in the extracellular space. Extracellular serotonin levels were lower in the dorsal striatum of the dS-Shati/Nat8l and normal mice that were repeatedly administered a selective glutamate carboxypeptidase II inhibitor. Conclusions Our findings indicate that the striatal expression of N-acetylaspartate synthetase Shati/Nat8l plays a role in major depressive disorder via the metabotropic glutamate receptor 3

  16. The early history of tRNA recognition by aminoacyl-tRNA synthetases

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... of molecular biology were thinking on gene expression and genetic code. In a famous letter send in 1955 to the “RNA Tie. Club” Francis Crick predicted the existence of small adaptor. RNA molecules that would carry their own amino acids and. The early history of tRNA recognition by aminoacyl-tRNA.

  17. A comparative study of low pH stress in E. coli and S. typhimurium, and a comparative study of the inducibility of lysyl-tRNA synthetase in the enterobacteriaceae

    International Nuclear Information System (INIS)

    Hickey, E.W.

    1988-01-01

    Lysyl-tRNA synthetase (LRS) in Escherichia coli is coded by two genes, one constitutive, and the other inducible. The commonness of inducibility of this enzyme in prokaryotes was first tested in eight members of the Enterobacteriaceae using culture conditions known to induce it in E. coli. LRS was found to be inducible in Salmonella Typhimurium, Citrobacter freundii, Klebsiella pneumoniae and Enterobacter aerogenes, but not in Serratia marcescens, Proteus mirabilis, Proteus vulgaris or Morganella morganii. The results also indicated that LRS was not induced in E. coli grown in defined medium (SMM) at an external pH (pH 0 ) of 5.0, whereas, it was induced in S. typhimurium under this condition. Further investigation of low pH 0 induced behavior in E. coli and S. typhimurium by quantitation of H 2 35 SO 4 labeled proteins from two dimensional polyacrylamide gels of whole cell sonic extracts showed that at least twenty proteins were induced from 2- to 16-fold in S. typhimurium grown at pH 0 5.0 or shifted from growth at pH 0 7.0 to 5.0. Internal pH (pH i ) changes occurring during steady state growth at low pH 0 , and on shifting from pH 0 7.0 to 5.0, were measured using 14 C-benzoic acid uptake

  18. Mutations in LACS2, a Long-Chain Acyl-Coenzyme A Synthetase, Enhance Susceptibility to Avirulent Pseudomonas syringae But Confer Resistance to Botrytis cinerea in Arabidopsis1[OA

    Science.gov (United States)

    Tang, Dingzhong; Simonich, Michael T.; Innes, Roger W.

    2007-01-01

    We identified an Arabidopsis (Arabidopsis thaliana) mutant, sma4 (symptoms to multiple avr genotypes4), that displays severe disease symptoms when inoculated with avirulent strains of Pseudomonas syringae pv tomato, although bacterial growth is only moderately enhanced compared to wild-type plants. The sma4 mutant showed a normal susceptible phenotype to the biotrophic fungal pathogen Erysiphe cichoracearum. Significantly, the sma4 mutant was highly resistant to a necrotrophic fungal pathogen, Botrytis cinerea. Germination of B. cinerea spores on sma4 mutant leaves was inhibited, and penetration by those that did germinate was rare. The sma4 mutant also showed several pleiotropic phenotypes, including increased sensitivity to lower humidity and salt stress. Isolation of SMA4 by positional cloning revealed that it encodes LACS2, a member of the long-chain acyl-CoA synthetases. LACS2 has previously been shown to be involved in cutin biosynthesis. We therefore tested three additional cutin-defective mutants for resistance to B. cinerea: att1 (for aberrant induction of type three genes), bodyguard, and lacerata. All three displayed an enhanced resistance to B. cinerea. Our results indicate that plant cutin or cuticle structure may play a crucial role in tolerance to biotic and abiotic stress and in the pathogenesis of B. cinerea. PMID:17434992

  19. Comparative assessment of a DNA and protein Leishmania donovani gamma glutamyl cysteine synthetase vaccine to cross-protect against murine cutaneous leishmaniasis caused by L. major or L. mexicana infection.

    Science.gov (United States)

    Campbell, S A; Alawa, J; Doro, B; Henriquez, F L; Roberts, C W; Nok, A; Alawa, C B I; Alsaadi, M; Mullen, A B; Carter, K C

    2012-02-08

    Leishmaniasis is a major health problem and it is estimated that 12 million people are currently infected. A vaccine which could cross-protect people against different Leishmania spp. would facilitate control of this disease as more than one species of Leishmania may be present. In this study the ability of a DNA vaccine, using the full gene sequence for L. donovani gamma glutamyl cysteine synthetase (γGCS) incorporated in the pVAX vector (pVAXγGCS), and a protein vaccine, using the corresponding recombinant L. donovani γGCS protein (LdγGCS), to protect against L. major or L. mexicana infection was evaluated. DNA vaccination gave transient protection against L. major and no protection against L. mexicana despite significantly enhancing specific antibody titres in vaccinated infected mice compared to infected controls. Vaccination with the LdγGCS protected against both species but only if the protein was incorporated into non-ionic surfactant vesicles for L. mexicana. The results of this study indicate that a L. donovani γGCS vaccine could be used to vaccinate against more than one Leishmania species but only if the recombinant protein is used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

    Science.gov (United States)

    Böttcher, Christine; Boss, Paul K.; Davies, Christopher

    2011-01-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes. PMID:21543520

  1. Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells.

    Science.gov (United States)

    Xu, Huifen; Luo, Jun; Ma, Gongzhen; Zhang, Xueying; Yao, Dawei; Li, Ming; Loor, Juan J

    2018-02-01

    Sterol regulatory element binding protein 1 (SREBP-1) is well-known as the master regulator of lipogenesis in rodents. Acyl-CoA synthetase short-chain family member 2 (ACSS2) plays a key role in lipogenesis by synthesizing acetyl-CoA from acetate for lipogenesis. ATP citrate lyase (ACLY) catalyzes the conversion of citrate and coenzyme A to acetyl-CoA, hence, it is also important for lipogenesis. Although ACSS2 function in cancer cells has been elucidated, its essentiality in ruminant mammary lipogenesis is unknown. Furthermore, ACSS2 gene promoter and its regulatory mechanisms have not known. Expression of ACSS2 was high in lipid synthesizing tissues, and its expression increased during lactation compared with non-lactating period. Simultaneous knockdown of both ACSS2 and ACLY by siRNA in primary goat mammary epithelial cells decreased (p < 0.05) the mRNA abundance of genes associated with de novo fatty acid synthesis (FASN, ACACA, SCD1) and triacylglycerol (TAG) synthesis (DGAT1, DGAT2, GPAM, and AGPAT6). Genes responsible for lipid droplet formation and secretion (PLIN2 and PLIN3) and fatty acid oxidation (ATGL, HSL, ACOX, and CPT1A) all decreased (p < 0.05) after ACSS2 and ACLY knockdown. Total cellular TAG content and lipid droplet formation also decreased. Use of a luciferase reporter assay revealed a direct regulation of ACSS2 by SREBP-1. Furthermore, SREBP-1 interacted with an SRE (SREBP response element) spanning at -475 to -483 bp on the ACSS2 promoter. Taken together, our results revealed a novel pathway that SREBP-1 may regulate fatty acid and TAG synthesis by regulating the expression of ACSS2. © 2017 Wiley Periodicals, Inc.

  2. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea.

    Science.gov (United States)

    Tudzynski, P; Hölter, K; Correia, T; Arntz, C; Grammel, N; Keller, U

    1999-02-01

    A gene (cpd1) coding for the dimethylallyltryptophan synthase (DMATS) that catalyzes the first specific step in the biosynthesis of ergot alkaloids, was cloned from a strain of Claviceps purpurea that produces alkaloids in axenic culture. The derived gene product (CPD1) shows only 70% similarity to the corresponding gene previously isolated from Claviceps strain ATCC 26245, which is likely to be an isolate of C. fusiformis. Therefore, the related cpd1 most probably represents the first C. purpurea gene coding for an enzymatic step of the alkaloid biosynthetic pathway to be cloned. Analysis of the 3'-flanking region of cpd1 revealed a second, closely linked ergot alkaloid biosynthetic gene named cpps1, which codes for a 356-kDa polypeptide showing significant similarity to fungal modular peptide synthetases. The protein contains three amino acid-activating modules, and in the second module a sequence is found which matches that of an internal peptide (17 amino acids in length) obtained from a tryptic digest of lysergyl peptide synthetase 1 (LPS1) of C. purpurea, thus confirming that cpps1 encodes LPS1. LPS1 activates the three amino acids of the peptide portion of ergot peptide alkaloids during D-lysergyl peptide assembly. Chromosome walking revealed the presence of additional genes upstream of cpd1 which are probably also involved in ergot alkaloid biosynthesis: cpox1 probably codes for an FAD-dependent oxidoreductase (which could represent the chanoclavine cyclase), and a second putative oxidoreductase gene, cpox2, is closely linked to it in inverse orientation. RT-PCR experiments confirm that all four genes are expressed under conditions of peptide alkaloid biosynthesis. These results strongly suggest that at least some genes of ergot alkaloid biosynthesis in C. purpurea are clustered, opening the way for a detailed molecular genetic analysis of the pathway.

  3. Isolation of cyanophycin from tobacco and potato plants with constitutive plastidic cphATe gene expression.

    Science.gov (United States)

    Neubauer, Katja; Hühns, Maja; Hausmann, Tina; Klemke, Friederike; Lockau, Wolfgang; Kahmann, Uwe; Pistorius, Elfriede K; Kragl, Udo; Broer, Inge

    2012-03-31

    A chimeric cyanophycin synthetase gene composed of the cphATe coding region from the cyanobacterium Thermosynechococcus elongatus BP-1, the constitutive 35S promoter and the plastid targeting sequence of the integral photosystem II protein PsbY was transferred to the tobacco variety Petit Havanna SRI and the commercial potato starch production variety Albatros. The resulting constitutive expression of cyanophycin synthetase leads to polymer contents in potato leaf chloroplasts of up to 35 mg/g dry weight and in tuber amyloplasts of up to 9 mg/g dry weight. Both transgenic tobacco and potato were used for the development of isolation methods applicable for large-scale extraction of the polymer. Two different procedures were developed which yielded polymer samples of 80 and 90% purity, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis.

    OpenAIRE

    Marahiel, M A; Zuber, P; Czekay, G; Losick, R

    1987-01-01

    Tyrocidine is a cyclic decapeptide antibiotic which is produced and secreted by stationary-phase cells of the sporeforming bacterium Bacillus brevis. We identified the promoter for the B. brevis structural gene (tycA) for tyrocidine synthetase I, the enzyme catalyzing the first step in tyrocidine biosynthesis, and studied its regulation in cells of B. brevis and Bacillus subtilis. Transcription from the tycA promoter was induced at the end of the exponential phase of the growth cycle in B. br...

  5. Immunological recovery and dose evaluation in IFN-alpha treatment of hairy cell leukemia: analysis of leukocyte differentiation antigens, NK and 2',5'-oligoadenylate synthetase activity

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, M; Justesen, J

    1989-01-01

    , the number of NK cells normalized in 90 to 180 d, whereas normalization of B cell number was seen only after 180 to 360 d of treatment. Mean pretreatment 2-5A synthetase activity was normal or low, but upon treatment the levels rose immediately to higher than normal values and remained high throughout......A low-dose interferon (IFN)-alpha regimen for the treatment of hairy cell leukemia (HCL) was evaluated by following changes in leukocyte differentiation antigens (LDA), natural killer cell (NK) and 2',5'-oligoadenylate (2-5A) synthetase activities. Due to hairy cells' (HC) weak expression...... of several antigens positive for T cells, B cells, NK cells and monocytes, the use of a double marker specific for hairy cells was needed to distinguish the different subpopulations. Analysis of LDA in peripheral blood (PB) showed a total normalization of the T cell and monocyte numbers within 90 days...

  6. Phosphorolytic activity of Escherichia coli glycyl-tRNA synthetase towards its cognate aminoacyl adenylate detected by 31P-NMR spectroscopy and thin-layer chromatography

    DEFF Research Database (Denmark)

    Led, Jens Jørgen; Switon, Werner K.; Jensen, Kaj Frank

    1983-01-01

    , and Mg2+ ions, catalyzes the synthesis of ADP from three different substrates which all lead to enzyme-bound glycyl adenylate, that is, ATP, adenosine 5'-[ß,¿-methylene]triphosphate and Ap4A. It was furthermore demonstrated that the only pathway by which a synthetase-catalyzed degradation of Ap4A can...... of adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A), also catalyzes the formation of ADP from inorganic phosphate and the enzyme-bound glycyl adenylate. Accordingly it was shown that E. coli glycyl-tRNA synthetase, in the presence of inorganic phosphate, glycine...... of the applied enzyme, the study also showed that the preparation catalyzes a glycine-independent transfer of the ¿-phosphate group from ATP to nucleoside 5'-diphosphates. The importance of the observed reaction between inorganic phosphate and enzyme-bound aminoacyl adenylate in relation to the remaining...

  7. Think big--giant genes in bacteria.

    Science.gov (United States)

    Reva, Oleg; Tümmler, Burkhard

    2008-03-01

    Long genes should be rare in archaea and eubacteria because of the demanding costs of time and resources for protein production. The search in 580 sequenced prokaryotic genomes, however, revealed 0.2% of all genes to be longer than 5 kb (absolute number: 3732 genes). Eighty giant bacterial genes of more than 20 kb in length were identified in 47 taxa that belong to the phyla Thermotogae (1), Chlorobi (3), Planctomycetes (1), Cyanobacteria (2), Firmicutes (7), Actinobacteria (9), Proteobacteria (23) or Euryarchaeota (1) (number of taxa in brackets). Giant genes are strain-specific, differ in their tetranucleotide usage from the bulk genome and occur preferentially in non-pathogenic environmental bacteria. The two longest bacterial genes known to date were detected in the green sulfur bacterium Chlorobium chlorochromatii CaD3 encoding proteins of 36 806 and 20 647 amino acids, being surpassed in length only by the human titin coding sequence. More than 90% of bacterial giant genes either encode a surface protein or a polyketide/non-ribosomal peptide synthetase. Most surface proteins are acidic, threonine-rich, lack cystein and harbour multiple amino acid repeats. Giant proteins increase bacterial fitness by the production of either weapons towards or shields against animate competitors or hostile environments.

  8. Inactivation of Escherichia coli phosphoribosylpyrophosphate synthetase by the 2',3'-dialdehyde derivative of ATP. Identification of active site lysines

    DEFF Research Database (Denmark)

    Hilden, Ida; Hove-Jensen, Bjarne; Harlow, Kenneth W.

    1995-01-01

    The enzyme 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) synthetase from Escherichia coli was irreversibly inactivated on exposure to the affinity analog 2',3'-dialdehyde ATP (oATP). The reaction displayed complex saturation kinetics with respect to oATP with an apparent KD of approximately 0.8 m...... of enzymatic activity. These results imply a functional role for at least two of the identified amino acid residues....

  9. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: Mechanism for deficient glutamatergic transmission?

    Czech Academy of Sciences Publication Activity Database

    Olabarria, M.; Noristani, H. N.; Verkhratsky, Alexei; Rodríguez Arellano, Jose Julio

    2011-01-01

    Roč. 6, č. 1 (2011), s. 55-63 ISSN 1750-1326 R&D Projects: GA ČR GA309/09/1696; GA ČR(CZ) GAP304/11/0184; GA ČR GA305/08/1384; GA ČR GA309/08/1381 Institutional research plan: CEZ:AV0Z50390703 Keywords : astroglia * glutamine synthetase * Alzheimer ?'?s disease Subject RIV: FH - Neurology Impact factor: 4.278, year: 2011

  10. Gene adaptation to extreme environments

    International Nuclear Information System (INIS)

    Marlaire, P.; Rodriguez, V.; Kerner, N.

    2005-01-01

    Full text: This work is oriented to the study of gene adaptation to extreme conditions, such as the hydrothermal system located in Copahue, Neuquen, Argentina. The organisms living there develop under two pressure selection conditions: the high temperature of thermal water and the strong impact of ultraviolet (UV) radiation. Several microorganisms found in this region were isolated and different colonies resistant to UV radiation were selected, a Geobacillus thermoleovorans strain identified through 16S RNA sequence, being the most remarkable. A gene library was prepared out of this strain with UV sensitive bacteria BH200 (uvrA::Tn10). A number of clones were isolated by means of UV selection, the most outstanding being a gene carrier able to codify for the guanosine monophosphate synthetase enzyme (GMPs). The suitability of said enzyme was proved by means of additional assays performed on ght 1 bacteria (guaA26::Tn 10) which lacked the enzyme. A transcript of 1100 pb was detected through Northern Blot. The result was consistent with that obtained for the mapping of the starting transcription site. The cloned GMPs produces an increase in growth speed and a greater biomass in BH200 bacteria. (author)

  11. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.

    Science.gov (United States)

    Seifi, Hamed; De Vleesschauwer, David; Aziz, Aziz; Höfte, Monica

    2014-01-01

    The fungal plant pathogen Botrytis cinerea is the causal agent of the "gray mold" disease on a broad range of hosts. As an archetypal necrotroph, B. cinerea has evolved multiple virulence strategies for inducing cell death in its host. Moreover, progress of B. cinerea colonization is commonly associated with induction of senescence in the host tissue, even in non-invaded regions. In a recent study, we showed that abscisic acid deficiency in the sitiens tomato mutant culminates in an anti-senescence defense mechanism which effectively contributes to resistance against B. cinerea infection. Conversely, in susceptible wild-type tomato a strong induction of senescence could be observed following B. cinerea infection. Building upon this earlier work, we here discuss the immune-regulatory role of a key senescence-associated protein, asparagine synthetase. We found that infection of wild-type tomato leads to a strong transcriptional upregulation of asparagine synthetase, followed by a severe depletion of asparagine titers. In contrast, resistant sitiens plants displayed a strong induction of asparagine throughout the course of infection. We hypothesize that rapid activation of asparagine synthetase in susceptible tomato may play a dual role in promoting Botrytis cinerea pathogenesis by providing a rich source of N for the pathogen, on the one hand, and facilitating pathogen-induced host senescence, on the other.

  12. Long-Range Structural Effects of a Charcot-Marie-Tooth Disease-Causing Mutation in Human Glycyl-TRNA Synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Xie, W.; Nangle, L.A.; Zhang, W.; Schimmel, P.; Yang, X.-L.

    2009-06-04

    Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structures are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located {approx}30 {angstrom} away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.

  13. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Until recently thepartner drug for artemisinin combination therapy (ACT) was sulphadoxine pyrimethamine (SP). Antifolate drug resistancehas been associated with the mutations at dihydropteroate synthase (dhps) and dihydrofolatereductase (dhfr) genes. Thisstudy investigated antifolate drug resistance at the molecular ...

  14. Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays)

    Science.gov (United States)

    2005-01-01

    Unlike animals which accumulate glutathione (γ-glutamyl-L-cysteinyl-glycine) alone as their major thiol antioxidant, several crops synthesize alternative forms of glutathione by varying the carboxy residue. The molecular basis of this variation is not well understood, but the substrate specificity of the respective GSs (glutathione synthetases) has been implicated. To investigate their substrate tolerance, five GS-like cDNAs have been cloned from plants that can accumulate alternative forms of glutathione, notably soya bean [hGSH (homoglutathione or γ-glutamyl-L-cysteinyl-β-alanine)], wheat (hydroxymethylglutathione or γ-glutamyl-L-cysteinyl-serine) and maize (γ-Glu-Cys-Glu). The respective recombinant GSs were then assayed for the incorporation of differing C-termini into γ-Glu-Cys. The soya bean enzyme primarily incorporated β-alanine to form hGSH, whereas the GS enzymes from cereals preferentially catalysed the formation of glutathione. However, when assayed with other substrates, several GSs and one wheat enzyme in particular were able to synthesize a diverse range of glutathione variants by incorporating unusual C-terminal moieties including D-serine, non-natural amino acids and α-amino alcohols. Our results suggest that plant GSs are capable of producing a diverse range of glutathione homologues depending on the availability of the acyl acceptor. PMID:16008521

  15. Proteomic interrogation of androgen action in prostate cancer cells reveals roles of aminoacyl tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Adaikkalam Vellaichamy

    2009-09-01

    Full Text Available Prostate cancer remains the most common malignancy among men in United States, and there is no remedy currently available for the advanced stage hormone-refractory cancer. This is partly due to the incomplete understanding of androgen-regulated proteins and their encoded functions. Whole-cell proteomes of androgen-starved and androgen-treated LNCaP cells were analyzed by semi-quantitative MudPIT ESI- ion trap MS/MS and quantitative iTRAQ MALDI- TOF MS/MS platforms, with identification of more than 1300 high-confidence proteins. An enrichment-based pathway mapping of the androgen-regulated proteomic data sets revealed a significant dysregulation of aminoacyl tRNA synthetases, indicating an increase in protein biosynthesis- a hallmark during prostate cancer progression. This observation is supported by immunoblot and transcript data from LNCaP cells, and prostate cancer tissue. Thus, data derived from multiple proteomics platforms and transcript data coupled with informatics analysis provides a deeper insight into the functional consequences of androgen action in prostate cancer.

  16. A Conserved Proline Triplet in Val-tRNA Synthetase and the Origin of Elongation Factor P

    Directory of Open Access Journals (Sweden)

    Agata L. Starosta

    2014-10-01

    Full Text Available Bacterial ribosomes stall on polyproline stretches and require the elongation factor P (EF-P to relieve the arrest. Yet it remains unclear why evolution has favored the development of EF-P rather than selecting against the occurrence of polyproline stretches in proteins. We have discovered that only a single polyproline stretch is invariant across all domains of life, namely a proline triplet in ValS, the tRNA synthetase, that charges tRNAVal with valine. Here, we show that expression of ValS in vivo and in vitro requires EF-P and demonstrate that the proline triplet located in the active site of ValS is important for efficient charging of tRNAVal with valine and preventing formation of mischarged Thr-tRNAVal as well as efficient growth of E. coli in vivo. We suggest that the critical role of the proline triplet for ValS activity may explain why bacterial cells coevolved the EF-P rescue system.

  17. Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis[W

    Science.gov (United States)

    Peat, Thomas S.; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-01-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins. PMID:23136372

  18. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

    Science.gov (United States)

    Miller, Bradley R; Drake, Eric J; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2016-10-21

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification

    Directory of Open Access Journals (Sweden)

    Pengfei Fang

    2015-12-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.

  20. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    Science.gov (United States)

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  1. Entamoeba lysyl-tRNA synthetase contains a cytokine-like domain with chemokine activity towards human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Manuel Castro de Moura

    2011-11-01

    Full Text Available Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II. This Entamoeba EMAPII-like polypeptide (EELP is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity.

  2. Modulation of astrocytic glutamine synthetase expression and cell viability by histamine in cultured cortical astrocytes exposed to OGD insults.

    Science.gov (United States)

    Wang, Xiao-Fen; Hu, Wei-Wei; Yan, Hai-Jing; Tan, Li; Gao, Jie-Qiong; Tian, Yue-Yang; Shi, Xiao-Jie; Hou, Wei-Wei; Li, Juan; Shen, Yao; Chen, Zhong

    2013-08-09

    Histamine, a neurotransmitter or neuromodulator has been demonstrated to be neuroprotective in cerebral ischemia. However, few reports concern its function on astrocytes during cerebral ischemia. The purpose of this study was to investigate the effects of histamine on astrocytic cell damage and glutamate signaling, especially on glutamine synthetase (GS) expression in primary cultured cortical astrocytes exposed to oxygen-glucose deprivation (OGD) insult. OGD for 6h caused a severe damage of astrocytic mitochondrial function, and decreased GS expression and then increased the extracellular glutamate level. Pretreatment with histamine significantly prevented the cell damage and rescued the expression of GS in a concentration-dependent manner. The protective effect of histamine on astrocytic cell damage could be partly reversed either by H1 receptor antagonist pyrilamine or H2 receptor antagonist cimetidine. However, the regulatory effect of histamine on GS expression was antagonized only by pyrilamine. In addition, bisindolylmaleimide II, a broad-spectrum inhibitor of PKC, reversed the regulatory action of histamine on GS expression. These results indicate that histamine can effectively protect against OGD-induced cell damage in astrocytes through H1 and H2 receptors, and its regulatory effect on astrocytic GS expression may be due to the activation of H1 receptor and PKC pathway. Histamine may be an endogenous protective factor and calls for its further study as a regulator of astrocyte function during ischemic stroke. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase.

    Science.gov (United States)

    Chopra, Shaileja; Palencia, Andrés; Virus, Cornelia; Tripathy, Ashutosh; Temple, Brenda R; Velazquez-Campoy, Adrian; Cusack, Stephen; Reader, John S

    2013-01-01

    Leucyl-tRNA synthetases (LeuRSs) have an essential role in translation and are promising targets for antibiotic development. Agrocin 84 is a LeuRS inhibitor produced by the biocontrol agent Agrobacterium radiobacter K84 that targets pathogenic strains of A. tumefaciens, the causative agent of plant tumours. Agrocin 84 acts as a molecular Trojan horse and is processed inside the pathogen into a toxic moiety (TM84). Here we show using crystal structure, thermodynamic and kinetic analyses, that this natural antibiotic employs a unique and previously undescribed mechanism to inhibit LeuRS. TM84 requires tRNA(Leu) for tight binding to the LeuRS synthetic active site, unlike any previously reported inhibitors. TM84 traps the enzyme-tRNA complex in a novel 'aminoacylation-like' conformation, forming novel interactions with the KMSKS loop and the tRNA 3'-end. Our findings reveal an intriguing tRNA-dependent inhibition mechanism that may confer a distinct evolutionary advantage in vivo and inform future rational antibiotic design.

  4. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M. (UMM); (HWMRI)

    2016-09-05

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.

  5. Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells

    Science.gov (United States)

    Han, Jung Min; Kim, Sunghoon; Celada, Antonio; Ribas de Pouplana, Lluís

    2011-01-01

    Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity. PMID:22140588

  6. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2014-03-01

    Full Text Available During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA, which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi.

  7. Pharmacologic or Genetic Targeting of Glutamine Synthetase Skews Macrophages toward an M1-like Phenotype and Inhibits Tumor Metastasis

    Directory of Open Access Journals (Sweden)

    Erika M. Palmieri

    2017-08-01

    Full Text Available Glutamine-synthetase (GS, the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis.

  8. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily.

    Science.gov (United States)

    Reuter, K; Mofid, M R; Marahiel, M A; Ficner, R

    1999-12-01

    The Bacillus subtilis Sfp protein activates the peptidyl carrier protein (PCP) domains of surfactin synthetase by transferring the 4'-phosphopantetheinyl moiety of coenzyme A (CoA) to a serine residue conserved in all PCPs. Its wide PCP substrate spectrum renders Sfp a biotechnologically valuable enzyme for use in combinatorial non-ribosomal peptide synthesis. The structure of the Sfp-CoA complex determined at 1.8 A resolution reveals a novel alpha/beta-fold exhibiting an unexpected intramolecular 2-fold pseudosymmetry. This suggests a similar fold and dimerization mode for the homodimeric phosphopantetheinyl transferases such as acyl carrier protein synthase. The active site of Sfp accommodates a magnesium ion, which is complexed by the CoA pyrophosphate, the side chains of three acidic amino acids and one water molecule. CoA is bound in a fashion that differs in many aspects from all known CoA-protein complex structures. The structure reveals regions likely to be involved in the interaction with the PCP substrate.

  9. Functions of Glutamine Synthetase Isoforms in the Nitrogen Metabolism of Plants

    DEFF Research Database (Denmark)

    Guan, Miao

    fertilizers accordingly needs to be optimized in order to make agriculture more sustainable. One pathway to achieve such optimization is to improve plant N use efficiency (NUE) by developing new crop genotypes with improved yield per unit of N fertilizer applied. For this purpose, more and better knowledge......Nitrogen is one of the major plant nutrients limiting crop production worldwide. In many parts of the world the availability of N fertilizers is limited, whereas in other parts of the world too much N fertilizer is applied, leading to serious negative environmental consequences. The use of N...... about bottlenecks in plant N assimilation is needed. Based on a reverse genetics strategy embracing characterization of knockout mutants in the model plant species Arabidopsis, the results obtained in this PhD study have provided new information about the specific roles of two genes Gln1;1 and Gln1...

  10. High Throughput Virtual Screening to Identify Novel natural product Inhibitors for MethionyltRNA-Synthetase of Brucella melitensis.

    Science.gov (United States)

    Kumari, Madhulata; Chandra, Subhash; Tiwari, Neeraj; Subbarao, Naidu

    2017-01-01

    The Brucella melitensis methionyl-tRNA-synthetase (MetRSBm) is a promising target for brucellosis drug development. The virtual screening of large libraries of a drug like molecules against a protein target is a common strategy used to identify novel inhibitors. A High throughput virtual screening was performed to identify hits to the potential antibrucellosis drug target, MetRSBm. The best inhibitor identified from the literature survey was 1312, 1415, and 1430. In the virtual screening 56,400 compounds of ChEMBL antimycobacterial library, 1596 approved drugs, 419 Natural product IV library, and 2396 methionine analogous were docked and rescoring, identified top 10 ranked compounds as anti-mycobacterial leads showing G-scores -10.27 to -8.42 (in kcal/mol), approved drugs G-scores -9.08 to -6.60 (in kcal/mol), Natural product IV library G-scores -10.55 to -6.02 (in kcal/mol), methionine analogous Gscores -11.20 to -8.51 (in kcal/mol), and compared with all three known inhibitors (as control) G-scores -3.88 to -3.17 (in kcal/mol). This result indicates these novel compounds have the best binding affinity for MetRSBm. In this study, we extrapolate that the analogous of methionine for find novel drug likeness has been identified [4-(L-histidyl)-2-phenylbenzoyl] methionine hydrochloride, might show the inhibitor of Brucella melitensis effect by interacting with MetRS enzyme. We suggests that Prumycin as a natural product is the novel drugs for brucellosis.

  11. Effects of hypo- and hyperthyroidism on rat liver microsomal long-chain fatty acyl-CoA synthetase and hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Dang, A.Q.; Faas, F.H.; Carter, W.J.

    1986-05-01

    The effects of hyperthyroidism (hyperT/sub 3/), (tri-iodothryonine (T/sub 3/) injected rats), and hypothyroidism (hypoT/sub 3/) (thyroidectomized rats) on the activation of fatty acids by a microsomal long-chain fatty acyl-CoA (LCA-CoA) synthetase and the degradation of LCA-CoA by a microsomal LCA-CoA hydrolase was determined. MAS was assayed by measuring the (1-/sup 14/C)-palmitate or -1-/sup 14/C) oleate incorporated into its water soluble CoA ester. MAH was assayed spectrophotomerically by following the reduction of 5',5'-dithiobis-(2-nitrobenzoic acid) by the CoA released from palmitoyl-CoA or oleoyl-CoA. Enzyme activities are given as mean (nmoles/mg/min) +/- SEM. MAS activities were decreased 36-44% (p < 0.01) in both hypoT/sub 3/ and hyperT/sub 3/ (controls = 101 +/- 4 (n = 11, (1-/sup 14/C)-palmitate) of 72 +/- 2 (n = 5,(1-/sup 14/C)oleate)). These decreases may contribute to the decreased triacelyglycerol (TG) and phospholipid contents in the hyperT/sub 3/ liver and the decreased clearance rate of plasma TG in the hypoT/sub 3/. MAH was decreased 27-42% (p<0.01) only in hypoT/sub 3/ (controls = 77 +/- 3 (n = 11, palmitoyl-CoA) or 45 +/- 1 (n = 5, oleoyl-CoA)). This decrease was corrected by T/sub 3/ treatment. Since the decreased MAH would increase the availability of LCA-CoA, it may contribute to the increased TG synthesis in hypoT/sub 3/.

  12. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37.

    Science.gov (United States)

    Kainulainen, Veera; Loimaranta, Vuokko; Pekkala, Anna; Edelman, Sanna; Antikainen, Jenni; Kylväjä, Riikka; Laaksonen, Maiju; Laakkonen, Liisa; Finne, Jukka; Korhonen, Timo K

    2012-05-01

    Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.

  13. Characterization of the Functional Variance in MbtH-like Protein Interactions with a Nonribosomal Peptide Synthetase.

    Science.gov (United States)

    Schomer, Rebecca A; Thomas, Michael G

    2017-10-10

    Many nonribosomal peptide synthetases (NRPSs) require MbtH-like proteins (MLPs) for solubility or for activation of amino acid substrate by the adenylation domain. MLPs are capable of functional crosstalk with noncognate NRPSs at varying levels. Using enterobactin biosynthesis in Escherichia coli as a model MLP-dependent NRPS system, we use in vivo and in vitro techniques to characterize how seven noncognate MLPs influence the function of the enterobactin NRPS EntF when the cognate MLP, YbdZ, is absent. Using a series of in vitro assays to analyze EntF solubility, adenylation, aminoacylation, and in vitro enterobactin production, we show that interactions between MLPs and NRPSs are multifaceted and more complex than previously appreciated. We separate MLP influence on solubility and function in a manner that shows altered solubility is not indicative of a functional MLP/NRPS pair. Although much of the functional variation among these noncognates can be explained by differences in EntF affinity for an MLP or the extent an MLP alters EntF l-Ser affinity, we demonstrate that MLPs can have a broader impact beyond solubility and adenylation. First, we show that a noncognate MLP can affect formation of l-Ser-S-EntF. Second, under in vitro conditions saturating for substrate and MLP, enterobactin production remains compromised in the absence of an appropriate MLP partner. These data suggest that we expand our investigations into how the MLPs influence NRPS enzymology. A more detailed understanding of these influences will be essential for downstream engineering of hybrid NRPS systems.

  14. High pretherapeutic thymidylate synthetase and MRP-1 protein levels are associated with nonresponse to neoadjuvant chemotherapy in oesophageal adenocarcinoma patients.

    Science.gov (United States)

    Langer, Rupert; Ott, Katja; Feith, Marcus; Lordick, Florian; Specht, Katja; Becker, Karen; Hofler, Heinz

    2010-10-01

    The aim of this study was to determine whether pretherapeutic protein expression levels of the excision repair cross-complementing (ERCC1) enzyme, thymidylate synthetase (TS), multidrug-resistance protein 1 (MRP-1) and P-glycoprotein (P-gp) are associated with tumour response to cisplatin and fluorouracil (5-FU)-based neoadjuvant chemotherapy in oesophageal adenocarcinomas. The expression levels of ERCC1, TS, MDR-1 and P-gp were determined immunohistochemically in pretherapeutic tumour biopsies from 40 oesophageal adenocarcinoma patients and were correlated with histopathological tumour regression and with patient survival. Protein expression was compared to mRNA data, which was previously published for ERCC1, TS and MRP-1 and newly determined for the purpose of this study for MDR-1/P-gp. High-TS and -MRP-1 protein expression was correlated with tumour non-response to chemotherapy (P = 0.001 and P = 0.036, respectively). For ERCC-1 and P-gp, no association between pretherapeutic protein expression and response was found. There was no correlation between mRNA levels and protein expression for all investigated markers. Survival analysis revealed a trend towards increased survival for low-ERCC-1 expression (P = 0.079). The pattern of pretherapeutic expression of TS and MRP-1 is related to chemotherapy response in oesophageal adenocarcinoma patients. Immunohistochemical assessment of these markers may be helpful for response prediction. J. Surg. Oncol. 2010;102:503-508. © 2010 Wiley-Liss, Inc.

  15. Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses

    Directory of Open Access Journals (Sweden)

    Liliana Santos Silva

    2013-09-01

    Full Text Available Nitric oxide (NO is emerging as an important regulatory player in the Rhizobium-legume symbiosis. The occurrence of NO during several steps of the symbiotic interaction suggests an important, but yet unknown, signaling role of this molecule for root nodule formation and functioning. The identification of the molecular targets of NO is key for the assembly of the signal transduction cascade that will ultimately help to unravel NO function. We have recently shown that the key nitrogen assimilatory enzyme Glutamine Synthetase (GS is a molecular target of NO in root nodules of Medicago truncatula, being post-translationally regulated by tyrosine nitration in relation to nitrogen fixation. In functional nodules of M. truncatula NO formation has been located in the bacteroid containing cells of the fixation zone, where the ammonium generated by bacterial nitrogenase is released to the plant cytosol and assimilated into the organic pools by plant GS. We propose that the NO-mediated GS post-translational inactivation is connected to nitrogenase inhibition induced by NO and is related to metabolite channeling to boost the nodule antioxidant defenses. Glutamate, a substrate for GS activity is also the precursor for the synthesis of glutathione (GSH, which is highly abundant in root nodules of several plant species and known to play a major role in the antioxidant defense participating in the ascorbate/GSH cycle. Existing evidence suggests that upon NO-mediated GS inhibition, glutamate could be channeled for the synthesis of GSH. According to this hypothesis, GS would be involved in the NO-signaling responses in root nodules and the NO-signaling events would meet the nodule metabolic pathways to provide an adaptive response to the inhibition of symbiotic nitrogen fixation by reactive nitrogen species (RNS.

  16. Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii

    Directory of Open Access Journals (Sweden)

    Qian Chao-Dong

    2012-09-01

    Full Text Available Abstract Background Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a β-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. Results A potential pelgipeptin synthetase gene cluster (plp was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPSs, with one, seven, and one module(s, respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1 provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. Conclusions In this study, a gene cluster (plp responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.

  17. Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity

    DEFF Research Database (Denmark)

    Guan, Miao; de Bang, Thomas Christian; Pedersen, Carsten

    2016-01-01

    Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of th...... and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots....

  18. Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/UV-A- or by UV-B-light

    International Nuclear Information System (INIS)

    Migge, A.; Carrayol, E.; Hirel, B.; Lohmann, M.; Meya, G.; Becker, T.W.

    1998-01-01

    The photomorphogenetic aurea mutant of tomato severely deficient in spectrophotometrically active phytochromes was used to study the light-regulation of the single-copy nuclear gene encoding plastidic glutamine synthetase (GS-2; EC 6.1.3.2). The de-etiolation of dark-grown aurea mutant seedling cotyledons showed an obligatory dependency on blue light. A limited red light-responsiveness of etiolated aurea cotyledons is, however, retained as seen by the stimulation of both the GS-2 transcript and protein level in the cotyledons of aurea seedlings during growth in red light. The subunits of the octameric GS-2 enzyme were represented by polypeptides with similar electrophoretic mobilities (polypeptides a) in etiolated wild-type or aurea mutant cotyledons. GS-2 proteins with similar apparent molecular masses were also seen in the cotyledons of red light-grown aurea mutant seedlings. In contrast, GS-2 polypeptides with different apparent molecular masses (polypeptides a and b) were detected in the cotyledons of wild-type seedlings grown in red light. This difference indicates that the (post-translational) modification of tomato GS-2 subunit composition is mediated by the photoreceptor phytochrome. The illumination of etiolated wild-type or aurea cotyledons with UV-A- or UV-B-light light resulted in an increase in both the GS-2 transcript and protein level. Following illumination of etiolated wild-type seedlings with UV-A-light, the relative proportion of the GS-2 polypeptides a and b was similar than upon irradiation with blue light but different than after exposure to UV-B- or red light. This result suggests the involvement of a blue/ UV-A-light-specific photoreceptor in the regulation of tomato GS-2 subunit composition. (author)

  19. In silico identification and analysis of phytoene synthase genes in plants.

    Science.gov (United States)

    Han, Y; Zheng, Q S; Wei, Y P; Chen, J; Liu, R; Wan, H J

    2015-08-14

    In this study, we examined phytoene synthetase (PSY), the first key limiting enzyme in the synthesis of carotenoids and catalyzing the formation of geranylgeranyl pyrophosphate in terpenoid biosynthesis. We used known amino acid sequences of the PSY gene in tomato plants to conduct a genome-wide search and identify putative candidates in 34 sequenced plants. A total of 101 homologous genes were identified. Phylogenetic analysis revealed that PSY evolved independently in algae as well as monocotyledonous and dicotyledonous plants. Our results showed that the amino acid structures exhibited 5 motifs (motifs 1 to 5) in algae and those in higher plants were highly conserved. The PSY gene structures showed that the number of intron in algae varied widely, while the number of introns in higher plants was 4 to 5. Identification of PSY genes in plants and the analysis of the gene structure may provide a theoretical basis for studying evolutionary relationships in future analyses.

  20. Identification of the Biosynthetic Gene Clusters for the Lipopeptides Fusaristatin A and W493 B in Fusarium graminearum and F. pseudograminearum

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Sondergaard, Teis Esben; Covarelli, Lorenzo

    2014-01-01

    The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7...... Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS....

  1. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Directory of Open Access Journals (Sweden)

    Kathryn E Bushley

    2013-06-01

    Full Text Available The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921, the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS that encodes for cyclosporin synthetase (simA and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc., and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further

  2. Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth disease

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Schimmel, Paul; Yang, Xiang-Lei, E-mail: xlyang@scripps.edu [Departments of Molecular Biology and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2006-12-01

    Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth Disease. Glycyl-tRNA synthetase (GlyRS) is one of a group of enzymes that catalyze the synthesis of aminoacyl-tRNAs for translation. Mutations of human and mouse GlyRSs are causally associated with Charcot–Marie–Tooth disease, the most common genetic disorder of the peripheral nervous system. As the first step towards a structure–function analysis of this disease, native human GlyRS was expressed, purified and crystallized. The crystal belonged to space group P4{sub 3}2{sub 1}2 or its enantiomorphic space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 91.74, c = 247.18 Å, and diffracted X-rays to 3.0 Å resolution. The asymmetric unit contained one GlyRS molecule and had a solvent content of 69%.

  3. Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth disease

    International Nuclear Information System (INIS)

    Xie, Wei; Schimmel, Paul; Yang, Xiang-Lei

    2006-01-01

    Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth Disease. Glycyl-tRNA synthetase (GlyRS) is one of a group of enzymes that catalyze the synthesis of aminoacyl-tRNAs for translation. Mutations of human and mouse GlyRSs are causally associated with Charcot–Marie–Tooth disease, the most common genetic disorder of the peripheral nervous system. As the first step towards a structure–function analysis of this disease, native human GlyRS was expressed, purified and crystallized. The crystal belonged to space group P4 3 2 1 2 or its enantiomorphic space group P4 1 2 1 2, with unit-cell parameters a = b = 91.74, c = 247.18 Å, and diffracted X-rays to 3.0 Å resolution. The asymmetric unit contained one GlyRS molecule and had a solvent content of 69%

  4. Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection

    Directory of Open Access Journals (Sweden)

    Lorena eSilva

    2015-06-01

    Full Text Available The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions. In silico analysis of amino acid usage revealed remarkable differences between the mimivirus isolates and the A. castellanii host. Relative expression analysis by quantitative PCR revealed that mimivirus was able to modulate the expression of eight viral translation-related genes according to the amoebal growth condition, with a higher induction of gene expression under starvation. Some mimivirus isolates presented differences in translation-related gene expression; notably, polymorphisms in the promoter regions correlated with these differences. Two mimivirus isolates did not encode the tryptophanyl-tRNA synthetase in their genomes, which may be linked with low conservation pressure based on amino acid usage analysis. Taken together, our data suggest that mimivirus can modulate the expression of translation-related genes in response to nutrient availability in the host cell, allowing the mimivirus to adapt to different hosts growing under different nutritional conditions.

  5. Studying Genes

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Studying Genes Studying Genes Tagline (Optional) Middle/Main Content Area PDF Version (382 KB) Other Fact Sheets What are genes? Genes are segments of DNA that contain instructions ...

  6. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  7. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    Science.gov (United States)

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. © The Author 2015. Published by Oxford University Press

  8. Activity of enzymes that hydrolyze sucrose and raffinose in the first stages of germination of Lactuca sativa cv. Grand rapids. [Invertase, alpha-galactosidose, and sucrose synthetase were observed

    Energy Technology Data Exchange (ETDEWEB)

    Slabnik, E.; Calderon, P.; Diaz, H.

    1981-01-01

    The activities of enzymes capable of metabolizing raffinose and sucrose on achenes of lettuce were studied. During the first stages of germination, evidence was obtained for the occurrence of invertase in the endosperm and embryonic axis. Alpha-galactosidase was localized in the endosperm and cotyledons. Sucrose synthetase was present in the dry seed.

  9. [Detection of gene expression alteration of myeloma cells treated with arsenic trioxide].

    Science.gov (United States)

    Li, Cui-Lian; Chen, Shi-Lun; Chen, Wen-Ming; Liu, Jing-Zhong; Xiao, Bai; Zhang, Hai-Bo

    2005-04-01

    To investigate the effect of arsenic trioxide on multiple myeloma (MM) cell gene expression and explore the molecular mechanism of arsenic trioxide therapy for MM. U266 cells were divided into two groups, group A as control group and group B as test group. Cells were cultured for 48 hours, and total RNA and mRNA were extracted. Suppression subtractive hybridization (SSHs) was performed to distinguish the differentially expressed genes. The products were cloned into pGEM-T Easy Vector, and transfected into the competent host JM109 to construct two subtractive libraries. Positive colonies were selected by blue-white screening, and the plasmids were extracted. Homologous comparison was conducted in GenBank. Five downregulated clones were isolated in the first SSH: (1) Aminopeptidase N, (2) Homosapiens tumor translationally-controlled protein 1, (3) Human ATP synthetase A chain, (4) Signal recognition particle A10, (5) Mitochondrial ATP synthetase/ATPase subunit 6. Four upregulated clones were isolated in the second SSH: (1) Calcium-binding protein A10, (2) Keratin 6A, (3) 45 kD MIP repetitive element containing splicing factor and (4) poly(A)-binding protein. Arsenic trioxide exerts proliferation inhibition and apoptosis induction on MM cells by regulating genes expression.

  10. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor

    Science.gov (United States)

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative n...

  11. Comparative analysis of oligonucleotide primers for high-throughput screening of genes encoding adenylation domains of nonribosomal peptide synthetases in actinomycetes

    Czech Academy of Sciences Publication Activity Database

    Vopálenská, I.; Váchová, Libuše; Palková, Z.

    2015-01-01

    Roč. 72, OCT 2015 (2015), s. 160-167 ISSN 0956-5663 R&D Projects: GA TA ČR(CZ) TA01011461; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Yeast biosensor * Copper ion detection * Purine synthesis pathway Subject RIV: DJ - Water Pollution ; Quality Impact factor: 7.476, year: 2015

  12. Mutations of pvdhfr and pvdhps genes in vivax endemic-malaria areas in Kota Marudu and Kalabakan, Sabah.

    Science.gov (United States)

    Sastu, Umi Rubiah; Abdullah, Noor Rain; Norahmad, Nor Azrina; Saat, Muhammad Nor Farhan; Muniandy, Prem Kumar; Jelip, Jenarun; Tikuson, Moizin; Yusof, Norsalleh; Sidek, Hasidah Mohd

    2016-02-05

    Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah. Every individual was screened for presence of malaria infection using a commercial rapid dipstick assay, ParaMax-3™ (Zephyr Biomedical, India). Individuals tested positive for P. vivax had blood collected and parasite DNA extracted. The pvdhfr and pvdhps genes were amplified by nested-PCR. Restriction fragment length polymorphism (RFLP) was carried out for detection of specific mutations in pvdhfr at codons 13Leu, 33Leu, 57Ile/Leu, 58Arg, 61Met, 117Asn/Thr, and 173Leu and pvdhps at codons 383Gly and 553Gly. The PCR-RFLP products were analysed using the Agilent 2100 Bioanalyzer (Agilent Technology, AS). A total of 619 and 2119 individuals from Kalabakan and Kota Marudu, respectively participated in the study. In Kalabakan and Kota Marudu, 9.37 and 2.45 % were tested positive for malaria and the positivity for P. vivax infection was 4.2 and 0.52 %, respectively. No mutation was observed at codon 13, 33 and 173 on pvdhfr and at codon 553 on pvdhps gene on samples from Kalabakan and Kota Marudu. One-hundred per cent mutations on pvdhfr were at 57Leu and 117Thr. Mutation at 58Arg and 61Met was observed to be higher in Kota Marudu 72.73 %. Mutation at 383Gly on pvdhps was highest in Kalabakan with 80

  13. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase

    International Nuclear Information System (INIS)

    Kohda, D.; Kawai, G.; Yokoyama, S.; Kawakami, M.; Mizushima, S.; Miyazawa, T.

    1987-01-01

    The 400-MHz 1 H NMR spectra of L-isoleucine and L-valine were measured in the presence of Escherichia coli isoleucyl-tRNA synthetase (IleRS). Because of chemical exchange of L-isoleucine or L-valine between the free state and the IleRS-bound state, a transferred nuclear Overhauser effect (TRNOE) was observed among proton resonances of L-isoleucine or L-valine. However, in the presence of isoleucyl adenylate tightly bound to the amino acid activation site of IleRS, no TRNOE for L-isoleucine or L-valine was observed. This indicates that the observed TRNOE is due to the interaction of L-isoleucine or L-valine with the amino acid activation site of IleRS. The conformations of these amino acids in the amino acid activation site of IleRS were determined by the analyses of time dependences of TRNOEs and TRNOE action spectra. The IleRS-bound L-isoleucine takes the gauche + form about the C/sub α/-C/sub β/ bond and the trans form about the C/sub β/-C/sub γ 1 / bond. The IleRS-bound L-valine takes the guache - form about the C/sub α/-C/sub β/ bond. Thus, the conformation of the IleRS-bound L-valine is the same as that of IleRS-bound L-isoleucine except for the δ-methyl group. The side chain of L-isoleucine or L-valine lies in an aliphatic hydrophobic pocket of the active site of IleRS. Such hydrophobic interaction with IleRS is more significant for L-isoleucine than for L-valine. The TRNOE analysis is useful for studying the amino acid discrimination mechanism of aminoacyl-tRNA synthetases

  14. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase

    International Nuclear Information System (INIS)

    Wells, P.G.; Zubovits, J.T.; Wong, S.T.; Molinari, L.M.; Ali, S.

    1989-01-01

    Teratogenicity of the anticonvulsant drug phenytoin is thought to involve its bioactivation by cytochromes P-450 to a reactive arene oxide intermediate. We hypothesized that phenytoin also may be bioactivated to a teratogenic free radical intermediate by another enzymatic system, prostaglandin synthetase. To evaluate the teratogenic contribution of this latter pathway, an irreversible inhibitor of prostaglandin synthetase, acetylsalicylic acid (ASA), 10 mg/kg intraperitoneally (ip), was administered to pregnant CD-1 mice at 9:00 AM on Gestational Days 12 and 13, 2 hr before phenytoin, 65 mg/kg ip. Other groups were pretreated 2 hr prior to phenytoin administration with either the antioxidant caffeic acid or the free radical spin trapping agent alpha-phenyl-N-t-butylnitrone (PBN). Caffeic acid and PBN were given ip in doses that respectively were up to 1.0 to 0.05 molar equivalents to the dose of phenytoin. Dams were killed on Day 19 and the fetuses were assessed for teratologic anomalies. A similar study evaluated the effect of ASA on the in vivo covalent binding of radiolabeled phenytoin administered on Day 12, in which case dams were killed 24 hr later on Day 13. ASA pretreatment produced a 50% reduction in the incidence of fetal cleft palates induced by phenytoin (p less than 0.05), without significantly altering the incidence of resorptions or mean fetal body weight. Pretreatment with either caffeic acid or PBN resulted in dose-related decreases in the incidence of fetal cleft palates produced by phenytoin, with maximal respective reductions of 71 and 82% at the highest doses of caffeic acid and PBN (p less than 0.05)

  15. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-01-01

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  16. Correlation between polymorphisms in ADSL and GARS-AIRS-GART genes with inosine 5'-monophosphate (IMP) contents in Beijing-you chickens.

    Science.gov (United States)

    Ye, M H; Chen, J L; Zhao, G P; Zheng, M Q; Wen, J

    2010-10-01

    1. The association of single nucleotide polymorphisms identified within the ADSL (adenylosuccinate lyase deficiency) gene and GARS-AIRS-GART (glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase) gene with the content of inosine 5'-monophosphate (IMP) was studied in a population of male Beijing-you (BJY) chickens slaughtered at 90 d of age. 2. A single nucleotide polymorphism in exon 2 of the ADSL gene had an effect on IMP content. Chickens inheriting the positive allele at ADSL, both homozygous and heterozygous genotypes, had a higher content of IMP in breast muscle than did individuals without it. 3. Similar results were obtained for the GARS-AIRS-GART gene. The marker at the 5' untranslated region (UTR) of the GARS-AIRS-GART gene was also significant for the IMP value. Chickens inheriting the genotypes with the positive allele at this locus had a much higher content of IMP than did those homozygous for the unfavourable one. 4. Interactions between ADSL and GARS-AIRS-GART were detected for such traits as body weight and muscle yields in the tested population. The two loci acted in an additive fashion. Because IMP is one of the most important flavour components in meat, markers developed at these two genes, as well as the combination genotypes, could be used as potential molecular markers for improving chicken quality.

  17. gene structure, gene expression

    Indian Academy of Sciences (India)

    and seedling leaves were sampled at 6 h after the treatment. For cold stress, the seedlings were transferred to 4◦C growth chamber for 30 min. Control seedlings were exposed to none of these treatments. To examine the expression patterns of these predicted genes in Poplar and to further confirm their stress responsive-.

  18. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes.

  19. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression.

    Directory of Open Access Journals (Sweden)

    Khyobeni Mozhui

    2008-11-01

    Full Text Available A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1 that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1, and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility. Here, we ask whether this QTL-rich region on Chr 1 (Qrr1 consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p and a distal part (Qrr1d, each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.

  20. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  1. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    International Nuclear Information System (INIS)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T.

    2004-01-01

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  2. The murine double-stranded RNA-dependent protein kinase PKR and the murine 2',5'-oligoadenylate synthetase-dependent RNase L are required for IFN-β-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture

    International Nuclear Information System (INIS)

    Al-khatib, Khaldun; Williams, Bryan R.G.; Silverman, Robert H.; Halford, William; Carr, Daniel J.J.

    2003-01-01

    A study was undertaken to evaluate the efficacy of an adenoviral construct expressing the murine interferon-β (IFN-β) transgene (Ad:IFN-β) against herpes simplex virus type 1 (HSV-1) infection in a primary trigeminal ganglion (TG) cell culture. The transduction efficiency ranged from 0.2 to 11.0% depending on the multiplicity of infection (m.o.i.) of the adenoviral vector (0.5-50.0). Moreover, neurons were the main target of the adenoviral transduction. TG cultures transduced with Ad:IFN-β displayed up to a 19-fold reduction in viral titers compared with cells transduced with an Ad:Null or nontransduced TG culture controls. Transduction with Ad:IFN-β up-regulated two critical antiviral genes, double-stranded RNA-dependent protein kinase R (PKR) and 2',5'-oligoadenylate synthetase (OAS). The absence of PKR or RNase L (downstream effector molecule of OAS) attenuated Ad:IFN-β efficacy against HSV-1 replication, implicating a critical role for PKR and OAS/RNase systems in the establishment of IFN-induced resistance against HSV-1 in TG cells

  3. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R: partial purification and properties of methionyl-transfer ribonucleic acid synthetase and methionyl-transfer ribonucleic acid formyltransferase.

    Science.gov (United States)

    Samuel, C E; Rabinowitz, J C

    1974-04-01

    The initiation of protein synthesis by Streptococcus faecalis R grown in folate-free culture occurs without N-formylation or N-acylation of methionyl-tRNA(f) (Met). Methionyl-tRNA synthetase and methionyl-tRNA formyltransferase were partially purified from S. faecalis grown under normal culture conditions in the presence of folate (plus-folate); the general properties of the enzymes were determined and compared with the properties of the enzymes purified from wild-type cells grown in the absence of folate (minus-folate). S. faecalis methionyl-tRNA synthetase displays optimal activity at pH values between 7.2 and 7.8, requires Mg(2+), and has an apparent molecular weight of 106,000, as determined by gel filtration, and 127,000, as determined by sucrose density gradient centrifugation. The K(m) values of plus-folate methionyl-tRNA synthetase for each of the three substrates in the aminoacylation reaction (l-methionine, adenosine triphosphate, and tRNA) are nearly identical to the respective substrate Michaelis constants of minus-folate methionyl-tRNA synthetase. Furthermore, both plus- and minus-folate S. faecalis methionyl-tRNA synthetases catalyze, at equal rates, the aminoacylation of tRNA(f) (Met) and tRNA(m) (Met) isolated from either plus-folate or minus-folate cells. S. faecalis methionyl-tRNA formyltransferase displays optimal activity at pH values near 7.0, is stimulated by Mg(2+), and has an apparent molecular weight of approximately 29,900 when estimated by sucrose density gradient centrifugation. The K(m) value of plus-folate formyltransferase for plus-folate Met-tRNA(f) (Met) does not differ significantly from that of minus-folate formyltransferase for minus-folate Met-tRNA(f) (Met). Both enzymes can utilize either 10-formyltetrahydrofolate or 10-formyltetrahydropteroyltriglutamate as the formyl donor; the Michaelis constant for the monoglutamyl pteroyl coenzyme is slightly less than that of the triglutamyl pteroyl coenzyme for both transformylases

  4. Transcriptional regulation of the Hansenula polymorpha GSH2 gene in the response to cadmium ion treatment

    Directory of Open Access Journals (Sweden)

    O. V. Blazhenko

    2014-02-01

    Full Text Available In a previous study we cloned GSH2 gene, encoding γ-glutamylcysteine synthetase (γGCS in the yeast Hansenula рolymorpha. In this study an analysis of molecular organisation of the H. рolymorpha GSH2 gene promoter was conducted and the potential binding sites of Yap1, Skn7, Creb/Atf1, and Cbf1 transcription factors were detected. It was established that full regulation of GSH2 gene expression in the response to cadmium and oxidative stress requires the length of GSH2 promoter to be longer than 450 bp from the start of translation initiation. To study the transcriptional regulation of H. polymorpha GSH2 gene recombinant strain, harbouring­ a reporter system, in which 1.832 kb regulatory region of GSH2 gene was fused to structural and terminatory regions of alcohol oxidase gene, was constructed. It was shown that maximum increase in H. polymorpha GSH2 gene transcription by 33% occurs in the rich medium under four-hour incubation with 1 μM concentration of cadmium ions. In the minimal medium the GSH2 gene expression does not correlate with the increased total cellular glutathione levels under cadmium ion treatment. We assume that the increased content of total cellular glutathione under cadmium stress in the yeast H. polymorpha probably is not controlled on the level of GSH2 gene transcription.

  5. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.

    Science.gov (United States)

    Rayevsky, A V; Sharifi, M; Tukalo, M A

    2017-09-01

    Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNA Leu was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNA Leu and isoleucyl-tRNA Leu . In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Recognition of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp.

    Science.gov (United States)

    Mofid, Mohammad Reza; Finking, Robert; Marahiel, Mohamed A

    2002-05-10

    The acyl carrier proteins (ACPs) of fatty acid synthase and polyketide synthase as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases are modified by 4'-phosphopantetheinyl transferases from inactive apo-enzymes to their active holo forms by transferring the 4'-phosphopantetheinyl moiety of coenzyme A to a conserved serine residue of the carrier protein. 4'-Phosphopantetheinyl transferases have been classified into two types; the AcpS type accepts ACPs of fatty acid synthase and some ACPs of type II polyketide synthase as substrates, whereas the Sfp type exhibits an extraordinarily broad substrate specificity. Based on the previously published co-crystal structure of Bacillus subtilis AcpS and ACP that provided detailed information about the interacting residues of the two proteins, we designed a novel hybrid PCP by replacing the Bacillus brevis TycC3-PCP helix 2 with the corresponding helix of B. subtilis ACP that contains the interacting residues. This was performed for the PCP domain as a single protein as well as for the TycA-PCP domain within the nonribosomal peptide synthetase module TycA from B. brevis. Both resulting proteins, designated hybrid PCP (hPCP) and hybrid TycA (hTycA), were modified in vivo during heterologous expression in Escherichia coli (hPCP, 51%; hTycA, 75%) and in vitro with AcpS as well as Sfp to 100%. The designated hTycA module contains two other domains: an adenylation domain (activating phenylalanine to Phe-AMP and afterward transferring the Phe to the PCP domain) and an epimerization domain (converting the PCP-bound l-Phe to d-Phe). We show here that the modified PCP domain of hTycA communicates with the adenylation domain and that the co-factor of holo-hPCP is loaded with Phe. However, communication between the hybrid PCP and the epimerization domain seems to be disabled. Nevertheless, hTycA is recognized by the next proline-activating elongation module TycB1 in vitro, and the dipeptide is formed and

  7. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling.

    Science.gov (United States)

    Uzarowska, Anna; Dionisio, Giuseppe; Sarholz, Barbara; Piepho, Hans-Peter; Xu, Mingliang; Ingvardsen, Christina Rønn; Wenzel, Gerhard; Lübberstedt, Thomas

    2009-02-02

    The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75%) were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize.

  8. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  9. Gene cluster encoding cholate catabolism in Rhodococcus spp.

    Science.gov (United States)

    Mohn, William W; Wilbrink, Maarten H; Casabon, Israël; Stewart, Gordon R; Liu, Jie; van der Geize, Robert; Eltis, Lindsay D

    2012-12-01

    Bile acids are highly abundant steroids with important functions in vertebrate digestion. Their catabolism by bacteria is an important component of the carbon cycle, contributes to gut ecology, and has potential commercial applications. We found that Rhodococcus jostii RHA1 grows well on cholate, as well as on its conjugates, taurocholate and glycocholate. The transcriptome of RHA1 growing on cholate revealed 39 genes upregulated on cholate, occurring in a single gene cluster. Reverse transcriptase quantitative PCR confirmed that selected genes in the cluster were upregulated 10-fold on cholate versus on cholesterol. One of these genes, kshA3, encoding a putative 3-ketosteroid-9α-hydroxylase, was deleted and found essential for growth on cholate. Two coenzyme A (CoA) synthetases encoded in the cluster, CasG and CasI, were heterologously expressed. CasG was shown to transform cholate to cholyl-CoA, thus initiating side chain degradation. CasI was shown to form CoA derivatives of steroids with isopropanoyl side chains, likely occurring as degradation intermediates. Orthologous gene clusters were identified in all available Rhodococcus genomes, as well as that of Thermomonospora curvata. Moreover, Rhodococcus equi 103S, Rhodococcus ruber Chol-4 and Rhodococcus erythropolis SQ1 each grew on cholate. In contrast, several mycolic acid bacteria lacking the gene cluster were unable to grow on cholate. Our results demonstrate that the above-mentioned gene cluster encodes cholate catabolism and is distinct from a more widely occurring gene cluster encoding cholesterol catabolism.

  10. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.

    Science.gov (United States)

    Jiang, Lu; Ball, Graham; Hodgman, Charlie; Coules, Anne; Zhao, Han; Lu, Chungui

    2018-03-08

    Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.

  11. Value and Limits of Routine Histology Alone or Combined with Glutamine Synthetase Immunostaining in the Diagnosis of Hepatocellular Adenoma Subtypes on Surgical Specimens

    Directory of Open Access Journals (Sweden)

    Paulette Bioulac-Sage

    2013-01-01

    Full Text Available Immunohistochemistry is a valid method to classify hepatocellular adenoma (HCA. The aim was to test the performance of routine histology combined to glutamine synthetase (GS staining to identify the 2 major HCA subtypes: HNF1α inactivated (H-HCA and inflammatory HCA (IHCA. 114 surgical cases, previously classified by immunohistochemistry, were analysed. Group A comprised 45 H-HCAs, 44 IHCAs, and 9 β-catenin-activated IHCAs (b-IHCA, and group B, 16 b-HCA and unclassified HCA (UHCA. Steatosis was the hallmark of H-HCA. IHCA and b-IHCA were mainly characterized by inflammation, thick arteries, and sinusoidal dilatation; b-IHCA could not be differentiated from IHCA by routine histology. Group B was identified by default. A control set (91 cases was analyzed using routine and GS stainings (without knowing immunohistochemical results. Among the 45 H-HCAs and 27 IHCAs, 40 and 24 were correctly classified, respectively. Among the 10 b-IHCAs, 4 were identified as such using additional GS. Eight of the 9 HCAs that were neither H-HCA nor IHCA were correctly classified. Conclusion. Routine histology allows to diagnose >85% of the 2 major HCA subtypes. GS is essential to identify b-HCA. This study demonstrates that a “palliative” diagnostic approach can be proposed, when the panel of specific antibodies is not available.

  12. X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture.

    Science.gov (United States)

    Tarry, Michael J; Haque, Asfarul S; Bui, Khanh Huy; Schmeing, T Martin

    2017-05-02

    Nonribosomal peptide synthetases (NRPS) are macromolecular machines that produce peptides with diverse activities. Structural information exists for domains, didomains, and even modules, but little is known about higher-order organization. We performed a multi-technique study on constructs from the dimodular NRPS DhbF. We determined a crystal structure of a cross-module construct including the adenylation (A) and peptidyl carrier protein (PCP) domains from module 1 and the condensation domain from module 2, complexed with an adenosine-vinylsulfonamide inhibitor and an MbtH-like protein (MLP). The action of the inhibitor and the role of the MLP were investigated using adenylation reactions and isothermal titration calorimetry. In the structure, the PCP and A domains adopt a novel conformation, and noncovalent, cross-module interactions are limited. We calculated envelopes of dimodular DhbF using negative-stain electron microscopy. The data show large conformational variability between modules. Together, our results suggest that NRPSs lack a uniform, rigid supermodular architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte–neuron co-cultures

    Science.gov (United States)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse K; Sørensen, Michael; Ott, Peter; Vilstrup, Hendrik; Schousboe, Arne; Keiding, Susanne; Waagepetersen, Helle S

    2013-01-01

    Hyperammonemia is a major etiological toxic factor in the development of hepatic encephalopathy. Brain ammonia detoxification occurs primarily in astrocytes by glutamine synthetase (GS), and it has been proposed that elevated glutamine levels during hyperammonemia lead to astrocyte swelling and cerebral edema. However, ammonia may also be detoxified by the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT) leading to trapping of ammonia in alanine, which in vivo likely leaves the brain. Our aim was to investigate whether the GS inhibitor methionine sulfoximine (MSO) enhances incorporation of 15NH4+ in alanine during acute hyperammonemia. We observed a fourfold increased amount of 15NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to 15NH4Cl in the absence or presence of MSO demonstrated a dose-dependent incorporation of 15NH4 into alanine together with increased 15N incorporation in glutamate. These findings provide evidence that ammonia is detoxified by the concerted action of GDH and ALAT both in vivo and in vitro, a mechanism that is accelerated in the presence of MSO thereby reducing the glutamine level in brain. Thus, GS could be a potential drug target in the treatment of hyperammonemia in patients with hepatic encephalopathy. PMID:23673435

  14. Brain alanine formation as an ammonia-scavenging pathway during hyperammonemia: effects of glutamine synthetase inhibition in rats and astrocyte-neuron co-cultures.

    Science.gov (United States)

    Dadsetan, Sherry; Kukolj, Eva; Bak, Lasse K; Sørensen, Michael; Ott, Peter; Vilstrup, Hendrik; Schousboe, Arne; Keiding, Susanne; Waagepetersen, Helle S

    2013-08-01

    Hyperammonemia is a major etiological toxic factor in the development of hepatic encephalopathy. Brain ammonia detoxification occurs primarily in astrocytes by glutamine synthetase (GS), and it has been proposed that elevated glutamine levels during hyperammonemia lead to astrocyte swelling and cerebral edema. However, ammonia may also be detoxified by the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT) leading to trapping of ammonia in alanine, which in vivo likely leaves the brain. Our aim was to investigate whether the GS inhibitor methionine sulfoximine (MSO) enhances incorporation of (15)NH4(+) in alanine during acute hyperammonemia. We observed a fourfold increased amount of (15)NH4 incorporation in brain alanine in rats treated with MSO. Furthermore, co-cultures of neurons and astrocytes exposed to (15)NH4Cl in the absence or presence of MSO demonstrated a dose-dependent incorporation of (15)NH4 into alanine together with increased (15)N incorporation in glutamate. These findings provide evidence that ammonia is detoxified by the concerted action of GDH and ALAT both in vivo and in vitro, a mechanism that is accelerated in the presence of MSO thereby reducing the glutamine level in brain. Thus, GS could be a potential drug target in the treatment of hyperammonemia in patients with hepatic encephalopathy.

  15. IMMUNOHISTOCHEMICAL APPROACH REVEALS LOCALIZATION OF CYSTATHIONINE-?-LYASE AND CYSTATHIONINE-ß-SYNTHETASE IN ETHANOL-INDUCED GASTRIC MUCOSA DAMAGE IN MICE

    Directory of Open Access Journals (Sweden)

    Jand-Venes Rolim MEDEIROS

    2013-04-01

    Full Text Available Context Hydrogen sulphide (H2S has been proved to be a neuromodulator and contributes to the maintenance of gastric mucosal integrity in damage caused by anti-inflammatory nonsteroidal drugs. Previously, we demonstrated that H2S synthesis is essential to gastric protection against ethanol. Objective To better understanding the role of H2S and the detailed localization of its production in both normal and injured stomach due to ethanol injection, we studied the expression of cystathionine-γ-lyase (CSE and cystathionine-β-synthetase (CBS isoforms in gastric mucosa of mice treated with saline or 50% ethanol. Methods Mice were treated by gavage with saline or 50% ethanol (0.5 mL/25 g. After 1 hour, mice were sacrificed, and gastric tissue was evaluated by histological and immunohistochemical analysis specific for CSE and CBS. Results We have demonstrated a non-specific expression of CBS in the normal gastric mucosa and expression of CSE occurring mainly in the parietal cells of the animals treated with ethanol. Conclusion Thus, we demonstrated that the expression of CBS appears to be constitutive and diffuse across the gastric epithelium, while the expression of CSE appears to be induced in parietal cells by damage agents such as ethanol.

  16. The mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase studied by molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Mykuliak V. V.

    2014-03-01

    Full Text Available Aim. To study the mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS. Methods. Complexes of MtTyrRS with tyrosine, ATP and tyrosyl adenylate were constructed by superposition of the MtTyrRS structure and crystallographic structures of bacterial TyrRS. All complexes of MtTyrRS with substrates were investigated by molecular dynamics (MD simulations in solution. Results. It was shown the formation of network of hydrogen bonds between substrates and the MtTyrRS active center, which were stable in the course of MD simulations. ATP binds in the active site both by hydrogen bonds and via electrostatic interactions with Lys231 and Lys234 of catalytic KFGKS motif. Conclusions. The L-tyrosine binding site in the enzyme active site is negatively charged, whereas the ATP binding site contains positive Lys231 and Lys234 residues of catalytic KFGKS motif. The occupancy of H-bonds between substrates and the enzyme evidences a significant conformational mobility of the active site.

  17. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    Carbon and nitrogen are the most abundant elements in plants, together making up around 40-50% and 2-6% of dry matter respectively. Elevated atmospheric CO2 levels are predicted to double by the end of this century, increasing carbon fixation by C3 plants like Arabidopsis and, hence, their carbon...... of the complicated interactions between nitrogen and carbon, pointing towards the need for a deeper understanding of the same.......Carbon and nitrogen are the most abundant elements in plants, together making up around 40-50% and 2-6% of dry matter respectively. Elevated atmospheric CO2 levels are predicted to double by the end of this century, increasing carbon fixation by C3 plants like Arabidopsis and, hence, their carbon...... content while diluting nitrogen concentrations. Such a reduction in nitrogen concentration will affect plant response to stress and seed/grain yield. Glutamine synthetase (GS) is the central nitrogen-assimilatory enzyme, performing primary and secondary nitrogen assimilation, in response to environmental...

  18. Structural and Functional Characterization of Aerobactin Synthetase IucA from a Hypervirulent Pathotype of Klebsiella pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Daniel C.; Drake, Eric J.; Grant, Thomas D.; Gulick, Andrew M. (Buffalo); (HWMRI)

    2016-06-28

    Iron is a vital mineral nutrient required by virtually all life forms to prosper; pathogenic bacteria are no exception. Despite the abundance of iron within the human host, highly regulated iron physiology can result in exceedingly low levels of iron bioavailable to prospective invading bacteria. To combat this scarcity of iron, many pathogenic bacteria have acquired specific and efficient iron acquisition systems, which allow them to thrive in iron-deficient host environments. One of the more prominent bacterial iron acquisition systems involves the synthesis, secretion, and reuptake of small-molecule iron chelators known as siderophores. Aerobactin, a citrate-hydroxamate siderophore originally isolated nearly 50 years ago, is produced by a number of pathogenic Gram-negative bacteria. Aerobactin has recently been demonstrated to play a pivotal role in mediating the enhanced virulence of a particularly invasive pathotype of Klebsiella pneumoniae (hvKP). Toward further understanding of this key virulence factor, we report the structural and functional characterization of aerobactin synthetase IucA from a strain of hvKP. The X-ray crystal structures of unliganded and ATP-bound forms of IucA were solved, forming the foundation of our structural analysis. Small angle X-ray scattering (SAXS) data suggest that, unlike its closest structurally characterized homologues, IucA adopts a tetrameric assembly in solution. Finally, we employed activity assays to investigate the substrate specificity and determine the apparent steady-state kinetic parameters of IucA.

  19. Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content in lettuce (Lactuca sativa).

    Science.gov (United States)

    Pinto, Edgar; Fidalgo, Fernanda; Teixeira, Jorge; Aguiar, Ana A; Ferreira, Isabel M P L V O

    2014-04-01

    The variation of nitrate reductase (NR), glutamine synthetase (GS) and N content in lettuce was evaluated at 5 stages of lettuce growth. Soil physicochemical properties and its N content were also assessed to elucidate the soil-to-plant transfer of inorganic N and potential leaching to groundwater. A decrease of NR activity and an increase of NO3(-) and N-Kjeldahl content in lettuces were observed during plant growth, whereas GS activity and NH4(+) increased during the first few weeks of lettuce growth and then decreased. Although the temporal variation was similar in lettuces grown in different soils, quantitative differences were observed, indicating that high NO3(-) content in soil caused a higher NO3(-) accumulation in lettuce despite the higher NR activity during the initial stage of plant growth. Higher levels of NO3(-) and NH4(+) were correlated with higher levels of N-Kjeldahl in lettuce suggesting a positive effect of these N species in the biosynthesis of organic forms of N. Soil physicochemical properties influenced the mobility of inorganic N within the groundwater-soil-plant system. Sandy soils with low OM content allowed NO3(-) leaching, which was confirmed by higher NO3(-) levels in groundwater. Therefore, lettuces grown in those soils presented lower N content and the inputs of N to the environment were higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Effect of Electroacupuncture on the Expression of Glycyl-tRNA Synthetase and Ultrastructure Changes in Atrophied Rat Peroneus Longus Muscle Induced by Sciatic Nerve Injection Injury

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Glycyl-tRNA synthetase (GlyRS is one of the key enzymes involved in protein synthesis. Its mutations have been reported to cause Charcot-Marie-Tooth disease which demonstrates muscular atrophy in distal extremities, particularly manifested in peroneus muscles. In this situation, the dysfunctions of mitochondria and sarcoplasmic reticulum (SR affect energy supply and excitation-contraction coupling of muscle fibers, therefore resulting in muscular atrophy. Although the treatment of muscular atrophy is a global urgent problem, it can be improved by electroacupuncture (EA treatment. To investigate the mechanism underlying EA treatment improving muscular atrophy, we focused on the perspective of protein synthesis by establishing a penicillin injection-induced sciatic nerve injury model. In our model, injured rats without treatment showed decreased sciatic functional index (SFI, decreased peroneus longus muscle weight and muscle fiber cross-sectional area, aggregated mitochondria with vacuoles appearing, swollen SR, and downregulated mRNA and protein expression levels of GlyRS and myosin heavy chain IIb (MHC-IIb. The injured rats with EA treatment showed significant recovery. These results indicated that EA stimulation can alleviate peroneus longus muscular atrophy induced by iatrogenic sciatic nerve injury through promoting the recovery of GlyRS and muscle ultrastructure and increasing muscle protein synthesis.